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Abstract Sparse arrays can increase the array aperture and degrees of free-
dom (DOFs) through the construction of either sum or difference co-arrays
or both. In order to exploit the advantages of sparse arrays while estimating
directions of arrival (DOAs) of a mixture of circular and non-circular signals,
in this paper, a gridless DOA estimation method is proposed by employing a
recently introduced enhanced nested array, whose virtual arrays have no holes.
The virtual signals derived from both sum and difference co-arrays are con-
structed based on atomic norm minimization. It is shown that the proposed
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method also works when the circular and non-circular signals come from the
same set of directions. Simulation results are provided to demonstrate the
performance of the proposed method.

Keywords DOA estimation · Enhanced nested array · Virtual array · Atomic
norm · Non-circular signals

1 Introduction

Direction of arrival (DOA) estimation is a key topic in array signal processing,
which plays an important role in radar, sonar, navigation, geophysics, acoustic
tracking and many other applications [37]. Moreover, considering that both cir-
cular and non-circular signals may coexist in real-world applications, the DOA
estimation of mixed signals has attracted a lot of research interest recently.

Most of previous methods assume explicitly or implicitly that the source
signals are circular. Many approaches have been proposed for DOA estimation
of circular or non-circular signals, the subspace-based methods in [6,24,25,27,
28, 33]and the compressive sensing based methods in [11, 17, 18]. Considering
that both circular and non-circular signals coexist, in [4, 5], an ESPRIT-like
joint diagonalization method was proposed with uniform arrays for a mixture
of circular and strictly non-circular sources. In [3], a new data vector was
constructed by combining the received uniform array data with its conjugate
counterparts. In [10], a DOA estimation method was developed by concatenat-
ing the original data and its conjugate; however, this method does not work
when the directions of circular and non-circular sources are the same. In [12],
a method based on circularity difference was proposed which can realize the
estimation of the same DOA for mixed signals and it is suitable for uniform
arrays. In [35], polarization channel estimation was achieved for a mixture of
circular and non-circular signals based on the unconjugated covariance matrix
and covariance matrix differrencing, respectively. In [2], subspace and com-
pressive sensing based methods were proposed to achieve DOA estimation of
non-circular signals among mixed sources; however, this method cannot sepa-
rate circular and non-circular signals.

Sparse arrays can increase the array aperture and degrees of freedom
(DOFs) through virtual array generation [26, 43]. Nested array and coprime
array are two well-studied sparse array structures, with their number of DOFs
given in a closed-form expression. The nested array composed of two ULAs as
proposed in [19] can generate a virtual ULA with no holes. Since this specific
nested array is susceptible to mutual coupling given its close sensor spacing, a
new class of nested arrays was proposed in [13, 14], which can increase DOFs
and reduce mutual coupling, but their sum co-arrays have holes. In [32], the co-
prime array was proposed with reduced mutual coupling; however, its number
of DOFs is smaller than nested arrays given the same number of sensors [41]. A
generalized coprime array was presented in [22], which can increase DOFs and
extend the consecutive part of the virtual array. A thinned coprime array with
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reduced mutual coupling was propsed in [23]. In [40], a new method for two-
dimensional DOA estimation using two parallel nested arrays was proposed
based on augmented covariance matrix with two parallel difference coarrays.
Yet it is generally not attractive compared to the nested array and its virtual
array also has holes. Since the virtual array derived from sparse arrays usually
has holes, for those DOA estimation algorithms designed based on ULAs, only
the consecutive part of the virtual co-array can be employed or some inter-
polation operation has to be performed to fill the holes of the virtual array,
which unavoidably leads to different degrees of performance loss. Therefore,
it is very important for effective DOA estimation to construct a sparse array
whose sum and difference co-arrays have no holes. Recently, a nested array
with uniform sum and difference co-arrays was proposed in [9], which pro-
vides a basis for further exploring DOA estimation methods using sum and
difference co-arrays.

