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Bearings are simultaneously a fundamental component and one of the principal causes of failure in
rotary machinery. The work focuses on the employment of fuzzy clustering for bearing condition
monitoring, i.e., fault detection and classification. The output of a clustering algorithm is a data partition
(a set of clusters) which is merely a hypothesis on the structure of the data. This hypothesis requires
validation by domain experts. In general, clustering algorithms allow a limited usage of domain
knowledge on the cluster formation process. In this study, a novel method allowing for interactive
clustering in bearing fault diagnosis is proposed. The method resorts to shrinkage to generalize an
otherwise unbiased clustering algorithm into a biased one. In this way, the method provides a natural
and intuitive way to control the cluster formation process, allowing for the employment of domain
knowledge to guiding it. The domain expert can select a desirable level of granularity ranging from fault
detection to classification of a variable number of faults and can select a specific region of the feature
space for detailed analysis. Moreover, experimental results under realistic conditions show that the
adopted algorithm outperforms the corresponding unbiased algorithm (fuzzy c-means) which is being

widely used in this type of problems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Bearings are elemental mechanical components in rotary
machinery (engines, gearboxes, propellers, turbines, etc.) that have
been identified as one of their primary cause of failure, cf. (Yaqub et al,,
2012). For example, in induction motors metal bearing faults account
up to 40% of all faults (Siyambalapitiya and McLaren, 1990).

Rolling element bearings, such as ball bearings, consist of an
inner, an outer race or ring, inside which a set of rolling elements
rotate which are all prone to faults. In some models, a cage holds
the rolling elements. Bearing faults can have different causes such
as excessive load, lubricant failure, or corrosion. Studies exist
comparing bearings with different materials and failure mechan-
isms (Sreenilayam-Raveendran et al, 2013). In general, faults
result in abrasion due to steady friction of mechanical parts that, in
turn, can have severe consequences for the overall system where
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the bearing is working in. The healthy condition of the bearings is
directly related to the safe and effective operation of mechanical
systems (Li et al., 2015). The result of a bearing failure can be
catastrophic. This is the case of metal engine bearings supporting a
crankshaft. Should this bearing fails the whole engine can disin-
tegrate. Therefore, it is apparent the need for early detection and
diagnosis of such faults.

A fault can be classified according to the location where it
occurs: at the inner race, outer race, or at the rolling body, cage
included. Also, a fault can be classified according to its type: it can
be (i) a single point, (ii) localized within a certain region, or (iii) a
generalized roughness fault. Often, localized or generalized faults
originate from single point faults. The study focuses on metal ball
bearings with single point faults. Fig. 1 shows some examples of
the considered single-point faults in each one of the main com-
ponents of a bearing. Different faults can and do occur simulta-
neously and are considered as well in this work. On the other
hand, cage faults are not considered in this study. When present, a
cage holds the rolling elements in position and its failure is
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Fig. 1. Examples of the three basic types of bearing faults actually studied in this work: (a) ball bearing fault, (b) inner race fault, and (c) outer race fault.

normally secondary as it is due to the failure of the other 3 main
bearing components and, as such, cage faults are not normally
studied in bearing diagnosis.

Bearing faults leave a trace in the vibration signal captured by
accelerometers, the so-called fault signature. Acoustic, electric,
thermal, or oil debris signals, e.g., Navarro et al. (2010), Oskouei
and Esmaeili (2012), Oh et al. (2012) can also be used for detecting
such faults, however vibration analysis is still one of the more
widely used method and is also the method used in this work. This
is due mainly to the following two aspects: (i) comparatively to
electric, thermal, or oil debris signals, the vibration signal is more
sensitive to the local defects of rotating components, and (ii)
compared to other sensors such as acoustic emission or oil debris
sensors, vibration sensors are much cheaper.

Bearing fault diagnosis involves the following general data
pipeline: data acquisition and conditioning, feature extraction,
feature selection, and classification. Typically, time, frequency, and
time-frequency features are extracted from the collected signals.
Feature selection is a critical step for optimizing efficiency, accu-
racy and for mitigating overtraining. Feature selection can be
accomplished by experts with or without the help of feature
selection methods. These include the employment of genetic
algorithms, e.g., Lei et al. (2007), correlation-based methods such
principal component analysis (PCA), e.g., Xu et al. (2009), Vijay
et al. (2013), Ben Ali et al. (2015), fuzzy measures, e.g., Liu et al.
(2008), rough sets (Zhao et al., 2008), orthogonal fuzzy neigh-
borhood discriminant analysis, e.g., Abed et al. (2014), or entropy
based criteria like those used for growing decision trees (Robin
et al., 2010). The latter computes the information degree con-
tributed by each feature and is the method adopted here. See
Section 3.3 for details.

This work focuses on the employment of fuzzy clustering for
fault detection and classification. The notions of cluster and clus-
tering can have different meanings. In this paper, we are interested
in (partition-based) clustering algorithms that can be viewed as a
function mapping patterns (or observations) in a finite, otherwise
unlabeled multi-variate date set X to partitions in P, the set of all
X dimensional compatible partitions. The problem is to partition X
c R? space into groups (clusters) so that data in one group are
similar to each other and are as dissimilar as possible from data in
other groups. The (dis)similarities are evaluated through a suitable
distance function that satisfies the three properties of a metric:
reflexivity, symmetry, and triangle inequality.

Essentially, fuzzy clustering differs from conventional (hard)
clustering in the sense that it allows an observation to belong,
with different membership degrees, to more than one cluster, cf.
(Valente de Oliveira and Pedrycz, 2007). Each membership degree
can express how ambiguously or definitely an observation belongs
to a given cluster and, under appropriated constraints, can be
interpreted as the probability of an observation be a member of a
cluster.

