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Abstract. Randomness complexity is a kind of features which is widely used to describe bearings’ 
degradation. However, different randomness complexities present different properties. It is 
necessary to figure out different randomness complexities’ properties. In this paper, we are going 
to make comparisons of seven commonly used randomness complexities namely approximate 
entropy, sample entropy, fuzzy entropy, Shannon entropy, permutation entropy, Lempel-Ziv 
complexity and 𝐶଴  complexity by simulation signals with three different aspects and two  
run-to-failure bearing’s data. By comparisons, we have found that there are a kind of similarity 
between them and we have proposed a trend similarity index to expound this similarity. Based on 
the comparisons, we can infer that randomness complexities are a family feature of rolling 
bearings’ degradation. Among the seven discussed complexities, sample entropy has the best 
performance, and it can be a good representative of the complexity features. In this paper, the 
difference between complexity features and other features when monitoring bearings’ degradation 
have been discussed. The research will provide a reference for rolling bearings’ multi-features 
dimensionality reduction by attribute selection method. 
Keywords: rolling bearings, similarity, randomness, complexity, degradation feature, trend. 

1. Introduction 

The rolling bearing is one of the most frequently used components in rotating machinery, 
which has an important influence on the modern industry. The function of bearings is to permit 
linear motion or constrained relative rotation between two parts. During the operation, the bearings 
are often subject to high loading and severe conditions. Under this severe operating condition, 
defects are often developed on the bearing components which are the most frequent cause of 
failure in mechanisms [1]. Most of the operational life of a bearing shows no significant trend 
until the time very close to failure [2]. Hence, it is pivotal and cost-effective to find suitable 
methods to detect fault and monitor the degradation process [3]. So, the condition-based 
monitoring (CBM) have come into being, and the industry is undergoing the transition from 
time-based part replacement decisions in operational systems to CBM [4]. The most extensively 
used monitoring tool is vibration signal. As a result, a plethora of methods for diagnosing bearing 
faults have been proposed, good reviews can be seen in Ref. [5-9]. Although to detect faults 
effectively, these features can hardly describe the degradation of bearings, let alone estimate the 
remaining useful life (RUL) of bearings. For instance, two main families of signal processing tools 
have gained a leading role in the diagnostic of such components: the kurtogram-based family and 
the cyclostationarity family [10], but both of them can hardly extract indicators for degradation 
process. Many references used statistical parameters such as root mean square (RMS), kurtosis 
and crest factor as the degradation indicators, but neither of them always shows an increasing 
trend during the degradation process. To find a reliable, robust, trend consistent feature, and 
meanwhile, which can clearly reflect the stage of the degradation is all-important. 

Complexity is a kind of features which have been widely used in many areas for decades. Rapp 
and Schmah [11, 12] have classified a variety of complexity algorithms into two categories. One 
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is the randomness complexity, the other is the rule complexity. For example, language is complex, 
if a meaningful sentence is randomly disturbed, the original text should have higher rule 
complexity but lower randomness complexity. The “snow” displayed on television when there is 
no signal presents high randomness complexity but low rule complexity. Boskoski et al. have 
presented a kind of rule complexity in Ref. [2]. They supposed that both periodical and purely 
random signals should have no complexity. The complex signals should be located somewhere in 
between and have chaotic behaviors. And they have defined the product of Rényi entropy and 
Jensen-Rényi divergence as a rule complexity. 

Compared to the rule complexity, randomness complexity is more common used and easy to 
realize. Many references have used randomness complexities for diagnosis and prognostics. Ref. 
[13] proposed a quantitative diagnosis method of a spall-like fault for bearings based on empirical 
mode decomposition (EMD) and approximate entropy (ApEn). Ref. [14] proposed a bearing 
diagnosis method based on EMD energy entropy and ANN. Ref. [15] presented a bearing 
diagnosis approach based on local characteristic-scale decomposition (LCD) and fuzzy entropy 
(FuzzyEn). Spectral entropy has been applied as a complementary index of bearings for 
performance degradation assessment in Ref. [16]. Yan et al. have applied Lempel-Ziv complexity 
(LZC), ApEn and permutation entropy (PermEn) as features for bearings diagnosis, respectively 
in Ref. [17-19]. Shannon entropy (ShEn) is selected as one of the basic features for prognostics in 
Ref. [20]. A bearing diagnosis method based on empirical wavelet transform and fuzzy entropy is 
proposed in Ref. [21]. Zhao et al. have applied Multi-scale Fuzzy Entropy and EEMD for motor 
bearings [22]. General mathematical morphological particle and mathematical morphological 
fractal dimension are respectively proposed in Ref. [23, 24]. In the numerous relevant literatures, 
authors have applied many randomness complexities for research and even combined with signal 
processing methods like EMD, LCD and wavelet transform. No matter what the forms of the 
randomness complexities are, the basic principle of randomness complexities is invariable,  
namely, the greater the regularity is, the lower the randomness complexities value. For 
convenience, when we talk about randomness complexity later, we use complexity instead.  

