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Imperial College London Abstract

Abstract

This thesis is concerned with multi-source parameter estimation and tracking us-

ing antenna arrays in wireless communications. Various multi-source parameter

estimation and tracking algorithms are presented and evaluated.

Firstly, a novel multiple-input multiple-output (MIMO) communication sys-

tem is proposed for multi-parameter channel estimation. A manifold extender

is presented for increasing the degrees of freedom (DoF). The proposed approach

utilises the extended manifold vectors together with superresolution subspace type

algorithms, to achieve the estimation of delay, direction of departure (DOD) and

direction of arrival (DOA) of all the paths of the desired user in the presence of

multiple access interference (MAI).

Secondly, the MIMO system is extended to a virtual-spatiotemporal system

by incorporating the temporal domain of the system towards the objective of

further increasing the degrees of freedom. In this system, a multi-parameter es-

timation of delay, Doppler frequency, DOD and DOA of the desired user, and

a beamformer that suppresses the MAI are presented, by utilising the proposed

virtual-spatiotemporal manifold extender and the superresolution subspace type

algorithms.

Finally, for multi-source tracking, two tracking approaches are proposed based

on an arrayed Extended Kalman Filter (arrayed-EKF) and an arrayed Unscented

Kalman Filter (arrayed-UKF) using two type of antenna arrays: rigid array and

flexible array. If the array is rigid, the proposed approaches employ a spatiotem-

poral state-space model and a manifold extender to track the source parameters,

while if it is flexible the array locations are also tracked simultaneously.

Throughout the thesis, computer simulation studies are presented to investigate

and evaluate the performance of all the proposed algorithms.
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Chapter 1

Introduction

Parameter estimation has long been of great research interest due to its impor-

tance in a variety of applications including wireless communications, sonar, radar,

radio astronomy, and navigation. In the future, the demand for parameter esti-

mation in applications of Internet of Things (IoT) [5], intelligent transportation

[6], unmanned aerial vehicle (UAV) [7] and massive multiple-input multiple-output

(MIMO) for 5G+ [8] arises. As the applications expanded, accurately estimating

temporal and spatial parameters has become increasingly important. In wire-

less communications, technologies designed based on antenna array systems have

been widely used in the current generation wireless systems, in particular, mas-

sive MIMO is a promising technology for the next generation wireless systems [9].

The array technologies utilise array of several antennas at the transceiver while

the massive MIMO utilises large arrays formed by hundreds or thousands of anten-

nas. The use of antenna arrays improves channel capacity, array (or beamforming)

gain, multiplexing gain, diversity, robustness against fading and coverage, there-

fore, antenna array systems could largely improve the overall performance of the

wireless networks. The performance of the antenna array system heavily relies on

accurate parameter estimation at the base station (BS) so that the system could

provide proper downlink beamforming [10]. Furthermore, the wireless traffic vol-
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ume is expected to increase to a large extent in the coming decade as the number

of connected devices are rising rapidly [11]. Parameter estimation in the presence

of co-channel interference appears to be a challenge, which has to be addressed by

designing proper algorithms using array signal processing to ensure its accuracy

and reliability. Hence, parameter estimation using array signal processing plays

an important role in wireless communications.

1.1 Fundamentals of Array Signal Processing

An antenna array is a collection of antennas distributed in a three-dimensional

space working together as a unit. The signal received at the antenna array contains

temporal and spatial information of the signal environment. By observing the

received signal, the objective of the antenna array system is to solve the following

general problems, namely

• The detection problem: this problem is to determine the number of emitting

sources in the environment at the time of the observation. Many approaches

can be utilised to solve this problem, such as Akaike Information Criterion

(AIC) [12] and Minimum description length (MDL) [13], both of which are

popular approaches of the solutions.

• The channel estimation problem: this problem is concerned with the esti-

mation of channel parameters associated with the desired sources, such as

delays, Direction of Departure (DOD), Direction of Arrival (DOA), velocities,

Doppler frequencies, etc. Among these, the DOA is the most important pa-

rameter to be estimated in array signal processing. Several DOA estimation

approaches have been developed including the MUltiple SIgnal Classifica-

tion (MUSIC) algorithm [14], and the Estimation of Signal Parameters via

Rotational Invariance Technique (ESPRIT) [15].
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• The reception problem: this problem is concerned with acquiring the desired

signals from particular directions and suppressing undesired signals from

all other directions. It involves the weight design at the receiver and/or

transmitter to provide high gains to the direction of the desired sources and

to eliminate the interferences. Various beamforming approaches have been

proposed for resolving the reception problem, such as Capon’s beamformer

[16] and Wiener-Hopf beamformer [17].

The three aforementioned problems are the major problems in array signal process-

ing and they are interrelated. Extensive research has been carried out to address

these problems, including a wide range of solutions in radar, sonar, wireless com-

munications, etc.

Consider an array of N antennas, the locations of these antennas are denoted

by

r = [r1, r2, ..., rm..., rN ] =
[
rx, ry, rz

]T ∈ R3×N (1.1)

where the vector rm ∈ R3×1 denotes the Cartesian coordinates of them-th antenna

and the N × 1 vectors rx, ry, rz are the Cartesian coordinates of all antennas on

the x-axis, y-axis and z-axis, respectively. Consider the array operates in the

presence of multiple far field sources. The far field implies that the radius of the

propagation is large enough so that the wavefronts are plane wave. The plane wave

propagation model is illustrated in Figure 1.1. The propagation delay between the

m-th array element and the array reference point can be expressed as a function

of the direction of arrival (θ, φ) and is obtained as

τm =
rTmu (θ, φ)

c
(1.2)

where c is the speed of signal propagation and u (θ, φ) denotes the (3× 1) unit-

norm vector pointing towards the direction (θ, φ) given by

u (θ, φ) = [cos θ cosφ, sin θ cosφ, sinφ]T (1.3)
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The response of an array to a plane wave arriving from the direction (θ, φ) is

termed as the array manifold vector S ∈ CN×1, (or the array response vector),

and is formed as a function of the direction-of-arrival (DOA), carrier frequency

Fc, velocity of light c and the Cartesian coordinates of the antenna array elements

[r1, r2, ..., rN ], defined as follows

S
∆
= S (θ, φ) = exp

(
−j 2πFc

c
[r1, r2, ..., rN ]

T u (θ, φ)

)
(1.4)

(0,0,0)
y

z

x

m-th
 antenna

Travelling plane wave

Travelling plane wave

signal from the i-th source/user
(far field)

Figure 1.1: Illustration of plane wave propogation from the i-th source/user to a
small aperture array.

1.2 The Concept of the Array Manifold

The array manifold vector in Equ 1.4 is generalized to S (p) where p is the para-

meter of interest. The locus of all the array manifold vectors for the range of the
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parameter p is defined as the array manifold A [18], which is given as

A ∆
=
{
S (p) ∈ CN ,∀p : p ∈ Ω

}
(1.5)

and is illustrated in Figure 1.2, where Ω denotes the parameter space.

manifold curve

Origin

N-dim   complex obser
sp

tion
va

ce
a

Figure 1.2: Illustration of the array manifold.

The array manifold of an array of sensors (antennas, microphones, etc.) is a

mathematical object embedded in a N -dimensional complex Hilbert space shown

in Figure 1.2. Note that the array manifold can be a function of more than one

parameters. If there is one parameter, i.e. DOA, the array manifold is a curve

embedded in an N -dimensional complex space. If there are two parameters, then

p = p, the array manifold is a surface. The array manifold fully characterises any

array geometry. In modelling and solving the problems in array signal processing,

the concept of the array manifold is of vital significance.

1.3 The Concept of the Manifold Extender

The concept of the “manifold extender” is a complex mapping which maps the

“spatial” manifold to the “extended” manifold under certain constraints [19] and

it can be visualised in Figure 1.3 illustrating the mapping of the manifold (i.e. the
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locus of all manifold vectors S) to an extended manifold (i.e. the locus of all new

extended manifolds vectors h). In this figure the extended manifold is an “extended

curve” and its properties can be analysed as a function f{·} of the properties

of the original manifold curve, using differential geometry. The proofs can be

found in [18], [19] and more explanations can be found in [18, 19, 20, 21]. The

“manifold extender” takes into account additional system parameters to extend

the dimensionality of the signal observation space, and thus the degrees of freedom

can be increased.

manifold curve

Origin

extended ma

 curve

nifold

Origin

N-dim   complex obser

sp
tion

va

ce
a

NN -dim   
ext

complex obser

sp

tion
va

ce
a

Figure 1.3: Visualisation of the “Manifold Extender”.

In this thesis, the concept of the “manifold extender” has been explored in

the three technical chapters of this thesis. The “manifold extender” extends the

observation space of an array system from N to NNext where Next denotes the

extended dimension. The value of Next depends on the algorithms to design the

“manifold extender”. In this thesis, different “manifold extenders” have been

designed and evaluated, and different “extended” manifold vectors obtained by

different manifold extenders have been presented and discussed, all of which are

functions of the original manifold vector.
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1.4 Challenges and Gaps

There are a number of challenges and gaps in multi-source parameter estimation

and tracking in wireless communications that have not been fully covered in the

literature, the following is the listed problems to be addressed in this thesis.

1. Multi-source parameter estimation

Subspace-based techniques are one of the most widely used techniques in

parameter estimation algorithms. However, to achieve desired estimation

accuracy, conventional subspace techniques require the signal to noise ra-

tio and the number of snapshot to be high. In addition, it also needs the

number of Rx antennas to be larger than the number of signals. In wireless

communications, a key challenge is to estimate channel parameters of the

desired source whilst providing complete interference cancellation (asymp-

totically) of the undesired sources, and also to accommodate the number of

signals that is much greater than the number of Rx antennas. Thus, it is

vital to design algorithms to address the aforementioned issues for the future

communication systems, which, forms a contribution of this thesis.

2. Parametric channel modelling

Appropriate channel modelling is of critical importance in designing ar-

ray processing algorithms in wireless communication systems. Extensive

researches have been done to design channel models. However, most of

the existing models are “non-parametric”, which however are problematic.

“Non-parametric” models are described as random matrices H conformed

to specific distributions and they characterise the channel independently of

channel parameters such as DOA and ignore the array geometry. The channel

estimation using such models would need to estimate a number of variables

equal to the number of dimensions of H (i.e. to estimate all the elements of
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H which are unknown complex numbers). However, with the development

of the future communication systems, massive array systems are expected to

be widely used, and this will largely increase the size of the channel matrix

making the channel estimation complicated and impractical. In addition,

measurement campaign in [22] indicates that non-parametric models are not

applicable for massive MIMO system as the scattering environment does not

show rich. The majority of channel state information (CSI) techniques in

various commercial systems employ pilot signals which are spectrum inef-

ficient. Furthermore, in the open literature, it is assumed that the CSI is

known and the research is limited on analysing the performance of a system

in the presence of partial knowledge of the CSI. This is a serious drawback

of the current state of the art and in this thesis novel powerful “blind” and

spectrum efficient MIMO channel estimation techniques are proposed.

3. Enhancing degrees of freedom

Future communication systems are expected to operate in very high density

signal/user environments with high speeds without sacrificing the quality of

service. Using antenna arrays at both the transmitter and receiver allows a

multitude of devices and users communicating with each other at the same

time on the same frequency band, possibly within small enclosures. Conse-

quently, the biggest challenge for future communication systems is the ability

to handle a very large number of co-channel received signals higher than the

number of signals in the current generation of communication systems. This

drives the requirement for future communication systems to deliver higher

number of degrees-of-freedom that will enable the system to detect, resolve

and isolate signals from a large number of interfering sources with greater ac-

curacy. Thus, enhancing the degrees of freedom becomes the major objective

of this thesis.
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4. Tracking in non-stationary environment

Tracking the DOA of multiple moving sources is a significant research topic in

array signal processing, due to its wide applications in sonar, radar, air traf-

fic control, mobile communications, remote sensing, etc. For static sources,

it is well known that their DOA can be estimated using, for instance, signal-

subspace algorithms (e.g. [14]). If the motion of the sources is slow, then

small time-frames can be used and, for each time-frame, apply a DOA esti-

mation algorithm (i.e. repetitive DOA estimation) tracking small variations

in DOA. However, if the source is moving too fast so that the source cannot

be assumed stationary over a small time-frame, these high-resolution algo-

rithms with repetitive DOA estimation begin to exhibit performance degra-

dation. Furthermore, these DOA algorithms suffer from the data association

problem. Several approaches have been proposed to avoid this problem by

maintaining the order of the DOA estimates for different iterations [23, 24].

However, these approaches suffer from spread array spatial spectrum effects

caused by rapid source motion. To remedy the aforementioned problems,

various algorithms based on state space models have been proposed. How-

ever, these approaches have high computational complexity. In this thesis,

the aforementioned problems are addressed.

5. Tracking with Flexible arrays

Using flexible array geometries is an interesting problem in array signal

processing for airborne, vehicular, underwater and other applications. The

“flexible array” is defined as an antenna array with time varying geometry,

i.e. each of the array elements moves independently. If the array geometry

is flexible, i.e. the array geometry changes as a function of time, then the

majority (if not all) of the array processing algorithms and theory cannot be

directly used. Thus, it is important to design approaches that are suitable for
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tracking sources in non-stationary environment with flexible arrays, which,

constitutes a contribution of this thesis.

1.5 Thesis Scope and Organisation

This thesis is concerned with estimation and tracking of multi-source parameters

using antenna arrays. Array signal processing algorithms are designed for estimat-

ing and tracking different parameters of multiple sources in presence of co-channel

interference and enhancing the degrees of freedom. Both rigid array and flexible

array are investigated for simultaneously tracking non-stationary sources and array

locations. The performance of the algorithms and approaches for each chapter are

evaluated using computer simulation studies. The rest of this thesis is organised

as follows:

In Chapter 2, a joint DOD and DOA estimation approach is presented for

MIMO system. The proposed approach extends the signal observation space to

form the extended manifold vectors and increase the degrees of freedom. Then,

by using the extended manifold vectors as well as a superresolution subspace ap-

proach, the proposed approach is able to estimate the DOD and DOA of all the

paths of the desired user in the presence of multiple access interference.

In Chapter 3, a virtual-spatiotemporal MIMO system is presented which is an

extension of the system proposed in Chapter 2 towards the aim of further increasing

the degrees of freedom. To achieve this, a virtual-spatiotemporal manifold extender

is designed to increase the dimensionality of signal observation space even further.

Then, a joint DOD-DOA estimation, delay-Doppler estimation and beamforming

algorithms are presented and computer simulation studies show the superiority of

the proposed algorithms.

Chapter 4 is concerned with DOA tracking of multiple far-field moving sources

in wireless communications using antenna arrays. Two novel approaches are pro-
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posed using a rigid array and a flexible array, a spatiotemporal state-space model

and a manifold extender for simultaneously tracking multiple DOAs snapshot-by-

snapshot. In addition, if the array is flexible, the array locations are also simulta-

neously tracked with the DOAs. In particular, all the antenna array elements (in

a constant or a time varying geometry) work together as one unit. Furthermore,

the concept of “manifold extender” is employed which increases the “degrees of

freedom” of the system.

Finally, in Chapter 5, the conclusions of the thesis are drawn, the main contri-

butions of the thesis are outlined and the ideas for future works are presented.
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Chapter 2

DOA and DOD Channel

Estimation

In this chapter, a novel joint DOA and DOD estimation approach is proposed for

MIMO systems. In the proposed system, a weight-vector of N orthogonal binary

signals of length Nc is employed on the Tx-array where N is the number of Tx-

array elements, and then used at the Rx-array to extend the observation space of

the received signals fromN toNNext whereNext =N by using a “virtual” manifold

extender. In the extended observation space the manifold vectors are functions of

both the DOA and DOD. The proposed approach uses these extended manifold

vectors, in conjunction with a proposed superresolution subspace approach, to find

the DOA and DOD of all the multipaths of the desired user in the presence of other

multiple-access users, considering that all users transmit at the same time and in

the same frequency band. The results show that the proposed approach performs

better than conventional MIMO approach in terms of the estimation accuracy.
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2.1 Introduction

With an exponential increase in the number of users, it is expected that the wireless

traffic will grow a thousand-fold in the next decade [11] so that the wireless commu-

nication systems will operate in extremely dense signal environment. To address

this problem, massive MIMO array systems have been proposed, which increase

the degrees of freedom in order to handle the dense signal environment, suppress

co-channel interference and improve channel estimation accuracy. However, there

are two main theoretical frameworks for increasing the degrees of freedom:

1. to increase the number of antenna elements [25], i.e. to employ more hard-

ware, and

2. to increase the observation space of the received signals and thus to use the

concept of “extended” manifolds [19].

