10,418 research outputs found

    A numerical model for multigroup radiation hydrodynamics

    Full text link
    We present in this paper a multigroup model for radiation hydrodynamics to account for variations of the gas opacity as a function of frequency. The entropy closure model (M1) is applied to multigroup radiation transfer in a radiation hydrodynamics code. In difference from the previous grey model, we are able to reproduce the crucial effects of frequency-variable gas opacities, a situation omnipresent in physics and astrophysics. We also account for the energy exchange between neighbouring groups which is important in flows with strong velocity divergence. These terms were computed using a finite volume method in the frequency domain. The radiative transfer aspect of the method was first tested separately for global consistency (reversion to grey model) and against a well established kinetic model through Marshak wave tests with frequency dependent opacities. Very good agreement between the multigroup M1 and kinetic models was observed in all tests. The successful coupling of the multigroup radiative transfer to the hydrodynamics was then confirmed through a second series of tests. Finally, the model was linked to a database of opacities for a Xe gas in order to simulate realistic multigroup radiative shocks in Xe. The differences with the previous grey models are discussed.Comment: 27 pages, 11 figures, Accepted for publication in JQSR

    Fluctuating volume-current formulation of electromagnetic fluctuations in inhomogeneous media: incandecence and luminescence in arbitrary geometries

    Get PDF
    We describe a fluctuating volume--current formulation of electromagnetic fluctuations that extends our recent work on heat exchange and Casimir interactions between arbitrarily shaped homogeneous bodies [Phys. Rev. B. 88, 054305] to situations involving incandescence and luminescence problems, including thermal radiation, heat transfer, Casimir forces, spontaneous emission, fluorescence, and Raman scattering, in inhomogeneous media. Unlike previous scattering formulations based on field and/or surface unknowns, our work exploits powerful techniques from the volume--integral equation (VIE) method, in which electromagnetic scattering is described in terms of volumetric, current unknowns throughout the bodies. The resulting trace formulas (boxed equations) involve products of well-studied VIE matrices and describe power and momentum transfer between objects with spatially varying material properties and fluctuation characteristics. We demonstrate that thanks to the low-rank properties of the associatedmatrices, these formulas are susceptible to fast-trace computations based on iterative methods, making practical calculations tractable. We apply our techniques to study thermal radiation, heat transfer, and fluorescence in complicated geometries, checking our method against established techniques best suited for homogeneous bodies as well as applying it to obtain predictions of radiation from complex bodies with spatially varying permittivities and/or temperature profiles

    Energy transfer by the scattering of resonant photons

    Full text link
    A formal derivation is presented of the energy transfer rate between radiation and matter due to the scattering of an isotropic distribution of resonant photons. The derivation is developed in the context of the two-level atom in the absence of collisions and radiative transitions to and from the continuum, but includes the full angle-averaged redistribution function for photon scattering. The result is compared with previous derivations, all of which have been based on the Fokker-Planck approximation to the radiative transfer equation. A new Fokker-Planck approximation, including an extension to higher (post-diffusive) orders, is derived to solve the radiative transfer equation, and time-dependent numerical solutions are found. The relaxation of the colour temperature to the matter temperature is computed as the radiation field approaches statistical equilibrium through scattering. The results are discussed in the context of the Wouthuysen-Field mechanism for coupling the 21cm spin temperature of neutral hydrogen to the kinetic temperature of the gas through LyA scattering. The evolution of the heating rate is also computed, and shown to diminish as the gas approaches statistical equilibrium.Comment: 13 pages, 4 figures. Submitted to MNRAS. RT eq. simplified to generalise results including stimulated emissio

    Model atmospheres of sub-stellar mass objects

    Full text link
    We present an outline of basic assumptions and governing structural equations describing atmospheres of substellar mass objects, in particular the extrasolar giant planets and brown dwarfs. Although most of the presentation of the physical and numerical background is generic, details of the implementation pertain mostly to the code CoolTlusty. We also present a review of numerical approaches and computer codes devised to solve the structural equations, and make a critical evaluation of their efficiency and accuracy.Comment: 31 pages, 10 figure

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Sagittarius A* Accretion Flow and Black Hole Parameters from General Relativistic Dynamical and Polarized Radiative Modeling

