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Abstract

Bearings play an important role in the operation of rotating machinery. They are 

critical machinery components that are subject to continuous load and harsh 

operational conditions and hence prone to failure during its lifetime. Bearing failure 

can lead to breakdown of the whole machine which could in turn lead to unwanted 

stoppage of an industrial production line. Therefore, the operational condition of a 

bearing must be monitored for the purpose of maintenance and avoidance of 

unwanted machinery stoppage that might be caused by such a bearing failure.

Better understanding of a bearing failure condition is useful in maintaining a 

continuous production line. In this context, a scheduled maintenance event, based on 

bearing fault diagnosis, is an advantage, preventing unwanted production line 

maintenance events. This is an important requirement in the prevention of revenue 

loss due to stoppage of the production line or in any rotating machinery related to 

human safety (i.e., transportation, etc)

The importance of bearing fault analysis and classification in relation to maintenance 

cost reduction and safety issues have been the motivation for intensive and wider 

research aimed at providing better methods for bearing fault analysis and 

classification.

A bearing fault diagnosis system which utilises advanced combinations of vibration 

signal processing and artificial intelligent methods has gained attention in recent 

years. In past decades, the trend was to combine digital signal processing with 

available artificial intelligence (AI) techniques to produce better and reliable bearing 

fault diagnosis systems. The application of signal processing and artificial intelligent 

methods is an open research field for investigation and exploration for the purpose of 

obtaining a new combined methodology. 

A review of the literature, which includes vibration signal analysis in fault diagnosis, 

statistical parameter applications in feature extraction methods, wavelet transforms 

and artificial intelligence systems in fault diagnosis, is presented.  Based on the 



Abstract iv

literature review, it was found that there is a possibility of proposing a new combined 

method for the purpose of building a bearing fault diagnostic system. In particular, 

the application of new feature extraction methods combined with artificial 

intelligence (AI) systems. There were no standard guidelines available in finding 

better systems for bearing fault analysis and classification through the utilization of 

combined feature extraction methods and AI applications.

This research reports an investigation process of building bearing fault classifiers for 

outer race, inner race and ball fault cases using a wavelet transform, statistical 

parameter features and an Artificial Neuro-Fuzzy Inference System (ANFIS). The 

building process started by acquiring and processing raw vibration signalfrom a 

bearing under investigation. The data acquisition process was carried out for both 

normal (fault-free) and faulty operation of a double row self-aligning ball bearing. 

An accelerometer was used to collect the vibration data from a faulty bearing. The 

raw vibration data was processed using a wavelet transform employing a Daubechies 

wavelet filter to produce wavelet coefficients and their energy levels. The result was 

then processed to extract the statistical parameters (i.e., kurtosis, RMS, variance, 

standard deviation). The features generated from statistical parameters and wavelet 

transform scheme were then used to train the ANFIS. 

In order to reduce the number of rules generated during the training process, only

two inputs were used for the purpose of building the classifier. The selection of the 

most influential inputs for the training process of the ANFIS was achieved through 

the use of the ANFIS built-in capability of selecting the best correlation of two inputs 

towards one target output which best represented the bearing operating condition. 

An extensive computation was used in the process of selecting the most influential 

input-output combination fromthe six inputs available. The number of input-output 

combinations tested was 720, being the permutations of six inputs.  In the search for 

the best combination of input-output, the possible combinations of statistical 

parameters, wavelet coefficients and wavelet’s level of energy were investigated 

extensively in order to obtain the best classifier for bearing fault diagnosis. 
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The ANFIS was then implemented to capture the input-output relation of the selected 

inputs to generate a suitable classifier that could be used to classify bearing operating

condition. The classifiers generated were then tested to evaluate their ability and 

accuracy in predicting a faulty bearing.

The test results show that the ball fault (BF) classifier successfully achieved 100% 

accuracy without mis-classification, while the outer race fault (ORF), inner race fault 

(IRF) and no fault (NF) classifiers achieved mixed percentage between successful 

classification and mis-classification results.
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Chapter 1 – General Introduction

1.1. Introduction

The success of the industrial sector,in terms of operation, haslong-depended upon the 

reliability of both the production line and industrial equipment. Production 

machinery should therefore be well-maintained in order to achieve the highest 

reliability level which in turn supports the production of cost-effective, high-quality 

products. 

Machines are critical to the industrial production process. Many production machines 

have rotating components such as shafts which are supported by bearings that could 

deteriorate and fail during their operation. Therefore, maintenance is required in 

order to keep such machines in good operational condition. However, even when 

regular and efficient maintenance is undertaken, machinery may still deteriorate 

during operation.

The complexity of industrial equipment has increased over time due to vast 

technological developments in the area. These advances and the associated 

complexity of the machinery have added to the effort required to achieve high 

machine reliability. These factors are compounded by difficulties in identifying and 

predicting faults within acceptable time frames. This situation has led to the need for 

a more advanced and effective planning and maintenance strategy in managing 

installations and the production process.

A high standard of maintenance program is required, one that can ensure the 

operational reliability of industrial machinery and production systems whilst keeping 

profitability and competitiveness of the companies in question. As stated by Tu et al. 

(2001), it is crucial to have robust maintenance management systems with which an 

industrial organisation can maintain its equipment in an effective manner and at an 

optimum level, whilst at the same time lowering maintenance costs.

In addition, the urgency for the development and improvement of existing 

maintenance systems is motivated by the fact that industries need to maintain a high 
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degree of operational safety, provide better assets availability and reduce 

maintenance costs. There are also requirements within the current advanced 

industrial field to operate at low-risk to the environment while achieving maximum 

output.

Advanced fault monitoring and analysis methods are needed to monitor and analyse 

the operational condition of machines with rotating components. These monitoring 

and analysis methods are aimed at preventing unwanted machine stoppages caused 

by the failure of rotating components. An effective fault analysis method which 

accurately indicates bearing deterioration,or at the least the development of faults,

would be advantageous in the planning of maintenance processes.  

Fault analysis and diagnosis methods play an important role in monitoring the 

operational condition of rotating machinery. As such, they have become an attractive 

research field in condition monitoring that aims to produce a fault diagnosis scheme 

which is more accurate and efficient in its application than previous schemes.

The following section will briefly discuss types of maintenance methods, in order to 

place this research in context.

1.2. Maintenance Methods

Historically, maintenance methods may be grouped into at least three types:

Breakdown Maintenance, Preventative Maintenance and Condition-Based

Maintenance (CBM) (Heng et al. 2009).

1.2.1 Breakdown Maintenance

Breakdown maintenance, historically, is the earliest maintenance method, in which 

maintenance works, repair or replacement of machinery equipment is carried out 

only when parts have failed (Jardine et al. 2006). Breakdown maintenance is also 

termed unplanned maintenance. Its main disadvantage is in the inability to plan for 

an interruption to production, as machinery breakdowns and stoppage times are not 

predicted.
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1.2.2 Preventative Maintenance

Preventative maintenance is a time-based maintenance method which aims to prevent 

critical failures and emergency shutdowns of machinery equipment. In preventative 

maintenance, work is performed periodically regardless of the operational condition 

of the machinery system. Maintenance activities include periodic machine 

inspections and maintenance without considering the machine’s actual operational 

condition. Examples of periodic preventative maintenance works may include 

lubrication, calibration, inspection of equipment, drive belt and bearing replacement 

at regular intervals, or some other scheduled time, regardless of the health status of 

machinery equipment. 

Optimal maintenance interval selection is important to the effective functioning of 

the predictive maintenance method. A mathematical optimisation method was 

proposed by Bazovsky (1961) to calculate the interval for the purpose of preventative 

maintenance. An optimal maintenance interval method was also proposed by Jardine 

et al. (1973). This was based on the analysis of the reliability of data (e.g., machine 

historical breakdown events) and information regarding costs incurred. 

Gertsbakh (1976) proposed a method to determine required maintenance time. This 

was based on the assumption that the mean time between failures (MTBF) for 

machinery equipment could be determined statistically or inferred from experience 

of systems which are operated under normal conditions, with normal loading and 

usage.

The main disadvantage with preventative maintenance is that some techniques used 

are no longer suitable and cannot accommodate the practical requirements of the 

operation of modern industrial machinery. Where the products of an industry become 

more complex and demand high quality and high reliability, the use of a conservative 

prediction model in predictive maintenance has resulted in very high maintenance 

costs (Jardine et al. 2006). Furthermore, preventative maintenance requires greater 

resources in terms of labour and often results in unnecessary maintenance works, 

which still may not prevent the occurrence of critical failures (Heng et al. 2009).
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1.3 Condition-based Maintenance (CBM)

Condition-based maintenance (CBM) is a maintenance program that is performed 

based on information collected through condition monitoring (CM) processes. The 

main objective of CBM is to perform maintenance works only if there are signs or 

indications of abnormal operation conditions in machinery installations. CBM can 

avoid unnecessary maintenance and uncertainty. In addition, it aims to prevent 

interruption of normal machine operations since maintenance works would only be 

carried out as needed or as dictated by signs or indicators of an abnormality that 

appears in the machines. CBM must be supported by efficient and reliable decision-

making activities related to the need to carry out maintenance works based on 

diagnosis of the real-time condition of a machine.

An effective CBM scheme is based on three key elements:

 data acquisition - data related to machine health condition is collected 

and stored.

 data processing, conditioning - filtering and features extraction/selection.

 decision-making process - providing outputs and assessments regarding 

machine health condition which can be translated to maintenance actions 

based on diagnosis and prognosis processes (Jardine et al. 2006), (Yen 

and Lei, 2000).

1.3.1 Condition Monitoring (CM) for Condition-based Maintenance (CBM)

In general, condition monitoringcan be defined as a process which involves the 

technical activities of gathering or collecting information associated with machinery 

operation for the purposes of determining the integrity status and operational 

condition of the observed machine. It provides an ability to monitor current 

conditions and predict the future condition of a component or machine while it is in 

operation. 

Making observations while a machine is actually operating is an advantage, since this 

will not affect or interrupt production schedules. However, this feature limits the 

collection parameters to those that may be obtained externally. Nonetheless the 

internal condition of the machine in operation is still represented. 
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Condition monitoring is essential to the achievement of an effective condition-based 

maintenance strategy and for planning the management of machinery installations 

and production processes. It is crucial to the support of a robust maintenance 

management system, by which a manufacturer can maintain their machinery or 

equipment in an effective manner and at an optimum level, while at the same time 

lowering maintenance costs where possible (Tu et al. 2001).

In relation to creating maintenance schedules, the time to carry out a maintenance 

event is determined by observing the operational condition of the components in the 

machinery system. This requires that the data representing several operational 

parameters of the system be measured and recorded either periodically 

(intermittently) or continuously. 

In essence, condition monitoring for maintenance purposes includes five distinct 

stages which are: fault detection, fault diagnosis, fault development prognosis, post-

fault or post-breakdown analysis and evaluation. Fault diagnosis is the process in 

which location, level of damage and cause of the machinery fault is determined. It is 

a very important part of condition monitoring.

1.3.2 Methods of Condition Monitoring

In applying condition monitoring to machine health condition evaluation, several 

condition-monitoring methods have been employed that are related to obtaining 

machinery operational data. These methods make use of interdisciplinary fields such 

as industrial vibration and noise, dynamics, Tribology and non-destructive testing 

(NDT). The methods/techniques include:

 Mechanical vibration signatures analysis, 

 Lubricant analysis or oil particles density rate analysis, 

 Acoustics emission signature analysis,

 Electrical measurements & analysis, and

 Non-destructive testing & analysis.
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The focus of the research in this thesis is on mechanical vibration signatures. The 

analysis is based on the finding that when a machine is in operation, it generates 

vibration signals with unique patterns or signatures. Machines in operation generate 

mechanical vibrations and the signature of the mechanical vibration changes with 

operational conditions, be they normal or faulty or operating under particular or 

unusual loading conditions.

1.4 Thesis

This thesis addresses the generation of feature extraction methods for enhancing 

mechanical vibration signatures analysis in condition monitoring. The purpose of the 

methods is fault identification and classification. The methods are carried out by 

implementing a combination of Wavelet transforms, Artificial Neuro-Fuzzy 

Inference Systems (ANFIS) and Statistical Parameters.

