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Abstract: Photoplethysmography (PPG) is a non-invasive photometric technique that measures
the volume changes in arterial blood. Recent studies have reported limitations in developing and
optimising PPG-based sensing technologies due to unavailability of the fundamental information
such as PPG-pathlength and penetration depth in a certain region of interest (ROI) in the human body.
In this paper, a robust computational model of a dual wavelength PPG system was developed using
Monte Carlo technique. A three-dimensional heterogeneous volume of a specific ROI (i.e., human
finger) was exposed at the red (660 nm) and infrared (940 nm) wavelengths in the reflectance
and transmittance modalities of PPG. The optical interactions with the individual pulsatile and
non-pulsatile tissue-components were demonstrated and the optical parameters (e.g., pathlength,
penetration depth, absorbance, reflectance and transmittance) were investigated. Results optimised
the source-detector separation for a reflectance finger-PPG sensor. The analysis with the recorded
absorbance, reflectance and transmittance confirmed the maximum and minimum impact of the
dermis and bone tissue-layers, respectively, in the formation of a PPG signal. The results presented in
the paper provide the necessary information to develop PPG-based transcutaneous sensors and to
understand the origin of the ac and dc components of the PPG signal.

Keywords: photoplethysmography; calibration curve; pulsatile tissue; oxygen saturation;
Monte Carlo; scattering and absorption

1. Introduction

Photoplethysmography (PPG) is a non-invasive technique that uses light for measuring the
volumetric changes in blood associated with the cardiac cycle in vascular tissue beds [1]. In PPG,
a volume of peripheral tissue is illuminated by an optical radiation that undergoes multiple events
of scattering and absorption as it traverses through different tissue-layers and finally is transmitted
through or reflected from the tissue volume. The modulation of the light absorbance in the tissue due
to the fluctuations in blood volume between systole and diastole gives rise to the PPG waveform [2].
A PPG waveform is divided into two components: the pulsatile component (ac) which varies in
synchrony with the cardiac cycle, and the slowly varying component (dc) [3]. A PPG waveform is most
often acquired by the system named Pulse Oximetry, which is the standard procedure for the clinical
measurement and monitoring of arterial blood oxygen saturation (SpO2) [4]. The arterial oxygen
saturation is derived from the relative change in amplitudes of red and near-infrared light by the main
two absorbers present in blood, namely, oxyhaemoglobin (HbO2) and deoxyhaemoglobin (HHb) [2].
Transmittance mode finger pulse oximeters are the most common application of PPG, whereas the
reflectance mode PPG probes are more flexible regarding its location, and suitable as wearable sensors.
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In recent years, there has been a plethora of interest in extending the application of PPG beyond
pulse oximetry, for example, usage of the PPG in the assessment of vascular mechanics, blood
pressure, blood viscosity, pulse transit time estimation, pulse rate variability, assessment of tissue
perfusion etc. [1,3,5–10]. With the growing interest in PPG research, it is imperative to have a precise
understanding of the fundamental aspects of light-tissue interactions in PPG. Recent studies [3,11,12]
have revealed the importance of the knowledge about optical pathlength and penetration depth in
PPG. Such parameters depend on the operating optical wavelength, sensor geometry and the ‘region
of interest’ (ROI). Different ROIs in body exhibit different anatomical configurations with multi-scale
heterogeneity and structural complexity [13]. For an adequate understanding, therefore, an in-depth
analysis of optical interactions with a specific ROI pertinent to the PPG application is crucial.

Previous mathematical models of PPG and pulse oximetry based on Beer-Lambert law, simple
diffusion theory or random walk theory [14–16] were inadequate to analyse the light-tissue interactions
in a highly scattering and absorbing tissue medium. Later on, Monte Carlo method-based heterogeneous
tissue models including vascular distribution were implemented for various applications in PPG by
different research groups [17–21]. However, all the available models were concerned with the effect
of cutaneous vasculature in the reflectance modality of PPG only. The optical interactions with all
absorbers (i.e., blood, water and melanin) present in all pulsatile and non-pulsatile compartments
(including skin, fat, bone and muscle) of a tissue volume has never been investigated. In other words,
no research work is yet available to demonstrate the optical interactions with all tissue layers in
a specific ROI in both reflectance and transmittance modalities of PPG.

In this paper, a light-tissue interaction-based model of a dual wavelength PPG sensor is presented
where a heterogeneous tissue-volume resembling human finger has been exposed at the commonly
used optical wavelengths: red (660 nm) and infrared (940 nm). Monte Carlo method has been
chosen for the analysis which is a stochastic approach and is extensively used for simulating light
propagation through biological tissues [22]. The method provides several important advantages over
other approaches (e.g., diffusion approximation, random walk model etc.) which include [23]—(a)
the flexibility regarding the size, shape and position of the optical source and detector; (b) inclusion
of any level of complexity and heterogeneity in the tissue structure; (c) incorporating all physical
processes between light and tissue such as multiple scattering, scattering anisotropy, high absorption,
reflection and refraction etc.; (d) ability to produce accurate results. The model presented in this paper
has been executed to asses the contribution of different tissue layers in the formation of the ac and dc
components of a finger-PPG signal.

