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Abstract: Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement
vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint
smoothed l0-norm algorithm, is proposed for multiple measurement vectors in multiple-input
multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method
first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm
designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l0-norm
sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function,
the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation
can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the
MMV problem and perform well for both white and colored Gaussian noises. The proposed joint
algorithm is about two orders of magnitude faster than the l1-norm minimization based methods,
such as l1-SVD (singular value decomposition), RV (real-valued) l1-SVD and RV l1-SRACV (sparse
representation array covariance vectors), and achieves better DOA estimation performance.

Keywords: direction-of-arrival estimation; joint smoothed l0-norm; multiple measurement vectors;
sparse signal reconstruction; MIMO radar

1. Introduction

Colocated multiple-input multiple-output (MIMO) radar has attracted a growing interest
recently because it can achieve higher resolution and better parameter identification compared with
conventional phased-array radar [1]. As one type of colocated MIMO radar, the monostatic MIMO
radar is equipped with closely-located transmit and receive arrays, which result in the same angle
for direction-of-departure (DOD) and direction-of-arrival (DOA) [2]. Aiming at DOA estimation,
a large quantity of methods have been proposed, most of them are based on the signal and noise
subspaces [3–6], such as the representative MUSIC (multiple signal classification) algorithm [3] and
ESPRIT (estimation of signal parameters via rotational invariance techniques) algorithm [4].

In the area of sensor array signal processing, sparse representation is an important technique
to estimate the parameters. When reconstructing the sparse signal, to avoid the NP-hard
(non-deterministic polynomial-time hard) l0-norm minimization, different methods such as those
based on the relaxed constraint l1-norm minimization [7], the focal underdetermined system solution
(FOCUSS) [8] and the sparse Bayesian learning (SBL) [9] have been proposed. These algorithms
were originally designed for the single measurement vector (SMV) problem. Then, to extend them to
the multiple measurement vector (MMV) case, some algorithms, e.g., M-FOCUSS and M-SBL, were
proposed [10,11]. Recently, the emerging application that exploits the sparse representation technique
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to achieve the DOA estimation has been increasingly attractive. Compared with the alternative
methods, sparse representation-based DOA estimation methods can achieve higher angle resolution
and better adapt to some challenging scenarios such as low signal-to-noise ratio (SNR), as discussed
in [7]. Among the abovementioned sparse signal reconstruction methods, l1-norm minimization is
widely used for sparse DOA estimation because of its desirable solution accuracy and reasonable
computing speed [7,10,12]. The DOA estimation algorithms using l1-norm minimization include
l1-SRACV (sparse representation array covariance vectors) [13], real-valued (RV) l1-SRACV [14], and
the iterative algorithm with reweighting l1-norm minimization [15]. All of these methods involve
the SMV problem when recovering the signal. Aiming at the MMV case, the l1-SVD (singular value
decomposition) [7], RV l1-SVD [16], reweighted l1-SVD [17] and CMSR (covariance matrix sparse
representation) [10] were proposed for DOA estimation. However, the computational complexity of the
l1-norm minimization is relatively large compared with that of the fast sparse representation method
named smoothed l0-norm algorithm, which was proposed in [18,19] under the SMV circumstance, and
applied in [20,21] for the imaging and the power-line communications. To achieve fast sparse DOA
estimation, by designing a reweighted continuous function in the SMV case, the reweighted smoothed
l0-norm (RSL0) algorithm was proposed in [22] based on the covariance vector. With enlarged array
aperture and better angle estimation performance, the RSL0 algorithm [22] is about two orders of
magnitude faster than the l1-norm minimization based methods.

The previously mentioned DOA estimation methods are all proposed under the ideal circumstance
with Gaussian white noise. However, the noise is often correlated in practical, thus the additive noise
is spatially modeled as Gaussian colored noise rather than white noise. It has been verified that, with
colored noise, the performance of the conventional algorithms including the methods mentioned above,
is seriously degraded, except for the specially designed methods such as those based on fourth-order
cumulants (FOC) [12,23,24]. These FOC-based methods are computationally expensive when they are
applied to estimate the DOAs for MIMO radar. In [25], the reduced-dimension (RD) FOC-based sparse
representation method (RD l1-SRFOC) was proposed for DOA estimation in MIMO radar with array
errors. RD l1-SRFOC is an l1-norm minimization based sparse representation method, which uses
the high-order cumulants to deal with the colored noise and simultaneously solves the problem of
mutual coupling.

It can be concluded that the existing sparse DOA estimation should improve the following
problems: (I) for the l1-norm minimization based methods, the computation complexities need to
be lowered down and the computing time needs speeding up; (II) the fast sparse DOA estimation
algorithm, i.e., the reweighted smoothed l0-norm algorithm [22], is based on the covariance vector that
is deemed the SMV problem. The fast sparse algorithm tailored for the MMV case needs to be studied
and put forward; and (III) fast sparse algorithms for solving the colored Gaussian noise have not been
available so far.