In this paper, we focus on the DOA estimation problem for a mixture
of circular and non-circular signals based on sparse arrays and sparse sig-
nal representation (SSR). In SSR, the signal parameter space is continuous,
and thus the mesh of parameter space will cause the base mismatches [7].
To avoid this problem, some gridless methods have been proposed for DOA
estimation. In [15], the Toeplitz matrix was reconstructed based on nuclear
norm minimization and interpolation for the difference co-array. In [39], an
efficient approach is proposed for estimating the directions-of-arrival (DOAs)
of coherent signals using coprime arrays interpolation, in which the Toeplitz
matrix is recovered by solving a nuclear norm minimization problem. In [36],
a low-rank matrix reconstruction (LRMR) approach was developed with the
rank norm replaced by the nuclear norm. For 2-D DOA estimation with an
L-shaped sparse array, a gridless method based on a virtual selection matrix
and atomic norm was proposed in [38]. A virtual array interpolation-based
algorithm for coprime array DOA estimation was proposed in [42], where the
atomic norm of the second-order virtual array signals was defined based on the
interpolated virtual array. Although gridless DOA estimation methods based
on sparse array interpolation are widely used, one prominent issue is that the
virtual signals in holes cannot be accurately represented.

In this paper, a DOA estimation method is developed based on atomic
norm minimization, which can even work when the circular and non-circular
signals come from the same directions. The enhanced nested array proposed
in [9] is employed here for DOA estimation as a representative example for the
first time in the studied area, given its unique ability of generating no-holes
virtual difference and sum co-arrays.

The paper is organized as follows. In Section 2, the model for the coexis-
tence of circular and non-circular signals is introduced and the construction of
different sparse arrays is presented including coprime arrays, nested arrays, and
enhanced nested arrays. In Section 3, the proposed DOA estimation algorithm
is presented. Section 4 analyzes the degree of freedoms and the Cramér–Rao
bound. Simulation results are provided in Section 5 and conclusions are drawn
in Section 6.
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Notations: ⊗ , || · ||A and || · ||F denote the Kronecker product, atomic

norm and frobenius norm, respectively. (·)H , (·)T and (·)∗ respectively stand
for conjugate transpose, transpose and complex conjugation. The symbol E(·)
represents the statistical expectation, diag(·) denotes a diagonal matrix gen-
erated by the involved elements and vec(·) stands for the vectorization of a
martix.

2 Signal Model and Problem Formulation

In this section, we introduce the signal model and the construction methods
of different sparse arrays, including coprime array, nested array, and the array
used in this paper - enhanced nested array. The virtual arrays generated by
different sparse arrays are also compared.

2.1 Signal Model

A complex signal s could be described by its first-order statistics like statis-
tical expectation E(s) , and second-order statistics including autocorrelation
covariance E(ss∗) and elliptic covariance E(ss) . If the non-circularity rate
of a complex signal is 0, and its elliptic covariance is also 0, i.e., the square
expectation of the magnitude of the in-phase component is the same as that
of the orthogonal component, then the signal is a circular signal. If the non-
circularity rate is between 0 and 1 and the elliptic covariance is not 0, it is a
non-circular signal with non-circularity characteristics [8, 20].

Consider a sparse array S, consisting of N sensors spaced by integer multi-
ples of d, with N being an integer and d being half wavelength, i.e d = λ/2. As-
sume there are Knc non-circular and Kc circular narrow-band uncorrelated far
field sources from directions θ = [θnc,1, θnc,2, . . . , θnc,Knc

, θc,1, θc,2, . . . , θc,Kc
].

The source signals can be expressed in a vector form as

s(t) = [
snc(t)
sc(t)

], (1)

where

snc(t) = [snc,1(t), snc,2(t), . . . snc,Knc
(t)]T, (2)

sc(t) = [sc,1(t), sc,2(t), . . . sc,Kc
(t)]T. (3)

The signals received by the sparse array S can be expressed as

x(t) = As(t) + n(t), (4)

where, n(t) is the independent and identically distributed zero-mean additive
white Gaussian noise vector, n(t) ∼ CN (0, pnI) with pn being the noise power
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and I is the identity matrix, and A represents the array manifold matrix given
by

A = [Anc,Ac] ∈ CN×K , (5)

with

Anc = [a(θnc,1),a(θnc,2), . . .a(θnc,K)] ∈ CN×Knc , (6)

Ac = [a(θc,1),a(θc,2), . . .a(θc,K)] ∈ CN×Kc . (7)

where a(θk) represents the steering vector of the kth source, with k ∈ [1, 2, . . .K],
K = Knc +Kc .