2. Methodology

2.1. An Anatomical Feature of the Tissue Model

The anatomical feature of the tissue model is presented in Figure 1. The overall geometry of the
volume of the index finger, shown in Figure 1a, was presented by a three-dimensional semi-infinite
slab. As shown in Figure 1b, the heterogeneous volume of the index finger had a thickness of 1.3 cm
and contained the following layers [24–27]: (A) skin sublayers, (B) fat, (C & E) muscle, and then
(F) fat and (G) skin sublayers in the reverse order. The muscle layer contained a cylindrical bone
(D) of a diameter of 4 mm at a depth of 5 mm from the top surface [13,28]. The muscle layer was
considered 10 mm thick and represented the overall fibrous tissue-network surrounding the bone
such as tendons and ligaments (e.g., annular pulleys and cruciate pulleys) that are attached to the
lumbrical muscle [27,29,30]. The skin layer had a total thickness of 0.95 mm [13,31] and comprised six
sublayers [23,26,32,33]: (1) stratum corneum; (2) epidermis; (3) papillary dermis; (4) upper blood net
dermis; (5) reticular dermis and (6) deep blood net dermis. In Figure 1c, the vascular distribution in
the skin sublayers (1-6), followed by the subcutaneous fat layer (7), is illustrated.
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Figure 1. A volume of the finger tissue (a) is zoomed in (b) where the tissue layers are described as:
skin (A), fat (B) and muscle (C,E), and then fat (F) and skin (G) in the reverse order. The muscle layer
also contains a cylindrical bone (D) within it. The vasculature in the skin tissue sublayers (1–7) is
illustrated in (c) and the stratification are described in Table 1.

The ‘pulse’ was simulated in the tissue by increasing the arterial blood volume in the dermis
during systole by twice as much as in diastole [24]. The systolic increase in pulsatile tissue volume was
associated with an equivalent decrease in the volume of non-pulsatile tissue compartments. The ratio
of arterial and venous dermal blood was 1:1 [34]. Venous oxygen saturation was considered 10% lower
than the arterial oxygen saturation [35]. An epidermal melanin concentration of 10% was considered in
the model [36]. The effect of skin hydration was taken into consideration. Parameters used to simulate
the dermal sublayers, i.e., the thickness (t), the baseline (i.e., diastolic) blood volume (Vb) and the
volume of water in the dermal sublayers (Vw) are illustrated in Table 1.

Table 1. The values of the parameters used to model the dermal sublayers that were adapted from
literature [13,17,23,34,36,37].

Dermal Sublayer t (mm) Vb Vw

stratum corneum 0.02 0 0.05
epidermis 0.25 0 0.2

papillary dermis 0.1 0.04 0.5
upper blood net dermis 0.08 0.3 0.6

reticular dermis 0.2 0.04 0.7
deep blood net dermis 0.3 0.1 0.7

2.2. Tissue Optical Properties

The optical parameter responsible for attenuating light propagation through tissue is its absorption
coefficient µa. The baseline absorption coefficient µabaseline (i.e., the absorption coefficient of the dermal
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sublayer due to its intrinsic absorption property only in absence of any other chromophore) at
an operating wavelength λ is expressed by the equation below [38,39]:

µabaseline(λ) = 7.84× 107 × λ−3.255. (1)

Considering the absorbance of light through arterial and venous blood with different
concentrations of the absorbers oxyhaemoglobin (HbO2) and deoxyhaemoglobin (HHb), the total
absorption coefficient of any i-th dermal sublayer can be written as: [14,23,32]

µai (λ) = VAi µaAi
(λ) + VVi µaVi

(λ) + Vwi µawi
(λ) + [1− (VAi + VVi + Vwi )]µabaselinei

(λ) (2)

where VA and VV stand for the arterial and venous blood volume-fraction respectively. µaA , µaV and
µaw are the absorption coefficients of the arterial blood, venous blood and water. Oxygen saturation,
by definition, is the concentration of oxygen saturated haemoglobin in the total blood. Considering
SaO2 and SvO2 are respectively the arterial and venous oxygen saturation, absorption coefficients of
the arterial and venous blood can be written as:

µaA(λ) = SaO2µaHbO2
(λ) + (1− SaO2)µaHHb(λ)

µaV (λ) = SvO2µaHbO2
(λ) + (1− SvO2)µaHHb(λ)

(3)

where µaHbO2
and µaHHb are the absorption coefficients of oxy and deoxyhaemoglobin, respectively.

