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ABSTRACT The Cramer-Rao bound (CRB) offers insights into the inherent performance benchmark of

any unbiased estimator developed for a specific parametric model, which is an important tool to evaluate

the performance of direction-of-arrival (DOA) estimation algorithms. In this paper, a closed-form stochastic

CRB for a mixture of circular and noncircular uncorrelated Gaussian signals is derived. As a general one,

it can be transformed into some existing representative results. The existence condition of the CRB is also

analysed based on sparse arrays, which allows the number of signals to be more than the number of physical

sensors. Finally, numerical comparisons are conducted in various scenarios to demonstrate the validity of

the derived CRB.

INDEX TERMS Cramer-Rao bound, direction of arrival, circular and noncircular, sparse arrays.

I. INTRODUCTION

Direction of arrival (DOA) estimation based on sensor arrays

has been of great interest in many applications, such as

radar, sonar, and wireless communications. A common tool

to assess the performance of DOA estimation algorithms

is the Cramer-Rao bound (CRB), which provides a lower

bound on the estimation error (mean squared error) of an

unbiased DOA estimator. According to the probability model

of the source signals, the CRB can be classified into the

deterministic CRB [1] and the stochastic one [2].

Although the CRB for all unknown parameters can be

obtained from the inverse of the Fisher information matrix

(FIM), this process tends to involve complicated matrix

manipulations. In many cases, we are only interested in

the CRB for DOA estimation, and a closed-form CRB for

DOA estimation not only avoids calculation of the nuisance

parameters, but also provides analytical insights into the

dependence of the array performance on different parameters

[1]–[20].

In the past years, various sparse array structures have

been investigated extensively, as they can provide much more

degrees of freedom (DOFs) than traditional uniform linear

arrays (ULAs). Two representative sparse array structures

are the co-prime arrays [21]–[23] and nested arrays [24],

[25]. Many methods have been proposed for DOA estimation

based on such arrays, which can estimate more sources than

the number of physical sensors by exploiting the difference

coarrays [21], [22], [26]–[32]. At the same time, the CRB

especially applied to sparse arrays has also been derived [3]–

[6], and the existence conditions of these CRBs imply that

more sources than the number of physical sensors can be

identified by using sparse arrays.

However, most of the studies based on sparse arrays do

not consider the possible noncircularity of the impinging

signals. In practice, noncircular signals are frequently used,

and some representative examples include signals generated

by the following modulation schemes: binary phase shift key-

ing (BPSK), amplitude shift keying (ASK), pulse amplitude

modulation (PAM) and unbalanced quadrature phase shift

keying (UQPSK). The second-order statistical properties of

circular signals are characterized by the covariance matrix,

while those of noncircular signals are determined by both the

covariance and pseudo covariance matrices.

For traditional arrays, many efforts have been made to
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explicitly exploit the noncircularity of the signals to improve

the performance of parameter estimation [31], [33]–[43],

some of which also examined the CRB for noncircular sig-

nals in various scenarios. For Gaussian noncircular signals,

the stochastic CRB has been derived in different noise fields

[7]–[9]. In particular, for discrete BPSK and quadrature phase

shift keying (QPSK) signals, the stochastic CRB was derived

in [10]. For strictly noncircular (rectilinear) signals, the s-

tochastic CRB was derived in [11], while the deterministic

one was investigated in [40]. Moreover, for a mixture of

circular and noncircular signals, only the deterministic CRB

has been studied in [12], [13], whereas the stochastic one is

unavailable in the literature.

Most recently, several algorithms were proposed to deal

with the DOA estimation problem for a mixture of circular

and noncircular signals [31], [44]. Benefiting from the en-

hanced DOFs of sparse arrays, these algorithms make use of

the a priori knowledge of uncorrelated sources, and are able

to identify much more sources than the number of physical

sensors. When assessing the performance of these algorithm-

s, existing results on the stochastic noncircular CRBs are not

applicable, because they are either restricted by the condition

that the number of sources is strictly less than that of physical

sensors [7], [8], or derived for strictly noncircular signals

only [11]. Moreover, in the derivation of these results, all

the unknown entries in the source covariance matrix are

considered as part of the unknown parameters. However,

under such parameterization, the role of those parameters

associated with noncircularity are not highlighted.

As the deterministic model is independent of the noncircu-

larity of signals [7], [9], and the corresponding CRB does

not exist in the underdetermined case [3], we shall focus

on the stochastic model, based on which all the underde-

termined DOA estimation methods are developed. In this

work, a closed-form stochastic CRB for a mixture of circular

and noncircular signals is derived for the first time, and in

particular its application to sparse arrays is discussed. The

main contributions of our work are stated in the following.

