
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
5
3
1
4
6
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
8
.
6
.
2
0
2
1

THOR 2.0: Major Improvements to the Open-source General Circulation Model

Russell Deitrick1 , João M. Mendonça2 , Urs Schroffenegger1, Simon L. Grimm1 , Shang-Min Tsai3 , and Kevin Heng1
1 Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, CH-3012, Bern, Switzerland; russell.deitrick@csh.unibe.ch

2 Astrophysics and Atmospheric Physics, National Space Institute, Technical University of Denmark, Elektrovej, DK-2800, Kgs. Lyngby, Denmark
3 Atmospheric, Ocean, and Planetary Physics, Department of Physics, University of Oxford, OX1 3PU, UK

Received 2019 November 28; revised 2020 May 12; accepted 2020 May 12; published 2020 June 10

Abstract

THOR is the first open-source general circulation model (GCM) developed from scratch to study the atmospheres
and climates of exoplanets, free from Earth- or solar-system-centric tunings. It solves the general nonhydrostatic
Euler equations (instead of the primitive equations) on a sphere using the icosahedral grid. In the current study, we
report major upgrades to THOR, building on the work of Mendonça et al. First, while the horizontally explicit and
vertically implicit integration scheme is the same as that described in Mendonça et al., we provide a clearer
description of the scheme and improve its implementation in the code. The differences in implementation between
the hydrostatic shallow, quasi-hydrostatic deep, and nonhydrostatic deep treatments are fully detailed. Second,
standard physics modules are added: two-stream, double-gray radiative transfer and dry convective adjustment.
Third, THOR is tested on additional benchmarks: tidally locked Earth, deep hot Jupiter, acoustic wave, and gravity
wave. Fourth, we report that differences between the hydrostatic and nonhydrostatic simulations are negligible in
the Earth case but pronounced in the hot Jupiter case. Finally, the effects of the so-called “sponge layer,” a form of
drag implemented in most GCMs to provide numerical stability, are examined. Overall, these upgrades have
improved the flexibility, user-friendliness, and stability of THOR.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Exoplanets (498); Hot Jupiters (753);
Extrasolar rocky planets (511); Astronomy software (1855); Atmospheric circulation (112); Open source software
(1866); GPU computing (1969)

1. Introduction

1.1. The Atmospheric Circulation of Exoplanets

With new technology and data analysis techniques, we are
entering an era in which 3D models of exoplanet atmospheres
can be tested and validated. As observations improve, it will be
important to test a variety of models, all of which make various
assumptions in their representations of physical processes, to
create the most accurate interpretations of the data.

Numerous theoretical and computational studies have shown
that hot Jupiters have large day/night temperature contrasts and
equatorial superrotation (Showman & Guillot 2002; Cooper &
Showman 2005; Dobbs-Dixon & Lin 2008; Showman et al. 2009;
Dobbs-Dixon et al. 2010; Rauscher & Menou 2010, 2012; Heng
et al. 2011a, 2011b; Dobbs-Dixon & Agol 2013; Perez-Becker &
Showman 2013; Kataria et al. 2015; Amundsen et al. 2016). These
features are broadly consistent across a wide range of models and
have been validated by observations (Snellen et al. 2010; Knutson
et al. 2012; Louden & Wheatley 2015). The general consensus
states that the superrotation is the product of interacting equatorial
Rossby and Kelvin waves, which allow angular momentum to be
transported toward the equator (Showman & Polvani 2011; Tsai
et al. 2014; Hammond & Pierrehumbert 2018; Mendonça 2019).

Other works have explored the importance of clouds and
hazes (Heng et al. 2012; Helling et al. 2016; Lee et al. 2016;
Roman & Rauscher 2017; Mendonça et al. 2018a), atmospheric
chemistry (Cooper & Showman 2006; Parmentier et al.
2013; Kataria et al. 2016; Drummond et al. 2018a, 2018b;

Mendonça et al. 2018b), and shock physics (Goodman 2009; Li
& Goodman 2010; Heng & Workman 2014; Fromang et al.
2016; Koll & Komacek 2018). Still others have focused on
initial conditions and the details of numerical techniques
(Thrastarson & Cho 2010, 2011; Watkins & Cho 2010; Liu &
Showman 2013; Polichtchouk et al. 2014). These additional
features are thought to be important, but the data are less
conclusive in this regard (Heng & Showman 2015).
Further studies have focused on the atmospheric dynamics of

other types of planets, including cooler Neptune-size planets
(Charnay et al. 2015; May & Rauscher 2016; Mayne et al.
2019) and terrestrial planets (Merlis & Schneider 2010; Carone
et al. 2014, 2016, 2018; Kaspi & Showman 2015; Guendelman
& Kaspi 2018, 2019), particularly for the purposes of
understanding habitability (Williams & Pollard 2002, 2003;
Abe et al. 2011; Leconte et al. 2013a, 2013b; Yang et al.
2013, 2014; Kopparapu et al. 2016; Wolf et al. 2017; Way et al.
2018; Jansen et al. 2019). Atmospheric constraints for smaller
and cooler planets, however, remain scarce because of the
comparative difficulty of observation.
Even though constraining the atmospheric processes remains

a challenge for extrasolar planets, the wide variety of orbits,
masses, and sizes of planets indicates that the atmospheres will
be quite diverse. Most studies of exoplanet atmospheres using
general circulation models (GCMs) have adapted codes
developed for Earth or solar system planets. The virtue of this
method is that it relies on models that have been well tested;
however, planet-specific tunings are often built into the code
and can be difficult to find and generalize. In the development
of THOR, we have chosen the opposite path: to develop a code
from scratch that would be completely free of planet-specific
tunings and would thus provide a flexible tool for the study of a
diverse range of atmospheres. The additional benefit of this
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path is that we develop an intimate understanding of the
physical processes at work and how these are represented in the
code. The challenge that remains is the workload associated
with development and testing new components.

Presented in Mendonça et al. (2016) and Mendonca et al.
(2018) and utilized in Mendonça et al. (2018a, 2018b), THOR4

is a nonhydrostatic, fully global, 3D general circulation model
developed specifically for the study of exoplanets. As such, it is
free from the Earth and solar system tunings that often make
use of 3D GCMs a challenge for exoplanets. However, because
it is a young model developed from scratch, much development
remains in order to make the model applicable to all types of
planets. This work represents a step forward along this path.

The goals of this paper are to consolidate descriptions of
improvements that have been made to the model since
Mendonça et al. (2016), clarify the model framework, validate
the new physics, and compare results from the model using
different approximations, with implications for the general
circulation of hot Jupiters.

2. Theory and Algorithm for the Dynamical Core

2.1. Preliminaries

The principal equations solved in THOR are the flux forms of
the Euler equations:

· ( ) ( )r
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where ρ is the density,v is the velocity, P is the pressure, g is
the acceleration due to gravity (assumed to be constant),W is
the planet’s rotation vector, and θ is the potential temperature.
Potential temperature is defined as
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The system of equations (Equations (1)–(3)) is closed by the
ideal gas law, P=ρRdT. Additionally, a relationship between
the pressure and potential temperature is necessary to update
the pressure for use in Equation (2). From the ideal gas law and
the definition of potential temperature, we have
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THOR solves the Euler equations using a finite-volume
method on an icosahedral grid (Tomita et al. 2001; Tomita &
Satoh 2004; Mendonça et al. 2016). The horizontal resolution
is controlled by a single parameter, glevel, the number of times
the icosahedral grid is refined (i.e., the number of times the
sides of the icosahedron are subdivided into smaller triangles).

The average angular size of the control volumes is given by

¯ ( )q
p

=
2

5

1

2
. 6

glevel

The lowest value of glevel used in this work is 4, which results
in an angular resolution of q̄ » 4 . Every increase of glevel by 1
decreases q̄ by half. The average size (in m) of the control
volumes is simply

¯ ¯ ( )q=d r , 70

where r0 is the planet radius. The value of d̄ is used to scale the
numerical diffusion coefficients (Section 2.4).

2.2. Discretizing the Equations

A full description of the THOR algorithm was presented in
Mendonça et al. (2016); however, there were a number of
typographical errors in that paper and some of the details have
changed, so we include a description here.
As described in Mendonça et al. (2016), we use a time-

splitting algorithm based on Wicker & Skamarock (2002),
Tomita & Satoh (2004), and Skamarock & Klemp (2008). In
this scheme, the fluid equations are split into fast and slow
modes, and the fast modes are integrated using a smaller time
step than the slow modes. The time-stepping loop consists then
of an outer loop (the large time step, which has variable length)
and an inner loop (small time step, with length designated Δτ).
During the inner loop (at time τ or τ+Δτ), the deviation of

any quantity from its large time step value (at time t) is

( )[ ] [ ] [ ]F = F - Ft t , 8t

or

( )[ ] [ ] [ ]F = F - Ft t t t+D +D , 9t

where the  superscript indicates the deviation and the
superscript in square brackets indicates how frequently the
values are updated: slow modes ([ ]t ) are updated every large
time step, and fast modes ([τ] or [ ]t t+D ) are updated every small
time step. Broadly, the fast modes are those terms that are
associated with acoustic waves, and the slow modes are
everything else. This time-splitting method allows for a less
stringent constraint on the time step and thus a moderate boost
in performance, as many of the terms do not have to be
computed as frequently (the advection terms are particularly
costly). Further, the 3D operators are split into horizontal and
vertical components (Mendonça et al. 2016)

ˆ ( )F = F +
¶F
¶

r
r

10h

· · ( ) ( )F F =  +
¶
¶

F
r r
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1

. 11h r2
2

The vector r̂ represents the vertical direction, and r is the radial
distance from the center of the planet. The altitude is given by
z=r−r0.

4 THOR is available athttps://github.com/exoclime/THOR.
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Equations (1)–(3) are then discretized as
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The terms h and r represent the horizontal and vertical
components of the advection term, · ( )r Äv v , and the terms
h and r represent the same for the Coriolis, Wr ´ v2 . The
terms r , vh, and vr

represent fluxes from the “slow” drag or
numerical dissipation mechanisms, in this case, hyperdiffusion
and Rayleigh friction. The additional termvh represents the 3D
divergence damping, which needs to be evaluated on the small
time step.

An important note regarding the coordinate system used in
Equation (13): the 2D spherical surface represented by this
equation is transformed into a 3D Cartesian coordinate system
centered on the planet’s core and rotating with the planet. For
example, the horizontal velocity is defined as

ˆ ˆ ˆ · ˆ ( )= + + -v e e e v rv v v , 16h 1 1 2 2 3 3

where êi represent the axes of this coordinate system and vi are
the total (horizontal and vertical) velocities in the corresp-
onding directions. The radial unit vector is related to the
Cartesian coordinate system by

ˆ ˆ ˆ ˆ ( )f l f l f= + +r e e ecos cos cos sin sin , 171 2 3

where f is latitude and λ is longitude. In essence, Equation (16)
defines the horizontal velocity as the total velocity minus the
radial component. The advection and Coriolis terms,h and h,
are defined in the same fashion. The use of a 3D Cartesian
coordinate system allows the horizontal and vertical components
of the advection and Coriolis terms (in Equation (2)) to be cleanly
separated and is also used in the NICAM GCM (Tomita &
Satoh 2004). The separation, in turn, is key to allowing explicit
integration in time in the horizontal dimensions and implicit
integration in the vertical dimension (see Section 2.3).

Our prognostic variables are ρ, P, ρvr, and the three
Cartesian components of ρ vh, as well as their deviations.
Despite using a thermodynamic equation for potential temper-
ature, pressure is used as a prognostic rather than θ or ρθ. As
noted in Mendonça et al. (2016), in THOR we do not calculate
the deviation of ρθ from the large time step, because such
calculation can lead to numerical instability. Instead, we

calculate the new value, ( )[ ]rq t t+D , from Equation (15) and
use this to update the pressure deviation, På. Similarly, the
dissipation and heating terms are applied to the pressure
deviation, so that
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where qheat represents all of the additional sources of heating or
cooling (currently only radiation or Newtonian cooling).
Table 1 gives an overview of the variables used during

integration of the dynamical core, the roles of each, and their
properties. All quantities are defined at the horizontal centers of
the control volumes, though there is some staggering of the grid
in the vertical.

