672 research outputs found

    Road Friction Virtual Sensing:A Review of Estimation Techniques with Emphasis on Low Excitation Approaches

    Get PDF
    In this paper, a review on road friction virtual sensing approaches is provided. In particular, this work attempts to address whether the road grip potential can be estimated accurately under regular driving conditions in which the vehicle responses remain within low longitudinal and lateral excitation levels. This review covers in detail the most relevant effect-based estimation methods; these are methods in which the road friction characteristics are inferred from the tyre responses: tyre slip, tyre vibration, and tyre noise. Slip-based approaches (longitudinal dynamics, lateral dynamics, and tyre self-alignment moment) are covered in the first part of the review, while low frequency and high frequency vibration-based works are presented in the following sections. Finally, a brief summary containing the main advantages and drawbacks derived from each estimation method and the future envisaged research lines are presented in the last sections of the paper

    Robust Virtual Sensing for Vehicle Agile Manoeuvring:A Tyre-model-less Approach

    Get PDF

    On the vehicle sideslip angle estimation: a literature review of methods, models and innovations

    Get PDF
    Typical active safety systems controlling the dynamics of passenger cars rely on real-time monitoring of the vehicle sideslip angle (VSA), together with other signals like wheel angular velocities, steering angle, lateral acceleration, and the rate of rotation about the vertical axis, known as the yaw rate. The VSA (aka attitude or “drifting” angle) is defined as the angle between the vehicle longitudinal axis and the direction of travel, taking the centre of gravity as a reference. It is basically a measure of the misalignment between vehicle orientation and trajectory therefore it is a vital piece of information enabling directional stability assessment, in transients following emergency manoeuvres for instance. As explained in the introduction the VSA is not measured directly for impracticality and it is estimated on the basis of available measurements like wheel velocities, linear and angular accelerations etc. This work is intended to provide a comprehensive literature review on the VSA estimation problem. Two main estimation methods have been categorised, i.e. Observer-based and Neural Network-based, focusing on the most effective and innovative approaches. As the first method normally relies on a vehicle model, a review of the vehicle models has been included. Advantages and limitations of each technique have been highlighted and discussed

    Vehicle dynamics virtual sensing and advanced motion control for highly skilled autonomous vehicles