To solve the three problems stated above, a joint smoothed l0-norm algorithm for DOA estimation
in the MIMO radar is proposed in this paper. The new sparse algorithm first obtains a low-complexity
FOC-based data matrix to eliminate the white or colored Gaussian noises. Secondly, the proposed
algorithm designs a joint smoothed function tailored for the MMV case. Thirdly, with the MMV-based
joint smoothed function, a joint smoothed l0-norm sparse representation framework is constructed.
Finally, the corresponding gradient-based sparse signal reconstruction is designed, and then DOA
estimation is achieved. The proposed algorithm is a fast sparse DOA estimation algorithm, which
can solve the multiple measurement vector problem, and perform well for both of the white and
colored Gaussian noise environments. The proposed algorithm is about two orders of magnitude
faster than the l1-norm minimization based methods. This is because it approximates the l0-norm by a
joint smoothed function and performs the gradient-based steepest ascent scheme, which avoids the
convex optimization problem involved in the l1-norm minimization. The proposed algorithm can
provide better DOA estimation performance than l1-SVD, RV l1-SVD and RV l1-SRACV methods.
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The rest of this paper is organized as follows. Section 2 presents the MIMO radar system and
array signal models. In Section 3, the implementation process of the proposed algorithm is described
in detail. Section 4 gives some related remarks and discussions regarding the advantages, the extended
applications, the computational complexity and the noise elimination of the proposed algorithm.
The experimental results of different methods are compared in Section 5. Finally, Section 6 concludes
this paper.

Throughout the paper, the notations (·)∗, (·)T, (·)H, (·)−1 and (·)+ denote conjugation, transpose,
conjugate transpose, inverse and pseudo-inverse, respectively. IK represents a K× K-dimensional
unit matrix. || · ||0 and || · ||2 denote the l0-norm and the l2-norm, respectively. In addition,
we use ⊗, E(·) and vec(·) to separately indicate the Kronecker product, the expectation and the
vectorization operators.

2. Problem Formulation

A narrowband monostatic MIMO radar system is considered, and it is shown in Figure 1.
The transmit and the receive arrays of this system are equipped with M transmit and N receive
antennas, respectively. The arrays are both half-wavelength spaced uniform linear arrays (ULAs),
whose effects of the array errors, including mutual coupling and gain-phase errors, can be ignored.
The transmitting antennas transmit M orthogonal narrowband waveforms, such as BPSK (binary
phase shift keying) modulated signal waveforms. In the far field, there are P uncorrelated targets
regarded as point scatterers at the same range. In addition, it is assumed that P ≤ M + N− 2 [22,25,26].
Thus, at the receive array, the N antennas are impinged by the echo signals reflected by the P targets.
Because of the closely located arrays in the monostatic MIMO radar, for the pth target, DOA and DOD
are the same and can be denoted by θp. Then, by matched filtering operation, the N × 1 dimensional
complex envelop of the output of the mth carrier matched filter is expressed as [14,27]

xm(t) =
P

∑
p=1

ar(θp)aTtm(θp)sp(t) + nm(t), (1)

where ar(θp) = [1, ejπ sin(θp), ejπ2 sin(θp), . . . , ejπ(N−1) sin(θp)]T is the receive steering vector, atm is the
mth element of the transmit steering vector at(θp) = [1, ejπ sin(θp), ejπ2 sin(θp), . . . , ejπ(M−1) sin(θp)]T, sp(t)
contains the target reflection coefficient and the transmitted baseband signal such as non-circular
signal, and nm(t) is the noise vector after the mth matched filter. After all the matched filters, the
received data vector, i.e., the vector composed of the outputs of the M matched filters, is given
by [2,25,28]

x(t) = vec([xT1(t), . . . , xTM(t)]T)

= As(t) + n(t),
(2)

where x(t) ∈ CMN×1 and n(t) = [nT
1(t), . . . , nT

M(t)]T ∈ CMN×1 is the zero-mean Gaussian white
or colored noise vector. s(t) = [s1(t), s2(t), . . . , sP(t)]

T ∈ CP×1 is the reflected signal vector after
the M carrier matched filters, and it is assumed to be statistically independent and non-Gaussian
with zero-mean. The target model is considered as the classical Swerling case II, namely, the radar
cross section (RCS) fluctuations are constant during a snapshot period and vary independently from
snapshot to snapshot [29]. n(t) and s(t) are independent of each other. Moreover, A ∈ CMN×P is the
transmit–receive steering matrix, and its detailed expression is

A = [at(θ1)⊗ ar(θ1), . . . , at(θP)⊗ ar(θP)]

= [a(θ1), . . . , a(θP)],
(3)
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where a(θp) = at(θp)⊗ ar(θp) ∈ CMN×1 is the transmit–receive steering vector for p = 1, 2, . . . , P.
Therefore, by collecting J snapshots, the MN × J dimensional received data matrix in monostatic
MIMO radar is represented as

X = AS + N, (4)

where S = [s(t1), . . . , s(tJ)] ∈ CP×J and N = [n(t1), . . . , n(tJ)] ∈ CMN×J are the signal matrix and
complex Gaussian noise matrix, respectively. Based on the received data X, sparse DOA estimation
can be viewed as the signal reconstruction that subjects to [14]

X = Aθ̂Sθ̂ + N, (5)

where Aθ̂ = [a(θ̂1), . . . , a(θ̂L)] is the complete dictionary with the discrete sample grid {θ̂i}L
i=1, L� P.