Currently there is a wealth of clustering algorithms available.
The following focuses only on the algorithms used in studies on
bearing fault diagnosis. For a broader perspective on the currently
available fuzzy clustering algorithms the interested reader is
referred to Valente de Oliveira and Pedrycz (2007).

1.1. Fuzzy clustering algorithms in bearing fault diagnosis

Fuzzy c-means (FCM) is the most popular and widely used
fuzzy clustering algorithm in bearing fault diagnosis. Despite being
well-known the algorithm is briefly revised here for easy refer-
ence. FCM aims at minimizing the objective function J (1) for a
specified number of cluster ¢ and a given set of observations

- — —
X={(X1,...,Xj,..., Xn}

c N
1= umi®;-vii? 1
i=1j=1

under the constraints u; €0, 1], Z}'-Vz 1u>0, and 3§ ju;=1,
where uj; represents the membership of observation 7]»()' =1,...,
N) in the i-th cluster (i= 1, ...,c), V; refers to the centroid of the i-
th cluster, II.Il stands for a norm distance in R¢, m > 1 being the so-
called fuzziness parameter. Increasing m increases the overlapping
among the clusters. On the other hand, when m—1 FCM degen-
erates into k-means. FCM optimizes J through an iterative process
where in each iteration, the centroid of the i-th cluster is updated
using:
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The elements of the partition matrix, u; i.e., the membership
degrees are computed as follows:
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FCM has been extensively studied in bearing fault diagnosis as
an exploratory tool (Jia et al., 2005; Guan et al., 2006; Wadhwani
et al., 2006; Cui et al.,, 2008; Pan et al., 2009, 2009; Sui et al., 2010;
Fu et al., 2011; Jiang et al., 2011; Ye et al., 2011; Zhang et al., 2011;
Cao et al,, 2012; Liu and Han, 2012; Xu et al., 2012; Xinbin et al.,
2012; Wang et al., 2012b,a, Zanoli and Astolfi, 2012; Liu and Han,
2013; Vijay et al., 2013; Liang et al., 2015; Ou and Yu, 2014; Wang
et al., 2014; Meng et al., 2014; Liu et al., 2014; Zhang et al., 2014;
Zheng et al., 2015).

Other authors studied specific variants of the algorithm. This is
the case of Jiang et al. (2010) in which a specific cost-functional
based partitioning clustering algorithm is derived, and the work in
Sui et al. (2008), Zhang et al. (2009), Cao et al. (2012) that uses the
kernel-based fuzzy c-means.
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FCM is one the simplest soft clustering methods, it is well under-
stood, and the experimental evidence reported in the above literature
clearly shows its effectiveness in this type of problem, especially when
contrasted with more classical methods such as k-means.

Beyond FCM, in Wang et al. (2012) the Gath-Geva clustering
algorithm is used, and in Zhang et al. (2014) the Gath-Geva,
Gustafson-Kessel, and FCM clustering algorithms are compared. In
brief, Gustafson-Kessel algorithm consider ellipsoidal clusters, and
Gath-Geva considers ellipsoidal clusters with independent shapes
and sizes. Other studies on clustering for bearing faults diagnosis
are the work of Chen et al. (2010) where an application of wavelet,
PCA, and fuzzy K-nearest neighbor is studied, and the work of
Jiang et al. (2011) where an equivalence fuzzy relation based
clustering for autoregressive model estimation is proposed. In
Zhang et al. (2013) combines clustering with fuzzy support vector
machines. No further work on fuzzy clustering based bearing fault
diagnosis is found when the scientific index engine Scopus? is
searched with the string “TITLE-ABS-KEY (fuzzy AND fault bear-
ing) AND PUBYEAR > 1999".

The motivation to use an unsupervised approach such as fuzzy
clustering to fault classification is twofold: It is clear that with
enough labeled data supervised learning methods are more
effective in terms of accuracy. However, when the available data
for certain type of faults is scarce or when the type of fault is
unknown, unsupervised approaches such as clustering become
relevant. Another reason for using clustering is for membership
functions elicitation of linguistic variables. This is a common
approach to automatically tune fuzzy rule-based, and fuzzy rela-
tional systems.

In this study, a novel method allowing for interactive clustering in
bearing fault diagnosis is proposed. The method provides a natural
and intuitive way to control the cluster formation process, allowing
the employment of domain knowledge to guide the clustering pro-
cess. This allows the user to (i) select a suitable level of granularity,
e.g., select between the fault detection case (only two clusters) and
fault classification with a variable number of faults, and (ii) to explore
in detail specific regions of the feature space. Given these contribu-
tions one may legitimately ask what are benefits of doing this, if any?
In an attempt to address this question, we start by recalling that
finding an optimal partition — independently of the criterion used -
is computationally intractable (Fazendeiro et al., 2008; Fazendeiro
and Valente de Oliveira, 2015). As a consequence, clustering algo-
rithms explore a small portion of the partition space. The explored
region depends on the algorithm and on the underlying assumption
on the data distribution, heuristics, or employed model. Exploratory
analysis using clustering involves a number of steps including, but
not limited to: selection and application of clustering algorithm,
(internal) validation according to some cluster validity index, and a
final, crucial, interpretation step. This interpretation depends on the
application field and relies on the existence of domain experts.
Without this interpretation step, results can be completely mean-
ingless. As an illustration, consider a dataset U sampled from an
uniform distribution. Apply a clustering algorithm over U and the
algorithm will produced some “clusters” as output. Furthermore,
different outputs from different clustering algorithms can be even
evaluated against each other, and eventually ranked. All this despite
the fact that no structure at all exists in U. Thus domain experts are
crucial in the identification of meaningful clusters, i.e., clusters that
actually represents a structure in data. Conventional hierarchical
clustering can be viewed as a first attempt to address the above
concerns. Hierarchical clustering provides a hierarchy of clusters and
let the user decide on their suitable number (level of granularity) cf.,
e.g., Valente de Oliveira and Pedrycz (2007). Our approach offers two

2 http://www.scopus.com

significant advantages over hierarchical clustering: (i) it allows for
the detailed exploration of chosen regions of the feature space, and
(ii) it allows for the reassignment of observations to clusters when
their number changes.