The history of the complexity can be traced back to 1940s when Shannon first developed 
information theory and proposed Shannon entropy [25]. When calculating ShEn in frequency 
domain, the entropy is called spectrum entropy. A problem with the ShEn is that it is relatively 
insensitive to the changes in the tails of the distribution, so Rényi extended and generalized the 
ShEn by proposing Rényi entropy in 1961 [26]. The definition of Kolmogorov complexity (KC) 
is proposed by Kolmogorov in 1965, which can measure pointwise randomness. The KC is 
different from ShEn where it only concerned with the average information of a random source 
[27]. Some equivalences between ShEn and KC is discussed in Ref. [28]. In 1976, Lempel and 
Ziv proposed a specific algorithm for the calculation of KC called LZC [29]. In 1991, ApEn is 
first developed by Pincus to handle the limitations that accurate entropy calculation requires vast 
amounts of data and great influence by system noise [30]. Sample entropy (SampEn) is a 
modification of ApEn proposed by Richman and Moorman in 2000 [31]. It has two advantages 
over ApEn: a relatively trouble-free implementation and data length independence. Besides, 
SampEn needn’t the template vector comparison between itself. In Ref. [32], Costa et al. have 
extended SampEn named multiscale SampEn, where the SampEn is a special case of multiscale 
SampEn with the skipping parameter equals to one. In 2002, Bandt and Prompe introduced 
PermEn which based on comparisons of neighboring values of times series [33]. FuzzyEn is first 
proposed by Chen et al, and it extended the “membership degree” with a fuzzy function [34]. The 
concept of 𝐶଴ complexity (𝐶଴𝐶) was proposed by Chen and Gu [35]. Cai and Sun [36, 37] had 
been improved 𝐶଴𝐶. In literature, there are more than ten proposed complexities, and we would 
not enumerate them. Distinguishingly, fractal dimensions and Lyapunov exponents are specific 
complexities because both of them are sensitive to the noise and generally used to test chaotic 
behaviors. Their application is narrow, and lack of adaptability. 

In this paper, we are going to explore the properties of the seven commonly used complexities, 
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i.e., ApEn, SampEn, FuzzyEn, ShEn, PermEn, LZC, 𝐶଴𝐶  with simulation signals and  
run-to-failure bearing’s vibration data. After the comparisons, we have found there are some 
similarities within, and we have proposed an index to measure these similarities. From the 
comparison, we can figure out which one has the best performance. In this paper, we will engage 
in discussing the similarities of complexities and try to prove that complexities are a good family 
feature of rolling bearings’ degradation.  

The paper is organized as follows. In Section 2, the calculation procedures of seven 
complexities are introduced. Based on their own algorithms, we have classified them into three 
categories and discussed them by their own definitions. The performance of complexities in 
simulation signals is in Section 3, and we will compare them in three different aspects. In  
Section 4, we are going to use two run-to-failure data (an inner race fault and an outer race fault) 
to examine their performance in real bearing’s data. Next, we have proposed a trend similarity 
index to measure the similarity between complexities. A detailed discussion is presented in 
Section 5. Finally, concluding remarks are given in Section 6. 

2. Brief introduction of the seven complexities 

Above all, we have reviewed the development of complexities. In this section, we are going to 
briefly introduce the calculation procedures of the seven complexity features, namely, ShEn, 
ApEn, SampEn, FuzzyEn, LZC and 𝐶଴𝐶. The parameters of the features are stated as well. 

2.1. Shannon entropy 

ShEn is the first proposed complexity, and it quantifies the probability density function (PDF) 
of the signal as 𝑆ℎ𝐸𝑛 = −∑ 𝑝௜log𝑝௜௜  where 𝑖 is all amplitude values of the signal and 𝑝௜ is the 
probability that amplitude value 𝑎௜ occurs anywhere in the signal [25]. However, in the case of 
measured signals, the PDF is not known and should be estimated. Also, to consider all amplitude 
is not reasonable generally. The easy way to evaluate the PDF is to use the histogram where the 
amplitude range (𝑁) of the signal can be divided into 𝑘 bins linearly so that the ratio 𝑘/𝑁 is 
constant. The ratio 𝑘/𝑁 characterizes the average filling of the histogram. It is worth to notice that 
there is something difference between the real PDF and the histogram. To reduce the influence, 
the ratio 𝑘/𝑁 should be set bigger. However, the bigger ratio will reduce the ability of noise 
resistance. In this paper, we set it as 50. 

2.2. Approximate entropy 

The calculation steps of ApEn are as follows [30]: 
Step 1: Given an 𝑁 point time series 𝑢 = {𝑢ሺ𝑖ሻ}, and form vector sequences 𝑥(1) through 𝑥(𝑁 −𝑚 + 1) , defined by 𝑥(𝑖) = ሾ𝑢(𝑖),⋯ ,𝑢(𝑖 + 𝑚 − 1)ሿ.  These vectors represent 𝑚 

consecutive 𝑢 values with 𝑖th point. 
Step 2: The distance 𝑑[𝑥(𝑖), 𝑥(𝑗)]  between vectors 𝑥(𝑖)  and 𝑥(𝑗)  can be defined as the 

maximum difference in their respective scalar components, where: 𝑑௜௝௠ = 𝑑[𝑥(𝑖), 𝑥(𝑗)] = max௞ୀଵ,ଶ,⋯,௠(|𝑢(𝑖 + 𝑘 − 1) − 𝑢(𝑗 + 𝑘 − 1)|). (1)

Step 3: For each vector 𝑥(𝑖), a measure that can describe the similarity between the vector 𝑥(𝑖) and all other vectors 𝑥(𝑗) can be constructed as: 

𝐶௜௠(𝑟) = 1𝑁 −𝑚 + 1෍ Θ൛𝑟 − 𝑑௜௝௠ൟ௝ஷ௜ ,     𝑗 = 1,2,⋯ ,𝑁 −𝑚 + 1, (2)

where Θ{𝑥} is the Heaviside step function, and it is represented as: 
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Θ{𝑥} = ቄ1,   𝑥 ≥ 0,0,   𝑥 ≤ 0. (3)

The parameter 𝑟  symbolizes a tolerance value or similarity criterion, which is defined as  𝑟 = 𝑘 ⋅ 𝑠𝑡𝑑(𝑢), where 𝑘 is a positive constant, and 𝑠𝑡𝑑(·) is the standard deviation of the time 
series. The parameter 𝑟 is considered as a regularity or frequency of patterns similar to a given 
pattern of window length 𝑚.  

