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Vehicle sideslip and tyre/road friction are crucial vari-

ables for advanced vehicle stability control systems. Es-

timation is required since direct measurement through

sensors is costly and unreliable. In this paper, we de-

velop and validate a sideslip estimator robust to unknown

road grip conditions. Particularly, the paper addresses

the problem of rapid tyre/road friction adaptation when

sudden road condition variations happen. The algorithm

is based on a hybrid kinematic-dynamic closed loop ob-

server augmented with a tyre/road friction classifier that

reinitializes the states of the estimator when a change of

friction is detected. Extensive experiments on a 4 wheel

drive electric vehicle carried out on different roads quan-

titatively validate the approach. The architecture guaran-

tees accurate estimation on dry and wet asphalt and snow

terrain with a maximum sideslip estimation error lower

than 1.5 deg. The classifier correctly recognizes 87% of

the friction changes; wrongly classifies 2% of the friction

changes while it is unable to detect the change in 11% of

the cases. The missed detections are due to the fact that

the algorithm requires a certain level of vehicle excitation

to detect a change of friction. The average classification

time is 1.6 s. The tests also indicate the advantages of the

friction classifiers on the sideslip estimation error.

1 INTRODUCTION

Improving vehicle stability performance is one of

the focuses of automotive research. Special attention is

paid to emergency maneuvers through the adoption of ad-

vanced technologies such as active steering, torque vec-

toring or active differentials [1,2]. Vehicle stabilization is

becoming more and more important for autonomous ve-

hicles which, in emergency situations, have to perform

maneuvers close to their handling limits to avoid colli-

sions. In such scenarios, actions needed to stabilize the

vehicle dynamic may not coincide with those necessary

for obstacle avoidance making the control system design

even more challenging [3–5].

All stability control systems rely on real-time vehi-

cle state information [6]. Needless to say, the sideslip an-

gle (defined as the angle between the vehicle longitudinal

axis and the direction of the velocity vector) is of utmost

importance in this context [7]. Unfortunately, direct sens-

ing of the sideslip angle is not, so far, industrially viable

due to high cost and lack of reliability. Estimation is then

required to overcome this issue.

Sideslip estimation has received a considerable

amount of attention over the years, with many interesting

and effective contributions which can be classified in two

main categories [8]: black-box approaches and model-

based approaches.



Black-box estimators are based on non-linear func-

tions (e.g. neural network) optimized to fit the experimen-

tal data, notable examples can be found in [9–12]. They

do not require any vehicle model, but the estimation accu-

racy strongly depends on how comprehensive the training

dataset is. Moreover, the need of retraining the observer

in case of changes in vehicle or driving conditions repre-

sents a significant drawback of black-box strategies.

Model-based approaches rely on vehicle kinematic

and dynamic models to develop estimators in the classical

feedback framework.

Kinematic estimators [13,14] are based on a descrip-

tion of the vehicle motion relating kinematic quantities

and do not depend on specific vehicle or tire parame-

ters facilitating their implementation on different vehicles

without the need of relevant retuning procedures. How-

ever, estimators designed uniquely on kinematic mod-

els tend to drift when the vehicle lateral dynamic is not

properly excited [15]. A possible solution is to include

Global Navigation Satellite Systems measurement [16]

which however is not always reliable.

Dynamic estimators [?, 17–21] overcome the esti-

mation drift problem relying on more complex dynamic

models. The estimation accuracy of such approaches is

strictly related to the model complexity and to the prior

knowledge of the constituting vehicle parameters. The

road-tire forces characteristic is the most critical aspect.

It is achieved through non-linear tire models [22] whose

parameters significantly vary depending on tire and road

friction conditions. To guarantee robustness, dynamic

observers often require an additional real-time tyre/road

friction estimate [23].

Hybrid approaches [24,25] aim at taking the most of

both kind of models. The information coming from the

kinematic model is combined with the output of a sim-

ple lateral tire-road friction dynamic model. In this way,

hybrid model-based methods are less sensitive to tuning

than dynamic based approaches. Although hybrid mod-

els, thanks to their kinematic component, are inherently

more robust to variation in the friction coefficient, their

accuracy can be affected by changes of friction. The

introduction of friction estimation modules [26–32] im-

proves the overall robustness, beside offering an explicit

estimation of a parameter useful to vehicle dynamics con-

trol. The approach presented in [26,33] is among the most

interesting and successful ones. The feedback observer

estimates sideslip and friction together relying on a fre-

quency decoupling idea. Slow variations in vehicle lateral

dynamics feedback innovation term are assumed to reflect

changes of road friction while fast ones are due to vehicle

lateral drifts. Hence, the estimated tyre/road friction re-

quires a significant time interval to adapt to road condition

changes. This becomes a relevant limitation when abrupt

variations of road surface conditions occur. The friction

estimate slowly settles to the new value and the sideslip

estimation accuracy decreases all along this phase.

Fig. 1: Full observer structure.