The novel approach proposed in this chapter belongs to the second theoretical

framework and increases the degrees-of-freedom using an “extended” manifold

which is known as the “virtual array” manifold. It also employs a parametric

channel model combined with superresolution subspace based algorithms, to esti-

mate the channel parameters of DOA and DOD with enhanced accuracy.

2.1.1 Channel Modelling

In terms of channel modelling in MIMO systems, the MIMO channel between

an N element Tx array and an N element Rx array can be modelled in a non-

parametric way or in a parametric way. In general, non-parametric channel is

modelled as random matrix H ∈ CN×N following certain distributions. Most of

the channel estimation approaches in the literature depend on “non-parametric”

(statistical) channel models such as the Kronecker-based model [26] which requires

rich scattering. However, the practical scattering scenario is not rich enough.
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A statistical model presented in [27] models the channel using a virtual spatial

matrix and Discrete Fourier Transform (DFT) matrices. However, this model is

limited only to uniform linear arrays. Similar model can be found in [28] which

uses a unitary basis instead of a Fourier basis. Such model ignores the spatial

information of the MIMO systems (i.e. array geometry). A review [29] surveys a

variety of statistical channel models. “Non-parametric” models, which characterise

the channel independent of the channel parameters, are not suitable in practical

scenarios, especially when the number of antennas is large.

Most of the MIMO system approaches assume statistical channel models which

are based on the CSI matrix whose elements are complex numbers representing

the links from each Tx antenna to each Rx antenna. Thus, the array geometries

have been ignored. On the other hand, parametric models characterise the channel

on the basis of wave propagation from the Tx array to the Rx array, instead of

from each Tx antenna to each Rx antenna. Such models are characterised by

tractable parameters such as relative delay, DOA, DOD, array geometries of both

Tx and Rx, etc. This kind of model more accurately describe the actual wave

propagation environment. With such models, the reconstruction of the channel

matrix is independent of the number of antennas.

2.1.2 Parameter Estimation Approaches

Typical parameter estimation approaches are beamforming approaches, subspace-

based approaches and maximum likelihood (ML)-based approaches.

Although beamforming approaches are mainly used for receiving the desired

signal whilst suppressing the interference, several beamforming approaches can

also be used for parameter estimation. In this case, they estimate the parameters

by finding the maximum (or minimum) peaks of the constructed spectrum-like

functions. The idea is to steer the array to a range of directions and then to

34 of 146



Imperial College London 2. DOA and DOD Channel Estimation

find the estimated directions which give the maximum power. For example, the

Bartlett [30] beamformer and the Capon [16] beamformer are typical approaches

of this class, but they are limited by the array structure and cannot resolve the

paths which are closely spaced.

The ML-based approaches involve multidimensional search of all the parame-

ters based on the underlying signal model [31]. Thus, by considering the modelling

of the signal waveform, this class can be classified into either stochastic ML ap-

proaches [32] if the signal is assumed Gaussian or deterministic ML approaches [33]

if the signal is assumed deterministic and arbitrary. The ML-based approaches in

general require to solve nonlinear multidimensional optimization problems which

have high computational cost. Several ML approximations have been proposed

towards the aim of reducing the computational complexity, such as the Estimate

Maximise (EM) algorithm [34] and its extended algorithm space-alternating gen-

eralized expectation-maximisation (SAGE) [35].

The subspace-based approaches carry out the estimation by utilising eigende-

composition of the array covariance matrix and use eigenvalues to partition the

signal subspace and noise subspace. Typical methods of the subspace-based ap-

proaches include MUSIC [14], subspace fitting [36], ESPRIT [15] and Root-MUSIC

[37]. The MUSIC and ESPRIT techniques are two widely used subspace-based

techniques which can provide high resolution and acceptable computational com-

plexity. However, they require the SNR and the number of snapshots to be rela-

tively high. These problems can be relieved by using subspace fitting methods [36]

at the cost of increased computational complexity. The ESPRIT and Root-MUSIC

do not require searching, instead they have restrictions on the array geometry. The

ESPRIT requires the array to have its identical copy and the Root-MUSIC ap-

proach requires the array to be Uniform Linear Array (ULA). A review of the

subspace-based approaches can be found in [38]. In this chapter, a novel superres-

olution subspace-based approach is proposed which provides satisfied estimation
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results without the restriction of high SNR, large number of snapshots or specific

array geometry, see [19].

2.1.3 DOA and DOD Estimation

In wireless communications, most of the direction finding approaches are concerned

with the Direction of Arrival (DOA) estimation problem while the Direction of

Departure (DOD) estimation has been ignored. DOA estimation has been an im-

portant research area with many applications, including wireless communications,

radar, sonar, radio astronomy, etc. On the other hand, only a small number of re-

search has focused on the DOD estimation, with the majority of these approaches

designed for radar and sonar applications. Although DOD estimation is also im-

portant in wireless communications, it has not yet been extensively investigated.

In the literature, a DOD estimation approach has been proposed in [39] by

exploiting the cooperation between the Tx and the Rx. The Tx beamformer ro-

tates its mainlobe then the Rx measures the power level at the output of the Rx

beamformer and the DOD is connected to the largest power. Several papers have

been proposed for joint estimation of DOD and DOA. For instance, in [40], a

Cramer-Rao bound (CRB) based on DOA and DOD using Multi-Mode Antennas

is derived, and then a beamformer is presented to estimate the DOA and DOD

by minimising this CRB. In [41], the DOD and DOA have been estimated using a

Bartlett beamforming method and a SAGE algorithm [42], and it is implemented

in a measurement campaign with dual-polarized arrays and assumed a line-of-sight

(LoS) environment. In [43], using a single antenna at the transmitter which pro-

vides switched transmitting beams, a joint TDOA, DOA-DOD estimation based

on a 3D unitary ESPRIT approach is presented. In [44], the transmit and re-

ceive auxiliary beam pairs were designed based on a multi-layer pilot structure for

estimating DODs and DOAs in dual-polarized MIMO systems. In this chapter,
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unlike the systems in [43] and [44] which use pilots, our proposed DOD and DOA

estimation algorithm is blind.

The rest of this chapter is organised as follows. In Section 2.2, the MIMO array

system is described and the received array signal vector is modelled. This signal

is then extended to a “virtual” signal which is embedded in a bigger observation

space, allowing the extended manifold vector of the desired signal paths to be a

function of both DOA and DOD. Then, a DOA and DOD subspace estimation

algorithm based on the proposed virtual manifold vector is presented in Section

2.3. In Section 2.4, the performance of the proposed approach is evaluated via

computer simulation studies. Finally, the chapter is summarised in Section 2.5.

2.2 System Model

Consider a MIMOmulti-user system withN -antenna Tx-array andN -antenna Rx-

array. Figure 2.1 illustrates the system representation consisting of a transmitter,

a channel, a receiver and M co-channel users (the desired plus M − 1 MAI). With

reference to point-A in Figure 2.1, the i-th user transmits a sequence of data

symbols {ai [n] ,∀n} with symbol duration Tcs. This sequence is then weighted by

a weight-code matrix Wi producing at point-B (during the n-th symbol period)

the N ×Nc matrix WT
i ai [n] where

Wi =
[
wi1, wi2, ..., wij, ..., wiN

]
∈ RNc×N (2.1)

where wij ∈ RNc×1 denotes the weight-code signal of length Nc associated with

the j-th Tx antenna of the i-th user, which is given as

wij
∆
= [wij [1] , wij [2] , ..., wij [q] , ..., wij [Nc]]T (2.2)

with {wij [q] ∈ ±1, q ∈ [1,Nc]} and

WT
i Wj '

{
IN , for i = j

ON×N , for i 6= j
(2.3)
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Then, each row (i.e. N elements) of this matrix WT
i ai [n] is driven to a bank

of N DACs which produces at point-C the baseband transmitted signal vector

mi (t) ∈ CN×1

mi (t) = [mi1 (t) ,mi2 (t) , ...,mij (t) , ...,miN (t)]
T (2.4)

where mij (t) denotes the analogue signal of the i-th user in the j-th Tx antenna

modelled as follows

mij (t) =
∞∑
n=1

ai[n]
Nc∑
q=1

wij [q] p(t− (n− 1)Tcs − (q − 1)Tc) (2.5)

with Tcs = NcTc, p (t) representing a pulse shaping filter of period Tc and (n −

1)Tcs + (q − 1)Tc ≤ t < (n− 1)Tcs + qTc.

Assuming that the transmitted signal of the i-th user (point-D) arrives at the

receiver through Ki multipaths, the MIMO channel in Figure 2.1 will have Ki

branches. With reference to the k-th path of the i-th user, the parameter τ ik

denotes the delay, the vectors Sik ∈ CN×1 and Sik ∈ CN×1 represent the corre-

sponding Tx and Rx manifold vectors, respectively, while βik (t) is the complex

path fading coefficient, which is assumed to be a time-varying function in this

chapter.

Consequently, with reference to point-E in Figure 2.1, the received signal x(t) ∈

CN×1 can be modelled as follows

x(t) =

M∑
i=1

Ki∑
k=1

βik (t)SikS
H

ikmi (t− τ ik) + n(t) (2.6)

where the Tx and Rx array manifold vectors1 are defined, respectively, as follows:

Sik
∆
= S(θik) = exp

+j 2πλ [r1, r2, ..., rN ]T

cos(θik)

sin(θik)

0


 (2.7)

1With no loss of generality, it is assumed that all users are located on the (x-y) plane so that
the elevation angle φik is equal to zero, ∀i&∀k, and thus it has been ignored.
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Sik
∆
= S(θik) = exp

−j 2πλ [r1, r2, ..., rN ]T

cos(θik)

sin(θik)

0


 (2.8)

Note that θik denotes the DOD of the k-th path of the i-th user and θik denotes

the DOA of this path. The matrices [r1, r2, ..., rN ] ∈ R3×N and [r1, r2, ..., rN ]

∈ R3×N have columns the Cartesian coordinates of the Tx and Rx array elements,

respectively. The scalar λ ∆
= c/Fc is the wavelength with Fc representing the

carrier frequency while c is the velocity of light. Note that without any loss of

generality, βik (t) is Gaussian, i.e. the gain |βik (t)| follows a Rayleigh distribution

and the phase of βik (t) follows a uniform distribution. The vector n(t) ∈ CN×1 is

the complex additive Gaussian noise vector of zero mean and covariance matrix

Rnn = E
{
n(t)nH(t)

}
= σ2nIN (2.9)

where σ2n is the unknown noise power.

The received signal x(t) at point-E is initially discretised with a sampling period

of Tc to provide at point-F the vector x (tl),∀l. Then, the “manifold extender”

transforms the x (tl) ∈ CN×1 to xv [n] ∈ CNN×1 as follows. Initially, by collecting

Nc snapshot vectors the matrix X [n] ∈ CN×Nc corresponding to the n-th symbol

interval is formed, which can be modelled as follows

X [n] =
M∑
i=1

Ki∑
k=1

βik [n]SikS
H

ikWT
i

((
JT
)`ik ai [n] + JNc−`ikai [n− 1])

+N [n] (2.10)

where `ik =
⌊
τ ik
Tc

⌋
mod Nc is the discretised delay shown in Figure 2.2. Note that

the Nc ×Nc matrix J (or JT ) is the “shifting” matrix defined as

J =

0TNc−1, 0

INc−1, 0Nc−1

 (2.11)
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Figure 2.2: Illustration of the delay `ik and the modelling of the data symbols
received during the n-th time-interval.

and the power ` of J (or JT ) when applied to a matrix Z ∈ CN×Nc, i.e. ZJ`(
or Z

(
JT
)`)
, leftshifts (or rightshifts) the matrix Z by ` elements.

In Equ 2.10, at the n-th time interval, the scalar βik [n] denotes the com-

plex path fading coefficient of the k-th path of the i-th user and the matrix

N [n] ∈ CN×Nc represents the noise matrix with columns the discretised noise snap-

shots.

In this chapter, with no loss of generality, the first user is assumed to be the desired

user. By multiplying the received data matrix X [n] in Equ 2.10 with the matrix

W1, the matrix X [n]W1 is formed at point-H. Then, at the output of the manifold

extender (point-K), the virtual snapshot vector is formed as follows

xv [n] = vec (X [n]W1) (2.12)

which can be expanded as

xv [n] =

K1∑
k=1

β1k [n]A1k [n]

Sv,1k︷ ︸︸ ︷(
S
∗
1k ⊗ S1k

)
︸ ︷︷ ︸

Desired term

+

M∑
i=2

Ki∑
k=1

βik [n]Aik [n]

Sv,ik︷ ︸︸ ︷(
S
∗
ik ⊗ Sik

)
︸ ︷︷ ︸

MAI term

+ nv [n]︸ ︷︷ ︸
Noise

(2.13)
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where the matrix Aik [n] ∈ CNN×NN (for i = 1, 2, ...,M) is given2 as

Aik [n] =

Tik︷ ︸︸ ︷((
WT

1 J`ikWi

)
⊗ IN

)
ai [n]

+

Tik,ISI︷ ︸︸ ︷((
WT

1

(
JT
)Nc−`ikWi

)
⊗ IN

)
ai [n− 1] (2.14)

In addition, the vector nv [n] ∈ CNN×1 denotes the virtual noise vector given by

nv [n] = vec (N [n]W1) (2.15)

In Equ 2.13, the virtual snapshot vector xv [n] is expressed as a function of a virtual

manifold vector Sv,ik
∆
= Sv(θik, θik) ∈ CNN×1 of the k-th path of the i-th user, as

follows

Sv,ik = S
∗
ik ⊗ Sik (2.16)

Finally, it is important to point out that the theoretical covariance matrix

(second order statistics) Rxvxv ∈ CNN×NN of the virtual array signal xv [n] is as

follows

Rxvxv = E
{
xv [n]x

H
v [n]

}
(2.17)

which in practice, assuming L symbols, can be expressed as

Rxvxv '
1

L

L∑
n=1

xv [n]x
H
v [n] (2.18)

By observing the xv [n] or its covariance matrix Rxvxv , it is clear that the di-

mensionality of the complex “observation” space is NN while the dimensionality

of a conventional MIMO system is N (number of Rx array elements). This in-

dicates that the proposed array system has more degrees of freedom so that it is

more suitable for any future dense access communication networks. In addition,

the proposed system does not cause “latency”.

2The second term in Equ 2.14 is the “Inter-Symbol Interference” (ISI) effects and is related
to the delay `ik (if `ik=0 then the second term is a zero matrix).
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2.3 DOA and DOD Estimation Algorithm using

the Virtual Array Manifold (Manifold Ex-

tender)

In this chapter, we focus on the estimation of the parameters (DOD, DOA) of

all the multipaths of the desired user, i.e.
(
θ1k, θ1k

)
∀k, assuming that L symbols

are collected at the output of the “manifold extender” at the receiver. Based on

the eigen-decomposition of Equ 2.17, the NN complex observation space can be

partitioned into the signal-subspace and the noise-subspace, and the projection

operator Pnv onto the noise subspace can be formed. The estimation problem can

be addressed by exploiting the orthogonality between the noise-subspace and the

signal-subspace formed by the virtual manifold vectors associated with the desired

user. Therefore, the DOD and DOA of the desired user’s paths can be estimated

by solving the following optimization problem

(θ, θ) = arg max
∀(θ,θ)

ξ(θ, θ) (2.19)

where the cost function ξ(θ, θ) is defined as follows

ξ(θ, θ)
∆
=

K1∑
k=1

(
S
∗ (
θ
)
⊗ S (θ)

)H
TH1kT1k

(
S
∗ (
θ
)
⊗ S (θ)

)
(
S
∗ (
θ
)
⊗ S (θ)

)H
TH1kPnvT1k

(
S
∗ (
θ
)
⊗ S (θ)

) (2.20)

However, Equ 2.20 includes

T1k =
(
WT
1 J`1kW1

)
⊗ IN (2.21)

where although the matrix W1 is known, the delays `1k for k = 1, 2, ..., K1 are

unknown. These delays (integers) can be pre-estimated using one-dimensional

search for the peaks [`11, `12, ..., `1K1 ] of the function

ξ (`) =

det

(((
J` +

(
JT
)Nc−`)W1

)H ((
J` +

(
JT
)Nc−`)W1

))
det

(((
J` + (JT )Nc−`

)
W1

)H
Pn
((
J` + (JT )Nc−`

)
W1

)) ,∀` (2.22)
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where Pn is the projection operator onto the noise subspace of the following co-

variance matrix

R =
1

NL

[
XT [1] ,XT [2] , ...,XT [L]

] [
XT [1] ,XT [2] , ...,XT [L]

]H
(2.23)

Thus, by estimating firstly the integers [`11, `12, ..., `1K1 ], the solutions of Equ 2.19

will provide all the (DOD, DOA) of the desired user’s paths.