The epidermal layer of the skin does not contain any amount of blood but only the absorbers
melanin and water. The melanin absorption coefficient µamel is determined from the following
equation [36,40]:

µamel (λ) = 6.6× 1010 × λ−3.33 (4)

which is used to derive the absorption coefficient for epidermis:

µaepi (λ) = Vmelµamel (λ) + Vwepi µaw(λ) + [1− (Vmel + Vwepi )]µabaseline(λ). (5)

The absorption coefficients of water, oxyhaemoglobin and deoxyhaemoglobin (at a hematocrit of
45%) were adapted from literature [41–44]. The absorption coefficients of subdermal fat and muscle
were adapted from the published data measured from human skin ex vivo [45]. Due to lack of data
on the optical properties of a finger bone, the optical properties of skull bone was used for the
simulation [46]. The scattering coefficient and anisotropy factor of skin, muscle and bone were adapted
from published studies [45,46]. The optical properties used in the simulation are stated in Table 2.

Table 2. Optical properties of tissue layer in finger tissue model.

Tissue Component µa(mm−1) µs(mm−1) g660 nm 940 nm 660 nm 940 nm

skin - - 25.62 15.68 0.9
fat 0.0104 0.0170 6.20 5.42 0.8

muscle 0.0816 0.0401 8.61 5.81 0.5
bone 0.0351 0.0457 34.45 24.70 0.92

oxyhaemoglobin 0.15 0.65 - - -
deoxyhaemoglobin 1.64 0.43 - - -

water 0.0036 0.2674 - - -

Since the dermis is responsible for the pulsatile volumetric changes in the PPG signal, and also
each dermal sublayer is composed of different chromophore distribution, the contribution of the
individual components in the absorption was considered, as already expressed by Equations (2)–(5).
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However, due to unavailability of precise vascular distribution for muscle and fat tissue, and also
for the fact that those layers are much thicker than skin, the absorption coefficient of these layers
were considered as bulk. The finger bone (phalanx) is supposed to be different anatomically from
cranial bone, especially in the blood content, which eventually would create differences in their optical
properties. However, the main concern in the present study is the relative absorbance of light in red
and infrared wavelength and not the absolute absorbance, which allowed the compromise of the bone
optical properties.

2.3. Monte Carlo Simulation

A flowchart for the basic steps of the Monte Carlo (MC) simulation for propagation of light
through tissue in a finger-PPG configuration is presented in Figure 2.

Figure 2. Flowchart of Monte Carlo algorithm.

As shown, a photon packet with an initial direction and position co-ordinate was launched onto
the tissue surface. The initial statistical weight of the photon packet was w = 1. After the initial
correction for the reflection at the tissue surface, the photon packet was propagated through a step-size
(l), calculated by random sampling of the probability of photon scatter [47], i.e.,
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l = − ln(ξ)
µs

(6)

where ξ is a computer-generated pseudo-random number (0 < ξ < l). If the photon packet hit the
boundary, a correction was made deciding whether it would reflect internally or transmit. If the
photon transmitted, it was checked whether it had fallen within the detection criteria. If the photon
was detected, several variables were scored (namely, optical path, detected intensity, and penetration
depth), and the propagation of that photon packet was terminated. If the photon propagated freely,
absorption and scattering events occurred. A certain fraction of the photon-weight (i.e., ∆w = µa

µa+µs
·w)

was absorbed in the medium, and the rest of the weight continued to propagate. For the scattering,
the direction of the photon packet was oriented through the randomly generated deflection and
azimuthal angles. The scattering angle θ was calculated using the Henyey-Greenstein phase
function [48] whereas the azimuth was randomly generated between 0 and 2π:

θ = cos−1 1
2g

[
1 + g2 −

(
1− g2

1− g + 2gξ

)2]
φ = 2πξ.

(7)

The same steps were repeated until the photon packet was detected or discarded. The photon was
discarded if the photon weight was too small or it had transmitted without being detected, and a new
photon packet was launched. The process would be repeated until a desired number of photon packets
were detected.

A 64-bit Operating System with an installed memory of 24 GB and an Intel Xeon CPU (2.40 GHz,
2 processors) was dedicated for the simulation. A MATLAB (Mathworks, Inc., Natick, MA, USA)
platform was chosen for coding and a multi-thread programming environment was used for facilitating
the MC simulation.