This paper extends [26, 33] addressing the prob-

lem of reducing the friction adaptation time to guaran-

tee robustness also to sudden changes of the road con-

ditions. Namely, an additional slip based friction clas-

sifier is developed and combined to the hybrid adap-

tive state observer, as summarized in the full architec-

ture scheme in Figure 1. Slip-based classifiers provide

a rapid road friction estimation [34–36] monitoring the

correlation between tire slips and friction. However, a

highly-parametrized structure and extensive training on

data collected on various road conditions is necessary to

achieve accurate estimation [37]. In this solution, the

classifier aims only at promptly detecting changes in fric-

tion. Based on that, the adaptive observer friction state

variable is instantaneously reinitialized to a value closer

to the actual one. Then, the adaptive state observer con-

verges to the real value. Hence, the goal of a rapid and ac-

curate friction and sideslip estimation is achieved adding

a classifier with a relatively simple architecture.

The main contribution of our work concerns the de-

velopment, improvement and thorough experimental val-

idation of the hybrid adaptive state observer and the in-

troduction of the friction classifier. To summarize, we

introduce

1. A scheduling logic of the observer feedback gains.

Thanks to the scheduling logic, the observer makes

the most of the hybrid structure. The estimate priv-

ileges either the kinematic or dynamic models con-

tributions depending on the vehicle dynamics condi-

tion.



2. An improved road friction adaptation of the road-tire

model. The road-tire model dependency on the fric-

tion is developed to achieve more accurate character-

istics during the adaptation phase between high and

low grip conditions.

3. An additional new friction classifier. The develop-

ment and introduction of a friction classifier results

in significant reduction of the adaptation time to sud-

den changes of road conditions. The refined friction

estimation improves and makes the sideslip estima-

tion more robust.

The paper is organized as follows. Section 2 and Sec-

tion 3 deal with the two components of the estimator. The

adaptive sideslip state observer is presented in Section 2

while Section 3 reports the friction classifier design. Sec-

tion 4 presents the experimental campaign results.

2 ADAPTIVE STATE OBSERVER

Figure 1 shows that the architecture has two main

modules: the adaptive state observer and the friction clas-

sifier.

The adaptive state observer inputs comes from car stock

sensors: longitudinal and lateral barycentric accelerations

Ax, Ay and yaw rate ωz from a 3 degrees of freedom in-

ertial measurements unit (IMU), steering angle δst, wheel

speed Vwi
from encoders. The estimated outputs are the

longitudinal speed Vx, the sideslip angle β and the fric-

tion coefficient µ. Figure 2 visualizes all the involved

variables and the chosen sign conventions.

Fig. 2: Vehicle reference system: input and output vari-

ables.

Figure 3 shows the adaptive state observer general

structure. Raw measures are pre-processed through stan-

dard filtering techniques and become inputs of the estima-

tor which exploits both a kinematic and dynamic vehicle

Fig. 3: Adaptive observer structure.

model. The baseline kinematic model:

{

V̇x = −ωz · Vy +Ax

V̇y = ωz · Vx +Ay

(1)

assumes the vehicle to be a mass lumped in the Center

of Gravity (CoG) moving in the 2D plane and describes

the longitudinal and lateral speed dynamics Vx, Vy in the

vehicle reference frame. The sideslip angle is defined as

β = arctan
(

Vy

Vx

)

and can be directly obtained from a

state observer based on a second order kinematic model.

However, it is well known that estimators developed

based only on (1) tend to drift when driving straight

or during steady state cornering [14, 15]. The follow-

ing feedback state observer, by incorporating a dynamic

model, alleviates this issue:

[

˙̂
Vx

˙̂
Vy

]

=

[

0 −ωz

ωz 0

] [

V̂x

V̂y

]

+

[

Ax

Ay

]

+

+

[

Kx 0
0 Ky

] [

Ṽx − V̂x

Ay − Ây

]

˙̂µ = Kµ · (Ay − Ây)

β̂ = arctan
V̂y

V̂x

,

(2)

and is the starting point of this work contribution.

The observer has three main components: the lon-

gitudinal and lateral speed V̂x, V̂y and the friction µ̂ es-

timation. The estimation of Vx and Vy , in the first two

equations, stem from augmenting the kinematic model

with two output equations: Ṽx, Ây . As in all closed-

loop estimators, the apriori estimations are corrected by

comparing the measured outputs with the predicted ones.

Similarly, the friction estimation is corrected by compar-

ing the predicted lateral acceleration against the measured



one. The tuning and scheduling of Kx,Ky,Kµ, the gain

that determine how much one should trust the kinematic

model against the predicted lateral acceleration, will al-

low for an accurate estimation of both vehicle states and

road conditions. A detailed presentation of V̂x, V̂y, µ̂ esti-

mation components, describing their feedback terms, fol-

lows.

