122 research outputs found

    Deterministic Cramer-Rao bound for strictly non-circular sources and analytical analysis of the achievable gains

    Full text link
    Recently, several high-resolution parameter estimation algorithms have been developed to exploit the structure of strictly second-order (SO) non-circular (NC) signals. They achieve a higher estimation accuracy and can resolve up to twice as many signal sources compared to the traditional methods for arbitrary signals. In this paper, as a benchmark for these NC methods, we derive the closed-form deterministic R-D NC Cramer-Rao bound (NC CRB) for the multi-dimensional parameter estimation of strictly non-circular (rectilinear) signal sources. Assuming a separable centro-symmetric R-D array, we show that in some special cases, the deterministic R-D NC CRB reduces to the existing deterministic R-D CRB for arbitrary signals. This suggests that no gain from strictly non-circular sources (NC gain) can be achieved in these cases. For more general scenarios, finding an analytical expression of the NC gain for an arbitrary number of sources is very challenging. Thus, in this paper, we simplify the derived NC CRB and the existing CRB for the special case of two closely-spaced strictly non-circular sources captured by a uniform linear array (ULA). Subsequently, we use these simplified CRB expressions to analytically compute the maximum achievable asymptotic NC gain for the considered two source case. The resulting expression only depends on the various physical parameters and we find the conditions that provide the largest NC gain for two sources. Our analysis is supported by extensive simulation results.Comment: submitted to IEEE Transactions on Signal Processing, 13 pages, 4 figure

    R-dimensional ESPRIT-type algorithms for strictly second-order non-circular sources and their performance analysis

    Full text link
    High-resolution parameter estimation algorithms designed to exploit the prior knowledge about incident signals from strictly second-order (SO) non-circular (NC) sources allow for a lower estimation error and can resolve twice as many sources. In this paper, we derive the R-D NC Standard ESPRIT and the R-D NC Unitary ESPRIT algorithms that provide a significantly better performance compared to their original versions for arbitrary source signals. They are applicable to shift-invariant R-D antenna arrays and do not require a centrosymmetric array structure. Moreover, we present a first-order asymptotic performance analysis of the proposed algorithms, which is based on the error in the signal subspace estimate arising from the noise perturbation. The derived expressions for the resulting parameter estimation error are explicit in the noise realizations and asymptotic in the effective signal-to-noise ratio (SNR), i.e., the results become exact for either high SNRs or a large sample size. We also provide mean squared error (MSE) expressions, where only the assumptions of a zero mean and finite SO moments of the noise are required, but no assumptions about its statistics are necessary. As a main result, we analytically prove that the asymptotic performance of both R-D NC ESPRIT-type algorithms is identical in the high effective SNR regime. Finally, a case study shows that no improvement from strictly non-circular sources can be achieved in the special case of a single source.Comment: accepted at IEEE Transactions on Signal Processing, 15 pages, 6 figure

    On ideal and subalgebra coefficients in a class k-algebras

    Get PDF
    Let k be a commutative field with prime field k0k0 and A a k- algebra. Moreover, assume that there is a k-vector space basis ωω of A that satisfies the following condition: for all ω1,ω2∈ωω1, ω2 ∈ ω ,the product ω1ω2ω1ω2 is contained in the k0k0-vector space spanned by ωω. It is proven that the concept of minimal field of definition from polynomial rings and semigroup algebras can be generalized to the above class of (not necessarily associative) k-algebras. Namely, let U be a one-sided ideal in A or a k-subalgebra of A. Then there exists a smallest k′≤kk' ≤ k with U-as one-sided ideal resp. as k-algebra—being generated by elements in the k′k'-vector space spanned by ωω

    Pitfalls in public key cryptosystems based on free partially commutative monoids and groups

    Get PDF
    At INDOCRYPT 2003 Abisha, Thomas, and Subramanian proposed two public key schemes based on word problems in free partially commutative monoids and groups. We show that both proposals are vulnerable to chosen ciphertext attacks, and thus in the present form must be considered as insecure.This work has been partially supported by the German Academic Exchange Service DAAD and the Spanish M.E.C. as part of the BaSe CoAT project within the Acciones Integradas Hispano-Alemanas

    08491 Executive Summary -- Theoretical Foundations of Practical Information Security

    Get PDF
    Designing, building, and operating secure information processing systems is a complex task, and the only scientific way to address the diverse challenges arising throughout the life-cycle of security criticial systems is to consolidate and increase the knowledge of the theoretical foundations of practical security problems. To this aim, the mutual exchange of ideas across individual security research communities can be extraordinary beneficial. Accordingly, the motivation of this Dagstuhl seminar was the integration of different research areas with the common goal of providing an integral theoretical basis that is needed for the design of secure information processing systems
    • …
    corecore