2.3. Solving the Vertical Momentum Equation

Rather than solving Equation (14) explicitly in time for the
vertical momentum, ( ) [ ]r t t+Dvr , we follow Tomita & Satoh
(2004) in combining the continuity equation, vertical momen-
tum equation, and thermodynamic equation to form a 1D
Helmholtz equation that can be solved implicitly. The implicit
solution has the advantage of stabilizing the model without
having to resolve the timescale associated with vertically
propagating acoustic waves. The resulting Helmholtz equation
was presented in Mendonça et al. (2016); however, there were
a number of typographical errors, and some steps of the
derivation were not particularly clear. We take the opportunity
to reproduce the full derivation and to correct the prior mistakes

Table 1
Summary of Physical Quantities in Equations (12)–(18) and (35)–(36)

Variable Role Location Update

ρ Prog. Center Large step
P Prog. Center Large step
ρ vh Prog. Center Large step
ρvr Prog. Midpoint Large step
ρå Prog. Center Small step
På Prog. Center Small step
( )r vh Prog. Center Small step
( )r vr Prog. Midpoint Small step
θ Diag. Center Large step
ρθ Diag. Center Small step
h Diag. Center Large step
r Diag. Center Large step
h Diag. Center Large step
r Diag. Center Large step
h Diag. Center Large step
g̃ Diag. Center Large step

F Diag. Center Large step
vh Diag. Center Large step

qheat Diag. Center Master step

Note. The “Role” column indicates whether the variable is a primary variable
of the integration (prognostic) or a secondary variable (diagnostic). The
“Location” column indicates whether variables are defined at the center of the
vertical layers or the midpoint between two layers (though many quantities are
interpolated to the midpoints to solve Equation (35)). The “Update” column
indicates when each quantity is updated (Master step refers to an update outside
the dynamical core loop; see Section 2.5).
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here. We must stress that the typos present in Mendonça et al.
(2016) did not propagate to the code itself—in other words, the
model was coded correctly, despite typos in the manuscript.

2.3.1. Preparing the Thermodynamic Equation

The use of the entropy equation, once discretized
(Equation (15)), does not result in the Helmholtz equation
presented in Mendonça et al. (2016) (Equation (37) in that
paper). Rather, it is the energy form of the thermodynamic
equation that is used (Equation (3) of Tomita & Satoh 2004):
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r

¶
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+  =  +v v
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t
h P q , 19heat

where ρ is the density, e is the specific internal energy, h is the
specific enthalpy,v is the velocity of the fluid, P is the pressure,
and qheat is the diabatic heating rate. It can be shown that this
equation is equivalent to Equation (3), aside from the heating
term (see, e.g., Section 1.6 of Vallis 2006). However, once
discretized, the discrete form for the pressure flux cannot be
easily derived from the entropy version, so we begin here with
the energy form. For reference, the specific internal energy and
specific enthalpy are defined as

( )=e C T , 20V

( )=h C T. 21P

The internal energy can be written as Eint=ρe, which is also
related to the pressure via the adiabatic gas index, gad:
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This allows us to write our thermodynamic equation as
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where Rd is the specific gas constant and CV is the heat capacity
at constant volume.

Now, we designate “slow” and “fast” quantities and
discretize as we did for Equations (12)–(15). Denoting the
small time step τ and the large time step t, Equation (24) can be
written as
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In this equation we also include the hyperdiffusive pressure
flux, [ ] P

t .
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where we have collected horizontal velocity terms and large
time step (t superscripted) terms on the right-hand side.
Following Tomita & Satoh (2004), we evaluate the pressure
gradient force (third term on the right-hand side) and the
buoyancy force (fourth term on the right-hand side) at the large
time step. This is not the optimal choice for the conservation of
energy (Satoh 2013), but the resulting error is small compared
to the errors introduced by the diffusion schemes, and it allows
the resulting Helmholtz equation (Equation (35)) to be solved
implicitly. To achieve a more concise form (and stay consistent
in notation with Mendonça et al. 2016), we will introduce the
effective gravity,
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Again, note that there are several typos in Equations (39) and
(40) of Mendonça et al. (2016), which we have corrected in our
Equations (27) and (28).
Then, Equation (26) becomes
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Next, we must solve for [ ]t t+DP and take its derivative in r
to replace the pressure term in our vertical momentum
equation. Noting that
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and taking the derivative with respect to r, we have
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The vertical derivative is taken here in order to eliminate the
pressure at time [τ+Δτ] from the vertical momentum
equation, as shown below.

2.3.2. Preparing the Continuity Equation

We begin with the discretized form of the continuity
Equation (1) and define
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which, like SP, incorporates the terms evaluated at the large
time step and the horizontal momentum term (which is already
evaluated for the current small time step).

To eliminate the density at time [τ+Δτ] from the vertical
momentum equation, we simply solve for ρå[ τ+Δ τ]:

( ) ( )[ ] [ ] [ ]r r t r t= - D
¶
¶

+ Dt t t t t
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+D +D  

r r
r v S

1
. 33r2
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2.3.3. Solving the Vertical Momentum Equation

For the vertical momentum Equation (14), we again collect
the terms evaluated at the large time step into a single term
defined as

( )[ ] [ ] [ ] [ ] [ ]rº -
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- - - +  S
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where r is the vertical component of the Coriolis acceleration
and r is the vertical component of the advection term

· ( )r Äv v . We now substitute Equations (31) and (33) into
Equation (14) and arrange on the left-hand side all terms
involving ( ) [ ]r t t+Dvr (the deviation of the vertical momentum
from the large time step [t] at time [τ+Δτ]). To achieve the
final desired form, we divide through by ΔτRd/CV, resulting in
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Equation (35) is the final Helmholtz equation for the vertical
momentum. Note that the version printed in Mendonça et al.
(2016) contains several typos that have been corrected here.

2.3.4. The Hydrostatic and Shallow Approximations

The hydrostatic approximation that is commonly used in
atmospheric models is derived by assuming that the vertical
pressure gradient and gravitational force are much larger than
the other terms in the vertical momentum equation, in other
words,

∣ ∣ ∣ ∣ ∣ ∣ ( )
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Making this assumption results in the well-known equation for
hydrostatic equilibrium:

( )r
¶
¶

= -
r

P g. 38

In the work of Tomita & Satoh (2004), this assumption was
made possible by maintaining a factor α next to all the terms in
the vertical momentum equation except the two above (the
pressure gradient and gravitational force), which could then be
set to unity for nonhydrostatic or zero for hydrostatic, leaving
the algorithm otherwise unchanged. This should be used with
caution, however, as White et al. (2005) found that the
application of hydrostatic balance solely to the vertical
momentum equation produces an inconsistency in the repre-
sentation of potential vorticity within the model unless the
“shallow” approximation is also applied. Because of the
mixture of coordinate systems in the Tomita & Satoh (2004)
algorithm (Cartesian for the horizontal momentum and
spherical for the vertical) and the form of the differential
operators on the icosahedral grid, it is not simple to find exact
correspondence between equations used in THOR and those
studied in White et al. (2005). However, because the
approximations discussed here refer implicitly to a spherical
coordinate system, we believe that the problem described in
that paper is relevant here. Hence, we follow their example in
applying the hydrostatic and shallow approximations.
The first approximation, which we will call “quasi-hydro-

static” following the terminology used by White et al. (2005),
involves neglecting the material derivative of the vertical
velocity, in other words,

( )=
Dv

Dt
0. 39r

In practice, this involves not only the first term (the partial
derivative in time) of Equation (14) but also the advection term,
r. The method used to calculate  in Cartesian coordinates
from the vector momentum retains the effects of curvature
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(which result in the well-known “metric” terms in a fully
spherical coordinate system); thus, we cannot merely discard
r from Equation (14). However, the metric part of r can be
simply calculated from the horizontal momentum, as

· ( )r
=

v v
r

, 40r
h hQH

wherevh is the horizontal momentum vector in Cartesian
coordinates. Then, under the quasi-hydrostatic, deep (QHD)
assumption, the vertical momentum equation becomes
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As before, we use the thermodynamic and continuity
equations to substitute the terms on the left-hand side, which
results in the modified Helmholtz equation:
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where Sv
QH
r

is computed using the QH version of the advection

term, r
QH. Note that the hyperdiffusive flux term vr

is also
zero in this approximation. We then solve equations in the
same fashion as in the nonhydrostatic model. Everywhere else,
the equations remain identical to their nonhydrostatic versions.

The second approximation (the shallow approximation) is
more involved. All horizontal differential operators are defined
at the reference pressure (the bottom of the model), and these
are proportional to 1/r0, where r0 is the radius of the planet (the
distance from the center to the location of the reference
pressure). To account for curvature, the horizontal operators are
multiplied by r0/r, where r=r0+z and z is the altitude.
Simply, this scales the horizontal area of the control volumes
with altitude. In the shallow approximation, r=r0, and the
scaling is removed from the horizontal operators. The radial
derivative in the divergence also changes, as follows:
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where ψ is just a representative quantity. In this way, the
second derivative (Equation (30)) becomes
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Using this in the thermodynamic equation and again
constructing the Helmholtz equation, we have
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In this case, Sv
S
r
, SP

S, rS
S, and all advection terms are calculated

using the shallow operators described above. One additional
change is made to ensure that the Coriolis acceleration is
consistently represented by the horizontal and vertical
equations. The Coriolis vector, , is now
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where the unit vectors êi represent the rotating Cartesian
coordinate system fixed at the center of the planet (the spin axis
is aligned with ê3 ), and the velocities vi are the total (horizontal
plus vertical) in the corresponding direction. Equation (48) is
equivalent to the form of Coriolis that appears in the primitive
equations (i.e., the horizontal component of W is neglected).
The radial component, r, is now equal to zero.

2.3.5. Discretizing and Solving the 1D Helmholtz Equation

The time-discretized 1D Helmholtz equation (Equation (35))
is now spatially discretized in the following way. The vertical
momentum is solved for at the midpoints between layers, in
contrast to the horizontal momentum, pressure, and density,
which are solved for at the center of the layer. Denoting
quantities defined at the center of layers with subscript c and
quantities defined at the midpoint between layers (the
interfaces) with subscript m, we write the first term in
Equation (35) containing the second derivative in r as
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for the ith midpoint (between layers), i.e., at rm
i . Superscripts

indicate the layer/midpoint at which each quantity is defined
and are ordered such that the ith midpoint is at the bottom of
the ith layer. Here, [ ]=h hm

i t and ( ) [ ]r= t t+DW vm
i

r for the ith
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midpoint. For shorthand, the spatial separations are defined as
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First derivatives are calculated by performing a first-order
finite difference across the layers i and i−1 and then
interpolating to the midpoint. The resulting procedure, for
terms 2–4 in Equation (35), is
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where Fm
i represents the various arguments inside the

derivatives for the ith midpoint.
The resulting spatially discretized equations for each

midpoint i form a system of equations that can be written as
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which we then solve using Thomas’s algorithm for tridiagonal
matrices and the boundary conditions ( ) =W W, 0m m

n0 (n
represents the index of the top layer). After applying the
discretization process and rearranging terms, the resulting
coefficients are
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As before, the enthalpy is defined on the large time step at
the ith midpoint, i.e., [ ]=h hm

i t , and likewise for g̃m
i and C i

0.
Of course, in the case that the height grid is uniformly

spaced, D = D = D +r r rc
i

m
i

m
i 1 and the above equations can be

greatly simplified. The current version of THOR utilizes only a
uniform grid; however, the model has been coded according to
the above equations so that nonuniform grids can be utilized in
the future. A further simplification can be made in the case of
the shallow approximation, in which » »+ -r r rm

i
m
i

m
i1 1. This

simplification is carried out in the model when the shallow
approximation is used.