Step 4: Define 𝜙௠(𝑟) = (𝑁 −𝑚 + 1)ିଵ෌ log𝐶௜௠(𝑟)ேି௠ାଵ௜ୀଵ ,  and define 𝐴𝑝𝐸𝑛(𝑚, 𝑟) =limே→ஶ[𝜙௠(𝑟) − 𝜙௠ାଵ(𝑟)]. Given a finite time series with 𝑁 data points, the statistic ApEn value 
is defining the 𝐴𝑝𝐸𝑛(𝑚, 𝑟,𝑁) = 𝜙௠(𝑟) − 𝜙௠ାଵ(𝑟). 

The four steps can be described as phase-space reconstruction, distance calculation, similarity 
calculation and complexity calculation. The concept of ApEn is derived from correlation 
dimension. When calculating correlation dimension, the correlation integral must be obtained first, 
defined as: 

𝐶(𝑟) = limே→ஶ 1𝑁ଶ෍ Θ{𝑟 − 𝑑[𝑥(𝑖), 𝑥(𝑗)]}ே௜,௝ୀଵ ௜ஷ௝ , (4)

which is similar to 𝐶௜௠(𝑟). It has been proved that there is a relationship with lim௥→ஶ𝐶(𝑟) ∝ 𝑟஽, 
where 𝐷 is the correlation dimension. Since 𝐷 = lim௥→଴(log(𝐶(𝑟))/log(𝑟)), 𝐷 can be estimated by 
calculating the slope of the log(𝑟)~log(𝐶(𝑟)) when increasing 𝑟 from a small value. 

2.3. Sample entropy 

The calculation procedures of SampEn are as follows [31]: 
Step 1 and Step2: Phase-space reconstruction and distance calculation as the same as step 1 

and 2 in the calculation of ApEn. 
Step 3: Given the tolerance value 𝑟  and count the number of 𝑑௜௝௠ < 𝑟  as 𝐵௜ , and define 𝐵௜௠(𝑟) = (𝑁 −𝑚 − 1)ିଵ𝐵௜, where 𝑖 = 1,2,⋯ ,𝑁 −𝑚 + 1 and 𝑖 ≠ 𝑗. Calculate the mean value 

as 𝐵௠(𝑟) = (𝑁 −𝑚)ିଵ෌ 𝐵௜௠(𝑟)ேି௠௜ୀଵ .  
Step 4: Calculate 𝐵௠ାଵ(𝑟), and define 𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟) = limே→ஶ[−log[𝐵௠ାଵ(𝑟)/𝐵௠(𝑟)]]. The 

statistic SampEn value is estimated by defining the 𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟,𝑁) = −log[𝐵௠ାଵ(𝑟)/𝐵௠(𝑟)]. 
2.4. Fuzzy entropy 

Based on the ApEn, FuzzyEn expanded the Θ{𝑥} in ApEn’s third step. Heaviside step function 
causes a kind of two-state classifier, which is a crisp one, namely the classifier is one or the other. 
FuzzyEn combined fuzzy theory with ApEn. By introducing the “membership degree” with a 
fuzzy function 𝜇஼(𝑥) which associates each point 𝑥 with a real number in the range [0, 1], the 
fuzzy theory gives a property that the higher 𝜇஼(𝑥) is, the higher the membership grade of x in the 
relevant set. When calculating FuzzyEn, Chen et al. defined the fuzzy function 𝜇(𝑑௜௝௠,𝑛,𝑤) 
as  exp(−(𝑑௜௝௠)௡/𝑤) , where 𝑤  determines the width and the gradient of the boundary of the 
exponential function (It is generally set to be 2), and replace the Heaviside step function in the 
ApEn [34]. At last, the statistic FuzzyEn is estimated by 𝐹𝑢𝑧𝑧𝑦𝐸𝑛(𝑚, 𝑟,𝑤,𝑁) = 𝜙௠(𝑟,𝑤) −𝜙௠ାଵ(𝑟,𝑤). Moreover, FuzzyEn has a difference in distance calculation compared with ApEn. In 
FuzzyEn, vectors are generalized by removing the baseline of themselves. 
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2.5. Permutation entropy 

The calculation steps of PermEn are as follows [33]: 
Step 1: Phase-space reconstruction as same as step 1 in the calculation of ApEn. 
Step 2: Arrange 𝑋(𝑖) in an increasing alignment. The 𝑚 number of values contained in each 𝑋(𝑖) can be arranged in an increasing alignment as: {𝑥(𝑖 + (𝑗ଵ − 1)𝜏) ≤ 𝑥(𝑖 + (𝑗ଶ − 1)𝜏) ≤ ⋯ ≤ 𝑥(𝑖 + (𝑗௠ − 1)𝜏)}. (5)