The covariance matrix of the received signals is given by

RS = E[x(t)xH(t)] =

K
∑

k=1

pka(θk)aH(θk) + pnI, (8)

where pk is the power of source signals.
The pseudo covariance matrix of the received array signals is given by [2]

R
′

S = E[x(t)x
T(t)] =

K
∑

k=1

ρke
jϕkpka(θk)a

T(θk). (9)

where ϕk is the non-circularity phase and ρk is the non-circularity rate; for
non-circular signals, 0 < ρk ≤ 1 and for circular signals, ρk = 0. Therefore,
the pseudo covariance matrix contains only the information of non-circular
signals, since the corresponding elements are zero for circular signals. For the
covariance matrix, both circular and non-circular signals contribute both non-
zero components [2].

In practice, the covariance and pseudo covariance matrices are normally
replaced by their finite sample approximation as follows

R̂S =
1

L

L
∑

t=1

x(t)xH(t), (10)

R̂
′

S =
1

L

L
∑

t=1

x(t)xT(t). (11)

where L is the number of snapshots.

2.2 Sparse Array Construction

The construction methods of the nested array, coprime array and enhanced
nested array are introduced below.
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Fig. 1 Sparse array and virtual array construction. (a) Coprime array [42], M=3, N=5. (a1)
Difference co-array of the coprime array. (a2) Sum co-array of the coprime array. (b) Nested
array [9], N1=3, N2=3. (b1) Difference co-array of the nested array. (b2) Sum co-array of
the nested array. (c) ENested array [9], N=9, N1=3, N2=3. (c1) Difference co-array of the
ENested array. (c2) Sum co-array of the ENested array.

2.2.1 Coprime array

The coprime array is composed of two ULAs, with M and N sensors, respec-
tively [42]. The position set of the coprime array can be expressed as

Scoprime = {nMd|n = 0, 1, . . . . . . N − 1}
∪ {nNd|n = 0, 1, . . . . . .M − 1}

, (12)

where M and N are coprime integers and the total number of sensors is M +
N − 1. Fig. 1(a) shows the coprime array with M = 3 and N = 5 as an
example.

2.2.2 Nested array

The two-level nested array is composed of two linear arrays, with N1 and N2

sensors, respectively [9]. The the position set can be expressed as

Snested = {nd|n = 0, 1, . . . . . . N1 − 1}
∪ {nN1d|n = 0, 1, . . . . . . N2 − 1}

, (13)

where N1 and N2 are integers and the total number of sensors is N1 +N2 − 1,
Fig. 1(b) shows the nested array with N1 = 3 and N2 = 3 as an example.

2.2.3 Enhanced nested array (ENested array)

The ENested array composed of the nested array and an additional array [9]
has the following position set

SENested = {n|n = 0, 1, . . . . . . N1 − 1}
∪ {nN1|n = 0, 1, . . . . . . N2 − 1}
∪ {n|n = N −N1, . . . . . . N − 1}

. (14)
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Fig. 1(c) shows the ENested array with N1 = 3, N2 = 3 and N = 9 as an
example.

2.3 Virtual Array Construction

Sparse array increases the degrees of freedom through the generation of dif-
ference co-array and/or sum co-array, which are defined as follows.

Definition 1 (Difference co-array) For sparse array S, the difference co-
array is defined as Ũdiff = {n−m|n,m ∈ S}, and then Udiff is defined as the

distinct elements in the position set Ũdiff .

