
PHYSICAL REVIEW B 92, 134202 (2015)

Fluctuating volume-current formulation of electromagnetic fluctuations in inhomogeneous media:
Incandescence and luminescence in arbitrary geometries
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We describe a fluctuating volume-current formulation of electromagnetic fluctuations that extends our recent
work on heat exchange and Casimir interactions between arbitrarily shaped homogeneous bodies [A. W.
Rodriguez, M. T. H. Reid, and S. G. Johnson, Phys. Rev. B 88, 054305 (2013)] to situations involving
incandescence and luminescence problems, including thermal radiation, heat transfer, Casimir forces, spontaneous
emission, fluorescence, and Raman scattering, in inhomogeneous media. Unlike previous scattering formulations
based on field and/or surface unknowns, our work exploits powerful techniques from the volume-integral equation
(VIE) method, in which electromagnetic scattering is described in terms of volumetric, current unknowns
throughout the bodies. The resulting trace formulas (boxed equations) involve products of well-studied VIE
matrices and describe power and momentum transfer between objects with spatially varying material properties
and fluctuation characteristics. We demonstrate that thanks to the low-rank properties of the associated matrices,
these formulas are susceptible to fast-trace computations based on iterative methods, making practical calculations
tractable. We apply our techniques to study thermal radiation, heat transfer, and fluorescence in complicated
geometries, checking our method against established techniques best suited for homogeneous bodies as well as
applying it to obtain predictions of radiation from complex bodies with spatially varying permittivities and/or
temperature profiles.
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I. INTRODUCTION

Quantum and thermal fluctuations of charges give rise
to a wide range of electromagnetic (EM) phenomena; these
include luminescence from active media, e.g., fluorescence
and spontaneous emission [1–3], the finite linewidth of lasers
near threshold [4,5], thermal radiation and heat transfer
from hot objects [6–14], and dispersive interactions (Casimir
forces) between nearby surfaces [15–21]. Fluctuation-driven
effects are not only responsible for many naturally occurring
processes but are also poised to take an increasingly active
role in emerging nanotechnologies [12,13], spurring interest
in the study and engineering of complex shapes that could
dramatically alter their behavior [14,21]. Although rooted
in similar principles, the physical mechanisms behind each
of these processes vary considerably, leading to theoretical
descriptions that differ both in their formulation and imple-
mentation. Ultimately, however, all such calculations reduce
to a series of classical scattering problems [22,23] that until
recently remained largely specialized to situations involving
simple, high-symmetry geometries, e.g., planar and spherical
objects.

In this manuscript, we present a framework for the general-
purpose calculation of many different incandescence and
luminescence processes, including fluorescence, spontaneous
emission, thermal radiation, heat transfer, and Casimir forces
in arbitrary geometries. In particular, we derive a fluctuating
volume-current (FVC) formulation of EM fluctuations that
exploits techniques from the volume-integral equation (VIE)
formulation of EM scattering [24,25] and which expands the
range and validity of current methods to situations involving
inhomogeneous media. Although FVC is similar in spirit

to our previous fluctuating surface-current (FSC) methods
[26,27], unlike FSC, our new approach is not limited to
piecewise-homogeneous objects. Here, the unknowns are
volume currents within objects rather than surface currents
as in FSC and can therefore easily handle more complex
structures, including inhomogeneous bodies with temperature
gradients or spatially varying permittivities. In contrast to
recently developed scattering-matrix methods [28–40], the
FVC and FSC methods do not require a separate basis of
incoming/outgoing wave solutions to be selected (a potentially
difficult task in geometries involving interleaved objects or
complex structures favoring nonuniform spatial resolution),
although VIE can be used to compute the scattering matrix
if desired. We show that regardless of which quantity is
computed, the final expressions for power and momentum
transfer are based on simple trace formulas involving well-
studied VIE and current-current correlation matrices that
encode the spectral properties of fluctuating sources. We find
that while the number of VIE unknowns is large compared to
scattering or FSC formulations, the associated VIE matrices
admit low-rank approximations that turn out to significantly
reduce the complexity of trace evaluations, making practical
calculations tractable. We validate the FVC method by check-
ing its predictions against known solutions for homogeneous
objects and then apply it to calculate thermal radiation, heat
transfer, and fluorescence from compact objects (spheres,
ellipsoids, and cubes) with spatially varying permittivities and
temperature gradients. The same trace formulas can be readily
adapted to obtain the angular distribution of far-field radiation,
which we illustrate by providing new predictions of directional
emission from inhomogeneous objects. As explained below,
while VIE methods can be applied to arbitrary geometries, they
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are particularly advantageous in situations where object sizes
are on the order of (or smaller) than the relevant wavelengths,
providing a useful complement to well-established techniques
better suited for the study of arbitrary geometries with length
scales that are large or small compared to the relevant EM
wavelengths, e.g., proximity approximations [19,41].

Electromagnetic fluctuation phenomena can be roughly
divided into two categories: incandescence and luminescence
problems. Incandescence refers to EM radiation from objects
generated by the quantum and thermal motion of charged
particles in matter, whereas luminescence refers to incoherent
emission of light from nonthermal sources. The oldest and
most well-studied manifestation of incandescence is the
familiar glow of objects—thermal radiation—that occurs when
an object is heated above the temperature of its surrounding
environment [42,43]. Although Planck’s law was not more
than a century ago at the center of vigorous controversy, which
helped establish the foundations of quantum mechanics [44],
much of our recent interest in this phenomenon spawns from
its profound impact on energy and related nanotechnologies.
Interest in complex designs is also fueled by our increasing
ability to engineer selective and even dynamically tunable
emitters and detectors at wavelengths for which there is
currently a lack of coherent sources [12,45–49], in addition
to solar-energy harvesting applications [50–55]. Fluctuations
can also mediate heat exchange [6,8,56] and interactions
[7,15,21,57,58] (known as Casimir forces) between objects.
Unlike heat exchange, Casimir interactions persist even at
equilibrium and are known to arise primarily due to contribu-
tions of quantum rather than finite-temperature fluctuations.
One fundamental distinction between “near-field” effects
(involving objects at wavelength-scale separations or less)
and the more familiar “far-field” phenomena (separations �
wavelength) is that the former can be significantly enhanced by
the contributions of evanescent waves [6,56,59,60], growing
in a power-law fashion with decreasing object separations. As
a result, the heat transfer between real materials can exceed the
predictions of the Stefan-Boltzmann law by orders of magni-
tude [13,61] and quantum forces can reach atmospheric pres-
sures at nanometric length scales [21], motivating interest in
complex designs that can be tailored for various applications,
including thermophotovoltaic energy conversion [62–65],
nanoscale cooling [66,67], and MEMS design [68–70].

Until very recently, however, calculations and experiments
remained focused on planar structures and simple approxima-
tions thereof [7–14,71]. Since all such thermal effects arise
due to the presence of fluctuating current sources, from the
perspective of calculations their descriptions reduce to a series
of classical scattering calculations involving fields due to cur-
rents [14,23], the spectral characteristics of which are related
to the underlying physical means of excitations. In the case of
incandescence, they are determined by the thermal and dissi-
pative properties of materials via the well-known fluctuation-
dissipation theorem (FDT) [72,73]. Naively, this involves
repeated calculations of EM Green’s functions throughout the
bodies, which can prove prohibitive for complex objects where
the latter must be computed numerically, especially due to the
broad bandwidth associated with thermal fluctuations, but it
turns out that more sophisticated formulations exist [14,21].
These include time- and frequency-domain methods where the

power transfer or force on an object is obtained via integrals
of the flux or Maxwell stress tensor, or equivalently EM
Green’s functions, along some arbitrary surface enclosing the
body [36,74–81]. Recent techniques forgo surface integrations
altogether in favor of unfamiliar but more efficient expressions
involving traces of either scattering [31,33,34,37–39,82,83]
or boundary-element [26,27,84] matrices. Regardless of the
choice of unknowns, in practical implementations the latter
are expanded in terms of either delocalized spectral bases
(e.g., Fourier or Mie series) best suited for high-symmetry
geometries, or geometry-agnostic localized bases (piecewise
polynomial “element” functions) defined on meshes or grids
and applicable to arbitrary objects [23]. While there has been
much progress so far, these methods have yet to be generalized
to handle structures with temperature gradients or varying
permittivities.