2.4. Execution of the Model

As stated before, the MC model was executed in two modalities. In the reflectance mode,
the optical source and detector were placed 5 mm apart whereas in the transmittance mode, the those
were placed at two opposite surfaces of the tissue site (i.e., 13 mm apart). Incidence of a Gaussian
beam of 1 mm radius was simulated to the tissue surface that propagated through the tissue to
be detected at a circular detector of radius 1 mm. The MC model was executed to quantify the
distribution of scattering events, and to calculate the mean optical path and penetration depth
at red and infrared wavelengths. The model was also employed to record the ‘intensity’ of the
detected photon packets. Here, ‘intensity’ I refers to the mean weight of the detected photon packets,
which is termed as ‘reflectance’ or ‘transmittance’ at respective geometries. Expressing the ‘pulse’
(i.e., the difference between the diastolic and systolic intensity) by ∆I, the normalised pulsatile intensity
IN was presented as:

IN(λ) =
∆I(λ)

Idiastolic(λ)
. (8)

The ratio of the red and infrared relative normalised intensities was quantified by the ‘ratio of
ratios’ (R) as:

R =
IN(red)
IN(IR)

(9)

The model was executed to investigate the relationship among the penetration depth, optical path
and source-detector separation in a reflectance geometry. The mean penetration depth was calculated
as the mean of the highest penetration of each photon packet within the tissue. The mean optical path
was calculated as the mean of the total simulated pathlength of the photon packets from the source to
the detector.
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To assess the contribution of different tissue layers in PPG, the relative absorbance was also
calculated. Similar to Equations (8) and (9), the normalised absorbances A at red and infrared
wavelengths (i.e., A(λ) = ∆A(λ)/Adiastolic(λ)), were used to quantify the absorbance modulation
ratio of RM [49]:

RM =
A(red)
A(IR)

. (10)

3. Results

The distribution of the scattering events in a dual wavelength reflectance PPG setting (similar to
reflectance pulse oximetry) simulated by MC is shown in Figure 3. In this figure, a typical example
of distribution through the tissue volume at SaO2 = 90% is presented. The number of scattering
events (NSC) along the depth within the tissue volume for red and infrared wavelengths were shown
in Figure 3a,b, respectively. The maximum number of scattering was found in the upper layers of the
tissue volume, i.e., the dermal sublayers. No photon passed beyond the muscle layer in both red and
infrared wavelengths (i.e., depth > 11.5 mm). The distributions of photon scatter with the penetration
depth at both wavelengths are plotted in Figure 3c. The number of scattering events were higher in
red compared to infrared wavelengths at smaller penetration depths. The deeper the light penetrated,
the lesser the number of scattering events.

Comparatively, the distribution of scattering events through the finger tissue volume at
SaO2 = 90% in a transmittance geometry (similar to transmittance pulse oximetry, the most commonly
used PPG system in clinical practice) is shown in Figure 4. The maximum numbers of scattering events
occurred near the source and the detector, which were limited to dermal sublayers. A high number of
scattering events were also observed in the bone part of the finger. In Figure 4c, the frequency of the
scattering events are plotted, and the number of scattering events in red was found to be much higher
compared to infrared. The profile of the plot stated that the bone part caused the maximum scattering,
and then the upper and lower dermal sublayers. The least scattering parts were the upper and lower
fat layers. In both simulations (Figures 3 and 4), the detected number of photon packets were 1 × 108.
The average time taken for each simulation was 2 hours.

Figure 3. Scattering distributions at wavelengths 660 nm and 940 nm in the reflectance geometry
are shown in (a,b), respectively. The upward and downward red arrows represent the position
of optical source and detector. Colourbar represents the distribution between the maximum and
minimum number of scattering events (NSC). The numbers of scattering at different depths of tissue
are shown in (c).
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Figure 4. Scattering distributions at wavelengths 660 nm and 940 nm in the transmittance geometry are
shown in (a,b), respectively. The upward and downward red arrows represent the position of optical
source and detector. Colourbar represents the distribution between the maximum and minimum
number of scattering events (NSC). The number of scattering distributions at different depths of tissue
are shown in (c).

Figure 5. Detected reflectance and transmittance in two sets of PPG geometries are shown in (a,b).
The normalised reflectance and the normalised transmittance, as functions of arterial blood oxygen
saturation, are plotted in (c,d). The ‘ratio of ratios’ R is plotted against the arterial blood oxygen
saturation in (e).