Definition 2 (Sum co-array) For sparse array S, the sum co-array is
defined as Ũsum = {n+m|n,m ∈ S}, and then Usum is defined as the distinct
elements in the position set Ũsum.

The difference and sum co-arrays of coprime array, nested array and EN-
ested array are shown in Fig. 1. For the coprime array, the difference and sum
co-arrays are both non-uniform arrays as shown in Fig. 1(a1) and Fig. 1(a2).
For a non-uniform virtual array, the schemes of extracting central continuous
uniform array and virtual array interpolation are adopted for DOA estimation.
However, the method of extracting the central continuous uniform array leads
to loss of information, while virtual array interpolation cannot accurately rep-
resent the signal at the hole positions. As shown in Fig. 1(b1), the differences
co-array of the nested array has no holes, while the sum and difference co-
arrays of the ENnested array have no holes as shown in Fig. 1(c1) and Fig.
1(c2).

In this paper, we propose a DOA estimation method based on the ENested
array in the coexistence of circular and non-circular signals, and show through
computer simulation that the proposed method can be applied to any sparse
arrays, such as coprime arrays and nested arrays.

3 The Proposed DOA Estimation Method

In this section, we propose an atomic norm minimization based DOA esti-
mation method by employing the ENested array as an example. Firstly, the
covariance matrix of the sum co-array signals are reconstructed by minimizing
the atomic norm, based on which the DOA of non-circular signals is estimated.
Then, the covariance matrix of the circular signals is obtained using the es-
timated DOA of the non-circular signals, and the difference co-array signals
corresponding to the circular signals are derived. Finally, the covariance ma-
trix of the difference co-array signals is obtained using the minimized atomic
norm, which is further employed to estimate the DOA of the circular signals.
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3.1 DOA Estimation of Non-circular Signals

Considering the coexistence of circular and non-circular signals, we can rewrite
the pseudo covariance matrix in Eq. (9) as

R
′

S = AncR
′

ncA
T

nc +AcR
′

cA
T

c , (15)

where R
′

nc = E[sncs
T
nc] and R

′

c = E[scs
T
c ]. Since the non-circular ratio of the

circular signal ρk = 0, we have R
′

c = 0. Accordingly, the pseudo-covariance
only contains non-circular information. When the directions of circular signals
and non-circular signals are the same, the pseudo-covariance can be used to
estimate the non-circular signal DOA first, and then the circular signal DOA
can be estimated by using the covariance. Thus, Eq. (15) is simplified as

R
′

S = AncR
′

ncA
T

nc. (16)

By vectorizing R
′

S , we have

y
Ũsum

= vec(R
′

S) =

Knc
∑

k=1

ρke
jϕkpka

′

nc(θk), (17)

where

a′nc(θk) = anc(θk)⊗ anc(θk). (18)

The virtual array signals of sum co-array can be selected from vector y
Ũsum

yUsum
=

Knc
∑

k=1

ρkpke
jϕkvnc(θk), (19)

where vnc(θk) is the equivalent steering vector chosen from a′nc(θk), as Usum

is defined as the distinct elements in the position set Ũsum.

Inspired by the atomic norm theory [1, 30], we absorb the non-circular
phase ϕk and ejϕk into the following atomic set

A = {v(θk, ϕk) |θk ∈ [−90◦, 90◦], ϕk ∈ [0◦, 180◦]}. (20)

where v(θk, ϕk) = ejϕkvnc(θk).

The virtual measurements can be expressed in the form of atomic norm
minimization as follows

‖yUsum
‖
A
= inf

ρk,pk























Knc
∑

k=1

ρkpk :

yUsum
=

Knc
∑

k=1

v(θk, ϕk)ρkpk,

pk ≥ 0, 0 < ρk ≤ 1.























. (21)
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Eq. (21) can be expressed as an equivalent optimal solution to the following
semi-definite programming (SDP) problem [1]

min
T ,u

1

2
u+

1

2NUsum

Tr [T ′] ,

s.t.