Sθ̂ has the same row support with S. Let sθ̂ = [s(θ̂1), . . . , s(θ̂L)] be a sparse vector whose ith element
can be equal to the l2-norm of the ith row in Sθ̂ . To obtain the sparsest solution of Equation (5), an ideal
constraint is the l0-norm method by minimizing the nonzero number of sθ̂ , which can be expressed as

min ‖sθ̂‖0, s.t. X = Aθ̂Sθ̂ + N. (6)

Unfortunately, the l0-norm minimization method in Equation (6) is NP-hard. To solve this problem,
conventional sparse DOA estimation methods [7,10,13–15,17] can obtain the DOAs with the l1-norm
minimization. However, the computational complexity of the l1-norm minimization is relatively large.
In [22], by solving the array covariance vector based SMV sparse signal reconstruction problem, the
reweighted smoothed l0-norm algorithm greatly improves the computation speed. To develop a fast
sparse DOA estimation algorithm tailored for the MMV problem existed in the MIMO radar systems,
a joint smoothed l0-norm algorithm is proposed in the following.
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Figure 1. Configuration of monostatic multiple-input multiple-output radar.
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3. The Proposed Algorithm

3.1. High-Order Cumulants Based Data Matrix Construction

Based on Equation (3), the detailed expression of the steering vector a(θp) is

a(θp) = [aTr (θp), ejπ sin(θp)aTr (θp), ejπ(M−1) sin(θp)aTr (θp)]
T

= [1, . . . , zN−1, z, . . . , zN , . . . , zM−1, . . . , zM+N−2]T,
(7)

with z = ejπ sin(θp). It can be observed that there are only M + N − 1 distinct elements in a(θp); thus,
the dimension of the received data vector x(t) can be reduced. Let b(θp) be a new steering vector
composed of the distinct elements. It is written as

b(θp) = [1, ejπ sin(θp), ejπ2 sin(θp), . . . , ejπ(M+N−2) sin(θp)]T, (8)

where b(θp)∈ C(M+N−1)×1. According to the element structures of a(θp) and b(θp), their relationship
can be expressed as [25]

a(θp) = Gb(θp), (9)

where G = [LT
0 , LT

1 , · · · , LT
M−1]

T∈ CMN×(M+N−1) and Lm = [0N×m, IN , 0N×(M−m−1)]∈ CN×(M+N−1)

for m = 0, 1, ..., M− 1. Based on the relationship in Equation (9), a reduced-dimensional matrix can be
defined as [25]

R = (GHG)(−
1
2 )GH ∈ C(M+N−1)×MN . (10)

Therefore, the dimensional reduction for the received data is carried out as follows [25]:

x̃(t) = RGBs(t) + Rn(t)

= (GHG)(−
1
2 )GHGBs(t) + ñ(t)

= FBs(t) + ñ(t),

(11)

where x̃(t) = Rx(t)∈ C(M+N−1)×1, B = [b(θ1), . . . , b(θP)]∈ C(M+N−1)×P and ñ(t)∈ C(M+N−1)×1 are
the new low-dimensional received data vector, transmit–receive steering matrix and noise vector,
respectively. In addition, F = (GHG)

1
2 is a known diagonal matrix, and its (i, i)th element can be

expressed as

F(i, i) =


√

i i = 1, 2, . . . , β√
β i = β + 1, β + 2, . . . , β + τ − 1√
M + N − i i = β + τ, . . . , M + N − 1,

(12)

with β = min(M, N) and τ = |M− N|+ 2. Note that the noise vector ñ(t) remains Gaussian after
the dimensional reduction, for asymptotic normal distribution has the invariance speciality of linear
transformation. To eliminate the Gaussian white noise or colored noise in x̃(t), fourth-order cumulant
is exploited under the circumstance of collecting J snapshots. The definition of the FOC is given as
follows [12,24,25]

C4x̃(k1, k2, k3, k4) = cum{x̃k1 , x̃∗k2
, x̃k3 , x̃∗k4

} = E(x̃k1 x̃∗k2
x̃k3 x̃∗k4

)− E(x̃k1 x̃∗k2
)E(x̃k3 x̃∗k4

)

− E(x̃k1 x̃k3)E(x̃
∗
k2

x̃∗k4
)− E(x̃k1 x̃∗k4

)E(x̃∗k2
x̃k3),

(13)

where E(x̃k1 x̃∗k2
x̃k3 x̃∗k4

) ≈ 1
J ∑J

t=1 x̃k1(t)x̃
∗
k2
(t)x̃k3(t)x̃

∗
k4
(t), E(x̃k1 x̃∗k2

) ≈ 1
J ∑J

t=1 x̃k1(t)x̃
∗
k2
(t), x̃ki

stands for
the kith element in x̃, and 1 ≤ ki ≤ M + N − 1 for i = 1, 2, 3, 4. With the assumptions about the noise
in Equation (2), the fourth-order cumulant of Gaussian noise has the following property:
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C4ñ(k1, k2, k3, k4) = cum{ñk1 , ñ∗k2
, ñk3 , ñ∗k4

} = 0, (14)

where C4ñ(k1, k2, k3, k4) represents the fourth-order cumulant of ñ corresponding to the indices
(k1, k2, k3, k4). For the signal assumed in Equation (2), the fourth-order cumulant satisfies

C4s(p1, p2, p3, p4) =

{
cp p1 = p2 = p3 = p4 = p
0 otherwise,

(15)

where cp = cum{sp, s∗p, sp, s∗p} is the FOC of the signal for the pth target, and 1 ≤ pi ≤ P for
i = 1, 2, 3, 4. Based on Equations (14) and (15), an FOC-based data matrix can be constructed with its
(k1, k2)th element being obtained from

Y(k1, k2) = C4x̃(k1, k2, k2, k2)

= cum{x̃k1 , x̃∗k2
, x̃k2 , x̃∗k2

}

=
P

∑
p=1

[Fb(θp)]k1 [Fb∗(θp)]k2 |F(k2, k2)|2cp,

(16)

where [Fb(θp)]k1 and [Fb∗(θp)]k2 are the k1th and the k2th elements in Fb(θp) and Fb∗(θp). As a result,
the data matrix Y can be expressed as