2.4. Numerical Dissipation

The flux-form hyperdiffusion terms that are applied to
Equations (12)–(14) and (18) are
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The divergence damping term in the horizontal momentum
equation is
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¶
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 vK
r r

v r
1

. 58v h h h h rdiv
2

2
2

h

Note that the order of the gradient and Laplacian operators was
incorrectly reversed in Mendonça et al. (2016); the model is
coded as written in our Equation (58). Divergence damping is
necessary to eliminate noise produced by the time-splitting
integration scheme (Skamarock & Klemp 1992; Mendonça
et al. 2016).
The diffusion coefficients, Khyp and Kdiv, have the same

functional dependence on the grid resolution and time step size
but can be individually adjusted. These are

( )=
D

K D
d

t
59hyp hyp

4

( )=
D

K D
d

t
, 60div div

4

where d̄ is the average width of the control volumes given by
Equation (7). The hyperdiffusion fluxes are updated on the
large time step, while the divergence damping fluxes are
updated every small time step.
The boundary conditions for the top and bottom of the model

are that the vertical velocity must equal zero; this is the
simplest assumption that allows for conservation of energy and
axial angular momentum (Staniforth & Wood 2003). Unfortu-
nately, this causes the boundary to act as a node for vertically
propagating waves, causing them to reflect and potentially
amplify. An additional dissipation mechanism is often needed
to eliminate these reflecting waves. In a real atmosphere,
vertical propagating waves will break in the upper layers;
however, in the model the artificial reflection of these waves
becomes an additional source of noise that can trigger
numerical instabilities and cause the model to crash. Methods
used to damp reflecting waves at the boundaries are often called
“sponge layers.” In THOR, we use the method based on
Skamarock & Klemp (2008) and described in Mendonça et al.
(2018b), which we briefly reiterate here.
The zonal, meridional, and vertical winds are all damped

toward their zonal averages using Rayleigh friction. In
principle, damping toward the zonal averages, rather than
toward zero, will selectively damp waves while allowing the
general flow to persist. In practice, the method is imperfect and
the effect of the sponge layer on the flow at the highest layers is
discernible as a decrease in the zonal wind speed. For this
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reason, we minimize the strength and size of the sponge layer
in our simulations.

The damping takes the form

( )( ¯) ( )h= - -
v

v v
d

dt
k , 61sp

wherev represents the vector velocity and v̄ represents the
zonal mean of the components, η=z/ztop is the fractional
altitude, and ksp(η) is the damping strength as a function of the
fractional altitude (with units of s−1).

The damping strength is a function of altitude and takes the
form
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where ηsp, the fractional height at which the sponge layer
begins, and ksp(ηsp) are values set by the user.

To calculate the zonal mean on our icosahedral grid, we
divide the sphere into a user-set number of latitude bins, nlat,
and compute the average within each bin. This is then
considered as the average at the center latitude of each bin.
At any given latitude, the zonal mean v̄ is determined by
linearly interpolating from the center of the respective latitude
bin. This allows the zonal-mean velocities to vary more
smoothly with latitude.

Equation (61) is calculated for the zonal, meridional, and
vertical wind speeds. Since version 2.3 of the code, there are
several options for the time integration of the sponge layer
friction. In “implicit mode,” which is used in the simulations
here, the calculation of the rate of change in wind speed is done
in the ProfX step (see Section 2.5), and the velocities are
updated directly, implicitly, during this step. In “explicit
mode,” the rate of change is converted into fluxes that are
passed to the dynamical core. For the vertical winds, this flux
takes the form ρdvr/dt (the vertical component of
Equation (61)), which is added to Equation (56). For the
horizontal winds, we first compute the zonal and meridional
components of ρdvh/dt, convert those to Cartesian coordi-
nates, and then add them to Equation (55).

2.5. Time Integration

For clarity, we outline and summarize the flow of
integration. At the top level, each time step contains two
components: the dynamical core (THOR) and physics modules

(ProfX); see Figure 1. The “dynamical core” refers to the
solution of the Euler equations, and “physics modules” refers to
any additional processes.
The integration of the dynamical core proceeds as follows.

For any prognostic quantity, Φ, the value at time t+Δt is
calculated using three large time steps of variable length (a
third-order Runge–Kutta scheme; Wicker & Skamarock 2002;
Tomita & Satoh 2004; Klemp et al. 2007; Mendonça et al.
2016). Each large time step is broken into smaller time steps of
variable length: the first large time step consists of one small
time step of length Δτ=Δt/3, the second large step consists
of nmax/2 small steps of length Δτ=Δt/nmax, and the third
large step consists of nmax steps of length Δτ=Δt/nmax.
A sketch of one time step for variable Φ follows, for

nmax=6 (see Figure 2). The beginning of the time step is time
t. First, we calculate the slow terms in the derivative ∂Φ/∂t;
these are the terms in Equations (12)–(15) and (18) designated
with [t]. Next, we calculate the fast terms (designated with [ ]t or
[ ]t t+D ) at times t and t+Δτ=t+Δt/3. The deviation, Φå,
is defined with respect to time t; thus, Φå(t)=0. The fast and

Figure 1. Top-level code structure of THOR. The dynamical core, which solves the Euler equations, passes state variables to the physics modules, which produces
fluxes that are incorporated back into the dynamical core at designated code locations.

Figure 2. Schematic of the three large steps of the Runge–Kutta loop in THOR,
for the example with the maximum number of small time steps nmax=6. Rs

and Rf represent the slow terms (superscript [ ]t ) and fast terms (superscripts [ ]t

and [ ]t t+D ), respectively, and indicate when the terms are computed during
each large step.
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slow terms are used to calculate Φå(t+Δt/3), the deviation of Φ
at time t+Δt/3. Then, we compute Φ(t+Δt/3)=Φ(t)+
Φå(t+Δt/3). This completes the first large step.

The second large step begins. First, we recompute the
deviations, which are now defined with respect to t+Δt/3, so
that Φå(t)=Φ(t)−Φ(t+Δt/3)¹0. The slow terms (super-
script [ ]t ) are recomputed at time t+Δt/3. The fast terms are
recomputed at times t and t+Δτ=t+Δt/6 (again,
nmax=6 in this example). The fast terms at (t, t+Δt/6)
and slow terms at t+Δt/3 are used to advance the deviations
by a time step Δt/6, resulting in the value Φå(t+Δt/6). Fast
terms are recomputed at t+Δt/6 and t+2Δt/6=t+Δt/3,
and these are used with the slow terms to advance one more
step of sizeΔt/6, resulting in Φå(t+Δt/3). We recompute the
fast terms a third time and use them to compute Φå(t+Δt/2),
and finally Φ(t+Δt/2)=Φ(t)+Φå(t+Δt/2). This com-
pletes the second large step.

The third large step begins. Again, the deviations are
recalculated, this time with respect to t+Δt/2. Slow terms are
recalculated at t+Δt/2, fast terms at t and t+Δt/6. These
are used to calculate the deviation Φå(t+Δt/6). The fast terms
are then recomputed and the deviation updated for a total of
nmax=6 times. We then have Φå(t+Δt), from which we
calculate Φ(t+Δt)=Φ(t)+Φå(t+Δt). This completes the
Runge–Kutta loop.

A more detailed outline of a single time step is as follows:

1. ProfX step (additional physics)
(a) Compute benchmark forcing if applicable. Typically,

for benchmark tests, the prognostic variables are
updated implicitly or explicitly during this step, rather
than computing fluxes that are included in step 2.

(b) Compute radiative transfer fluxes (Section 3.3). These
are passed to the dynamical core as qheat, rather than
updating thermodynamic variables directly during
this step.

(c) Update sponge layer quantities (zonal-mean winds
and resulting drag, Equation (61)). These can be used
to implicitly update the wind speed during this step
(implicit mode) or passed as fluxes to the dynamical
core and added to the hyperdiffusive termsvh and vr

(explicit mode).

2. THOR step (dynamical core): solving fluid equations
(Equations (12)–(15) and (18))
(a) Begin large time step: three steps total, where the first

step advances the prognostic variables to t+Δ t/3,
the second to t+Δ t/2, and the third to t+Δ t.
i. Compute advection and Coriolis terms h, r,
h, r at time t, t+Δ t/3, or t+Δ t/2 (for the
first, second, and third steps).

ii. Compute enthalpy h (Equation (21)), effective
gravity g̃ (Equation (27)), and potential temper-
ature θ (Equation (4)) at time t, t+Δ t/3, or
t+Δ t/2.

iii. Compute hyperdiffusive and divergence damping
fluxes r , vh, vr

, P, vh (Equations (54)–(58))
at time t, t+Δ t/3, or t+Δ t/2. Add sponge
layer drag (Equation (61)), if explicit mode is
used for sponge layer.

iv. Compute slow modes: sums of [ t] terms (steps
2(a)i–2(a)iii) in Equations (12)–(18), including
vh and RT fluxes (as qheat) from ProfX step.

v. Second and third large time steps only: update
deviations ρå, ( )r vh , ( )r vr , På (Equation (8)).
Deviations are equal to zero on the first step.

vi. Begin small time step: nstep steps, where
nstep=(1, nmax/2, nmax) and Δτ=(Δt/3,
Δt/nmax, Δt/nmax) for the first, second, and third
large time step, respectively. For the nth iteration,
the current time is τ=t+nΔτ.
A. Update divergence dampingvh (Equation (58))

at time τ.
B. Compute horizontal momentum deviation

( )r vh (Equation (13)) at time τ+Δτ.
C. Compute SP, Sρ, Svr

(Equations (28), (32), and
(34)). These terms encapsulate the slow modes
plus the horizontal momentum deviations.

D. Compute vertical momentum deviation ( )r vr

(Equation (35)) using Thomas’s algorithm
described in Section 2.3.5, at time τ+Δτ.

E. Compute density deviations ρå (Equation (12))
at time τ+Δτ.

Figure 3. Geometry of the control volumes. Left: top-down perspective of a hexagonal control volume (these can also be pentagonal). The total area is calculated by
decomposing the volume into triangles, whose area can be found by the formula for spherical triangles and the anglesa,b, andc, and then summing the areas of
the six (or five, for pentagonal cells) triangles. Right: side profile of a control volume some distance r j above the surface. The total volume is found by integrating the
area at the lower boundary, rm

j , to the upper boundary, +rm
j 1.
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F. Compute potential temperature density (ρθ)
(Equation (15)) at time τ+Δτ.

G. Compute pressure deviation På (Equation (18))
at time τ+Δτ.

vii. End small time step.
viii. Update prognostic variables ρ, (ρ vh), (ρvr), and P

using final deviations from small time step loop.
These are now defined at times t+Δt/3, t+Δt/2,

Figure 4. Output from the synchronously rotating Earth benchmark, temporally averaged from 240 to 1200 days. In color, the top panels show the temperature, the
middle panels show the zonal wind speed, and the bottom panels show the meridional wind speed. The total horizontal winds are overplotted as arrows. The left
column corresponds to a pressure level of 0.9 bars, the right to 0.25 bars.
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or t+Δt, for the first, second, or third large step,
respectively.

(b) End large time step.

3. Added Physics

THORʼs double-gray radiative transfer module is now
publicly available. This module is based on Lacis & Oinas
(1991) and Frierson et al. (2006). Details of the model are
described in Mendonça et al. (2018a) and Section 3.3. Note that
this version uses a two-stream flux formulation, wherein angle-
integrated fluxes are calculated from the Stefan-Boltzmann law
and the diffusivity factor is utilized to approximately capture
the integral of intensity over angle. In Mendonça et al. (2018a),
the integral of intensity over angle was performed using
Gaussian quadrature; however, given the crudeness of the gray
approximation, this angle integration is not strongly motivated,
and a good choice of the diffusivity factor provides a solution
that is accurate enough for our purposes. The double-gray RT
code is placed into a modular structure so that it may be
replaced by alternative forcing schemes (e.g., a more realistic

Figure 5. Additional quantities from the synchronously rotating Earth benchmark, viewed as a function of latitude and pressure level. The top left panel is the
temperature averaged over a 10° slice over the antistellar point; the top right is the temperature averaged over a 10° slice over the substellar point; the bottom left is the
Eulerian mean stream function (positive values indicate clockwise motion); the bottom right is the potential temperature averaged over 10° over the substellar point. In
the plot for potential temperature, a narrow region near the top is masked to allow the structure in the lower atmosphere to be discernible—the potential temperature
increases sharply up to ∼1000 K in the masked region. As in Figure 4, values are averaged over the interval of 240–1200 days.