In Figure 5a,b, the detected ‘intensities’ in two PPG modalities, recorded in the same geometry as
in Figures 3 and 4 respectively, are presented. The overall transmittance was higher than the overall
reflectance for both red and infrared wavelengths at systole and diastole. For example, at 90% oxygen
saturation, the IR diastolic transmittance was 2.89× 10−2, which was about 105 times higher than the
IR diastolic reflectance, i.e., 5.27× 10−8. Apparently, both the reflectance and transmittance for red
light increased very slowly with arterial oxygen saturation, whereas for IR it gradually decreased.
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The diastolic intensities were slightly higher than the systolic intensities in all cases. The calculated
normalised pulsatile reflectance (IN(re f l)) and transmittance (IN(trans)) are shown in Figure 5c,d
respectively. Although the values of the individual detected intensities varied greatly between the
two modalities, the normalised pulsatile intensities were almost identical in both cases. For example,
at an oxygen saturation value of 90%, the normalised reflectance IN(re f l) = 0.18 was very close to
the normalised transmittance IN(trans) = 0.10. The red normalised intensity was higher than the
infrared normalised intensity in both modes. The ratio of ratio (R) for two PPG modalities is plotted
as a function of the arterial oxygen saturation in Figure 5e. To compute the correspondence between
the ratio of ratios of the two modalities, the Pearson Product-Moment Correlation Coefficient r was
calculated which returned the value as r = 0.996, showing a very strong positive correlation.

The calibration curve simulated for the transmittance mode PPG system was compared with the
empirical calibration curve of a commercial pulse oximeter for reference. The relationship between
the oxygen saturation measured by the commercial pulse oximeter (SpO2) and the ratio of ratios R is
presented by the equation for the standard calibration curve:

SpO2 = 110− 25R (11)

which has been extensively used in many applications of pulse oximetry [2,50–53]. In general,
commercial pulse oximeters are calibrated empirically within the oxygen saturation range of 70–100%.
For comparison, the simulated values of R corresponding to the same SaO2 values are plotted in
Figure 6. A linear fit to the simulated data points resulted in a linear relationship between R and SaO2:

SaO2 = 110− 29.5R. (12)

A check for the Pearson Product-Moment Correlation Coefficient between the two curves returned
the coefficient value as r = 0.998, which is a very strong positive correlation between the simulated
and the reference data.

Figure 6. A comparison of the Monte Carlo predicted calibration curve with the commercial pulse
oximeter calibration curve is presented. The simulated data points (black markers) are linearly
fitted (red solid line). The commercial pulse oximeter calibration curve (blue solid line) is generated
by Equation (11).

For a comprehensive demonstration of the variation of the mean optical path (MOP) and the mean
penetration depth (MD) of photons through finger tissue as functions of source-detector separation (d),
the reflectance geometry was chosen. The source-detector separation was varied from 1 mm to 10 mm,
with an 1 mm gap between two consecutive detections, and MOP and MD were recorded at each d for
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SaO2 = 10%, 30%, 50%, 70%, 90%, which are shown in Figure 7a–j respectively. The total number of
detected photon packets through the range of d were 1010. The simulations were performed at both
the red and infrared wavelengths at systolic and diastolic states. MOP increased almost linearly with
d. The maximum optical path taken by any photon packet was 60 mm. Penetration depth increased
sharply with an initial increase of d, and for higher separations it increased slowly.

Figure 7. The mean optical path and the depth of penetration at red and infrared wavelengths for
different SaO2 are shown in (a–j) respectively. The percentage changes in diastolic mean optical path
and penetration depth (∆MOP and ∆MD) at d = 3 mm, 5 mm, 7 mm, and 9 mm are presented in (k,l)
respectively. The shaded area in the graphs are the regions where the optical paths and penetration
depths deviate between the operating wavelgnths.

Interestingly, no photon passed through the finger beyond the depth of 8 mm, even for a high
source-detector separation of d = 10 mm. No significant difference was visible in the diastolic
and systolic optical path and penetration depths. However, wavelength-dependent deviation in
optical paths and penetration depths were noticed, especially at higher source-detector separations
(d > 6 mm) as shown in the shaded regions of the Figure 7a–j. This wavelength dependency of MOP
and MD were quantified as the percentage change between their values at red and infrared (∆MOP
and ∆MD, respectively) as stated in the following the equations:
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∆MOP =
MOP(IR)−MOP(red)

MOP(IR)
× 100

∆MD =
MD(IR)−MD(red)

MD(IR)
× 100

(13)

Calculated (∆MOP and ∆MD) at d = 3 mm, 5 mm, 7 mm and 9 mm for SaO2 = 10–100% are
shown in Figure 7k,l, respectively. In Figure 7k, the negative values of ∆MOP at d = 3 mm referred to
the higher optical path at infrared compared to the red wavelength. With increasing d, the infrared
optical path became higher than the red optical pathlength. With increasing oxygen saturation,
the difference between red and infrared optical paths slowly decreased. In Figure 7l, all positive values
of ∆MD indicated that penetration depth in infrared light was always higher than red. The difference
in penetration depth between red and infrared light did not exhibit any significant variation with
increasing oxygen saturation.