Y = FBDs(F3B)H, (17)

where Ds = diag(c1, c2, . . . , cP) is a diagonal matrix composed of the fourth-order cumulants for sp,
p = 1, 2, . . . , P. Then, the singular value decomposition of Y can be performed as follows:

Y = UΛVH, (18)

where U is the left singular vector, V is the right singular vector, and Λ = diag(λ1, λ2, . . . , λM+N−1) is
the singular value matrix with λ1 ≥ λ2 ≥ . . . ≥ λM+N−1. Therefore, the signal subspace Vs is obtained
by extracting the first P right singular vectors that correspond to (λ1, λ2, . . . , λP). In addition, the last
M + N − 1− P left singular vectors corresponding to (λP+1, λP+2, . . . , λM+N−1) are used to make up
the noise subspace Un ∈ C(M+N−1)×(M+N−1−P). With Vs ∈ C(M+N−1)×P, Y can be transformed into a
dimension-reduced data matrix, that is

Ys = YVs = FBDs(F3B)HVs, (19)

where Ys ∈ C(M+N−1)×P.

3.2. Designs of Joint Smoothed Function and Joint Smoothed l0-Norm Framework for MMV Case

In the sparse representation framework for DOA estimation, a complete dictionary containing all
interest DOAs is required. Thus, let {θ̂i}L

i=1 be the discrete sample grid. According to Equation (19),
the complete dictionary can be constructed as Bθ̂ = [b(θ̂1), b(θ̂2), . . . , b(θ̂L)] ∈ C(M+N−1)×L. The DOA
estimation is considered as a sparse signal reconstruction problem that is subject to

Ys = FBθ̂Tθ̂ , (20)

where Tθ̂ ∈ CL×P is a sparse matrix and has the same row support with T = Ds(F3B)HVs. Then, DOA
estimation can be achieved by measuring the sparsity of Tθ̂ . Note that, in the sparse signal recovery
problem in Equation (20), the low-dimensional data Ys is a matrix rather than a vector. Therefore,
recovering Tθ̂ involves the MMV problem. To develop a fast sparse DOA estimation algorithm that
can solve the MMV problem, in the following, the proposed joint smoothed l0-norm algorithm designs
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a new joint smoothed function and then derives its new steepest ascent scheme. For obtaining the
smoothed estimation of the sparsity of Tθ̂ , we first design a joint continuous function as follows

fσ[Tθ̂(i, :)] = exp{−[| Tθ̂(i, 1) |2 + | Tθ̂(i, 2) |2 + . . .+ | Tθ̂(i, P) |2]/2Pσ2}, (21)

where Tθ̂(i, p) is the (i, p)th element of Tθ̂ for p = 1, 2, . . . , P and i = 1, 2, . . . , L. Thus, the result of the
designed joint continuous function fσ[Tθ̂(i, :)] can be expressed as follows:

lim
σ→0

fσ[Tθ̂(i, :)] =

{
1 Tl2

θ̂
(i) = 0

0, Tl2
θ̂
(i) 6= 0,

(22)

where T(l2)
θ̂
∈ CL×1 is the L × 1 dimensional vector, and [T(l2)

θ̂
](i) = ‖Tθ̂(i, :)‖2. Namely, the ith

element of T(l2)
θ̂

is the l2-norm of the ith row in Tθ̂ . Then, a series of weights [rw1, rw2, . . . , rwL] are
introduced into the joint continuous function fσ[Tθ̂(i, :)]. Therefore, in the proposed joint smoothed
l0-norm algorithm, the final design of the joint smoothed function is

fwσ[Tθ̂(i, :)] = exp{− rwi
2Pσ2

P

∑
p=1

[| Tθ̂(i, p) |2]}

= e−
rwi

2Pσ2 ∑P
p=1[|Tθ̂(i,p)|

2],

(23)

where rwi is the weight coefficient, which is obtained from rwi = ‖[Fb(θ̂i)]
HUn‖2/rmax with rmax =

max{‖[Fb(θ̂1)]
HUn‖2, ‖[Fb(θ̂2)]

HUn‖2, . . . , ‖[Fb(θ̂L)]
HUn‖2}. In Equation (23), the preset parameter

σ is known and adjusts the smoothness of fwσ[Tθ̂(i, :)]. In addition, P stands for the total number
of the columns in the data matrix Ys, namely, the column number of the sparse matrix Tθ̂ . For the
true target DOA θp, 0 < rwp � 1 because of the orthogonality between the signal subspace and
the noise subspace [5]. Therefore, the approximate value of the joint smoothed function fwσ[Tθ̂(i, :)]
corresponding to θ̂i can be calculated as follows:

fwσ[Tθ̂(i, :)] ≈
{

1 rwi → 1, Tl2
θ̂
(i)� σ

0 rwi � 1, Tl2
θ̂
(i)� σ,

(24)

where a small σ is required to guarantee the approximation. Based on Equation (24), the sparsity of Tθ̂

can be measured by

||Tl2
θ̂
||0 ≈ L−

L

∑
i=1

fwσ[Tθ̂(i, :)] = L− Fwσ(T
l2
θ̂
), (25)

where Fwσ(T
l2
θ̂
) = ∑L

i=1 fwσ[Tθ̂(i, :)]. According to Equation (25), to recover the sparse matrix Tθ̂ ,

the minimization of ||Tl2
θ̂
||0 can be turned into the maximization of Fwσ(T

l2
θ̂
). As a consequence, the

MMV-based joint smoothed l0-norm sparse representation framework is represented as

max
Tθ̂

Fwσ(T
l2
θ̂
), s.t. Ys = FBθ̂Tθ̂ . (26)

