334 research outputs found

    Observer-biased bearing condition monitoring: from fault detection to multi-fault classification

    Get PDF
    Bearings are simultaneously a fundamental component and one of the principal causes of failure in rotary machinery. The work focuses on the employment of fuzzy clustering for bearing condition monitoring, i.e., fault detection and classification. The output of a clustering algorithm is a data partition (a set of clusters) which is merely a hypothesis on the structure of the data. This hypothesis requires validation by domain experts. In general, clustering algorithms allow a limited usage of domain knowledge on the cluster formation process. In this study, a novel method allowing for interactive clustering in bearing fault diagnosis is proposed. The method resorts to shrinkage to generalize an otherwise unbiased clustering algorithm into a biased one. In this way, the method provides a natural and intuitive way to control the cluster formation process, allowing for the employment of domain knowledge to guiding it. The domain expert can select a desirable level of granularity ranging from fault detection to classification of a variable number of faults and can select a specific region of the feature space for detailed analysis. Moreover, experimental results under realistic conditions show that the adopted algorithm outperforms the corresponding unbiased algorithm (fuzzy c-means) which is being widely used in this type of problems. (C) 2016 Elsevier Ltd. All rights reserved.Grant number: 145602

    Blade fault diagnosis using artificial intelligence technique

    Get PDF
    Blade fault diagnosis is conventionally based on interpretation of vibration spectrum and wavelet map. These methods are however found to be difficult and subjective as it requires visual interpretation of chart and wavelet color map. To overcome this problem, important features for blade fault diagnosis in a multi row of rotor blade system was selected to develop a novel blade fault diagnosis method based on artificial intelligence techniques to reduce subjective interpretation. Three artificial neural network models were developed to detect blade fault, classify the type of blade fault, and locate the blade fault location. An experimental study was conducted to simulate different types of blade faults involving blade rubbing, loss of blade part, and twisted blade. Vibration signals for all blade fault conditions were measured with a sampling rate of 5 kHz under steady-state conditions at a constant rotating speed. Continuous wavelet transform was used to analyse the vibration signals and its results were used subsequently for feature extraction. Statistical features were extracted from the continuous wavelet coefficients of the rotor operating frequency and its corresponding blade passing frequencies. The extracted statistical features were grouped into three different feature sets. In addition, two new feature sets were proposed: blade statistical curve area and blade statistical summation. The effectiveness of the five different feature sets for blade fault detection, classification, and localisation was investigated. Classification results showed that the statistical features extracted from the operating frequency to be more effective for blade fault detection, classification, and localisation than the statistical features from blade passing frequencies. Feature sets of blade statistical curve area was found to be more effective for blade fault classification, while feature sets of blade statistical summation were more effective for blade fault localisation. The application of feature selection using genetic algorithm showed good accuracy performance with fewer features achieved. The neural network developed for blade fault detection, classification, and localisation achieved accuracy of 100%, 98.15% and 83.47% respectively. With the developed blade fault diagnosis methods, manual interpretation solely dependent on knowledge and the experience of individuals can be reduced. The novel methods can therefore be used as an alternative method for blade fault diagnosis

    A sensitivity comparison of Neuro-fuzzy feature extraction methods from bearing failure signals

    Get PDF
    This thesis presents an account of investigations made into building bearing fault classifiers for outer race faults (ORF), inner race faults (IRF), ball faults (BF) and no fault (NF) cases using wavelet transforms, statistical parameter features and Artificial Neuro-Fuzzy Inference Systems (ANFIS). The test results showed that the ball fault (BF) classifier successfully achieved 100% accuracy without mis-classification, while the outer race fault (ORF), inner race fault (IRF) and no fault (NF) classifiers achieved mixed results

    Failure Analysis of Rolling Contact Bearing for Cold Drawing Machine Using Vibration Signal Processing

    Get PDF
    In rotating machineries, rolling contact bearings are commonly used. Their failure mostly causes down time in plant. In current work ball bearing chrome steel and phosphors bronze material is carried out defects are identified using FFT analyzer in frequency domain. Signal processing is done to simulate the vibration signal obtained from ball bearing. The simulation results are validated with experimental results