Figure 6. Temperature–pressure profiles used in the deep hot Jupiter
benchmark test. The equilibrium temperature is equal to Tday (red) at the
substellar point and equal to Tnight (purple) at the antistellar point. For each
location on the planet, the equilibrium temperature is interpolated between Tday
and Tnight based on the latitude and longitude. Dashed curves are the original
profiles from Heng et al. (2011b); solid curves are the profiles used in this
work. The blue curve represents the average.
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radiative transfer model). Future versions of THOR will utilize
the framework to couple to HELIOS (Malik et al. 2017).

Dry convective adjustment (Manabe et al. 1965; Hourdin
et al. 1993) is now included in the public version of THOR, and
we utilize it here in our simulations with radiative transfer. A
mathematical description is given in Section 3.2.

Reproductions of the Held–Suarez test (Held & Suarez 1994)
and the shallow hot Jupiter benchmark (Menou &
Rauscher 2009; Heng et al. 2011b) using THOR were presented
in Mendonça et al. (2016). Here we add to the list of
benchmark tests the synchronously rotating Earth benchmark
(Merlis & Schneider 2010; Heng et al. 2011b), the deep hot
Jupiter benchmark (Cooper & Showman 2005, 2006; Rauscher
& Menou 2010; Heng et al. 2011b), an acoustic wave test
(Tomita & Satoh 2004), and a gravity wave test (Skamarock &
Klemp 1994; Tomita & Satoh 2004). The code for all of the
benchmark tests and the configuration files are included in the
public repository.

3.1. Global Diagnostics

By default, the model now outputs additional diagnostic
quantities: total energy, mass, angular momentum, and entropy.
The mass, angular momentum, total energy (kinetic + internal
+ potential), and entropy of the ith grid point and jth vertical
level are, respectively,

( )
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Above, ρ is the density, V is the volume of the control
volume,r is the Cartesian vector position on the sphere, W is
the vector rotation rate,vh is the horizontal wind vector,v is the
total wind vector (horizontal + vertical), CV is the specific heat
at constant volume, T is the temperature, g is the gravity
(assumed to be constant), z is the altitude, CP is the specific
heat at constant pressure, and θ is the potential temperature.
Vectors are defined in a Cartesian coordinate system centered

on the center of the planet and rotating about the ê3-axis with
rotation rate Ω. The vertical momentum can be ignored in the
calculation oflij, as it is parallel torij by definition. When
integrated over the sphere, the nonaxial (ê1 and ê2) components
of the angular momentum should vanish; in practice, they are
not identically zero because of numerical noise, so these
components can provide a useful test of numerical accuracy.
The global total of each quantity is calculated by summing

over i grid points and j vertical levels. In the deep model, the
volume of the ith grid point and jth vertical level is

[( ) ( ) ] ( )= -+V
A

r
r r

3
, 64ij

i
m
j

m
j

0
2

1 3 3

where Ai is the area of the ith control volume at the lowest
boundary of the model, r0 is the planet radius, and

+rm
j 1 and rm

j

are the radial coordinates of the top and bottom boundaries of
the jth layer. Figure 3 illustrates the calculation of the size of
the control volume, Vij. The area, Ai, of each control volume is
calculated during the grid construction (and adjusted by the
spring dynamics process). This is calculated by decomposing
the hexagon- or pentagon-shaped control volume into triangles
formed by the center and two adjacent vertices (see Figure 2 of
Mendonça et al. 2016) and summing the areas of the triangles.
The areas of each triangle are calculated using the formula for
spherical triangles ( )p=  +  +  -A a b c rtri 0

2, where
the angles a, b, and c are calculated from the vector
locations of the center and corresponding vertices. When the
shallow approximation is used, the control volumes are treated
as flat, and so the volume is

( ) ( )= -+V A r r . 65ij i m
j

m
j1

3.2. Dry Convective Adjustment

Here we provide a description of the dry convective
adjustment scheme, for completeness. Nonhydrostatic models
require a parameterization for convection at the coarse
resolutions we typically use for exoplanet modeling; typically,
scales less than tens of kilometers must be resolved to capture
convection with no parameterization in Earth simulations
(Arakawa 2004; Jung & Arakawa 2004; Rio et al. 2019). This

Figure 7. Zonally and temporally averaged temperature (left) and zonal wind speed (right) in the deep hot Jupiter simulation. The time average was performed over
days 480–2400 of the simulation. The top altitude is limited to pressures of ∼10−2 bars at the hottest location on the planet.
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scheme is based on Hourdin et al. (1993). After the dynamical
code time step, but prior to the calculation of radiative transfer/
Newtonian cooling, each vertical column is searched for

unstable layers. Static stability is given by the condition

( )q¶
¶


r

0, 66

where θ is the potential temperature. When an unstable layer is
detected (meaning Equation (66) is violated), we define a
“mixed” potential temperature, θmixed, equal to the average
potential temperature in the layer. First, we integrate upward
through the unstable layer to find the enthalpy h:
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where P0, PB, and PT are the pressure at bottom of the entire
column, the pressure at the bottom of the unstable layer, and
the pressure at the top of the unstable layer, respectively. Then,
the potential temperature across the entire layer is set equal to
θmixed, given by
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which is effectively like mixing the entropy across the unstable
layer and enforcing an adiabatic profile in that region. After
θmixed is calculated, the adjacent layers are tested for static
stability again. If the adjacent layers are statically unstable with
the new θmixed (e.g., the layer below, altitude-wise, has
θ>θmixed), the entire process is repeated, including the

Figure 8. Density perturbation in the acoustic wave experiment. The top panels show the vertical profile around the planet along longitudes 0° and 180°. The bottom
panels show the lowest horizontal level (altitude 250 m). The columns correspond to times t=(0, 4, 8) hr, from left to right. The plot style and perspective are chosen
to facilitate direct comparison with Tomita & Satoh (2004). The density perturbation begins at (λ, f)=(0°, 0°) and propagates around the planet, reaching the
opposite side of the planet in ∼17 hr.

Figure 9. Total, internal plus potential, and kinetic energy in the acoustic wave
experiment, as a function of time. Solid curves are for the simulation with no
dissipation; dashed curves are for the simulation with divergence damping.
There is some slight adjustment to hydrostatic equilibrium at the beginning of
the simulation that results in temperature changes of <0.1 K everywhere, and
small variations in the energies when the waves meet at ∼17 and ∼34 hr. The
simulation with no damping has a large energy error that begins to accumulate
rapidly after 40 hr and ultimately crashes the model. With divergence damping
enabled, there is a small amount of energy loss. The changes in energy (∼1014 J)
are quite small compared to the total energy of the atmosphere (1024 J).
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additional unstable layers, until the entire column is statically
stable.

3.3. Double-gray Radiative Transfer

The algorithm for radiative transfer is based on Lacis &
Oinas (1991) and was described in Mendonça et al. (2018a).
We do not reproduce the entire algorithm in this work, but we
make several points of clarification.

We have reverted to using the diffusivity factor, , instead
of integrating intensities over angle using Gaussian quadrature
as was done in Mendonça et al. (2018a). In the double-gray
case, this approximation makes very little difference in the
calculation of interlayer fluxes. When using multiwavelength
radiative transfer, as in Lacis & Oinas (1991), more accurate
integration over angle is probably warranted, but the double-
gray approximation we use here is likely a much cruder
assumption.

Our double-gray scheme is thus a true two-stream approx-
imation, in which the diffusivity factor is used to calculate a
characteristic angle for the path of the radiation, and radiation is
assumed to be isotropic when the integral over angle is
performed. In this approximation, the Planck functions in
Equations (A1)–(A6) of Lacis & Oinas (1991) and

Equations (3)–(8) of Mendonça et al. (2018a) are replaced by
the angle-integrated flux calculated from the Stefan-Boltzmann
law. The angle factor μ in those equations, as well as
Equations (A9)–(A10) of Lacis & Oinas (1991) and
Equations (9)–(10) of Mendonça et al. (2018a), is set to
m = 1 , where  is the diffusivity factor.

The optical depths are calculated using the form suggested
by Frierson et al. (2006) and Heng et al. (2011a). For the short
wave, we have a single power law:

( )t t s= , 69n
sw sw,0 sw

where τsw,0 is the optical depth at P=Pref, σ=P/Pref, and
nsw is a tuneable factor meant to control the vertical distribution
of absorbers. For example, nsw=1 would represent a
uniformly mixed absorber. A value for nsw>1 represents
absorbers that are denser in the lower atmosphere.
The long-wave optical depth is given by

( )t t s t s= + , 70n
lw lw,w lw,s lw

where τlw,w and τlw,s represent the surface optical depths of
well-mixed absorbers and vertically segregated absorbers,
respectively, and nlw is again a tuneable factor controlling the
vertical distribution of the segregated absorbers. With a factor fl

Figure 10. Comparison of pressure field for the acoustic wave simulation at z=250 m with no damping (left) and with divergence damping (right).

Table 2
Model Parameters for Newtonian Cooling Simulations

Symbol Description Units Synch. Earth Deep Hot Jupiter

r0 Planet radius m 6371,000 94,400,000
g Gravity m s−2 9.8 9.42
Ω Rotation rate rad s−1 1.996×10−7 2.06×10−5

Rd Gas constant J K−1 kg−1 287 4593
CP Atmospheric heat capacity J K−1 kg−1 1005 14308.4
Pref Reference pressure (bottom boundary) bars 1 220
Tinit Initial temperature of atmosphere K 300 1759

ΔtM Time step s 600 300
ztop Altitude of model top m 36000 8×106

glevel Grid refinement level L 4/5 4
vlevel Number of vertical levels L 32 40
Dhyp Hyperdiffusion coefficient L 4.8×10−3 0.02
Ddiv Divergence damping coefficient L 4.8×10−3 0.03

ksurf Friction coefficient of lower boundary s−1 1.1574×10−5 L
σb Boundary layer top (fraction of Pref) L 0.7 L
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representing the percent of the surface optical depth attributable
to the uniformly mixed absorbers, the optical depths above are
given by

( ) ( )
t t
t t

=
= -

f

f

,

1 .
71l

l

lw,w lw,0

lw,s lw,0

The surface optical depth τlw,0 can be assumed to be constant
(hot Jupiter cases) or given a horizontal distribution. For our
Earth-like double-gray case, we give τlw,0 a latitudinal
dependence given by

( ) ( )t t t t f= + - sin , 72lw,0 lw,eq lw,pole lw,eq
2

where τlw,eq and τlw,pole are the surface optical depths at the
equator and the poles, respectively. This latitudinal dependence
approximates the effect of decreased water vapor concentration
in the polar regions (Frierson et al. 2006).

The total fluxes passing through each layer are calculated
from Equations (1)–(10) of Mendonça et al. (2018a). The
heating in the nth layer, used in Equations (18) and (28), is
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where F sw is the downward-propagating short-wave (stellar)
flux, F lw is the upward-propagating long-wave (thermal) flux,
F lw is the downward-propagating long-wave flux, and Δzn is

Figure 11. Temperature perturbation along the equator in the gravity wave simulations at 48 hr. ΔT is the difference in temperature from the initial temperature field.
The top panel has a Brunt–Väisälä frequency, N=0.01 s−1, and vertical mode nv=1; the middle panel has N=0.02 s−1 and nv=1; and the bottom panel has
N=0.01 s−1 and nv=2. Compare with Figure 5 in Tomita & Satoh (2004).

Figure 12. Total, internal plus potential, and kinetic energy in the gravity wave
experiment, as a function of time, for N=0.01 s−1 and nv=1. Compare with
Figure 6 in Tomita & Satoh (2004).
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the vertical thickness of the layer. Here qheat has units of
W m−3, equivalent to kg m−1 s−3 or Pa s−1, in line with
Equations (23) and (24).