1) The derived stochastic CRB is applicable to various array

geometries, such as ULAs, sparse arrays, and circular

arrays, as long as there is only one unknown parameter

associated with each source. Since a mixture of circular

and noncircular signals is assumed, the derived CRB can

be easily modified to fit some existing ones derived for

circular/noncircular signals only as special cases. More-

over, our CRB expression is applicable to cases with more

sources than the number of physical sensors, whereas the

traditional noncircular CRBs in [7], [8] turn out to be

invalid.

2) Based on a general signal model for arbitrary second-

order noncircularity, a different parameterization is used

to derive the CRB. Compared with the traditional param-

eterization in [7], [8], ours highlights the roles of the

noncircularity phase and the noncircularity rate, which

further improves the DOA estimation accuracy.

3) Considering practical applications of sparse arrays, the

existence condition of the derived CRB is examined, and

the maximum number of resolvable sources is deduced.

We show that much more noncircular Gaussian sources

than sensors can be resolved due to the enhanced DOFs

provided by sparse arrays. For a given sparse array, the

upper bound on the number of resolvable circular sources

can be exceeded when noncircularity is considered.

The rest of this paper is organized as follows. The general

data model and the sensor array signal model are introduced

in Sec. II. The closed-form stochastic CRB expression is

derived in Sec. III. The existence condition of the CRB is

presented in Sec. IV. Numerical results are provided in Sec.

V and conclusions are drawn in Sec. VI.

II. DATA MODEL

A. GENERAL SOURCE MODEL WITH ARBITRARY

SECOND-ORDER NONCIRCULARITY

First, a quick review of a general signal model for arbitrary

second-order noncircularity is provided.

Denote si(k) as the ith (i = 1, 2, . . . , N ) narrowband

source signal corresponding to the kth (k = 1, 2, . . . ,K)

time instant. In linear digital modulation schemes, the in-

phase component sIi(k) and the quadrature component

sQi
(k) of the complex-valued signal si(k) are often uncor-

related, leading to E{sIi(k)sQi
(k)} = 0 [45].

Consider a normalised version of the signal, i.e.

E{si(k)s
∗

i (k)} = 1, (1)

and in general, we have

E{s2i (k)} = ρie
jψi , (2)

where E{·} is the expectation operation, ψi is referred to as

the noncircularity phase, and ρi the noncircularity rate.

According to different choices of the noncircularity rate ρi,
we have the following three types of signals.

1) Circular signals: ρi = 0. As a result, the pseudo covari-

ance becomes E{s2i (k)} = 0. One example for this case

is the QPSK signal.

2) Strictly noncircular signals: ρi = 1. The pseudo covari-

ance becomes E{s2i (k)} = ejψi . Three examples are

BPSK, PAM and ASK signals.

3) Nonstrictly noncircular signals: 0 < ρi < 1. The pseudo

covariance becomes E{s2i (k)} = ρie
jψi . One example

for this case is the UQPSK signal.

B. SENSOR ARRAY SIGNAL MODEL

Consider an array consisting of M sensors receiving

N stationary narrowband source signals in the far-field.

The sources are located at distinct directions θ =
[θ1, θ2, . . . , θN ]T with (·)T denoting the transpose operation.

The source powers are denoted by µ = [µ1, µ2, . . . , µN ]T .

The kth snapshot of the output signal at the mth sensor
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corresponding to the ith source can be expressed as [27],

[28], [31]

ym(k) =
N
∑

i=1

am(θi)si(k) + nm(k), m = 1, 2, . . . ,M.

(3)

where am(θi) is the response of the mth sensor to the ith
source, nm(k) denotes the noise at the mth sensor, which is

uncorrelated with the sources signals.

The received array signal vector is given by

y(k) =
N
∑

i=1

a(θi)si(k) + n(k) = A(θ)s(k) + n(k), (4)

with

s(k) = [s1(k), s2(k), . . . , sN (k)]T ,

n(k) = [n1(k), n2(k), . . . , nM (k)]T ,

A(θ) = [a(θ1),a(θ2), . . . ,a(θN )],

a(θi) = [a1(θi), a2(θi), . . . , aM (θi)]
T ,

(5)

where s(k) is the source signal vector, and n(k) is the noise

vector. A(θ) and a(θi) represent the array steering matrix

and the steering vector of the ith source, respectively.

The source signals are assumed to be a mixture of circular

and noncircular ones, mutually uncorrelated. The first Nnc

ones are noncircular Gaussian distributed with zero mean,

while the remaining Nnc ones are circular Gaussian distribut-

ed with zero mean (such information can be available and

has been used by some algorithms, e.g., [46]). The noise

is assumed to be spatially uncorrelated, circular Gaussian

distributed with zero mean, with its power denoted by σ2.