The main objective of the research was to develop a neuro-fuzzy feature extraction 

method for bearing vibration signals. The method was then used to investigate and 

compare signal sensitivity in the application of bearing fault diagnostics.

The thesis reports on the design and development of a fault feature extraction 

technique through the use of wavelet transforms, statistical parameters and ANFIS. 

The generated features were used to train the ANFIS to construct a fuzzy inference 

system (FIS). The purpose of the FIS unit was to identify three types of rolling 

element bearing faults: outer race, inner race and ball faults. If successful, the 

discovered feature extraction technique could then be used to monitoring bearing 

condition and performance.

1.5 Report Structure

A thorough discussion is presented in the thesis. It explains the process of the design 

and development of feature extraction methods and their application to ANFIS 

training. The objective of ANFIS utilisation is to generate a fuzzy inference system 

(FIS).  The FIS obtained through ANFIS training consists of fuzzy inference models 

that can be used to recognise the particular bearing fault (i.e., outer race, inner race, 

and ball faults).
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The principal areas of the research consisted of:

 The vibration signals which were transformed using Daubechies (db-n) 

wavelet type, with seven features being generated from the wavelet 

transform results.  The features generated were energy levels, RMS, 

kurtosis, dominant frequency of wavelet transform result, amplitude 

magnitude of dominant frequency of the wavelet transform result, 

standard deviation, and variance.

 Exhaustive processes were performed to select the best related data 

features that could be used in training the ANFIS model.

 The results of the ANFIS training produced FIS units which were then 

evaluated for their accuracy and db-n sensitivity in recognising each type 

of bearing fault.

1.6 Significance of the Research

In recent years, there has been increasing interest in finding better methods for 

failure detection in machine parts, especially the bearings which play an important 

role in the operation of rotating machinery. A great number of proposed techniques 

have been presented in the literature, and with the rapid development of these failure 

detection methods, there is a need to find a way of selecting a suitable method for a 

particular application. 

In the pursuit of a superior method, a suitable feature extraction method for bearing 

vibration signals requires development. It must be sensitive enough for use with 

special types of bearings, and for specific loading conditions. The effects of 

operating conditions have not yet been fully investigated and modelled for fault 

diagnosis (Heng et al. 2009). ). Even though this is an important gap in the 

knowledge relating to this research, the main aim of this thesis was to propose an 

intuitive new approach which employs a combination of several existing methods 

that aimed to extract additional patterns from post-processed bearing vibration 

signals. These could then be used to formulate bearing diagnostic models of wider 

applicability, that later, within the next phase of the research, might be used to also 

integrate bearing’s operating parameters.
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The aim of investigating the various methods was to understand their characteristics 

which in turn, might provide an effective new method consisting of the combination 

of several existing methods. 

In fault diagnosis processes, the existence of many feature extraction methods for 

bearing fault analysis raises a need for selection guidelines. These would be used for 

implementing the automatic selection of features and intelligent diagnosis for bearing 

fault analysis.

1.7 Scope of Research

This research focused on the development of a specific feature extraction method for 

bearing fault identification that could be used for condition monitoring. The core 

objective of the research was to produce a Fuzzy Inference System (FIS) which 

would be generated through the training process of an Artificial Neuro-Fuzzy 

Inference System (ANFIS). 

In this research, raw vibration signals acquired from a test rig installed with three 

types of bearing faults were processed using a Discrete Wavelet Transform (DWT) 

and the results were then processed to generate seven features that would be used in 

ANFIS training. Detailed explanations of the algorithm and the vibration signal pre-

processing using wavelet transform and feature extraction techniques are presented.

The selection of the features that best related to a specific bearing fault condition was 

carried out automatically through ANFIS training. The ANFIS training process was 

aimed at automatically generating the FIS units that were used to recognise bearing 

faults. The generated FIS units that related to each type of bearing fault (i.e., outer 

race fault, inner race fault and ball fault) were evaluated to assess their accuracy and 

sensitivity at recognising the type of bearing fault that related to the FIS training 

data. The findings regarding characteristics and aspects of the feature extraction 

methods and FIS performance were presented for assessing their merits and 

disadvantages.
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Chapter 2 – Review of Vibration Signal Analysis 
in Fault Diagnosis – Techniques and Literature

The performance of condition-based maintenance (CBM) processes is closely related 

to the performance of the associated condition monitoring. In turn, the performance 

of condition monitoring is determined by the quality of the fault diagnoses. 

Therefore, fault diagnosis plays an important role when used to assess the real-time 

or on-line condition of machines during condition monitoring. This indicates that 

there is a close relationship between CBM, condition monitoring and fault diagnosis. 

Therefore, the diagnosis of location, cause and severity level of a machine fault is a 

skill which allows maintenance management departments within an industry to 

utilise the condition monitoring method of maintenance.

Various condition monitoring techniques have developed health indicators from 

areas such as vibration, noise, dynamics, Tribology and other non-destructive 

methods. According to ISO 1991, vibration measurement, electrical measurement, 

and tribological measurement are the principal methods used in condition 

monitoring. 

Vibration measurement is widely used due to its effectiveness and versatility (Patil et 

al. 2008). It is based on the common knowledge that the vibration level and pattern 

of a machine has a close relationship with the health condition of the machine. This 

correlation between vibration signal and machine health condition has been used 

widely in condition monitoring by various analyses of particular vibration signals 

(Yen and Lin, 2000).

The vibration signal in question is translated into the data measured and collected at 

selected intervals, thus forming a time series. It is collected via a data acquisition 

process where physical information is measured by a transducer (e.g., an 

accelerometer) that is attached to the machine. The vibration signal generated by the 

machinery component of interest is recorded and stored for the purpose of condition 

monitoring. The vibration signals are mainly processed and analysed for the purpose 

of diagnosis and/or prognostics in condition monitoring. The products consist of 
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particular information or indicators that are extracted from the vibration signal by 

means of signal processing techniques and algorithms.

The time series vibration signal is also called a time waveform and the data 

processing of the waveform of the vibration signal may be called signal processing. 

As detailed in much of the literature, the waveform analysis of vibration signal can 

be divided into three main categories: time-domain analysis, frequency-domain 

analysis and time-frequency analysis (Jardine et al. 2006). These three main 

categories of vibration signal processing have a wide range of applications in the 

fault diagnosis field.

Vibration signal analysis and processing techniques in fault diagnosis are mainly 

aimed at extracting key features from the vibration signal that can be used for fault 

diagnosis and identification. Feature extraction techniques may involve domain 

transformation that extracts the desired signal features which may be hidden in the 

original time domain signal. Feature extraction also reduces the amount or 

dimensionality of the data that must be processed before performing the 

classification process (Yen and Lin, 2000).

In addition, feature extraction helps in speeding up computational processes and in 

shortening processing time. Feature extraction processes are also of use in cases 

where the feature is to be used by a classifier or a human inspector. The process 

ensures the accuracy of the information embedded in the vibration signal (Yen and 

Lin, 2000).

In relation to vibration signal analysis, feature extraction techniques or methods can 

be divided into three main groups based on the three approaches to vibration signal 

analysis ((Du and Yang, 2007), (Rai and Mohanty, 2007) and (Zhang et al. 2010)). 

The following sections review some important aspects of the three categories of 

vibration signal analysis techniques.
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2.1 Time-domain Analysis

Time-domain analysis of vibration signals deals directly with the time-based 

waveform of the vibration signal. The time-based waveform is acquired using an 

installed sensor. The acquired parameters are mainly velocity and acceleration of the 

vibration signal in the time-domain. Time-domain features can be calculated from 

the acquired time waveform signals using descriptive statistics like kurtosis, the root 

mean square (RMS), mean, standard deviation, crest factor, skewness, and others.

2.1.1 Standard Deviation

Standard deviation is defined as:
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where xiis each value in the data set, x is the mean of the data set and N is the 

number of data points (Seker and Ayaz, 2003), (Xu et al. 2009). An example of 

standard deviation used as a feature in bearing fault diagnosis is presented and can 

also be found in Mathew and Alfredson (1984).

2.1.2 Kurtosis

Kurtosis is defined as the fourth moment of the amplitude distribution which 

measures the “peaks” and “lows” of a distribution as compared to a normal 

distribution (Yang et al. 2003). It is defined as:
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where xi is i th data point of the data set, N is the number of data points, x is the mean 

value of the signal and  is the standard deviation (Howard, 1994). Example 

applications or the use of kurtosis as a feature in fault diagnosis can be found in Dyer 

and Steward (1978), Heng and Nor (1997) and Lee and White (1997).
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2.1.3 RMS

The Root Mean Square is an indicator of the energy level or power level of a 

vibration signal. It also known as the quadratic mean of signal and it indicates overall 

signal energy level. It is defined as:

RMS = 
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i i xx
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where N is the number of signal data points, x is the mean value of the signal and xi

is the i th element of data set (Xi et al. 2000), (Xu et al. 2009). An example 

application of RMS as a feature in bearing fault analysis can be found in Xi et al. 

(2000). In addition, Howard (1994) discussed RMS application in detecting the 

presence of incipient bearing damage.

2.1.4 Variance

Variance is also known as second moment statistical measure and it is defined as:
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where x = mean of the data set, xi is each value in the data set and N is the number 

of data points. Examples of variance application in analysing vibration signals can be 

found in Loutridis (2008) and Rafiee et al. (2009).

2.1.5 Crest Factor

Crest Factor (CF) is defined as:

RMS

Peak
CF  (2.5)

where ))min()(max(
2

1
ii xxpeak  and RMS is as defined in Equation 2.2

A study regarding the use of the crest factor (CF) as a fault feature in detecting 

bearing faults was presented in Howard (1994).
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2.1.6 Skewness

Skewness is defined as:
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where x is the mean, xiis each value in the data set, is the standard deviation and 

N is the number of data points.An example of skewness application in detecting 

bearing faults can be found in Heng and Nor (1997).

2.1.7 Impulse Factor

Impulse Factor (IF) is defined as:
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where N is the number of data points, and x(i) is the i -th element of the data. A 

discussion of the IF application in bearing fault diagnosis can be found in Howard 

(1994).

A detailed presentation regarding applications of the abovementioned statistical 

parameters in bearing fault diagnosis is presented in Section 2.2.

There are also other methods of analysis in the time-domain analysis area of 

vibration signals that go beyond simple statistical analyses. For example, time-

synchronous averaging (TSA) and Autoregressive Moving Average (ARMA).

2.1.8 Time-Synchronous Averaging (TSA)

Another popular time-domain analysis method is time-synchronous averaging (TSA) 

(Jardine et al. 2006). In principle, TSA is an application of a grouped average of the 

raw vibration signal over a number of cycles synchronised to the rotation of a shaft. 

TSA attempts to remove or reduce the noise and effects from other sources in order 

to enhance the components of the signal that are of interest.
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The principle of TSA is to use an ensemble average of the raw signals over a number 

of revolutions which are aimed to reduce noise. By reducing noise, the objective is to 

enhance the signal component of interest. A repetitive pattern in the signals obtained 

as a result of TSA process indicates the information related to faults.

In practice, TSA is carried out by averaging together a series of signal segments each 

of which corresponds to one period of a synchronised signal, triggered by a once-per-

revolution trigger of a known phase (key-phasor). TSA is defined by (Randall and 

Antoni, 2011), (McFadden and Toozhy, 2000) as:
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where x(t)denotes the signal, Tt is the averaging period and N is the number of 

samples used for averaging. 

Details on TSA can be found in Randall and Antoni (2011) and in Dalpiaz et al. 

(2000). Several successful applications of TSA were obtained through synchronous 

averaging in the analysis of bearings and this was reported on in Wang and 

McFadden (1993), McFadden and Toozhy (2000) and Komgom et al. (2008).

2.1.9 Autoregressive Moving Averaged (ARMA)

The Autoregressive Moving Average (ARMA) is an advanced technique used in 

time-domain analysis of waveform data. The principle of ARMA is to fit waveform 

data to a parametric time series model and extract features based on the parametric 

model. The general model of ARMA can be found in Jardine et al. (2006). Example 

applications of the technique can be found in Poyhonen et al. (2004) where the 

autoregressive technique was used to model a vibration signal acquired from an 

induction motor. The autoregressive model coefficients were used as the extracted 

features. Another example of an ARMA application can be found in Zhan et al. 