Temperature gradients can arise for instance due to the
interplay of phonon and photon transport [85,86], such as
in heterogeneous structures with disparate thermal conduc-
tivities, including chalcogenide/metal interfaces [87,88] or
quartz-platium-polymer structures [89], or in graphene-based
devices [90]. Temperature gradients have also been observed
in atomic force microscopes [91,92] and nanowires [93], as
well as in situations involving irradiated particles immersed
in fluids [94–103], magnetic nanocontacts [104], or microcav-
ities subject to strong photothermal effects [105]. Material
inhomogeneities also arise in microcavity lasers stemming
from nonlinear effects [106]. Surprisingly, there are only
a handful of calculations involving nonisothermal particles,
including the calculation of radiation from atomic gases in
shock-layer structures with linear temperature gradients [107]
or calculations of large-radii spheres based on Mie series or
related semianalytical expansions [108,109]. As we show in a
separate publication, temperature gradients in inhomogeneous
bodies can lead to a number of interesting effects, including
highly directional thermal emission [110].

Luminescence, like incandescence, involves incoherent
emission of light due to quantum and thermal fluctuations of
charges, but differs in that excitations are driven by nonthermal
sources. Examples include spontaneous emission, Raman
scattering, and fluorescence from optically pumped media
[3,111,112]. Although the spectral properties of fluctuating
currents depend on complicated, nonlinear light-matter inter-
actions, the resulting incoherent radiation can be modeled by
exploiting scattering techniques similar to those employed in
incandescence problems [112]. There are, however, many im-
portant differences between these two classes of problems. For
instance, the Raman spectrum of many emitters is relatively
narrow (involving wavelengths close to material resonances)
and this has implications for calculations that favor frequency
as opposed to time-domain techniques (the latter being best
suited for broad-bandwidth processes). Furthermore, while
many thermal-radiation problems involve objects with uniform
temperature distributions, the properties of current fluctuations
excited by external pumps depend sensitively on the inputs
and can change dramatically and continuously throughout
the bodies, which is problematic for SIE/FSC formulations
based on piecewise homogeneity. Such a situation arises, for
instance, in the fluorescence from objects with features on the
order of incident wavelengths, where resonant absorption can
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lead to significant spatial variations in the amplitudes of the
fluctuating currents [3].

Until recently, the fluorescence or Raman emission pattern
of small particles was obtained by analytical methods based on
Mie series or related basis expansions [113,114]. Calculations
of luminescence from arbitrarily shaped particles instead
rely on general-purpose numerical techniques [115], most
commonly time-domain methods [116–121], and include
studies of bowtie antennas [122], nanostars [123], conical tips
[124–126], dimers [127], and thin films [128]. Frequency
domain methods include finite-element [129,130], boundary-
element [131], and discrete dipole approximation (DDA)
[132–135] methods. These tools have been exploited for
instance to demonstrate that both shape and material degrees
of freedom can be used to tailor particle emission, making
it possible to enhance fluorescence and Raman processes
[3,111,112] as well as obtain unusual angular emission patterns
[136–138]; even more recently, there has been interest in study-
ing effects related to active (e.g. non-Hermitian) and nonlinear
systems [139–144]. In most cases (with a few exceptions
[115]), the total radiated power in a given direction is computed
by directly summing the contribution of individual emitters
inside the objects, requiring repeated evaluation of Green’s
functions over both volumes and surfaces. In addition, many
calculations rely on approximations in which the effect of
the incident drive is either approximated or entirely neglected
[145] or where only the radiation from a partial set of emitters
inside the objects is obtained [146]. Our FVC approach
not only removes such limitations by fully accounting for
both the emission and excitation-dependent properties of all
fluctuating sources, but introduces new trace formulas that
offer compactness, simplicity, and a unified framework for
computing a wide range of fluctuation phenomena, allowing
techniques and ideas from one area to be more easily applied
to another.

A technique that in principle shares many similarities with
the VIE method is the so-called discrete-dipole approximation
(DDA) [147], which models objects as finite arrays of polar-
izable dipoles whose response and interactions due to incident
EM fields can be obtained via the solution of a corresponding
integral equation [148]. DDA has been recently employed and
suggested as an efficient approach for computing radiative
heat transfer [149] as well as fluorescence [3,148] from
arbitrary geometries, but unfortunately suffers from a number
of important limitations. Technically, DDA belongs to the
general class of volume integral equations traditionally solved
numerically via the method of weighted residuals [150] (or
method of moments as it is conventionally known when
applied to computational electromagnetics [151]), by which
integral equations are converted into a solvable and finite set
of linear systems of equations. Specifically, system unknowns
(fields or equivalent currents) are approximated by expanding
them in a finite set of basis functions, often determined by
discretizations of objects into meshes or grids, and then forcing
the resulting semidiscrete equations to be equal in a weak
sense, i.e., by integrating them against a set of testing functions
[152]. The actual choice and combination of basis and testing
functions gives rise to a plethora of practical variants [152].

DDA can be considered to be a particular implementation
of the VIE method known as a collocation method [153],

involving constant or dipole basis functions and Dirac-delta
distributions for testing, with solutions forced to be accurate
only at a finite set of points (known as point matching)
[153]. However, it is now known that methods of weighted
residuals are only guaranteed to converge in norm under
special circumstances, the lack of which can lead to numerous
convergence and efficiency issues [154]. Specifically, basis
functions must span the function space of the unknowns and
testing functions must span the dual space of the range of
the corresponding VIE operator [155,156]. DDA respects
neither of these, and as a consequence its applicability is
largely limited to situations involving scattering in structures
with small index contrasts and weakly polarizable media
[148], beyond which it can lead to a number of severe
convergence and accuracy problems [135]. (Note that DDA
also makes a number of other approximations that break down
in geometries involving wavelength-scale objects, cf. Eq. (14)
in Ref. [148].) In contrast, our FVC formulation is based on a
recently developed VIE framework (dubbed JM-VIE) that is
numerically solved by means of a Galerkin method of moments
[25]. JM-VIE exploits basis and testing functions spanning the
function space of internal volume currents [25], the stability
and superior convergence of which have been demonstrated in
geometries involving highly inhomogeneous objects and large
dielectric contrasts [25]. While the associated JM-VIE matrix
elements involve complicated, expensive, and highly singular
volume-volume integrals of homogeneous Green’s functions
integrated against pairs of basis functions, these were recently
shown to reduce to surface-surface integrals over smoother ker-
nels that can be readily handled using specialized integration
techniques originally developed for SIE methods [157,158].

In the following sections, we derive our FVC formulation of
fluctuating currents and demonstrate that it can be employed
to study a wide class of EM fluctuation effects in general
geometries, with no uncontrolled approximations except for
the finite discretization (basis). We begin in Sec. II with a brief
review of the VIE formulation of EM scattering, followed
by derivations of formulas involving power and momentum
transfer, as well as far-field radiation patterns from radiating
objects. The final boxed expressions involve traces of products
of VIE and current-current correlation matrices that encode the
spatial and spectral characteristics of the fluctuating sources.
In Sec. III, we show that important algebraic properties of
the associated VIE and correlation matrices allow efficient
evaluation of the trace expressions; specifically, a number of
the VIE matrices admit low-rank approximations, enabling
us to exploit sophisticated and fast iterative techniques for
their evaluation. Finally, in Sec. IV, the FVC framework is
validated against known results and also applied to obtain
predictions in new geometries that currently lie outside the
scope of state-of-the-art techniques, such as objects subject to
spatially varying temperatures and dielectric properties.