From (1), the covariance matrix and pseudo covariance

matrix of the received array signals are respectively given by

Rd = E{y(k)yH(k)}

=
N
∑

i=1

E{si(k)s
∗

i (k)}a(θi)a
H(θi) + σ2IM

=
N
∑

i=1

µia(θi)a
H(θi) + σ2IM ,

Rs = E{y(k)yT (k)} =

N
∑

i=1

E{s2i (k)}a(θi)a
T (θi)

=

Nnc
∑

i=1

µiρie
jψia(θi)a

T (θi).

(6)

where (·)H denotes the Hermitian transpose operation and

IM is an M ×M identity matrix.

III. STOCHASTIC CRB FOR A MIXTURE OF CIRCULAR

AND NONCIRCULAR GAUSSIAN SIGNALS

A. DERIVATION OF THE STOCHASTIC CRB

By definition, the CRB is obtained from the inverse of the

Fisher information matrix (FIM). For Gaussian distribut-

ed data, the FIM can be conveniently calculated from the

Slepian-Bangs formula [47], [48]. The most popular version

is derived for circular Gaussian signals, according to which

the (p, q)th entry of the FIM is expressed as [2], [4], [5]

[Fd(ξd)]p,q = Ktr

(

R−1
d

∂Rd

∂[ξd]p
R−1

d

∂Rd

∂[ξd]q

)

. (7)

where

ξd = [θT ,µT , σ2]T . (8)

Here, ξd is the vector holding all real-valued unknown pa-

rameters, and tr(·) stands for the trace operation.

Taking into account noncircular signals, the conjugate of

the received array signals also contains useful information.

Let Re denote the covariance matrix of the augmented array

signal vector ye(k) = [yT (k),yH(k)]T , and then Re can be

constructed by Rd and Rs in (6) as follows

Re =

[

Rd Rs

R∗
s R∗

d

]

. (9)

Let ξe denote the extended unknown parameter vector which

includes not only the DOAs, the source powers and the noise

power, but also the noncircularity phase and the noncircular-

ity rate:

ξe = [θT ,µT ,ψT ,ρT , σ2]T ,

θ = [θTnc,θ
T
c ]
T , µ = [µTnc,µ

T
c ]
T ,

θnc = [θ1, θ2 . . . , θNnc
]T ,

θc = [θNnc+1, θNnc+2 . . . , θN ]T ,

µnc = [µ1, µ2 . . . , µNnc
]T ,

µc = [µNnc+1, µNnc+2 . . . , µN ]T ,

ψ = [ψ1, ψ2, . . . , ψNnc
]T ,

ρ = [ρ1, ρ2, . . . , ρNnc
]T .

(10)

Remark 1: If we adopt the parameterization in [7], [8], the

unknown parameter vector should be written as

ξDel =
[

θT ,µT ,Re(pTs ), Im(pTs ), σ
2
]T
, (11)

where ps is a column vector collecting the diagonal entries

of the pseudo covariance matrix of the noncircular source

signals, and Re(·) and Im(·) are the real and imaginary

parts of the input argument, respectively. Note that the total

number of unknowns in ξe and ξDel are both 2N +2Nnc +1.

Compared to ξDel, the advantage of ξe is that the roles of the

noncircularity phase and the noncircularity rate (ψ and ρ)

can be highlighted in the derivation and analysis of CRB, as

will be shown next.

Since the boundary of the probability density function

(p.d.f.) of ye(k) is independent of ξe, the following regularity

condition holds true

E

{

∂lnf [ye(k); ξe]

∂ξTe

}

= 0, (12)

where lnf [ye(k); ξe] is the log-p.d.f. of ye(k), and ∂f/∂ξTe
represents the derivatives of a function f with respect to ξTe .
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According to the extended Slepian-Bangs formula for the

noncircular complex Gaussian distribution with zero mean

[8], we can write the (p, q)th entry of the FIM as

[Fe(ξe)]p,q =
K

2
tr

(

R−1
e

∂Re

∂[ξe]p
R−1
e

∂Re

∂[ξe]q

)

=
K

2

[

(RT
e ⊗Re)

−
1

2

∂re

∂[ξe]p

]H [

(RT
e ⊗Re)

−
1

2

∂re

∂[ξe]q

]

,

(13)

where ⊗ denotes the Kronecker product, and

re = vec(Re), (14)

with vec(·) denoting the vectorization operation.