(2003) where a vibration signal was analysed using a state space model 

representation of an autoregressive model.
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There are also other time-domain techniques such as filter-based methods (i.e., 

demodulation and adaptive noise cancelling (ANC)) and stochastic and advanced 

methods (i.e., blind source separation). The following section presents a brief 

discussion regarding these techniques.

2.1.10 Filter-based Methods

ANC is a method of filtering signals corrupted by additive noise. It utilises two input 

signals, a primary input which contains the corrupted signals, and a reference input 

which contains noise correlated with the primary noise. Generally, the acquisition of 

these two types of signals has been carried out simultaneously. The reference signal 

may be acquired from a sensor located at a position in the noise area where the signal 

is very weak (Shao and Nezu, 1999).

The ANC method has been successfully applied in the detection of bearing faults 

(Chaturvedi and Thomas, 1982). An asynchronous ANC has also been successfully 

applied in detecting faulty self-aligning roller bearings(Shao and Nezu, 1999).

Modulation is a condition by which a sinusoidal signal, called a ‘carrier-signal’, has 

its amplitude or frequency made to vary with time. In this case, if the amplitude is 

varied then it becomes an amplitude modulation. If the frequency is varied then it 

becomes a frequency amplitude or phase modulation. Demodulation is the reverse of 

the modulation process. A demodulation method called ‘envelope analysis’ has been 

widely used in analysing the vibration signals of bearings and gears. The signal 

envelope is extracted by using amplitude modulation and its frequency is analysed to 

reveal the repetitive frequencies that are related to the faults (Randall, 2011).

A signal resonance demodulation technique for fault analysis was used by Wang 

(2001) to detect gear faults. Nikolaou and Antoniadis (2002b) utilised demodulation 

of vibration signals to diagnose defects in rolling element bearings.

The Prony method, originated from French scientist Baron de Prony in 1795 (Chen 

and Mechefske, 2000), extends Fourier analysis by directly estimating the frequency, 

damping, magnitude and relative phase of the modal components present in a given 

signal (Hauer et al. 1990).



Chapter 2 – Review of Vibration Signal Analysis in Fault Diagnosis 16

A Prony-based model was applied to bearing faults diagnosis by Chen and 

Mechefske (2000), Chen and Mechefske (2002). It was used to analyse transient 

vibration signals generated by low speed element bearings fault. The method 

produced spectral plots by using small data sampling rate. Trending parameters was 

obtained and Prony parameters presented based on the spectral estimations. The 

results showed that Prony-based model able to analyse the transient impacted signal 

and the determining fault severity.

2.1.11 Advanced Methods

Advanced methods such as stochastic parameters (including chaos, blind source 

separation, etc) have been used to analyse time-domain vibration signals. For 

example, the irregularity (chaos)condition where computation parameters, known as 

correlation dimensions, were used to characterise several induced faults of varying 

severity in a rolling element bearing (Wang et al. 2001). Based on the correlation 

dimension, some basic information on the investigated dynamical system can be 

determined and the information used to classify differing fault conditions (Mevel et 

al. (2000).

Blind source separation (BSS) is a method for recovering signals from different 

physical sources and from several observed combinations which are independent of 

the propagation medium (Serviere and Fabry, 2004). BSS is a promising tool for 

non-destructive monitoring as it is able to recover the vibration signature of a single 

rotating machine from a combined vibration signature of several operating machines 

(Gelle et al. 2001). Its application for bearing fault detection was investigated and 

showed a potential and promising result (Gelle et al. 2001).

2.2 The Use of Time-domain Analysis of Vibration Signals for Fault 

Diagnosis

Time domain analysis of vibration signals for the purposes of bearing fault analysis 

is a straightforward process which can be done by measuring the level of statistical 

parameters like RMS, kurtosis, crest factor, variance, standard deviation, 

etc.Statistical parameters that have been commonly used for fault diagnosis in rolling 

element bearings are the root mean square (RMS), kurtosis, standard deviation, and 

skewness (Tandon and Choudhary, 1999).
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These statistical parameters are indicators that can be used to show the shape of the 

amplitude distribution of the vibration data collected from a bearing. In addition, 

they have an advantage over time and frequency domain analyses by which the 

variation and speed conditions have a lower effect on their values (Honarvar and 

Martin, 1997).

An early application of feature extraction in time-domain analysis for fault diagnosis 

was presented by Dyer and Stewart (1978). Statistical features were used in the 

analysis of bearings. Skewness and kurtosis values were used to analyse outer race 

defects in rolling element bearings. It was found that the kurtosis value was close to 

3 for an undamaged bearing. Kurtosis values greater than 3 could then be used as 

indicators of the existence of a defect.

In addition, the use of kurtosis values in fault investigation provides a low cost tool 

for both maintenance and quality control applications in fault diagnosis (Patil et al. 

2008).

However, the main disadvantage in using kurtosis is that the value becomes lower as 

the defect becomes more severe. Hence, it was suggested by Dyer and Stewart 

(1978) that kurtosis values be used in selected frequency bands as a potential 

measure of bearing condition but combined with other maintenance measures such as 

schedules, spares availability, etc.

Braun and Datner (1979) investigated the use of the RMS of averaged bearing 

vibration waveforms for fault detection. Artificial localised defects were induced, 

using an electric-discharge machine, into the inner and outer race of the test bearing 

structure. The results showed that the proposed method had low sensitivity in 

detecting sharp repetitive transient signals generated by low loading conditions.

Another early application of the use of statistical parameters in the analysis of 

bearing vibration signals was conducted by Mathew and Alfredson (1984).  In the 

study, peak amplitude, RMS, standard deviation, kurtosis, and mean values were 

used in the analysis of inner race, outer race, and ball defects of rolling element 

bearings. It was found that the values of kurtosis multiplied by RMS were the most 
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sensitive indicators of condition where impulses were present in the vibration signal. 

It was also found that a near-Gaussian distribution was obtained for the damaged 

bearings.

The effectiveness of the method of using kurtosis was also explored by White 

(1984), in which a simulated condition for generating a faulty vibration signal was 

used. The results suggested that kurtosis would be useful as a monitoring parameter 

in situations where pulses contribute significantly to the signal level.

Daadbin (1991) utilised kurtosis as a feature in fault detection in rolling element 

bearings. The fault detector was developed using a computer program. The results 

showed that the kurtosis analysis gave a clear indication of the damage. For healthy

bearings the value of kurtosis was around 3.0 while all of the damaged bearings 

produced values of kurtosis higher than 3.0.

Lee and White (1997) investigated the use of higher-order statistics such as Wigner 

bi and tri-spectra in detecting faults in mechanical systems, based on the observation 

of signals with impulsive components. In line with other investigations, it was 

concluded that the impulsive components of signals tend to increase kurtosis values.

Heng and Nor (1998) successfully used kurtosis as a criterion to distinguish between 

the signals of faulty and normal bearings. Williams et al. (2001) explored the 

application of kurtosis and the crest factor in detecting and localising the damage in 

rolling bearings. It was found that effective bearing signals have a Gaussian 

distribution with an approximate kurtosis value of 3. This was also found by Dyer 

and Stewart (1978).

Tandon and Choudhary (1999) reported limited success in applying the RMS level 

and crest factor (i.e., the ratio of peak value to RMS value of acceleration) in 

obtaining the status of the operating condition of a bearing under test. 

The trend of using statistical parameters as features in the fault analysis of bearings 

later shifted to a combination of statistical parameters with other techniques such as 

artificial neural networks (ANN), wavelet transforms and neuro-fuzzy techniques. 
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The combined techniques aimed to enhance the accuracy and reliability of fault 

diagnosis outcomes. Examples of this development are reviewed below.

Xi et al. (2000) investigated the use of statistical parameters such as RMS, kurtosis, 

impulse factors and crest factors as the basis for a trend analysis system using pattern 

recognition for the purposes of bearing defect classification. The classification 

features obtained from seeded fault bearing operations were used to construct the 

computational engine of the classification system. The classification system provides 

a visualisation of the diagnostic results on a two-dimensional plane and the 

classification space was constructed by a piecewise linear classification function. 

Numerical experiments using data with seeded defects showed that the method was 

effective in indicating both the location and the severity of bearing defects.

Altmann and Mathew (2001) used kurtosis values as features for training a neuro-

fuzzy network adapted from Jang (1993) and Jang and Sun (1995). The purpose of 

the proposal was to enhance the detection and diagnosis of low-speed rolling-element 

bearing faults by using discrete wavelet packet analysis (DWPA), as presented by 

Daubechies (1990). The method included the automatic extraction of wavelet 

packets, containing bearing fault-related features, from the discrete wavelet packet 

analysis of machine vibrations. An adaptive neuro-fuzzy inference system (ANFIS) 

(Jang, 1993) was used in automating the selection process of the wavelet packets in 

question. The results showed that the DWPA multiple band-pass filtering 

significantly improved signal-to-noise-ratio which was useful to obtain the best 

possible isolation of the bearing transients information.

A generic method for analysing rolling element bearing faults by use of statistical 

features and pattern recognition was investigated by Sun et al. (2004). Statistical 

parameters such as kurtosis, crest factor, and RMS were calculated from the 

vibration signal generated from a bearing with faults (i.e., one with inner race, outer 

race and roller defects) and without fault. The statistical parameters were used as 

features for the purposes of fault pattern recognition.  The generated features were 

then mapped to create feature integration, linear classification and diagnosis. An 

artificial neural network (ANN) scheme was used in parallel with the mapping 

scheme for to generate a classifier for bearing fault classifications. The proposed 
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methodology showed advantages in dealing with complicated signatures such as 

those present in the vibration signal of rolling element bearings.

Niu et al. (2005) proposed the application of a new uniform description of 

normalised statistical parameters of skewness and kurtosis for analysing vibration 

signals from a rolling element bearing. The results of simulation and experimental 

testing indicated that the two new statistical parameters were as effective as the 

original parameters (i.e., generic skewness and kurtosis) for detecting bearing failure.

Rafiee et al. (2007) employed standard deviation as a feature in their study of bearing 

fault diagnosis. Standard deviation values were calculated from wavelet transform 

results. The values of standard deviation were then used together with other features 

such as energy levels of wavelet transform results in order to train neural networks. 

The results showed a considerable increase in training convergence and network 

performance which contributed to the 100% accuracy gained in detecting and gear 

and bearing defects.

RMS and kurtosis were used as features by Zhao et al. (2009) in verifying a neuro-

fuzzy model that was designed for bearing fault diagnosis. The test results showed 

that the neuro-fuzzy model might be used as a reliable forecasting tool since it could 

capture dynamic behaviour and was able to track features of the systems.

Stepanic et al. (2009) investigated the application of statistical pattern classification 

and recognition for bearing fault analysis. There were two classes of bearing defects 

that were used in the classification, defective and functional rolling element bearings. 

Statistical parameters such as kurtosis, RMS, and variance were combined with 

characteristic frequency components as the features. Fault classification and 

recognition processes were carried out using a fault classification system constructed 

based on several “if-then” statements as proposed by Fukunaga (1990) and 

Thedoridis and Koutroumbas (2003). The results showed that the fault classification 

system achieved an accuracy of 97.45% for a horizontally placed accelerometer and 

up to 99.49% for the vertically placed accelerometer.
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Latuny and Entwistle (2010) used changes in kurtosis values in investigating early 

indications of a bearing fault. Prior to the kurtosis calculation, a wavelet 

transformation was applied to a pre-processed vibration signal. It was found that a 

very early sign of bearing deterioration level was indicated by the changes in kurtosis 

value of the wavelet.

2.3 Frequency-Domain Analysis

Transformation of signals into the frequency domain is the principle on which the 

frequency-domain analysis depends. Frequency-domain analysis provides an ability 

to identify and isolate certain frequency components of interest which are useful for 

fault diagnosis. For example, in a bearing with a damaged raced, one would expect 

there to be a frequency component corresponding to a ball pass frequency. In this 

context, frequency-domain analysis provides features which give it an advantage 

over time-domain analyses.

2.3.1 The Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) is the most widely used conventional analysis in 

the frequency-domain area. It is of critical importance in a wide variety of 

applications, from digital signal processing and solving partial differential equations 

to algorithms for quick multiplication of large integers (Brigham, 1988).