3.3. Design of the MMV-Based Signal Reconstruction in the Joint Smoothed l0-Norm Algorithm

For the joint smoothed function Fwσ(T
l2
θ̂
), the steepest ascent based on the gradient is designed to

recover the sparse signal. Aiming at the sparse signal reconstruction in Equation (26) that involves
the MMV problem, an initial matrix is needed for the joint smoothed l0-norm algorithm to start the
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steepest ascent process. The initial matrix Uθ̂
0 can be chosen as the solution of Equation (26) with

σ→ ∞, i.e., the minimum l2-norm solution calculated by

Uθ̂
0 = (FBθ̂)

+Ys ∈ C(M+N−1)×P, (27)

where (FBθ̂)
+ is the pseudo-inverse of FBθ̂ . When recovering the sparse signal for Equation (26), the

selected value of σ has an effect on the computation time and the solution accuracy. The larger σ is,
the smoother Fwσ(T

l2
θ̂
) will be. Larger σ can result in less local maxima and makes it more easy to

maximize Fwσ(T
l2
θ̂
). In this case, the computation process can be speeded up. However, large σ causes

the deviation of the approximation in Equation (25), and it will further decrease the precision of the
signal reconstruction. To guarantee both of the speed and the accuracy, a decreasing sequence for σ,
i.e., [σ1, σ2, . . . , σK] with σ1 ≥ σ2 ≥ . . . ≥ σK, which is known as the graduated non-convexity (GNC)
approach [18,22], can be exploited. Even though large σ is desired to avoid a lot of local maxima and
improve the speed, the value of σ1 in the decreasing σ sequence may be set as one to four times of
the maximum absolute value of Uθ̂

0. This is because in fwσ[Tθ̂(i, :)], when σ > 4max{|Uθ̂
0|}, σ acts

virtually like infinity for all elements with e−
1

2Pσ2 ∑P
p=1[|Tθ̂(i,p)|

2]
> 0.96 ≈ 1. Then, the other values in the

σ sequence can be chosen as σk+1 = ασk for k = 1, 2, . . . , K− 1. To make the steepest ascent algorithm
be not far from the actual maximum, and be less likely to get trapped into local maxima, σ is required
to change slowly. This guarantees that the GNC approach can work. In general, the decreasing factor α

satisfies 0.5 ≤ α < 1. σK should be a small value determined by the desired accuracy, and a parameter
σo f f can be used to set the lower limit of the decreasing σ sequence.

For each σk in the decreasing σ sequence, graduated non-convexity based Q iterations are carried
out to maximize Fwσ(T

l2
θ̂
). In each iteration, Tθ̂ is first updated as the following form:

Tθ̂ ← Tθ̂ + µ̃∇Fwσ(T
l2
θ̂
) = Tθ̂ − µ∆Tθ̂ , (28)

where µ̃ = µσ2 is a step-size parameter, and µ should be µ ≥ 1. In addition, ∇Fwσ(T
l2
θ̂
) is the gradient

of Fwσ(T
l2
θ̂
) corresponding to Tθ̂ . In the following, ∆Tθ̂ will be derived in detail. Let the detailed

expression of Tθ̂ be
Tθ̂ = [tT1 , tT2 , . . . , tTL]

T, (29)

where ti ∈ C1×P is the ith row of Tθ̂ . According to Equation (28), ti can be written as

ti ← ti + µ̃∇ti Fwσ(T
l2
θ̂
) = ti − µ∆ti, (30)

where ∇ti Fwσ(T
l2
θ̂
) stands for the 1× P dimensional gradient vector of Fwσ(T

l2
θ̂
) in regard to

ti = [Tθ̂(i, 1), Tθ̂(i, 2), . . . , Tθ̂(i, P)]. The pth element of ∇ti Fwσ(T
l2
θ̂
) is detailedly expressed as

∇ti Fwσ(T
l2
θ̂
)(p) = ∂Fwσ(T

l2
θ̂
)/∂tip

= ∂
L

∑
i=1

e−
rwi

2Pσ2 ∑P
p=1[|Tθ̂(i,p)|

2]/∂Tθ̂(i, p),
(31)

where tip = ã + b̃j is the pth parameter of ti with the real component ã and imaginary component b̃.

∂Fwσ(T
l2
θ̂
)/∂tip = [∂Fwσ(T

l2
θ̂
)/∂ã] + [∂Fwσ(T

l2
θ̂
)/∂b̃]j denotes the 1st-order derivative of Fwσ(T

l2
θ̂
). As a

result, ∇ti Fwσ(T
l2
θ̂
)(p) is derived as follows:
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∇ti Fwσ(T
l2
θ̂
)(p) = e−

rwi
2Pσ2 ∑P

p=1[|Tθ̂(i,p)|
2]

∂{− rwi
2Pσ2

P

∑
p=1

[| Tθ̂(i, p) |2]}/∂Tθ̂(i, p)

= −
rwiTθ̂(i, p)

Pσ2 exp{− rwi
2Pσ2

P

∑
p=1

[| Tθ̂(i, p) |2]}.
(32)

Combining Equation (30) with Equation (32), the pth element of ∆ti can be obtained, that is,

∆tip = −σ2∇ti Fwσ(T
l2
θ̂
)(p)

=
rwiTθ̂(i, p)

P
exp{− rwi

2Pσ2

P

∑
p=1

[| Tθ̂(i, p) |2]}.
(33)