As in Heng et al. (2011a), the surface (when used) is treated
as a slab with a constant heat capacity, Csurf. The temperature is
modeled using the relation

( )¶
¶

= - +  C
T

t
F F F , 74surf

surf
0

sw
0

lw
0

lw

where F0
sw, F0

lw, and F0
lw are the short-wave and long-wave

fluxes passing downward from and upward into the lowest
atmospheric layer.

When no surface is included, as in our hot Jupiter
simulations, the flux into and out of the lower boundary is
zero, unless flux due to internal heating is included. We do not
include flux from the interior in any of the simulations in this
work; however, in the case where this is desired, it can be
included by specifying an internal flux temperature, Tint.

The user can also set the planetary albedo, A0. In this double-
gray scheme, the albedo represents a top-of-atmosphere albedo
and is thus only applied as a modification of the incoming
stellar flux, Q.

4. Further Benchmarks

4.1. Synchronously Rotating Earth

A benchmark test case for a synchronously rotating Earth
using prescribed thermal forcing (Newtonian cooling) was
suggested by Heng et al. (2011b) for comparison with the
model of Merlis & Schneider (2010), which used gray radiative
transfer. We repeat this test simulation here, with input
parameters given in Table 2.
The temperature is forced toward an equilibrium profile

given by

( ) ( )=T Tmax 200 K, , 75eq HS
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where ΔTEP is the temperature difference between the
substellar and antistellar points (rather than the equator-to-pole
difference),ΔTz is a characteristic scale for vertical temperature

Figure 13. Zonal- and time-averaged quantities from the Earth-like, NHD simulation, without convective adjustment enabled. Top left shows the temperature, top
right the zonal wind speed, bottom left the potential temperature, and bottom right the mass stream function (positive values indicate clockwise motion). The white line
in the bottom right panel is the zero pass contour.
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differences, and κad=Rd/CP is the adiabatic coefficient. This
formulation is identical to the Held–Suarez test except for the
second term of THS, which now depends on longitude, λ, to
emulate the effect of having the substellar point permanently
located at λ=180° and f=0°. For the simulation here,
ΔTEP=60 K and ΔTz=10 K, the same as in the Held–
Suarez test. The damping timescale for temperature is also
identical to the Held–Suarez test and is given by

( ) ( )
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s s
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where ka=1/40 day−1, ks=1/4 day−1, σ=P/Psurf, and
σb=0.7. The surface pressure, Psurf, is calculated at the lower
boundary of the lowest layer.

The horizontal winds are damped toward zero with the
timescale
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where ksurf=1 day−1.

Figure 4 shows results from the simulation with glevel=5 (a
horizontal resolution of ∼2°), plotted on two isobaric surfaces.
Results are very similar for glevel=4. At P=0.9 bars, near
the surface, we see convergence toward the substellar point
(located at longitude λ=180°), associated with the rising
motion due to the intense heating at this location. At
P=0.25 bars, the flow diverges from the substellar point
and then converges on the night side of the planet.
Figure 5 shows several properties as a function of latitude.

On the night side, the temperature is highest at P∼0.8 bars,
well above the surface. On the day side, the temperature is
highest at the equatorial surface. The transport of heat upward
and away from the substellar point is apparent from the
temperature distribution centered on λ=180° and the stream
function, which shows a large equator-to-pole Hadley cell in
each hemisphere. The potential temperature distribution shows
that the atmosphere is marginally unstable near the substellar
point. Convective adjustment was not included here.
For this test, we have not included heating and cooling of the

surface. The pressure in the lowest atmospheric layer varies
from ∼0.93 bars near the antistellar point to ∼0.91 bars near
the substellar point. Extrapolating the atmospheric temperature
to the reference pressure (roughly the location of the implied

Figure 14. Zonal- and time-averaged quantities from the Earth-like, NHD simulation, with convective adjustment enabled. Top left shows the temperature, top right
the zonal wind speed, bottom left the potential temperature, and bottom right the mass stream function (positive values indicate clockwise motion). The white line in
the bottom right panel is the zero pass contour.
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surface) for plotting purposes produces poor results because of
the steep gradients at the bottom of the model that are not well
resolved by our uniform vertical mesh; hence, we do not
attempt to extend our figures to this region.

In general, the results compare well with Heng et al. (2011b)
and Merlis & Schneider (2010). The temperatures and wind
speeds are similar to those of Heng et al. (2011b), with a
temperature peak at ∼320 K at the equator, near the surface,
and max wind speeds of ∼13 m s−1 and ∼25 m s−1 at P=0.9
and P=0.25 bars, respectively. The fact that the nightside
temperature in Figure 4 is warmer than that which appears in
Figure 3 of Heng et al. (2011b) is due to the difference in
pressure level, owing to the poor vertical resolution near the
surface in our simulation. The temperatures are ∼20 K lower
across the globe in the simulation of Merlis & Schneider
(2010), which utilized a radiative transfer scheme; the fact that
our temperatures agree with those in Heng et al. (2011b)
suggests that this is due to the tuning of the temperature forcing
in Equations (75) and (76) rather than an error in the code. The
temperature distribution is otherwise similar to Figure 9 in
Merlis & Schneider (2010), with a maximum near 0.8 bars on
the night side. The Hadley cells are similar in size to theirs,
though it is about a factor of 2 weaker in our simulation.

4.2. Deep Hot Jupiter

Here we attempt to reproduce the deep hot Jupiter bench-
mark test from Heng et al. (2011b). Input parameters are given
in Table 2. Like the Held–Suarez test, the benchmark is run
with an idealized forcing to the temperature (the winds, in this
case, are unforced). As noted in Mayne et al. (2014), this
benchmark has several challenges. First, in a nonhydrostatic
model, where the vertical coordinate is altitude rather than
pressure, the night side of the planet tends to extend to several
orders of magnitude lower pressure than the day side. The exact
temperature–pressure profiles suggested by Heng et al. (2011b)
tend to lead to runaway cooling on the night side at the start of
the simulation, causing the model to crash. Mayne et al. (2014)
successfully mitigated this issue in the UK Met Office model
by increasing the temperatures at low pressures. We have
attempted the same here, with less success. The second issue is
the discontinuity in the temperature–pressure profiles at
10 bars, which can lead to numerical instabilities. To avoid
the issue, we refit the temperature–pressure profiles used in
Heng et al. (2011b) with a new set of polynomials, excluding
the pressures near 10 bars. This produces a new profile that
varies smoothly in this region. The new polynomial fits are
shown in Figure 6 and presented in Appendix A.

Figure 15. Residuals between the QHD or HSS and the NHD Earth-like simulations. The top panels compare the temperature (left) and zonal wind (right) for the
QHD case, and the bottom panels compare the same for the HSS case. Departures from the NHD simulation are greatest at low pressures; in the lower atmosphere, the
average temperatures and wind speeds are very similar.
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Figure 7 shows the zonal-mean temperature and zonal wind
for the resulting simulation. Unfortunately, our model domain
is limited to pressures 10 mbar on the day side of the planet.

Raising the model top any further causes the nightside
instability (noted by Mayne et al. 2014 and described above)
to occur. At present, it is unclear why the UK Met Office model

Figure 16. Evolution of the total mass, energy, and axial angular momentum in the Earth-like cases. Solid blue is the NHD case with convective adjustment, dotted
blue is the NHD case without convective adjustment, red is the QHD case with convective adjustment, and black is the HSS case with convective adjustment. Cyan
shows the NHD case at glevel=6, or a horizontal resolution of ∼1°; all other cases had glevel=5 (∼2° resolution).

Figure 17. Zonally averaged temperature and zonal wind speed for simulations of HD 189733 b at ∼4° resolution. The top panels show the NHD case, and the bottom
panels show the QHD case. All quantities are averaged over the last 1000 (Earth) days of the 10,000 day simulation.
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is able to successfully extend the model domain to lower
pressures while THOR is not. However, based on the issues
discussed here and in Mayne et al. (2014), it appears that the
deep hot Jupiter benchmark is a challenge to reproduce in
altitude-grid models.

We have made several attempts to extend the model domain,
including initializing the atmosphere from the average Teq (blue
curve in Figure 6) rather than isothermal conditions, including
a sponge layer (see Section 2.4) at the top of the model, tuning
the strength of divergence damping and hyperdiffusion, and

Figure 18. Zonally averaged potential temperature and stream function for simulations of HD 189733 b at ∼4° resolution. In the stream function plots, positive values
indicate clockwise motion. The top panels show the NHD case, and the bottom panels show the QHD case. All quantities are averaged over the last 1000 (Earth) days
of the 10,000 day simulation.

Table 3
Model Parameters for Wave Simulations

Symbol Description Units Acoustic Waves Gravity Waves

r0 Planet radius m 6371,000 6371,000
g Gravity m s−2 9.8 9.8
Ω Rotation rate rad s−1 0 0
Rd Gas constant J K−1 kg−1 287 287
CP Atmospheric heat capacity J K−1 kg−1 1005 1005
Pref Reference pressure (bottom boundary) bars 1 1
Tinit Initial temperature of atmosphere K 300 300 (at Pref)

ΔtM Time step s 1800 1800
ztop Altitude of model top m 10,000 10,000
glevel Grid refinement level L 5 5
vlevel Number of vertical levels L 20 20/40
Dhyp Hyperdiffusion coefficient L 0 0.01
Ddiv Divergence damping coefficient L 0/0.02 0.01
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initializing with a zonal wind profile to prompt dayside-
nightside mixing. None of the above efforts were successful at
preventing the runaway cooling on the night side that leads to a
model instability.

Even with the model domain limited to P10 mbar on the
day side, we do reproduce many of the features of the

experiment done in previous works. We see a zonal-mean
temperature that is similar in magnitude and structure to that of
Heng et al. (2011b) and Mayne et al. (2014). We see equatorial
superrotation and return flow at the midlatitudes. The jet speed
we find here is weaker (∼3600 m s−1) than in the finite-volume
simulation of Heng et al. (2011b; ∼5000 m s−1) and the

Figure 19. Snapshots at 10,000 days of the temperature (color) and horizontal winds (arrows) on isobaric surfaces for simulations of HD 189733 b at ∼4° resolution.
The left panels are the NHD simulation, and the right panels are the QHD simulation. The substellar point is at 0° longitude, 0° latitude.
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simulation in Mayne et al. (2014; ∼6000 m s−1). This may be
caused by the lower location of the model top (the velocities
tend to increase with altitude), though it is also possibly
explained by the low horizontal resolution we used for the
simulation here (we revisit the problem of resolution in
Section 5).

4.3. Acoustic Wave Experiment

Here we demonstrate the THOR GCM’s representation of
acoustic waves. The purpose of this test is to characterize how
well the model is able to represent the propagation of acoustic
waves and provide a tool to isolate coding errors that may be
hard to diagnose in more complicated scenarios. The setup is
almost identical to Section 4.1 of Tomita & Satoh (2004), but
we describe it here for completeness. The atmosphere is
initialized with a background isothermal state, for an Earth-
radius planet with no rotation and no forcing (radiation or
Newtonian cooling). At the beginning of the first time step, a
pressure perturbation is applied over a spatial distribution
centered on longitude λ0=0° and latitude f0=0°. The

distribution in latitude f and longitude λ is given by
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where L is a representative horizontal length and x is the
horizontal distance along a great circle from the point (λ0, f0)
and is given by
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The vertical distribution is
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where z is the altitude, ztop is the height of the model top, and nv
is the vertical wave mode. The total initial perturbation field is

( ) ( ) ( ) ( )d x l f z¢ = =p t p z0 , , 82

where δp is the amplitude of the perturbation. Here, as in
Tomita & Satoh (2004), we set δp=100 Pa, r0=6371 km,

Figure 20. Zonally averaged temperature and zonal wind speed for simulations of HD 189733 b at ∼2° resolution. The top panels show the NHD case, and the bottom
panels show the QHD case. All quantities are averaged over the last 1000 (Earth) days of the 10,000 day simulation.
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L=r0/3, nv=1, and ztop=10 km. Further input parameters
are given in Table 3.