The Fast Fourier Transform (FFT) is used to produce a complex spectrum of a 

sampled vibration signal. It is used to calculate spectra power levels and phases of 

the vibration signal by which the spectra result has a frequency range from zero to 

half of the sampling frequency.

In addition to the FFT technique, it is acknowledged that other frequency domain 

techniques are available, especially the ones that using higher order mathematical 

functions. A summary of developed frequency-domain techniques is presented in 

Table 2.1 (Yang et al. 2003).



Chapter 2 – Review of Vibration Signal Analysis in Fault Diagnosis 22

Table 2.1 - Developed frequency-domain Techniques (Yang et al. 2003)

First order Second order Third order Fourth order

Spectrum (FFT)

Power spectrum,

Power cepstrum,

Cyclostationary

Biocoherence 

spectrum,

Bi-linearity

Signal averaging, 

correlation of 

spectrum, Short 

Time Fourier 

Transform (SFFT)

Spectrogram, 

Wigner 

distribution

Wigner bi-spectra Wigner tri-spectra

Detailed discussion and examples of the others frequency-domain techniques can be 

found in Yang et al. (2003) and Jardine et al. (2006).

2.3.2 Application of the FFT in Fault Analysis

In the area of fault diagnosis, the Fast Fourier Transform (FFT) is the most widely 

used frequency-domain technique for spectral analysis to identify frequency-based 

features of bearing fault signals (Tandon and Choudhury, 2000), (Igarashi and 

Hamada, 1982).

An early application of FFT in bearing fault analysis was proposed by McFadden and 

Smith (1984), by which a study to obtain the spectrum of an envelope signal was 

established. Its purpose was to separate vibration information generated by a 

defective component from the vibration information generated by other machine 

elements. It was shown that the procedures for obtaining the spectra of envelope 

signals were well established. However, the use of the proposed technique was 

limited due to an incomplete understanding with regard to which factors controlled 

the appearance of the spectrum.

Variations of the FFT such as the Fast Fourier Transform (FFT)-based Hilbert 

Transform have been used to generate the envelope of signals for fault diagnosis, and 
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this has been widely used in bearing diagnostics (Randall, 1987). For example, Ho

and Randall (2000) investigated the use of the squared envelope to improve the 

envelope’s spectrum performance in separating the background noise from signals. 

Results showed that if the random spacing fluctuation of the bearing fault signal was 

less than 1%, then analysing the squared envelope gave an improvement if the mean-

squared ratio (MSR) of the bearing signal to noise ratio in the demodulated band was 

greater than a factor of 0.2.

Subsequently, Randall et al. (2001) used a Fourier transform of the average squared 

envelope of the signal in diagnosing rolling element bearing signals. It was 

concluded that the squared envelope analysis was a valuable tool for the analysis of 

signals which have statistical properties that vary cyclically with time. 

Lim and Su (2006) used FFT signal processing to convert a steady state vibration 

signal to a frequency domain in order to extract the vibration characteristics of an 

electric motor. The proposed system used a statistical method to generate a reference 

model. The resulting motor residual vibration was stationary and the RMS values 

were used to compute the fault indicator. The results were promising, and 

demonstrated the effectiveness of the proposed method for induction motor condition 

monitoring and fault detection.

Rai and Mohanty (2007) used the conventional FFT for the purpose of condition 

monitoring of a rolling element bearing. Based on the results, it was suggested that a 

better fault diagnosis would be achieved by using an advanced signal processing 

technique like the Hilbert-Huang Transform (HHT) with a FFT of intrinsic mode 

functions (IMFs).

Seryasat et al. (2010) applied the FFT to feature extraction in a ball bearing fault 

multi-fault analysis. In the study, the FFT of the vibration signal was used to 

generate features of FFT energy and root mean squares (RMS) of different frequency 

bands which were used to identify ball bearing faults.
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2.3.3 Drawbacks of the FFT

The FFT has several drawbacks. The main one is that it is not capable of analysing

the frequency content of a defective bearing signal since the signal is non-stationary 

and it is amplitude-modulated (Rai and Mohanty, 2007). The FFT is less sensitive in 

detecting inner race faults at the incipient stage, since the fault produces a highly 

attenuated vibration signal (Purushotham et al. 2005). Another disadvantage of using 

the FFT is the inability to provide any information about time durations within the 

spectrum, since the results are averaged over the entire duration of the signal (Peng

and Chu, 2004).

In addition, the signal to be analysed using FFT must be periodic or stationary. If it is 

not, the resulting Fourier spectrum will not produce distinctive information related to 

the signal (Seryasat et al. 2010). Therefore, FFT has limitations in analysing 

vibration signals generated from a bearing since the frequency component of the 

signal changes over time and represents non-linear processes (Seryasat et al. 2010).

2.4. Time-frequency Domain Analysis

Another tool utilised is the combined time-frequency domain. One of the widely used 

tools in time-frequency analysis of vibration signals is the wavelet transform and in 

the following section, a brief discussion of wavelet transforms is presented.  More 

detailed examples of description may be found in Mallat (1989) and Daubechies 

(1990), amongst others.

2.4.1 Wavelets Transform

Wavelet transform (WT) is a signal processing tool which employs what is called 

wavelets. A wavelet is a waveform of effectively limited duration that has an average 

value of zero (Mathworks, 1997).

The mathematical formulation of the wavelet transform was first proposed in the 

form of a new orthonormal function by Alfred Haar in 1909.  This then led to the 

invention of the simplest orthogonal wavelet, which was later named the Haar 

wavelet ((Graps,1995), (Li et al. 2007)).
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The idea of using a wavelet transform in signal analysis is to meet the need for 

analysis of signals using different sized scaling factors (window or scale). A large 

scale refers to a big frame or window for viewing or analysing a signal, while a small 

scale refers to a small frameor window used for viewing the details of a signal. In 

this context, changing from a large scale (window or frame) to a small is equal to the 

zooming process and vice versa. 

In Fourier analysis, a signal is decomposed into sine waves of various frequencies. 

Similarly, in wavelet analysis, a signal is decomposed into shifted and scaled 

versions of what is called the original (or mother) wavelet. The aim of the wavelet 

transform is to overcome the shortcomings of the Fourier transform such as signal-

cutting (windowing) problems, along with the analysing of non-stationary signals.

Wavelet transform uses a fully scaleable modulated window to solve signal-

cuttingproblems. The window is shifted along the signal and for every position, the 

spectrum is calculated, as shown in Figure 2.1. The process can be repeated many 

times with a slightly shorter (or longer) window or scalein every new cycle. The end 

result will be a collection of time-frequency representations of the signal, all with 

different resolutions.

Figure 2.1 Wavelet transform principle (Saravanan and Ramachandran, 2010)

The mother wavelet with a defined scale size is translated from the beginning to the 

end of the signal to be analysed, as shown diagrammatically in Figure 2.1. The 
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process is iterated by determining a new scale of the wavelet function and the 

process is cycled again from the beginning to the end of the signal. 

The process produces segments of signal which are comprised of “Approximated 

versions” and “Detailed versions” of the processed signal. This process is called the 

wavelet transform of the signal which provides the method for synthesising or 

disassembling the signal into two parts which are labelled approximation (a) and 

detail (d) parts.

The approximated version has a low frequency content which approximates the 

original of the processed signal, while the detailed version contains high frequency 

information on the processed signal.

The wavelet transform (WT) was proposed to address the limitations of the Fourier 

transform since the sine and cosine functions used in the FT are continuous and 

therefore not suited to particular needs. This is due to the fact that they are not 

localised functions and that they stretch out to infinity. In this context, if sine and 

cosine functions are used in the approximation of non-stationary signals the result is 

not satisfactory. In the WT, better results are achieved since the approximating 

functions used are limited to a finite time period (Graps, 1995).

The difference between the FT and the WT is at the ability of the WT to decompose 

signals using multi-scale analysis with dilation and translation in order to extract the 

time-frequency features or characteristics of the signal.

The wavelet analysis uses the wavelet function as the basic function to produce 

localised features of the original signal in a scaled domain (Paya et al. 1997). The 

basic functions comprise a family of functions which are derived from a single 

wavelet function called the mother wavelet.

The basic functions of the wavelet are useful in cases where there is a need to apply 

more suitable functions, other than sines and cosines, to approximate irregular 

signals or data with sharp discontinuities (Crandall, 1994). The basic function gives 
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the wavelet the capability of analysing the signal in localised time (or space) along 

with the frequency (or scale) domains (Al-Badour, et al. 2011).

An advantage of the wavelet transform is that it can be used to analyse signals in 

different frequency bands and to study each band with a resolution based on the 

wavelet scaling factor, as shown in Figure 2.1. If a longer scale of wavelet is used, 

the analysis produces low frequency information regarding a signal. The high 

frequency information is produced when a shorter wavelet scale is used (Graps, 

1995).

There are many possible different types of wavelets; each of them is specified by its 

own coefficients. A common orthogonal set wavelet defined by Inggrid Daubechies 

(Daubechies, 1990) called the Daubechies n wavelet (abbreviated as db-n wavelet) is 

commonly used in various applications. An example of the practical implementation 

of wavelet transform using Daubechies wavelet is presented in Appendix 1.

The wavelet transform provides a time-scaled result of a signal which is different to 

the classical representation in the time-frequency used by FT.

In the process of wavelet transformation, the basic function (mother wavelet) is 

translated and dilated to provide improved time resolution for high-frequency 

information and simultaneously it provides limited time resolution for low frequency 

information.

The detail of time-frequency information of wavelet transform is depicted in Figure 

2.2.
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Figure 2.2 Daubechies Wavelet basis function, time frequency tiles and coverage of 
the time-frequency plane (Graps, 1995)

Figure 2.2 shows the coverage areas in the time-frequency plane with a Daubechies 

wavelet function. There are three different time scales of Daubechies wavelet, shown 

in the upper part of Figure 2.2. The shape of wavelet varies with the size of time-

frequency coverage windows.

The Daubechies wavelet belongs to the family of orthogonal wavelets. An 

orthogonal wavelet is a discrete wavelet transform and it is defined by a maximal 

number of vanishing moments/points within a given support range. There is a scaling 

function for each wavelet type in this class or family which generates an orthogonal 

multi-resolution analysis. The functions of the Daubechies wavelet () are shown in 

Figure 2.3 and the scaling () functions are shown in Figure 2.4.
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The scale factor is an important parameter in the 

processing vibration signals. As shown in the top section of Figure 2.1, there are 

three different Daubechies (db) wavelets with different scaling. Each of the wavelets 

has a particular time scale which produces differently 

Larger scale wavelets produce a “wider” time window but with a correspondingly 

low frequency coverage span. Smaller time scale wavelets produce a “narrower” 

time window but with a higher frequency coverage area. The number of 

transformation levels determines the frequency and time resolution segmentation. A 

higher transformation level will improve frequency resolution at the expense of 

decreased time resolution.

Figure 2.
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The scale factor is an important parameter in the wavelet transform when used for 

processing vibration signals. As shown in the top section of Figure 2.1, there are 

three different Daubechies (db) wavelets with different scaling. Each of the wavelets 

has a particular time scale which produces differently sized time-frequency windows. 

Larger scale wavelets produce a “wider” time window but with a correspondingly 

low frequency coverage span. Smaller time scale wavelets produce a “narrower” 

time window but with a higher frequency coverage area. The number of 

transformation levels determines the frequency and time resolution segmentation. A 

higher transformation level will improve frequency resolution at the expense of 

decreased time resolution.

Figure 2.3 Daubechies wavelet (Ψ) functions
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wavelet transform when used for 

processing vibration signals. As shown in the top section of Figure 2.1, there are 

three different Daubechies (db) wavelets with different scaling. Each of the wavelets 

frequency windows. 