Accordingly, any vector 𝑋(𝑖) can be mapped onto a set of symbols as 𝑆(𝑙) = (𝑗ଵ, 𝑗ଵ,⋯ , 𝑗௠), 
where 𝑙 = 1,2,⋯ , 𝑘 and 𝑘 ≤ 𝑚!. 𝑆(𝑙) is one of the 𝑚! symbol permutations, which is mapped 
onto the 𝑚 number symbols (𝑗ଵ, 𝑗ଶ,⋯ , 𝑗௠) in 𝑚-dimensional embedding space. If 𝑃ଵ,𝑃ଶ,⋯ ,𝑃௞ 
are the probability distribution of each sequences where ∑ 𝑃௟௞௟ୀଵ = 1, then the PermEn for the 
times series of order 𝑚 can be defined as the Shannon entropy as for the 𝑘 symbol sequences: 

𝐻௣(𝑚) = −෍ 𝑃௟௞௟ log𝑃௟ . (6)

2.6. Lempel-Ziv complexity 

The calculation steps of LZC are as follows [29]: 
Step 1: To calculate Lempel-Ziv complexity, the time series should be conducted 

“coarse-graining” operation first. In general, the time series would change to a sequence that only 
contains two symbols. The sequence 𝑆ே is reconstructed by comparing the value of each sample 
of the previous sequence with the median value 𝑚 (or mean value, we take the median value as 
default). If the sample’s value is large than 𝑚, it will change to 1, otherwise as 0.  

Step 2: By obtained the two-symbol 𝑁 point sequence 𝑆ே = {𝑠ଵ𝑠ଶ ⋯𝑠ே}, initialize 𝑆௩,଴ = { }, 𝑄଴ = { }, 𝐶ே(0) = 0 and 𝑟 = 0. Set 𝑄௥ = {𝑄௥ିଵ𝑆௥}. Due to the 𝑄௥ does not belong to 𝑆௩,௥ିଵ, so 
set 𝐶ே(𝑟) = 𝐶ே(𝑟 − 1) + 1, 𝑄௥ = { } and 𝑟 = 𝑟 + 1. 

Step 3: Set 𝑄௥ = {𝑄௥ିଵ𝑆௥}  and judge whether the 𝑄௥  belongs to 𝑆௩,௥ିଵ , if true, set  𝐶ே(𝑟) = 𝐶ே(𝑟 − 1) + 1  and 𝑟 = 𝑟 + 1 ; if not, then set 𝐶ே(𝑟) = 𝐶ே(𝑟 − 1) + 1 , 𝑄௥ = { }  and 𝑟 = 𝑟 + 1. Repeat step 3 to the end of the sequence. Finally, we have the 𝐶ே(𝑟). 
Step 4: The length of the sequence has obvious influence on the 𝐶ே(𝑁). So, Lempel and Ziv 

gave a normalized LZC, which is defined as 𝐶௡௢௥௠௔௟௜௭௘ௗே = 𝐶ே(𝑁) × log𝑁/𝑁. 

2.7. 𝑪𝟎 complexity 

The calculation steps of 𝐶଴𝐶 are as follows [36]: 
Step 1: Implement Fast Fourier Transform (FFT) for the time series 𝑠(𝑡) and gain the spectrum 

where 𝑥(𝑘) = 𝐹𝐹𝑇(𝑠(𝑡)). 
Step 2: Obtain 𝐺ே , where it stands for the mean square value of the amplitude spectrum. 

Introduce a variable 𝑟  where  𝑟 (𝑟 > 1) . Where the part that its value is bigger than 𝑟𝐺ே  is 
considered as regular component. Where the opposite part is considered as irregular part: 

𝑥෤(𝑘) = ൜𝑥(𝑘), |𝑥(𝑘)|ଶ > 𝑟𝐺ே,0, |𝑥(𝑘)|ଶ ≤ 𝑟𝐺ே. (7)

Step 3: Transform the regular part 𝑥෤(𝑡) into 𝑠̃(𝑡) through the inverse FFT, and 𝑠̃(𝑡) is the 
regular part of the original signal.  

Step 4: Define 𝐶଴𝐶 as the ratio of the component of |𝑠(𝑡) − 𝑠̃(𝑡)| to the 𝑠(𝑡) where it stands 
for the ratio between the irregular part to the original signal: 



RANDOMNESS COMPLEXITY AS A FAMILY FEATURE OF ROLLING BEARINGS’ DEGRADATION.  
YAOLONG LI, HONGRU LI, BING WANG, HE YU 

2126 JOURNAL OF VIBROENGINEERING. DECEMBER 2019, VOLUME 21, ISSUE 8  

𝐶଴𝐶 = ෌ |𝑠(𝑡) − 𝑠̃(𝑡)|ே௧ୀଵ෌ |𝑠(𝑡)|ே௧ୀଵ . (8)

Ref [36] suggests that 𝑟 should be 5 to 10, and we will discuss the parameter as below. 
Compute the 𝐶଴𝐶 of white noise with different 𝑟 as shown in Fig. 1. When 𝑟 > 6 the value of 𝐶଴𝐶 is close to 1. Actually, the 𝐶଴𝐶 of a random time series should be equal to 1. By using the 

group simulation signals in Section 3.1, we have four 𝐶଴ complexities curves with 𝑟 = 6, 10, 100 
and 200, as shown in Fig. 2. Too higher 𝑟  will lead to the fact that the 𝐶଴  complexity of 
pseudo-periodical signal does not close to 0. In this paper, we set 𝑟 = 10 as default. 