2.1 Longitudinal Speed Estimation

Ṽx and Kx are the two components of the longitudi-

nal estimation feedback term. Ideally, one would want to

Fig. 4: Vx estimation from wheels speed: algorithm struc-

ture.

compare the estimated longitudinal speed against a mea-

sured longitudinal velocity. Unfortunately, such direct

measurement is not available. An alternate measurement

can be constructed using the 4 wheels velocities. Due

to wheel slip occurring in case of particularly aggressive

braking or traction maneuvers, wheel velocities measures

may, in some cases, considerably differ from the vehicle

speed. Therefore, Ṽx is the result of a process that selects

and properly merges the velocity measures coming from

the non-slipping wheels to compute an initial approxima-

tion of the vehicle longitudinal speed. The algorithm con-

sists of two phases as in Figure 4. The first module com-

putes a weighted mean of the four wheel velocities:

V WM
x =

∑4

i=1
kwi

Vwi
∑4

i=1
kwi

. (3)

The mean attributes low weighting coefficients kwi
to the

wheels more likely to be slipping. One of the factors that

impact wheel slip is load distribution: the lower the load,

the more easily the wheel will slip. First the algorithm

computes the direction of load transfer by considering

the vehicle acceleration. Subsequently, all whees that are

within an angular deviation of [γ−, γ+] of the load trans-

fer vector are given kwi
= 1; all others, kwi

= 0 . Figure

5 exemplifies a braking maneuver, the load moves to the

front, and, the front wheels fall into the confidence range

(kwFR,FL
= 1) while the rear ones do not (kwRL,RR

= 0).

The second module further elaborates the wheels speed

Fig. 5: V WM
x wheel speed weighted mean: load based

weighting coefficient kwi
during braking maneuver on

straight.

Vwi
and the weighted mean V WM

x to provide the final

outcome Ṽx. The procedure consists of two steps:

1. Step 1: the algorithm identifies and discards out-

liers among input quantities. It sorts the five sig-

nals Vwi
, V WM

x in ascending order, takes the first

and third quantiles (Q1, Q3) and calculates the inter-

quantile range IQR = Q3 − Q1. As in Figure 6,

velocities outside the range [Q1 − 1.5IQR,Q3 +
1.5IQR] are considered outliers and discarded. The

scale of 1.5 is commonly used starting point for out-

lier detections and works well also in this application.

Fig. 6: Ṽx outliers identification.

2. Step 2: Ṽx is the result of a min-max logic similar to

the [38] one and is here summarized to the readers’

benefit:

Ṽx =

{

Vmin, Ax ≥ 0

Vmax, Ax < 0.
(4)



When the car is accelerating (Ax > 0) the wheels

are likely to slip positively (i.e. wheels speed greater

than vehicle one) and the minimum velocity (Vmin)

is more reliable. On the other hand, when the car is

braking (Ax < 0), wheels longitudinal slip is nega-

tive (i.e. wheel speed lower than vehicle one) and the

maximum speed (Vmax) is closer to the actual vehi-

cle speed Vx.

The second longitudinal feedback component is the

feedback gain Kx. It weighs the contribution of the kine-

matic model compared to the innovation terms. A higher

Kx privileges the information of the feedback signals Ṽx

while lower Kx forces the estimate to be closer to the

integral of the kinematic model states. Ṽx is computed

using mainly the wheel velocities, when all four wheels

are subject to considerable slip, its accuracy decreases.

Hence, a scheduling logic is designed to have the most

proper feedback gain values depending on the conditions.

Kx takes a higher value (Kxmax
) when Ṽx is more reli-

able and a lower one (Kxmin
) in opposite circumstances.

The reliability of Ṽx is estimated monitoring the differ-

ence between longitudinal acceleration from the IMU and

the derivative of the wheel speed:

∆Ax
=

4
∑

i=1

∣

∣

∣

∣

d

dt
Vi −Ax

∣

∣

∣

∣

. (5)

If ∆Ax
is greater than a defined threshold (∆̄Ax

) the

wheels are likely to be slipping and this a lower feedback

gain is employed:

Kx =

{

Kxmin
, ∆Ax

≥ ∆̄Ax

Kxmax
, ∆Ax

< ∆̄Ax
.

(6)

2.2 Lateral Speed Estimation

The lateral speed feedback term consists of the dif-

ference between the measured lateral acceleration Ay and

the predicted, based on the current state estimates, lat-

eral acceleration Ây(V̂x, V̂y, µ̂) multiplied by the feed-

back gain Ky .