Larger scale wavelets produce a “wider” time window but with a correspondingly 

low frequency coverage span. Smaller time scale wavelets produce a “narrower” 

time window but with a higher frequency coverage area. The number of 

transformation levels determines the frequency and time resolution segmentation. A 

higher transformation level will improve frequency resolution at the expense of 
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2.4.2. Wavelet Mathematical Notation

Wavelets are constructed in sets or families of functions and each of them is 

determined by a dilation process which affects 

translation process. Translation involves the time when a single function, named the 

mother wavelet or analys

A wavelet )(t is a waveform which has a finite (and usually short) duration. It has 

an average zero value over time which is given by:
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Figure 2.4 Daubechies wavelet scaling (Φ) functions

2.4.2. Wavelet Mathematical Notation

Wavelets are constructed in sets or families of functions and each of them is 

determined by a dilation process which affects the scaling parameters and the 

translation process. Translation involves the time when a single function, named the 

mother wavelet or analysing wavelet )(t , is applied to the signal.

is a waveform which has a finite (and usually short) duration. It has 

an average zero value over time which is given by:

(2.9)

It may be dilated by scale a and time-translated by factorb .



b

(2.10)
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) functions

Wavelets are constructed in sets or families of functions and each of them is 

the scaling parameters and the 

translation process. Translation involves the time when a single function, named the 

.

is a waveform which has a finite (and usually short) duration. It has 
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The parameter a is also called the scaling parameter and b is the time localisation 

parameter, while  is the “mother wavelet” function. The parameter for translation 

bR and dilation a  0 may be continuous or discrete.

The wavelet transform of f (finite energy signal x(t)) with the analysing wavelet 

(t) at scale a and position b is computed by correlating the transform with the 

analysing wavelet (t) or the convolution of x(t) with a scaled and conjugated 

wavelet:

dt
a

bt

a
tfbaWf 






 
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



*
1

)(),(  (2.11)

where *(t)stands for the complex conjugation of (t) . W is the wavelet 

transform.

The wavelet transform (a,b) can be seen as functions of translation b using scale a . 

Equation 2.10 shows that the wavelet analysis is a time-frequency analysis, or time-

scaled analysis. The signal resulting from the wavelet transform Wf (a,b) is presented 

in the a b plane, where a and b are used to determine the frequency and the time 

location of the wavelet in Equation 2.11.

In wavelet transforms, the analysing wavelet (basis function) traverses along the 

length of the processed signal as the value of b in Equation 2.10 increases. Local 

time span and frequency content information obtained from the processed signal is 

related to the increase or decrease of the a value in Equation 2.10 (Saravanan and 

Ramachandran, 2010). The chosen basis function (mother wavelet) is crucial, as it 

affects the resulting signal analysis to which the selected wavelet basis function is 

applied.

2.4.3 Continuous Wavelet Transform (CWT)

The continuous wavelet transform (CWT) is defined as the sum, over time, of the 

signal multiplied by scaled and shifted versions of the mother wavelet function (Peng 

and Chu, 2004). The CWT is defined in Equation 2.12.
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c f (a,b)  x(t)(a,b,t) dt




 (2.12)

where t is the time, a is the scale and b is the location or space parameter. The 

CWT is widely used in finding singularities in a signal which could be used to detect 

an impact fault in the signal (Al-Badour, 2011).

2.4.4 Discrete Wavelet Transform (DWT)

The discrete wavelet transform (DWT) was developed by Daubechies and Mallat 

through presentation of discrete versions of the CWT modulus of the wavelet 

transform (Mallat, 1989), (Daubechies, 1990). The DWT enables the application of 

the wavelet transform in signal analysis using its discrete form (Peng and Chu, 

2004). In this context, the DWT is derived from the CWT by using discretisation of 

the wavelet(a,b)(t). The standard discretisation of the wavelet in the dyadic 

discretisation is given in Equation 2.13 (Mallat, 1989).

( j ,k )(t) 
1

2 j


t  2 j k

2 j









 (2.13)

where j2 replaces a and kj2 replaces b (Mallat, 1989). The discrete wavelet 

method is needed in practical applications especially in the implementation of a 

computerised version of the wavelet transform.

A scaling function is used to generate an orthogonal multi-resolution analysis for 

each wavelet type in this family or class. The Daubechies wavelet function has been 

used in many applications which are intended to solve a broad range of problems, 

such as self-similarity properties of a signal or fractal problems and signal 

discontinuities (Saravanan and Ramachandran, 2010). Furthermore, the Daubechies 

and Meyer wavelets are the optimum wavelets for use in vibration signal analysis 

since the signals often have impulsive characteristics or form. These findings are

based on the results obtained from simulation-based experiments aimed to select the 

best wavelets for vibration signals (Al-Badour, 2011).
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2.4.5 Signal Decomposition and Reconstruction Using the Wavelet Transform

Signal transformation using wavelet transforms can be also interpreted as an 

application of a specific filtering process (Wu and Liu, 2009) in which a low and a 

high-pass wavelet filtering analysis is used in the filtering of a discrete signal. The 

concept of the filtering process is shown diagrammatically in Figure 2.5.

The basic filter function of a wavelet transform implementation is shown in Figure 

2.5. The scheme can be applied from both directions, starting with either 

decomposition or reconstruction. Convolution is achieved by using a low pass filter 

L, and a high pass filter H, which are applied to the discrete signal s, producing two 

vectors 1cA and 1cD . Elements of the vector cA are called Approximation 

Coefficients and the elements of the vector cD are called Detail Coefficients. In the 

decomposition process, the symbol (↓2) represents down-sampling, i.e., omitting the 

odd series elements of the signal. The process produces a number of elements in 1cA

and 1cD which is approximately the same as the number of elements of the filtered 

signal, s.

Figure 2.5 The wavelet transform using decomposition and reconstruction steps

In the reconstruction scheme, both vectors 1cA and 1cD are convolved with a pair of 

low-pass and high-pass reconstruction filters (LR and HR), respectively. The result of 

this process is two reconstructed signals, 1A and 1D . These are known as 

Approximation Coefficients and Detail Coefficients respectively.
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In the reconstruction process, an up-sampling process (2) is performed. This 

process involves the insertion of zeros between the elements of the vectors 1cA and

1cD . The reconstruction of the decomposed signal s can be carried out by adding 

vectors 1A and 1D which produce a complete form of signal s. This step can be 

written as:

11 DAs  (2.14)

The basic scheme can be performed iteratively on the approximation vector 1cA , and 

in sequence for each new approximation vector, icA , produced. The iteration process 

can be depicted as a wavelet tree in which i is the number of the iteration level. The 

number of coefficients for each vector iA is approximately ils 2/ where ls is the 

length of the signal, s and it covers a frequency band of 12/0  iFs , where Fs is 

the sampling frequency of the data. In general form, the reconstruction signals 1A

and 1D match the equations;

iii DAA 1 (2.15)

 ji dAs (2.16)

where i and j are positive integers (Nikolaou and Antoniadis (2002a)).

An example application of a wavelet transform used as a low and a high pass filter 

for filtering a noisy signal is shown in Figures 2.6 and 2.7.
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Figure 2.6 Filtering noise using wavelet transform (2 levels of decomposition)

A chirp signal that contains noise is processed (filtered) using Daubechies 4 (db4) 

wavelet up to two levels of decomposition. Figure 2.6a shows the original signal and 

Figure 2.6b shows the filtered or transformed signal. Noise is significantly reduced 

after the original signal is processed, using two levels of wavelet transform. Greater 

noise reduction is achieved by increasing number of level of the wavelet transform. 

Figure 2.7 (a) and (b) show the results of wavelet filtering of the same original signal 

obtained after five levels of wavelet transform.
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Figure 2.7 Filtering noise using wavelet transform (5 levels of decomposition)

Figure 2.7b shows a clean signal which is obtained by increasing the number of 

decomposition levels of the wavelet transform used to process the signal.

2.4.6 Multi-Resolution Analysis (MRA)

The DWT is used to process or transform a signal using Multi-Resolution Analysis 

(MRA). The scheme of DWT MRA decomposition of a signal up to 5 levels of 

decomposition is shown in Figure 2.8.
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Figure 2.8 Signal decomposition scheme using 5 levels DWT MRA 
(Reda Taha et al. 2006), (Wu and Kuo, 2009)

The MRA scheme shows decomposition of a complete signal by using DWT which 

results in Approximated (a) and Detailed (d) parts. The corresponding index (a1 to 

a5) represents decomposition level at the related level.

The frequency sub-bands of a signal processed by a wavelet transform have standard 

divisions for each approximation (a) and detail (d) parts at each level of 

decomposition (Wu and Liu, 2009), (Bin et al. 2012). 

An example of the MRA scheme is shown in Figure 2.8, using a signal with a 

maximum frequency span of up to 3000 Hz. If the signal is processed using five 

levels of MRA then the sub-bands division of a and d parts from levels 1 to 5 are 

given in Table 2.2.
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Table 2.2 Frequency sub-bands of the DWT of five levels MRA results

Approximation Sub-bands (Hz) Detailed Sub-bands (Hz)

a1 0 – 1500 d1 1500 – 3000

a2 0 – 750 d2 750 – 1500

a3 0 – 375 d3 375 – 750

a4 0 – 187.5 d4 187.5 – 375

a5 0 – 93.5 d5 93.5 – 187.5

At the first level of wavelet transform, the signal is transformed into two parts, 

namely a1 and d1. The frequency sub-bands coverage of a1 is from 0 – 1500 Hz and 

for d1 from 1500 – 3000 Hz. The frequency sub-bands coverage for the subsequent 

levels of decomposition are given in Table 2.2.

Detailed results of the MRA implementation, using a signal corrupted with noise as 

an example, are shown in Figures 2.9 and 2.10.

Figure 2.9 shows the approximated (a) parts of the processed signal after it has been 

processed using 5 levels of wavelet transforms. Note that the amount of noise is 

gradually reduced from level 1 to level 5, as shown.

Figure 2.10 shows the detailed (d) parts of the processed signal after it has been 

processed using 5 levels of wavelet transforms. The detail parts contain high 

frequency components of the original signal. The high frequency parts of the original 

signal are related to the noise frequencies which contaminated the signal and the 

signals were filtered by a high-pass filter in the wavelet transform.
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Figure 2.9 Approximated parts of signal with noise (a1 - a5)

Figure 2.10 Detailed parts of signal with noise (d1 - d5)
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2.4.7 Energy Level of Wavelet Results

The energy levels from the wavelets transform feature in fault analysis and have been 

utilised in fault diagnosis (Peng and Chu, 2004), (Yan and Gao, 2009) and (Seryasat 

et al. 2010). Wavelets been widely used due to their effective energy concentration 

properties which can be used as fault indicators. They are also advantageous by 

virtue of their compact support of wavelet based functions (Peng and Chu, 2004).

The energy level density analysis method has been applied to roller bearing fault 

diagnosis according to the characteristics of the fault vibration signals. Energy level 

density is an important physical variable in a signal. It represents a signal 

characteristic since energy level density of the signal is varied and distributed along 

the change of time and frequency domain (Junsheng et al. 2005).

Gaing (2004) employed Parseval’s theorem to extract the energy distribution features 

from DWT results. The energy features were calculated using Parseval’s theorem 

which states that the summation result of a signal )(tx in the time domain 

components along its whole time span )(t is equal to the summation result in the 

frequency domain of all of frequency components )( f of the Fourier transform (FT).  

The method was used to propose a prototype of wavelet-based neural-network 

classifiers for the purpose of power disturbance recognition and classification. The 

experimental results showed that the proposed method had the ability to recognise 

and classify different power disturbance types efficiently. It was also shown to have 

the potential to enhance the performance of the power transient recorder with real-

time processing capability.

Wu and Liu (2008) used Parseval’s theorem, with energy calculated from DWT 

results, in investigating engine fault diagnosis and Wu and Kuo (2009) used the 

theorem in generating energy features for the purpose of automotive generator faults 

analysis. In their research, the energy level distribution features of Approximated 

version aP and Detailed version dP of DWT results were calculated using the 

approximation and detailed parts of the wavelet transform results.
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Using Parseval’s theorem energy calculation proposed by Gaing (2004), Wu and Hsu 

(2009) applied the method to gear-fault identification based on vibration signals. 

Vibration signals were processed using DWT and the energy features of the DWT 

results were calculated. The energy features were implemented to reduce the number 

of DWT data involved in the analysis. The features generated from DWT results 

were used to identify faults by using Fuzzy-logic inference. The experimental results 

indicated that the proposed system was effective in increasing accuracy in gear-fault-

identification of the gear-set platform.