With ∆tip, the 1× P dimensional vector ∆ti is written as

∆ti = −σ2[∂Fwσ(T
l2
θ̂
)/∂Tθ̂(i, 1), ∂Fwσ(T

l2
θ̂
)/∂Tθ̂(i, 2), . . . , ∂Fwσ(T

l2
θ̂
)/∂Tθ̂(i, P)]

= [∆ti1, ∆ti2, . . . , ∆tiP]
(34)

for i = 1, 2, . . . , L. As a result, based on Equations (33) and (34), the sparse matrix to be recovered in
each iteration is first updated as

Tθ̂ ← Tθ̂ − µ∆Tθ̂ ∈ CL×P, (35)

with
∆Tθ̂ = [∆tT1 , ∆tT2 , . . . , ∆tTP]

T, (36)

where ∆Tθ̂ ∈ CL×P. Then, this iteration projects Tθ̂ back to the feasible set Tθ̂ = {Tθ̂ | Ys = FBθ̂Tθ̂},
which satisfies Equation (20), that is,

Tθ̂ ← Tθ̂ − (FBθ̂)
+[(FBθ̂)Tθ̂ − Ys]. (37)

Based on Equations (27)–(37), after Q iterations for σ = σk, the MMV based sparse signal
reconstruction in Equation (26) starts the maximization process of the joint smoothed function Fwσ(T

l2
θ̂
)

for σ = σk+1. Let Tθ̂
f be the output of Tθ̂ by maximizing Fwσ(T

l2
θ̂
) for σ = σK. Consequently, the final

sparse matrix is recovered as Tθ̂
f . In order to evaluate the reconstruction results of each row in Tθ̂

f , and
then achieve the DOA estimation, let

¯̀p = (Tθ̂
f )

l2 , (38)

with [(Tθ̂
f )

l2 ](i) = ‖Tθ̂
f (i, :)‖2. Therefore, by searching the spectrum of ¯̀p, the target DOAs are obtained.

The summary of the proposed joint smoothed l0-norm algorithm is listed below:

Step 1: Compute the fourth-order cumulants based matrix Ys from Equations (11), (16) and (19).
Step 2: Design the joint smoothed function fwσ[Tθ̂(i, :)] tailored for the MMV case as Equation (23).
Step 3: Construct the joint smoothed l0-norm sparse representation framework in Equation (26).
Step 4: Execute the fast MMV-based sparse signal reconstruction with Equations (27)–(37).
Step 5: Attain the DOA estimation based on Equation (38).

4. Related Remarks

Remark 1. With the joint smoothed function Fwσ(T
l2
θ̂
), the proposed joint smoothed l0-norm minimization

based sparse signal reconstruction algorithm is a new fast sparse DOA estimation algorithm, which is tailored
for the MMV problem. By designing a specific joint continuous function that exploits all data information in the
data matrix Ys, and then, deriving its steepest ascent process to achieve the maximization, the sparse solutions
can be obtained. In the extended and improved smoothed l0-norm algorithms, the proposed joint continuous
function fσ[Tθ̂(i, :)] in Equation (21) is applicable for all MMV cases with the form Ys = B̂θ̂Tθ̂ , where B̂θ̂ is the



Sensors 2017, 17, 1068 10 of 16

complete dictionary and Tθ̂ is the L× P dimensional sparse matrix that needs to be reconstructed. Under this
circumstance, gradient-based maximizing ∑L

i=1 fσ[Tθ̂(i, :)] is similar to the derivation of Equations (27)–(37),
and its ∆tip corresponding to ∑L

i=1 fσ[Tθ̂(i, :)] is concluded as

∆tip =
Tθ̂(i, p)

P
exp{− 1

2Pσ2

P

∑
p=1

[| Tθ̂(i, p) |2]} (39)

for i = 1, 2, . . . , L. With ∆tip in Equation (39), the proposed joint smoothed l0-norm algorithm regarding the
joint continuous function fσ[Tθ̂(i, :)] can be applied to other fast sparse signal reconstruction problems that
involve multiple measurement vectors.

Remark 2. The proposed method has low computational complexity because its sparse signal recovery is a
graduated non-convexity procedure, rather than the convex optimization problem involved in the l1-norm
minimization. When recovering the sparse signal matrix Tθ̂ , the main computational burden is caused by the QK
iterations, which require about O[PLQK + (M + N− 1)PLQK], where L is the number of the sample grid cells
in the complete dictionary Bθ̂ . For the SMV based reweighted smoothed l0-norm algorithm in [22], recovering
the sparse signal vector requires about O[(M + N − 1)2LQK]. However, l1-norm minimization based DOA
estimation methods, such as l1-SVD and RV l1-SVD, require O[(PL)3] and O[ 1

4 (PL)3], respectively. In addition,
the RV l1-SRACV needs O[ 1

4 L3]. As L is much larger than P, M + N − 1, Q and K, the computation speed of
the proposed joint smoothed l0-norm algorithm is much faster than the l1-norm minimization based methods.

Remark 3. The proposed method can deal with both of the white and colored Gaussian noises, thereby making it
desirable for use in practical applications. This is because, in the proposed joint smoothed l0-norm algorithm,
high-order cumulants are utilized to process the reduced-dimensional data x(t). Note that, for the dimension
reduction in Equation (11), the reduced-dimensional matrix R satisfies RRH = IM+N−1. Hence, if the noise
vector ñ(t) is white Gaussian with covariance matrix ρ2IMN , it remains white Gaussian with covariance matrix
Rρ2IMNRH = ρ2IM+N−1 after the transformation [2,25]. On the other hand, if the noise vector n(t) is colored
Gaussian with covariance matrix Va, its covariance matrix turns into RVaRH after the dimensional reduction.
However, in this case, ñ(t) is still Gaussian according to the invariance speciality of linear transformation in
asymptotic normal distribution. Therefore, even though the dimensional reduction makes the change of the noise
happen, the high-order cumulant process in Equation (16) can eliminate it.