2.4 Computer Simulation Studies

The performance of the proposed approach has been evaluated using computer

simulation studies and the results are given in this section. The Tx and Rx arrays

are assumed to be uniform circular arrays (UCAs) with the Tx-array consisting

of 9 elements and the Rx-array consisting of 5 elements. Without any loss of

generality, the Tx and the Rx array geometries are shown together in Figure 2.3

although they are far away from each other (far field). The signal to noise ratio

(SNR) is set to 20 dB and there areM = 3 users (i.e. desired user plus 2 multiple-

access-interfering users) with 3 paths per user. The system simulation parameters

are listed in Table 2.1.

Table 2.1: System parameters

Parameter Symbol Value

Rx Array N 5

Tx Array N 9

Code Period Tc 0.1 ms

Length of weight code Nc 31

Number of users M 3

Number of paths per user K1 = K2 = K3 3

Number of symbols L 200

The pairs of (DOD, DOA) of the desired user associated with its three paths

are (40◦, 270◦), (120◦, 180◦) and (150◦, 70◦) and their corresponding delays are 6Tc,
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Figure 2.3: The array geometry of the transmitter (blue marker) and the receiver
(red marker).

12Tc and 21Tc. Figure 2.4 shows the delay estimation of all the paths of the desired

user. Then, Figure 2.5 shows the results of the joint estimation of the DOD and

DOA of all the paths of the desired user. It is clearly illustrated that the peaks

occur at the correct directions.

Next, consider a case that two of the paths of the desired user are close to-

gether in space. For example, consider the (DOD, DOA) of the first two paths are

(100◦, 134◦) and (102◦, 132◦) while the third path remains at (150◦, 70◦). As shown

in Figure 2.6, the peaks of these two paths are clearly resolved and their values

are correctly estimated illustrating the superresolution capabilities of the proposed

approach. Consider again the simulation environment in Figure 2.5 where two of

the three paths are co-directional, i.e. the DOA of the two paths are 270◦. The

results are shown in Figure 2.7 indicating that the proposed algorithms are still

able to distinguish the two paths and estimate their associated parameters. How-

ever, in such case, conventional MIMO non-virtual MIMO system may not able to
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Figure 2.4: Delay estimation for three paths of the desired user.

resolve the two paths as they have no means to estimate DODs.

Furthermore, using the parameters given in Table 2.1, the performance of the

proposed approach is evaluated in terms of the root mean square estimation error

(RMSE) of the DOAs and DODs as a function of the SNR. Based on 1000 Monte-

Carlo simulations, the results are shown in Figure 2.8. Then, the performance of

the proposed approach is also evaluated in terms of the number of snapshot for a

fixed SNR and the results are shown in Figure 2.9. Figures 2.8 and 2.9 indicate

that the RMSE of the estimated DOD and DOA is low even when the SNR is

equal to -10 dB or the number of snapshots is equal to 50. The estimation error of

the DOD and DOA decreases when the SNR increases or the number of snapshots

increases which are expected by any signal-subspace type algorithm. In addition,

better resolution can be achieved3 by either increasing the SNR or the number of

snapshots (i.e. the “observation” interval).

Finally, the proposed system is compared with a conventional non-virtual

MIMO system (that is without the manifold extender block) with the same Tx and

3see Chapter 8 of [18].

46 of 146



Imperial College London 2. DOA and DOD Channel Estimation

Figure 2.5: Proposed MIMO: Joint estimation of DOD and DOA for three paths
of the desired user.

Figure 2.6: An example of the superresolution capabilities of the proposed ap-
proach where the directions of the paths 1 and 2, which are close together in
space, are properly resolved.
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Figure 2.7: Joint estimation of DOD and DOA for three paths of the desired user
where two paths of the desired user are co-directional.

Figure 2.8: RMSE of the DOD and DOA estimation versus SNR in the proposed
MIMO system. The number of snapshots L is fixed at 200 (1000 realisations).
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Figure 2.9: RMSE of the DOD and DOA estimation versus the number of snap-
shots in the proposedMIMO system. The SNR is fixed at 20 dB (1000 realisations).

Rx array geometries and under the same simulation environment as the proposed

array system with the manifold extender. However, for the parameters given in

Table 2.1, the channel estimation algorithm for the conventional system fails due

to insufficient degrees-of-freedom (9 signals in a 5-dimensional observation space).

Thus, to enable the channel estimation algorithm to work for the conventional

system, both the number of users and paths per user are reduced to M=2 and

K1=K2= 2 (i.e. 4 signals in a 5-dimensional observation space) whilst the other

parameters in Table 2.1 remain the same. Figure 2.10 shows the RMSE of the

proposed approach based on the virtual array system, as well as the RMSE of

the conventional MIMO system (i.e. without the manifold extender) as a function

of the SNR over 5000 realisations. Similarly, Figure 2.11 shows the comparison

results as a function of the number of snapshots. Note that the RMSE of the

DOD estimation is not plotted in Figures 2.10 and 2.11 for comparison since the

conventional system cannot estimate the DOD, as the Tx geometrical information

(contained in the Tx manifold vector S) is reduced to a scalar factor and it cannot
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Figure 2.10: Comparison of the RMSE of the DOA estimation versus SNR between
the proposed MIMO system and the conventional MIMO system. The number of
snapshots L is fixed at 200 (5000 realisations).

be extracted and employed by the receiver. Figures 2.10 and 2.11 clearly illus-

trated that the proposed system is more accurate than the conventional MIMO

system. This is because the proposed system extends the degrees-of-freedom from

N to NN , thus enhancing the channel estimation accuracy.

2.5 Summary

In this chapter, a MIMO communication system is proposed which increases the

degrees-of-freedom and is capable of jointly estimating the DOA and DOD of all

the paths of the desired user in the presence of multiple access interference. The

proposed approach was evaluated with varying noise levels and varying number

of snapshots, and then it was compared with the conventional MIMO system.

Computer simulation studies show the accuracy of the proposed approach and its

superresolution capabilities.
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Figure 2.11: Comparison of the RMSE of the DOA estimation versus the number
of snapshots between the proposed MIMO system and the conventional MIMO
system. The SNR is fixed at 20 dB (5000 realisations).

2.6 Appendix of Derivation of the Proposed Vir-

tual Snapshot Vector in Equ 2.13

In this appendix, the identity

vec (AB) =
(
BT ⊗ Ik

)
vec (A) (2.24)

will be used, where the dimensions of the matrices A and B are k × l and l ×m,

respectively.
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Recall Equ 2.12, we have

xv [n] = vec (X [n]W1)

= vec

{(
M∑
i=1

Ki∑
k=1

βik [n]SikS
H

ikWT
i

×
((
JT
)`ik ai [n] + JNc−`ikai [n− 1])+ N [n])W1

}

= vec

{
M∑
i=1

Ki∑
k=1

βik [n]SikS
H

ikWT
i

×
((
JT
)`ik ai [n] + JNc−`ikai [n− 1])W1

}
+ vec {N [n]W1}

=
M∑
i=1

Ki∑
k=1

βik [n]

([
WT

i

((
JT
)`ik ai [n] + JNc−`ikai [n− 1])W1

]T
⊗ IN

)
× vec

{
SikS

H

ik

}
+ nv [n]

=
M∑
i=1

Ki∑
k=1

βik [n]
([
WT

1

(
J`ikai [n] +

(
JT
)Nc−`ik ai [n− 1])Wi

]
⊗ IN

)
︸ ︷︷ ︸

=Aik[n]

× vec
{
SikS

H

ik

}
+ nv [n]

=
M∑
i=1

Ki∑
k=1

βik [n]Aik [n]
(
S
∗
ik ⊗ Sik

)
+ nv [n]

or, equivalently,

xv [n] =

K1∑
k=1

β1k [n]A1k [n]

Sv,1k︷ ︸︸ ︷(
S
∗
1k ⊗ S1k

)
︸ ︷︷ ︸

Desired term

+
M∑
i=2

Ki∑
k=1

βik [n]Aik [n]

Sv,ik︷ ︸︸ ︷(
S
∗
ik ⊗ Sik

)
︸ ︷︷ ︸

MAI term

+ nv [n]︸ ︷︷ ︸
Noise
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Chapter 3

DOD-DOA Delay-Doppler

Estimation and Beamforming

In this chapter, a novel virtual-spatiotemporal MIMO system is proposed that

extends the system presented in Chapter 2 by incorporating the temporal do-

main of the system towards the objective of increasing the degrees of freedom of

the communication system even further. In this system, a joint DOD-DOA es-

timation, delay-Doppler estimation, and beamforming algorithms are presented.

This is achieved by using the proposed subspace type algorithms and the proposed

virtual-spatiotemporal manifold extender which increases the dimensionality of the

observation space from N to NNext, and thus the degrees of freedom is increased

from N to NNext where Next = 2NcN . The proposed system is able to resolve

multipath effect, estimate multi parameters accurately, provide high beamforming

gain, suppress multiple access interference, and it is also applicable for arbitrary

array geometries. The performance of the channel parameter estimator and the

beamformer is evaluated against the existing spatial-only and spatiotemporal re-

ceivers using different performance metrics by computer simulation studies and

the results show the superiority of the proposed approaches.
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3.1 Introduction

With increasing demands on capacity and heightened user density, it is imperative

to propose approaches that utilise and exploit all possible degrees of freedom of a

MIMO system. The degrees of freedom is defined in [45] as the coefficient of the

logarithm of the SNR (for high SNR). In [46] it is equivalent to the multiplexing

gain and in [47] it is considered as the number of sources that the system can

resolve. In any case, the degrees of freedom scales with the number of dimensions of

the system, and increasing the degrees of freedom maps to a number of objectives,

namely

1. ability to deliver highly pointed beams towards “desired” users and “nulls”

in the directions of “unwanted” users leading to increased interference can-

cellation,

2. increased channel estimation accuracy,

3. ability to accommodate increased number of users.

All the aforementioned objectives are achieved in this chapter. This chapter

presents an extended work based on Chapter 2. To address the requirements of

future communication systems, a novel parametric approach (suitable for arbitrary

array geometry) is presented. Given a fixed number of antennas, it is capable of

delivering higher degrees of freedom, consequently increasing channel estimation

accuracy and beamforming capability. It is also able to handle multipath effect

and suppress high interference in dense signal environment.

There has been considerable research in the literature that refer to increasing

the number of the degrees of freedom. For instance, the minimum redundancy

arrays (MRA) were proposed in [48]. The designed arrays reduce redundant inter-

element spacings given a fixed number of array elements to maximise resolution

accuracy. Although such arrays increase the resolution accuracy, they does not
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increase the degrees of freedom. In [49] and [50], the MRAs were improved by con-

structing an augmented covariance matrix, however, the constructed augmented

covariance matrix is not positive semidefinite for finite number of snapshots. The

aforementioned approaches that rely on the MRAs have no closed-form expression

for array geometry and involve exhaustive search for finding the array positions.

Another approach is to employ fourth order cumulants rather than just em-

ploying second order statistics [51][52]. However, the approach is restricted to

non-Gaussian sources and the computation of fourth order cumulants is expensive

in terms of computations. The Khatri-Rao (KR)-based approach [53] is also used

for increasing the DoF by constructing a difference coarray. For this method, quasi

stationary sources are required, which is not applicable to stationary sources.

Inspired by the concept of the difference coarray, another approach increases the

degrees of freedom by utilising sparse arrays to form “virtual arrays”. The sparse

arrays are arrays with non-uniform inter-element spacing, in general, there are two

typical types of the sparse arrays: Coprime arrays [54] and nested arrays [47]. A

coprime array generally comprises two uniform linear arrays (ULAs) with adjacent

spacing larger than half wavelength and the variants of coprime arrays include

generalized coprime array [55], thinned coprime array (TCA) [56], complementary

coprime array (CCP) [57], and relocating extended coprime array (RECA) [58].

A typical nested array is constructed by a dense ULA and a sparse ULA, and the

variants of the nested array include super nested arrays (SNA) [59], augmented

nested arrays (ANA) [60], generalized nested arrays [61], inter-element spacing

constraint (MISC) arrays [62], and Cantor arrays [63]. However, these techniques

using sparse arrays are limited to linear array geometries. These papers involve

linear sub-arrays of the Rx array and none of these approaches made use of the

Tx array geometry.

Furthermore, the concept of the “virtual array” has been extensively explored

in MIMO radar systems to increase the degrees of freedom. This is achieved by
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taking the advantage of the knowledge of the transmitted radar signal, which can

be directly exploited by the radar’s receiver (see [64], [65], [66]), something that

cannot be easily done in communication systems.

The remainder of this chapter is organised as follows. In Section 3.2, an

overview of the parametric approaches for extending the degrees of freedom is

provided. In Section 3.3, the transmitter and channel models of the proposed sys-

tem are presented. Then, the receiver model is proposed and the antenna array

received signal is modelled as a function of a virtual-spatiotemporal manifold ex-

tender. Based on this modelling, two joint estimation algorithms (Doppler-Delay

and DOA-DOD) and a beamforming algorithm are proposed in Section 3.4. This

is followed in Section 3.5, by computer simulation studies and the chapter is sum-

marised in Section 3.6.

3.2 Expanding the DoF in aMulti-Antenna Com-

munication System

There are two typical class of approaches of expanding the DoF in multi-antenna

communication system: Extended Manifold approaches and Massive MIMO ap-

proaches. The Extended Manifold approach can be visualised in Figure 3.1 which

illustrates the baseband blocks of a MIMO communication system consisting of its

three main blocks: the transmitter, the channel and the receiver. The transmitter

employs an antenna array of N elements and it is followed by a noisy channel. The

receiver also employs an antenna array of N elements and includes a “manifold

extender”, a channel estimator and a weight formation for beamforming.

At point-D in Figure 3.1, the N×1 vector signal x (t) ∈ CN×1 can be expressed

in terms of the manifold vector S ∈ CN×1 of the receiver’s array which is a function

of the DOA, carrier frequency Fc, velocity of light and the Cartesian coordinates
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the degrees of freedom.
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of the Rx antenna array elements [r1, r2, ..., rN ]. At the output of the “manifold

extender” (i.e. point-F in Figure 3.1), the signal x[n] is an NNext × 1 vector

signal and this can be expressed as a function of the “extended” manifold vector

h ∈ CNNext×1 which, in addition to the Cartesian coordinates of the Rx antenna,

may also include other system parameters, such as Doppler, polarisation, PN-

codes, Cartesian coordinates of the Tx antenna array elements [r1, r2, ..., rN ], etc.

The Massive MIMO approaches attempt to increase the DoF of the system by

increasing the number of Rx antennas N to a large value in the order of 100s-1000s

[25]. However, the downside of the massive MIMO approach is the requirement

of more hardware (massive number of RF unit set). On the other hand, the

class of MIMO approach based on the concept of manifold extender attempt to

increase the number of dimensions of the system by keeping the hardware fixed

(i.e. the number of Rx antennas N fixed) and increase computational complexity

by creating long observation vectors of dimensionality of NNext × 1. In array

processing, the complexity is mainly related to the dimensionality of the vectors

and matrices. That is, the longer the vectors, the more computationally complex

is the system. This increases the “degrees-of-freedom” to NNext and consequently

improves the capabilities of the overall system. Note that

1. if N = very large and Next = 1 then this is a standard massive MIMO with

massive DoF.