Another application that utilised the energy level of wavelet coefficients was also

conducted by Yan and Gao (2009). It was found that by using a specific wavelet 

scale, wavelet coefficients could be used to identify defect-induced vibration patterns 

that were embedded in the vibration signal. Based on this concept, selection of the 

base wavelet can be guided by comparing the amount of energy extracted from the 

signal being analysed by different base wavelets. The wavelet that extracts the most 

energy from the signal will represent the most appropriate wavelet for defect-induced 

vibration analysis.

A modified version of the wavelet energy calculation, based on the original version 

presented by Goswami and Chan (1999), was used by Latuny and Entwistle (2010) 

in analysing vibration signals from bearings under a lifecycle test. In the analysis, the 

energy level of Detailed parts (cD) of the wavelet transform was calculated via 

Equation 2.12.

Energy level Di 
1

2








p i

 (Di)
2 (2.12)

where: 

p = next power of two based on data length, 

i = decomposition level (i = 1, …, n)

D = Detailed ( cD ) result of wavelet transform at i-th level.
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By using the variations in energy levels, it was shown that early deterioration of 

bearings could be detected. The results were much improved compared to using 

changes of kurtosis to monitor early deterioration of bearings under life test.

2.4.8 Application of wavelets in Fault Analysis

The application of the wavelet transform to vibration signal analysis as a feature 

extraction method in machine fault detection has been widely investigated by many 

researchers. The following section provides a brief discussion of wavelet applications 

in fault diagnosis.

Newland (1994a) and Newland (1994b) presented the basic theory and methods of 

wavelets in a more systematic manner, and provided examples of how to use the 

wavelet in the analysis of vibration signals. These presentations contributed to 

wavelet transform becoming a preferred method in vibration signal analysis. The 

applications in vibration signal analysis for the purpose of machine fault analysis 

were undertaken by Peng et al. (2010).

An earlier suggestion to make use of wavelets in fault diagnosis was proposed by 

Pan and Sas (1996). They highlighted the importance of analysing non-stationary 

signals since these signals usually contain abundant information on machine faults. It 

was found that analysis of non-stationary signals and data with sharp discontinuities 

was best implemented using the wavelet transform since it provided better results.

Wang and McFadden (1996) investigated the applicability of wavelets in diagnosing 

mechanical faults, particularly in gearbox vibrations. It was found that the wavelet 

could be used to detect incipient mechanical failure and different types of faults at 

the same time.

A study by Liu et al. (1997) on ball bearings fault analysis implemented a wavelet 

packet-based method to generate wavelet coefficients. It was used as a feature 

extraction method for fault diagnosis and showed a high sensitivity to faults.
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Wavelet analysis of time-domain sound signals generated by bearings was carried 

out by Shibata et al. (2000). The investigation produced a component of the signal 

that can be of use for fault indication.

The implementation of a method to obtain a better signal to noise ratio (SNR) of a 

low speed rolling bearing signal by using discrete wavelet packets for multiple band 

pass filtering was carried out by Altmann and Mathew (2001). It was found that the 

filter using the wavelets significantly improved SNR compared to its other high-pass 

counterpart.

An application of wavelet transform modulus maxima to detect sudden changes in 

vibration signals originating from bearings related to faults was investigated by Sun 

and Tang (2002). The outcome showed that the proposed method was able to 

significantly discriminate the noise from the signal. The method also showed an 

advantage in determining the severity of the bearing damage in qn operating 

condition where load and speed were varied.

Rubini and Meneghetti (2001) investigated applications of wavelets in fault analysis 

of double-row self-aligning ball bearings. The investigation used Gaussian (Dalpiaz 

and Rivola, 1997) and Morlet type wavelets (Chui, 1992) in order to construct an 

alternative method for the use of envelope analysis in the time domain.  It was found

that the wavelet transform was more suitable than the envelope analysis in extracting 

the impulsive effect due to short and low impacts buried in the signal noise.

Investigation of bearing faults using wavelet transforms was carried out by Prabhakar 

et al. (2002) in order to explore the capability of the wavelet transform in extracting 

impulses from the faulty ball bearing signal. Daubechies wavelet type 4 (db4) was

used in the investigation. The original vibration signal was processed using the 

wavelet transform and the high frequency parts (detailed parts) of the wavelet 

transform results were investigated. The investigation results showed that periodic 

impulses related to bearing faults were enhanced and better presented in higher level 

parts of Discrete Wavelet Transform (DWT). The results showed that the DWT can 

be used effectively in detecting single and multiple faults in ball bearings.
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2.5. Concluding Remarks

Vibration measurement is a common method used in fault diagnosis applications. In 

analysing vibration signals for the purposes of fault diagnosis, there are three 

categories of analysis that are commonly used. These categories are time-domain 

analysis, frequency-domain analysis and time-frequency domain analysis. 

The frequency domain method is a popular method (Patil et al. 2008), in which the 

FFT method is the dominant processing tool in use (Seryasat, 2010). In addition, it 

has been found that the envelope analysis and amplitude demodulation of vibration 

signal have a wide range of applications in fault diagnosis (Randall and Antoni, 

2011) and Luo et al. (2013).
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Chapter 3 – Review of Artificial Intelligence (AI) Systems
in Fault Diagnosis

The need to implement intelligent systems in fault diagnosis has become an essential 

requirement as industrial maintenance processes become increasingly complex. This 

complexity is a result of sophisticated developments in machinery systems along 

with the industrial processes involved. The amount of work now required to provide 

fast and reliable fault diagnoses has surpassed the capability of human operators to 

manage these processes in a timely manner.

In addition, due to the complicated nature of modern machinery, there is also an 

increased risk of failure which requires effective and efficient problem solving 

techniques. Dealing with machinery failure is an important factor in the 

accommodation of increasing demand for high quality products, production and cost 

reduction, timely availability of machinery, reliability of production equipment and 

most importantly, greater safety requirements in all elements of the production line.  

These factors have become the motivation for the utilisation of intelligent diagnosis 

models in identification of faults in machinery systems.

Final condition identification is another task in fault diagnosis of rotating machinery. 

Diagnosis is mainly carried out by using artificial intelligence (AI) techniques. In this 

case, the AI techniques are used to provide an automated fault diagnosis process. AI 

method applications are mainly characterised by the implementation of neural-

network-based systems. 

In general, the building blocks of an intelligent fault diagnosis system consist of the 

following: data collection section, feature extraction section and fault detection and 

identification sections. The fault detection and identification section may employ the 

following systems: artificial neural networks (ANN), Fuzzy Logic/Fuzzy Sets, 

Expert Systems and Hybrid Artificial Intelligence Techniques.  
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The following sections briefly discuss the most widely used AI techniques in fault 

diagnosis.

3.1 The Artificial Neural Networks (ANN)

Perhaps one of the most widely used Artificial Intelligence techniques in fault 

diagnosis is the Artificial Neural Network (ANN) and its variants (Haykin, 1999). 

Artificial Neural Networks, a major component of neuro-computing (Rao et al. 

2012), were first explored by Rosenblatt in 1959 (Widrow and Lehr, 1990) and 

Widrow and Lehr (1960).

The ANN consists of interconnected groups of artificial neurons. These neurons use 

a mathematical or computational model for information processing. ANN is an 

adaptive system that changes its structure based on information that flows through 

the networks (Haykin, 1999).

The ANN learns patterns from a training data set that represents the relationship 

between inputs and outputs by the use of a learning method (Rao et al. 2012). An 

example of this is seen in a back propagation type of learning algorithm, first 

introduced by Werbos in 1974 (Widrow and Lehr, 1990).

The ANN comprises a layer of input nodes, one or more layer of hidden nodes and 

one layer of outputs. Each layer consists of processing elements called ‘nodes’ or 

‘neurons’ and interaction between them is achieved using numerically weighted 

connections (Tsoukalas and Uhrig, 1997).

The intelligent diagnosis system which employs Artificial Neural Networks is 

generally based on the utilisation of a data processing system that comprises a 

number of simple and highly interconnected processing elements. These highly 

interconnected elements or nodes are arranged in an architecture that mimics the 

cerebral cortex in the human brain. The system is used in intelligent diagnosis by 

supplying known inputs in order to obtain an output that represents the machine fault 

characteristics.
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An unknown function can be mapped through an iterative evaluation and adjustment 

of the connecting weighting values used by the ANN. In this context, the ANN can 

be used in the modelling of complex non-linear problems which may be 

implemented to approximate practical problems in fault diagnosis cases. In practical 

diagnosis applications, the ANN is trained to recognise the features extracted from 

recorded or acquired signals. During the training process, the ANN is instructed to 

mimic the input – output relationship of the data or information. That is, the ANN is 

trained to memorise the relationships which will enable it to later be used as a 

classifier where it is designed to classify input (data/information) patterns and related 

input(s) to the known output(s).

3.1.1 Advantages of ANN

There are several advantages to ANN which make it suitable for implementation in a 

wide range of applications.

Firstly, ANN is not dependent on prior principles, statistical data or models. Hence, it 

can be used directly in analytically-difficult modelling tasks which cannot be solved 

using conventional methods or approaches. In these cases, the use of conventional 

methods is not practical as the modelling tasks have non-linear characteristics, high-

order, time-based dynamics variation and data input-output relationships which have 

no existing analytical model.

Secondly, the ANN provides an improvement to the fault tolerance capabilities of 

fault diagnosis systems through its adaptive features in which it has self-adjustment 

capabilities which compensate for the changes in data over time. 

These advantages make ANN suitable for intelligent technique applications in fault 

diagnosis and identification which would otherwise involve modelling tasks and 

conventional analytical methodsthat are impractical.

Furthermore, the construction and the methods of information storage and 

information manipulation within ANN make it suitable for ongoing learning. This 

learning feature can be used to recognise patterns even if the information that makes 

up the pattern is noisy or incomplete. This is also known as the ANN feature of data 
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matching in high-dimensional spaces which the employs the effective interpolation 

and extrapolation ability of the ANN based on the learned data. Establishment of a 

complex regression function between a set of input-output data can be obtained by 

using the ANN training process.

For the purposes of fault diagnosis, an ANN is applied by using appropriate input 

data, in order to learn the data and produce fault information or characteristics which 

represent data features.

The ability to map input-output relationships through learning processes using 

presented data has made the ANN one of the most widely-used and preferred 

methods in intelligent fault diagnosis of machinery systems. The learning features 

have motivated a wide range of ANN applications in fault diagnosis where they are 

used to handle such problems using existing data obtained from machinery parts 

under investigation. In this case, the features extracted from acquired vibration 

signals from machinery related to a known fault condition are fed into an ANN for 

training. As a result of learning the system’s features, the ANN can determine most 

of the related or specific characteristics embedded in the data, and the specific 

characteristic(s) can be used as a signature associated with the fault condition. The 

ability of an ANN to map input-output data by its training process allows it to be 

used as an on-line pattern recognition system useful in the fault diagnosis process.

3.1.2 Learning Methods

In the application of ANN, there are two learning or training methods. The first is 

supervised learning and the second is unsupervised learning (Peng, et al. 2010). 

Supervised learning is where complete examples of data or input-output pairs are 

presented to the ANN during its learning session (Haykin, 1999). The presented data 

contains the corresponding known target or output (Carpenter et al. 1992). 

Unsupervised learning is where there are no output (target) values and the learning 

task aims to obtain the characteristics of the process that generated the data 

(Kohonen, 1997), (Haykin, 1999).

The training and testing steps are two important procedures in the application of an 

ANN system. The learning step plays a very important role since it is here that the 
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ANN gains its useful abilities. The testing step is the process by which the inputs 

with known features are fed into the ANN to test its performance and to perform 

network weighting calculations in order to produce values for the last neuron stage. 

These values are then compared with the targeted output in order to verify the 

suitability of ANN design.

3.1.3 Types of ANN

There are several types of ANN (Jang et al. (1997)). They are:

 Back Propagation for Feed Forward Network (BPFFN)

 Multi Layer Perceptrons (MLP)

 Back Propagation Multilayer Perceptrons (BPMP)

 Radial Basis Function Networks (RBFN)

 Self Organized Map (SOM)

All of these types of ANN have been implemented in various fault diagnosis 

applications.