The remaining of the paper is organized as follows. Section 2
presents the proposed clustering algorithm. Section 3 presents the
data pipeline required for experimental evaluation of our proposal.
It includes short descriptions of data acquisition, signal processing
used for feature extraction, and the feature selection process.
Section 4 presents both the experimental results and a brief dis-
cussion. Section 5 ends the paper with the main conclusions.

2. The observer biased clustering algorithm

The adopted clustering algorithm is inspired by the following
metaphor (Fazendeiro and Valente de Oliveira, 2015). In daily live,
the visual perception of a group of objects depends on the
observer position. The closer an observer is from a set of objects
the clearer the set is perceived. Inversely, the farthest the observer
is from the objects less detail is visualized. Zooming in and out
with an optical lens has exactly this effect. When too close each
object is clearly visible, when too far all objects are visualized as a
single entity.

In this work, this metaphor is substantiated as follows. The
observer position is modeled by a (focal) point based on which a
regularization term is defined. Afterwards we use a form of sta-
tistical shrinkage to incorporate the regularization term in the
objective function of FCM, otherwise viewed as an unbiased
clustering algorithm. All this allows one to obtain different rea-
sonable clusters, depending on the position of the observer. We
use the term reasonable cluster in the MacQueen' sense. A rea-
sonable cluster is a cluster that merely belongs to a partition
revealing “reasonably good similarity groups” (MacQueen, 1967),
as validated by a given internal cluster validity index. This should
not be confused with a meaningful cluster that actually represents
a data structure as recognized by a domain expert.

For formalizing the above let X={X1,..., X j, ..., X n} be a finite
set of feature vectors in the R? space. Associated with observation
X j there is a vector U; such that each one of its elements repre-
sents the membership of the observation j in each one of the C
classes of observations. Each vector's element, uy, i=1,...,C, j=1
,...,N takes values in [0, 1], 0 standing for non-membership while
1 corresponds to total membership. Vectors 7]- can be arrayed as
the columns of a C x N partition matrix, U= [u;] e R“*N. For the
sake of correctness of matrix U, the following conditions should be
satisfied:

uje[0,1]foralli=1,..,c and j=1,..,n (4a)

c
Zuijzl forallj=1,...,N (4b)
i=1

Furthermore, we assume that the clustering problem is reasonable
in the sense that the number of different observations N is much
greater than the number of classes, C, i.e., N>C.

The center of the i cluster is denoted by V; with V; € R%. These
centers can be arrayed into V=[V7q,..., V] with V. c R4 A
regularization term, based on the focal point Pe R? can then be
embodied into the cost functional of FCM (1) as follows:

C N C
Q=Y ulIX;=Vil2+{ Y IP-VI2 5)
i=1j=1 i=1

under constraints (4a) and (4b). The regularization coefficient is
¢ >0 and allows one to adjust between the unbiased algorithm
(FCM) for £ =0 and a biased one. Notice that Q is the sum of two
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Fig. 2. The experimental apparatus: (a) Schematic test set-up and (b) the actual set-up.

non-negative terms. The second term (i.e., the regularization term)
will be zero (minimum) when =0 or when all prototypes are
equal to P. If P is far enough from the data points, as the ith-cluster
approaches P there is no data belonging to it and thus the mem-
bership values u;; will tend to zero. In practice this is equivalent to
remove the prototype V ;.

Consider for instance an unconstrained setup with as many
prototypes as data points (C=N). We can think of { = 0 as the case
where the observer is so close to data that each datum is regarded
as a cluster; as ¢ increases some prototypes are subsumed by P
resulting in less and less clusters each one of which with more and
more elements. One can resort to alternating optimization to
minimize (5) under constraints (4a) and (4b). The optimization
problem can then be converted into an unconstrained one using
Lagrange multipliers, yielding the updating expressions:

(A/1X =Vl m=D

uj = (6)
SN (/1K = VI meD
N v
7._Zj:1ugﬂx,‘+CP N
== T
Z]N=] uf+¢

The algorithm can be viewed as a sequence of Picard iterations
through the necessary conditions (6) and (7) and is given as
Algorithm 1 in the Appendix.

The number of clusters C is one of the most important para-
meter of a partitioning clustering algorithms. Only if C equals the
(usually unknown) number of subgroups in the data there is a
possibility that the clustering process effectively reveals the exis-
tent structure of the data. Often, the merit of selecting a given C is
evaluated by a cluster validity analysis. One possibility consists in
running the clustering algorithm several times with different
initializations, for a sequence of C values. The number C which
optimizes the validity measure is elected as the best one.