2. if N = small but fix and Next = very large then this is a spatiotemporal

MIMO with massive DoF.

3. if N = very large and Next = very large then this is a spatiotemporal massive

MIMO with super massive DoF.

In this chapter, to address the requirements of future communication systems, a

novel parametric approach (suitable for any geometry) is presented which is based
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on the concept of the “manifold extender”. In the next sections, the design of the

proposed virtual-spatiotemporal system is presented.

3.3 Transmitter and Channel Model

With reference to a MIMO communication system of M co-channel users, Figure

3.2 illustrates the baseband blocks of the i-th user consisting of the transmitter and

the channel. As shown in Figure 3.2,M co-channel users including the desired user

plus the M − 1 MAI (point C1) operate at the same time on the same frequency

band. The data stream of the i-th user denoted by {ai [n]} (see point-A), with a

symbol period of Tcs, is weighted (see point-B) by the known code vector sequence

{ci [q]� wi} where cTi [q] is the q-th row of the code matrix Ci ∈ RNc×N having

columns weight codes of ±1′s of length Nc, as this is shown in Figure 3.3.

In Figure 3.3, the elements of the code matrix Ci are denoted as αim [q] ∈

{+1,−1}, ∀m ∈
[
1, N

]
, ∀q ∈ [1,Nc]. The vector cim denotes the m-th column

of Ci representing the code applied to the m-th Tx antenna and ci [q] denotes

the column version of the q-th row of Ci which is applied to all Tx antennas

at the q-th period Tc with Tcs = NcTc. The vector wi ∈ CN×1 is a known Tx

beamforming weight vector and it may be designed based on the feedback of the

receiver. The vector wi may also be a vector of 1s in which case this can be

ignored from the system’s description. However, the precise design of wi (Tx

beamforming) is beyond the scope of this chapter. To maintain the integrity of

the system model, the Tx weight is assumed to be a steering vector beamformer

with its mainlobe towards arbitrary degrees. Then, at point-B in Figure 3.2, The

sequence corresponding to the n-th symbol of the i-th user transmitted across N

antennas is denoted by the matrix Mi [n] ∈ CN×Nc and can be written as

Mi [n] = CTi �
(
wi1

T
Nc
)
ai[n] (3.1)

Finally, using a DAC, the message symbols of Equ 3.1 become the analogue base-
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Figure 3.3: The code matrix Ci with elements ±1s.

band signal mi (t) ∈ CN×1 at point-C in Figure 3.2. The mi (t) vector signal is

transmitted via a multipath channel of Ki paths, as this is shown in Figure 3.2

where the k-th path of the i-th user includes:

• the manifold vector Sik of the Tx,

• the delay τ ik,

• the Doppler frequency Fik,

• the path gain βik,

• the manifold vector Sik of the Rx.

The manifold vectors Sik and Sik can be expressed as a function of the Cartesian

coordinates of the Rx and Tx arrays [r1, r2, ..., rN ] ∈ R3×N and [r1, r2, ..., rN ] ∈

R3×N as follows

Sik , S(θik) = exp(−j [r1, r2, ..., rN ]
T k(θik)) (3.2a)

Sik , S(θik) = exp(j [r1, r2, ..., rN ]
T k(θik)) (3.2b)

with k , k(θik) and k , k(θik) denoting the wavenumber vectors defined as

k=
2πFc
c

[cos θik, sin θik, 0]
T (3.3a)

k=
2πFc
c

[
cos θik, sin θik, 0

]T
(3.3b)
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where θik and θik denote the DOA and the DOD of the i-th user’s k-th path,

respectively. In addition, Fc denotes the carrier frequency and c is the velocity of

light. This parametric channel model allows the modelling of the received array

vector x(t) at point-D in Figure 3.2 to be expressed as a function of channel

parameters as

x(t) =
M∑
i=1

Ki∑
k=1

βik exp(j2πFikt)SikS
H

ikmi (t− τ ik) + n(t) (3.4)

where n(t) is the noise vector which is assumed to be white, zero mean complex

additive Gaussian noise with covariance matrix σ2nIN where σ2n is unknown and

represents the noise power.

3.4 ReceiverModel: Virtual-Spatiotemporal Man-

ifold Extender

The proposed receiver model is illustrated in Figure 3.4 which consists of the

manifold extender, channel estimation and beamforming weight formation blocks.

At point-D in Figure 3.4, the received signal x(t) (given by Equ 3.4) is firstly

discretised with sampling period equal to Tc producing at point-E the discrete

vector x(tl) where tl denotes the l-th snapshot. Then, these snapshots are fed

into a “manifold extender” which transforms the discretised vector x(tl) ∈ CN×1

to a longer snapshot x [n] ∈ C2NNNc×1 which we call it a virtual-spatiotemporal

snapshot. The structure of the manifold extender is illustrated in Figure 3.5 and

the data processing within the manifold extender is visualised in Figure 3.6.

Firstly, as shown in the block between point-E and point-E1 in Figure 3.5,

the “manifold extender” includes a bank of N Tapped delay lines (TDLs) which

collects at its input (point-E) 2Nc snapshots x(tl) and, for the n-th time interval,

forms a vector xst[n] ∈ C2NNc×1 (point-E1). To be specific, at point-E the sam-

pled snapshots x(tl) pass through the bank of TDLs of length 2Nc. Then, these
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snapshots are sampled with a sampling period Tcs (note that Tcs = NcTc) and 2Nc

snapshots are collected at the nTcs period. Thus, the 2Nc snapshots contain the

contribution of the current n-th symbol, some information of the previous (n− 1)-

th and the next (n+ 1)-th symbols. These snapshots are expressed in the form of

an N × 2Nc matrix X [n]. The matrix X [n] can be visualised as the n-th slice of

the 3D cube shown in Figure 3.6(a) and modelled as follows (Note that with no

loss of generality, the first user is considered to be the desired user.)

X [n] =
K1∑
k=1

β1k exp (j2πF1knTcs)S1kS
H

1kdiag (w1)TT1ka1 [n]︸ ︷︷ ︸
Desired term

(3.5)

+XISI + XMAI+N [n] (3.6)

where XISI denotes the Inter-Symbol Interference (ISI) and XMAI denotes the mul-

tiple access interference (MAI), both are expressed as follows

XISI =

K1∑
k=1

β1kS1kS
H

1kdiag (w1)TT1k ×{
JNc exp (j2πF1k (n− 1)Tcs) a1 [n− 1]

+
(
JT
)Nc

exp (j2πF1k (n+ 1)Tcs) a1 [n+ 1]
}

(3.7)

XMAI =
M∑
i=2

Ki∑
k=1

βikSikS
H

ikdiag (wi)TTik ×{
exp (j2πFiknTcs) ai [n]

+JNc exp (j2πFik (n− 1)Tcs) ai [n− 1]

+
(
JT
)Nc

exp (j2πFik (n+ 1)Tcs) ai [n+ 1]
}

(3.8)

In Equ 3.5, Tik ∈ C2Nc×N contains the temporal information of the received signal,

which is given as

Tik = Jlik

 Ci

ONc×N

� (F ik1TN) (3.9)

with
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• F ik ∈ C2Nc×1 representing the Doppler shift vector, i.e.

F ik = exp
(
j2πFik [0, . . . , 2Nc − 1]T Tc

)
(3.10)

• J (or JT ) is a 2Nc × 2Nc matrix defined as follows1:

J =

0T2Nc−1, 0

I2Nc−1, 02Nc−1

 (3.11)

• lik =
⌊
τ ik
Tc

⌋
modNc denoting the discretised delay shown in Figure 3.7,

• N [n] representing the noise contribution.

Secondly, at point-E1 in Figure 3.5, the vector xst[n] ∈ C2NNc×1 is formed by

vectorising the matrix X [n], given as follows

xst[n] = vec
(
XT [n]

)
(3.12)

which is called “spatiotemporal snapshot” and it can also be visualised as in Figure

3.6(b).

Thirdly, at point-E2 in Figure 3.5, the spatiotemporal snapshot vector xst[n] is

projected by a set of N projection operators. The projection operator set P⊥Bim ∈

C2Nc×2Nc, ∀m = 1, 2, ..., N is defined to isolate the signal corresponding to them-th

antenna of the i-th user, given as follows

P⊥Bim = I2Nc − Bim
(
BHimBim

)−1 BHim (3.13)

where Bim ∈ C2Nc×Ki(N−1) is obtained as follows

Bim =

Jli1
 Cim

ONc×(N−1)

�F i11TN−1, . . .
. . . , JliKi

 Cim

ONc×(N−1)

�F iKi1TN−1
 (3.14)

1The power l of J (or JT ) when applied to a vector z ∈ CNc×1 or matrix Z, i.e. Jlz
(
or
(
JT
)l
z
)

and JlZ
(
or
(
JT
)l Z), downshifts (or upshifts) the vector z or matrix Z by l elements.
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n-th interval

Figure 3.7: Illustration of the delay lik and the modelling of the data symbols
received during the n-th time-interval.

where Cim ∈ RNc×N−1 is formed by the codes of the i-th user with the m-th code

removed, this is given as

Cim =
[
ci1, . . . , ci(m−1), ci(m+1), . . . , ciN

]
(3.15)

Then, the projection matrix P⊥B1 encloses the projection operators of all Tx anten-

nas of the desired user is given as

P⊥B1=


IN ⊗ P⊥B11 , O2NNc , . . . , O2NNc

O2NNc , IN ⊗ P⊥B12 , · · · , O2NNc
...

...
. . .

...

O2NNc , O2NNc , · · · , IN ⊗ P⊥B1N


(3.16)

Finally, at point-F in Figure 3.5, all the projected vectors are concatenated to

form a longer vector x [n] ∈ C2NNNc×1 (see also in Figure 3.6(c)) as follows

x [n] =



(
IN ⊗ P⊥B11

)
xst[n](

IN ⊗ P⊥B12
)
xst[n]

...(
IN ⊗ P⊥B1N

)
xst[n]


(3.17)

and this is the “virtual-spatiotemporal snapshot”. Equ 3.17 can also be written in

a more compact form as follows
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x [n] =

K1∑
k=1

β1k exp (j2πF1knTcs)P⊥B1
(
h1k �

(
w1 ⊗ 12NNc

))
a1 [n]︸ ︷︷ ︸

Desired term

+xISI + xMAI + noise (3.18)

which contains the desired symbol, the ISI, the MAI and the noise. The ISI term,

MAI term and the noise term are expressed as follows, respectively

xISI =

K1∑
k=1

β1kP⊥B1
(
h1k �

(
w1 ⊗ 12NNc

))
{(
INN ⊗

(
JT
)Nc)

exp (j2πF1k (n− 1)Tcs) a1 [n− 1]

+
(
INN ⊗ JNc

)
exp (j2πF1k (n+ 1)Tcs) a1 [n+ 1]

}
(3.19)

xMAI =
M∑
i=2

Ki∑
k=1

βikP⊥B1
(
hik �

(
wi ⊗ 12NNc

))
{
exp (j2πFiknTcs) ai [n]

+
(
INN ⊗

(
JT
)Nc)

exp (j2πFik (n− 1)Tcs) ai [n− 1]

+
(
INN ⊗ JNc

)
exp (j2πFik (n+ 1)Tcs) ai [n+ 1]

}
(3.20)

noise = P⊥B1
(
1N ⊗ vec

(
NT [n]

))︸ ︷︷ ︸
n[n]

(3.21)

It is clear that the virtual-spatiotemporal snapshot x [n] in Equs 3.18-3.21 is a

function of the extended manifold vector hik ∈ C2NNNc×1, which is written as

hik =
(
S
∗
ik ⊗ Sik

)
⊗
(
Jlikci �F ik

)
(3.22)

and called as virtual-spatiotemporal manifold vector. The word “virtual” has

been used because the Tx manifold vector Sik and Rx manifold vector Sik form

the “virtual” manifold vector S
∗
ik ⊗ Sik. In Equ 3.22, the vector ci ∈ R2Nc×1

representing the sum of the weight code vector associated with each Tx antenna
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of the i-th user shown as

ci =

 Ci

ONc×N

 1N (3.23)

It is important to point out that, the theoretical covariance matrixRxx ∈ C2NNNc×2NNNc

of x [n] is

Rxx = E
{
x [n]xH [n]

}
= G1diag

{
β
1
� β∗

1

}
GH
1︸ ︷︷ ︸

Rdes

+Gshift1

(
I2 ⊗ diag

{
β
1
� β∗

1

}) (
Gshift1

)H︸ ︷︷ ︸
RISI

+
M∑
i=2

[
Gshifti ,Gi

] (
I3 ⊗ diag

{
β
i
� β∗

i

}) [
Gshifti ,Gi

]H
︸ ︷︷ ︸

RMAI

+ σ2nP⊥B1︸ ︷︷ ︸
Rnn

(3.24)

with the following assumptions
E
{
ai [n] a

H
i [n]

}
= 1

E
{
f
i
[n] fH

i
[n]
}
= IKi

E
{
n [n] nH [n]

}
= σ2nI2NNNc

(3.25)

and the vector β
i
contains the path coefficient βik of Ki paths, the matrix Gi

contains g
ik
of Ki paths and Gshifti is its shifted matrix, given as follows

β
i
=

[
βi1, βi2, . . . , βik, . . . , βiKi

]T ∈ CKi×1 (3.26)

Gi =
[
g
i1
, g

i2
, . . . , g

ik
, . . . , g

iKi

]
∈ C2NNNc×Ki (3.27)

Gshifti =
[(
INN ⊗

(
JT
)Nc)Gi,

(
INN ⊗ JNc

)
Gi

]
∈ C2NNNc×2Ki (3.28)

where g
ik
is given as

g
ik
= P⊥B1

(
hik �

(
wi ⊗ 12NNc

))
(3.29)
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In practice, over an observation interval of L symbols (see Figure 3.6(c)), this

matrix can be expressed as follows

Rxx '
1

L

L∑
n=1

x [n]xH [n] (3.30)

In summary, by observing x [n] or Rxx, the “manifold extender” increases the

dimensionality of the signal observation space from N to 2NNNc so that the

degrees of freedom has been increased.

3.4.1 Manifold Extender Comparison

In this chapter, two other extended manifold vectors obtained by different manifold

extenders are presented, all of which are functions of the original manifold vector,

and their performance is evaluated in computer simulation studies.

With reference to [1] and Chapter 2, a virtual manifold extender is presented

which extends the signal observation space from N to NN and its equivalent

extended manifold vector is known as the virtual manifold vector Sv,ik ∈ CNN×1

given as

Sv,ik = S
∗
ik ⊗ Sik (3.31)

It is clear that the virtual-spatiotemporal manifold vector in Equ 3.22 is shown

as a function of the virtual manifold vector in Equ 3.31. Thus, the virtual-

spatiotemporal manifold extender can be considered as an extension of the vir-

tual manifold extender. This, in effect, increases the number of dimensions of the

virtual array system from NN to 2NNNc in the proposed virtual-spatiotemporal

system, and thus the degrees of freedom is further increased.

Furthermore, with reference to [21], the spatiotemporal manifold vector is ex-

pressed as

h
ik
= Sik ⊗

(
Jlikci �F ik

)
(3.32)

and it can also be clearly noted in Equ 3.22 that the virtual-spatiotemporal man-

ifold vector is an extension of the spatiotemporal manifold vector. In this case,
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the number of system dimensions increases from 2NNc to 2NNNc in the pro-

posed virtual-spatiotemporal system. Note that for a SIMO system (N = 1), the

virtual-spatiotemporal manifold vector becomes equivalent to the spatiotemporal

manifold vector.

3.4.2 Joint Delay-Doppler Estimation

The delay and Doppler frequency associated with all the multipaths of the desired

user can be estimated by the cost function ξ(l,F) as

ξ (l,F) =
det
(
THT

)
det (THPnT)

(3.33)

where T , T(l,F) is given by

T = Jl
 C1

ONc×N

� (F1T
N

)
(3.34)

By maximising (2D search) Equ 3.33, the peak values (l1,F1), (l2,F2), ..., (lK1 ,FK1)

can be obtained that correspond to the desired user’s delay and Doppler frequency

of all paths respectively. Note that Pn in Equ 3.33 is the projection operator

spanned by noise eigenvectors En of the covariance matrix RYY of Y where

Y =
[
XT [1] ,XT [2] , . . . ,XT [n] , . . . ,XT [L]

]
(3.35)

which is a 2NNc × NL matrix with X [n] denoting the n-th slide of the 3D data

cube.