II. FVC FORMULATION

In this section, we begin by reviewing the VIE method
of EM scattering and apply it to derive an FVC formulation
of fluctuation-induced phenomena in inhomogeneous media.
Our approach relies on the JM-VIE formulation and associated
Galerkin method of moments presented in Ref. [25], also
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briefly discussed. As noted above, a strategy based on SIE
formulations is unavailable for modeling inhomogeneous ob-
jects since finding the radiation of a point source (the Green’s
function) in inhomogeneous media is nearly impossible with
only surface unknowns [159]. Matters are further complicated
for fluctuation phenomena involving power or momentum
transfer, in which case inhomogeneities in the properties of
the fluctuating sources (e.g., spatial variations throughout
the bodies due to temperature or dielectric changes) must
also be accurately accounted for. Starting with the recently
developed power formulas [160], we derive compact trace
expressions for the power and momentum transfer and far-field
radiation pattern of complicated objects with inhomogeneous
properties. Finally, we elaborate on special algebraic properties
of the associated VIE and correlation matrices that allow fast
computations of the matrix-trace formulas, making large and
complicated calculations tractable.

A. Volume integral equations

The derivations of VIEs often rely on the volume equiv-
alence principle, which shares many similarities with—but
is significantly simpler and more easily derived than—the
more well-known surface equivalence principle [161–163].
Consider the system of arbitrarily shaped, inhomogeneous
bodies described by the relative permittivity ε and permeability
μ functions, depicted schematically in Fig. 1. Let φ and σ

denote six-component EM fields and volume currents,

φ =
(

E

H

)
and σ =

(
J

M

)
,

and consider the scattering problem involving incident fields
φinc due to σ (in the absence of bodies) and scattered fields
φscat due to reflections and scattering from objects and sources.
Defining the six-component volume currents

ξ =
(

Jb

Mb

)
= −iωχφ (1)

FIG. 1. (Color online) Schematic of a many-body geometry in
which fluctuating current sources give rise to radiation as well as
flux and momentum transfer between the bodies. Also illustrated are
the incident field φinc due to a single dipole source σ within a body
V1 along with the induced polarization currents ξ throughout V1 and
two nearby bodies, V2 and V3, resulting in scattered fields φscat. The
characteristics of the dipole sources σ (fluctuation statistics) and the
permittivities of the bodies χ (material properties) both vary within
each object.

associated with bound polarization Jb and magnetization Mb

currents inside the objects, described by the 6×6 susceptibility
tensor χ (which for convenience also includes the permittivity
and permeability of the ambient medium), it follows that the
scattered field can be be written as a convolution of ξ with the
homogeneous Green’s function of the ambient medium [24].
(Note that there is no assumption on χ , which can describe
both anisotropic and/or chiral media, changing only the form
of the homogeneous Green’s function [164].) In particular,
the unknown scattered fields can be shown to be related to
the free and bound currents, respectively, via convolutions (�)
with the 6×6 homogeneous Green’s tensor of the ambient
medium (typically free space) 	(x,y) = 	(x − y,0), written
explicitly in Ref. [26]. This is the core idea behind the volume
equivalence principle, which we review below.

We begin by writing the total field φ = 	 � (σ + ξ ) via
the volume equivalence principle [24] in terms of the inci-
dent φinc = 	 � σ and scattered φscat = 	 � ξ fields, or more
explicitly:

φ(x) =
∫

d3y 	(x,y)[σ (y) + ξ (y)], (2)

where it is clear that all of the scattering information
(including material inhomogeneities) is “encoded” in the
convolution of the homogeneous Green’s function with the
polarization/magnetization current. Multiplying both sides of
Eq. (2) with −iωχ and using the definition of ξ in Eq. (1), one
arrives at the following VIE for the induced currents ξ :

ξ + iωχ (	 � ξ ) = −iωχ (	 � σ ), (3)

which can be solved to obtain ξ from the incident sources σ .
This is the so-called JM-VIE formulation of EM scattering in
which the unknowns are induced currents rather than fields or
field densities. Compared to other formulations based on field
unknowns, JM-VIE exhibits superior performance in terms of
accuracy and convergence, especially for objects with high
refractive index [25,165].

The operator equation above is customarily solved by re-
ducing it to an approximate, finite-dimensional linear system.
Let {bα} be some convenient set of N vector-valued basis
functions. We can then approximate our unknowns ξ (and, for
convenience below, the source currents σ ) in this basis:

ξ (x) ≈
N∑

α=1

xαbα(x), σ (x) ≈
N∑

α=1

sαbα(x).˜ (4)

There are two main categories of basis functions that are used
in the numerical solution of the JM-VIE above, known as
spectral and MoM subdomain bases. A spectral basis consists
of nonlocalized Fourier-like basis functions whereas MoM
subdomain bases are localized functions obtained by discretiz-
ing objects into meshes or grids of volumetric elements, e.g.,
cubes, tetrahedra, and hexahedra [166], and defining functions
by low-order polynomials with local support in one or a few
elements. In this work, we resort to the second category and
exploit piecewise constant basis functions defined in cubes,
due to the flexibility they offer for modeling geometries of
arbitrary shape [25]. We note, however, that the proposed
framework and the resulting matrix-trace formulas can also
be evaluated using spectral bases as well.
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Finally, the semidiscrete equation is “tested” with another
set of functions (called testing functions) to produce a linear
system. In the Galerkin approach, the set of testing functions
is the same with the one of the basis functions. The resulting
Galerkin JM-VIE linear system reads

W−1 x = (V − W−1) s, (5)

where

W−1
α,β = 〈bα,bβ + iωχ (	 � bβ)〉,

Vα,β = 〈bα,bβ〉, (6)

and α,β = 1 : N . Also, 〈,〉 denotes the standard inner product
of functions 〈φ,ψ〉 = ∫

φ∗ψ , with the ∗ superscripts denoting
the conjugate transpose (adjoint) operation. Without loss of
generality, we can choose the basis functions to satisfy an
orthogonality relation, so that 〈bα,bβ〉 = δαβ . In this case, the
matrix V (often called Gram matrix) is equal to the identity
matrix, i.e., V ≡ I , and it follows that

x + s = WV s = W s. (7)

Note that our simplifying assumption of orthogonal basis
functions can be easily relaxed, leading to slightly modified
W → WV and C → CV matrices (below).

The numerical evaluation of Galerkin inner products in
Eq. (6) involves multidimensional integrals over the support
of both basis and testing functions. This integration can be
quite cumbersome due to singularities (when the support
of the basis and the testing functions overlap) and the
high dimensionality of the problem. However, previous work
[167] demonstrated that these challenging volumetric integrals
can be reduced to surface integrals (of lower singularity),
allowing us to benefit from decades of work dedicated to
the accurate and efficient evaluation of the associated surface
integrals. Here, we make use of the free-software DEMCEM
[157] and DIRECTFN [158], which leverage the techniques
described in Refs. [167,168]. Furthermore, MoM JM-VIE
formulations with local basis/testing functions typically result
in very large linear systems, which can be solved with
iterative algorithms for nonsymmetric dense systems. In each
iteration, the associated matrix-vector products take O(N2)
time. Moreover, it is practically impossible to explicitly store
the (dense) matrix W−1 requiring O(N2) memory. In fact,
there are now well-established, fast algorithms to reduce the
costs of such integral equation solvers [25,169,170]. However,
the ability to exploit fast solvers in fluctuation EM problems
is not a priori guaranteed since as we show below the final
formulas involve complicated traces of products of JM-VIE
and related matrices. In Sec. III, we describe a fast procedure
for the computation of the proposed matrix trace, which relies
on a straightforward and easily implemented FFT-based fast
algorithm presented in Ref. [25] that scales as O(N log N ) for
each matrix-vector product and requires O(N ) memory.