We compare results from two simulations. In the first, both
hyperdiffusion and divergence damping are omitted (by
“divergence damping” we are referring to the terms that
depend on the divergence of momentum in Equations (44)–(46)
of Mendonça et al. 2016, Equation (58) in this work). In the
second, only divergence damping is enabled, with a coefficient
Ddiv=0.02 (hyperdiffusion is still disabled). In Figure 8, we
show the resulting pressure field in the lowest altitude level at
different times for the case with divergence damping. These
compare well with Figure 3 of Tomita & Satoh (2004). We
note, however, that the amplitude of the pressure perturbation
in their figure appears much larger than in ours, peaking at
p′≈1000 Pa, which seems inconsistent with an initial
perturbation of δp=100 Pa as stated in the text. We also see
that the amplitude decreases as the wave spreads away from the
point of origin (evident in the ranges of the color scales in
Figure 8), which is not seen in the Tomita & Satoh (2004)
figure, unless their color scale is mislabeled.

In Figure 9, we plot the globally integrated total energy,
internal plus potential energy, and kinetic energy as a function
of time. Compare with Figure 4 of Tomita & Satoh (2004)—

though note that their figure has different units. There appears
to be a slight mismatch between the exact hydrostatic initial
conditions and the THOR algorithm’s representation of
hydrostatic balance. This leads to a jump in the total energy
(on the order of 1014 J) on the first time step as all columns of
the atmosphere adjust very slightly. At present the origin of the
discrepancy is unclear, but in any case, the error is quite small
compared to the total energy of the atmosphere and should not
noticeably affect the results of simulations that include forcing,
which produces a much larger change in the overall energy
budget compared to the initial conditions. The pressure
perturbation is applied at the end of the first time step, reaches
the opposite side of the planet in ≈17 hr, and returns to the
original location in ≈33 hr, indicating a sound speed of
∼337 m s−1, as found in Tomita & Satoh (2004). The
theoretical sound speed is g= »c R T 347s d m s−1, where
γ=CP/CV.
From Figure 9, we can see that the variation of kinetic

energy associated with the sound wave is well compensated by
the variation in internal plus potential energy. In the case
without divergence damping, the total energy begins to
increase erroneously after ∼35 hr. The simulation crashes not
long after this time. This is the result of grid-scale noise that

Figure 21. Zonally averaged potential temperature and stream function for simulations of HD 189733 b at ∼2° resolution. In the stream function plots, positive values
indicate clockwise motion. The top panels show the NHD case, and the bottom panels show the QHD case. All quantities are averaged over the last 1000 (Earth) days
of the 10,000 day simulation.
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would be well eliminated by the divergence damping terms. A
comparison between the damped and undamped cases of the
global pressure field at 48.5 hr is shown in Figure 10. In the
undamped case, we see spurious waves originating from the
pentagonal grid points, but these waves are fully eliminated in
the damped case.

The case with divergence damping conserves the energy
much better, though there is a slight energy loss over the course
of the simulation. Comparing with Tomita & Satoh (2004),
THOR does not conserve energy as well as their model NICAM.
Our choice of entropy as the fundamental quantity in the
thermodynamic equation rather than total energy means that the

Figure 22. Snapshots at 10,000 days of the temperature (color) and horizontal winds (arrows) on isobaric surfaces for simulations of HD 189733 b at ∼2° resolution.
The left panels are the NHD simulation, and the right panels are the QHD simulation. The substellar point is at 0° longitude, 0° latitude.
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total energy is not conserved as precisely (Satoh 2002, 2003).
Mendonça et al. (2016) tested an energy correction scheme in
THOR based on Williamson et al. (2009) that, while improving
total energy conservation, had little impact on the overall
behavior of the model. Thus, until we can develop a more
robust general approach that is physically well described at
coarse resolutions, we choose to live with the gradual loss of
energy to the dissipation scheme.

4.4. Gravity Wave Experiment

A further benchmark compares the representation of gravity
waves in THOR with NICAM. The motivation behind this type
of simulation is to characterize the model’s representation of
gravity waves. This test is originally presented in Tomita &
Satoh (2004). We set up the atmosphere in the same manner as
in that paper and in the acoustic wave experiment of the
previous section, using the same planet radius, model top, and
shape of the perturbation. See Table 3 for the input parameters.
The key differences between these simulations and that in
Section 4.3 are that the atmosphere is given a thermal profile
corresponding to a constant Brunt–Väisälä frequency, instead
of an isothermal profile, and the perturbation is applied to the

potential temperature, given by

( ) ( ) ( ) ( )q dq x l f z¢ = =t z0 , , 83

where θ′ is the potential temperature perturbation function and
δθ is its amplitude. The horizontal and vertical distributions, ξ
and ζ, are again given by Equations (79) and (81). In all cases,
δθ=10 K.
The atmosphere for this case is initialized with a constant

Brunt–Väisälä frequency, N. This can be defined in terms of the
potential temperature as

( )
q

q
=

¶
¶

N
g

z
. 842

In order to reduce numerical instabilities and to minimize
motion introduced by the initial conditions, we initialize the
atmosphere from hydrostatic equilibrium. For an atmosphere
with a constant N, we must numerically solve the hydrostatic
equation for the pressure of each layer as a function of the layer
below. In our case, we begin at the reference pressure Pref,
which is the pressure at the bottom of the lowest layer at the
beginning of the simulation. From there, we progress upward,
numerically determining the pressure of each successive layer.
More specifically, we use Newton–Raphson iteration to find the

Figure 23. Zonal (left) and vertical (right) wind speeds averaged over a 20° latitude band centered about the equator for simulations of HD 189733 b at ∼4° resolution.
The top panels are the NHD case, and the bottom panels are the QHD case. All quantities are averaged over the last 1000 (Earth) days of the 10,000 day simulation.
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pressure in the ith layer that satisfies the equation
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The relationship between the pressure and density is given by
the ideal gas law. An additional constraint must then be made
on the temperature, which can be derived from the definition of

N:
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Figure 24. Temperatures averaged over a 20° latitude band centered about the equator for simulations of HD 189733 b at ∼4° resolution. The left panel is the NHD
case, and the right panel is the QHD case. Temperatures are averaged over the last 1000 (Earth) days of the 10,000 day simulation.

Table 4
Model Parameters for Gray RT Simulations

Symbol Description Units Earth HD 189733 b

r0 Planet radius m 6371,000 79,698,540
g Gravity m s−2 9.8 21.4
Ω Rotation rate rad s−1 7.292×10−5 3.279×10−5

Rd Gas constant J K−1 kg−1 287 3779
CP Atmospheric heat capacity J K−1 kg−1 1005 13226.8
Pref Reference pressure (bottom boundary) bars 1 220
Tinit Initial temperature of atmosphere K 300 1600

ΔtM Time step s 500/300 150/100
ztop Altitude of model top m 36000 3.6×106

glevel Grid refinement level L 5/6 4/5
vlevel Number of vertical levels L 32 40
Dhyp Hyperdiffusion coefficient L 4.8×10−3 9.97×10−3

Ddiv Divergence damping coefficient L 4.8×10−3 9.97×10−3

S0 Incident stellar flux W m−2 1367 467072
A0 Albedo L 0.3135 0.18
norb Orbital mean motion rad s−1 1.98×10−7 3.279×10−5

nlw Power-law index for long-wave optical depth L 4 2
fl Strength of well-mixed absorber (long-wave) L 0.1 0.5
τlw,eq Long-wave optical depth at Pref at equator L 6 4680
τlw,pole Long-wave optical depth at Pref at poles L 1.5 4680
nsw Power-law index for short-wave optical depth L 2 1
τsw Short-wave optical depth at Pref L 0.2 1170
 Diffusivity factor L 1 2
Csurf Heat capacity of surface (lower boundary) J K−1 m−2 107 L

ksurf Friction coefficient of lower boundary s−1 1.1574×10−5 L
σb Boundary layer top (fraction of Pref) L 0.7 L
ksp Sponge layer strength s−1 L 10−3

ηsp Bottom of sponge layer (fraction of ztop) L L 0.8
nlats Number of latitude bins used in sponge layer L L 20
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The quantities Pi−1, ρi−1, and Ti−1 are the pressure, density,
and temperature of the layer below the ith, except in the case of
the lowest layer, where Pi−1=Pref, ( )r =- P R Ti d1 ref init , and
Ti−1=Tinit. Tinit is a user-set initial reference temperature. The
value of Δz is the distance between the centers of the layers
except in the case of the lowest layer, where it is simply the
height of the lowest layer. After making the initial guess that
ρi=ρi−1, we do one Newton–Raphson step to find a new
value of Pi, update Ti and ρi (via Equation (86)), and then
repeat the process until the change in Pi is below some
threshold (we use 10−8).

In Figure 11, we show the results of three simulations. The first
has (N, nv)=(0.01 s−1, 1), the second (N, nv)=(0.02 s−1, 1), and
the third (N, nv)=(0.01 s−1, 2). The number of vertical levels is
20 in the nv=1 cases and 40 in the nv=2 case. The color
contours show the temperature perturbation, ΔT, at the equator
after 48 hr of integration. Tomita & Satoh (2004) give a
theoretical estimate for the gravity wave speed, cg=Nztop/πnv,
which is 31.8, 63.7, and 15.9 m s−1 in the three respective cases.
The leading peaks in the three cases are located at λ≈(55°, 95°,
30°), indicating speeds cg≈(35, 61, 19) m s−1. Tomita & Satoh
(2004) noted, in particular, the larger relative error in their nv=2
case (cg≈18m s−1) and theorized that this was caused by
insufficient vertical resolution—they used 20 vertical levels in

this case. However, we have run the same test with 20 levels
and 40 levels (the bottom panel of Figure 11 shows the 40 level
case), and the locations of the wave peaks are virtually identical
in both cases. Most likely, the error in the speed is dominated
simply by the difficulty in estimating the locations of the wave
fronts.
Figure 12 shows the evolution of the total, internal plus

potential, and kinetic energy. As in the acoustic wave case, the
kinetic energy mirrors the change in internal plus potential
energy. The oscillation in the total energy is orders of
magnitude smaller than the others, indicating that the total
energy is conserved well. This compares well with Figure 6 in
Tomita & Satoh (2004); however, as noted in the acoustic wave
case, we plot the absolute energy (in J).

5. Comparison of THOR with Shallow and Quasi-
hydrostatic Approximations

5.1. Earth-like Case with Double-gray Opacity

Here we present a dry Earth-like case to compare to the
Held–Suarez test and validate the double-gray radiative transfer
scheme. Input parameters are given in Table 4. We utilize
optical depth profiles for the short-wave and long-wave
radiation in the same style as Frierson et al. (2006) and Heng
et al. (2011a), with nsw=2, nlw=4, τsw=0.2, τlw,eq=6,

Figure 25. Zonal (left) and vertical (right) wind speeds averaged over a 20° latitude band centered about the equator for simulations of HD 189733 b at ∼2° resolution.
The top panels are the NHD case, and the bottom panels are the QHD case. All quantities are averaged over the last 1000 (Earth) days of the 10,000 day simulation.
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and τlw,pole=1.5. In this case, the insolation, or the
distribution of incident solar/stellar radiation at the top of the
atmosphere, is given by

( ) ( )f l a= -Q S cos cos , 880

where S0=1367 W m−2, f is the latitude, λ is the longitude,
and the angle α at time t is

( ) ( )a = W - n t. 89orb

Here Ω=7.292×10−5 is the rotation rate and norb=1.98×
10−7 is the orbital mean motion. This insolation pattern
assumes a zero eccentricity orbit and zero obliquity but
resolves the diurnal cycle. With zero eccentricity, the mean
motion n is simply the angular velocity of the planet about the
Sun. In a future work, we will generalize the insolation to
arbitrary orbital and rotation states.

The first case is nonhydrostatic, deep (NHD) without dry
convective adjustment (Figure 13). The second case is NHD
with dry convective adjustment (Figure 14). Comparing the
two cases, we can see that without dry convection there is clear
spurious heating at ∼20°–30° latitude. With convective
adjustment enabled, we produce a temperature profile much
more similar to the cases in Heng et al. (2011a). As in that
work, we see that the potential temperature profile, in the case
without convective adjustment, is unstable near the surface at
latitudes 50°. The convective adjustment scheme rectifies
the situation and cools the near-surface region near ∼20°–30°
latitude.