Introduce the following notations

We = (RT
e ⊗Re)

−
1

2 , Ge = We

∂re

∂θT
,

Qe = We

[

∂re

∂µT
,
∂re

∂ψT
,
∂re

∂ρT
,
∂re

∂σ2

]

.
(15)

The dimensions of Ge and Qe are 4M2×N and 4M2×(N+
2Nnc + 1), receptively. Therefore, we can rewrite Fe(ξe) as

Fe(ξe) =
K

2

[

GH
e Ge GH

e Qe

QH
e Ge QH

e Qe

]

. (16)

To facilitate the calculation of Ge and Qe, we write re as

re = P[rTd , r
H
s , r

T
s , r

H
d ]T , (17)

where

P =



I2 ⊗





M
∑

m=1

2
∑

j=1

Bm,j ⊗BT
m,j



⊗ IM





−1

,

rd = vec(Rd) = Td(θ)µ+ σ2vec(IM ),

rs = vec(Rs) = Ts(θnc)diag(µnc)diag(ρ)ψe,

Td(θ) = A∗(θ)⊙A(θ),

Ts(θnc) = A(θnc)⊙A(θnc),

ψe =
[

ejψ1 , ejψ2 , . . . , ejψNnc

]

.

(18)

Here, Bm,j is an M × 2 matrix with one at the (m, j)th
position and zeros elsewhere, ⊙ denotes the Khatri-Rao

product (column-wise Kronecker product), and diag(·) refers

to a diagonal matrix whose diagonal entries are given by the

input vector.

Substituting (17) into (15), we can rewrite Ge and Qe as

Ge = WeP

[

(

∂rd

∂θT

)T

,

(

∂r∗s
∂θT

)T

,

(

∂rs

∂θT

)T

,

(

∂r∗d
∂θT

)T
]T

,

Qe = WeP











∂rd

∂µT

∂rd

∂ψT

∂rd

∂ρT

∂rd

∂σ2

∂r∗s
∂µT

∂r∗s
∂ψT

∂r∗s
∂ρT

∂r∗s
∂σ2

∂rs

∂µT

∂rs

∂ψT

∂rs

∂ρT

∂rs

∂σ2

∂r∗d
∂µT

∂r∗d
∂ψT

∂r∗d
∂ρT

∂r∗d
∂σ2











.

(19)

Using (18), we can compute the derivatives in (19), and the

results are listed below.

∂rd

∂θT
= [T′

d(θnc)diag(µnc),T
′

d(θc)diag(µc)],

∂rd

∂µT
= [Td(θnc),Td(θc)],

∂rd

∂ψT
= 0M2×Nnc

,

∂rd

∂ρT
= 0M2×Nnc

,
∂rd

∂σ2
= vec(IM ),

∂rs

∂θT
= [T′

s(θnc)diag(µnc)diag(ρ)diag(ψe),0M2×Nc
] ,

∂rs

∂µT
= [Ts(θnc)diag(ρ)diag(ψe),0M2×Nc

] ,

∂rs

∂ψT
= jTs(θnc)diag(µ)diag(ρ)diag(ψe),

∂rs

∂ρT
= Ts(θnc)diag(µ)diag(ψe),

∂rs

∂σ2
= 0M2×1,

(20)

where

T′

d(θ) = A′∗(θ)⊙A(θ) +A∗(θ)⊙A′(θ),

T′

s(θnc) = A′(θnc)⊙A(θnc) +A(θnc)⊙A′(θnc),

A′(θ) =

[

∂a(θ1)

∂θ1
,
∂a(θ2)

∂θ2
. . . ,

∂a(θN )

∂θN

]

.

(21)

Assume that Fe(ξe) is positive definite. Since we are only

interested in the CRB for DOA estimation, the DOA-related

block of the CRB matrix can be expressed as

CRBe(θ) =
2

K
(GH

e Π⊥

Qe
Ge)

−1, (22)

with

Π⊥

Qe
= I4M2 −Qe(Q

H
e Qe)

−1QH
e . (23)

B. DISCUSSION ON SPECIAL CASES

The stochastic CRB expression in (22) is a general one

suitable for various array geometries, as long as there is only

one parameter to be estimated for each source. Moreover, it

can be easily modified to fit the following special cases.

1) All the source signals are known to be circular. In this

case, Rs = 0, and then (13) degenerates to (7). From

this point of view, the circular CRB can be seen as a

special case of the noncircular CRB. Specifically, the

newly constructed Gd and Qd can be written as

Gd = (RT
d ⊗Rd)

−
1

2

∂rd

∂θT
,

Qd = (RT
d ⊗Rd)

−
1

2

[

∂rd

∂µT
,
∂rd

∂σ2

]

.
(24)

The dimensions of Gd and Qd are M2 × N and M2 ×
(N + 1), respectively. Then, the CRB for θ can be

expressed as

CRBd(θ) =
1

K
(GH

d Π⊥

Qd
Gd)

−1, (25)

with

Π⊥

Qd
= IM2 −Qd(Q

H
d Qd)

−1QH
d . (26)
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Equation (25) coincides with those derived in [4], [5].