Before concluding this section, we introduce some addi-
tional definitions and notation. In particular, further below, we
exploit the so-called Green matrix G, defined as

Gα,β = 〈bα,	 � bβ〉, (8)

which involves interactions among basis functions mediated
by the Green’s function. For n objects, the associated matrices

and vectors can be conveniently written as

G →

⎛
⎜⎜⎜⎜⎜⎜⎝

G11 G12 · · · G1n

G21 G22 . . .
...

...
...

. . .
...

Gn1 Gn2 · · · Gnn

⎞
⎟⎟⎟⎟⎟⎟⎠

; ξ →

⎛
⎜⎜⎜⎜⎜⎝

ξ 1

ξ 2

...

ξn

⎞
⎟⎟⎟⎟⎟⎠

, (9)

where the superscripts denote blocks associated with the vari-
ous objects, with diagonal components corresponding to self-
interactions and off-diagonal blocks involving interactions
between different objects. Finally, we define the projection

P
p

α,β =
{

1, if α = β = p,

0, otherwise,
(10)

which selects specific blocks of vectors x̂p = P px or diagonal
blocks of matrices Âp = P pAP p corresponding to object p.

B. Power transfer

We now derive a compact matrix-trace formula for the
computation of the ensemble-averaged flux into body Bp (or
equivalently the absorbed power) due to fluctuating current
sources in body Bq , integrated over all possible positions and
orientations. The first step consists of the evaluation of the flux
fromBp due to a single dipole source σ immersed inBq , which
we denote as �

q→p
σ . Direct application of Poynting’s theorem

implies that the flux on the objects is given by [171,172]:

�q→p
σ = 1

2
Re

∫
Bp

d3x ξ ∗ · φ, (11)

which amounts to the work done by the total field on the
polarization currents in Bq . Expressing the induced currents
and fields in the basis of JM-VIE currents and using the relation
φ = 	 ∗ (ξ + σ ) yields the following discrete approximation
(see Ref. [160] for a complete analysis):

�q→p
σ = 1

2 Re xp∗φp = 1
2 Re x∗P pφ

= 1
2 Re (x + ŝq)∗P pG(x + ŝq)

= 1
2 (x + ŝq)∗ sym (P pG)(x + ŝq)

= 1
2

(
WP qs

)∗
sym (P pG)

(
WP qs

)
= 1

2 Tr[(ss∗)(WP q)∗ sym (P pG)(WP q)], (12)

where sym G = G+G∗
2 denotes the Hermitian part of G. It

is then straightforward to obtain the ensemble-averaged flux
�q→p ≡ 〈�q→p

σ 〉, which yields

�q→p = 1
2 Tr[〈ss∗〉(WP q)∗ sym (P pG)(WP q)]

= 1
2 Tr[P qCP qW ∗ sym (P pG)W ], (13)

where C = 〈ss∗〉 is a current-current correlation matrix that
captures a statistical, ensemble average over sources, described
in more detail in Sec. II E. Defining the matrix Ĉq = P qCP q ,
which is simply a projection of the correlation matrix unto
the space of basis functions in q, we find that the ensemble-
averaged flux is given by

�q→p = 1
2 Tr[ĈqW ∗ sym (P pG)W ]. (14)
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C. Momentum transfer

In addition to carrying energy, the radiation emitted by
fluctuating sources also carries linear and angular momentum,
which can also be described using similar expressions. The
starting point consists of the evaluation of the force (or torque)
imparted on an object Bp due to a single dipole source
immersed in Bq . Although EM forces are often computed
via surface integrals of the Maxwell stress tensor, it is also
possible and in our case more convenient to express the force
as a volume integral by considering the Lorentz force acting
on the internal currents ξ induced on Bp [38]. In particular, the
force on the object is given by

Fq→p
σ = 1

2ω
Im

∫
Bp

d3x ξ ∗ · ∇φ, (15)

where ∇ denotes the usual partial derivative with respect
to infinitesimal displacements. The derivation of the above
expression follows from application of the time-average
Lorentz force dF = 1

2 Re (ρ∗E + J∗ × B)d3x on the electric
charge and current densities (ρ,J) in an infinitesimal volume
element d3x, together with a similar expression for the force
on the magnetic sources. Integrating over the volume of the
body and employing Stokes’ theorem along with Maxwell’s
equations immediately yields Eq. (15). In a similar fashion, the
torque about some origin x0 can be obtained by integrating the
differential torque dτ = (x − x0) × dF on a volume element.

Expressing the induced currents and fields in the basis of
JM-VIE currents and following a similar procedure as that of
Sec. II B, one finds that the ensemble-averaged force on the
object can be written in the compact and convenient form:

Fq→p = 1

2ω
Tr [ĈqW ∗ asym(P pGF)W ], (16)

where in this case and in contrast to power transfer, the
relevant quantity is the matrix representation GF of the gradient
of the Green’s function operator G, whose matrix elements
GF

α,β = 〈bα,∇	 � bβ〉. Also, asym G = G−G∗
2 denotes the

skew-Hermitian part of G. The torque on the object can
be obtained similarly by computing angular derivatives of
G. We note, however, that the calculation of these matrix
elements requires evaluation of multidimensional integrals
whose singularities are more severe than those of G. A key
distinction between fluctuation-induced power and momentum
transfer is that, in the latter, the force or torque on a body
can be nonzero even at thermal equilibrium and/or zero
temperature; these are the usual equilibrium Casimir forces
[58]. Equation (16), which computes only the nonequilibrium
contribution to the force, must generally be augmented by these
equilibrium contributions to yield the total force. Connections
between Eq. (16) and expressions for equilibrium forces,
techniques for evaluating the above-mentioned integrals, and
results of VIE computations of nonequilibrium Casimir forces
and torques are addressed in a separate manuscript [173].

D. Far-field radiation intensity

In addition to power and momentum transfer, another useful
quantity is the far-field radiation intensity of our system,
which can also be expressed as a simple trace formula.
The result which follows trivially from Eq. (13), is that the

ensemble-averaged flux radiated by an isolated body Bq to the
background medium is given by

�q→0 = − 1
2 Tr[CW ∗ sym GW ], (17)

where the minus sign corresponds to the direction of the power
flux and stems from Poynting’s theorem. Also, it follows
naturally in the case of an isolated body that Ĉq = C and
P p is the identity matrix. However, in addition to the overall
radiation, it is also useful to obtain the radiation intensity
over specific directions, or equivalently the power radiated
per solid angle. The angle-resolved radiation intensity U

q→0
σ

from a single source σ immersed in Bq can be obtained by
expressing the radiation field at infinity E∞ (where only far
field contributions remain) in terms of the free and bound
current sources, as follows:

Uq→0
σ = k2Z

2(4π )2
|QE∞(x)|2 = k2Z

2(4π )2

∣∣Q[
	E

∞ � (σ + ξ )
]∣∣2

,

(18)

where k is the wave number and Z = √
μ0/ε0 is the wave

impedance, both in vacuum. Also, 	E
∞(x,y) is the 3×6 Green’s

tensor of the ambient medium which maps currents to far-field
electric fields, and Q is a 3×3 transformation tensor that maps
vectors from Cartesian to spherical coordinates and projects
their radial component to zero [174]:

Q =

⎛
⎜⎝

0 0 0

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

⎞
⎟⎠, (19)

where θ and φ are the inclination and azimuthal angles,
respectively. Given the solution of the VIE scattering problem
and following the same procedure described above, it is
straightforward to write the radiation intensity as a matrix-trace
formula of the form:

Uq→0
σ = k2Z

2(4π )2
(s + x)∗GE∗

∞GE
∞(s + x)

= k2Z

2(4π )2
Tr

[
(ss∗)(W )∗

(
GE∗

∞GE
∞

)
(W )

]
, (20)

where the matrix GE
∞ is the discretized form of the operator

Q	E
∞, obtained in a similar fashion as G. Ensemble averaging

over all sources, we find that the final formula for the angle-
resolved radiation intensity Uq→0 ≡ 〈Uq→0

σ 〉 is given by

Uq→0 = k2Z

2(4π )2
Tr

[
C W ∗(GE∗

∞GE
∞

)
W

]
. (21)

Equation (21) can be integrated over all solid angles � to
yield the total radiation rate �q→0 = ∫

d�Uq→0(�), which
as expected agrees with results obtained by direct application
of Eq. (17), as discussed in Sec. III.