Ây comes from a dynamic model where the wheels

at each axle are lumped together as in Figure 7. Under

the assumption of steady state turns (i.e. ω̇z = 0) and ne-

glecting vertical dynamics and longitudinal-lateral forces

coupling, the lateral forces balance at the vehicle center

of gravity yields:

Ây =
FyF

cos δf + FyR

m
(7)

Fig. 7: Dynamic bicycle model.

where m is the vehicle mass, δf is the wheel steering an-

gle and FyF
, FyR

are the road-tires lateral forces. The lat-

eral forces model relies on the estimated V̂x and V̂y so that

it imposes the feedback on the observer lateral dynamic

equations. Moreover, it is designed to be dependent on

the online estimated friction µ̂. FyF
, FyR

are functions of

the wheels slip angles αF,R (i.e. the angles between the

wheel speed and its longitudinal axis):

FyF,R
=

CrF,R
(µ̂)

kF,R(µ̂)
· tanh(kF,R(µ̂) · αF,R) (8)

where αF,R depends on V̂x, β̂ through:

αF = δf − β̂ − Lf

ωz

V̂x

cosβ̂

αR = −β̂ − Lr

ωz

V̂x

cosβ̂

(9)

with Lf , Lr being the distances from the axle CoG. Note

that two friction dependent parameters (Cr(µ̂), k(µ̂)) de-

fine the FyF,R
characteristics. This strategy improves the

one in [26] where µ̂ linearly scales a nominal characteris-

tic of a dry road surface.

The proposed method consists in identifying the

road-tire characteristics of two reference road surfaces

with a high (µhigh) and a low (µlow) friction from exper-

imental data and to scale Cr(µ̂), k(µ̂) accordingly. The

tire model coefficients will correspond to the ones identi-

fied on high grip surface when the estimated friction µ̂ is

equal to µhigh and to the low friction ones if µ̂ = µlow.

The algorithm gets Cr(µ̂), k(µ̂) through linear interpola-

tion if µlow < µ̂ < µhigh, and it extrapolates them if

µ̂ > µhigh or µ̂ < µlow:

CrF,R
= aCF,R

· µ̂+ bCF,R

kF,R = akF,R
· µ̂+ bkF,R

.
(10)



Fig. 8: State of the art: only Cf,r is friction dependent

(left). New model (8): both Cf,r and kf,r are friction

dependent (right)

The parameters aCF,R
, bCF,R

, akF,R
, bkF,R

define the lin-

ear Cr(µ̂), k(µ̂) dependency. Figure 8 compares the fric-

tion sensitivity analysis of two road-tire forces models.

Figure 8, on the left, shows the state of the art approach

where µ̂ linearly scales the FyF,R
characteristic while the

right plot presents the proposed approach with µ̂ depen-

dent Cr(µ̂), k(µ̂). The dashed dark and light blue lines

are the reference characteristics identified on dry and

snow surfaces while the continuous lines are the model

output for different µ̂ values. One can see that:

1. When µ̂ = 1, both models correspond to the refer-

ence dry road characteristic (dashed dark blue).

2. When µ̂ = 0.3, the proposed model overlaps the

snow reference (dashed light blue) while the output

of the state of the art is different. The snow character-

istic reaches its maximum for lower value of wheel

slip angle (α ≅ 1 deg) with respect to the dry one

(αF,R ≅ 6 deg). The red arrow in Figure ?? shows

that the state of the art method keeps such αF,R value

constant for every µ̂. In Figure ??, on the contrary,

variable Cr(µ̂), k(µ̂) adapts the maximum FyF,R
po-

sition (red arrow). This avoids modeling inaccura-

cies especially in case of surfaces with extremely low

grip.

The feedback gain Ky is the product of three quantities:

Ky = ξ(V̂x, V̂y) ·∆(V̂x, V̂y) · ky. (11)

ξ(V̂x, V̂y) and ∆(V̂x, V̂y) are defined as in [26].

ξ(V̂x, V̂y) is an approximation of the slope between

(V̂y, Â
∗

y(V̂x, V̂y)) and (V̂y, Â
∗

y(V̂x, Vy)) where Â∗

y is the

lateral acceleration estimation coming from the dynam-

ical model considering a constant nominal road friction

(µ = 1). ∆(V̂x, V̂y) is a mere scaling factor.

Recall that model (7) assumes steady state corner-

ing. Its accuracy may degrade when the vehicle lateral

dynamic is excited. To account for this variable accuracy,

ky switches between two tuning parameters kymax
, kymin

depending on the kinematic sideslip rate quantity β̇:

ky =

{

kymin
, β̇ ≥

¯̇
β

kymax
, β̇ <

¯̇
β.

(12)

The parameter takes a higher value (kymax
) when the tire

model is more reliable and a lower one (kymin
) when

the vehicle lateral dynamic is more excited and the inte-

gration of the kinematic model state variables derivatives

should not suffer drifting issues. The ky switching con-

dition depends on the kinematic sideslip rate quantity β̇:

the higher β̇, the more excited the lateral dynamic is. β̇

can be approximated as:

β̇ =
Ay − ωzV̂x

V̂x

(13)

and directly calculated from available measures without

numerical differentiation. Such scheduled feedback gain

approach represents an innovation with respect to [26]

which considers a constant ky . Since ky takes the best

value depending on the lateral dynamic excitation and is

no more a constant intermediate value, it fully exploits the

hybrid nature of the observer.