[

u yH

Usum

yUsum
T ′

]

≥ 0,

(22)

where T ′ is a Hermitian Toeplitz matrix,

T ′ =

Knc
∑

k=1

ρkpkv(θk, ϕk)v
H(θk, ϕk), (23)

and NUsum
denotes the number of sensors in the sum co-array.

We plug v(θk, ϕk) = ejϕkvnc(θk) into Eq. (23) to obtain

T ′ =

Km,
∑

k=1

ρkpk
(

v (θk) e
jϕk

) (

v (θk) e
jϕk

)H

=

Kuk
∑

k=1

ρkpkv (θk) (v (θk))
H

(24)

According to Eq. (24), the matrix T ′ corresponding to the atomic set con-
taining θk and ϕk is the same as the matrix T ′ corresponding to the atomic
set only containing θk, that is, T

′ solved after SVD will not have the effect of
non-circular phase ϕk.

Taking the error into account in the SDP constraints, the optimization
problem in Eq. (22) can be expressed as

min
T ,u

1

2
u+

1

2NUsum

Tr [T ′] ,

s.t.

[

u yH

Usum

yUsum
T ′

]

≥ 0,

‖ŷUsum
− yUsum

‖2
2
≤ ε

(25)

where ε upper-bounds the fitting error, and ŷUsum
is obtained by vectorizing

the approximate pseudo covariance R̂
′

S and selecting the equivalent value.
The optimization problem Eq. (25) can be further expressed as

min
T ,u

1

2
u+

1

2NUsum

Tr [T ′] +
1

2
‖ŷUsum

− yUsum
‖2
2
,

s.t.

[

u yH

Usum
.

yUsum
T ′

]

≥ 0.

(26)

Eq. (26) is now convex, and can be solved by the CVX toolbox in MATLAB,
and the covariance matrix T ′ of the sum co-array is then obtained, which can
be used by a MUSIC-type method to estimate DOA θnc,k of non-circular
signals.
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3.2 DOA Estimation of Circular Signals

For estimating the DOA of circular sources, we need to analyse the covariance
matrix in Eq. (8), which can be expressed as

RS = AncRncA
H

nc +AcRcA
H

c , (27)

where Rnc = E[sncs
H
nc] and Rc = E[scs

H
c ].

From the DOAs of non-circular signals and Eq. (16), we can obtain R
′

nc,
thereby leading Rnc to [12]

Rnc = diag{
∣

∣

∣
R

′

nc(1, 1)
∣

∣

∣
, . . .

∣

∣

∣
R

′

nc(Knc,Knc)
∣

∣

∣
}, (28)

Using Rnc, we can estimate the covariance matrix of non-circular signals.
The covariance matrix of circular signals can then be obtained by subtracting
the non-circular part from Eq. (27) [12], giving

R = RS −AncRncA
H
nc. (29)

The difference virtual vector can be obtained by vectorizing R as

y
Ũdiff

= vec(R) =

Kc
∑

k=1

pka
′

c(θk) + pni, (30)

where
a′c(θk) = a∗c(θk)⊗ ac(θk). (31)

The virtual signals of the difference co-array are obtained from vector
y
Ũdiff

as

yUdiff
=

Kc
∑

k=1

pkz(θk) + pn̄i. (32)

where z(θk) is the obtained equivalent steering vector from a′c(θk).
Based on the atomic norm theory, we have the the atomic set of difference

co-array and virtual measurements as follows

A = {z(θk) |θk ∈ [−90◦, 90◦]}, (33)

∥

∥yUdiff

∥

∥

A
= inf

pk

{

Kc
∑

k=1

pk : yUdiff
=

Kc
∑

k=1

pkz(θk), pk ≥ 0

}

. (34)

The equivalent SDP form of Eq. (34) is given by

min
T ,t

1

2
t+

1

2NUdiff

Tr [T ] ,

s.t.

[

t yH

Udiff

yUdiff
T

]

≥ 0,

(35)
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where T is expressed as

T =

Kc
∑

k=1

pkz(θk)z
H(θk), (36)

In Eq. (35), t =
Kc
∑

k=1

pk, and NUdiff
denotes the number of sensors of the

difference co-array or that of difference co-array with holes.
Considering the error of virtual signals in the SDP constraints, the opti-

mization problem can be finally formulated as

min
T ,t

1

2
t+

1

2NUdiff

Tr [T ] ,

s.t.