Fig. 1. The 𝐶଴𝐶 value with different 𝑟 
 

Fig. 2. The curves of the 𝐶଴𝐶 with different SNRs and 𝑟 

Table 1. The summary of the selected parameter values 
Complexity Parameters Value 

ApEn 
Embedding dimension 𝑚 

Tolerance 𝑟 
Delay time 𝜏 

2 
0.2 std 

1 

SampEn 
Embedding dimension 𝑚 

Tolerance 𝑟 
Delay time 𝜏 

2 
0.2 std 

1 

FuzzyEn 

Embedding dimension 𝑚 
Tolerance 𝑟 
Parameter 𝑤 
Delay time 𝜏 

2 
0.2 std 

2 
1 

PermEn Embedding dimension 𝑚 
Delay time 𝜏 

6 
1 

LZC Parameter 𝑚 median value 𝐶଴𝐶 Parameter 𝑟  10 

From the procedures of the sevens, we can see that ApEn derives from correlation dimension. 
They have many similarities in their forms and calculation. SampEn and FuzzyEn are two 
modifications of ApEn in different aspects. Although, PermEn have somewhat similar in form to 
ApEn, e.g. phase-space reconstruction, but it calculates complexity in ShEn form. Thus, we can 
classify the complexities into two categories: one is the ApEn, SampEn and FuzzyEn, the other is 
PermEn and ShEn. As to the rest of the sevens, LZC and 𝐶଴𝐶, we put them into another category, 
for they have threshold parameters for coarse-graining or as the boundary of periodicity and 
randomness. To compare the performance of the sevens, we need to reduce the influence of 
parameters, so the communal parameters should be consistent. The setting of parameters is within 
the recommended values of their original references. It is suggested that the tolerance of ApEn, 
SampEn and FuzzyEn should be set 0.1-0.25 std. The embedding dimension is suggested to set as 
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2 or 3. We set them as 0.2 std and 2. Particularly, though PermEn has the phase-space 
reconstruction procedure which has the same form as ApEn, FuzzyEn and PermEn, it is essentially 
different. For PermEn, vectors come from the phase-space reconstruction are not to be compared. 
Comparisons exist within the vectors. For the other two, comparisons are implemented between 
vectors to calculate the distance. So, the embedding dimension 𝑚 of PermEn is different from the 
others. Large 𝑚 will extremely increase the calculation time, and we set 𝑚 = 6. 

3. Performance of complexities in simulation signals 

3.1. Performance in sinusoidal signals with additive noise 

To figure out the performance of different complexities in rolling bearings, it is the primary 
and paramount to test in periodical signals with different intensity noise, where the sine wave is 
the simplest periodical signal. Now, we set a class of simulation signals defined as  𝑆(𝑡) = 𝑋(𝑡) + 𝑒(𝑡), where 𝑋(𝑡) = sin(2𝜋 × 10𝑡) and 𝑒(𝑡) represents the additive noise. The 
sampling frequency is 10000 Hz with 1 s duration. Fig. 3 shows the complexities with different 
SNRs. To be more vivid, all the complexities have been normalized. 

 
Fig. 3. The curve of seven complexities versus SNRs 

It is obvious to see that all the complexities tend to descend with the decreasing of the additive 
noise. The complexities should decrease with the decreasing of the additive noise. Among the 
sevens, ShEn and PermEn are the worst, since they do not have a good monotonous tendency. The 
rests of complexities present good monotonicity. Among them, ApEn the rightmost is the most 
sensitive to the noise, and 𝐶଴𝐶 the leftmost is the most insensitive to the noise. 

3.2. Performance in logistic map 

In Section 3.1, we have discussed the performance of seven complexities in a specific group 
of simulation signals. In this part, we will use more general simulation signals. The logistic map 
can be taken as an easy platform for it can generate periodical and chaotic signals. As many 
references shown, bearings are nonlinear components and many researches have reported 
nonlinear phenomena such as chaos, bifurcations and quasi-periodicity in bearings [38-40]. The 
logistic map is an easy nonlinear system, where it can be simple mathematical written as  𝑥௡ାଵ = 𝜇𝑥௡(1 − 𝑥௡) . Fig. 4 shows the process of the logistic map where 2.5 < 𝜇 < 4 ,  
meanwhile, it shows the largest Lyapunov exponent (LLE) of the logistic map. Where 𝐿𝐿𝐸 < 0 
means the system is periodical. 𝐿𝐿𝐸 = 0 means bifurcation occurs, and 𝐿𝐿𝐸 > 0 means chaotic 
behaviors occur. In the logistic map, the period 2 bifurcation happens at 𝜇 = 3; the 4 bifurcation 
happens at 𝜇 = 3.449. After 𝜇 = 3.83, there is a short period 3. 

Analogically, we have calculated the seven complexities of the logistic map, and the results 
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are shown in Fig. 5. The LLE is a reference of the sevens. The trend of the sevens should be similar 
to the LLE When 𝐿𝐿𝐸 > 0. Let’s define a term of 𝐿𝐿𝐸ଵ which satisfies that 𝐿𝐿𝐸ଵ = 𝐿𝐿𝐸 when 𝐿𝐿𝐸 > 0, 𝐿𝐿𝐸ଵ = 0 when 𝐿𝐿𝐸 < 0. It is observed that PermEn has quite a few fluctuations before 𝜇 = 3.449. ShEn has some platforms before 𝜇 = 3.449. FuzzyEn has something wrong around 𝜇 = 3.5 and before 𝜇 = 3. The reason of that must lie in the fuzzy membership of the FuzzyEn. 
LZC and 𝐶଴𝐶 have some wrong value about 𝜇 = 3.6, where there exist chaotic behaviors, but both 
have values close to zero. All the sevens exhibit the short period 3 after 𝜇 = 3.83. As it shows, 
ApEn and SampEn almost coincide with 𝐿𝐿𝐸ଵ. In this part, ApEn and SampEn have the best 
performance. It should be notice that the application scope of the 𝐿𝐿𝐸 is narrow. It only can be 
calculated in the determined chaos systems. It cannot be computed with an arbitrary time series. 