    DATA-DRIVEN TECHNIQUES FOR DIAGNOSING BEARING DEFECTS IN INDUCTION MOTORS

    Get PDF
    Induction motors are frequently used in many automated systems as a major driving force, and thus, their reliable performances are of predominant concerns. Induction motors are subject to different types of faults and an early detection of faults can reduce maintenance costs and prevent unscheduled downtime. Motor faults are generally related to three components: the stator, the rotor and/or the bearings. This study focuses on the fault diagnosis of the bearings, which is the major reason for failures in induction motors. Data-driven fault diagnosis systems usually include a classification model which is supported by an efficient pre-processing unit. Various classifiers, which aim to diagnose multiple bearing defects (i.e., ball, inner race and outer race defects of different diameters), require well-processed data. The pre-processing tasks plays a vital role for extracting informative features from the vibration signal, reducing the dimensionality of the features and selecting the best features from the feature pool. Once the vibration signal is perfectly analyzed and a proper feature subset is created, then fault classifiers can be trained. However, classification task can be difficult if the training dataset is not balanced. Induction motors usually operate under healthy condition (than faulty situation), thus the monitored vibration samples relate to the normal state of the system expected to be more than the samples of the faulty state. Here, in this work, this challenge is also considered so that the classification model needs to deal with class imbalance problem

    PHM survey: implementation of signal processing methods for monitoring bearings and gearboxes

    Get PDF
    The reliability and safety of industrial equipments are one of the main objectives of companies to remain competitive in sectors that are more and more exigent in terms of cost and security. Thus, an unexpected shutdown can lead to physical injury as well as economic consequences. This paper aims to show the emergence of the Prognostics and Health Management (PHM) concept in the industry and to describe how it comes to complement the different maintenance strategies. It describes the benefits to be expected by the implementation of signal processing, diagnostic and prognostic methods in health-monitoring. More specifically, this paper provides a state of the art of existing signal processing techniques that can be used in the PHM strategy. This paper allows showing the diversity of possible techniques and choosing among them the one that will define a framework for industrials to monitor sensitive components like bearings and gearboxes

    Health indicators construction for damage level assessment in bearing diagnostics: A proposal of an energetic approach based on envelope analysis

    Get PDF
    Predictive maintenance strategies are established in the industrial context on account of their benefits in terms of costs abatement and machine failures reduction. Among the available techniques, vibration-based condition monitoring (VBCM) has notably been applied in many bearing fault detection problems. The health indicators construction is a central issue for VBCM, since these features provide the necessary information to assess the current machine condition. However, the relation between vibration data and its sources intimately related to bearing damage is not effortlessly definable from a diagnostic perspective. This study discloses a diagnostic investigation performed both on the vibration signal and on the contact pressure signal that is supposed to be one of main forcing terms in the dynamic equilibrium of the damaged bearing. Envelope analysis and spectral kurtosis (SK) are applied to extract and compare diagnostic features from both signals, referring to the Case Western Reserve University (CWRU) case-study. Namely, health indicators are constructed by means of physical considerations based on the effect of faults on the signal power contents. These indicators show to be promising not only for damage detection but, also, for damage severity assessment. Moreover, they provide an invaluable reading key of the link occurring between the contact pressure path and the vibration response

    A Diagnosis Feature Space for Condition Monitoring and Fault Diagnosis of Ball Bearings

    Get PDF
    The problem of fault diagnosis and condition monitoring of ball bearings is a multidisciplinary subject. It involves research subjects from diverse disciplines of mechanical engineering, electrical engineering and in particular signal processing. In the first step, one should identify the correct method of investigation. The methods of investigation for condition monitoring of ball bearings include acoustic emission measurements, temperature monitoring, electrical current monitoring, debris analysis and vibration signal analysis. In this thesis the vibration signal analysis is employed. Once the method of analysis is selected, then features sensitive to faults should be calculated from the signal. While some of the features may be useful for condition monitoring, some of the calculated features might be extra and may not be helpful. Therefore, a feature reduction module should be employed. Initially, six features are selected as a candidate for the diagnosis feature space. After analyzing the trend of the features, it was concluded that three of the features are not appropriate for fault diagnosis. In this thesis, two problem is investigated. First the problem of identifying the effects of the fault size on the vibration signal is investigated. Also the performance of the feature space is tested in distinguishing the healthy ball bearings from the defective vibration signals

    Randomness complexity as a family feature of rolling bearings’ degradation

    Get PDF
    Randomness complexity is a kind of features which is widely used to describe bearings’ degradation. However, different randomness complexities present different properties. It is necessary to figure out different randomness complexities’ properties. In this paper, we are going to make comparisons of seven commonly used randomness complexities namely approximate entropy, sample entropy, fuzzy entropy, Shannon entropy, permutation entropy, Lempel-Ziv complexity and C0 complexity by simulation signals with three different aspects and two run-to-failure bearing’s data. By comparisons, we have found that there are a kind of similarity between them and we have proposed a trend similarity index to expound this similarity. Based on the comparisons, we can infer that randomness complexities are a family feature of rolling bearings’ degradation. Among the seven discussed complexities, sample entropy has the best performance, and it can be a good representative of the complexity features. In this paper, the difference between complexity features and other features when monitoring bearings’ degradation have been discussed. The research will provide a reference for rolling bearings’ multi-features dimensionality reduction by attribute selection method
    • …
    corecore