[

t yH

Udiff

yUdiff
T

]

≥ 0,

∥

∥ŷUdiff
− yUdiff

∥

∥

2

2
≤ ε

(37)

where ε provides the upper bound for the fitting error, and ŷUdiff
is obtained

by vectoring the approximate covariance matrix R̂ and selecting the equivalent
values, and R̂ = R̂S −AncRncAH

nc

The optimization problem in Eq.(37) can be expressed as

min
T ,t

1

2
t+

1

2NUdiff

Tr [T ] +
1

2

∥

∥ŷUdiff
− yUdiff

∥

∥

2

2
,

s.t.

[

t yH

Udiff

yUdiff
T

]

≥ 0.

(38)

Using the CVX toolbox to solve the problem, we can obtain T and the
covariance matrix of the difference co-array signals. Then, MUSIC-type algo-
rithm can then be used to estimate DOAs of circular signals.

4 Performance Analysis

4.1 DOFs

For sparse arrays, we express the DOFs in terms of the number of the maximum
consecutive virtual arrays. Since the proposed algorithm makes use of both
sum co-array and difference co-array, the DOFs of sum and difference virtual
arrays are represented separately. We compare the DOFs of different sparse
arrays as follows.

With the position set of coprime array shown in Eq. (12), the total number
of sensors is M +N − 1. For difference co-array, the maximum position of the
positive axis is MN −M , while the minimum position of the negative axis is
−(MN −M). The maximum consecutive part is thus from −(M +N − 1) to
M+N−1 and the DOFs are 2(M+N)−1 [21]. For sum co-array, the maximum
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Table 1 DOFs Comparison of Different Arrays.

Type N1, N2 PSN (mi,ma)diff (MC)Ddiff (mi.ma)sum (MC)Dsum

Coprime 3,5 7 (-12,12) (-7,7)15 (0,24) (8,22)15
Nested 3,3 5 (-6,6) (-6,6)13 (0,12) (0,9)10
ENested 3,3 7 (-8,8) (-8,8)17 (0,16) (0,16)17
ULA7 / 7 (-6,6) (-6,6)13 (0,12) (0,12)13
ULA9 / 9 (-8.8) (-8,8)17 (0,16) (0,16)17

position of the positive axis is 2MN − 2M . The maximum consecutive part is
from (M − 1)(N − 1) to MN +N − 1 when M = 2 and from (M − 1)(N − 1)
to MN ++M +N − 1 when M > 2. The DOFs are thus M + 2N − 1 when
M = 2, 2(M +N)− 1 when M > 2 [34].

From the position set of nested array shown in Eq. (13), the total number
of sensors is N1+N2−1. For difference co-array, the maximum position of the
positive axis is N1N2−N1, while the minimum position of the negative axis is
−(N1N2−N1). Thus the maximum consecutive part is from −(N1N2−N1) to
N1N2−N1 and the DOFs are 2N1N2−2N1+1. For sum co-array, the maximum
position of the positive axis is 2N1N2 − 2N1. The maximum consecutive part
is then from 0 to N1N2 and the DOFs are N1N2 + 1.

Considering the position set of Enested array shown in Eq. (14), the total
number of sensors is 2N1 + N2 − 2. For difference co-array, the maximum
position of the positive axis is N1N2 − 1, and the minimum position of the
negative axis is −(N1N2 − 1). The maximum consecutive part is thus from
−(N1N2−1) to N1N2−1 and the DOFs are 2N1N2−1. For sum co-array, the
maximum position of the positive axis is 2N1N2−2. The maximum consecutive
part is from 0 to N1N2 and the DOFs are 2N1N2 − 1.