 
a) ShEn, PermEn and SampEn versus 𝐿𝐿𝐸ଵ 

 
b) ApEn, FuzzyEn, LZC and 𝐶଴𝐶 versus 𝐿𝐿𝐸ଵ 

Fig. 5. The seven complexities of the logistic map 

3.3. Performance in rate of convergence 

The length of data can affect the complexities value too. By using the data where the 
complexities are not convergent is inaccurate. In this part, we will make certain the performance 
in rate of convergence of the seven complexities, and it is a supplementary performance of 
complexities. In order to study the influence of data length on the sevens, we use the simulation 
signal in Section 3.1 with SNR = –10 dB as an example. The length is from 100 to 4000, as 
illustrated in Fig. 6. 

 
Fig. 6. The curve of seven complexities versus SNRs 

As we can see, PermEn and ShEn have similar increasing convergence trend, and the 
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complexities value are convergent after 2000 data points. SampEn, FuzzyEn, LZC and 𝐶଴𝐶 have 
similar convergence trend. The complexities valued have a fluctuant decreasing trend. ApEn is 
different from the above, and it has a fluctuant increasing trend. From the comparison of 
convergence rate, we can confirm that 𝐶଴𝐶 is the best for it can be convergent about 1000 data 
points. ShEn and PermEn are no doubt the worst. To be more accurate and explicable, the length 
of each data should beyond 2000. 

3.4. Brief summary of comparisons of simulation signals 

From the three comparisons of simulation signals above, we can have some brief conclusions. 
Primarily, every complexity conforms to the basic principle i.e. the higher the regularity is, the 
lower the complexities value. Among them, the performances of ShEn and PermEn are 
dissatisfactory. Take ShEn as an example, the parameter of average filling of the histogram (𝑘/𝑁) 
must be set. Though, to be a certain extent, such a method can improve anti-noise performance, 
the complexity still has its inherent problems. For instance, it is relatively insensitive to the 
changes in the tails of the distribution and slow convergence. Similarly, LZC and 𝐶଴𝐶 have their 
inherent problems too. Coarse-graining may change the dynamic properties of the original time 
series. As to 𝐶଴𝐶, it is lack of rigor to define a threshold as the boundary of periodicity and 
randomness. Relatively, ApEn and SampEn perform better than the others. As to a modification 
of ApEn, we consider that SampEn has the best performance among them. Thus, we will take 
SampEn as the benchmarking of the seven complexities. 

4. Complexities comparisons in bearings’ run-to-failure data 

In Section 3, we have used three methods to judge different aspects performance of the seven 
complexities in simulation signals. In this section, we will discuss the sevens in real signals i.e. 
the two bearings’ run-to-failure data. The failure form of the Example 1 is inner race fault, the 
other one is outer race fault. 

4.1. Example 1 (inner race fault) 

The Example 1 is from the IEEE PHM 2012 Prognostics Challenge data and the data were 
provided by FEMTO-ST Institute [41]. The purpose of the challenge was to estimate the remaining 
useful life of bearings. FEMTO-ST Institute has made an experimentation platform which is 
named PRONOSTIA as shown in Fig. 7. In this challenge, the data were monitored with 3 
different loads. There were 6 complete run-to-failure data for training and 11 truncated data for 
predicting the remaining useful life. Tests were stopped when the vibration signal reached 20 g. 
However, we have no idea of the failure type of the bearings. In this paper, the first dataset is taken 
as the Example 1 within 2803 files. The parameters of the test and bearings are listed in Table 2. 

 
Fig. 7. Overview of PRONOSTIA 
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As a fact that we don’t know the failure type of the Example 1, we can study the envelop 
spectrum of it. The envelope spectrum of the last file of the Example 1 is shown in Fig. 8. By 
calculation of characteristics frequencies of the test, we can obtain the ball pass frequency on inner 
race is 221.66 Hz, the ball pass frequency on outer race is 168.34 Hz and fundamental train 
frequency is 12.95 Hz. In Fig. 8, there is a peak at 218.8 Hz. So, we can infer that the final failure 
type of Example 1 is inner race fault.  

Table 2. The parameters of the test and bearings. 
Pitch 

diameter 
(𝐷) 

Number of 
rolling 

elements (𝑍) 

Bearing’s rolling 
element diameter 

(𝑑) 

Sample 
frequency 

(𝑓௦) Sample 
length (𝐿) 

Record 
frequency 

Operating 
condition of 
Example 1 

25.6 mm 13 3.5 mm 25.6 kHz 25600 10s 1800 rpm and 
4000 N 

 
Fig. 8. The envelope spectrum of e Example 1’s last file data 

The seven complexities of the Example 1 are calculated as shown in Fig. 9. The seven 
complexities present a downtrend. They show consistent results, however, the ShEn seems to have 
more fluctuation. Among them, ApEn, SampEn and LZC seem to be more similar. Take SampEn 
as an example, before #500 (where # means the number file), the complexity increases to a peak 
and then decreases for a long time. As the figure shows, there is a local peak appeared about #2400 
to #2600. Before #500, oil film is not fully formed is the reason of the arise of the complexities. 
When formed, the complexities’ decreasing indicate that the fault of the bearing is deepening. The 
reason for the peak around about #2400 to #2600 is probably the pitting of the surface are 
planished by the rotating. So, the signal may present not so periodical. And then, the new cracks 
appear making the signal more periodical, so the complexities are then dropped. 