5. Simulation Results

In this part, some simulations are implemented to evaluate the performance and the computation
speed of the proposed method. The simulation results of the proposed method are compared with those
of the l1-SVD [7], RV l1-SVD [16], RV l1-SRACV [14] and reweighted smoothed l0-norm (RSL0) [22]
algorithms. In all of the simulations, a narrowband monostatic MIMO radar system with ULAs is
considered. The antennas of the transmit array and the receive array are both half-wavelength spaced,
and their numbers are M = 6 and N = 6, respectively. The transmitted signals are assumed to be BPSK
modulated [27,30], moreover, they are mutually orthogonal and different from each other. The noise
is white Gaussian with the covariance matrix R = IMN , or colored Gaussian with the elements in
the covariance matrix being R(k1, k2) = 0.75|k1−k2|ejπ(k1−k2)/2. By means of the minimum description
length (MDL) principle or the Akaike information criterion (AIC) principle [31], the prior knowledge
of the target number is assumed to be known as P.

When constructing the complete dictionary, the discrete sample grid is set from −90◦ to 90◦ with
the uniform interval distance ∆θ̂ = 0.05◦ for the proposed algorithm, as well as the l1-SVD, RV l1-SVD,
RV l1-SRACV and RSL0 algorithms. The parameters σ1, µ and σo f f are fixedly set at σ1 = 4max{|Uθ̂

0|},
µ = 2.5 and σo f f = 0.0007 for the proposed algorithm and the RSL0 algorithm. The effects of the other
parameters, i.e., the decreasing factor α and the iteration number Q, will be evaluated and given in
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detail in the following experiments. The definitions for the signal-to-noise ratio (SNR) and the root
mean square error (RMSE) are shown, respectively, as follows:

SNR = 10log10(||AS||2F/||N||2F),

RMSE =

√
1

500P ∑500
i=1 ∑P

p=1 (θ̂p,i − θp)2,
(40)

where θ̂p,i is the angle estimation of the pth target DOA θp for the ith Monte Carlo trial.
Figure 2 depicts the spatial spectrum of the proposed method for white noise and colored noise,

where SNR = 5 dB and SNR = −10 dB are considered. There are three targets located at θ1 = −8.2◦,
θ2 = 0◦ and θ3 = 21◦. The spatial spectrum is plotted by computing 10log10[| ¯̀p|/max(| ¯̀p|)] with ¯̀p

being the final sparse solution. Figure 2 shows that the proposed joint smoothed l0-norm minimization
algorithm is effective for the MMV case of DOA estimation in monostatic MIMO radar. Moreover, it is
suitable for the practical radar systems with colored Gaussian noise.
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Figure 2. Spatial spectrum of the proposed method for white noise and colored noise.

Figure 3a,b evaluates the effects of the parameters α and Q on the DOA estimation performance of
the proposed method, with Q = 3 and α = 0.5, respectively. Moreover, J = 1000. Three uncorrelated
targets with the DOAs θ1 = −8.2◦, θ2 = 0◦ and θ3 = 21◦ are considered. In Figure 3, it can be verified
that the proposed method keeps the same angle estimation performance when the parameters α and Q
vary from α = 0.5 to α = 0.9 and Q = 3 to Q = 35. In Figure 3b, the RMSE decreases with the increase
of Q when Q ≤ 3, and it reaches an asymptotic value at Q = 3. For the iterations of the steepest ascent
algorithm, we just need a region near the maximum value of Fwσ(T

l2
θ̂
); thus, a fixed small positive

integer Q = 3 is applicable.
With respect to Figure 3, the effects of the parameters α and Q on the average computation time

of the proposed method are shown in Tables 1 and 2. The simulation conditions keep the same with
those of Figure 3. As the implementing processes of the analyzed methods are not affected by the type
of the noise, the computation time is the same for the white and the colored Gaussian noises. It can
be observed that the computation speed becomes slower when α and Q increase. However, larger
α and Q are not able to improve the estimation performance of the proposed method, as shown in
Figure 3a,b. As a result, small values of α and Q are enough to guarantee the estimation accuracy and
the computation speed. In the following experiments, the parameters α and Q are set at α = 0.5 and
Q = 3.
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Figure 3. RMSE (root mean square error) versus different values of the parameters α and Q.

Table 1. Average computation time for different values of the parameter α.

ααα 0.5 0.6 0.7 0.8 0.9

Average Computation Time (s) 0.0401 0.0498 0.0752 0.1137 0.2511

Table 2. Average computation time for different values of the parameter Q.

Q 3 11 19 27 35

Average Computation Time (s) 0.0399 0.1382 0.2576 0.3696 0.4738

Figure 4a,b verify the RMSE of DOA estimation versus SNR for white noise and colored noise,
where J = 1000. Consider three targets whose DOAs are θ1 = −8.2◦, θ2 = 0◦ and θ3 = 21◦. According
to Figure 4a,b, we can conclude that the RSL0 algorithm achieves the best DOA estimation for white
noise. For colored noise, the proposed algorithm and the RSL0 algorithm provide better angle
estimation performance than the l1-SVD, RV l1-SVD and RV l1-SRACV methods.
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Figure 4. RMSE versus SNR (signal-to-noise ratio) for different sparse DOA (direction-of-arrival)
estimation algorithms.