In order to find a number of reasonable clusters we employ an
iterative algorithm which consists of successive runs of Algorithm 1
(in the Appendix) with increasing values of £ given that P is enough
distant from data. To ensure this last assumption the focal point P is
placed in a higher dimensional space R@*V. In this way, the

Data acquisition

algorithm begins by representing both data and the prototypes,
initially located in the original input space R, into R+ — 3 simple
way of providing this transformation is by introducing one extra
null coordinates both in the data and in the prototypes. Afterwards,
the number of clusters is overestimated and denoted by Cpax. This
results in a reduced influence on the overall weights of the partition
matrix by those prototypes that are attracted to the focal point. In
each iteration of this meta-process the number of candidate clusters
is determined and the Xie-Beni validity index is calculated - Eq. (8).
Some of the prototypes may have been attracted to the neighbor-
hood of the focal point, in the R@*" space, and can be removed.
This meta-process finalizes by producing the best partitions
obtained regarding the validity index employed. This iterative
process is specified as Algorithm 2 and given in the Appendix.

c n myy._ .12
_Z,-:1Zj:1u,-]-|\xj—v,\l

XB e
nmin; .l v;— vjl

®

3. Material and methods

This section presents the data pipeline for bearing fault diag-
nosis, i.e., it includes short descriptions of the setup used for data
acquisition, the signal processing used for feature extraction, and
the criterion for feature selection.

3.1. Experimental apparatus

The experimental apparatus used to collect data is displayed in
Fig. 2 and consists of the equipment specified in Table 1. In brief,
two bearings are installed in a 30 mm shaft and mounted in their
housings. The shaft is driven by the motor that is controlled by a
driver inverter (not identified in the figure). Flywheels are
mounted on the shaft when load is required. One accelerometer is
installed in each bearing housing for measuring the vibration
signals that are collected by the data acquisition card. This test rig
allow us to study fault interferences, e.g., the effect of a faulty
bearing 1 in the readings of accelerometer 2.
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A total of 63 x5=315 experiments are performed. Each
experiment is characterized by a tuple (speed, load, bs) where speed
is the shaft speed, load is the total load on the shaft, and bs stands
for the bearing status. Given the low variability of the results, each
experiment is only repeated 5 times. Three discrete speeds are
tested: 8, 10, and 15 Hz. Also, three different types of loads are
essayed: zero, one, and two flywheels. The essayed bearing status
are described in Table 2. The sampling frequency is 50 kHz being
determined considering the following. High frequency band sig-
nals, between 1 and 20 kHz, are indicators of faults in bearings.
According to the Nyquist-Shannon theorem the sampling fre-
quency should be at least twice the signal highest frequency
(20 kHz). Therefore we choose 50 kHz for securely meeting this
requirement.

The duration of each sample (measurement time) is 20 s. Fig. 3
shows the first two seconds of two of these signals (samples) corre-
sponding to the same experimental conditions except for bearing

Table 1
Specifications of the equipment used in the experimental apparatus.

Component Specification

Accelerometer 1 & 2
Bearing 1 & 2
Data Acquisition

PCB Icp 353c03
SKF 1207 Ektn9/C3
NI Cdag-9234

Housing 1 & 2 SKF Snl 507-606
Inverter Danfoss VLT 1.5kw
Motor Siemens 1LA7 090-4YAG60 2Hp
Shaft diameter 30 mm
Tachometer VIs5/T/Laser Optical Sensor
Type of load flywheels

Table 2

Health status of the essayed bearings.

Id Bearing 1 Bearing 2
P1 healthy healthy
P2 inner race fault healthy
P3 outer race fault healthy
P4 ball fault healthy
P5 inner race fault outer race fault
P6 inner race fault ball fault
P7 outer race fault ball fault
a
T T T
0.4

Amplitude

0 0.5 1 1.5
time (s)

health; more concretely, the signals corresponds to the first run of
experiments (speed =8 Hz, load = none, bs =P1) and (speed = 8 Hz,
load = none, bs = P3). Clearly the signal corresponding to a faulty case
has more energy than the signal corresponding to the healthy case.

3.2. Computed features

For each accelerometer 817 features (thus 1634 in total) are
computed and are distributed as follows. Seven time domain
features, 730 frequency domain, and 80 time-frequency features.
In the frequency and the time-frequency domains, signals were
divided in 80 bands of 20 KHz each. Afterwards features are
computed for each one of these bands. A band is identified by a
number between 1 and 80.

Many other features could have been considered, however the
below described ones were selected both for their computational
efficiency and for our a priori knowledge on the their suitability for
this application e.g., Li et al. (2012), Li Chuan (2012), Li et al. (2015),
Tianyang et al. (2015).

3.2.1. Time domain features
Time domain features include statistics like the mean (u),
standard deviation (o), variance (¢%), root mean square (rms),

rms[x] = 4 /%ZL X 9)

kurtosis, k,

NZN:1 (X; —M)4
La=1V" 7 ‘10
N xi— )P a0

where x is the signal, and N is its duration. Kurtosis is largely used
as an indicator of major peaks in a signal and has been shown to
be, to a great extend, independent of load and speed variations
(Gupta, 1997); Consequently, we have also considered the kurtosis
of the speed, acceleration, and of the derivative of the acceleration
of the signal. We refer to the former as the kda operator which is
defined as,

k[x] =

d , d’
kda[x] =k I Acceleratlon(x(t))} =k {dﬁx(t)} (11)

where k is the kurtosis given by (10). Skewness (s), a measure of

b

0.4

Amplitude

I 1 !
0 0.5 1 1.5 2
time (s)

Fig. 3. Signals measured by accelerometer 1 corresponding to experiments (a) (speed = 8 Hz, load = none, bs = P1) and (b) (speed = 8 Hz, load = none, bs = P3). Clearly, the
signal (b) corresponding to an outer race fault in bearing 1 has higher energy than the other corresponding to healthy bearings.
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Table 3
Used wavelet packet transforms (WPT) and their properties.

Table 4
Selected features based on maximum information gain.