The complexities present a kind of similarity and can be explained with Fig. 3. Assume that 
the curves in Fig. 3 are seven functions (𝑦௜(𝑥) = 𝑓௜(𝑥), 𝑖 = 1,2,⋯ ,7) that reflect monotonic 
decreasing, they have a similar trend. Take each file data as x (𝑥 = 1,2,⋯ ,2803) and put them to 𝑦௜(𝑥) = 𝑓௜(𝑥) . If the functions 𝑓௜(𝑥)  are similar, then the results are similar too. To give 
quantitative similarity results, in this paper, we will propose a trend similarity index (TSI). Many 
similarity indexes are based on distance measures e.g. Manhattan distance, Euclidean distance, 
Kullback-Leibler divergence or correlation analysis e.g. Pearson correlation coefficient. Neither 
can measure the trend similarity of two sequences. In order to measure the trend of a time series, 
what comes to mind first is to analyze the derivatives. Certainly, we need to deburr the 
complexities curves. There we use the smoothing spline for fitting. Fig. 10 shows the SampEn 
deburred by smoothing spline with the smoothing parameter s equals to 1e-6, 1e-7 and 1e-8. As 
we can see, when 𝑠 = 1e-6, the fitted SampEn exists a little fluctuation. When 𝑠 = 1e-8, the 
smoothed SampEn doesn’t have a good fitting at the end of the data. 
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a) ShEn and PermEn 

 
b) ApEn 

 
c) SampEn 

 
d) FuzzyEn 

 
e) LZC 

 
f) 𝐶଴𝐶 

Fig. 9. The seven complexities of Example 1 

To define the trend similarity of two same length time series, a direct way is to consider the 
derivatives of them. Fig. 11(a) shows three functions, where 𝑦ଵ = 𝑥ଶ, 𝑦ଶ = 𝑥, 𝑦ଷ = √𝑥, we can 
consider that they have the same trend, for they have positive derivatives. Fig. 11b) shows two 
functions, where 𝑦ସ = 𝑥ଶ, 𝑦ହ = 𝑥ଷ+1. We can deem that where 𝑥 > 0, they have the same trend, 
where 𝑥 < 0, they have the different trend. By defining the ratio of the same trend length to the 
entire length, we can obtain the TSI, where the TSI of 𝑦ସ and 𝑦ହ is 50 %. In Section 3, we have 
concluded that SampEn present the best performance of the seven complexities in simulation 
signals, and then, we can have each TSI based on the SampEn deburred by smoothing spline which 
is shown in Table 3. From the results, we can clearly find that ApEn have extremely high similarity. 
ShEn and PermEn have relatively low similarity to the SampEn. Though, fitting parameters can 
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affect the results of TSI, it is not an obstacle to estimate which complexity has higher similarity 
to SampEn. 

 
a) The smoothing parameter equals to 1e-6 

 
b) The smoothing parameter equals to 1e-7 

 
c) The smoothing parameter equals to 1e-8 

Fig. 10. The SampEn of Example 1 deburred by smoothing spline with the three smoothing parameters 

 
a) 𝑦ଵ, 𝑦ଶ and 𝑦ଷ 

 
b) 𝑦ସ and 𝑦ହ 

Fig. 11. The example of trend similarity 

Table 3. The TSI of each complexity based on the SampEn denoised  
by smoothing spline with different smoothing parameters 

Complexity TSI (𝑠 = 1e-6) TSI (𝑠 = 1e-7) TSI (𝑠 = 1e-8) 
ApEn 98.39 % 99.50 % 98.64 % 

FuzzyEn 91.75 % 97.25 % 93.54 % 
ShEn 82.22 % 86.68 % 89.75 % 

PermEn 71.87 % 69.44 % 69.69 % 
LZC 85.58 % 91.75 % 91.57 % 𝐶଴𝐶 85.26 % 91.86 % 93.72 % 
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Intuitively speaking, the directly way to reflect the degradation of impact is the amplitude of 
defect frequency (ADF). The peaks at the envelope spectrum of impact of the Example 1 are 
calculated and make up the ADF as shown in Fig. 12. As we can see, there is a little fluctuation 
before #2750, and then there is a quick increasing. Accurately, the ADF measures the energy of 
the impact. It is a portion of the whole energy of the vibration signals. The root mean square (RMS) 
is a commonly used feature to measure the holistic energy of the signals. The RMS of the 
Example 1 is shown in Fig. 13 with SampEn. The increasing of RMS indicates the deepening of 
the deterioration. We can see that there is an opposite trend between the RMS and SampEn. When 
there is a pitting occurs on the rubbing surface, it will make energy concentration and the signal 
more periodical. So, the complexities go down. However, at the end of failure, the RMS increases 
quickly, but there is no sudden decreasing of SampEn. That’s can be explained when the bearing 
is closing to failure, there are more pitting on the rubbing surface, each pitting can cause the 
periodical signal, but the combined signal is not as periodical as the one caused by a pitting. So, 
the RMS and SampEn measure different properties of the signal. 

 
Fig. 12. The Example 1’s ADF 

 
Fig. 13. The RMS and SampEn of the Example 1 

4.2. Example 2 (outer race fault) 

Another run-to-failure data is used to verify the performance of the seven complexities. The 
data comes from the Intelligent Maintenance System (IMS) center [42]. The test rig is mounted 
four bearings on a shaft as shown in Fig. 14. In the test, four double row bearings typed Rexnord 
ZA-2115 were installed on the shaft. An accelerometer was installed on the test rig to monitor the 
vibration signal of the bearings. The parameters of the test and bearings are shown in Table 4. The 
bearing 2-1 which is the first bearing of the Set No. 2 is used as the Example 2. The failure type 
of the Example 2 is outer race defect which is shown in Fig. 15. The Example 2 has 982 files. 