3.4.3 Joint DOA-DOD Estimation

With the estimated pairs of delays and Doppler frequencies, the projection matrix

P⊥B1 is constructed. Then, the virtual-spatiotemporal snapshot x [n] is formed

based on Equ 3.17. Towards this, the projection operator Pnv onto the subspace

spanned by noise eigenvectors of the covariance matrix Rxx can be formed. We
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now employ the virtual-spatiotemporal manifold vector associated with the desired

user as given by Equ 3.22 in conjunction with the following cost function to yield

the DOA and DOD corresponding to every pair of (lk,Fk)

(θ, θ) = argmax
∀(θ,θ)

ξ(θ, θ)|(lk,Fk),∀k (3.36)

where ξ(θ, θ) is defined as follows

ξ(θ, θ) =

(
P⊥B1h(θ, θ)�(w1⊗12NNc)

)H
(P⊥B1h(θ, θ)�(w1⊗12NNc))(

P⊥B1h(θ, θ)�(w1⊗12NNc)
)HPnv(P⊥B1h(θ, θ)�(w1⊗12NNc)) (3.37)

This is easy to be optimised by using a 2D search where the peaks of the cost

function ξ(θ, θ) correspond to the DOA and DOD of all paths of the desired user

respectively.

3.4.4 Design of the Rx Virtual-Spatiotemporal Beamformer

Weights

In this subsection, by using the estimated channel parameters of the desired user

in Sections 3.4.2 and 3.4.3 together with path fading coefficients, the design of the

virtual-spatiotemporal beamformer weights are proposed that receives the desired

signal whilst suppress co-channel interference. The design procedure is described

as follows

1. The unwanted subspace Runwanted is constructed by removing the contribu-

tion of the desired signal from the received signal covariance matrix Rxx,

given by

Runwanted = Rxx −G1diag
{
β
1

}
GH
1 (3.38)

where Rxx is given by Equ 3.24 and G1 is obtained by substituting all the

estimated channel parameters into Equ 3.27.

2. By performing an eigendecomposition of Runwanted, the unwanted signal sub-

space spanned by the significant eigenvector matrix Es can be obtained to
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construct a projection operator towards the space spanned by the desired

user shown as

P⊥unwanted = I2NNNc − Es
(
EHs Es

)−1 EHs (3.39)

Thus, the virtual-spatiotemporal subspace beamformer weight wsubv ∈ C2NNNc×1

(point-G in Figure 3.4) may be obtained as

wsubv = P⊥unwantedG1
{
GH
1 P⊥unwantedG1

}−1
β
1

(3.40)

In addition, for the sake of completeness, the virtual-spatiotemporal RAKE

beamformer weight introduced in [67] is also employed here

wRAKEv = G1β1 (3.41)

3.5 Computer Simulation Studies

In this section the performance of the proposed algorithms is evaluated using

computer simulation studies. Without loss of generality, the Tx and Rx antenna

array geometries to be used are given (without any loss of generality) by Equs 3.42

and 3.43, respectively. These are two uniform circular arrays (UCAs) on the (x,

y) plane with N = 7 antennas on the Tx’s side and N = 9 antennas on the Rx’s

side. In the reception studies, a uniform linear array (ULA) and a cross-shaped

array with N = 7 antennas are also considered at the Tx to evaluate the receiver

performance in terms of different Tx array geometries. The three different Tx

array geometries under consideration are plotted in Figure 3.8. Furthermore, an

observation interval of L = 200 transmitted symbols is assumed. Table 3.1 provides

[r1, r2, ..., rN ] =

[
1.13, 0.55, −0.45, −1.11, −0.94, −0.06, 0.86
0.20, 1.01, 1.06, 0.31, −0.67, −1.15, −0.76
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00

]
(3.42)

[r1, r2, ..., rN ] =

[
1.46, 1.12, 0.25, −0.73, −1.37, −1.37, −0.73, 0.25, 1.12
0.00, 0.94, 1.44, 1.27, 0.50, −0.50, −1.27, −1.44, −0.94
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00

]
(3.43)
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Figure 3.8: The three Tx array geometries: UCA (red marker), ULA (blue marker)
and cross-shaped array (green marker).

some additional system simulation parameters. The channel parameters to be

estimated are assumed to be randomly selected following uniform distributions in

their respective intervals.

Table 3.1: Simulation parameters
Parameter Value Parameter Value

M 4 Nc 31 chips

K 3 N 7

Tc 0.1 ms N 9

3.5.1 Estimation Studies

In this subsection, the performance of the channel estimation of the proposed

virtual-spatiotemporal system is evaluated. As indicated in Table 3.1, there are

M = 4 users, which implies that the desired user operates in the presence of three
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Figure 3.9: Joint estimation of delay and Doppler frequency corresponding to the
three multipaths of the desired user.

other co-channel interferers with K = 3 multipaths per user. Therefore, it is

assumed that the channel parameters to be estimated are displayed in Table 3.2.

Figure 3.9 and Figure 3.10 show the results of the joint delay-Doppler frequency

estimation and joint DOA-DOD estimation respectively. It can be clearly seen

that the peaks occur at the wanted parameters of the desired user.

Table 3.2: Channel parameters
Path index delay (Tc) Doppler frequency (Hz) DOA (deg) DOD (deg)

1st path 28 700 280 30

2nd path 20 1000 200 110

3rd path 7 1500 60 140

Consider again the simulation environment in Figure 3.10, now it is assumed

two of the three paths of the desired user have directions close together in space.

That is, the DOA and DOD values of three paths are (92◦, 90◦, 60◦) and (68◦, 70◦, 90◦).

The result is illustrated in Figure 3.11 and it shows that the estimation peaks are

still very sharp and distinguishable, indicating the superresolution capabilities of
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Figure 3.10: Joint estimation of DOA and DOD corresponding to the three mul-
tipaths of the desired user.

the proposed algorithm.

Furthermore, the performance of the estimation algorithms presented in Sub-

sections 3.4.2 and 3.4.3 is evaluated in terms of the root mean square error (RMSE)

of the Doppler frequency, DOD and DOA as a function of the SNR. The results are

shown in Figure 3.12 indicating that estimation error decreases with an increase

in SNR.

A key performance parameter for subspace based estimation approaches is the

number of the virtual-spatiotemporal snapshots L required to achieve a certain

RMSE at a specified SNR. Figure 3.13 illustrates the performance of the proposed

estimation algorithms in terms of the RMSE of the estimated parameters versus

the number of the virtual-spatiotemporal snapshots L with the SNR fixed at 20

dB. As expected (see Chapter 8 in [18]), the error in the estimation of Doppler

frequency, DOA and DOD decreases with an increase in the number of snapshots2.

2The delay estimation error is not presented as it remains zero through the total
range of SNR or number of snapshots.
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Figure 3.11: Joint Estimation of DOA and DOD when the signals from path 1 and
path 2 of the desired user are closely spaced.

Figure 3.12: RMSE of the different parameters being estimated versus the SNR.
(300 realisations)
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Figure 3.13: RMSE of the different parameters being estimated versus the number
of the virtual-spatiotemporal snapshot L. (300 realisations)

Thus, when the SNR is low, a high number of snapshots may be needed to resolve

two transmitters which are close together in space.

Finally, the proposed virtual-spatiotemporal system is compared with the vir-

tual system in [1], the spatiotemporal system in [21] and the conventional spatial-

only system with the same Tx and Rx array geometries and under the same simu-

lation environment. However, the channel estimation algorithm for the space-only

system fails due to insufficient degrees of freedom (12 signals in a 9-dimensional

observation space). Thus, to enable the space-only system to work properly, the

number of multipath per user is reduced to 2 with all DODs equal to 0◦. The

algorithm of the virtual system and the spatiotemporal system is provided in [1]

and [21], respectively. Figure 3.14 and Figure 3.15 show the RMSE of the DOD

and DOA estimation versus the (SNR×L) using the aforementioned system ap-

proaches. Note that the DOD estimation for the spatial-only system and the

spatiotemporal system are not plotted in Figure 3.14 because such systems cannot

estimate the DODs as their Tx information cannot be exploited by the receiver.
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and virtual-spatiotemporal systems. (100 realisations)
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In this simulation, the number of snapshots L is fixed at 200 and the SNR varies

from -3 dB to 36 dB. As illustrated in Figures 3.14 and 3.15, the proposed virtual-

spatiotemporal system has superior channel estimation accuracy, which indicates

that this system has the most degrees of freedom. It is also proven that the es-

timation accuracy is related to the dimensionality of the system (or degrees of

freedom) since the dimensionality for the proposed virtual-spatiotemporal sys-

tem, the spatiotemporal system, the virtual system and the spatial-only system is

2NNNc>2NNc>NN>N , based on the parameter value in Table 3.1. This illus-

trates the superiority3 of the virtual-spatiotemporal MIMO system in terms of the

receiver resolution capability.

3.5.2 Reception Studies

In this subsection, the performance of the proposed virtual-spatiotemporal sub-

space beamformer is evaluated by comparing with the spatial-only and the spa-

tiotemporal [21] beamformers. The metric used for comparison is the output signal-

to-noise plus interference ratio (SNIRout) given as

SNIRout =
wHRdesw

wH (RMAI + RISI + Rnn)w
(3.44)

where w denotes the beamforming weight employed at the receiver, Rdes denotes

the covariance matrix of the desired signal, RMAI denotes the covariance matrix of

the multiple access interference signal, RISI denotes the covariance matrix of the

inter symbol interference signal of the desired user, and Rnn represents the noise

covariance matrix. Evidently, the value of the SNIR output depends on the design

of receiver weight being employed at the receiver.

A conventional non-subspace beamformer weight design algorithm such as the

RAKE given by Equ 3.41 is introduced here for the beamformer performance com-

parison. The proposed virtual-spatiotemporal subspace beamformer is compared
3It is important to point out that spatiotemporal systems perform better than massive MIMO

systems (see [21]).
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against the spatiotemporal subspace beamformer, the spatial-only subspace beam-

former, and the RAKE-type beamformers for the three systems. All the systems

being compared utilise identical resources i.e. identical Tx and Rx antenna arrays

and sampling frequency at the receiver (i.e. bandwidth). The DODs of the de-

sired user for all receivers are set to 45◦ and the transmit weight is assumed to be

steering vector beamformer directed to 90◦. Figure 3.16 illustrates a comparison

of SNIRout for the subspace-type and RAKE-type steering vector beamformers for

varying levels of interference power (i.e. the near-far ratio (NFR)). As expected,

the performance of all the RAKE steering vector beamformers steadily declines

with increasing interference levels because the RAKE beamformer is unable to pro-

vide sufficient levels of interference cancellation. It can also be observed that the

virtual-spatiotemporal subspace beamformer provides a constant higher gain than

the other beamformers in this situation and this gain in the SNIRout is attributed

to the extension of the array manifold to incorporate the Tx spatial domain and

temporal domain resulting in an increase in system dimensions to 2NNNc. The

increase in the system dimensions enables the beamformer to reconstruct the signal

and noise subspaces with increased accuracy, resulting in heightened interference

cancellation, and thus more degrees of freedom.

It is illustrated in Figure 3.16 that subspace beamformers exhibit nearly con-

stant performance for NFR levels ranging from 0 to 60 dB. Therefore, the inter-

ference term maybe completely cancelled and Equ 3.44 may be simplified to the

following

SNIRout = GdimSNRin (3.45)

where Gdim denotes the array gain and SNRin denotes the desired signal to noise

ratio at the input of the receiver which is given by

SNRin =
Ps
σ2n

(3.46)

where Ps denotes the power of the desired signal at the receiver. It is assumed
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Figure 3.16: Comparison of output SNIR versus the near far ratio for three different
RAKE and subspace receivers namely spatial-only, spatiotemporal (ST) and the
proposed virtual-spatiotemporal (virtual-ST) receivers (50 realisations).

that the power of the desired signal at the transmitter is unity, equivalently, Equ

3.45 can be simplified to the followings for the spatial-only, spatiotemporal and

virtual-spatiotemporal beamformers

SNIRout = NSNRin = N
GTx

σ2n
(3.47a)

SNIRSTout = NNcSNRin = NNc
GTx

σ2n
(3.47b)

SNIRvSTout = NNNcSNRin = NNNc
1

σ2n
(3.47c)

where GTx denotes the gain caused by Tx beamforming. It can be observed from

the aforementioned equations that the output SNIR in the spatial-only and spa-

tiotemporal systems is variable which depends on the Tx beamforming, i.e. the Tx

array geometry, the DOD and the transmit weight. Note that the spatial-only and

spatiotemporal beamformers cannot estimate DODs, thus the beamformer cannot

utilise this parameter which means that the array gain should be considered a

variable. The output SNIR in terms of the DOD is illustrated in Figures 3.17 -
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3.19 where the proposed beamformer is compared with the spatial-only and spa-

tiotemporal beamformers for three sets of Tx array geometries as shown in Figure

3.8. The DOD of the desired user varies from 0◦ to 180◦, and for simplicity, all

the paths of the desired user are assumed to have identical DODs. The transmit

weight is assumed to be a steering vector beamformer with its mainlobe towards

90◦. The NFR is set to 10 dB and the SNR is set to 20 dB.

It is shown in Figures 3.17 - 3.19 that the SNIR output of the spatiotemporal

and spatial-only receivers varies depending on the DOD and the Tx array geome-

try, and the best SNIR output for each receiver occurs when the DOD is equal to

the direction of the mainlobe of the Tx steering vector beamformer. These beam-

formers cannot estimate (and thus utilise) DOD which is arbitrary and unknown.

Consequently, the SNIR output varies with DOD. On the contrary, the proposed

virtual-spatiotemporal beamformer shows a high steady SNIR output when the

DOD or the Tx array geometry varies indicating that the performance of the pro-

posed virtual-spatiotemporal system is independent of the DOD and the Tx array

geometry. This is because the beamformer is capable of estimating the DOD and

utilise this parameter together with the Tx array geometry to enhance the system

performance. Furthermore, the proposed system is applicable for arbitrary array

geometries.

Finally, Figure 3.20 illustrates a comparative study of the output SNIR for

the spatial-only, spatiotemporal, and virtual-spatiotemporal beamformers with an

increasing number of signals in the system. Note that these signals are equivalent

to an increasing number of users and/or multipaths. In this figure, the number of

users varies and the number of multipaths per user is fixed at 6. Figure 3.20 shows

that the output SNIR of the spatial-only system drops to a very low value when

the system is required to support a large number of signals, as the dimension of the

covariance matrix is insufficient to construct the interference space and therefore

interference cannot be fully eliminated. The output SNIR of the spatiotemporal
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Figure 3.17: Comparison of output SNIR versus the DOD between the spatial-
only, spatiotemporal, virtual-spatiotemporal subspace beamformers with a UCA
being employed at the transmitter (50 realisations).

Figure 3.18: Comparison of output SNIR versus the DOD between the spatial-
only, spatiotemporal, virtual-spatiotemporal subspace beamformers with a ULA
being employed at the transmitter (50 realisations).
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array being employed at the transmitter (50 realisations).

beamformer also starts to steadily decline and drops to unacceptable values when

there are 160 signals in the system. However, the proposed virtual-spatiotemporal

system provides a steady output SNIR even beyond 180 signals in the system,

illustrating that the increase in DoF is achieved by the proposed system. Precisely,

considering the inter symbol interference of each distinct signal is also contributed

to the system, the spatial-only system can only accommodate N
3
distinct signals

and the spatiotemporal system provides an ability to accommodate 2NNc
3

distinct

signals while the proposed virtual-spatiotemporal system can accommodate 2NNNc
3

distinct signals.

Thus, the proposed virtual-spatiotemporal system offers very high degrees of

freedom for a system operating in a highly scattering environment or an extremely

dense user scenario. If the proposed algorithm is applied to massive MIMO sys-

tems, super massive signal observation space will be obtained leading to super

massive degrees of freedom. In addition, the proposed algorithm also ensures that
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Figure 3.20: Comparison of output SNIR versus the number of signals for the spa-
tial, spatiotemporal and virtual-spatiotemporal beamformer with subspace beam-
former weights employed at the receiver. (50 realisations).

system performance remains independent of the Tx array geometry, the DOD and

the design of the transmit weight.