By referring to the virtual co-arrays of different sparse arrays shown in
Fig. 1, the comparison of sum DOFs and dirrerence DOFs with coprime ar-
ray, nested array, Enested array, ULAs with 7 sensors and 9 sensors is shown
in Table 1. PSN expresses the total number of phsicaly sensors, (mi,ma)diff
and (mi.ma)sum are the minimum position of the negative axis and the maxi-
mum position of the positive axis for difference and sum co-array, respectively.
MC expresses the range of maximum consecutive ULA. And Ddiff and Dsum

express the DOFs for difference and sum co-array with different array con-
struction, respectively. Obviously, the Enest array achieves the same DOF as
the ULA9 in both sum and difference co-arrays, while the virtual arrays have
no holes.
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4.2 Cramér–Rao Bound

The Cramér–Rao Bound (CRB) offers a lower bound for unbiased estimates of
parameters. For real-valued parameter vector α = [θ̄,p, pn]T, the (i,j)th entry
of the Fisher Information Matrix (FIM) is given by [42]

[FIM ]i,j = Ltr(R−1

S

∂RS

∂[α]i
R−1

S

∂RS

∂[α]j
), (39)

which is further expressed as

[FIM ]i,j = L[vec(
∂RS

∂[α]i
)H](R−T

S ⊗R−1

S )vec(
∂RS

∂[α]j
), (40)

The FIM matrix can be decomposed into [29]

FIM = L

[

GH

∆H

]

[

G ∆
]

. (41)

where G is given by

G = (RT

S ⊗RS)
−1/2

[

∂y
∂p1

· · · ∂y
∂pK

∂y
∂pn

]

, (42)

y = vec(RS), (43)

and ∆ is given by

∆ = (RT

S ⊗RS)
−1/2[ ∂y

∂θ̄1
· · · ∂y

∂θ̄K
]. (44)

According to the derivation of CRB in [16], G and ∆ can be simplified as

G = −j2π(RT

S
⊗RT

S
)−1/2J(diag(Udiff ))VUdiff

P, (45)

∆ = (RT

S
⊗RT

S
)−1/2JW, (46)

where VUdiff
is array manifold of the difference co-array, P is the diagonal

matrix with signal power and J is a binary matrix, representing the correspon-
dence between Ũdiff and Udiff

VUdiff
= [vUdiff

(θ̄1) · · ·vUdiff
(θ̄K) ], (47)

P = diag(p1, p2, · · · pK), (48)

W =
[

vUdiff
(θ̄1) · · ·vUdiff

(θ̄K) i
]

. (49)

Therefore, the CRB can be obtained as [16]

CRB(θ̄) =
1

4π2L
(GH

0
Π⊥

MWGH

0
)−1, (50)
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where
Π⊥

MW = I−MW((MW)HMW)−1(MW)H, (51)

M = (JH(RT

S ⊗RT

S )
−1J)1/2, (52)

G0 = M(diag(Udiff ))VUdiff
P. (53)

5 Simulation Results

In our simulation, an Enested array with N1 = 3 and N2 = 3 is used, which has
7 physical sensors with their locations shown in Fig. 1(c). Further the virtual
arrays are shown as Fig. 1(c1) and Fig. 1(c2). As a comparison, the coprime
array of M = 3 and N = 5, with 7 physical sensors, and the equivalent signals
of sum and difference virtual arrays are obtained via interpolation [42]. Besides,
two ULAs with 7 and 9 physical sensors are also considered for comparison.The
root mean square errors (RMSEs) with respect to signal-to-noise ratio (SNR)
and snapshot number of different sparse arrays are compared based on the
proposed method. The RMSE is defined as

RMSE =

√

√

√

√

1

KM

M
∑

m=1

K
∑

k=1

(ˆ̄θk,m − θ̄k)2, (54)

where M stands for the number of Monte Carlo trials, ˆ̄θk,m denotes the nor-
malized DOA estimation result of the kth source at the mth Monte Carlo trial
and θ̄k = (d/λ) sin(θk).
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Fig. 2 The spatial spectrum results with same directions.
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Fig. 3 RMSE comparison with a different set of directions: 2 circular and 2 non-circular
sources. (a) RMSE versus SNR, (b) RMSE versus snapshot number.