WPT Properties No. Domain ID Acclr. Obs
Biorthogonal (bior6.8) symmetric, not orthogonal, biorthogonal. 1 time rms 1 Eq. (9)
Coiflets (coif4) near symmetric, orthogonal, biorthogona 2 time kda 1 Eq. (1
Daubechies (db7) asymmetric, orthogonal, biorthogonal 3 time cf 1 Eq. (13)
Symlets (sym3) near symmetric, orthogonal, biorthogonal 4 freq. std of FFT band 3 1
Reverse Biorthogonal (rbio6.8) symmetric, not orthogonal, biorthogonal 5 freq. std of FFT band 9 1
6 freq. std of FFT band 30 1
7 time-freq WPT (db7)-1 1 Energy of node 1 in
the db7 decomp.tree
L. . . 8 time-freq WPT (db7)-5 1 Energy of node 5
asymmetry of a distribution around its mean, 9 time-freq  WPT (sym3)-12 1 Energy of node 12
N ) 3 10 time cf 2 Eq. (13)
S[X] = Do 1 Xi—p) (12) 1 time-freq WPT (db7)-5 2 Energy of node 5
No3 12 time-freq WPT (coif4)-15 2 Energy of node 15

and the crest factor, cf,
max(x]
rmsjx]

cfix] = 13)

were also considered.

3.2.2. Frequency domain features

The vibration time-domain signals are transformed into fre-
quency signals using Fast Fourier Transform (FFT). The results are
divided into 80 bands of 20 KHz each. For each band: mean, root
mean squares, standard deviation, and kurtosis are computed for
both linear amplitude and amplitude in db; for a subtotal of 640
features. In addition, 15 octaves are considered and for each one of
them: mean, standard deviation, and kurtosis are computed for
both linear and db amplitudes; yielding a subtotal of 90 features.
Thus a total of 730 frequency domain features are computed for
each accelerometer.

3.2.3. Time-frequency domain features: wavelets packet transforms

For the time-frequency domain, and for each of the 80 bands
five wavelets packet transforms are computed, see Table 3.

Wavelet transforms, especially continuous ones, can be viewed
as a generalization of Fourier transforms where the trigonometric
functions are replaced by wavelet functions. A wavelet function
describes a small oscillatory wave whose energy is concentrated in
time. Following Rugiang et al. (2014), the general expression of a
continuous wavelet transform, cwt, of the time-domain signal x(t)
is

WIS, T):% / X(HWP* (%) dt (14)

where S and 7 stand for the scale and the translation parameters,
respectively, while ¥* is the complex conjugate of the wavelet
function V.

Wavelet packet transforms are a particular type of discrete
wavelet transforms that allows one to assess the detailed infor-
mation of signals in high frequency bands. Consequently, WPT can
be used to explore data features, such as high frequency transients,
that might be missed by more traditional methods, such as FFT.
Table 3 summarizes the properties of the used WPT.

3.3. Entropy based feature selection

For feature selection we follow the technique proposed in
Robin et al. (2010). Although well-known, the main idea is briefly
revised here for easy reference. A feature X; is selected so that it
yields the maximum information gain on the data set X, or
equivalently that maximizes the reduction in entropy, i.e., that

3 Ready to use implementations of these and other WPT are available from
several signal processing software packages.

maximizes I(X,X;) = HX)—H(X,X;) where H(X) is the entropy of
the data set before selecting any feature, HX) = — Z,-C: 1 pi log,p;
with the probability of i-th class, p; = n;/N where n; is the number
of samples belonging to class i;(i=1,...,C) and N is the cardinality
of X. Moreover, the conditional entropy (i.e., the entropy after
selecting the j-th feature is HX, X)) = — >, p(X; =%)>_,pX =y|X;
= xlog,pX =y|X; =x).

This method was found to be much faster and more dis-
criminative than the usually employed genetic algorithm (GA)
based feature selection method. In particular, this method selected
only 12 relevant features out of 1634 while GA based method
selected a number of features one order of magnitude higher
typically. This is a direct consequence of the fact that GA are
general purpose optimizers whose search is guided by the fitness
function only while the above method can be viewed as a spe-
cialized method that evaluates the contribution of each feature.

4. Results and discussion

This section presents some experimental results and a brief
discussion. The section starts by presenting and discussing the
results of applying the adopted feature selection method to the
computed features. The treatment of outliers is also discussed.
Afterwards, a presentation of the clustering results obtained is
presented for both the fault detection and fault classification cases.
This includes some experimental evidence on the merits of FCMFP
and its iterated version to providing a natural and intuitive way to
control the cluster formation process, allowing the user to itera-
tively select a suitable level of granularity while searching for
meaningful clusters in a given region of the feature space. A
comparison of the proposed biased algorithm (FCMFP) with the
corresponding unbiased one (FCM) is also given. This comparison
measures the quality of the resulting partitions using the external
quality Rand and Adjusted Rand indices and check for statistical
significant differences between the obtained indices using the
non-parametric statistical Wilcoxon signed-rank test.

4.1. Features

When the proposed methodology is applied to the data
acquired in the above described experiments 12 out of 1634 fea-
tures are selected as the most relevant ones. Table 4 presents these
features.

Both fault distribution among bearings (see Table 2) and fault
interferences dictate that Accelerometer 1 is the most relevant
being responsible for capturing 9 of the 12 selected features.
Wavelets, i.e., time-frequency domain features corresponds to 5 of
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+ +
1 2 25
Fig. 4. Boxplots exhibiting the distributions of selected features (1) with and
(2) without outliers for healthy bearings: (a) time domain kda (Acceler.1); and
(b) time cf (Acceler.1). Each boxplot shows, from bottom up: the minimum, the first
quartile, the second quartile (median), the third quartile and the maximum value.

The symbol o denotes an outlier that lies outside 3 times the interquartile range
while + denotes points between 1.5 and 3 times the interquartile range.

the total number of selected features; in addition, five time
domain and three frequency domain features were selected.