E. Current-current correlation matrices

The boxed formulas above are very general in that they
apply to many different kinds of fluctuation processes, the
physical properties and origins of which are described by
the correlation matrices C = 〈ss∗〉, which involve a statisti-
cal, ensemble-average over all sources σ and polarizations
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throughout the bodies. In particular, the matrix elements of
the correlation matrices describe interactions among basis
functions and are given by

Cα,β = 〈sαs∗
β〉 =

∫∫
d3xd3y b∗

α(x)〈σ (x)σ ∗(y)〉bβ(y), (22)

which follows trivially from the fact that the current expan-
sion σ (x) = ∑

α sαbα(x) involves orthogonal basis functions.
Although in general the calculation of each matrix element
is given by volume-volume integrals against pairs of basis
functions, current fluctuations are spatially uncorrelated in
local media and therefore satisfy [2,5,72]

〈σi(x,ω)σ ∗
j (y,ω)〉 = Jij (x,ω)δ(x − y), (23)

where the subscripts denote polarization degrees of freedom
and J � 0 is a position-dependent current-current corre-
lation tensor whose form depends on the physical origins
of the fluctuations. It follows that C is Hermitian and
positive-semidefinite and thus admits a Cholesky factorization
C = LCL∗

C , which we exploit in Sec. III to demonstrate that
our radiation, power, and momentum formulas are susceptible
to fast-trace calculations.

When the sources of fluctuations involve only quantum
and thermal vibrations (heat), the correlation tensor J is
determined by thermodynamic considerations such as the
well-known FDT [72,175], relating current fluctuations to
dissipation in materials. Specifically, the elements of the
correlation tensor are given by [175]

Jij (x,ω) = 4

π
Im χij (x,ω)�(x,ω), (24)

where the Im χ tensor describes losses in the medium and
�(x,ω) = �ω/(e�ω/kBT (x) − 1) is the Planck distribution, or
the average energy of an oscillator with local temperature T (x).
[Note that in defining the local temperature and FDT above,
we are assuming that gradients in the temperature ∇T are
small compared to some material-dependent current-current
correlation lengthscale ξ (on the order of the atomic scale
or phonon mean-free path), so that Eq. (24) can be thought
of as the zeroth-order term of an expansion in powers of
ξ |∇T |/T .] Equation (24) in conjunction with the power
transfer and radiation formulas above are exploited below
to evaluate the thermal radiation and heat transfer between
inhomogeneous bodies with spatially varying temperature and
dielectric properties, and also in an upcoming paper that
focuses on nonequilibrium Casimir forces [173].

In situations involving active media driven by external
pumps, the characteristics of the fluctuating currents (J ) de-
pend on the details of the input drive and physical mechanisms
responsible for emission. For a broad range of processes, the
spectral function can be written in a simple form:

Jij (x,ω) = χinc(x)χemm,ij(x,ω), (25)

where χinc describes the response of the medium due to the
pump and χemm describes the emission spectrum of the excited
medium, which depends on the distribution of active molecules
in the medium and on complicated electronic transitions
involving quantum/thermal processes mediated by the pump
[3]. For example, in the case of one-photon fluorescence
from a medium with high quantum yield and excited by

incident light, the pump spectrum is proportional to the
locally absorbed power and hence can be computed by direct
application of the VIE power formulas. Such a relationship
in conjunction with Eq. (21) is exploited below to compute
the fluorescence flux spectrum of an irradiated sphere. A
similar dependence on the local field intensity arises in the
case of Raman scattering, except that χinc is proportional
to the Raman polarizability tensor rather than the susceptibility
of the medium [3]. Similar descriptions apply in more compli-
cated systems, including fluorophores with low quantum yields
or active media subject to highly nonlinear (e.g., two-photon)
processes. In the case of spontaneous emission from a structure
with gain, the emission spectrum is given by the spatially
dependent effective permittivity and temperature profiles of the
structure, as determined by the steady-state atomic populations
of the system, both of which can be obtained by application of
steady-state ab initio laser theory (SALT) [5,176].

III. FAST TRACE COMPUTATIONS

The matrix-trace formulas derived in the previous sections
require products of inverses of the JM-VIE matrix W with
dense matrices sym (P pG), asym (P p∇G), and GE∗

∞GE
∞. As

mentioned above, due to their large size and correspondingly
severe CPU and memory limitations, it is practically impos-
sible to form explicitly either the Green matrix or its inverse.
There are, however, fast FFT-based procedures for evaluating
matrix-vector products of the JM-VIE system matrix and the
Green matrix [25]. Here, we describe a framework based on
iterative methods for the fast computation of the associated
trace formulas above.

We begin with the matrix-trace formula �q→p in the
presence of n bodies (including Bp and Bq), which after some
algebraic manipulations can be written as follows (ignoring
prefactors):

�q→p = Tr[CqqWpq∗(sym Gpp)Wpq]

+
n∑

m = 1
m �= p

Tr[Cqq sym (Wpq∗GpmWmq)]

= Sq→p + Cq→p, (26)

where Cqq is the qq block of the matrix C. Due to the different
characteristics of Sq→p and Cq→p, we need to address them
separately. As discussed in Sec. II E, the matrix Cqq can be
assumed to be Hermitian and positive semidefinite, hence it
admits a Cholesky factorization, Cqq = LCqq L∗

Cqq . In addition,
sym Gpp is a Hermitian, negative semidefinite matrix [27] and
it also admits a low-rank approximation since it is associated
with the smooth, imaginary part of the Green’s functions.
Hence it can be approximated to any desired accuracy by a
truncated singular value decomposition (SVD) factorization,
sym Gpp ≈ −UppSppUpp∗, where Spp ∈ Cr×r , with r � N .
The norm of the error in the aforementioned truncation is
bounded by the norm of the vector of discarded singular
values. The classical SVD algorithm requires the complete
matrix, hence we resort here to a class of modern randomized
matrix approximation techniques, and more specifically to the
randomized SVD method (rSVD) [177,178]. rSVD is effective
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for matrices with fast drop of the singular values and it requires
only a fast matrix-vector procedure, which we have developed
as described above. The matrix with the singular values can be
further decomposed so that Spp = LSppL∗

Spp . Finally, it follows
that the self-term in Eq. (26) can be written as the square of a
Frobenius norm,

Sq→p = −Tr[LCqq L∗
Cqq (Wpq∗Upp)LSppL∗

Spp (Upp∗Wpq)]

= −‖L∗
Cqq (Wpq∗Upp)LSpp‖2

F. (27)

For the most time consuming part of the norm, we need to
solve the adjoint JM-VIE system r times (for each of the
leading singular vectors of sym Gpp). Note, however, that we
can solve for each vector of Upp independently and thus the
entire procedure is embarrassingly parallelizable. Also, L∗

Cqq

and LSpp are either sparse or diagonal, while Wpq∗Upp is
a “tall-and-skinny” matrix (the number of columns is much
smaller than the number of rows) and hence the matrix product
appearing in the norm can be computed efficiently.

The trace formula for Cq→p is not symmetrical and
therefore cannot be reduced to a norm. In this case, one can
exploit the fact that Gpm admits a low-rank approximation
due to the smoothing properties of the Green’s function
for disjoint objects. The final dimensions of the low-rank
approximation of Cq→p (for a prescribed accuracy) depend
on the electric distance between objects p and m [179], i.e.,
Gpm ≈ UpmSpmV pm∗, where Spm ∈ Cl×l , with l � N . The
final formula for Cq→p after the Cholesky factorization of the
singular values matrix (Spm) is given by

Cq→p = Re
n∑

m = 1
m �= p

Tr[XUpmX∗
V pm ],

(28)

where

XUpm = L∗
Cqq (Wpq∗Upm)LSpm,

XV pm = L∗
Cqq (Wmq∗V pm)LSpm.