The processing time of signal reconstruction is compared in Table 3, where J = 1000 and
SNR = 0 dB. Different antenna numbers and target numbers are considered. For p = 2, the DOAs
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are θ2 = 0◦ and θ3 = 21◦. For p = 3, they are θ1 = −8.2◦, θ2 = 0◦ and θ3 = 21◦. Table 3 verifies that,
compared with the l1-norm minimization based methods, the proposed algorithm has much lower
computational complexity and is about two orders of magnitude faster.

Table 3. Average computation time of the signal reconstruction for different algorithms.

(M,N,P)
Average Computation Time (s)

Proposed Method l1-SVD RV l1-SVD RV l1-SRACV RSL0

(4,4,2) 0.0269 2.1067 1.5499 1.3213 0.0135
(4,4,3) 0.0323 2.5139 2.0591 1.3368 0.0139
(5,5,2) 0.0273 2.4984 2.1071 2.1277 0.0252
(5,5,3) 0.0373 3.1170 2.7076 2.3842 0.0254
(6,6,2) 0.0328 2.6323 2.2911 3.2908 0.0438
(6,6,3) 0.0395 3.5439 3.1187 4.7397 0.0441

SVD (singular value decomposition), RV (real-valued), SRACV (sparse representation array covariance
vectors), RSL0 (reweighted smoothed l0-norm).

Figure 5a,b illustrates the RMSE versus snapshots for Gaussian white noise and colored noise,
where SNR = 0 dB, and the DOAs of three targets are θ1 = −8.2◦, θ2 = 0◦ and θ3 = 21◦. It can
be observed that, for white noise, the RSL0 algorithm has the minimum RMSE. For colored noise,
the proposed algorithm provides the best angle estimation performance when the snapshots vary
from J = 450 to J = 4050, whereas, in this case, the RV l1-SRACV method performs worse than the
other algorithms.

50 450 850 1250 1650 2050 2450 2850 3250 3650 4050
10

−2

10
−1

10
0

10
1

Snapshots

R
M

S
E

 (
°
)

 

 

Proposed method

L1−SVD

RV L1−SVD

RV L1−SRACV

RSL0

(a) white noise

50 450 850 1250 1650 2050 2450 2850 3250 3650 4050
10

−2

10
−1

10
0

10
1

Snapshots

R
M

S
E

 (
°
)

 

 

Proposed method

L1−SVD

RV L1−SVD

RV L1−SRACV

RSL0

(b) colored noise

Figure 5. RMSE versus snapshots with SNR = 0 dB.

Figure 6a,b verifies the DOA estimation performance of different sparse methods versus angle
separation for Gaussian white noise and colored noise, where J = 1000, and the DOAs of two targets
are considered as θ1 = 0◦ and θ2 = θ1 + θ̃ with θ̃ varying from θ̃ = 4◦ to θ̃ = 16◦. For the white noise
in Figure 6a, the RSL0 algorithm in [22] performs the best, and the proposed algorithm provides better
estimation performance than the l1-SVD, RV l1-SVD and RV l1-SRACV methods. For the colored noise
in Figure 6b, the performance of the proposed algorithm stands out among the analyzed methods,
while the performance of the RV l1-SRACV is severely degraded.
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Figure 6. RMSE versus angle separation with SNR = 0 dB.

Figure 7a,b verifies the relationships between the target resolution probability and SNR for
different sparse methods, where J = 1000, and three targets θ1 = −8.2◦, θ2 = 0◦ and θ3 = 21◦ are
considered. The ith Monte Carlo trial is regarded as a successful one if the estimation results θ̄1, θ̄2

and θ̄3 satisfy max{|θ̄1 − θ1|, |θ̄2 − θ2|, |θ̄3 − θ3|} ≤ 0.1◦. Figure 7a,b verifies that the RSL0 algorithm
performs the best for the white noise, and the proposed algorithm provides the highest target resolution
probability for the colored noise. Colored noise causes the serious performance degradation for the
analyzed methods except for the proposed algorithm.
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Figure 7. RMSE versus target resolution probability.

6. Conclusions

Direction-of-arrival estimation is usually confronted with the MMV case. In this paper, for
DOA estimation in MIMO radar, we have proposed a joint smoothed l0-norm algorithm tailored
for the multiple measurement vector case. By designing the new joint smoothed function and its
gradient-based sparse signal reconstruction, the proposed method is a fast sparse DOA estimation
algorithm that can solve the MMV problem. In addition, it is applicable to the colored Gaussian noise.
The extended applications and the computational complexity of the proposed method are analyzed.
The experimental results have verified that the proposed algorithm is about two orders of magnitude
faster than the l1-norm minimization based methods, such as l1-SVD, RV l1-SVD and RV l1-SRACV,
and performs well for both white and colored Gaussian noises.



Sensors 2017, 17, 1068 15 of 16

Acknowledgments: This work was supported by the China Scholarship Council and the Fundamental Research
Funds for the Central Universities (HEUCF160401).

Author Contributions: Jing Liu and Weidong Zhou provided the idea of this work and wrote the paper.
Filbert H. Juwono assisted with performing the experiments and analyzing the results.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this paper:

MIMO Multiple-Input Multiple-Output
DOA Direction-of-Arrival
FOC Fourth-Order Cumulants
MMV Multiple Measurement Vector
SMV Single Measurement Vector
SVD Singular Value Decomposition
ACV Array Covariance Vectors
SR Sparse Representation
RV Real-Valued
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