The model was further explored to retrieve the information on the absorption from each layer
of the tissue. While travelling from source to detector in the reflectance geometry, light might not
pass through all layers of the finger, as already seen in earlier results. To acquire the signature of
all tissue layers in the total absorbance, this study was performed on the transmittance geometry
only. The distribution of relative absorbances (i.e., the absorbance by each layer relative to the total
absorbance by the entire tissue) is illustrated in Figure 8a. The absorbance modulation ratio RM is
presented in Figure 8b. The absorbances are quantified in Table 3.

Table 3. Simulated distribution of relative absorbances and modulation ratio in tissue layers.

Tissue Layers Red Diastolic Red Systolic Infrared Diastolic Infrared Systolic RM

Stratum corneum 0.12% 0.12% 0.09% 0.09% 0.77
epidermis 63% 61% 37.07% 35.57% 0.66

dermis 4.53% 6.97% 29.99% 33.74% 4.30
fat 0.82% 0.79% 1.79% 1.64% 0.37

muscle 28.58% 27.89% 25.50% 23.75% 0.36
bone 2.83% 2.79% 5.56% 5.21% 0.21

The maximum absorbed photons of both red and infrared wavelengths at systole and diastole
were localised in the epidermis. The minimal absorption was found in the stratum corneum, then in
fat, bone, muscle and dermis. Interestingly, unlike any other layer, in dermal layer the difference
between the infrared and red absorbances was very high in both diastole and systole (about 7 and
5 times respectively, as shown in Table 3). Again, the tabulated data showed a higher relative systolic
absorbance compared to diastolic in the pulsatile dermis, whereas the reverse was found in other
non-pulsatile layers. The systolic increase in dermal blood led to not only an increase in absorption by
the dermis, but also an overall increase in absorption by the entire tissue volume. Thus, the relative
systolic absorption by other non-pulsatile layers (i.e., the ratio between the absorption by the layer
and the total absorption by entire finger) decreased in systole from diastole. In the outermost layer,
i.e., the stratum corneum, because of a very small thickness and absence of any absorber (e.g., blood,
water or melanin), the absorbance is very low in both systole and diastole, and the difference between
the two states are negligible (upto two decimal points, the values appear to be the same).

To estimate the influence of the non-pulsatile tissue components of the light-tissue interactions,
the absorbance was recorded for varying fat-layer thickness and melanin concentration. In Figure 9,
the effect of melanin on the variables such as detected weight (intensity) and optical pathlength is
demonstrated. The melanin volume fraction was varied between 0% (i.e, skin with no melanin) to 15%
(i.e., a highly pigmented skin). With increasing melanin concentration, a consistent decrease in both
detected weight and optical path were apparent. In Table 4, the influence of the varying subcutaneous
fat layer on the detected intensity is illustrated. Very slow decrease in the intensity (i.e., detected
photon weight) with increase of fat thickness was visible at both wavelengths.
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Figure 8. In a transmittance mode PPG, the distribution of the relative absorbances (in percentage
form) and the absorbance modulation ratio RM at different layers are shown in (a,b) respectively.
The systolic and diastolic absorbances in both red and infrared wavelengths at different tissue layers
and the corresponding modulation ratio, shown in this figure, are illustrated in Table 3.

Figure 9. The effect of melanin concentration on the intensity (detected photon weight) and the mean
optical path are shown in (a,b) respectively.
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Table 4. Relationship between detected photon weight and the thickness of fat layer.

Fat Layer Thickness (mm) Detected Photon Weight

660 nm 940 nm

0.2 0.025 0.039
0.4 0.0229 0.035
0.6 0.0226 0.035
0.7 0.0220 0.032
0.8 0.0218 0.030
0.9 0.0214 0.029

4. Discussion

A robust opto-anatomical model for light-tissue interaction in Photoplehysmography in a specific
ROI has been presented in this paper. Monte Carlo method was chosen for simulation which is
a flexible and reliable approach for computing the optical interaction with complex medium such as
biological tissue. The accuracy of the method can be quantified by its convergence rate, given by 1/

√
Q

where Q is the number of simulations [54]. The minimum number of simulated photon packet in this
work was Q = 108, resulting in a convergence rate of 0.0001. A high number of iterations produced
a reliable and accurate result in this work. To minimise the processing time, the variance reduction
technique was adapted in the algorithm and a multi-threaded computational platform was used.

It is needless to say that the biological tissue is a highly heterogeneous and complex structure,
with the variable spatial distribution of blood and other chromophores in different depths. The volume
distribution of blood in tissue layers, and the thicknesses of the sublayers also can vary from subject to
subject. Nevertheless, efforts were made in this work to choose the parameters rationally and carefully
to model an average healthy human index finger anatomy using the optical parameters based on
an intense literature survey. The index finger was chosen as it is the most commonly used location for
PPG sensor (i.e., pulse oximeter) in clinical setting for continuous monitoring of arterial blood oxygen
saturation. In the computational experiment, the subject was considered at rest, and free from any
external influences such as motion, electromagnetic interference etc. The effect of the physiological
parameters of the pulsatile components such as blood volume and oxygen saturation, and those of
the non-pulsatile components such as tissue thickness or melanin concentration have been separately
studied in this paper for detailed understanding of the realistic model.