2.3 Friction Estimation

The friction estimation algorithm modifies the ap-

proach presented in [26] and it consists of two different

laws in case of high or low excited vehicle lateral dy-

namic:

˙̂µ =

{

Kµ · (Ay − Ây), β̇ ≥ ¯̇
βµ and ωz ≥ ω̄z

K̄µ · (µ̄− µ̂), β̇ <
¯̇
βµ or ωz < ω̄z,

(14)

where:

Kµ = kµ · Â∗

y ·∆(V̂x, V̂y) (15)

In the first case, the innovation term is the same of the lat-

eral dynamic equation. However, the lateral speed V̂y dy-

namic is generally faster than the friction coefficient one



and the frequency decoupling can be enforced correctly

tuning the feedback gain kµ. In this way, slow trends of

Ay − Ây are attributed to friction variation and fast ones

to V̂y . The remaining terms Â∗

y and ∆ are the same of the

˙̂
Vy dynamic equation.

In the second case, the vehicle lateral dynamic is not

sufficiently excited (e.g. straight driving, slow turns) and

the road surface friction variations do not impact the car

behavior, specifically, its lateral acceleration. Therefore,

µ̂ slowly tends to a default friction value (µ̄) where K̄µ is

a tuning parameter defining the attraction speed to µ̄.

The switching law between excited and non excited

lateral dynamic conditions is based on β̇ and the yaw

rate ωz . If both these quantities are greater than specific

thresholds (
¯̇
βµ, ω̄z) the lateral dynamic is sufficiently ex-

cited.

2.4 Tuning Parameters

To conclude the adaptive observer architecture pre-

sentation, the set of tuning parameters P is here summa-

rized. They are classified in:

1. dynamical model parameters Pd:

(aCF,R
, bCF,R

, akF,R
, bkF,R

) to parametrize the

friction dependence;

2. longitudinal speed estimate Ṽx parameters Pv:

two (γ−, γ+) to implement the longitudinal speed

from wheel speed algorithm;

3. longitudinal dynamic feedback parameters Px: feed-

back gains (Kxmin
,Kxmax

) and the switching

threshold on the longitudinal acceleration (∆̄Ax
);

4. lateral dynamic feedback parameters Py: feedback

gains (kymin
, kymax

) and the switching threshold (
¯̇
β);

5. friction feedback parameters Pµ: feedback gains

(kµ, K̄µ) and switching thresholds (
¯̇
βµ, ω̄z) .

We tune the observer in two phases. In the first phase,

starting from data collected on different road surfaces (D̃)

on an instrumented vehicle, we isolate the steady state

maneuvers and identify the tire characteristics in (10)

through static curve fitting. The second phase is instead

dynamic and consists in finding the remaining parameters

that minimize the following cost function:

Jβ(P) =
∥

∥

∥
β̂(tβ)− β(tβ)

∥

∥

∥

2

2

(16)

where tβ are the time instants for which the following

conditions apply: (1) Longitudinal velocity is higher than

20 [km/h]). (2) The absolute value of measured sideslip

β(t) is contained in a fixed region of interest (i.e. 2 <

Parameter Value Paramer Value

aCF
-44 aCR

-46

bCF
57 bCR

79

γ− 35 [deg] γ+ 35 [deg]

Kxmin
0.2 Kxmax

5

kymin
0.3 kymax

10

kµ 0.007 K̄µ 0.08

¯̇
βµ 7 [deg] ω̄z 5 [deg/s]

¯̇
β 0.3 [deg/s]

Table 1: Tuning parameters.

|β(tβ)| < 12 [deg]). In this way, we privilege accuracy in

the range that is relevant to vehicle dynamics control al-

gorithms [39]. The optimization is run on simulated data,

using a numerical gradient descent method. Table 1 sum-

marizes the parameters used in this work.

3 TYRE/ROAD FRICTION CLASSIFIER

The adaptive state observer module main limitation

regards the adaptation to tyre/road friction changes. Ac-

cording to the frequency separation idea, it exploits only

slow variations of lateral dynamic innovation term to es-

timate the friction. Hence, the transient of µ̂ to the new

friction value is not always rapid. To improve this, the ar-

chitecture includes a tire friction classifier. This module

promptly detects road condition changes so that the adap-

tive observer friction estimate is reinitialized to a value

closer to the real one and the adaptive observer will just

have to refine the estimation. In particular, a classification

between high and low friction suffices to significantly re-

duce the duration of the adaptation phase to friction varia-

tions and to improve the sideslip estimation performance.