2) All the source signals are known to be noncircular (pos-

sibly strictly noncircular). In this case, Nc = 0, and

Nnc = N . Therefore, ψ and ρ in (10) are augmented,

so that the new Qe2 has a dimension of 4M2× (3N +1).
Substituting Qe2 into (22) instead of Qe leads to a closed-

form CRB expression for noncircular signals only.

3) The sources signals are known to be a mixture of circular

and strictly noncircular ones. For strictly noncircular sig-

nals, ρi = 1, i = 1, 2, . . . , Nnc. Therefore, ∂re/∂ρ can be

removed from Qe, and the newly constructed Qe3 is

Qe3 = (RT
e ⊗Re)

−
1

2

[

∂re

∂µT
,
∂re

∂ψT
,
∂re

∂σ2

]

. (27)

whose dimension is Qe3 is 4M2 × (N + Nnc + 1).
Substitute Qe3 into (22) instead of Qe, and then the CRB

for a mixture of circular and strictly noncircular signals

can be obtained.

4) All the source signals are known to be strictly noncir-

cular. In this case, Nc = 0, Nnc = N , and ρi = 1,

i = 1, 2, . . . , N . Hence, ∂re/∂ρ can be removed from

Qe, and now the newly constructed Qe3 in (27) has a

dimension of 4M2 × (2N +1). Note that another closed-

form expression for the stochastic CRB in this case has

been derived in [11, Theorem 2]. This CRB expression

and its many related notations will not be shown here, but

it is worth noting that this result is derived from a general

expression [11, Eq. (10)], which is the same as in (22).

Although the CRB expression in [11, Theorem 2] is more

explicit than that in (22), it only applies to cases where

K < 2M , due to the usage of certain algebra results that

only holds true in this region.

For some noncircular signals that do not follow the Gaus-

sian distribution, the corresponding CRB should be derived

based on the true p.d.f. rather than the Gaussian one, see, e.g.,

[10], [14], [15], [15], [15]. Fortunately, as proved in [10],

the circular and noncircular Gaussian CRBs are tight upper

bound on the CRBs for discrete QPSK and BPSK signals,

respectively, at very low and very high signal-to-noise ratios

(SNRs). Therefore, the above derived results can still provide

a meaningful reference for nonGaussian signals.

IV. EXISTENCE OF THE DERIVED CRB BASED ON

SPARSE ARRAYS

The existence of the derived CRB depends on the positive

definiteness of QH
e Qe and GH

e Π⊥

Qe
Ge, which further de-

pends on the steering vector a(θi). Since we aim to derive a

bound for assessing the performance of some newly proposed

algorithms based on sparse arrays, we shall focus on the

application involving sparse arrays.

Consider a sparse array consisting of M sensors whose

positions are represented by {p1d, p2d, . . . , pMd}, with

pm, m = 1, 2, . . . ,M being an integer and d being the

unit inter-element spacing. Typically, d is chosen to be half of

the signal wavelength λ/2. Hereafter, we use the normalized

DOA θ̄i = 2πdsinθi/λ, i = 1, 2, . . . , N to replace the

original DOA θi. Then, the steering vector corresponding to

the ith source can be written as

a(θ̄i) =
[

ejp1θ̄i , ejp2θ̄i . . . , ejpM θ̄i
]T

. (28)

For a fixed θ̄i, remove the repeated rows in a∗(θ̄i)⊗ a(θ̄i)
and a(θ̄i) ⊗ a(θ̄i) respectively, and then permute the unique

rows according to an ascending order of the spatial lags. As a

result, we can obtain two virtual steering vectors vd(θ̄i) and

vs(θ̄i). Introduce the following matrices

Vd(θ̄) = [vd(θ̄1),vd(θ̄2), . . . ,vd(θ̄N )],

Vs(θ̄nc) = [vs(θ̄1),vs(θ̄2), . . . ,vs(θ̄Nnc
)].

(29)

As such, Vd(θ̄) and Vs(θ̄nc) represent the steering matrices

of the difference co-array and the sum co-array, respectively.

Denote the lengths of vd(θ̄i) and vs(θ̄i) as Cd and Cs

respectively, which can be seen as the sensor numbers of

the difference co-array and the sum co-array. Let ld and ls
hold the spatial lags corresponding to vd(θ̄i) and vs(θ̄i),
respectively. Then, we have

vd(θ̄i) =
[

e−j
Cd−1

2
θ̄i , . . . , ej

Cd−1

2
θ̄i
]T

,

vs(θ̄i) =
[

ej∆pθ̄i , . . . , ej(∆p+Cs−1)θ̄i
]T

,

ld =

[

−
Cd − 1

2
, . . . ,

Cd − 1

2

]T

,

ls = [∆p, . . . ,∆p+ Cs − 1]
T
,

(30)

where ∆p is the smallest spatial lag in vs(θ̄i). Note that the

expressions of ld and ls in (30) are intended to show the

first and last elements rather than implying that they contain

consecutive integers.