PPG is usually used for assessing the peripheral oxygenation and perfusion, rather than deep
tissue monitoring, thus shorter source-detector separations (<1 cm) were simulated in the work.
An important observation from the reflectance PPG simulation was the wavelength-dependence of the
optical path and penetration depth for higher source-detector separations. In the dual wavelength
PPG-applications such as pulse oximetry, it is usually assumed that the operating wavelengths
interrogate the same sampling volume [15]. However, present simulation showed a considerable
deviation between the red and infrared optical paths and penetration depths at higher source-detector
separations. The percentage changes in the mean optical path and mean penetration depth were very
low (∆MOP ≈ 0% and ∆MD ≈ 7%) at d = 5 mm, whereas those were the maximum (∆MOP ≈ 10%
and ∆MD ≈ 15%) at d = 9 mm. Starting from Beer-Lambert law, the relationship between the arterial
oxygen saturation and the ratio of ratios for a dual wavelength PPG system such as pulse oximeter can
be derived as follows [55]:

SaO2 =
εDred − R(MOPIR/MOPred)εDIR

R(MOPIR/MOPred)(εOIR − εDIR)− (εOred − εDred)
(14)

where εD and εO are the extinction coefficients (i.e, the combination of scattering and absorption
coefficient) of deoxy and oxyhaemoglobin respectively. An assumption that MOP(R) = MOP(IR),
therefore, would cause an underestimation of the reading. Chances of an error is higher for the patients
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with compromised oxygen saturation as the percentage difference is higher for lower saturations.
However, in practice the traditional pulse oximeters, which are used for clinical monitoring, are
calibrated empirically, i.e., the calibration curve is produced by experimentally acquiring a large
dataset from the healthy volunteers, artificially bringing them to lower oxygen saturation states [2].
Because of the empirical calibration, the traditional pulse oximeters do not exhibit any inaccuracy in
their measurements. However, the empirical calibration method imposes an obvious ethical restriction
to create very low level of oxygen saturation in the volunteers, resulting in a deficit in the data for
SaO2 < 70%. For a general PPG-based application, therefore, the concept of wavelength dependence of
the optical path is crucial and an optimisation of the source-detector separation is of utmost importance
in such applications. For a reflectance mode finger PPG system using 660 nm and 940 nm wavelengths,
an optimised source-detector separation d ≤ 6, estimated from the present work, can be used as
a future reference.

The dissimilarities in the distribution of scattering at red and infrared wavelengths were caused
by the higher scattering co-efficient at the lower optical wavelength. The full scattering profile in
the transmittance geometry showed the maximum scattering events taking place in the bone layer,
followed by the dermal layer. On the other hand, the relative absorbance was maximum in the dermal
layer and minimal in the bone layer. Results confirmed that despite exhibiting a high scattering,
the bone layer had a minimum impact on the detected PPG intensity. There has been no study
so far that has simulated a tissue volume including the bone optical properties in reflectance and
transmittance optical modalities, thus no information was available on the contribution of the bone
layer in the light-tissue interactions in a system. The quantification of the relative absorbance and the
modulation ratio of different tissue layers, therefore, would be beneficial for understanding PPG and
other similar optometric sensor technologies.

The ‘pulse’ simulated in the model, i.e., the difference between systolic and diastolic intensities,
was caused by the absorption by the pulsatile tissue compartment, contributing to the ac component
of the PPG signal. The diastolic intensity, on the other hand, represented the absorption by the
non-pulsatile tissue compartment producing the dc component of the PPG signal. The ratio of ratios
plotted against arterial oxygen saturation resembled the calibration curve which is the technical
characterisation of a pulse oximeter. The strong positive correlation between the calibration curves
of the two modalities indicated that the sensor geometry does not significantly influence the
efficiency of a pulse oximeter for SpO2 measurement. With an increasing arterial oxygen saturation,
the oxyhaemoglobin optical properties dominated over deoxyhaemoglobin, leading to a rapid decay in
the red normalised intensity and a slow increment in the infrared normalised intensity. The variation
in the normalised intensities resulted in sigmoidal shapes of the simulated calibration curves. The ratio
of ratios at lower oxygen saturation is of a fundamental importance, however, clinical applications
of a pulse oximeter are primarily concerned with the data above 70% oxygen saturation. In the SaO2

region between 70% and 100%, a linear variation in R-values was found. The excellent correlation
between the simulated plot and the empirical calibration curve of the commercial pulse oximeter
further served as the validation of the model.