Both XUpm and XV pm are “tall and skinny,” and we can not
compute the trace by forming explicitly their product, due to
memory limitations. Alternatively, we can use the standard
vectorization of a matrix vec(), which converts the matrix
into a column vector, together with the identity, Tr[XY ∗] =
vec(X)T · vec(Y ), and write Eq. (28) in the following compu-
tationally friendly form:

Cq→p = Re
n∑

m = 1
m �= p

vec(XUpm )T · vec(XV pm).
(29)

The overall computational complexity for the evaluation of
Cq→p consists of a single run of the Randomized-SVD for
a nonsymmetric matrix [177], and 2 × l solves of the adjoint
JM-VIE system. In the case of the matrix-trace formulas for
the force and the torque, the procedure is similar with the
one described above. The only difference stems from the
replacement of G with GF and sym with asym .

Finally, the case of far-field radiation is somewhat simpler.
According to Eq. (21), we just need to solve 2 times the adjoint
JM-VIE system, since GE∗

∞ ∈ CN×2. Hence the radiation

intensity for a specific direction or solid angle � is given
by the following square of the Frobenius norm:

Uq→p(�) = k2Z

2(4π )2

∥∥L∗
C

(
W ∗GE∗

∞
)∥∥2

F.
(30)

This is a very useful formula, especially when directional
information of the radiated power is of interest. In addition,
the total radiated power can be evaluated by integrating
Eq. (30) over all solid angles, as mentioned in Sec. II D,
which would amount to employing a numerical integration
scheme over the unit sphere (e.g., Lebedev quadrature [180]).
Alternatively, one could exploit Eq. (17) and the associated
norm ‖L∗

C(W ∗U )LS‖2
F to compute the total radiated power

from an isolated body. The latter is expected to be more
efficient for total-radiation computations with prescribed
accuracy, controlled by the SVD factorization of the Green
matrix, in which case the minimum number of JM-VIE solves
needed for a prescribed accuracy is estimated in advance. In
contrast, the former approach required adaptive quadrature
schemes where the accuracy is controlled by the comparison
of results between different orders of integration, with no
a priori control.

IV. VALIDATION AND APPLICATIONS

In this section, we apply the FVC method to obtain new
results in complex geometries. To begin with, we show that the
Green matrices appearing in our trace formulas admit low-rank
decompositions (as discussed in Sec. III) by computing their
ranks to within some tolerance in a representative structure
involving two vacuum-separated, homogeneous cubes. We
validate the FVC method by checking its predictions against
known results of thermal radiation and near-field heat transfer
between homogeneous bodies, including spheres, cubes, and
ellipsoids, obtained using a boundary-element implementation
of our recent FSC formulation [26]. We show that when subject
to temperature gradients or continuously varying permittiv-
ities, complex bodies can exhibit highly modified thermal
radiation and heat transfer spectra, leading to directional
emission at selective wavelengths. Finally, we demonstrate that
the same formalism can be exploited to study luminescence
from excited media by computing the fluorescence spectrum
of a sphere irradiated by monochromatic incident light.
We show that the impact of the resulting inhomogeneous
current fluctuations cannot be easily obtained by exploiting
simple homogenization or effective-medium approximations.
For convenience and simplicity, we consider dielectric media
with no material dispersion (constant Re ε ≈ 12 and large
dissipation Im ε ≈ 1), though our approach is general in that
it can readily handle other kinds of materials such as metals
with Re ε < 0 and even gain media.

A. Low-rank approximations

Low-rank approximations of the associated (free-space)
Green matrices are instrumental to the practical and efficient
evaluation of our trace formulas. In this section, we present
some representative results obtained from computing the ranks
of both sym Gpp and Gpm, to within some tolerance, for the
particular problem of two vacuum-separated, homogeneous
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TABLE I. Ranks of sym G11 for various frequencies (ω R

c
) and

tolerances (tol) in truncated SVD. The ranks correspond to the case
of a cube of edge length 2R. In addition, results for a sphere of radius
R are included in brackets.

�����ω R

c

tol
1e−1 1e−2 1e−3 1e−4 1e−5 1e−6

0.01 4 (4) 4 (4) 4 (4) 4 (4) 7 (7) 12 (12)
0.1 4 (4) 4 (4) 7 (7) 12 (12) 12 (12) 14 (12)
1.0 12 (7) 14 (12) 24 (24) 40 (24) 40 (40) 60 (40)
2.0 18 (12) 37 (24) 51 (40) 65 (60) 84 (60) 109 (84)

cubes of edge length L = 2R and separated by a surface-
surface distance d, shown schematically in Fig. 5.

Table I shows the singular values of sym G11, corresponding
to one of the two cubes, as a function of the normalized
frequency ωR/c and tolerance tol; that is, we obtain the
singular values that produce SVD factorizations bounded
in norm by the tolerance tol, also known as a truncated
SVD. Since the associated matrix is very large and our
trace formulations can be cast in terms of fast matrix-vector
products, our calculations exploit the rSVD method recently
developed for big-data problems [177]. (Note that results
for the second cube, involving sym G22, would be identical
since both cubes have equal sizes and number of unknowns.)
Our results reveal at least two important features: first,
the ranks scale linearly with ω at large frequencies, and
sublinearly (roughly constant) at small frequencies. Additional
numerical experiments (not shown) confirm that the effect
of mesh density on the ranks is negligible, yet another
manifestation of the favorable convergence properties of the
JM-VIE formulation [25]. This also suggests a strategy for
obtaining the finite rank of sym Gpp with prescribed accuracy:
we begin by computing the rank of the operator for a prescribed
accuracy by using a coarse mesh and then run a fixed-rank
rSVD algorithm with finer mesh. Finally, Fig. 2 illustrates the
rate of convergence of the radiation spectrum �(ω) from an
isolated cube at a fixed temperature T with respect to different
(a) discretization mesh densities and (b) truncation tolerance,
normalized to the spectrum of a corresponding black body
�BB(ω) = A

4π2 (ω/c)2�(ω,T ), where A denotes the surface
area of the cube.

FIG. 2. (Color online) Flux spectrum �(ω) of a cube of edge
length 2R held at temperature T , normalized by the corresponding
black-body spectrum �BB(ω) = A

4π2 (ω/c)2�(ω,T ), for different (a)
discretization mesh densities and (b) rSVD truncation tolerances.

TABLE II. Ranks of G12 for various distances (d) and tolerances
(tol) in truncated SVD. The ranks correspond to the case of two
cubes of edge length L = 2R and frequency ω R

c
= 1. Each cube

is discretized into N = 403 voxels, resulting in 3N total degrees of
freedom, i.e., #DOFS = 3N.

�����d/L

tol
1e−1 1e−2 1e−3 1e−4 1e−5 1e−6

0.001 4075 4853 5253 6352 7240 8481
0.01 992 2611 3934 4800 5832 6894
0.1 50 196 447 804 1268 1849
1.0 6 14 27 42 66 89
10.0 4 7 9 14 19 23

The situation changes in the case of the “coupling” Green
matrix G12, which encodes interactions between objects.
Table II shows the significant singular values associated with
the coupling matrix of the same cube-cube geometry at a
fixed frequency ω and for various separations d, obtained
by leveraging the rSVD technique. As expected, the singular
values increase as d decreases, a consequence of the power-law
drop-off of the Green’s function with separation in the near
field. It follows that the computation complexity of the trace
formulas increases as the two bodies come close together.
(Note that, as described in Sec. III, our trace formulas for power
and momentum transfer require us to solve two VIE systems
for every corresponding eigenvector, but fortunately each
system can be solved independently and the overall process is
embarrassingly parallelizable.) Nevertheless, we find that G12

remains very low rank even for relatively close separations
d/L ≈ 0.1, below which constraints on the resolution make
the FVC approach less practical. However, it is precisely at
such small separations that approximate methods such as the
proximity approximation become accurate [41].