The following relationships will be useful

a∗(θ̄i)⊗ a(θ̄i) = Jdvd(θ̄i),

a(θ̄i)⊗ a(θ̄i) = Jsvs(θ̄i),
(31)

where Jd and Js are M2 × Cd and M2 × Cs real-valued

matrices of full column rank. The construction method of Jd

can be found in [4, Appendix D], and Js can be constructed

similarly. Therefore, we have

Td(θ̄) = JdVd(θ̄), T′

d(θ̄) = jJddiag(ld)Vd(θ̄),

Ts(θ̄nc) = JsVs(θ̄nc), T
′

s(θ̄nc) = jJsdiag(ls)Vs(θ̄nc).
(32)

According to [4, Corollary 3],

vec(IM ) = Jdhd, (33)

where hd is a column vector whose pth element is given

by [hd]p = δ[1d]p,0, ∀p ∈ ld, with δ[1d]p,0 denoting the

Kronecker function.

Using (19), (20), (32), and (33), we can rewrite Ge and Qe

as

Ge = jWePJLU1,

Qe = WePJU2,
(34)

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3041009, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

where

J =









Jd 0M2×Cs
0M2×Cs

0M2×Cd

0M2×Cd
Js 0M2×Cs

0M2×Cd

0M2×Cd
0M2×Cs

Js 0M2×Cd

0M2×Cd
0M2×Cs

0M2×Cs
Jd









,

L =









diag(ld) 0Cs×Cs
0Cs×Cs

0Cd×Cd

0Cd×Cd
diag(ls) 0Cs×Cs

0Cd×Cd

0Cd×Cd
0Cs×Cs

diag(ls) 0Cd×Cd

0Cd×Cd
0Cs×Cs

0 diag(ld)









,

(35)

while U1 and U2 are given by (36).

Notice that Ge and Qe in (34) are similar to the matrices

G and ∆ in [4], and WePJ has full column rank. Following

the proof of [4, Therorem 1], the existence condition of the

CRB can be derived as

1) QH
e Qe is positive definite if and only if U2 has full

column rank, i.e.,

rank(U2) = 3Nnc +Nc + 1. (37)

2) GH
e Π⊥

Qe
Ge is positive definite if and only if [jLU1,U2]

has full column rank, i.e,

rank(GH
e Π⊥

Qe
Ge) = 4Nnc + 2Nc + 1. (38)

Since U2 and [jLU1,U2] both have 2Cd + 2Cs rows, the

above rank conditions hold only if

4Nnc + 2Nc + 1 ≤ 2Cd + 2Cs. (39)

which is

2Nnc +Nc ≤ Cd + Cs −
1

2
. (40)

It is well-known that under the Gaussian distribution, the

nonsingularity of the FIM, or the existence of the CRB,

implies local identifiability of the unknown parameters [49].

Thus, (40) implies an upper bound (not guaranteed to be

tight) on the number of (noncircular) signals that can be

estimated by a specific sparse array. From the structure of U1

and U2, we can see that the DOFs offered by the difference

co-array is shared by both the circular and noncircular sig-

nals, whereas the sum co-array only provides DOFs for the

noncircular signals. Thus, the total number of sources that

can be resolved, N , is related to the length of the difference

co-array Cd. On the other hand, the number of noncircular

sources that can be resolved, Nnc, is concerned with the

length of the sum co-array Cs. Note that Cd and Cs are

determined by the array structure itself, regardless of the

signals. To illustrate more on this point, we recall the four

cases discussed in Sec. III-B.

1) All the source signals are known to be circular. In this

case, Nnc = 0 and Rs = 0, so that the sum co-

array is not utilized. Accordingly, the blocks in U1 and

U2 that are associated with Vs(θ̄nc) should be removed.

Moreover, since the spatial lags in Vd(θ̄nc) and Vd(θ̄d)
are symmetric with respect to zero, and thus the number

of linearly independent rows in the newly constructed

U1 and U2 reduces from 2Cd to Cd. As a result, (40)

degenerates toNc ≤ (Cd−1)/2, which is the well-known

result in [3], [4].