As in Figure (9), the classifier input signals are the ve-

hicle acceleration (Ax, Ay, Az), the steering angle (δf ),

the wheels speed (Vwi
) and the four wheels traction and

braking torques (Teni
, Tbri). Note that, given the 4WD

electric vehicle application considered, the assumption of

known Teni
, Tbri is reasonable. The output signal µ̄ is a

boolean which, at every time instant, becomes µ̄ = 1 if a

low to high friction change is detected and µ̄ = 0 when

the friction varies from high to low condition. It keeps its

last value if no friction variation is detected. Under the as-

sumption of longitudinal and lateral vehicle dynamics de-

coupling, two independent classifiers run in parallel and



Fig. 9: Friction classifier structure.

follow the same rationale exploiting the road-tire charac-

teristics. The longitudinal dynamic one is based on the

Fig. 10: Longitudinal and lateral friction classification

maps.

relation between longitudinal slip λ and the longitudinal

instantaneous friction coefficient µx(t). λ is defined as:

λi =
Vwi

− V̂x

max(Vwi
, V̂x)

(17)

where Vwi
and V̂x are the vehicle longitudinal speed esti-

mate while:

µx(t) =
Fx

Fz

. (18)

Fx and Fz are estimates of the longitudinal and vertical

forces. For clarity’s sake, we now assume these quantities

known; postponing the details on their computation to a

later paragraph. The left picture of Figure 10 visualizes

the classification logic. The map consists of three regions:

high grip (red), low grip (blue) and non-defined (white).

At each time instant, the algorithm makes a check, if

(λ(t), µx(t)) belongs to the red region and µ̄ = 0, a low

to high friction classification happens. If (λ(t), µx(t))
falls in the blue region and µ̄ = 1, a high to low friction

classification arises. In all other cases, no friction change

is identified and µ̄ keeps its last value. In particular, if

(λ(t), µx(t)) is in the white region µ̄ remains always un-

changed. The classification procedure is repeated for the

four wheels. Note that the method can accomodate for

any parametrization of the friction characteristic. In this

case, we used a Burkhardt [40] parametrization. The hori-

zontal and vertical dashed green lines are further limits on

λ and µx. The white area helps to avoid misclassification.

Measurement and estimation noises affect both λ(t) and

µx(t); in case of intermediate µx(t) values or low λ(t),
this can cause wrong classification. To solve this issue the

classifier does not switch when λ(t), µx(t) belong to the

white region.

The lateral dynamic classifier relies on the relation

between wheel slip angle α and the instantaneous lateral

friction coefficient µy(t). αF,R are defined by (9) while,

exploiting the estimated Fy, Fz :

µy(t) =
Fy

Fz

. (19)

The classification logic can be visualized through the

right plot of Figure 10 and shares the same reasoning of

the longitudinal dynamic classifier. At each time instant,

a road friction change is identified depending on the (α,

µy(t)) location in the corresponding map. The procedure

is repeated for the front and rear axles. Worthy to note

that the lateral low and high friction (α, µy(t)) character-

istics consider the same model (8) of the adaptive state

observer.

While one can apply (17) and (9) to calculate λ, α

using the adaptive observer estimate β̂, V̂x, the estimation

of the road tire forces Fx, Fy, Fz needed by (18), (19)

calls for another estimator.

What follows shows that a relative simple model-

based estimation of the forces suffices. Fz(i) comes from

the distribution of the full load of the vehicle considering

both the car geometry (static load distribution) and the

vehicle dynamics effects:

Fzi = k1img + k2imAx + k3imAy. (20)

where m, g are the vehicle mass and gravity accelera-

tions, Ax, Ay the accelerations at the center of gravity



and k1i , k2i , k3i are constant coefficients depending on

car geometry.

Fx(i) is achieved through a single corner model. As-

suming to know the braking and traction torques (Tbr,

Ten) at the wheel, Fx(i) comes from the following torque

balance:

Fxi
=

Teni
− Tbri − J · ω̇i

Ri

. (21)

Finally, Fy results from a steady-state bicycle model

whose lateral force balance yields:

Fy = m · Ay = FyF
+ FyR

FyF
=

Lr

Lf + Lr

mAy

FyR
=

Lf

Lf + Lr

mAy.

(22)

4 EXPERIMENTAL RESULTS

An experimental campaign on a 4-wheel-drive full

electric vehicle thoroughly validates the proposed ob-

server. We performed all experiments on a prototype

Sport Utility Vehicle, with a mass of 2590 kg, a wheel

base of 2.87 m, a track width of 1.654 m and center of

gravity height of around 0.56 m. The observers inputs

signals are:

1. accelerations Ax, Ay and yaw rate ωz from a three

degrees of freedom IMU,

2. wheel steering angle δf and wheel speeds Vwi
from

encoders,

3. braking and traction torques Tbr, Ten for the four

wheels. Note that the vehicle is equipped with four

independent electric motors and thus Tbr, Ten are

known.

A set of additional sensors provides reference signals to

evaluate the estimation:

1. an optical sensor directly measures the sideslip β and

longitudinal speed Vx,

2. a high precision GPS gets the vehicle position on the

track. Since the track consists of both high and low

grip areas, a precise knowledge of the vehicle loca-

tion provides the actual road friction at every time

instant.