In both cases, we see jet streams form at f∼30° and
P∼0.4 bars (top right panels of Figures 13 and 14). There is a
hint of a second, weaker stream in each hemisphere at ∼60°.
The Eulerian mass stream function (bottom right panels of
Figures 13 and 14) is similar in the two cases. We see strong
thermally direct cells (Hadley cells) at the equator, and weaker
indirect cells adjacent to these. These overturning cells are
narrower in latitude than the real Hadley and Ferrel cells seen
on Earth. We speculate that this may be a consequence of the
lack of a hydrologic cycle in the current version of our model, as
narrow Hadley cells were also observed in the dry simulations
of Heng et al. (2011b), compared with, for example, Merlis &
Schneider (2010).

We calculate the Eulerian mass stream function using the
following relation:

[ ] ( )ò
p f
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r

g
v dP

2 cos
, 90
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0

0

where Ψ is the stream function, r0 is planet radius (at the model
bottom), g is the gravity, and [ ]v is the time and zonally
averaged meridional velocity. Implicit in this definition is
hydrostatic balance; in the nonhydrostatic model, this condition
is not exactly satisfied. However, the simulation is at all times
near enough to hydrostatic equilibrium that there is little
difference between in Ψ as calculated above compared to a
calculation based on Equation (4.1) of Peixóto & Oort (1984),
which does not assume hydrostatic balance.
We compare the model run using the QHD and hydrostatic,

shallow (HSS) approximations to the NHD case, all with
convective adjustment enabled. Figure 15 shows the difference
in temperature and zonal wind for the QHD and HSS
simulations from the NHD case. Over most of the model
domain, the differences are relatively small, on average. The
largest differences occur in wind speeds in the upper
atmosphere between the HSS case and NHD cases. This
suggests that nonhydrostatic effects and the geometric correc-
tions for a deep atmosphere are unimportant in this regime, at
least in terms of the global average state of the atmosphere,
but that the geometric corrections are more important than
nonhydrostatic effects.
We have run a single NHD case at glevel=6, corresponding

to a horizontal resolution of ∼1°. The output (not shown) is
qualitatively very similar to the glevel=5 case, though, as we
discuss below, the simulation conserves mass to slightly less
precision than the lower-resolution cases.
Lastly, we compare several diagnostics for the Earth-like

simulations. Figure 16 shows the evolution of the global
atmospheric mass, energy, and axial angular momentum. We
hope to conserve the total mass; the energy and angular
momentum evolve owing to input from the stellar radiation and
are thus more diagnostic of convergence. The simulations at
resolution ∼2° all conserve mass to a similar precision, a few
parts in 1012 over 1200 days. The simulation at resolution of
∼1° does slightly worse in this respect. In all cases, the model

Figure 26. Temperatures averaged over a 20° latitude band centered about the equator for simulations of HD 189733 b at ∼2° resolution. The left panel is the NHD
case, and the right panel is the QHD case. Temperatures are averaged over the last 1000 (Earth) days of the 10,000 day simulation.
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reaches a steady state in ∼200–300 days, after which the total
energy and axial angular momentum stay roughly constant.

5.2. HD 189733 b

Here we show a comparison of QHD and NHD simulations
of the hot Jupiter HD 189733 b. The input parameters are
summarized in Table 4. Simulations including the shallow
approximation (HSS) are very similar to the QHD simulations;
thus, we stick here to a comparison of QHD and NHD. The
largest differences in flow for this planet occur between the
QHD and NHD simulations, indicating that the primary source
of the differences described below is the term Dvr/Dt, the
Lagrangian derivative of the vertical velocity.

Figure 17 shows the zonally and temporally averaged
temperature and zonal wind speed during the last 1000 days
of the NHD and QHD simulations. The overall temperature
structure is very similar between the two cases. The zonal wind
speed plots indicate the presence of superrotation, as expected,
and the overall structure is similar. However, the maximum
velocities of the jets differ by ∼5%, broadly consistent with the
comparison between the “Prim” and “Full” simulations of
Mayne et al. (2017). While that study compared simulations
using the primitive equations with the full nonhydrostatic

equations, the sole difference between our simulations here is
the neglect of the material derivative of the vertical velocity,
Dvr/Dt, and the hyperdiffusive term, vr

, in the QHD case.
This results in a difference of the maximum jet speed, likely
because the 3D representation of waves has been modified.
Though the difference is small at this resolution, it becomes
more pronounced in the higher-resolution simulations, as we
describe shortly.
Figure 18 shows the zonally and temporally averaged

potential temperature and Eulerian mass stream function of
the NHD and QHD cases. Though the dry convection scheme
is enabled in these simulations, it likely has very little effect, as
everywhere the atmosphere is quite stable, as indicated by the
potential temperature structure. Though this quantity is
averaged over longitude, local profiles of the potential
temperature at different longitudes near the equator also show
stability. In the plots for the mass stream function, we see
thermally indirect overturning cells at the base of the equatorial
jet, as also seen in Charnay et al. (2015) and Mendonça et al.
(2018a). Thermally direct cells appear adjacent to the indirect
cells at higher latitudes. Overturning in the upper atmosphere is
weak in comparison and indiscernible on this scale.
Figure 19 shows snapshots (at 10,000 days) of the

temperature and horizontal wind speeds along isobars for the

Figure 27. Zonally averaged wind speed (top) and temperature at the photosphere (bottom) for simulations of HD 189733 b using different numerical dissipation
strengths. The left panels correspond to Dhyp=Ddiv=4.99×10−3, and the right panels correspond to Dhyp=Ddiv=1.499×10−2. Compare to the NHD
simulations in Figures 17 and 19.
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NHD and QHD simulations. At 0.1 bars and above (in altitude),
in the region of the superrotational jet, we see the characteristic
chevron shape and eastward hot spot offset associated with
hot Jupiters. The wind vectors indicate eastward motion
and that the gas is pushed away from the substellar point
(at 0° longitude). At 1 mbar, we see return flow on the night
side at high latitudes, which results in convergence on the
equator at the eastern terminator and the recognizable chevron
shape. The NHD and QHD simulations show only minor
differences in temperature, but the velocities are slightly higher
in the NHD case. Standing Rossby waves are easily discernible
at these pressure levels. At the 10 bar level, flow at the equator
is retrograde, though comparatively sluggish (∼10 m s−1).

Figure 20 shows the temperature and zonal wind speed, as in
Figure 17, but for simulations with a resolution of ∼2°.
Temperatures shows a similar pattern to the ∼4° resolution
simulations, but the superrotational jet has increased in speed
and has broadened in latitude, pushing the return flow toward
higher latitudes. The increase in velocity is likely due to better
resolution of waves that carry angular momentum toward the
equator. The peak velocity of the NHD simulation is ∼20%
greater than in the QHD simulation, similar to the effect
seen at ∼4° resolution. The potential temperature and stream
function for the ~2 simulations are shown in Figure 21. The

temperature and wind speeds along isobars are shown in
Figure 22.
Figure 23 shows the zonal and vertical velocities in a

latitudinal band along the equator, averaged over the last 1000
days, for the NHD and QHD simulations at ∼4° resolution. Here
we have used altitude as our vertical coordinate to avoid
extrapolation at the top of the model. The values are averaged
over a 20° latitudinal band weighted by fcos , where f is the
latitude. Zonal winds are highest on the night side (longitudes
90°–270°) toward the western terminator. As the flow approaches
the day side, it slows because of the increase in pressure. Vertical
velocities are slow everywhere in comparison to the horizontal
winds, though the figures show a lot of structure. Upwelling and
downwelling occur, for example, side by side along the western
terminator. Upwelling dominates on the day side of the planet,
with downwelling on the night side, most prominently east of the
eastern terminator. Figure 24 shows equatorial temperatures in
the same style, comparing the NHD and QHD cases.
The same quantities are shown for the ∼2° simulations in

Figures 25 and 26. While the temperature structure is largely
unchanged from the ∼4° cases, the velocities have changed
more significantly. In particular, there is now a strong
difference between the peak zonal winds in the NHD and
QHD cases. The zonal wind speeds have increased, the vertical

Figure 28. Zonal-mean zonal velocity (top left), temperature and horizontal winds at P=0.1 bars (top right), zonal winds along the equator (bottom left), and vertical
winds along the equator (bottom right), for HD 189733 b, when the sponge layer drag is removed after 5000 days.
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wind speeds have slightly decreased, and the flow now extends
deeper into the atmosphere, as also seen in Figure 20.

6. Effects of Numerical Dissipation

Here we examine the effects of numerical dissipation on the
simulations of HD 189733 b. We perform two additional
simulations, at resolution ∼4°, with Dhyp=Ddiv= 4.99×10−3

and Dhyp=Ddiv=1.499×10
−2 (or 0.5 and 1.5×the original

value of 9.97×10−3). Zonal winds and temperatures at 0.1 bar
are shown in Figure 27. The peak averaged zonal wind speed is
similar in these cases to the simulation presented in Section 5;
however, some differences are apparent. The equatorial jet appears
wider and penetrates deeper into the atmosphere in the case with
weaker dissipation. Calculation of the phase curve indicates that
the change in diffusion produces a small shift (≈3°) in the hot spot
offset. Thus, this feature appears to be largely insensitive to the
numerical dissipation, as also found in Heng et al. (2011a).

We have run one final simulation to test the effect of sponge
layer drag at the top boundary. In this simulation, the sponge

layer was removed after 5000 days; everything is otherwise
identical to the NHD case at ∼4° resolution. The purpose here
is to establish whether the sponge layer can be removed once
the model has spun up and flow is established or if the model
simply crashes. Then, if the model remains stable, we would
like to see how the flow changes in the absence of this
numerical damping. In this case, the model does not crash, and
the results are shown in Figure 28.
The zonal-mean zonal wind speed in this case is increased

compared to the case in Figure 23. The primary contribution
occurs on the night side of the planet. Further, the wind speed
increases monotonically with height, and the maximum appears
right against the upper boundary. Otherwise, the basic structures
of the flow remain similar to the case with the sponge layer
continuously enabled. There are minor changes in the pattern of
the vertical winds, because of the increased nightside zonal wind
speed, though the main trends remain the same: downwelling
occurs on the night side of the planet, whereas upwelling occurs
on the day side and is strongest at the western terminator.
In Figure 29 we compare the evolution of global quantities for

all of our simulations of HD 189733 b: the total atmospheric
mass, the total energy (internal, kinetic, and potential), and the
superrotation index (Read 1986). The superrotation index, a
measure of the axial angular momentum in excess of the solid-
body rotation, is calculated at each point in time as

· ˆ

· ˆ
( )=

å

å
-

l e

l e
S 1, 91I

i j ij

i j ij

, 3

,
sb

3

where the angular momentum at the ith grid point and jth
level,lij, is given in Equation (63), and the solid-body rotation
angular momentum (i.e., the angular momentum at each
location if the wind speed was zero) is

( ) ( )Wr= ´ ´l r r V . 92ij ij ij ij ij
sb

Ideally, the atmospheric mass should be conserved. In
practice, there is a slow drift due to numerical errors. In all of
our simulations of HD 189733 b, mass is conserved to a few
parts in 1011, as shown in Figure 29. This is close to machine
precision for hundreds of thousands of time steps. Conservation

Figure 29. Evolution of the total mass, energy, and superrotation index for the HD 189733 b simulations. Solid curves correspond to simulations with
Dhyp=Ddiv=9.97×10−3. Dark-blue lines are the NHD simulations at ∼4° resolution; cyan is the NHD simulation at ∼2°; red and black are, respectively, the
QHD and HSS simulations at ∼4°; and magenta is the QHD simulation at ∼2°. Three additional simulations are shown: NHD with Dhyp=Ddiv=4.99×10−3

(dark-blue dotted), NHD with Dhyp=Ddiv=1.499×10−2 (dark-blue dashed), and NHD with Dhyp=Ddiv=9.97×10−3 and the sponge layer removed after
5000 days (dark-blue dashed–dotted).