3.6 Summary

In this chapter, a novel MIMO antenna array system was proposed which incorpo-

rates a virtual-spatiotemporal manifold extender to perform a joint estimation of

Doppler-delay and DOD-DOA of all paths of the desired user, in the presence of

multiple access co-channel interference, and also to form a beamformer that sup-

presses the multiple access co-channel interference. The proposed approach can

largely increase the degrees of freedom and it was evaluated and compared against

other techniques that also attempt to increase the degrees of freedom of the system.

Computer simulation studies showed that the proposed approach outperforms the

existing techniques in different aspects such as
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• heightened interference cancellation,

• increased channel estimation accuracy,

• SNIR output performance independent of the Tx array geometry, the DOD

and the transmit weight

as well as the ability to support a higher number of signals in the system.
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Chapter 4

Multi DOA Tracking using Rigid

and Flexible Antenna Arrays

This chapter is concerned with the problem of simultaneously tracking the DOA

of far-field multiple moving sources/users in wireless communications using the

vector-signal received by an antenna array of N elements. The antenna array can

be rigid (fixed array locations) or flexible (time-varying array locations), and it

is used in conjunction with a “manifold extender”, a spatiotemporal state-space

model and a Kalman-type tracking approach for non-stationary wireless channels.

In particular, two tracking approaches are proposed. The first is based on an

arrayed Extended Kalman Filter (arrayed-EKF) algorithm and the second on an

arrayed Unscented Kalman Filter (arrayed-UKF) algorithm. Furthermore, if the

array is rigid the spatiotemporal state-space model incorporates the DOAs and

the angular velocities of the sources, while if it is flexible it also includes the array

locations in the set of state-variables. The performance of the two approaches

using both rigid and flexible arrays is evaluated using computer simulation studies

and compared with a subspace tracking algorithm and a particle filter method

under the same conditions.
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4.1 Introduction

In the previous chapters, the source parameters to be estimated are assumed sta-

tionary, i.e. do not change with time. However, in many cases the source para-

meters are non-stationary and thus the estimation of such parameters are called

source tracking. In particular, DOA tracking of multiple moving sources/users us-

ing an array has been an important research area with a wide range of applications

in sonar, radar, air traffic control, wireless communications, remote sensing, etc.

There has been considerable array processing techniques related to the DOA track-

ing. However, the majority of array processing techniques assume by default that

the array geometry is rigid. On the other hand, using flexible array geometries is

an interest problem in array signal processing for airborne, vehicular, underwater

and other applications [68].

In this chapter, both “rigid array” and “flexible array” are presented for si-

multaneously tracking multiple DOAs snapshot-by-snapshot. The proposed algo-

rithms in this chapter have many applications, including UAV communications.

For instance, a rigid antenna array may be deployed on a single UAV platform1

for tracking multiple users. Furthermore, a number of UAVs (a swarm of UAVs),

each equipped with a single antenna having its own propulsion system, can be

used as a flexible array for multi-user tracking (e.g. [69]). In this case, each UAV

is equipped with a GPS-clock so that the array system will have a common clock

to keep the system coherent.

4.1.1 DOA Tracking using Rigid Arrays

DOA tracking techniques can be classified into probabilistic and parametric. For

instance, in [70], a probabilistic DOA tracking approach is presented which is based

on a probability hypothesis density filter with a likelihood function expressed as a
1Except the UAV platform, the rigid array may be deployed in aircraft, automobile, shipboard

as well as in Node-B, eNode-B or gNode-B in an access network.
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complex Wishart random matrix. In [71], the tracking of DOAs is also probabilistic

and is based on the sparse approximation technique LASSO. One of the main

tracking families of parametric techniques is the “subspace tracking” [8, 72, 73, 74],

In [8], a cross-correlation based 2D DOA tracking algorithm is proposed using

an automatic pair-matching batch method which, however, is restricted to only

L-shape array geometries. Some “subspace tracking” techniques are based on

various decomposition forms such as Singular Value Decomposition (SVD) [72],

URV decomposition [73] and cross RV decomposition (CRV) [74].

However, many DOA tracking techniques assume that the sources are station-

ary over a small time frame (observation interval) and for each time frame a DOA

subspace estimation algorithm like multiple signal classification (MUSIC) [14] can

be applied. In these type of techniques the tracking is based on repetitive DOA

estimation (or, in general, repetitive localization) where the set of consecutive es-

timates provide the tracking trajectory (e.g. [75]). However, in non-stationary

environments, repetitive high-resolution estimation algorithms for DOA source

trajectory tracking exhibit serious performance degradation. In addition, these

techniques suffer from the data association problem and several algorithms have

been proposed to avoid this problem. In [23], the authors minimise the norm of an

error matrix based on the covariance matrix of the received array output. A repet-

itive DOA source tracking algorithm is proposed in [24] which uses the most recent

received data to update the existing DOA estimates using the MUSIC algorithm.

Both [23] and [24] avoid data association by preserving the order of the estimated

DOAs over certain iterations, which however suffer from spread array spatial spec-

trum effects caused by the source motion. Alternatively, state-space model based

approaches have been proposed which are combined with various tracking algo-

rithms (e.g. [76, 77, 78, 79]). In [76], multiple target states (MTS) are defined

to describe the source motion, followed by a ML algorithm for updating the MTS

and tracking the DOAs. In [77], a bank of linear combiner matrices are formed
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as state variables, and then they are updated adaptively by an H-infinity filter

to track the noise subspaces and consequently the DOAs. Furthermore, some

Bayesian state-space models have been used in [78], [79] which incorporate the

source motion and the likelihood of received measurements based on the source’s

state. Then, a particle filter is used to track the source state to obtain the DOA

of the sources. The particle filter has also been used in [80] and [81] for target

tracking in radar system. However, in radar literature, “active” radar tracking

approaches have been employed where both system architectures and assumptions

are different than those used in communications.

Another family of approaches for repetitive DOA estimation are based on

Kalman Filter (KF). Since the standard Kalman filter requires the measurement

model to be linear, all the approaches that use standard Kalman filter need to

pre-estimate the DOA and view the DOA estimates as “measurement”. Then the

pre-estimated DOA is refined by the Kalman filter. For example, the Kalman

filter has been used for multiple DOA tracking which are pre-estimated by a least

squares (LS) estimator [82], or a Maximum Likelihood (ML) estimator [83], [84].

In [85], the proposed algorithm improves the algorithm in [24] by employing a

source movement model and a Kalman filter. The Kalman filter has also been

used in [86] for tracking signal subspace towards the objective of tracking single

target. However, it is important to point out that the above KF approaches re-

quire the overall observation interval to be divided into small intervals over which

the DOAs can be assumed to be stationary. Consequently, they will suffer from

serious performance degradation when this assumption is not valid.

In addition to KF, the Extended Kalman filter (EKF) and the Unscented

Kalman Filter (UKF) are suitable for the case that the measurement model is

non-linear. For instance, the EKF has been employed in [87] for trajectory track-

ing of moving sources using a large aperture rigid array and in [2] for DOA tracking

of moving sources using a small aperture rigid array. In [88], the EKF is combined
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with a particle filter forming an EKPF algorithm. However, to the best of our

knowledge, there are not many papers for DOA tracking using EKF and the ma-

jority of these papers are for single DOA tracking. In addition, the UKF has been

rarely used and in [89], [90] it has been used for single DOA tracking. In gen-

eral, the EKF and UKF algorithms have equal computational complexity but they

are conceptually different. The EKF linearizes nonlinear transformations by using

Taylor series expansions and then uses these linear transformations in standard

Kalman filter. Whereas the UKF involves the unscented transformation which

essentially selects a set of points (sigma points) via a deterministic sampling ap-

proach, and then propagates these points to the true nonlinear function which are

then exploited to form the mean and covariance of the estimation [91], [92]. In

this chapter, both the EKF and UKF are employed to track multiple DOAs in

non-stationary environment and our paper [3] is the first paper to employ UKF

for multi-DOA tracking.

4.1.2 DOA Tracking using Flexible Arrays

Several approaches have been proposed for solving source tracking problem with

time varying arrays but for static sources. For example, the ML estimator has

been employed in [93, 94, 95]. However, in these cases, a multi-dimensional search

is required which is computationally prohibitive. In [96], two eigenstructure-based

algorithms based on the concept of array interpolation and focusing matrices are

proposed with faster approximations to the ML estimators. However, these algo-

rithms need relatively large Signal to Noise Ratio (SNR) levels to maintain sat-

isfactory performance. In [97], the authors use noncoherent time-varying arrays

that are a collection of coherent subarrays with stationary covariance matrices.

Then, the functions of the covariance matrices of the subarrays are derived to find

source locations. As it was stated before, all these approaches ([93, 94, 95, 96, 97])
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are designed for static sources. In [98], a dynamic radar network is proposed which

is related with a swarm of UAVs working independently for tracking the location

of a single target. It uses a Markovian state space model and employs a two-step

EKF algorithm. However, this approach is not related with flexible arrays as the

UAVs work independently and this scenario belongs to radar applications.

This chapter is concerned with tracking the DOA of multiple sources in non-

stationary wireless communications using both rigid and flexible arrays. In addi-

tion to [69] in the current literature, to the best of our knowledge, there are only

two papers [99], [100] that deal with the tracking using time-varying arrays. [99] is

concerned with tracking stationary sources using an array of hydrophones. This is

a “towed-array” - towed behind a submarine or a surface ship on a cable — where

the hydrophones are placed at specific/constant distances along the cable. This is

also a flexible array because when the ship turns this line becomes curvy and there

are small but very restricted changes in the overall shape. However, [99] deals with

DOA estimation of stationary acoustic sources using Maximum Likelihood (ML)

followed by a second estimation of the shape of the array using Kalman filtering.

Reference [100] is a “probabilistic” approach for non-stationary channels which

completely ignores the parameterisation in terms of the array manifold vector and

array geometry. It recursively estimates a conditional probability density function

(Bayesian filtering) by following the EKF iterative steps, although this is not an

EKF approach, while its performance is compared with that of a particle-filter

method.

In the proposed approaches, all the sources and the array locations are tracked

in a unified way which is suitable for tracking even of fast moving sources using

antenna array systems. In particular, two novel approaches are proposed based on

an arrayed-EKF and an arrayed-UKF using

• a rigid array and a flexible array,
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• a spatiotemporal state-space model and

• a “manifold extender”

for simultaneously tracking multiple DOAs snapshot-by-snapshot. In our pro-

posed approaches, both “rigid” and “flexible” arrays as well as arrayed-EKF and

arrayed-UKF are presented in a unified way. Furthermore, the concept of “mani-

fold extender” (see [19]) is employed which increases the “degrees of freedom” of

the system by integrating the spatial and the temporal domains. This is used in

the spatiotemporal state-space model. If the array is flexible, apart from track-

ing multiple DOAs, the array locations are also simultaneously tracked as they

change arbitrarily with time. Therefore, we developed our array processing al-

gorithms (arrayed-EKF/UKF), based on fixed or time-varying array geometry,

where all the antenna array elements (in a constant or a time varying geometry)

work together as one unit for solving the problem of trajectory tracking of moving

sources. The integration of all the above forms our proposed “arrayed-EKF” and

“arrayed-UKF” algorithms.

The remainder of this chapter is organised as follows. In Section 4.2, the array

system and the received vector-signal model are presented. In Section 4.3, the

mobility model of the multiple sources is described. Then, the extended mobility

model is presented. In the case of flexible arrays, the mobility model of the array

elements is also discussed. In Section 4.4, the proposed approaches are introduced

based on arrayed-EKF and arrayed-UKF for both rigid and flexible arrays. In Sec-

tion 4.5, the performance of the proposed approaches is evaluated using computer

simulation studies. Finally, this chapter is concluded in Section 4.6.
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4.2 System Model

Consider an array system for tracking multiple users with a receiver array of N

antennas. Figure 4.1 shows the baseband representation of the array system model

consisting of M far-field transmitters/users, a wireless channel and an array re-

ceiver2. With reference to Figure 4.1, at Point-A, the transmitted data sequence of

symbols of the i-th user {ai[n]} (with a symbol duration of Tcs) where each symbol

is weighted by a Nc × 1 weight-code vector given by

wi
∆
= [wi [1] , wi [2] , ..., wi [q] , ..., wi [Nc]]T (4.1)

with

wi[q] ∈ ±1, q ∈ [1,Nc] (4.2)

Then, at Point-B, the weighted data symbol sequence {wiai[n]} is driven to a

Digital-to-Analog Converter (DAC) to produce a baseband transmitted signal

mi(t) at Point-C.

At the receiver, an antenna array of N antennas is employed with locations

r = [r1, r2, ..., rm..., rN ]

=
[
rx, ry, rz

]T ∈ R3×N (4.3)

where the vector rm ∈ R3×1 denotes the Cartesian coordinates of them-th antenna

and the N × 1 vectors rx, ry, rz are the Cartesian coordinates of all antennas on

the x-axis, y-axis and z-axis, respectively. In this chapter, we also consider the

scenario where the array locations (and thus the array geometry) change due to

any unknown forces. In this case, the array is flexible with time-varying geometry,

re-modelled as function of time as follows

r (t) = [r1 (t) , r2 (t) , ..., rm (t) ..., rN (t)]

=
[
rx (t) , ry (t) , rz (t)

]T ∈ R3×N (4.4)

2TheM narrowband far-field users operate at the same time and on the same frequency band.
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Thus, at Point-D in Figure 4.1, the received baseband vector signal x (t) ∈ CN×1

can be modelled as follows

x (t) =
M∑
i=1

βi (t) exp(j2πFit)Si(t)mi(t) + n(t) (4.5)

where, for the i-th user, βi (t) denotes the path fading coefficient, Fi represents the

Doppler frequency and the vector n(t) ∈ CN×1 denotes the additive white complex

Gaussian noise of zero mean and covariance matrix given by

Rnn = σ2nIN (4.6)

with σ2n denoting the noise power. In Equ 4.5, Si(t) ∈ CN×1 denotes the time-

varying manifold vector which is given as follows

Si(t) =


exp

(
−j 2πFc

c
rTui (t)

)
exp

(
−j 2πFc

c
r (t)T ui (t)

)
for rigid array

for flexible array

(4.7)

where Fc is the carrier frequency, c denotes the speed of light and ui (t) is given by

ui (t) =


cos θi (t) cosφi (t)

sin θi (t) cosφi (t)

sinφi (t)

 (4.8)

with θi (t) and φi (t) representing the azimuth and the elevation angles of the i-th

source. In general, the vector u = u (θ, φ) denotes the (3× 1) unit-norm vector

pointing towards the direction (θ, φ), as illustrated in Figure 4.2. In this chapter,

with no loss of generality, the elevation angle is assumed to be zero (i.e. φi (t) = 0).

Equ 4.5 can also be rewritten in a more compact form as follows

x (t) = S(t)m(t) + n(t) (4.9)

where S(t) ∈ CN×M is the matrix with columns the array manifold vectors, i.e.

S(t) = [S1(t), S2(t), ..., Si(t), . . . , SM(t)] (4.10)

98 of 146



Imperial College London 4. Multi DOA Tracking using Rigid and Flexible Antenna Arrays

(0,0,0)

anti-clockwise

Array

y

z

x

di
re

ct
io

n 
of

 p
ro

pa
ga

tio
n

Figure 4.2: The array’s Cartesian coordinate system and the unit-norm vector
u (θ, φ) in terms of the azimuth angle θ and elevation angle φ.

and m(t) ∈ CM×1 is expressed to include, in addition to the M baseband message

signals, the Doppler frequencies and the path coefficients as follows

m(t) =


β1 (t) exp(j2πF1t)m1(t)

β2 (t) exp(j2πF2t)m2(t)

...