When we verify the distribution of the values of the above
features, outliers are observed even for healthy bearings. This
occurs mainly in time domain features — see Fig. 4 — but also
occurs in time-frequency domain, e.g., this is case of the feature
corresponding to the energy of the leaf node 1 at the wavelet
decomposition tree with Daubechies 7 wavelet (WPT (db7)-1).
These outliers correspond to both mechanical and electrical noisy
that may degrade the performance of the unsupervised method
used and therefore were removed using the Thompson Tau
method (Dieck, 2006).

The time-domain noise is even more severe in faulty states.
Now all the four time domain features exhibit outliers together
with WPT (db7)-1 (Accelerometer 1). Fig. 5 shows one of the more
dramatic cases. The figure presents the boxplots of the feature kda
(Accelorometer 1) (a) with and (b) without outliers. These outliers,
identified by the symbol o, can be many times higher the
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Fig. 5. Boxplots exhibiting the distribution of the time domain kda operator
(Accelerometer 1) (a) with and (b) without outliers for faulty bearings.

interquartile range. Even in the faulty condition states, no outliers
were observed in the other features.

4.2. Clustering results and discussion

Having applied Algorithm 2 over the above-mentioned 12
features, a wide range of reasonable partitions were revealed. The
quality of the different structural alternatives yielded by the
algorithm, as assessed by the Xie Beni index (8), is shown in Fig. 6.
In this figure, the results correspond to a typical run of the algo-
rithm where the fuzzifier coefficient was set to m=2, data were
normalized for zero mean, and the focal point was set one order of
magnitude above the baricenter of data, and A{=0.01. The
number of clusters corresponding to local maxima of the validity
index is identified as they correspond to the different reasonable
alternatives. These range from partitions with c=2 to ¢=9 clus-
ters. Curiously enough c=5 was not signaled as a reasonable
number of clusters for this problem. For validating the different
alternatives suggested by Algorithm 2, internal (i.e., the inverse XB
index) and external validation are considered. For external vali-
dation both the Rand Index (RI), the Adjusted Rand Index (ARI)
(Hubert Lawrence, 1985) and the classical Sammon data dimen-
sionality reduction method for data visualization (Sammon, 1969)
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Fig. 6. Evolution of the interval validity index (8)(a) and the corresponding number of clusters (b) as function of ¢ for a typical run of Algorithm 2. Peaks of the index reveal

reasonable number of clusters. Five clusters were not signaled as a reasonable number.

are employed. Both RI and ARI are two of the most recommend-
able external validation indexes used to measure the similarity of
two partitions. In our case these partitions are respectively the
ground truth i.e., the real classification of faults, and a hypothetical
partition generated by the clustering algorithm. In the Appendix
we briefly review both of these indices. The Sammon method
provides a nonlinear projection between a high-dimensional space
and a lower dimensionality one attempting to preserve the
structure of inter-point distances in both spaces.

4.2.1. The fault detection case

We start by inspecting the fault detection case, i.e., the case
where we are only interested in verify whether a fault (no mater
which) exists. This corresponds to clustering the data with c=2
clusters. Fig. 7 shows a Sammom projection of the 12-dimensional
feature space into the plane. In this figure, the centers of each
cluster are denoted by a red . Around each cluster center there
are ten solid line curves with different colors ranging from red to
dark blue, each one of them representing a contour of equal
membership value; the farthest the curve from the center the
lower the membership value (the darker the blue the lower the
membership). Each one of the other colored symbols represents to
the truth classification of a sample. Samples in the same class are
represented by the same color and symbol. More concretely the
symbol green e denotes the bearing state identified as P1 (healthy

state) in Table 2; symbols magenta x, blue @, red ¢, magenta @,
cyan @, and black © corresponding to the states identified as P2,
P3, P4, P5, P6, and P7 in the same table, respectively.

From this figure, we can observe that: (i) the total number of
samples in the healthy state (marked with green o) are all in the
same cluster, i.e., there is no heathy state case that is misclassified
which is an asset in this type of applications as nobody wants to
stop a machine for replacing a healthy bearing; (ii) however there
are some classification errors. These errors are due mainly to
samples in state P3, an outer race fault in bearing 1 (marked with
blue @) and a single sample of P4, a ball fault in bearing 1 (marked
with red e), see also Table 2. It worths mentioning that from the
strict mathematical point of view, this last data point, is com-
pletely separated from the other points with same fault.

Relatively to the ground truth, the presented partition has a
RI=0.81533 and ARI=0.63076. Usually RI > 0.7 corresponds to an
acceptable clustering solution in the sense that such values cannot
correspond to haphazard agreements between partitions. For fur-
ther details on RI, ARI, and their interpretation, the reader is
referred to the Appendix and to Hubert Lawrence (1985).

4.2.2. The multi-fault classification case

From the analysis of the Xie Beni index of Fig. 6(a) it follows that
different perspectives on the data are possible. In particular, partitions
with number of clusters c=2,3,4,6,7,8, and 9 provide reasonable
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Fig. 7. A Sammom projection of the 12-dimensional feature space into the plane
for the fault detection case (c=2). The centers of each cluster are denoted by a .
Around each cluster center there are ten solid line curves with different colors each
one of them representing a contour of equal membership value; the farthest the
curve from the center the lower the membership value. Each one of the other
colored symbols represent the truth classification of a state. No healthy sample
(marked with a green ) is misclassified. See text for further details. (For inter-
pretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)