3.1.3.1 Back Propagation Feed Forward Network (BPFFN)

A typical Back Propagation Feed Forward Network is constructed from several series 

or successive layers of neurons. In the example shown in Figure 3.1, a typical 3 layer 

back propagation (BP) feed forward neural network (NN) construction is illustrated. 

x1, x2, … xn are networks inputs, y1, y2, …, ym are outputs. wij represent the 

connection weightings input layer of neural cell i and the hidden layer neurons layer

y , and v jt is the connection between hidden layer neurons j and the output neurons 

layer. Typically, sigmoid-type neurons, neurons with differentiable functions such as 

the hyperbolic tangent function (Haykin, 1999), are used in the layers as the transfer 

function of the BP network.
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Figure 3.1 Typical three layers of BPFFN network 
(Galushkin, 2007), (Bin et al. 2012)

Figure 3.1 show the layer configuration of the sigmoid-type neurons which are the 

building blocks a Feed Forward Neural Network where every neuron in a layer 

receives inputs from the outputs of all the neurons of the preceding layer.

The term back-propagation is applied to this type of ANN, as during the training or 

mapping of the input-output relationships of the data, the error is propagated 

backwards through each internal node. The error information is then used to calculate 

the weighting adjustment for the corresponding node. This calculation process is the 

core of the training process during which the information is forwarded from the input 

layer to the output layer and weighting values are changed until the error value is 

reduced to an acceptable limit.

The multilayer construction that fully interconnects the feed forward (FF) network 

uses the ‘delta rule’ to compute the weights between the actual output and the desired 

output. The desired output is optimised through a least square approach 

(Alguindigue, 1993). The basic algorithm for back propagation is presented in 

Rumelhart and McClelland (1986).

The realisation of the arbitrary non-linear mapping between the input and output by 

using FF a network is useful in areas such as pattern recognition, function 

approximation, and data compression. The mapping of input data output data is 

achieved using a multi-layered FF network. This mapping process is carried out by 

changing the connection weight of each neural neuron in a network. The change of 
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weight values aims to ensure that the output generated is consistent with the 

anticipated one. The process of weight value modifications is known as the training 

process of the network. The BP NN can be implemented to recognise a non-linear 

relationship between fault types and fault characteristic parameters of bearings (Bin, 

et al. 2012).

Use of either multi layer perceptron (MLP) networks or Radial Basis Function (RBF) 

networks for the common application of FF networks is optional (Meireles et al. 

2003). They are used to map given sets of data points (input-output) using 

interpolation methods. For the purposes of pattern recognition, adoption of an MLP 

is preferred since it has a function which produces numerical results of 1 or 0 which 

are suitable for classification purposes.

In the design of the ANN, determination of the number of processing element within 

the input-output layers is generally based on the number of variables that are used as 

input and output entities. The determination of the number of processing elements for 

the hidden layer is based on the complexity of the problem. Several design criteria 

for the number of hidden layers of the ANN are presented in Kung and Hwang 

(1988).

Multi-layer FF networks can be used to map the input and output relationship pattern 

that exists in the data. Inputs are received by the input layer and are then modified 

based on the set of weights. The modified results are then sent to the hidden layers. 

Each hidden layer propagates the modified inputs to the subsequent layers before the 

modified inputs reach the output layer. The calculation of overall error takes place in 

the output layer. 

3.1.3.2 Recurrent or Recirculation Neural Network (RNN)

The recurrent or recirculation neural network(RNN) and the generic FF networks 

have similar characteristics, except that the RNN employs additional feedback 

connections that delay and store information from previous steps (Wang et al. 

2004b). The application of these feedback connections means that the training 

process of an RNN is carried out in cycles. The training is executed iteratively which 

takes longer for results to be obtained. In general, the RNN has fixed connection 
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weights of 1, and the dynamic response is achieved by delaying inputs and outputs 

(Evsukoff and Gentil, 2005). The structure of an RNN is shown in Figure 3.2.

Figure 3.2 Recurrent Recirculation Neural Network structure (Graupe, 1997)

3.1.3.3 Self-Organizing Map (SOM)

The Self-Organizing Map (SOM) network comprises a forward two-layer network 

that employs a non-linear projection characteristic that maps the input signal, which 

is of arbitrary dimension, to a one or two-dimensional array of (neurons) nodes in 

which the array of nodes is related to a discrete map (Kohonen, 1997).

Figure 3.3 Self-Organizing Maps (SOM) (Haykin, 1999)
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Figure 3.3 shows the basic configuration of the SOM network which consists of a 

two layer neural network using full connections between neurons in the output layer. 

The SOM provides a mapping process which is based on the sequence of a high-

dimensional distribution data on a regular or simplified low dimensional grid. This 

feature imparts to the SOM the ability to translate complex, nonlinear statistical 

relationships between data with high dimensions into a simple geometric relationship 

on a low-dimensional space or simplified graph.

The simplification of relationships is carried out while it preserves the most 

important structure and metric relationships of the data. This process can also be seen 

as a type of abstraction.  The features of an SOM that provide abstraction and visual 

information of dimensional data can be used in a number of ways for applications 

that contain complex tasks such as process monitoring, process analysis and fault 

diagnosis (Kohonen, et al. 1996), (Zhong et al. 2005).

As an example, the Kohonen SOM network consists of three major learning step 

attributes: competition, co-operation and adaptation (Yang et al. 2004). In the 

competition step, the network compares and competes with other neurons based on 

the output values for a given input vector, modified by a chosen discriminating 

function. The discriminating function is later used to determine which output is 

closest to an input pattern. The competition step produces a selection among the 

output neurons. The neuron with the closest relationship to the input vector will be 

picked up and labelled as the winning (best-matching) neuron. The cooperation step 

is where the selected winning neurons are used to predefine a neighbourhood or 

group of neurons. This will provide the basis for the neighbouring neurons to 

cooperate by which only the weights of those neurons defined within the topological 

neighbourhood of the winning neuron will be updated or changed. The synaptic 

weighting, strength of a connection between two neurons, of neurons outside the 

neighbourhood will remain unchanged. This is followed by the adaptation step where 

the winning neuron within the group constantly changes its weight value to adapt to 

the values of the inputs pattern. This learning strategy provides the ability to evolve 

the synaptic weight vectors towards the distribution of the input vectors.



Chapter 3 – Review of Artificial Intelligence (AI) Systems in Fault Diagnosis 54

3.1.3.4 Radial Basis Function (RBF)

The radial basis function (RBF) network is a forward network with three layers: an 

input layer, a hidden radial basis layer and an output linear layer (Lei et al. 2009). 

The input neuron information is transferred to the neurons in the hidden layer. The 

RBF in the hidden layer responds to the input information, and the network outputs 

are then generated in the neurons of the output layer. 

The RBF was first applied to neural networks by Broomhead and Lowe (1988). The 

RBF NN is a feed forward network which comprises three layers: an input layer, a 

hidden radial basis layer and a linear output layer. Information received by neurons 

in the input layer is sent to neurons in the hidden layer. The RBF neurons in the 

hidden layer respond to the input information and the output layer generates output.

The advantage of the RBF network is that the hidden neurons will produce non-zero 

outputs if the outputs values are within the minimum limit of the input values pre-

defined range. Otherwise, the output will be zero. This network feature makes the 

number of active or used neurons small and the time required in training the network 

is shorter (Lei, et al. 2009).

3.2 Disadvantages of ANN

While ANNs have advantages, they also have disadvantages. Firstly, an ANN 

applied as a diagnosis tool acts as a black-box, meaning that it is difficult to deduce 

physical explanations for its output. Secondly, the training process becomes more 

complicated and time consuming once the size of an ANN increases. Thirdly, there is 

an issue in determining the number of hidden layers to be used along with the 

number of nodes in each layer (Brotherton, et al. 2000).

Finally, the ANN is lacking the semantics feature needed to process the imprecise 

and vague nature of information that is characteristic of human reasoning. In this 

context, the basic form of neural networks cannot be used to accommodate the use of 

expert knowledge gained from observation and learning of a physical process (Liu 

and Shi, 2001).
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3.3 Applications of ANN in Rotating Machinery Fault Diagnosis

Artificial neural networks are currently the most commonly found data-driven 

techniques in fault diagnosis literature (Heng et al. 2009) and they have been widely 

implemented in the fault diagnosis of rotating machinery. Examples of ANN 

applications in fault diagnosis are listed in Table 3.1, where applications to common 

machine groups are reported.
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Table 3.1 - Neural Networks Applications in Fault Diagnosis of Rotating Machinery

Neural
Networks

Motors Pumps Bearings Turbines Gears & 
Gearboxes

Shafts

BPFFN Mahamad 
and 
Hiyama  
(2011) ,
Li et al.
(2004) 

Ilott and
Griffiths 
(1997)

Li and Wu 
(1989), Liu 
and Mengel 
(1992),
Samanta 
and Al-
Balushi 
(2003),
Gebraeel et 
al. (2004), 
Sreejith, et 
al. (2008)
Wang et al. 
(2010), 
Prieto et al. 
(2013)

Yang et al.
(2008),
Wu and 
Chan (2009)

McCormick 
and Nandi 
(1997),
Kuoet al.
(2002) 

RNN Yam et al.
(2001),
Malhi et al.
(2011)

Mohamm-
adi et al. 
(2011)

RBF Selaimia 
(2006),
Onel and 
Benbouzid 
(2008)

Lu et al.
(2011)

Rong et al.
(2009)

Li et al.
(2009)

MLP Paya et al.
(1997)

Meesad and
Yen (2000), 
Senguler et 
al. (2010)

Meesad and 
Yen (2000)

Meesad 
and Yen 
(2000) 

Kohonen Kowalski 
and 
Kowalska 
(2003),
Bay and 
Bayir 
(2005)

SOM Yang  et al.
(2004),
Premrudee
preechach
arn et al. 
(2002) 

Zhang and 
Ganesan 
(1997),
Zhong et al. 
(2005),

Hu et al.
(2003),
Wu et al.
(2002), 
Donat et al.
(2008) 

Liao et al. 
(2005)

LVQ Zareiet al.
(2008)

Abu-
Mahfouz 
(2005)

Meesad 
and Yen 
(2000) 

Several selected applications listed in Table 3.1 are explained below.

ANN systems have been used to support classification of fault analysis. An earlier 

application of ANNs in the field of bearing fault analysis can be found in Li and Wu 

(1989). In the investigation, a perceptron-type network was used to analyse the 
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experimental data from ball bearings. The results showed that the network 

recognised faults made on the outer race of the bearings with a percentage of error 

smaller than the one of the conventional methods. It was reported that the proposed 

technique achieved a 14 per cent better rate than the conventional methods.

In an investigation by Liu and Mengel (1992), it was shown that the perceptron 

network was capable of distinguishing between six different cases of ball bearing 

faults. The fault detection used the variations of the peak amplitude in the frequency 

domain, the peak RMS and the power spectrum parameters as the training data for 

the perceptron network.

Baillie and Mathew (1994) diagnosed rolling element bearing faults using artificial 

neural networks and a bearing fault diagnostics system was developed. The incoming 

vibration signal was presented to each neural network model in the system and the 

network model that best approximated the signal was chosen to indicate a type of 

fault. The system was trained to diagnose fault conditions such as imbalance, outer 

race faults, inner race faults and normal conditions. The neural network-based 

diagnostics system was tested and it was shown that the system achieved accuracy in 

95 per cent in all the test data set.

Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) neural networks 

utilised to classify the condition of rotating machines were used by McCormick and 

Nandi (1997). In the classification tasks, the findings were that similar success rates 

were achieved by both MLP and RBF networks. Further detail shows that the RBF 

networks needed significantly shorter time for training compared to the time needed 

by the MLP network. However, the MLP network achieved faster operation time and 

used fewer neurons.

Application of MLP and Learning Vector Quantization (LVQ) as classifiers used to 

diagnose faults in gears, bearings and shaft was carried out by Meesad and Yen 

(1997). Both networks performed successfully. Off-line training and iterative data 

feed were needed to achieve a successful fault classification process.
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Zhang and Ganesan (1997) applied a multi-variable trend estimation of fault 

development to predict RUL of a bearing system by using a self-organising neural 

network. Condition monitoring was performed via online vibration measurements 

and fault quantification was formulated into a multivariate trend analysis. Self-

organising neural networks were used to perform the multivariate trending of the 

fault development. It was found that the accuracy of the proposed prediction 

algorithm was the same as one of the SOM algorithms.