    Full text link
    We obtain estimates of Sgr A* accretion flow and black hole parameters by fitting polarized sub-mm observations with spectra computed using three-dimensional (3D) general relativistic (GR) magnetohydrodynamical (MHD) (GRMHD) simulations. Observations are compiled from averages over many epochs from reports in 29 papers for estimating the mean fluxes Fnu, linear polarization (LP) fractions, circular polarization (CP) fractions, and electric vector position angles (EVPAs). GRMHD simulations are computed with dimensionless spins a_*=0,0.5,0.7,0.9,0.98 over a 20,000M time interval. We perform fully self-consistent GR polarized radiative transfer using our new code to explore the effects of spin a_*, inclination angle \theta, position angle (PA), accretion rate Mdot, and electron temperature Te (Te is reported for radius 6M). By fitting the mean sub-mm fluxes and LP/CP fractions, we obtain estimates for these model parameters and determine the physical effects that could produce polarization signatures. Our best bet model has a_*=0.5, \theta=75deg, PA=115deg, Mdot=4.6*10^{-8}M_Sun/year, and Te=3.1*10^10K at 6M. The sub-mm CP is mainly produced by Faraday conversion as modified by Faraday rotation, and the emission region size at 230GHz is consistent with the VLBI size of 37microas. Across all spins, model parameters are in the ranges \theta=42deg-75deg, Mdot=(1.4-7.0)*10^{-8}M_Sun/year, and Te=(3-4)*10^10K. Polarization is found both to help differentiate models and to introduce new observational constraints on the effects of the magnetic field that might not be fit by accretion models so-far considered.Comment: 19 pages, 11 figures, accepted to Ap

    Radiative efficiency and thermal spectrum of accretion onto Schwarzschild black holes

    Full text link
    Recent general relativistic magneto-hydrodynamic (MHD) simulations of accretion onto black holes have shown that, contrary to the basic assumptions of the Novikov-Thorne model, there can be substantial magnetic stress throughout the plunging region. Additional dissipation and radiation can therefore be expected. We use data from a particularly well-resolved simulation of accretion onto a non-spinning black hole to compute both the radiative efficiency of such a flow and its spectrum if all emitted light is radiated with a thermal spectrum whose temperature matches the local effective temperature. This disk is geometrically thin enough (H/r ~= 0.06) that little heat is retained in the flow. In terms of light reaching infinity (i.e., after allowance for all relativistic effects and for photon capture by the black hole), we find that the radiative efficiency is at least ~=6-10% greater than predicted by the Novikov-Thorne model (complete radiation of all heat might yield another ~6%). We also find that the spectrum more closely resembles the Novikov-Thorne prediction for a/M ~= 0.2--0.3 than for the correct value, a/M=0. As a result, if the spin of a non-spinning black hole is inferred by model-fitting to a Novikov-Thorne model with known black hole mass, distance, and inclination, the inferred a/M is too large by ~= 0.2--0.3.Comment: Submitted to ApJ, 26 pages, 12 figures (some in color), AASTE

    THOR 2.0: Major Improvements to the Open-Source General Circulation Model

    Get PDF
    THOR is the first open-source general circulation model (GCM) developed from scratch to study the atmospheres and climates of exoplanets, free from Earth- or Solar System-centric tunings. It solves the general non-hydrostatic Euler equations (instead of the primitive equations) on a sphere using the icosahedral grid. In the current study, we report major upgrades to THOR, building upon the work of Mendon\c{c}a et al. (2016). First, while the Horizontally Explicit Vertically Implicit (HEVI) integration scheme is the same as that described in Mendon\c{c}a et al. (2016), we provide a clearer description of the scheme and improved its implementation in the code. The differences in implementation between the hydrostatic shallow (HSS), quasi-hydrostatic deep (QHD) and non-hydrostatic deep (NHD) treatments are fully detailed. Second, standard physics modules are added: two-stream, double-gray radiative transfer and dry convective adjustment. Third, THOR is tested on additional benchmarks: tidally-locked Earth, deep hot Jupiter, acoustic wave, and gravity wave. Fourth, we report that differences between the hydrostatic and non-hydrostatic simulations are negligible in the Earth case, but pronounced in the hot Jupiter case. Finally, the effects of the so-called "sponge layer", a form of drag implemented in most GCMs to provide numerical stability, are examined. Overall, these upgrades have improved the flexibility, user-friendliness, and stability of THOR.Comment: 57 pages, 31 figures, revised, accepted for publication in ApJ
    corecore