The analysis consists of two parts: the first one ex-

amines the adaptive state observer performance on high

and low grip conditions; the second one focuses on the

improvements achieved thanks to the friction classifier in

case of road conditions variations. In particular, the vali-

dation analysis investigates abrupt friction variations tests

(i.e. µ jump) where the vehicle consecutively crosses low

and high friction surfaces while performing aggressive

maneuvers. Such validation assesses the relevance of the

algorithm innovations in terms of rapid friction changes

detection and sideslip estimation and, to the best of the

authors knowledge, is extremely rare in the scientific lit-

erature.

4.1 Adaptive Observer Validation

Fig. 11: Longitudinal speed Vx, sideslip angle β and fric-

tion µ estimation results on dry asphalt road, estimated at

1 using offline methods.

Figure 11 presents a double lane change maneuver on

dry asphalt. The adaptive observer friction is initialized at

its actual value µ̂ = 1. The three estimates V̂x, β̂, µ̂ from

the observer (light blue) almost coincide with the real

Vx, β, µ measures (dotted dark blue). Even if small, the

observer accurately estimates the sideslip angle β̂ while

the friction parameter correctly keeps µ̂ = 1. Figure 12

reports a small section of a handling test on snow, where

the higher longitudinal wheels slip caused by the low grip

surface makes the estimation more challenging. Note the



Fig. 12: Longitudinal speed Vx, sideslip angle β and fric-

tion µ estimation results on snow, estimated at 0.3 using

offline methods.

aggressive change in the steering angle at around 5 sec-

onds, performed to stabilize the vehicle. µ̂ is initialized

to the low friction reference µ̂ = 0.3. The observer cor-

rectly tracks both the sideslip angle and the longitudinal

speed even in the [10, 20] s interval when the wheels are

slipping. The friction parameter fluctuates around its real

value.

4.2 Full Observer Validation: Road Friction

Changes Tests

Once the adaptive observer performance is verified

for different tyre/road frictions, the following tests ad-

dress the road conditions variation issue. Figure 13 shows

the benefits of the full estimation algorithm including the

classifier compared to the pure adaptive state observer.

The test contains both aggressive maneuvers and quasi-

static ones. The plots compare Vx, β, µ estimates from

the full algorithm (light blue) and the one from the pure

adaptive observer (red) to the real measures (dotted dark

blue) in addition to the steering angle and yaw rate. Both

observers are initialized on dry asphalt, µ̂ = 1 but at the

beginning of the test a road change from dry to wet as-

phalt happens. One can see that:

1. The full algorithm µ̂ (light blue) immediately jumps

Fig. 13: Adaptation to road friction change: comparison

between adaptive state observer module only and full ob-

server architecture.

to the low grip reference thanks to the prompt classi-

fication and then settles to the actual road value.

2. The adaptive state observer without µ̂ re-

initialization (red) gradually moves from µ̂ = 1 to

the final value.

3. The adaptation phase lasts in both cases around 10
s. However, thanks to the classifier, µ̂ is immediately

closer to the actual friction and the sideslip estima-

tion accuracy during the transient clearly improves.

At 5 s the adaptive observer without classifier (red)

β̂ reaches its maximum estimation error of approxi-

mately β̂err = 4.5 deg while the full observer (light

blue) is always reliable and its maximum error is

much lower, β̂err = 0.5 deg at 8.5 s. Note that dur-

ing this adaptation phase, both observers adapt the

friction estimation. The adaptive observer lowers the

estimation, while the version with the classifier in-

creases it. As a matter of fact, the low friction ini-

tialization underestimates the actual friction. The re-

initialization modifies the estimated value more than

the proposed approach, as the innovation (the differ-

ence between the predicted lateral acceleration and

the measured one) is larger.



µ: low → high µ: high → low µ

µ̂: low → high 94% 2%

µ̂: high → low 2% 80%

no detection 4% 18%

Table 2: Friction change confusion matrix.

low  area boundary test path

Fig. 14: Consecutive friction changes test: high-low fric-

tion areas boundary and vehicle trajectory.

The last experiment specifically validates the friction

classifier. The proving ground consists of a low grip area

(µ = 0.4) surrounded by a high grip one (µ = 1). The

driver consecutively crosses the boundary between the

two regions to change the road tire friction conditions.

Figure 14 shows the map of the testing area with the

low friction area boundaries (blue) and the vehicle path

(dashed black). During the 10min test, the vehicle experi-

enced around 60 friction changes. The classifier correctly

recognizes 52 out of 60 changes (87%). Table 2 summa-

rizes the statistics breakdown. The statistics consider

a friction change as detected if the state of the observer

switches to the correct state before the vehicle leaves that

area. The algorithm wrongly classifies a change of fric-

tion only in 2% of the instances. Note that the no detec-

tion statistics account for all cases in which the vehicle

leaves the area before an adequate level of excitation is

reached, which does not pose any problem from the side

slip angle estimation perspective as the side slip angle is

small in those cases.