βM (t) exp(j2πFM t)mM(t)


(4.11)

with its covariance matrix Rmm defined as

Rmm = E
{
(m(t)− E {m(t)}) (m(t)− E {m(t)})H

}
(4.12)

With reference to Figure 4.1, the (N × 1) vector signal x (t) is firstly discretised

(see Point-E). Then, at Point-F the (NNext×1) vector signal x [n] can be expressed
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as follows

x [n] =

M∑
i=1

(Si[n]⊗ wi)︸ ︷︷ ︸
hi[n]

mi[n]︷ ︸︸ ︷
βi [n] exp(j2πFinT )ai [n] + n [n] (4.13a)

=
M∑
i=1

hi[n]mi[n] + n [n] (4.13b)

= H[n]m[n] + n[n] (4.13c)

where the vector n [n] ∈ CNNext×1 denotes the discretised “extended” noise (i.e.

the noise at Point-F in Figure 4.1) and the matrix H [n] ∈ CNNext×M is given by

H [n] = [h1 [n] , h2 [n] , ..., hi [n] , . . . , hM [n]] (4.14)

with its i-th column hi [n] ∈ CNNext×1 denoting the time-varying extended manifold

vector of the i-th user given as follows

hi [n] = Si [n]⊗ wi (4.15)

with Next= N c. Furthermore, at the transmitter, if the user being tracked does

not include the weight wi, then wi = 1Next may be used. In this case, the extended

manifold vector of Equ 4.15 is simplified to

hi [n] = Si [n]⊗ 1Next (4.16)

Therefore, the extended manifold vector here has two forms/cases as described in

Equ 4.15 and Equ 4.16 although other forms from [2], [19] may be included. In

addition, if the manifold extender is not employed in this model, then Next = 1

and

hi[n] = Si[n] (4.17)

Thus, the vector hi [n] ∈ CNNext×1 can be expressed as follows

hi [n] =


Si [n]⊗ wi,

Si [n]⊗ 1Next ,

Si [n] ,

Next= N c

Next= N c

Next = 1

∣∣∣∣∣∣∣∣∣ (4.18)
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Note that the array locations that constitute the extended manifold vector hi [n]

may be a function of time (changing from symbol to symbol), depending on

whether the array is rigid or flexible.

4.3 Mobility model

4.3.1 Source/User Mobility Model

Since the array operates in the presence of M co-channel users, Figure 4.3 il-

lustrates the mobility model of the i-th user, for i = 1, 2, ...,M relative to the

array reference point. As shown in Figure 4.3, the i-th user moves in an arbitrary

direction with velocity-vector vi ∈ R3×1 given as follows

vi = vρiuvρi + vθiuvθi
(4.19)

where the velocity vector vi is decomposed into two other vectors:

• the radial component vρiuvρi , and

• the orthoradial (angular) component vθiuvθi ,

with vρi denoting the radial velocity of the i-th source and vθi representing its

angular velocity. The vectors uvρi and uvθi are unity vectors that are mutually

orthogonal. The radial velocity vρi causes the Doppler effects which is modelled as

exp(j2πFit) in Equs 4.5 and 4.11. Note that Fi is given by

Fi = −
Fcvρi
c

(4.20)

As shown in Equ 4.13, the Doppler coefficient has been incorporated into the com-

bined vector-signal m[n] which will then be estimated and utilised by the proposed

tracking algorithms. Thus, the radial velocity does not affect the DOA/azimuth

θi. If the i-th user moves with an angular velocity vθi, which can be constant or

variable, its azimuth angle may be described as
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θi (t) = θi (t0) + vθi (t0)T (4.21)

where

T = t− t0 (4.22)

is the time elapsed between t and t0. If T is assumed to be equal to the sampling

period, i.e.

t0 = (n− 1)T (4.23)

t = nT (4.24)

then Equ 4.21 is discretised and becomes

θi[n] = θi[n− 1] + vθi [n]T (4.25)

Thus, let us define the discrete-time state vector for the i-th user as bi[n], i.e.

bi[n]
M
=

 θi[n]

vθi [n]

 (4.26)

Then, the discrete time kinematic model for the i-th user for t = nT is given as

bi[n] = Gibi[n− 1] + b̃i[n] (4.27)

where Gi ∈ R2×2 is the transition matrix given by

Gi=

 1, T

0, 1

 (4.28)

In Equ 4.27, b̃i[n] ∈ R2×1 represents perturbations about the azimuth angle and

the angular velocity, and can be modelled as “noise” with zero mean and covariance

matrix Rb̃ib̃i ∈ R
2×2 given by

Rb̃ib̃i = σ2θi

 T 3

3 ,
T 2

2
T 2

2 , T

 (4.29)

where σ2θi denotes the continuous time model intensity for the azimuth-velocity.
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(0,0)
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Figure 4.3: Illustration of the mobility model of the i-th source/user. The velocity
vector vi of the source is decomposed into its radial term vρiuvρi and the orthoradial
term vθiuvθi

, respectively. The direction (DOA) θi of the source is measured with
respect to the array reference point. The array geometry at the receiver may be
rigid or flexible.

4.3.2 Flexible Array Mobility Model

With reference to Figure 4.3, it is shown that the array at the receiver can be

either rigid or flexible. The movement of the flexible array may include

• a known motion of the whole array which is represented by the motion of

the array’s reference point and does not affect the array geometry,

• a known motion of its individual elements relative to the reference point, and

• small unknown motion or perturbations caused by any unknown forces3

with the last two motions changing the array geometry. Thus, in a flexible array

the tracking of the array geometry (i.e. the tracking of the locations of the array

elements) is essential.

3Note that, even in fixed array geometries, constant uncertainties in the array locations may
decrease the performance of the direction-finding system [93].
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With a sampling period T , the discrete time mobility model of the array loca-

tions4 is expressed as follows

bxy[n] = Gxybxy[n− 1] + b̃xy[n] (4.30)

where the vector bxy[n] is given as follows

bxy[n] =

 rx[n]

ry[n]

 ∈ R2N×1 (4.31)

which includes the instantaneous array locations on the x-axis and y-axis, respec-

tively. The vector b̃xy[n] ∈ R2N×1 in Equ 4.30 denotes the perturbations associated

with their respective locations, with its intensity σ2xy, and its covariance matrix is

given as follows

Rb̃xy b̃xy = σ2xyI2N (4.32)

The matrix Gxy ∈ R2N×2N is a block diagonal matrix containing known transition

matrices of all the array elements shown as

Gxy=


F1, O2, · · · , O2

O2, F2, · · · , O2
...

...
. . .

...

O2, O2, · · · , FN


(4.33)

where Fj ∈ R2×2 represents a known transition matrix of j-th array element. For

instance, if ωj denotes the angular velocity of the j-th array element about the

reference point, then

Fj=

 cosωjT, − sinωjT
sinωjT, cosωjT

 (4.34)

4With no loss of generality, the antenna array elements are assumed to be located on the (x,
y) plane, i.e. rz[n] = 0N .
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4.3.3 Overall Mobility Model

The overall mobility model, which is the discrete time M -user kinematic model,

is constructed based on Equs. 4.27 and 4.30, as follows

b[n] = Gb[n− 1] + b̃[n] (4.35)

where b[n] is the overall discrete-time state vector which is constructed as

b[n] =


[
bT1 [n], b

T
2 [n], . . . , b

T
M [n]

]T ∈ R2M×1[
bTxy[n], b

T
1 [n], . . . , b

T
M [n]

]T ∈ R(2N+2M)×1

rigid array

flexible array

(4.36)

and its perturbation vector b̃[n] is given as follows

b̃[n] =


[
b̃
T

1 [n], b̃
T

2 [n], . . . , b̃
T

M [n]
]T
∈ R2M×1[

b̃
T

xy[n], b̃
T

1 [n], . . . , b̃
T

M [n]
]T
∈ R(2N+2M)×1

rigid array

flexible array

(4.37)

The matrix G represents the overall transition matrix given by

G =



IM⊗Gi rigid array

 Gxy, O2N×2M

O2M×2N , IM⊗Gi

 flexible array

(4.38)

Based on the above equations, the covariance matrix P[n] of the discrete time state

vector b[n] is constructed as follows

P[n] = GP[n− 1]GT + Rb̃b̃ ∈ R
Ndim×Ndim (4.39)

where

Ndim =

 2M

2N + 2M

rigid array

flexible array
(4.40)
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and the perturbation matrix Rb̃b̃ is given as

Rb̃b̃=



IM⊗Rb̃ib̃i rigid array

 Rb̃xy b̃xy , O2N×2M

O2M×2N , IM⊗Rb̃ib̃i

 flexible array

(4.41)

Table 4.1 provides the dimensionality of the various vector/matrix parameters used

in the mobility models. The mobility models employed in this section can be seen

as some representative examples but other mobility models may be used in this

proposed framework.

Table 4.1: The dimensionality of the vector/matrix parameters used in the mobility
models

Variables Dimensionality Array type

bi[n], b̃i[n] 2M × 1 rigid

R
b̃ib̃i

2M × 2M rigid

Gi 2× 2 rigid

bxy[n], b̃xy[n] 2N × 1 flexible

R
b̃xy b̃xy

2N × 2N flexible

Gxy 2N × 2N flexible

b[n], b̃[n]
2M × 1

(2N + 2M)× 1
rigid

flexible

G
2M × 2M

(2N + 2M)× (2N + 2M)

rigid

flexible

R
b̃b̃

2M × 2M
(2N + 2M)× (2N + 2M)

rigid

flexible

P[n]
2M × 2M

(2N + 2M)× (2N + 2M)

rigid

flexible
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4.4 Tracking Algorithms based on Spatiotempo-

ral State-space Model

In this section, based on the antenna array models presented in Sections 4.2 and

4.3, two tracking algorithms are proposed which belong to the Kalman family

of techniques for non-linear “measurement” models. We will call them “arrayed-

EKF” and “arrayed-UKF” as they are based on the integration of

• the array signal model of Section 4.2 for both “rigid” and “flexible” antenna

arrays,

• the mobility models of Section 4.3, and

• the EKF/UKF iterative theoretical tools.

Based on the snapshot at Point-F in Figure 4.1, modelled by Equ 4.13, and the

overall mobility model given by Equ 4.36, the spatiotemporal state-space model is

constructed as follows

b [n] = Gb [n− 1] + b̃ [n] (4.42)

x [n] = H (b [n])m [n] + n [n] (4.43)

describing the dynamics of all users’ motion (Equ 4.42) and the vector signal

received by the rigid or flexible arrays (Equ 4.43).

The two proposed algorithms are summarised in Tables 4.2 and 4.3.Note that

the notation has been simplified, by replacing the symbol index [n] with a subscript

n and, thus, the following notation is employed in Tables 4.2 and 4.3

bn
M
= b [n] ∈ RNdim×1 (4.44a)

Pn
M
= P[n] ∈ RNdim×Ndim (4.44b)

xn
M
= x [n] ∈ CNNext×1 (4.44c)

mn
M
= m [n] ∈ CM×1 (4.44d)
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Table 4.2: First proposed approach (arrayed-EKF algorithm)

Tracking Algorithm

Given:

b0 ∈ RNdim×1; γ ∈ R1

Initialisation:

P0 = γINdim ∈ RNdim×Ndim

for n = 1, 2, 3... (for all available data symbols)
A Priori Estimation of States

bn = Gbn−1
Pn = GPn−1GT + Rb̃b̃
Estimation of the Transmitter Baseband Signals

mn = RmmHH(bn)
(
σ2nINNext +H(bn)RmmHH(bn)

)−1
xn

A Posteriori Estimation of States

Dn = ∇bn
(H (bn)mn) |bn

Kn = PnDHn
(
DnPnDHn + σ2nINNext

)−1
bn = bn + Re {Kn (xn −H(bn)mn)}
Pn = (INdim −KnDn)Pn
end

It is important to point out that, in the presentation of the two algorithms in these

two tables, the selection of a common Kalman structure is deliberately maintained

for better clarification of each step. However, in the arrayed-UKF, which is based

on the square-root UKF, the state-vector b [n] of Equ 4.36 and the non-linear

“measurement” vector x [n] of Equ 4.43 should be further processed to form two

matrices Bn and X. In particular, the matrix Bn ∈ RNdim×(2Ndim+1) can be formed

as follows

Bn =
[
B1, B2, ..., Bj, ..., B2Ndim+1

]
(4.45)

= bn ⊗ 1T2Ndim+1 + [0Ndim , ηTn,−ηTn] (4.46)

where
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• Bj is the j-th column of the matrix Bn which is known as the j-th “sigma

point-vector”.

• η is a scaling factor

• Tn is an Ndim × 2Ndim matrix which is the Cholesky factorisation5 of the

covariance matrix Pn of the state vector of Equ 4.36. That is

Pn = TnTHn (4.47)

Then, by applying the nonlinear function to these “sigma point vectors” the mea-

surement matrix X ∈ CNNext×(2Ndim+1) is formed, i.e.

X =
[
H (B1)mn,H (B2)mn, . . . ,H

(
B2Ndim+1

)
mn

]
(4.48)

Thus, using the unscented transformation instead of the Jacobian matrix of the

nonlinear measurement, and propagating the Cholesky factor Tn instead of the

covariance of the estimate error Pn, the proposed arrayed-UKF algorithm is sum-

marised in Table 4.3.

Note that in Table 4.3, the matricesW(m) andW(c) are diagonal matrices whose

diagonal values are the weights to compute the mean and the covariance of the

measurement, respectively. These matrices have the following definitions:

W(m) =
1

Ndim + µ
diag


 µ

1
2
12Ndim

 (4.49)

W(c) =
1

Ndim + µ
diag


 β

1
2
12Ndim

 (4.50)

where the scaling parameters µ and β are as follows

µ = Ndim(α
2 − 1) (4.51)

β = µ+ (1− α2 + ρ)(Ndim + µ) (4.52)

5The Cholesky factorisation of Pn is unique as Pn is a positive definite matrix.
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with the constant α controlling the spread of the “sigma point-vectors” around bn,

and ρ compensating for the distribution of bn. Furthermore, the parameter η in

Equ 4.46 is related to µ as follows

η =
√
(Ndim + µ) (4.53)

With reference to Table 4.2 and Table 4.3, the initial state b0 can be provided by a

Table 4.3: Second proposed approach (arrayed-UKF algorithm)
Given: b0 ∈ RNdim×1; γ, µ, β, η ∈ R1

Define: w(c)0 = β
Ndim+µ

,W(c)
1 = 1

2(Ndim+µ)
I2Ndim

Initialisation:
P0 = γINdim ∈ RNdim×Ndim ,T0 = chol (P0) ∈ RNdim×Ndim
for n = 1, 2, 3... (for all available data symbols)
A Priori Estimation of States
bn = Gbn−1[

THn
ONdim×Ndim

]
= QR

[ THn−1GH
R1/2
b̃b̃

]H
Estimation of the Transmitter Baseband Signals

mn=RmmHH(bn)
(
σ2nINNext+H(bn)RmmHH(bn)

)−1
xn

A Posteriori Estimation of States
Bn = bn ⊗ 1T2Ndim+1 +

[
0Ndim , ηTn,−ηTn

]
=
[
B1, B2, ..., Bj , ..., B2Ndim+1

]
X =

H (B1)mn︸ ︷︷ ︸,
∆
=x0

H (B2)mn, . . . ,H
(
B2Ndim+1

)
mn︸ ︷︷ ︸

∆
=X1


x = XW(m)1(2Ndim+1)[

THxx
O2Ndim×2Ndim

]
= QR

(X1−x⊗ 1T2Ndim)(W(c)
1

) 1
2

(σ2nINNext)
1
2


THxx = triu

(
THxx

)
,THxx = chol

(
TxxTHxx + w

(c)
0 (x0 − x)(x0 − x)H

)
Rxb = (Bn−bn ⊗ 1T2Ndim+1)W

(c)
(
X−x⊗ 1T2Ndim+1

)H
Kn= Rxb

(
THxx

)−1 T−1xx
bn = bn +Re {Kn (xn − x)}
U = Rxb

(
THxx

)−1
=[u1, u2, ..., uj , ..., uNNext ]

for j = 1, 2, ..., NNext
THn = triu

(
THn
)
, THn = chol

(
TnTHn − ujuHj

)
end
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priori guess or pre-estimated by any kind of the DOA estimation approaches, such

as the ML, LS, or subspace approaches. The initial covariance P0 can be set to

γI2M where γ indicates the confidence level in the accuracy of the initial estimates.

4.5 Computer Simulation Studies

The performance of the proposed algorithms are evaluated in this section using

computer simulation studies. The data symbol sequence transmitted by each user

is assumed to be a random complex sequence of zero mean and unity variance. The

weight-codes are gold-codes of ±1s of length Next= N c generated by modulo-two

addition of two m-sequences described by the polynomialD3+D2+1 andD3+D+1.