structural alternatives. Fig. 8 shows examples of each one of these
different perspectives resorting to Sammom projections, in a
sequence that resemble a zooming in process. Starting from Fig. 7 and
requiring a more detailed view (passing from 2 to 3 clusters) we
observe in Fig. 8(a) that a cluster formed by blue +, corresponding to
outer race faults in bearing 1 (state P3 in Table 2) is formed. From
Fig. 8(a) and (b) we observe that the initial cluster corresponding to
the healthy state is now subdivided in two clusters: one containing
samples in healthy state or in P3 state, and other containing samples
in healthy state and a sample in P4 (ball fault in bearing 1 identified
by the red ). Following the same process, the current biggest cluster
at the right of Fig. 8(b) will be successively subdivided into 2 (Fig. 8
(b)) and 3 subclusters (Fig. 9(c)). At this point, most of faults P2
(identified by magenta x ) and most of faults P6 (identified by cyan
®) have occupied respectively 2 that subclusters. This process of
cluster purification continues in the remaining cases. Curiously
enough the state P7, i.e., outer race fault in bearing 1 and ball fault in
bearing 2 (black ©) were always viewed by the algorithm as similar
to state P2, ie., inner race fault in bearing 1 and healthy bearing 2
(magenta x ), for all the levels of data granularity analyzed. The
FCMFP algorithm was able to provide difference data perspectives
even for the same number of clusters and the same P. For example,
for the run presented in Fig. 6(a) there is a range of { values (wider
that [1; 1.5]) that yield the same number of clusters c=3 and about
the same external validation indexes. For instance, for {=1
AR=0.56368, RI=0.81274 were obtained. For { =1.5 AR=0.60607,
RI=0.83247 were obtained, and for {=1.5 and AR=047217,
RI=0.76774 was obtained. It is the prerogative of the domain spe-
cialist to choose the view that best fits her needs.

More interestingly, suppose that we are interested in a detailed
analysis of a given region of the feature space, say the region
where features attains their minimum or their maximum values.
This is obtained by positioning the P within the region of interest.
For space saving reasons Fig. 9 shows only three cases (c=4,6,7)
of obtained results when P was positioned respectively at the
minimum (left side subfigures) and at the maximum (right side

subfigures) regions of the feature space. Similar results were
obtained for other number of clusters c. Although the same
number of clusters is visualized in each pair of subfigures, different
levels of detail are observed in each one of the selected regions.

4.2.3. Comparison with the corresponding unbiased algorithm

In this section we temporarily assume that we are not interested in
the natural and intuitive way to control the cluster formation process
provided by FCMFP and its iterated version. We temporarily assumed
that we are only interested in the quality of the final results. Under this
assumption a reasonable question to ask is how the biased FCMFP
compares with its unbiased counterpart (i.e, FCM)? To answer this
question we ran both algorithms (FCM and FCMFP) 30 times for each
one of the following number of clusters c = 2, 3,4, 6,7, 8,9 under the
same initial conditions. Afterwards the quality of the resulting parti-
tions measured by the external quality (Rand and Adjusted Rand)
indexes were statistically evaluated.

The non-parametric statistical Wilcoxon signed-rank test
(Sheskin, 2011) was used to analyze the obtained results. Non-
parametric tests do not require neither normality nor homo-
scedasticity (equal variance) of the samples in analysis, what is
very convenient in the present case. The test is used to answer the
question of whether the two samples (quality of partitions in this
case) represent two different populations.

The significance level considered was a =0.05 corresponding
to a confidence interval of 95%, i.e., if p-value <0.05 it is con-
sidered that there is a statistical significant difference between the
data samples being analyzed (rejection of the null hypothesis).
There is no statistical significant difference, otherwise.

The obtained results are summarized in Fig. 10 where a com-
parison of Adjusted Rand Indexes distributions over 30 indepen-
dent runs of each algorithm for the different number of clusters
can be observed. The figure also presents the corresponding sta-
tistical results obtained. From these experiments we conclude that
FCMFP outperforms FCM for any number of clusters except for
c=6 where there is no statistical significant different between the
partitions produced by the algorithms. Similar results were
obtained for the Rand index and are omitted for brevity. Although
this type of improvements was not the primary goal beyond
FCMFP it is a convenient side effect of the shrinkage technique
employed in the design of the algorithm. Shrinkage allow one to
balance a high variance estimator (FCM) with a high bias one (the
focal point).

Best improvements are observed for small number of clusters
and especially for c=2, i.e., for the fault detection case. In practical
terms this means that, for the former case, most samples in the
fault state P3 (blue &) are now wrongly clustered together with
samples in healthy state (marked with a green e), see Fig. 11 and
compare with Fig. 7.

5. Conclusions

In this paper the bearing fault diagnosis (detection and classi-
fication) problem was addressed. As found in the literature, soft
clustering is recognisably a promising data analysis tool due to the
very nature of the problem.

In this study we further exploit soft clustering techniques for
bearing fault diagnosis. We have proposed the employment of the
recent observer biased partitioning clustering algorithm named
fuzzy C-means with a variable focal point (FCMFP). This algorithm
allows the user to iteratively select a suitable level of granularity
while searching for meaningful clusters, i.e., clusters that actually
correspond to the underlying structure of the data. In addition, the
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Fig. 8. Sammom projections of the 12-dimensional feature space into the plane for fault classification for: (a) 3, (b) 4, (c) 6, (d) 7, (e) 8, and (f) 9 clusters corresponding to the
peak values in Fig. 6(a). The truth classification of the faults are represented by different colors and symbols, the centers () as well as some membership contour curves are
also represented. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 9. Sammom projections showing more detailed analysis in different regions of the feature space. Left side subfigures correspond to P positioned in the region where
features attain their minimum values while right side subfigures correspond to P positioned where features attain their max. In each horizontal subfigure pair the same

number of clusters is used, i.e., (a) and (b) c=4; (c) and (d) c=6; and c=7 in (e) and (f).
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Fig. 10. Boxplots comparing the distributions of Adjusted Rand Indices over 30 independent runs of each algorithm, for different number of clusters c: FCMFP always
outperforms FCM (with pwiicoxon = 0.000002) except for c=6 where there is no statistical significant difference between algorithms (pwijcoxon = 0.308615). Similar results

were obtained for the Rand index.

algorithm allows for a detailed analysis of a given region of the
feature space.

