134 research outputs found

    Green textile dyeing process by using natural dyes: a review

    Get PDF
    In the textile industry, up to 200,000 tons of dyes are lost to effluents every year during the dyeing and finishing operations, due to the inefficiency of the dyeing process. Today, the textile industry used average six hundred dyes and chemical for the in production of textile dyeing industry (Christy, 2014). Due to the toxicity of dyes and chemicals used in textile dyeing processes has led to both human health and environment directly or indirectly. Therefore, “Go-green” or going green is one alternative way to maintain the sustainability and productivity of textile dyeing industry hence maintaining natural ecological balance in the environment and preserving its natural system and resources. The textile dyeing industry makes a big contribution to the economic growth and has become a massive industry throughout the years. This is because higher demand in the production of synthetic dyes since they are affordable, good colour fastness, has various of colours available and are easy to manufacture. However, the environmental impact arising from these industries aroused attention in today’s society. In terms of pollution, the textile dyeing industries has been condemned as one of the world’s most offensive industry among other sectors in the world. In fact, World Bank stated that textile processing polluted 20% of water pollution globally

    Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography

    Get PDF
    Photoplethysmography (PPG) is a non-invasive photometric technique that measures the volume changes in arterial blood. Recent studies have reported limitations in developing and optimising PPG-based sensing technologies due to unavailability of the fundamental information such as PPG-pathlength and penetration depth in a certain region of interest (ROI) in the human body. In this paper, a robust computational model of a dual wavelength PPG system was developed using Monte Carlo technique. A three-dimensional heterogeneous volume of a specific ROI (i.e., human finger) was exposed at the red (660 nm) and infrared (940 nm) wavelengths in the reflectance and transmittance modalities of PPG. The optical interactions with the individual pulsatile and non-pulsatile tissue-components were demonstrated and the optical parameters (e.g., pathlength, penetration depth, absorbance, reflectance and transmittance) were investigated. Results optimised the source-detector separation for a reflectance finger-PPG sensor. The analysis with the recorded absorbance, reflectance and transmittance confirmed the maximum and minimum impact of the dermis and bone tissue-layers, respectively, in the formation of a PPG signal. The results presented in the paper provide the necessary information to develop PPG-based transcutaneous sensors and to understand the origin of the ac and dc components of the PPG signal

    Influence of blood pulsation on diagnostic volume in pulse oximetry and photoplethysmography measurements

    Get PDF
    Recent advances in the development of ultra-compact semiconductor lasers and technology of printed flexible hybrid electronics have opened broad perspectives for the design of new pulse oximetry and photoplethysmography devices. Conceptual design of optical diagnostic devices requires careful selection of various technical parameters, including spectral range; polarization and intensity of incident light; actual size, geometry, and sensitivity of the detector; and mutual position of the source and detector on the surface of skin. In the current study utilizing a unified Monte Carlo computational tool, we explore the variations in diagnostic volume due to arterial blood pulsation for typical transmitted and back-scattered probing configurations in a human finger. The results of computational studies show that the variations in diagnostic volumes due to arterial pulse wave are notably (up to 45%) different in visible and near-infrared spectral ranges in both transmitted and back-scattered probing geometries. While these variations are acceptable for relative measurements in pulse oximetry and/or photoplethysmography, for absolute measurements, an alignment normalization of diagnostic volume is required and can be done by a computational approach utilized in the framework of the current study

    Phantom with Pulsatile Arteries to Investigate the Influence of Blood Vessel Depth on Pulse Oximeter Signal Strength

    Get PDF
    This paper describes a three-layer head phantom with artificial pulsating arteries at five different depths (1.2 mm, 3.7 mm, 6.8 mm, 9.6 mm and 11.8 mm). The structure enables formation of spatially and temporally varying tissue properties similar to those of living tissues. In our experiment, pressure pulses were generated in the arteries by an electronically controlled pump. The physical and optical parameters of the layers and the liquid in the artificial arteries were similar to those of real tissues and blood. The amplitude of the pulsating component of the light returning from the phantom tissues was measured at each artery depth mentioned above. The build-up of the in-house-developed pulse oximeter used for performing the measurements and the physical layout of the measuring head are described. The radiant flux generated by the LED on the measuring head was measured to be 1.8 mW at 910 nm. The backscattered radiant flux was measured, and found to be 0.46 nW (0.26 ppm), 0.55 nW (0.31 ppm), and 0.18 nW (0.10 ppm) for the 1.2 mm, 3.7 mm and 6.8 mm arteries, respectively. In the case of the 9.6 mm and 11.8 mm arteries, useful measurement data were not obtained owing to weak signals. We simulated the phantom with the arteries at the above-mentioned five depths and at two additional ones (2.5 mm and 5.3 mm in depth) using the Monte Carlo method. The measurement results were verified by the simulation results. We concluded that in case of 11 mm source-detector separation the arteries at a depth of about 2.5 mm generate the strongest pulse oximeter signal level in a tissue system comprising three layers of thicknesses: 1.5 mm (skin), 5.0 mm (skull), and >50 mm (brain)

    Opto-physiological modeling applied to photoplethysmographic cardiovascular assessment

    Get PDF
    This paper presents opto-physiological (OP) modeling and its application in cardiovascular assessment techniques based on photoplethysmography (PPG). Existing contact point measurement techniques, i.e., pulse oximetry probes, are compared with the next generation noncontact and imaging implementations, i.e., non-contact reflection and camera-based PPG. The further development of effective physiological monitoring techniques relies on novel approaches to OP modeling that can better inform the design and development of sensing hardware and applicable signal processing procedures. With the help of finite-element optical simulation, fundamental research into OP modeling of photoplethysmography is being exploited towards the development of engineering solutions for practical biomedical systems. This paper reviews a body of research comprising two OP models that have led to significant progress in the design of transmission mode pulse oximetry probes, and approaches to 3D blood perfusion mapping for the interpretation of cardiovascular performance
    • 

    corecore