The non-pulsatile parameters such as tissue thickness and skin pigmentation often raise questions
regarding the PPG measurement. The influence of these parameters were assessed using the present
model. For a person with a very light-couloured skin, the detected light intensity was seen to be much
higher (3–5 times) compared to a person with very dark coloured skin because of the obvious reason
that the epidermal melanin is a very strong absorber of light. The decay of intensity exponentially
fell with the increasing melanin concentration. The optical pathlength in tissue also was found to
decrease with the increasing absorbance by melanin even though no change in scattering took place,
indicating the dependence of the optical path on the absorption property of the tissue. However,
no change in penetration depth was found with the increasing melanin which establishes the fact that
penetration depth does not depend on the absorption coefficient of the tissue. Due to the changes
in the optical pathlength, the photons will be likely to interrogate slightly different sample volumes
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with increased melanin concentration, resulting in an increase in noise in the measurement. In the
experiment with the increasing thickness of the fat layer in the finger, no significant change in the
detected light intensity was visible. Therefore, the relativistic measurement should not be affected for
different finger thicknesses in a transmittance PPG setting such as pulse oximetry.

Previous research works in this field primarily focussed on the optical interactions with
the cutaneous tissue structure only which is responsible for the pulsatile signal (ac component).
Recent advancements in PPG research have explored the dc part of the PPG signal for potential
applications [3,7,56]. To analyse the origin of the dc PPG, the contributions of all non-pulsatile tissue
compartments had to be considered which was never addressed in earlier studies. To the authors’
knowledge, the computational model presented in this paper is the first attempt to investigate the
optical interaction with all pulsatile and non-pulsatile tissue compartments of the finger, providing
an insight into the formation of both dc and ac PPG signal. The results from both the reflectance and
transmittance geometrical settings exhibited a localisation of photons in the dermal tissue because
of the vascular network present in this layer. Dermal vasculature, which consists of capillaries,
arterioles and venules, originates from the deep blood net dermis adjacent to the subcutaneous fat
and extends up to the papillary dermis. It is well-established that the pulsatility is observed only
in arterioles [57], which was simulated in this model by the increment in the arterial blood volume
in the dermis. The volumetric increment of the arterial blood was associated with a proportional
decrement in the volume of rest of the dermal tissue, i.e., the non-pulsatile tissue-compartments.
This consideration manifests the physiological hypothesis that the systolic increase in blood volume in
the arterioles increases the transmural pressure, resulting in a compression in the elastic fibres in the
dermal connective tissue and the overall density of the capillaries present in the dermal sublayers [21].

A basic model of finger PPG has been presented in this paper. To solve the problems related to PPG,
for example, the motion artifacts, pulse transit time (PTT), the effect of large artery etc., future modifications
would be implemented in the model. To produce the pulsatile signal, the mechanical properties of the
blood vessels need to be incorporated in the model. Future plan includes the variation in the blood
volume in accordance with the blood pressure. In a tissue volume such as finger, i.e., in absence of
a large artery, the simulated volume Vb of arterial blood in the skin tissue can be related to the blood
pressure under certain conditions [58–60]:

P = b · exp(nVb) (15)

where n and b are the system-dependent constant terms. On the other hand, for any other tissue region
that contains a large artery, for example, forehead or forehand, the stress-strain relationship between
the pressure and the radius (r) of the artery can be written as:

∆P =
∆r · Ep

r0
(16)

where ∆r is the change in the artery radius due to a ∆P change in the pressure, Ep being the stress-strain
modulus of the artery [61,62]. The elastic properties will be included to the tissue model using the
Equations (15) and (16) which will be varied between the diastolic and systolic blood pressure,
corresponding to the cardiac cycle, to produce the PPG waveform. Such a model then may be applied
for investigating the existing problems related to PPG as already mentioned before.

5. Conclusions

The optical interaction with a three-dimensional finger tissue volume in a dual wavelength PPG
system was analysed using the Monte Carlo computational tool. The model was executed at the
reflectance and transmittance PPG geometry to investigate the light-tissue interaction parameters
relative to different sensor specifications (i.e, wavelength and source-detector separation) and
different tissue physiology (i.e., volume and oxygen saturation of arterial and venous blood) in
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the presence of multiple absorbers (e.g., oxyhaemoglobin, deoxyhaemoglobin, water and melanin).
The results identified the optimal source-detector separation for a reflectance mode finger-PPG sensor.
Depth-specific analysis of the tissue-volume revealed the maximum and minimum impacts of the
dermis and bone, respectively, in the formation of a PPG signal. Results explained the origin of
the pulsatile and non-pulsatile PPG components which is an invaluable information for designing
a wearable finger PPG probe for continuous physiological measurements. All results presented in the
paper contribute to the basic knowledge required for the development and advancement of the novel
PPG-based transcutaneous sensors.
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