2) All the source signals are known to be noncircular (pos-

sibly strictly noncircular). In this case, Nc = 0, and

(40) changes to N ≤ (Cd + Cs)/2 − 1/4. Consider-

ing (Cd + Cs)/2 − 1/4 should be an integer, we have

N ≤ (Cd + Cs)/2 − 1 with Cs set to be (Cs − 1) when

it is even. This is the maximum number of noncircular

source signals distinguishable by a sparse array, and it

coincides with the conclusion in [31]. Thus, the existence

of the sum co-array can significantly increase the number

of resolvable sources. This also indicates that the CRB

expression derived in this paper is applicable to cases

where M ≤ N , whereas the CRB expressions in [7], [8]

are not.

3) The sources signals are known to be a mixture of cir-

cular and strictly noncircular ones. In this case, ∂re/∂ρ
is removed from Qe, and the rank condition becomes

rank(U2) = 2Nnc + Nc + 1 and rank(GH
e Π⊥

Qe
Ge) =

3Nnc + 2Nc + 1. Thus, these rank conditions hold only if

3Nnc + 2Nc + 1 ≤ 2Cd + 2Cs.

4) All the source signals are known to be strictly noncircular.

In this case, ∂re/∂ρ is removed from Qe, with Nc = 0
and Nnc = N . Therefore, the rank conditions hold only if

N ≤ (2Cd + 2Cs − 1)/3, which means that more strictly

noncircular sources can be resolved than the general all-

noncircular case.

V. NUMERICAL RESULTS

In this section, results for the derived CRBe in (23), the

existing CRB for circular signals CRBd in (26), and the CRB

proposed by Delmas CRBDel [10] are presented for com-

parison. All three types of signals are considered: circular

signal (ρi = 0 and ψi = 0), strictly noncircular signal

(ρi = 1 and ψi = 0), and nonstrictly noncircular signal

(ρi = 0.6 and ψi = 0). The source powers of all the signals

µi are equal. Symbols C, Ns and Nn are used in the rest of

this section to represent circular signals, strictly noncircular

signals, and nonstrictly noncircular signals, separately, and

the number in front of the signal-type symbol represents the

number of signals. For example, 1Ns2C means a mixture

of one strictly noncircular and two circular signals. A six-

sensor two-level nested array is employed, whose locations

are {1, 2, 3, 4, 8, 12}d. The average CRB of all the impinging

angles in degrees is recorded in every simulation.

First, the CRBs of noncircular signals are studied using

CRBe and CRBDel. There are two signals from θ1 = −4◦

and θ2 = 4◦, and they are divided into three scenarios: 2Ns,

1Ns1Nn and 2Nn. The number of snapshots is set to 5000,

and SNR varies from −20dB to 20dB. The results for CRBe

and CRBDel are shown in Fig. 1. Then, we fix SNR to 5dB

and change the number of snapshots from 50 to 15000. The

corresponding results are shown in Fig. 2.

From the two figures, we can see that, for the three

scenarios using CRBDel, the CRB of 1Ns1Nn is the lowest

while the CRB of 2Nn is the highest, but for CRBe, the CRB
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U1 =









Vd(θ̄nc)diag(µnc) Vd(θ̄c)diag(µc)
−V∗

s (θ̄nc)diag(µnc)diag(ρ)diag(ψ∗
e ) 0Cs×Nc

Vs(θ̄nc)diag(µnc)diag(ρ)diag(ψe) 0Cs×Nc

−V∗

d (θ̄nc)diag(µnc) −V∗

d (θ̄c)diag(µc)









,

U2 =









Vd(θ̄nc) Vd(θ̄c) 0Cd×Nnc
0Cd×Nnc

hd

V∗
s (θ̄nc)diag(ρ)diag(ψ∗

e ) 0Cd×Nc
−jV∗

s (θ̄nc)diag(µnc)diag(ρ)diag(ψ∗
e ) V∗

s (θ̄nc)diag(µnc)diag(ψ∗
e ) 0Cs×1

Vs(θ̄nc)diag(ρ)diag(ψe), 0Cd×Nc
jVs(θ̄nc)diag(µnc)diag(ρ)diag(ψe) Vs(θ̄nc)diag(µnc)diag(ψe) 0Cs×1

V∗

d (θ̄nc) V∗

d (θ̄c) 0Cd×Nnc
0Cd×Nnc

hd









.

(36)

FIGURE 1. CRB results for different noncircular signal mixtures with a varying

SNR at 5000 snapshots.

FIGURE 2. CRB results for different noncircular signal mixtures with a varying

number of snapshots at 5dB SNR.

of 2Nn is the lowest while the CRB of 2Ns is the highest.

This is because CRBDel and CRBe are derived based on

different parameterizations, as mentioned in Remark 1. In the

same scenario, CRBe is always lower than CRBDel, and in

particular, CRBe and CRBDel are almost the same in the 2Ns

scenario. Compared with CRBDel, CRBe highlights the roles

of the noncircularity phase and the noncircularity rate, and

FIGURE 3. CRB results for different circular and noncircular signal mixtures

with a varying SNR at 5000 snapshots.

improves the potential estimation accuracy.