    Get PDF
    This dissertation is aimed at elucidating the path towards the development of a future generation of highly-skilled autonomous vehicles (HSAV). In brief, it is envisaged that future HSAVs will be able to exhibit advanced driving skills to maintain the vehicle within stable limits in spite of the driving conditions (limits of handling) or environmental adversities (e.g. low manoeuvrability surfaces). Current research lines on intelligent systems indicate that such advanced driving behaviour may be realised by means of expert systems capable of monitoring the current vehicle states, learning the road friction conditions, and adapting their behaviour depending on the identified situation. Such adaptation skills are often exhibited by professional motorsport drivers, who fine-tune their driving behaviour depending on the road geometry or tyre-friction characteristics. On this basis, expert systems incorporating advanced driving functions inspired by the techniques seen on highly-skilled drivers (e.g. high body slip control) are proposed to extend the operating region of autonomous vehicles and achieve high-level automation (e.g. manoeuvrability enhancement on low-adherence surfaces). Specifically, two major research topics are covered in detail in this dissertation to conceive these expert systems: vehicle dynamics virtual sensing and advanced motion control. With regards to the former, a comprehensive research is undertaken to propose virtual sensors able to estimate the vehicle planar motion states and learn the road friction characteristics from readily available measurements. In what concerns motion control, systems to mimic advanced driving skills and achieve robust path-following ability are pursued. An optimal coordinated action of different chassis subsystems (e.g. steering and individual torque control) is sought by the adoption of a centralised multi-actuated system framework. The virtual sensors developed in this work are validated experimentally with the Vehicle-Based Objective Tyre Testing (VBOTT) research testbed of JAGUAR LAND ROVER and the advanced motion control functions with the Multi-Actuated Ground Vehicle “DevBot” of ARRIVAL and ROBORACE.Diese Dissertation soll den Weg zur Entwicklung einer zukĂŒnftigen Generation hochqualifizierter autonomer Fahrzeuge (HSAV) aufzeigen. Kurz gesagt, es ist beabsichtigt, dass zukĂŒnftige HSAVs fortgeschrittene FahrfĂ€higkeiten aufweisen können, um das Fahrzeug trotz der Fahrbedingungen (Grenzen des Fahrverhaltens) oder Umgebungsbedingungen (z. B. OberflĂ€chen mit geringer ManövrierfĂ€higkeit) in stabilen Grenzen zu halten. Aktuelle Forschungslinien zu intelligenten Systemen weisen darauf hin, dass ein solches fortschrittliches Fahrverhalten mit Hilfe von Expertensystemen realisiert werden kann, die in der Lage sind, die aktuellen FahrzeugzustĂ€nde zu ĂŒberwachen, die Straßenreibungsbedingungen kennenzulernen und ihr Verhalten in AbhĂ€ngigkeit von der ermittelten Situation anzupassen. Solche AnpassungsfĂ€higkeiten werden hĂ€ufig von professionellen Motorsportfahrern gezeigt, die ihr Fahrverhalten in AbhĂ€ngigkeit von der Straßengeometrie oder den Reifenreibungsmerkmalen abstimmen. Auf dieser Grundlage werden Expertensysteme mit fortschrittlichen Fahrfunktionen vorgeschlagen, die auf den Techniken hochqualifizierter Fahrer basieren (z. B. hohe Schlupfregelung), um den Betriebsbereich autonomer Fahrzeuge zu erweitern und eine Automatisierung auf hohem Niveau zu erreichen (z. B. Verbesserung der ManövrierfĂ€higkeit auf niedrigem Niveau) -haftende OberflĂ€chen). Um diese Expertensysteme zu konzipieren, werden zwei große Forschungsthemen in dieser Dissertation ausfĂŒhrlich behandelt: Fahrdynamik-virtuelle Wahrnehmung und fortschrittliche Bewegungssteuerung. In Bezug auf erstere wird eine umfassende Forschung durchgefĂŒhrt, um virtuelle Sensoren vorzuschlagen, die in der Lage sind, die BewegungszustĂ€nde der Fahrzeugebenen abzuschĂ€tzen und die Straßenreibungseigenschaften aus leicht verfĂŒgbaren Messungen kennenzulernen. In Bezug auf die Bewegungssteuerung werden Systeme zur Nachahmung fortgeschrittener FahrfĂ€higkeiten und zum Erzielen einer robusten WegfolgefĂ€higkeit angestrebt. Eine optimale koordinierte Wirkung verschiedener Fahrgestellsubsysteme (z. B. Lenkung und individuelle Drehmomentsteuerung) wird durch die Annahme eines zentralisierten, mehrfach betĂ€tigten Systemrahmens angestrebt. Die in dieser Arbeit entwickelten virtuellen Sensoren wurden experimentell mit dem Vehicle-Based Objective Tyre Testing (VBOTT) - PrĂŒfstand von JAGUAR LAND ROVER und den fortschrittlichen Bewegungssteuerungsfunktionen mit dem mehrfach betĂ€tigten Bodenfahrzeug ”DevBot” von ARRIVAL und ROBORACE validiert

    Hybrid Kinematic-Dynamic Sideslip and Friction Estimation

    Get PDF
    Vehicle sideslip and tyre/road friction are crucial variables for advanced vehicle stability control systems. Estimation is required since direct measurement through sensors is costly and unreliable. In this paper, we develop and validate a sideslip estimator robust to unknown road grip conditions. Particularly, the paper addresses the problem of rapid tyre/road friction adaptation when sudden road condition variations happen. The algorithm is based on a hybrid kinematic-dynamic closed-loop observer augmented with a tyre/road friction classifier that reinitializes the states of the estimator when a change of friction is detected. Extensive experiments on a four wheel drive electric vehicle carried out on different roads quantitatively validate the approach. The architecture guarantees accurate estimation on dry and wet asphalt and snow terrain with a maximum sideslip estimation error lower than 1.5 deg. The classifier correctly recognizes 87% of the friction changes; wrongly classifies 2% of the friction changes while it is unable to detect the change in 11% of the cases. The missed detections are due to the fact that the algorithm requires a certain level of vehicle excitation to detect a change of friction. The average classification time is 1.6 s. The tests also indicate the advantages of the friction classifiers on the sideslip estimation error
    • 

    corecore