This implies that Next= N c = 7. The user tracking is assumed to be carried out

over a time interval of 5000 spatiotemporal snapshots x [n] ∈ CNNext×1 collected

at Point-F in Figure 4.1. The continuous time model intensity for the azimuth-

velocity (see Equ 4.29) is set to σ2θi = 1.1 × 10−8(deg /T )2, ∀i and the intensity

of the perturbations for the array locations is set to σ2xy = 6.4× 10−7(λ/T )2. The

parameter γ of the initialisation stage of the proposed algorithms is set to 10−6.

The parameters used in Equs 4.51 and 4.52 are set to α = 10−4, and ρ = 2.

4.5.1 Rigid Array Geometry

For the rigid antenna array, the geometry is assumed (without any loss of general-

ity) to be a grid planar array of 9 elements and its locations are shown in Figure

4.4. Furthermore, it is assumed that the array operates in the presence of 4 far-

field moving sources/users and their initial angular velocities are assumed to be

0 deg /T which then change according to the velocity trajectory shown in Figure

4.5.

Figure 4.6 shows an example of DOA trajectory tracking of four far field mov-

ing sources using the proposed arrayed-EKF and arrayed-UKF approaches for
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Figure 4.4: Rigid array case: Grid planar array geometry of N = 9 antennas, and
the Cartesian coordinates of the array elements. Note: for the flexible array, this
is the initial array geometry.
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Figure 4.5: Rigid array case: the azimuthal velocity trajectories of four moving
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SNR = 10 dB. In Figure 4.6, the tracking results of the “Source 2” between the

3700-th snapshot and the 3800-th snapshot (framed area) are zoomed in to show

the tracking performance using both approaches. It is clear that both approaches

track the DOAs with high accuracy, especially the arrayed-UKF approach. Then,

the performance of the proposed arrayed-EKF and arrayed-UKF approaches for

all three cases of Equ 4.18 is examined using Monte Carlo simulation studies. The

results are shown in Figure 4.7 where the Root Mean Square Error (RMSE) of

the estimated azimuth angles is plotted as a function of the SNR for 500 Monte

Carlo simulations, where in each simulation the error is averaged over the whole

trajectory corresponding to 3000 snapshots. It is evident in Figure 4.7 that the

proposed approaches with the extended manifold vectors hi [n] = Si [n]⊗ wi have

better source tracking accuracy over the whole SNR range than with the vectors

hi [n] = Si [n] ⊗ 1Next and hi [n] = Si [n]. In addition, the arrayed-UKF approach

outperforms the arrayed-EKF approach.

Then, under the same simulation environment as in Figure 4.7, the proposed al-

gorithms with the extended manifold vector hi [n] = Si [n] ⊗ wi are compared

with

• the subspace tracking algorithm presented in [77] which employs an H-infinity

filter for estimating the noise subspace which is then used to track snapshot-

by-snapshot the DOAs of multipaths,

• the particle filter approach of [101], but integrated with the received array

vector-signal model for both rigid and flexible antenna arrays and the overall

mobility model with the state vector of Equ 4.36. This particle filter will be

referred here as “arrayed-PF”.

The comparative results are shown in Figure 4.8 and it is evident that the pro-

posed algorithms outperform both the subspace tracking and the “arrayed-PF”

algorithms.
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tiotemporal snapshots using the arrayed-UKF approach with the extended mani-
fold vector hi [n] = Si [n] ⊗ wi under different SNR levels (1000 iterations). The
initial azimuth is assumed known.

Next the RMSE performance of the arrayed-UKF algorithm for the extended

manifold vector hi [n] = Si [n] ⊗ wi is examined. Figures 4.9 and 4.10 show the

RMSE of the estimated DOA angles as a function of the number of spatiotemporal

snapshots using the proposed arrayed-UKF algorithm for different SNRs. Note

that, in Figure 4.9, the initial DOAs are assumed known, and in Figure 4.10 the

initial DOAs are obtained from a random Gaussian distribution with unity vari-

ance. The results show that the estimation error for different signal environments

is small and remains constant over time, which illustrates the stability of the pro-

posed arrayed-UKF approach. Overall, based on the results of both Figures 4.7

and 4.9, it can be concluded that the arrayed-UKF algorithm offers significant

tracking accuracy over the SNR range, which indicates its robustness to noise.
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Figure 4.10: RMSE of the estimated source azimuth angles versus number of spa-
tiotemporal snapshots using the arrayed-UKF approach with the extended mani-
fold vector hi [n] = Si [n] ⊗ wi under different SNR levels (1000 iterations). The
initial azimuth is assumed unknown.

4.5.2 Flexible Array Geometry

For the flexible antenna array, the initial geometry is assumed to be also given

by Figure 4.4 but then the geometry will change randomly and a representative

trajectory of the 9 antennas relative to the array reference point is shown in Figure

4.11. The fifth antenna array element is assumed to be the array reference6 point.

For this trajectory, the angular velocity for each flexible array element is assumed

to be ωj = 0.01(deg /T ),∀j. The angular velocities of the sources are shown in

Figure 4.12.

Figure 4.13 shows another example of DOA trajectory tracking of four moving

sources using the proposed arrayed-EKF and arrayed-UKF approaches with a flex-

ible array geometry for SNR = 10 dB. The tracking results of “Source 1” between

the 3700-th snapshot and the 3800-th snapshot are zoomed in. It can be observed

6The array reference point also moves but this motion is not shown (only the relative motion
with respect to this reference point is shown).
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Figure 4.11: Flexible array geometry: a representative trajectory of the flexible
array locations. The instantaneous array locations are plotted every 100 snapshots.
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that the DOA tracking works well with a flexible array.

The estimated array locations for n = 3000 and 5000 by the two algorithms are

illustrated in Figures 4.14 and 4.15, respectively. Furthermore, the trajectories

of the flexible array locations and the trajectories of the estimated array locations

using the arrayed-UKF algorithm are shown in Figure 4.16. It is clear that the ar-

ray geometry changes dramatically with time and its instantaneous array locations

are successfully estimated by the proposed approaches.

Then, for the flexible array case, 500 Monte-Carlo simulations have been car-

ried out under the same simulation environment as used in Figure 4.13. The two

proposed algorithms are also compared with the “arrayed-PF” approach (using

150 particles) for the flexible array case under the same simulation environment.

Note that the “subspace tracking” algorithm [77] examined in Figure 4.8 is not

able to work in the case of flexible arrays. The results are shown in Figures 4.17

- 4.20 where the RMSE of the estimated array locations (Figures 4.17 and 4.18)

and azimuth angles (Figures 4.19 and 4.20) are plotted as a function of the SNR

where in each simulation the error over the DOA trajectory of 3000 snapshots is

averaged for each moving source. These figures indicate that the proposed arrayed-

UKF algorithm with the extended manifold vector hi [n] = Si [n]⊗wi has superior

tracking accuracy in both the estimated array locations and the estimated azimuth

angles.

Finally, it can be seen from Figures 4.6 and 4.13 that the proposed algorithms

do not suffer from the data association problem when the source trajectories cross

each other. This is because of the use of the spatiotemporal state space model

which provides a one-to-one mapping between the sources and their manifold vec-

tors.
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Figure 4.14: Array geometry at n = 3000 showing the initial array locations
(circle), the true array locations (square) and the estimated array locations using
the arrayed-UKF (diamond) and the arrayed-EKF (cross).
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Figure 4.15: Array geometry at n = 5000 showing the initial array locations
(circle), the true array locations (square) and the estimated array locations by the
arrayed-UKF (diamond) and the arrayed-EKF (cross).
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Figure 4.16: Trajectories of the flexible array locations over 5000 snapshots. The
instantaneous array locations are plotted every 100 snapshots.
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poral snapshot evaluations using the arrayed-EKF approach and the arrayed-UKF
approach for the three cases of Equ 4.18 (500 iterations).
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Figure 4.18: Comparison of the proposed arrayed-EKF and arrayed-UKF algo-
rithms with an arrayed-PF algorithm based on [101] using 150 particles in terms
of the RMSE of the estimated array locations.
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Figure 4.19: RMSE of the estimated source azimuth angles with the flexible array
averaged over 3000 spatiotemporal snapshot evaluations using the arrayed-EKF
approach and the arrayed-UKF approach for the three cases of Equ 4.18 (500
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Figure 4.20: Comparison of the proposed arrayed-EKF and arrayed-UKF algo-
rithms with an arrayed-PF algorithm based on [101] using 150 particles in terms
of the RMSE of the source azimuth angles with the flexible array.

4.6 Summary

In this chapter, a theoretical framework is presented for tracking far-field sources in

an non-stationary environment using both rigid and flexible antenna array geome-

tries. The proposed multi-source tracking framework is based on the integration

of a spatiotemporal state-space modelling, the extended manifold concept and

EKF/UKF theoretical iterative tools, for both rigid and flexible array geometries.

The performance of the proposed approaches was examined using computer sim-

ulation studies under various noise levels and compared with a subspace tracking

and a particle filter algorithms. The results indicate that the arrayed-UKF algo-

rithm has better tracking performance than the other algorithms for both rigid

and flexible array geometries, while it shows robustness to noisy environments.

For further extension of the current work, antenna arrays may be deployed at

each transmitter of Figure 4.1 (i.e. MIMO). In such system, the manifold vector

Si [n] in Equ 4.18 can be replaced by S
∗
i [n] ⊗ Si [n], which is known as “virtual
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array manifold”, where Si [n] denotes the manifold vector of the transmitter. In

this case, the tracking performance could be further improved.
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Chapter 5

Conclusions and Further Work

This thesis is concerned with several multi source parameter estimation and track-

ing approaches using antenna arrays in the context of wireless communication sys-

tems. The first part of this thesis presents MIMO system structures and algorithms

for multi-source parameter estimation. The second part presents algorithms and

approaches for tracking of multiple non-stationary sources using rigid and flexible

arrays. Different manifold extenders have been proposed to increase the dimen-

sionality of the signal observation space, which consequently increase the degrees

of freedom.

In Chapter 2, a MIMO system model is provided and the received signal vector

is presented based on a parametric channel model. The parametric channel model

is employed through the thesis, as such model more accurately describes the actual

wave propagation environment. Then, a virtual manifold extender is proposed to

form the virtual manifold vectors and to extend the dimensionality of the signal

observation space from N to NN . Based on the virtual manifold vectors, two

superresolution algorithms are proposed to estimate the delay, DOD and DOA of

all the paths of the desired user in the presence of multiple access interference. The

performance of the proposed algorithms is evaluated with a range of SNR values

and the number of snapshots, and it is compared with a traditional estimation
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approach. The results show the superiority of the proposed approach.

In Chapter 3, a virtual-spatiotemporal MIMO system is proposed which ex-

tends the MIMO system in Chapter 2, and extends the dimensionality of the signal

observation space from N to 2NNNc by using a proposed virtual-spatiotemporal

manifold extender. The degrees of freedom is thus enhanced and the enhancement

of the degrees of freedom leads to the ability of

• accommodating more number of sources,

• more accurate source parameters estimation,

• increased interference cancellation capabilities,

• and higher array gain.

All the aforementioned objectives have been realised in this chapter. A delay-

Doppler estimation algorithm, a DOD-DOA estimation algorithm and a beam-

former weight design algorithm are proposed, all of which are subspace-based

algorithms. In the simulation studies, the proposed system is compared with a

spatial-only system, a virtual system and a spatiotemporal system. The results

showed that the proposed system provides highest estimation accuracy, is able to

accommodate the most number of signals, and achieves steady high array gain

which is independent of the Tx array geometry, the DOD and the design of the

transmit weight. In addition, the proposed algorithms are not restricted by the

array geometries employed at either the transmitter or the receiver.

In Chapter 4, tracking the DOA of multiple moving sources in wireless commu-

nications using antenna arrays is considered. Two tracking approaches based on

an arrayed-EKF algorithm and an arrayed-UKF algorithm, in conjunction with a

spatiotemporal state-space model and a “manifold extender” are proposed. Both

the rigid array and the flexible array are employed. If the array is flexible, apart

from tracking multiple DOAs and their angular velocities, the array locations are
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also simultaneously tracked as they change arbitrarily with time. In the proposed

approaches, all the sources and the array locations are tracked in a unified way

snapshot-by-snapshot which is suitable for tracking even of fast moving sources

using antenna array systems. The performance of the proposed approaches are

evaluated under three cases and under various SNR levels, and compared with a

subspace tracking approach and a particle filter approach. The results show the

proposed approaches achieve better tracking accuracy for both rigid and flexible

array geometries.

5.1 List of Contributions

The novel contributions presented in this thesis are the following:

1. Designing a multi source parameter (delay, DOD and DOA) estimation ap-

proach using virtual manifold extender for MIMO systems in wireless com-

munications.

2. Investigating and comparing the estimation performance using virtual man-

ifold extender with a conventional MIMO approach.

3. Designing a virtual-spatiotemporal system that is capable of enhancing the

degrees of freedom.

4. Proposing a virtual-spatiotemporal receiver to estimate delay, Doppler, DOD

and DOA of all paths of the desired user in the presence of MAI.

5. Investigating the performance of the channel estimation of virtual-spatiotemporal

receiver with varying noise levels and varying number of snapshots, and com-

paring its performance with a spatiotemporal receiver, virtual receiver and

a spatial-only receiver.
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6. Proposing a virtual-spatiotemporal subspace beamformer which has constant

SNIR output and the performance independent of the DOD, Tx array geom-

etry and transmit weight.

7. Comparing the virtual-spatiotemporal beamformer with various beamform-

ers in terms of NFR, DOD, Tx array geometry and the number of signals.

8. Proposing several algorithms for tracking the DOA of multiple moving sources

in wireless communications using rigid array and flexible array, where all the

antenna array elements (in a constant or a time varying geometry) work

together as one unit.

9. Proposing algorithms for tracking the array locations with the DOA of mul-

tiple moving sources simultaneously using flexible array.

10. Investigating and comparing the proposed several tracking algorithms us-

ing both rigid and flexible arrays with a subspace tracking algorithm and a

particle filter algorithm.

5.2 Suggestions for Further Work

The following list outlines ideas and suggestions for the future work based on the

research presented in this thesis

• Chapter 2 presents a novel MIMO system for multiple source parameter esti-

mation using a proposed virtual manifold extender which increases the signal

dimensionality. Based on this, the system can be utilised to design appro-

priate beamformers at the reception, such as subspace type beamformers.

Such beamformers may achieve higher SNIR output than the conventional

beamformers.
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• The systems proposed in Chapter 2 and Chapter 3 are single carrier systems.

Thus, to increase the degrees of freedom further, these systems can be ex-

tended to multi-carrier system where each user could be modulated by a set

of orthogonal subcarriers.

• Chapter 3 presents a MIMO system design with powerful channel parameter

estimators and beamformers for wireless communications. Since the format

of the transmitted signal is similar to the radar’s, the signal model, signal en-

vironment and array system can be extended to form a radar-communication

system. In this aspect, the clutters can also be added in the channel model as

it is a part of a typical radar system. In addition, corresponding algorithms

at the receiver should be enhanced to remove these clutters. With such mod-

ification, this system design can be applied in both fields of communications

and radar.

• Chapter 4 considers a SIMO multiple user wireless channel, i.e. each trans-

mitter employs single antenna. Thus, antenna arrays may be deployed at

each transmitter and the virtual manifold vector proposed in Chapter 2 can

therefore be used to further increase the degrees of freedom. Therefore, the

tracking performance may be further improved.

• Chapter 4 is concerned with developing algorithms for DOA tracking with

a small aperture array. The proposed algorithms can be extended to be

applicable with a large aperture array. In this case, apart from the source

DOAs, the source ranges can also be tracked by including the ranges and the

range velocities in the state space model.

• The signal model proposed in Chapter 4 may be further extended to in-

clude the multipath of the sources and the multiple access interference. The

algorithms can be enhanced to deal with the multipath component and sup-
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press the multiple access interference. In addition, the array system model

presented in this chapter is two-dimensional which can be extended to three-

dimensional. In this case, the azimuth and elevation of the sources as well

as the array locations at both the x-axis and y-axis can be tracked simulta-

neously.
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