B. Thermal radiation and heat transfer

We begin by validating our FVC approach by checking
its predictions of thermal radiation from homogeneous bodies
against results obtained using our recently developed FSC
formulation [26,27], which is well-suited for handling piece-
wise constant structures and fluctuations statistics. Figure 3(a)
shows the flux spectra �(ω) of multiple objects (of uniform
temperature T and permittivity ε = 12 + i, including a sphere
of radius R (blue line), a cube of edge length 2R (green line),
and an prolate ellipsoid of long semiaxis R and short semi
axes R

2 (red line). Note that in each case �(ω) is normalized to
the corresponding flux from a black body. As shown, there
is excellent agreement between the FVC (solid lines) and
FSC (circles) predictions, both of which illustrate the expected
radiation enhancement at geometric resonances.

The FVC method can also handle more complex struc-
tures, including inhomogeneous bodies with spatially varying
permittivities. In particular, Fig. 3(b) shows �(ω) for the
same geometries of Fig. 3(a) but for objects with linearly
varying permittivity profiles ε(z) = ε−R + (εR − ε−R) |z+R|

2R
,

with ε−R = 2 + i and εR = 12 + i (solid lines) and axes
chosen to lie at the geometric center of each object. Compared
to the spectrum of the homogeneous bodies of Fig. 3(a), one
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FIG. 3. (Color online) Flux spectrum �(ω) normalized by the
corresponding black-body spectrum �BB(ω) = A

4π2 (ω/c)2�(ω,T ) of
different bodies of surface area A held at temperature T = 1000 K,
including a sphere of radius R (blue lines), cube of edge length
2R (green line), and ellipsoid of long semiaxis R and short semi
axis R

2 (red line). The objects have either (a) uniform permittivities
ε = 12 + i or (b) spatially varying ε(z) = ε−R + (εR − ε−R) |z+R|

2R
,

with εR = 12 + i and ε−R = 2 + i. For comparison, we also plot
the radiation spectrum �eff (dashed lines) of corresponding bodies
with homogeneous effective permittivities εeff = 7 + i. The insets
depict the angular distribution of far-field radiation U (�), normalized
by the maximum intensity over all directions max� U , at selected
frequencies.

finds that the resonances are shifted to larger frequencies and
their peak amplitudes are significantly smaller, a consequence
of the decreased effective permittivity of each object. For
comparison, we also show �eff(ω) (dashed lines) from corre-
sponding homogeneous objects with effective permittivities,

εeff = 1

V

∫
V

d3x ε(x), (31)

corresponding to uniform εeff = 7 + i. Our calculations reveal
that in the illustrated frequency range and for our choice of
dielectric profiles, the homogeneous approximation is qualita-

tively accurate to within 10%. On the other hand, employing
Eq. (21) to compute the angular radiation patterns at selected
frequencies, shown as insets in Fig. 3, reveals significant
changes, e.g. significantly larger directional emission, that
cannot be captured by the effective-medium approximation. In
particular, the radiation patterns of the inhomogeneous objects
break ẑ mirror symmetry. For example, the flux from the cube
at ω ≈ 0.65R/c is slightly larger in the +ẑ than in the −ẑ

direction, a situation that is reversed at larger ω ≈ 0.9R/c

(see insets). This can be explained as arising from near-field
effects: at large wavelengths, the high-ε regions redirect
radiation through the near-field coupling of dipoles in the
low-ε regions [refs], leading to increased radiation along the
+ẑ direction, whereas at larger wavelengths where ray-optical
effects dominate, light is increasingly reflected from high
to low ε regions. Generally, the transition frequency of the
favored radiation direction depends not only on the wavelength
but also shape of the objects, e.g., even at a frequency as large
as ω ≈ 1.5R/c, the ellipsoid continues to radiate more along
the +ẑ direction.

More pronounced changes arise when objects are subject to
spatial temperature gradients. Figure 4 shows �(ω) from ho-
mogeneous (ε = 12 + i) ellipsoids subject to either (a) radially
varying T (r) = T0 + (TR − T0) r

R
or (b) z-varying temperature

profiles (see caption). In both cases, � is normalized by the
flux �eff obtained from a naive approximation in which the
temperature variations are removed in favor of a uniform
effective temperature Teff determined by a simple average of
the Planck distribution over the volume V of the bodies,

�(ω,Teff) = 1

V

∫
V

d3x �(ω,T (x)). (32)

Such a simple approximation obviates the need for exact
calculations that explicitly incorporate inhomogeneities, but is
clearly inadequate for wavelength-scale objects. Specifically,
Fig. 4(a) shows �(ω) from spheres with radially varying
temperatures, illustrating that beyond the sub-wavelength
regime ω � R/c and depending on the choice of T0 and TR ,
� can be many times larger or smaller than that predicted by
Eq. (32), varying dramatically as a function of ω. The failure
of this naive approximation is especially apparent near Mie
resonances, in which case the coupling of fluctuating sources
(dipoles) to far-field radiation (the local density of states
in the absence of dissipation) is highly position-dependent.
The insets of Fig. 4(a) show cross-sections of the spatially
varying flux contribution from dipoles in the interior of the
sphere at two relatively close frequencies. At ωR/c ≈ 1.1,
we find that dipoles closer to the center can couple more
efficiently to far-field radiation than those near the edges,
causing Eq. (32) to underrestimate the flux (�/�eff ≈ 3) in
the case T0 = 1000 K, TR = 0 (green line) and to overestimate
it (�/�eff ≈ 0.8) when T0 = 0, TR = 1000 K (blue line). The
converse is true at ωR/c ≈ 0.85, in which case their coupling
to radiation is largest at the center and edges of the sphere.
In the long wavelength regime (ω → 0), the EM fields are
approximately uniformly distributed throughout the sphere
and Eq. (32) becomes increasingly accurate. Similar effects
arise in situations involving z-varying temperature profiles,
explored in Fig. 4(b) for either spheres (blue line) or ellipsoids
with either their long-axes (green line) or short-axes (red
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FIG. 4. (Color online) Flux spectrum �(ω) of various bodies
normalized by the corresponding predictions of a simple approxi-
mation �eff , defined in Eq. (32), including (a) sphere of radius R

and radially varying temperature profile T (r) = T0 + (TR − T0) r

R
for

both T0 = 0,TR = 1000 K (blue line) and T0 = 1000,TR = 0 (green
line), and (b) sphere of radius R (blue line) or ellipsoids with short
semiaxes R

2 and long semiaxis R along the ẑ (green line) or x̂ (red
line) directions, subject to vertically varying temperature profiles
T (z) = T−L + (TL − T−L) |z+L/2|

L
, where L denotes the z dimension of

the corresponding body. In all cases, objects have uniform permittivity
ε = 12 + i and are subject to temperature gradients T−L = 0 and
TL = 1000 K. The insets in (a) show the cross-sections of the spatially
varying flux contribution from dipoles in the sphere at different
frequencies while those in (b) show the angular distribution of far-field
radiation U (�) normalized by max� U .

line) aligned with the ẑ direction. For instance, ellipsoids
can exhibit highly directional emission (almost a factor of 3
times larger) along the direction of decreasing temperature. For
metallic objects, similar effects should arise in which case the
dominant radiation regions are determined by both skin-depth
and surface-wave effects.