In the first example, we consider seven uncorrelated circular sources uni-
formly distributed in [−60◦, 60◦], which coincide with seven uncorrelated non-
circular sources uniformly distributed in the same range. The spatial spectrum
obtained with the seven-sensor ENested array is shown in Fig. 2, with snapshot
number L = 500 and SNR = 30dB. It is observed that proposed algorithm
can distinguish the DOAs of circular and non-circular signals from the same
directions. This is because the proposed algorithm estimates the non-circular
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signals using the sum virtual array firstly, while the difference virtual array is
used to estimate the circular signals. The process of estimating the DOAs of
circular and non-circular signals is separated. In addition, since both the sum
and difference co-arrays are used in the proposed algorithm, the number of
distinguishable mixed signals exceeds the number of physical elements.

In the second example, the circular and non-circular signals come from
different directions. There are two non-circular sources uniformly distributed
in [−30◦, 10◦], and two circular sources uniformly distributed in [20◦, 70◦].
The RMSE result obtained by 200 Monte Carlo trials with snapshot number
L = 500 from the ENested array, coprime array, 7-sensor ULA and 9-sensor
ULA are shown in Fig. 3(a). Fig. 3(b) shows the RMSE result with respect to
the same snapshot number at an SNR of 10dB. It is observed that the RMSE
of the ENested array is close to the 9-sensor ULA which is better than the 7-
sensor ULA. This is because the sum and difference co-arrays of the ENested
array are the same as the 9-sensor ULA, and achieves a better result at a
lower SNR and becomes stable with the increase of SNR. Besides, the DOA
estimation result of the coprime array is worse than other arrays due to the
holes of its virtual array.

In the third example, we compare the proposed method with the sparse
array DOA estimation method proposed in [2]. Since the method in [2] cannot
work when the circular and non-circular signals come from the same direction,
we consider the case with different directions and give the RMSE of mixture
signals. When there are one non-circular source from 10◦ and one circular
source from 30◦, the resulting RMSE at SNR = 10dB and 200 Monte Carlo
trials is shown in the Fig. 4. By comparing the RMSE of the two methods for
both circular and non-circular sources, we can see that overall our proposed
method has achieved a better performance than Cai’s method in [2]. The
reference algorithm estimates directions using a compressed sensing method
which based on the meshed parameter space. But since the signal parameter
space is continuous, the mesh of parameter space causes base mismatches. In
contrast, the proposed method uses on the gridless atomic norm to reconstruct
the toeplitz matrix, which can further improve the estimation accuracy.

In the fourth example, we explore the effect of DOA separation. Assume
two signals, one circular and one non-circular. The direction of the non-circular
signal is 45◦, while the direction of the circular signal varies from 45◦ to 55◦.
The RMSE result obtained from SNR = 10dB, L = 500 and 500 Monte Carlo
trials is shown in Fig. 5. Surprisingly, the performance is better when the
DOA separation of circular and non-circular signals is smaller. This could be
explained as follows. In theory, there is no circular signal information in the
pseudo covariance matrix, but in practice, circular signal information could
affect the pseudo covariance matrix, and when DOA separation is small, the
direction of circular signals is very close to the direction of non-circular signals,
so that the additional influence of circular signals on the pseudo covariance
matrix is smaller. This could also explain why the estimation performance for
the same-DOA is better than the case with different DOAs.
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6 Conclusion

In this paper, a gridless DOA estimation method has been proposed for a
mixture of circular and non-circular signals by employing the recently proposed
ENested array whose sum and difference co-arrays have no holes. The proposed
method can successfully reconstruct the covariance matrix of the virtual signals
of the sum and difference co-arrays based on atomic norm minimization and
can still work well even when the circular and non-circular signals come from
the same set of directions. As demonstrated by computer simulations, the
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proposed method can achieve a performance close to the ULAs with the same
physical aperture as the difference and sum combined virtual aperture of the
employed ENested array.
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