Figure 30. Maximum zonal wind speed as a function of time for the HD
189733 b simulations.
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is more than an order of magnitude better in the HSS
simulation—it would seem that there is some increased
numerical error associated with the curvature components of
the operators. In any case, the errors are reasonably small.

The total energy is not expected to be conserved over the
entire simulation, but ideally it would approach steady-state
values as the simulation advances. The main reason for this is
that the initial conditions are not in radiative equilibrium and it
takes many thousands of days of simulation time to bring the
entire atmosphere to this equilibrium. In practice, energy is also
continually lost because of the numerical dissipation (see
Section 4.3)—as explained earlier, we do not artificially inject
dissipated energy back into heat (see, e.g., Rauscher &
Menou 2012). However, this error is likely to be small
compared to the radiative imbalance. We have several key
developments in progress to address energy conservation in
THOR. First, we are developing better initial conditions, which
will start the model closer to radiative equilibrium. Second, we
are exploring the use of alternate forms of the thermodynamic
equation, for example, the equation for total energy. We will
present these developments in a future work.

Axial angular momentum would also be conserved in an
ideal simulation. As with the mass and energy, numerical
dissipation and integration errors lead to a gradual drift of the
total axial angular momentum. This can be seen in the
superrotation index, which is a measure of the change in axial
angular momentum in time. The drift in angular momentum is
positive because the numerical dissipation is largest in the deep
atmosphere, where the flow is retrograde (Mendonça 2019). In
all our cases, the total change is less than 10%, which is
acceptable in comparison with other GCMs (see, e.g.,
Polichtchouk et al. 2014).

The superrotation index can be interpreted as a measure of
convergence (Mendonça 2019). This value plateaus (in log-
space) as the model approaches steady state. In the low-
resolution simulations, this is reached at ∼2500–3000 days.
The superrotation index of the high-resolution simulations
continues to increase, indicating that after 10,000 days these
simulations are still not fully converged, consistent with the
fact that the equatorial jet continues to deepen in time.

Interestingly, the NHD simulation in which the sponge layer
is removed at 5000 days begins to lose angular momentum
much faster than the others. It seems that allowing for greater
reflection of waves of the top boundary causes an increase in
the total dissipation occurring in the atmosphere. It may thus be
more desirable to retain the sponge layer damping in such
simulations, despite the fact that it is an additional artificial
component to the model.

Figure 30 compares the maximum zonal wind speed across
the suite of HD 189733 b simulations. The zonal flow develops
very quickly in the upper atmosphere and changes very little
after ∼2000 days in all simulations. In the ∼2° resolution
(glevel=5) simulations, the peak zonal winds are unaffected by
the continued spin-up of the deep regions, indicating that flow
in the upper atmosphere is converged, even though the lower
atmosphere is not.

7. Summary

Here we have presented a suite of simulations using THOR.
We have demonstrated how the model performs under a range
of conditions. Despite the relative simplicity of the model (for a
GCM), we reproduce important features of Earth’s atmosphere,

such as the temperature structure, zonal flow, and Hadley
circulation. We have also reproduced the general features of
several benchmarks for dynamical cores: a synchronously
rotating Earth, a deep hot Jupiter, and wave tests previously
presented in Tomita & Satoh (2004). We can also reproduce the
dominant features of hot Jupiter atmospheres, such as the day/
night temperature contrast and the equatorial superrotation.
The flexibility of THOR has allowed us to test the impact of

commonly used approximations, like hydrostatic balance and
shallow geometry, for an Earth-like case and a hot Jupiter. For
the Earth-like case, the shallow approximation makes the
largest difference in the results, though neither the QHD nor the
HSS solution departs strongly from the full NHD simulation.
While the approximations have minor consequences for the
Earth-like case, we see a 15%–20% change in the peak zonal
winds when the QHD approximation is made in our hot Jupiter
case. Scale analysis indicates that the Dvr/Dt term (neglected in
the QHD approximation) is four orders of magnitude smaller
than the pressure gradient and gravitational acceleration,
suggesting that the QHD approximation is valid. Comparing
the Earth-like and hot Jupiter cases, Dvr/Dt∼10−7 for Earth
and ∼10−3 for HD 189733 b, while the dominant terms
(1/ρ dP/dz and g) are ∼10 m s−2 for both planets. Thus, while
the QHD approximation is good in both cases, the error is
larger for the hot Jupiter. We suspect that the neglect of this
term changes the behavior of waves that transport angular
momentum, resulting in a difference in zonal wind speed. The
vertical velocities are relatively unchanged.
We have also explored the consequences of numerical

dissipation in our hot Jupiter case. Numerical dissipation makes
a small difference in the overall zonal flow and the location of the
peak in the thermal emission. Though the effects of modeling
choices appear relatively minor, as observational data improve, it
may be possible to constrain physical processes in the models,
such as whether nonhydrostatic effects are significant enough to
influence the bulk atmospheric circulation of hot Jupiters.
This is the first major upgrade to the open-source THOR GCM.

The version consolidates physics modules that were developed in
Mendonça et al. (2018a, 2018b) and makes them available to the
public, along with major improvements in code design, user-
friendliness, and plotting tools. The simulations presented in this
work are not intended as a step forward in scientific knowledge,
but as benchmarks or signposts for the THOR model. Our
simulations of a dry Earth-like planet compare well with
previously published works (Merlis & Schneider 2010; Heng
et al. 2011a, 2011b). More realistic simulations of terrestrial planets
will require a more sophisticated scheme for turbulence in the
lower atmosphere (Obukhov 1971; Mellor & Yamada 1982;
Galperin et al. 1988; Frierson et al. 2006), a more realistic
representation of convection (Betts 1986; Betts & Miller 1986;
Ding & Pierrehumbert 2016), and the effects of condensation
(Frierson 2007; O’Gorman & Schneider 2008). Our hot Jupiter
simulations also compare well with prior works (Showman &
Guillot 2002; Cooper & Showman 2005; Rauscher &Menou 2010;
Heng et al. 2011a; Mayne et al. 2017), in that we observe
equatorial superrotation with wind speeds∼5 km s−1. We have not
included algorithms capable of resolving shock formation in the
atmosphere or subgrid shear-driven turbulence (Goodman 2009; Li
& Goodman 2010; Heng 2012; Fromang et al. 2016), clouds
(Heng et al. 2012; Parmentier et al. 2013), or magnetically induced
drag (Perna et al. 2010; Menou 2012; Rauscher & Menou 2012;
Batygin et al. 2013) that may be important in these planets.
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Appendix A
Deep Hot Jupiter Temperature Profiles

The equilibrium profiles utilized in Section 4.2 and shown in
Figure 6 for the deep hot Jupiter benchmark test are given by
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Appendix B
Code Improvements

We have implemented a number of coding improvements
since the original release of THOR. Chief among these is the
insurance of binary reproducibility, i.e., separate runs using

identical initial conditions will produce identical results down
to machine precision. Briefly, we describe coding procedures
that ensure this property.
The primary change is the elimination of atomic addition.

Atomic addition can be used in the CUDA code to ensure that
parallel threads operating on the same data (and thus the same
memory location) do not interfere with each other. The
problem with standard addition in parallel is that reading and
writing are done as separate operations, so that if multiple
threads read and write to the same location, the threads may
read the data at the same time (thus beginning operations with
the same values) but only the last thread to write will update the
sum—this is known as a “race condition.” Atomic addition
ensures that reading and writing are treated as a single
operation; thus, threads do not interfere with each other and the
computation can be done correctly.
The trouble with atomic addition is not that it is inaccurate

but that there is simply no way for the machine to guarantee the
order that the threads operate. Thus, because of machine round-
off error, one may get a slightly different end result each time
the code is run, depending on the pseudo-random order in
which the threads perform the operations. Further, atomic
addition can result in code slow-down as threads are forced to
wait for other threads to finish their operations.
The alternative, which ensures that the summation is done

correctly and that the order of operations is always the same, is
“reduction addition” (see, e.g., Appendix A.1 of Sanders &
Kandrot 2010). The concept is illustrated in Figure B1 (left).
For an arraya consisting of elements a0, a1, a2, ..., an, we first
add pairs of elements (not necessarily adjacent as shown in
Figure B1), resulting in an array with half the length of the
original. Then, we again sum pairs of elements. The process
can be repeated until the one element remains, which is the
final sum of the array.
Parallelizing the process on a GPU is somewhat more

complicated. First, we subdivide the array of length n into
subarrays of length 2i, where i must be a power of two. The block
size on the GPU is then i. The number of blocks must be long
enough to cover the entire array, that is, * * N i n2 blocks .
For * * >N i n2 blocks , the blocks extend past the length of
the array, so the end of the array is padded with zeros. Each block
will execute i threads, which each add two numbers (not adjacent
pairs, in this case), aj+ai+j, where j represents the thread
number. On each block, we then have an array of length i/2. We
then execute i/2 threads in each block, which add the pairs of
numbers ¢ + ¢ +a aj i j2 , where a′ is the new array, and repeat until
only one element is left in each block, dividing the array length by
two each iteration. Finally, the sum from each block is added
sequentially on the CPU to produce the final summation of
the array. The first two iterations of this process are illustrated in
Figure 1 (right panel).
In THOR, reduction addition is used, for example, in the

computation of global quantities (Section 3) and of the zonal
averages used in sponge layer damping (Section 2.4). Parallel
reduction is performed in ( )nlog2 steps.
Additional code improvements include the following:

1. Physical processes independent of the dynamical core
(fluid equations) have been modularized. Currently, the
physics module consists only of gray radiative transfer,
but future releases will also contain chemical tracers and
boundary layer drag (in development). The purpose of the

33

The Astrophysical Journal Supplement Series, 248:30 (35pp), 2020 June Deitrick et al.



module structure is to facilitate coupling with external
models or to allow the development of alternatives for the
same physical processes. In the near future, this will be
used to couple THOR with the radiative transfer model
HELIOS (Malik et al. 2017, 2018). Each module is given
its own set of configuration options and outputs and is
responsible for reading and writing these. At designated
points throughout the primary code of THOR, the code
checks to see whether any physics modules need to be
called, and the necessary values (state variables) are
passed to these modules. The dynamical core then
receives back a set of fluxes that are incorporated into
the fluid equations. This structure allows for modules to
be modified, omitted, or replaced without the need to
modify the primary code of THOR.

2. Initial conditions are now set entirely in external
configuration files. The previous version of the model
required separate compilations for every change to the
initial conditions, no matter how minor. Basic para-
meters, such as the physical characteristics of a planet or
modeling choices, are set in a text file, while more
involved properties, such as a nonisothermal T-P profile
or a 3D wind field, can be specified by modifying binary
input files using the Python code in our repository.

3. The Python code for plotting and regridding the
icosahedral grid is now included in the repository. This
code utilizes the NumPy (Oliphant 2006), SciPy (Jones
et al. 2001), Matplotlib (Hunter 2007), h5py,5

PyCUDA (Klöckner et al. 2012), and PySHTools
(Wieczorek & Meschede 2018) libraries. In order to
produce data that plotting algorithms can utilize, it is
necessary to interpolate from the icosahedral grid onto a
latitude-longitude grid. This is done utilizing our own
PyCUDA implementation of the Möller–Trumbore algo-
rithm (Möller & Trumbore 1997) and properties of the
icosahedral grid indexing. If desired, the vertical
coordinate can be changed from altitude to pressure via
interpolation, prior to the horizontal regridding, such that
the horizontal interpolation is done along isobars. We
often use this feature in this work.

4. Compilation of the model is now more flexible and user-
friendly. The compiling process can now auto-detect the
necessary GPU specifications and handles dependencies

in a more robust fashion. The location of the HDF56

libraries, for example, can be auto-detected.
5. A number of debugging and performance testing tools are

now built into the model and are selectable at compile
time. These can be used to test for binary reproducibility
or to check the magnitude of differences produced by
code changes.
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