FCMFP is inspired in the observation that the visual perception
of a group of similar objects is (highly) dependent on the obser-
ver's position. The position at which the observer is located rela-
tively to a set of objects determines how the observer perceives
these objects. If the observer is located at a significant distance
from the objects these tend to be undistinguishable, that is, objects

tend to be seen as a single cluster. As the observer gets closer to
objects differences between them tend to emerge, and the initial
single cluster tends to split into more and more clusters.

The included experimental results show that FCMFP is able to
provide a number of reasonable partitions at different level of
granularity. Reasonable partitions (or hypotheses on data struc-
ture) are those successfully evaluated by an internal validation
index, the inverted Xie-Beni index in this case. To this end FCMFP
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Fig. 11. A Sammom projection of the 12-dimensional feature space into the plane
for the fault detection case (c=2) when the FCM algorithm is used. Most samples in
the fault state P3 (blue &) are now wrongly clustered together with samples in
healthy state (a green o). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

shares the advantages of hierarchical clustering while mitigates its
limitations in terms of efficiency and flexibility. Moreover, results
also show that the biased algorithm (FCMFP) produces partitions
exhibiting better external validity index values than the corre-
sponding unbiased algorithm (FCM) for any number of clusters
except for c=6 where no statistically significant difference was
observed between algorithms. Although this type of improve-
ments was not the primary goal beyond FCMFP, the improvement
is viewed as a convenient side effect of the shrinkage technique
employed in the design of the algorithm. From this perspective,
one can claim that works currently employing FCM in bearing fault
diagnosis would benefit from the use of FCMFP.

Finally, we must say that an effort was made to test the pro-
posed technique under realistic experimental conditions. In
industrial applications, high energy noise can corrupt the mea-
surements and suitable vibration signal conditioning (filtering)
should be used. In this study, no specific signal conditioning was
applied even though there is still noise and interferences resulting
from the different components of the test rig such as flywheels,
motor, and couplings (see Fig. 2). Hence the proposed technique
was tested in the presence of noise corrupted signals as it was
illustrated in Fig. 3. Moreover, the vibration signal-to-noise ratio
(SNR) is directly related with the size of the smallest detectable
fault. The stronger the SNR the smaller the detectable fault. In the
noise free theoretical limit, the smallest fault size is determined by
the sensitivity of the accelerometer.
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Appendix A

Algorithm 1. Fuzzy C-means with focal point (Fazendeiro and
Valente de Oliveira, 2015).

Let X = {X1,X, ...,Xn} C RY be a finite set of unlabeled data.

Initialize the clusters' prototypes V e R%*€,

Set Cnax, m>1, Pe RY(w>d) and { > 0.

Extend X and V into R" by introducing (w—d) null coordinates
per element.

Repeat the following steps until a termination criterion has
been met.

Step1-Fori=1,2,...,Cne and j=1,2,...,n, update the
partition matrix, U, according to (6).

Step 2 - Fori=1,2,...,Cna, update the prototypes, V, accord-
ing to (7).

Project the prototypes into the original feature space R? by
computing the intersection of the lines defined by the focal
point P and each v; cluster, with the original data space.

Algorithm 2. Iterative fuzzy C-means with focal point (Fazendeiro
and Valente de Oliveira, 2015).

Set ¢, Cinax, (1 < < Cpax), £ >0, and A > 0.

Repeat the following steps until the number of candidate
clusters is smaller than c'.

Step 1 - Apply the FCMFP algorithm.

Step 2 - Remove neglectable clusters (clusters without any
typical datum).

Step 3 - Compute the validity measure for the remaining can-
didate clusters.

Step 4 - Update { -+ AC.

Output the partition(s) optimizing the considered validity
measure.

A.1. The Rand index and the Adjusted Rand Index

Let a (data) set of n elements be denoted by X = {x1,...,X,}. A
disjoint partition of X, denoted as A =TII(X) is s.t. A={Aj|A CX,
Vic1), and satisfies the following conditions:

(i) @ cAjcX, ie., the i-th cluster A; cannot be empty and is
smaller than X;
(ii) U;cjAi =X, i.e., together all clusters fill X;
(iii) A; N Aj =g for i#], i.e., clusters do not overlap.

Given two partition of X, say the ground truth partition, G = I1(X),
and a hypothesis partition # = I1'(X) generated by a clustering
algorithm, the Rand Index (RI) of these partitions measure how
similar G, H are and is given by Hubert Lawrence (1985):

Ngo + 111 __Ngo+n11

RI(G, H) = =
©.1) Npo +MNo1 +MN10+N11 ne

15)

where ny; is the number of pairs of elements of X that cluster
together in both partitions, ngg is the number of pairs that are
separated in both partitions, ng; number of pairs that cluster
together in G but not in H; and nqo is the number of pairs that
cluster together in # but not in G; the total number of pairs n,
is np =(})=n(n—1)/2. The index takes values in the unit inter-
val, with 1 meaning that both partitions completely agree.
However the RI of two random partitions is not a constant
value. This drawback is solved using the Adjusted Rand Index
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(ARI) (Hubert Lawrence, 1985):

=o(3)-[=(3)5(3)/ ()]
=) (3]G G )G

(16)

ARI(G, M) =

where n is the number of elements of X (the data set), n;; is the
number of element that cluster together in G; and Hj, n; and n;
are the number of elements in G; and Hj, respectively. Notice
that ARI attains also its maximum value at 1 when the two
partitions completely agree. In general ARI <RI
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