In the second set of results, the CRBs for a mixture

of circular and noncircular signals calculated from CRBe

and the CRB of circular signals calculated from CRBd are

studied. Still using the angles θ1 = −4◦ and θ2 = 4◦ as

the mixture of circular and noncircular signals, and they are

divided into two scenarios: 1Ns1C and 1Nn1C. The number

of snapshots is also set to 5000, and the CRB results with

SNR varying from −20dB to 20dB are shown in Fig. 3. Then,

SNR is fixed at 5dB, and the CRB results with the number of

snapshots changing from 50 to 15000 are shown in Fig. 4.

From these two figures, we can see that the curve of CRBd

is always higher than the other curves, and the CRB of 1Nn1C

is lower than the CRB of 1Ns1C. Overall, the results confirm

that the estimation accuracy of nonstrictly noncircular signals

is better than that of strictly noncircular signals even in the

case of a mixture of circular and noncircular signals situation.

In the third set of results, different numbers of mix-

ture signals are considered, where one is circular and the

rest are nonstrictly noncircular. The sparse array can es-

timate at most a mixture of 14 circular and noncircular

signals using the estimation algorithms proposed in [31],

while the maximum number of circular signals can be es-

timated is 11 [24]. Then, three scenarios are examined:

9Ns1C, 11Ns1C and 13Ns1C. The DOAs are chosen as
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FIGURE 4. CRB results for different circular and noncircular signal mixtures

with a varying number of snapshots at 5dB SNR.

FIGURE 5. CRB results for different number of signals with a varying SNR at

5000 snapshots.

{. . . ,−12◦,−4◦, 4◦, 12◦, . . . } with 8◦ interval. For example,

the set of DOAs is {−20◦,−12◦,−4◦, 4◦, 12◦, 20◦} for 6
signals. The circular signal is always located at the largest

DOA. The number of snapshots is also set to 5000 when SNR

varies from −20dB to 20dB, and the results is shown in Fig.

5. Then, the SNR is also fixed at 5dB, and the number of

snapshots varies from 50 to 15000, and the results is shown

in Fig. 6.

From these two figures, we can see that CRBe increases

when the number of signals increases. Note that the numbers

of sources are all set to be larger than that of physical sensors,

which is referred to as the underdetermined case. In this

situation, CRBe will finally become almost a constant as SNR

increases. The proposed CRBe can handle the underdeter-

mined situation, whereas CRBDel cannot. Moreover, CRBe

exists even when the number of signals is greater than 11,

which falls into the invalid range of CRBd. That means more

noncircular signals can be resolved based on a given array,

compared with the all-circular case [6].

In the fourth set of results, the total number of sig-

FIGURE 6. CRB results for different number of signals with a varying number

of snapshots at 5dB SNR.

FIGURE 7. CRB results for different number of circular signals in the mixture

with a varying SNR at 5000 snapshots.

nals is fixed and underdetermined, while the number

of circular signals varies. Three scenarios are exam-

ined: 8Ns2C, 7Ns3C and 6Ns4C. The DOAs are chosen

as {−36◦,−28◦,−20◦,−12◦,−4◦, 4◦, 12◦, 20◦, 28◦, 36◦}.

The settings of SNR and the number of snapshots are the

same as before, and the results are shown in Figs. 7 and 8.

From these two figures, we can see that CRBe increases

when the number of circular signals in the mixture increase,

which confirms that the estimation accuracy of noncircular

signals is better than that of circular ones even in the under-

determined situation. Moreover, as before, CRBe decreases

as the number of snapshots and SNR increase, and it reaches

a constant state after SNR becomes higher than some value.

VI. CONCLUSION

In this paper, the stochastic CRB for a mixture of circu-

lar and noncircular uncorrelated Gaussian signals has been

derived for the first time. Taking into account different a

priori knowledge about noncircularity, the derived CRB can

be transformed to cover several special cases, including the
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FIGURE 8. CRB results for different number of circular signals in the mixture

with a varying number of snapshots at 5dB SNR.

CRB for ULAs, CRB for noncircular signals only, CRB for

a mixture of circular and strictly noncircular signals, and

CRB for circular signals only. The existence condition of

the CRB was examined in detail based on sparse arrays,

with the number of resolvable sources discussed. Simulations

were conducted in different scenarios, and the proposed CRB

which considers the noncircularity property would lead to a

lower value than those without. Furthermore, the proposed

CRB was shown to be applicable to cases with more sources

than the number of physical sensors.
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