Figure 15 plots a section of this test and compares

the V̂x, β̂, µ̂ estimation of full algorithm (light blue) and

pure adaptive observer (red) to the measured references

(dotted dark blue) it appears that:

Fig. 15: Consecutive friction changes test: estimation re-

sults.

1. only exploiting the classifier, µ̂ correctly tracks the

reference. The µ̂ from the pure adaptive observer

(red) is not responsive enough to friction changes and

almost keeps the value corresponding to dry asphalt.

The full observer µ̂ estimate (light blue) switches and

tracks the friction variations.

2. The sideslip β̂ from the full observer (light blue) are

close to the reference during both high and low fric-

tion intervals.

3. The pure adaptive observer estimate (red) is accurate

only on dry road when µ̂ is correctly estimated and

presents estimation errors up to 3 deg on wet terrain.

As a further confirmation of the full observer struc-

ture advantages, Figure 16 reports the cumulative error

plot (i.e. the probability to be below a certain β̂ estima-

tion error) along with the 99% quantiles. The cumulative

error achieved by an adaptive observer run under the as-

sumption of a perfect knowledge of the road friction (dot-

ted dark blue) is the benchmark to evaluate the full (light

blue) and pure adaptive observer (red) architectures. It

results that:

1. the performance of the full algorithm (light blue) al-

most corresponds to the reference one (dotted dark

blue). The β̂ estimation error is lower than 1.5 deg



Fig. 16: Consecutive friction changes test: sideslip esti-

mation cumulative error plot.

99% of the times (dashed light blue vertical line).

2. the pure adaptive observer (red) is less accurate and

its 99% β̂ estimation error quantile is around 2.7 deg

(dashed red vertical line), 1.2 deg greater than the full

observer one.

Fig. 17: Consecutive friction changes test: rapid friction

change detection Tc = 0.4 s.

This type of validation, which is not common in sci-

entific literature due to the complexity of the required

experimental set up, offers the chance to investigate the

average time needed to recognize the changes in road

friction. The average classification time results to be

T̄c = 2.1 s with a standard deviation of δTc
= 1.6 s. The

large standard deviation with respect to the average time

is due to the fact that the classifier detects friction changes

only when either the vehicle longitudinal or the lateral dy-

namics are sufficiently excited. Therefore, Tc varies de-

pending on the vehicle behavior after the friction change.

Figures 17 and 18 exemplify two opposite situations af-

ter a low to high friction change. The upper sub-plot of

both figures show the real (dark blue) and estimated (light

blue) µ estimate; the intermediate and bottom sub-plots

show the four wheels estimated longitudinal slip λ and

the front and rear slip angles αF,R which provide infor-

mation about how the maneuvers excite longitudinal and

lateral dynamics.

real

estimate

Fig. 18: Consecutive friction changes test: late friction

change detection Tc = 2.3 s.

Figure 17 refers to a test where an aggressive maneu-

ver (i.e. high λ, α) follows the road friction change at

1.45 s. The classifier immediately reacts and the µ̂ (light

blue) jumps to the real value (dark blue) with Tc = 0.4 s.

In Figure 18 a friction change occurs at 1.45 s but neither

λi or αF,R start to increase before 2.2 s. Hence, the clas-

sification happens only at 3.5 s with Tc = 2.3 s. Note

that there is no need of rapid µ estimation when vehicle

dynamics are not particularly excited since vehicle con-

trol systems exploit friction information only when ag-

gressive maneuvers (e.g. emergency maneuvers) must be

performed.

In Figure 19, the data from the described µ jump test

fill the classifier switching map of Figure 10. The esti-

mated λ − µx and α − µy are orange when the vehicle

is on high grip and light blue if on low grip. Figure 19

illustrates how estimating µ becomes difficult in low λ, α

conditions. λ−µx and α−µy boundaries of the two road

surfaces (red, blue) are extremely close to one another.

Hence, measurement noises and small estimation inaccu-

racies make the classification almost impossible. In this

experiment, a clear differentiation between low and high

grip data (orange and light blue) is visible only for α > 3



Fig. 19: Consecutive friction changes test: experimental

data friction classifier maps.

deg and λ > 0.05.

5 CONCLUSIONS

This paper proposes a sideslip and friction estimation

approach that combines a friction classifier based on road

tire longitudinal and lateral characteristics to a sideslip

state observer. The former rapidly detects road friction

changes monitoring both longitudinal and lateral vehicle

dynamics. The latter, based on both vehicle kinematic and

dynamic models, provides accurate longitudinal speed,

sideslip and refines the friction estimation.

The main goal of the algorithm is to improve sideslip

and friction estimation during the adaptation phase fol-

lowing sudden road surface variations. As proved by an

extensive experimental validation on a 4WD electric ve-

hicle on different road surfaces, the settling time and the

sideslip estimation error are significantly lowered.
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