Table 4. The parameters of the test and bearings. 
Pitch 

diameter 
(𝐷) 

Number of 
rolling 

elements (𝑍) 

Bearing’s 
rolling element 

diameter (𝑑) 

Sample 
frequency 

(𝑓௦) Sample 
length (𝐿) 

Record 
frequency 

Operating 
condition of 
Example 1 

0.331 inches 16 2.815 inches 20 kHz 20480 10 min 2000 rpm and 
6000 lbs 

The complexities of Example 2 are shown in Fig. 16. We can see there is a similar trend. We 
use the SampEn as an example. Before #520, it presents stationary process and the bearing is in 
normal condition. We can see the complexity decreases linearly from #520 to #700 and the bearing 
is in slight defect condition. From #700 to #850, there is a peak and the condition is severe. From 
# 900 to the failure, the SampEn presents an increasing and the bearing is run to failure. On the 
whole, the SampEn is decreasing which is a same conclusion of Example 1. We can compare the 
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RMS and ADF of the Example 2 to explore the reason why the trend of complexities is present 
like that.  

  
Fig. 14. The test rig of Example 2 

 
Fig. 15. The failure type of Example 2 
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e) LZC 

 
f) 𝐶଴𝐶 

Fig. 16. The seven complexities of Example 2 

Fig. 17 and Fig. 18 show the RMS and ADF of the Example 2. The trend of RMS and ADF is 
similar. Before #520, the RMS presents stationary and it increases linearly to #700. Between #700 
and #850, the RMS experiences decreasing and then increasing. This is so-called “healing” 
phenomenon and have been stated detail in Ref. [7, 43, 44]. Form #900 to the end, the environment 
of the bearing is becoming violent. The RMS rises quickly to the failure. 

Take SampEn as a baseline, we can have the TSI of each complexity too, as shown in Table 5. 
Before calculating TSI, the SampEn must be deburred. Fig. 19 shows the SampEn deburred by 
smoothing spline with the smoothing parameter s equals to 1e-3, 1e-4 and 1e-5. From the results, 
we can still find that ApEn has extremely high similarity to SampEn. 

 
Fig. 17. The Example 2’s RMS 

 
Fig. 18. The Example 2’s ADF 

 

 
a) The smoothing parameter equals to 1e-3 

 
b) The smoothing parameter equals to 1e-4 
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c) The smoothing parameter equals to 1e-5 

Fig. 19. The SampEn of Example 2 deburred by smoothing spline with the three smoothing parameters 

Table 5. The TSI of each complexity based on the SampEn denoised  
by smoothing spline with different smoothing parameters 

Complexity TSI (𝑠 = 1e-3) TSI (𝑠 = 1e-4) TSI (𝑠 = 1e-5) 
ApEn 89.69 % 92.76 % 90.92 % 

FuzzyEn 69.59 % 74.39 % 69.59 % 
ShEn 60.20 % 61.94 % 57.45 % 

PermEn 64.80 % 70.82 % 63.67 % 
LZC 67.14 % 69.90 % 67.86 % 𝐶଴𝐶 61.63 % 55.92 % 59.39 % 

5. Discussion 

At present, we have completed the comparisons of the seven complexities. It can be seen that 
complexity is a reliable, robust feature of rolling bearings’ degradation. It can reflect the process 
stage of degradation. From the Example 1, we can move forward to see the ADF and RMS curves. 
The ADF shows a long time with nearly no significant characters until failure. That is universal 
phenomenon of inner race fault. The RMS seems to be better than ADF, it shows a slightly 
increasing until failure. We have plotted the RMS curves of the seventeen individuals of the IEEE 
PHM 2012 Prognostics Challenge data. Most of them manifest an increasing trend, but some of 
the others have no regularity. However, for complexity feature, it is destined to have a decreasing 
trend. With the deepening of the process, there must be defect occurs, whatever the type is. What 
will make a defect frequency, leading to the decreasing of randomness. In addition, there are many 
defect types, a punctate one can trigger characteristic frequency, hardly for a flaky one. In Ref. 
[17-19], Yan et al. have the similar conclusions that with the time elapses, the complexities are 
increasing. By carefully studying the references, we found that the key reason is about the 
experiment. Yan et al. did the experiment by cut a slot beforehand, thus making the process 
extremely changed.  

In the paper, we have proposed an index of trend similarity. From the charts of two  
run-to-failure data, we can find this similarity. However, how to define the “trend” of a time series 
still need to study. In our work, we have tried every fitting method of curve fitting toolbox in 
MATLAB, and find that smoothing spline have a good result. But, how to select the smoothing 
parameter s is still unsolved. Furthermore, by finding that complexities are a good family feature 
of rolling bearings’ degradation, this paper gives a direction for dimensionality reduction of 
multi-features. A kind of family feature can be represented by a good one of it, thus can reduce 
dimensions in an initiative way. 
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6. Conclusions 

In this paper, we have discussed and compared seven commonly used randomness 
complexities in simulation signals and real signals. By comparisons, we have found the similarity 
of complexities and explained it. In addition, we have defined a trend similarity index to measure 
the similarity of different complexities in run-to-failure bearings’ data. Finally, we can conclude 
that randomness complexity is a family feature of rolling bearings’ degradation. The complexities 
are similar, among the sevens, SampEn have the best performance, it can be a representative to 
represent the family feature of complexities. 
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