In addition to far-field radiation, the FVC method can
be employed to obtain radiative transfer between objects.
Figure 5 shows the heat-transfer spectrum �(ω) [computed via
Eq. (16)] normalized by �BB(ω) (same as above), between two
vacuum-separated cubes of edge length 2R and surface-surface

FIG. 5. (Color online) Heat-transfer spectrum �(ω), normalized
by the corresponding black-body spectrum �BB(ω)= A

4π2 (ω/c)2�

(ω,T ), between two cubes of edge length 2R and temperature
T = 1000 K separated by surface-surface distance d = R. The
cubes are assumed to have either uniform permittivities ε = 2 + i

(red dashed line), ε = εeff = 7 + i (black dashed line), or ε = 12 + i

(blue dashed line), or vertically varying permittivities ε(zi) = ε−R +
(εR − ε−R) |zi+R|

2R
defined with respect to the local axis x1,2 at the

center of each cube (shown on the inset), chosen so that the system
has mirror symmetry about the x-y plane intersecting the origin O.
The gradients are either increasing (black solid line) or decreasing
(green solid line) toward or away from the center, corresponding to
the choice of εR,−R = {12 + i,2 + i} or εR ↔ ε−R , respectively.

separation d = R, of either uniform (dashed lines) or vertically
varying (solid lines) permittivities. We consider dielectric
profiles of the form ε(zi) = ε−R + (εR − ε−R) |zi+R|

2R
defined

with respect to the local axis located at the center of each cube
x1,2, chosen so that the entire system has mirror symmetry
about the origin (see inset). We consider two different profiles,
ε−R,R = {2 + i,12 + i} (black line) or εR ↔ ε−R (green line),
corresponding to increasing gradients toward or away from
the origin. For comparison, we also plot the transfer between
cubes of uniform permittivities ε = 2 + i (red dashed line),
ε = 12 + i (green dashed line), and ε = εeff = 1

V

∫
V

d3x ε(z),
corresponding to the minimum, maximum, or average of
the spatially varying permittivities, respectively. As shown,
depending on the wavelength regime (near versus far field)
inhomogeneities can have a different effect on the heat transer.
For instance, at low ωR/c � 1 where near-field effects prevail,
homogeneous bodies with smaller dielectric constants tend
to transfer more heat—the same dependence is observed for
planar objects separated by vacuum, where the near-field
contribution ∼( Im ε

|ε+1|2 )2 [13]. Not surprisingly, because nearby
dipoles tend to contribute more flux than far-away dipoles, one
observes that despite having the same average permittivities
εeff (dashed blue line), the transfer is sensitive to the local
dielectric variation, exhibiting larger enhancement in the case
where the permittivity is increasing away (green solid line)
rather than toward (black solid line) the origin. At larger
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ωR/c � 0.5, one observes the opposite behavior, in which
case the largest transfer is obtained for increasing permittivities
toward the origin. Such spatially dependent dielectric profiles
can arise, for instance, in situations involving nearby objects
doped with gain media, in which case Purcell enhancement
can lead to separation-dependent inhomogeneities in the
spontaneous emission and decay rate of emitters.

C. Fluorescence

We now consider application of the FVC formulas to
the calculation of fluorescence. A typical fluorescence setup
consists of an incident wave impinging on a fluorescent
body, leading to the absorption and subsequent re-emission
of light by molecules inside the body [3]. Both of these
effects are captured by the current-current correlation matrix
described in Sec. II E, which encodes the spectral properties
of the fluctuations. In the particular problem of one-photon
fluorescence induced by an incident monochromatic wave at
a fixed frequency ωinc, the spectral function J (x,ω) has the
form given in Eq. (25), with the excitation spectrum given by
the locally absorbed power,

χinc(x) ∝ ωinc Im χ |E(x,ωinc)|2, (33)

and χemm(x,ω) denoting the fluorescence spectrum of the
bulk medium, usually a relatively broad Lorentzian line shape
centered near the material’s absorption resonance. (Note that
χinc = 0 in the absence of a fluorescent medium.) A well-
known approach to enhance fluorescence is to design bodies
with strong resonances bodies to have strong resonances
at ωinc, leading to increased absorption [3]. For bodies
designed to have additional resonances within the fluorescence
bandwidth, determined by χemm, there is an additional source
of enhancement arising from the increased local density of
states, or increased coupling of dipole emitters to far-field
radiation. Inhomogeneities arise due to the fact that χinc and
the local density of states are both highly spatially nonuniform
near resonances.

Figure 6 shows the fluorescence emission �(ω) from a
sphere of radius R and uniform permittivity ε = 12 + i,
irradiated by an x-polarized, z-traveling incident wave of
frequency ωincR/c ≈ 1.58, chosen to coincide with one of
its resonances. For simplicity, we assume a nondispersive
and uniformly distributed fluorescent medium with χemm = 1,
although as noted above our formalism can just as easily handle
spatially varying distributions. The first step in computing
the fluorescence emission is to obtain the locally absorbed
power within the sphere χinc(x), which boils down to the
calculation of a single and far simpler scattering problem
exploiting Eq. (12), as described in Ref. [160]. Along with
� (blue line), Fig. 6 shows χinc along three different cross-
sections intersecting the center of the sphere (top contour
plots), illustrating the highly nonuniform spatial pattern of
current fluctuations. Also shown is the spectrum �eff obtained
by application of a homogeneous approximation (red line)
where the absorbed power is averaged over the volume of
the sphere to yield a uniform, effective χeff = ∫

V
d3x χinc(x),

along with the corresponding ratio �/�eff (black line). As
before, such approximations yield accurate results in the
subwavelength regime but break down at larger frequencies.

FIG. 6. (Color online) Far-field fluorescence spectrum �(ω) (in
arbitrary units) of a homogeneous and nondispersive dielectric
sphere of radius R and permittivity ε = 12 + i excited by an x̂-
polarized planewave propagating along the ẑ direction with frequency
ωincR/c = 1.58. The absorbed power χinc(x) inside the sphere, ob-
tained by solving a single scattering problem as described in Ref. [25],
is shown in the top contour plots along three sphere cross-sections. �
is computed exactly (blue line) or via a homogeneous approximation
�eff in which the absorbed power is taken to be uniformly distributed
inside the sphere and given by χeff = ∫

V
d3xχinc(x) (red line). The

ratio of the two is plotted as the black dashed line on the right axis.
The insets depict the angular distribution of fluorescence emission,
normalized by the maximum intensity over all directions, at selected
frequencies.

For instance, at ωR/c ≈ 1, we find that �/�eff ≈ 1.5. More
importantly, the approximation fails to capture the angular
distribution of radiation (insets): both the direction of largest
fluorescence and overall emission pattern change drastically
as the emission frequency increases from ωR/c ≈ 1.1 to
ωR/c ≈ 1.3, whereas it remains approximately uniform for
homogeneous spheres.

V. CONCLUDING REMARKS

Our FVC formulation of EM fluctuations enables accurate
calculations of wide-ranging incandescence (e.g., thermal
radiation, dispersion forces, heat transfer) and luminescence
(e.g., spontaneous emission, fluorescence, Raman scattering)
phenomena in arbitrary geometries. Similar to recently pro-
posed scattering-matrix and surface-integral equation formu-
lations of radiative heat transfer, the calculation of physical
observables requires traces of matrices describing interac-
tions among basis functions. However, because JM-VIE
“scattering” unknowns are volume currents rather than propa-
gating waves or surface currents, this formalism is applicable
to a broader set of problems. As illustrated above, this approach
captures phenomena associated with the presence material
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inhomogeneities, including spatially varying temperature gra-
dients and dielectric properties within bodies. In future work,
we will apply our FVC method to investigate radiative
emission in a variety of unexplored settings, demonstrating
predictions of unusual effects, including highly directional
radiation from heterogeneous structures subject to thermal
gradients [110], nonequilibrium Casimir torques between
chiral particles [174], and enhanced, directional emission
from gain-composite media [181]. Although our calculations
focused on geometries involving compact bodies, the same
power and momentum formulas derived above apply to
geometries involving extended bodies, the subject of future
work. Finally, we note that the results above were obtained

using an in-house, open-source, and freely available software
package [182].
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