Yam et al. (2001) investigated the trend in predicting machine condition by using a 

recurrent neural-network system.

Kowalski and Kowalska (2003) demonstrated a Neural Networks application for 

induction motor fault diagnosis. In this research work two kinds of NN were 

proposed as multilayer perceptron networks and self-organising Kohonen networks. 

The results of the experimental tests showed that neural networks could be 

effectively used for the recognition of stator, rotor, rolling element bearing and 

supply asymmetric faults by appropriate measurements and interpretation of FFT 

analysis of current vibration spectra.

Gebraeel et al. (2004) carried out investigations on thrust bearing prognosis in an 

attempt to determine the prediction of the actual bearing failure time. The 

investigation aimed to develop neural-network-based models for predicting bearing 

failures. An experimental setup was developed to perform accelerated bearing tests 

where vibration information was collected from a number of bearings that were run 

until failure. This information was then used to train neural network models for the 

prediction of bearing operating times. Vibration data from a set of validation 

bearings was then applied to these network models. The resulting predictions were 

then used to estimate the bearing failure time.

Sreejith et al. (2008) proposed an application of neural networks for automated 

diagnosis of localised faults in rolling element bearings. Kurtosis and log-likelihood 

classification (Goumas et al. 2001 and Abbasion et al. 2007) extracted from time 

domain vibration signals were used as an input feature for the neural network. The 
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results showed that the trained neural network was able to classify different states of 

bearing faults with an accuracy rate of 100%.

Wang et al. (2010) used the autoregressive (AR) method combined with the back-

propagation neural network (BPNN) in rotating machinery fault diagnosis. A new 

fault diagnosis method was studied by using the differences in AR coefficients with 

BPNN. The obtained diagnosis results were compared with three methods, BPNN 

with AR coefficients, BPNN with AR coefficient differences and BPNN with AR 

coefficient distances. It was found that the diagnosis results obtained by using BPNN 

with AR coefficient differences were superior to the other two methods.

Prieto et al. (2013) combined statistical-time features and neural networks in the 

detection of bearing faults in electric motors. Statistical-time features such as root 

mean square (RMS), standard deviation, variance and crest factorwere calculated 

from acquired vibration signals. The discriminant analysis (DA) value was used for 

the purpose of feature selection. The final classification tasks were carried out using 

a hierarchical neural network structure and the effectiveness of the method was 

verified by experimental results obtained from different operating conditions. The 

proposed method achieved a 95 percent classification rate of the overall test set.

3.4 Fuzzy Logic-based Fault Analysis

The Fuzzy Logic (FL) concept is based on the Fuzzy Set theory introduced by Lotfi 

A. Zadeh of the University of California, Berkeley, in 1965 (Zadeh, 1965). Fuzzy Set 

theory is about vagueness or uncertainty and it provides a method of using imprecise 

information within mathematical concepts.

3.4.1 Fuzzy Set and Conventional Set Theory

Fuzzy set theory extends conventional set theory to follow human-like reasoning. In 

conventional set theory, a fixed boundary is used to define membership of an object 

into a set in a classical or conventional set theory. For instance, a classical or 

conventional set, A, of real numbers greater than 10 can be expressed as:

A  {x | x 10} (3.1)
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In this case, the membership or inclusion of an object into a set is determined by a 

characteristic function. The characteristic function for "x is greater than 10" is 

defined as:

A (x) 1 , if x is an element of the set A and, (3.2)

0)( xA , if x is not an element of the set A (3.3)

Conventional set theory is a very important theory in mathematics, computer science 

and applied sciences applications. However, the nature of human-like reasoning is 

not represented well by the classical sets theory. This is because the form of human 

reasoning is mainly abstract and includes vagueness or imprecise information. For 

instance, in classic set theory, the set of high room temperatures is defined as a group 

of numbers which is greater than 25°C.







 


otherwise

C
THigh

0

251
)(



 (3.4)

Equation 3.4 defines A = "room temperature" and x = "high temperature" and by 

using classical theory represented by Equation 3.4, it is clear that 25.1°C is classified 

as high room temperature, but 24.9°C is not. The visual classification for the term 

high and not-high room temperature is illustrated in Figure 3.4.

Figure 3.4 Non-fuzzy membership grading for room temperature
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The characteristic function for high and low room temperature for conventional set 

theory is defined as presented in Equation 3.4.

The abrupt temperature transition shown in Figure 3.4 is not followed by a human's 

temperature sensor as humans cannot clearly detect the difference between 24.9 and 

25.1°C. Therefore, it is not common to use the condition in Figure 3.4 as a 

description of high room temperature based on the human temperature sensor. 

The disadvantage of conventional set theory as applied in this example is shown in 

defining the abrupt or sharp transition between a member inclusion and exclusion in 

a set. In real life human reasoning situations, a gradual transition from not-high to 

high temperature is employed.

In contrast to a conventional set, a fuzzy set, as its name implies, is a set without an 

abrupt or sharp boundary of memberships. It employs a gradual transition from 

"member of a set" to "not member to a set". Therefore, the concept of a gradual 

transition in temperature can be represented well by using a fuzzy set since it allows 

gradual membership of an object or element in a set. The gradual transition given to 

the membership functions is what gives fuzzy sets the flexibility to model commonly 

used linguistic expressions, such as "the temperature is low" or "the speed is high".

In fuzzy sets, the values of membership function are real numbers in the interval [0, 

1], where A (x)  0 means the object (x) is not a member of the set (A), and 

A (x) 1 means a full membership to the set, 0 <A (x)< 1 means partial 

membership.

Additional details on Fuzzy Sets theory are presented in Appendix 2.

3.4.2 Fuzzy Set to Fuzzy Logic

Based on the Fuzzy Set theory, the concept of FL aims to deal with vague 

information in reasoning. In his seminal paper Zadeh (1973) proposed that one of the 

reasons why humans are better at controlling systems compared to existing 

machines, is that humans have the ability to make effective decisions based on 

imprecise linguistic information. Therefore, Zadeh considered that it should be 
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possible to improve the performance of electromechanical systems by implementing 

the method humans use to deal with the imprecise information (Schwartz et al. 

1994).

At its core, fuzzy logic (FL) is a method for problem-solving which provides 

solutions to problems which have imprecise, vague, ambiguous or inaccurate data 

that contains high levels of noise generated by fluctuations in a process. It provides a 

method of reasoning, in a human-like model, through an intuitive way of employing 

incomplete or inaccurate information. The main advantage is in its ability to describe 

qualitative knowledge or information, embedded linguistic knowledge and to 

approximate reasoning.

The difference between fuzzy logic and traditional logical systems is that fuzzy logic 

aims to adopt the spirit of the human thinking processes and natural human language. 

Fuzzy logic, which is the logic on which fuzzy reasoning is based, is much closer in 

nature to human thinking and natural language than the traditional logical system.

FL is useful in cases in which a decision-making expert system cannot fully 

determine an outcome. This is because the true/false statement as stated in the classic 

predicate logic is not suited to the nature of the decision making requirements. That 

is, not all decisions can be framed as true (fully belonging) or false (not fully 

belonging) in the domain of a decision.

In the practical world, it is not always possible to define conditions (mathematical 

sets) and their associated membership (degree of belongingness) in such a precise 

manner. It is not either 0 (not belong/false) or 1 (belong/true). Reasoning processes 

using qualitative and imprecise statements that can be included in rule bases are 

enabled by using FL. 

Fuzzy sets, which are the foundation of FL, provide a complementary way of dealing 

with this situation by allowing partial set membership or partial “belongingness” 

which is based on a parameter called ‘degree of membership’ or ‘degree of truth’. 
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The FL reasoning statements can be incorporated into rule bases which provide 

simple and more intuitive models. FL accommodates the need to handle problems 

that cannot be solved using exact mathematical solutions.  It is useful for problems 

which are difficult to solve using mathematical models.

Similar to expert systems, FL systems employ simple IF-THEN rules which are 

derived empirically to solve problems. The rules are descriptive since they are 

composed using words. However, unlike expert systems, the rules are made 

imprecise. For example, a typical fuzzy process logic statement may be composed 

such as ‘IF (temperature is too hot) AND (heating power is too high) THEN (Reduce 

heating process faster)’.

In practice, fuzzy systems consist of a knowledge based block, a fuzzy rule base and 

an algorithms block. Information is received from various sensors and pre-processed, 

then converted into fuzzy forms (fuzzification process). The fuzzification process is 

needed so that the information can be evaluated using fuzzy rule sets and in general, 

fuzzy rules are constructed manually.

In the fuzzification process, membership function is used to determine the mapping 

of input data into specific fuzzy variables. The final output of a fuzzy logic-based 

process is defuzzified in order to have a crisp or a precise numerical output. The 

defuzzification process involves the use of another membership function to calculate 

the precise numerical output of the fuzzy system.

Automatic control engineering is an area that uses fuzzy systems extensively. The 

input into the controlled system is the current state of the controlled device, and the 

output is fed to the controller which drives the device’s actuator to adjust specific 

parameters related to the controlled device. A list of several early applications of 

fuzzy logic in the area of automatic control field is presented in Lee (1990).

3.5 Disadvantage of Fuzzy Logic

Fuzzy logic has several disadvantages in its application as a fault diagnosis tool.  One 

of the disadvantages is the high dependency on acquisition of intuitive experience 

from an expert operator and this affects the subjectivity of fault diagnosis (Yang et 
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al. 2002). In addition, fuzzy logic systems lack the capability of any self-learning 

feature which is an important feature that is in great demand in on-line or real-time 

fault diagnosis processes. A self-learning feature is also important in practical fault 

diagnosis applications, especially in high-demand real time-time systems which 

require high-precision results (Gao and Ovaska, 2001).

Another disadvantage of fuzzy logic-based fault diagnosis systems occurs in its 

design process where the construction of the fuzzy rules that represent behaviour of 

the modelled system are critically dependent on the intuitive knowledge and 

experience obtained from an expert or operators.  Expert experience is essential in 

developing the representation of each variable related to the characteristics of the 

problem and the resulting fuzzy membership functions. Consequently, the developed 

fuzzy rules cannot be guaranteed to be optimal.

In order to overcome its disadvantages, FL is usually combined with other techniques 

in its practical applications to fault diagnosis. The most widely used technique in 

combination with FL is artificial neural networks (ANN) which forms what is called 

a neuro-fuzzy system.

3.6 Application of Fuzzy Logic in Rotating Machinery Fault Analysis

FL offers the ability to deal with uncertainties in maintenance and scheduling 

processes and it has been used to improve the performance of fault detection and 

prediction in mechanical systems.  It has been widely implemented in fault diagnosis 

applications because of its advantages in approximating reasoning and in linguistic 

knowledge implementation.

In mechanical equipment monitoring tasks, fuzzy logic theory was applied in cases 

where precise mathematical models were unavailable or too complex, but where 

there was still some vague, subjective and empirical knowledge related to the 

problem under investigation (Wang and Lei, 2001). The existing knowledge is 

generally constructed as a set of fuzzy relationships or fuzzy rules on which the 

overall fuzzy system is based. These rules or fuzzy relationships can be constructed 

based on information supplied by human experts.
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In cases where only partial or incomplete fuzzy rules could be supplied by human 

experts where a set of problems or system input-output data were available, then it 

was deemed preferable to extract fuzzy relationships or fuzzy rules from the system-

based data and combine the data, where possible, with human knowledge and 

experience. The combination could then be used to construct a complete and relevant 

set of fuzzy rules.

An early application of FL in fault diagnosis was investigated by Goode and Chow 

(1995), in which a hybrid neural-fuzzy fault detector was used to detect motor faults. 

In the investigation, a neural-fuzzy fault detector was used to monitor the condition 

of the motor bearingswear and the stator winding insulation failure. Fuzzy IF-THEN 

rules for bearing wear classification by the detector were constructed heuristically for 

three ranges of membership: low, medium and high. The trained neural-fuzzy fault 

detector was able to provide accurate fault detection results and could also provide 

the heuristic reasoning behind the fault detection process and the actual motor fault 

conditions.

Another early application of fuzzy logic (FL) in fault diagnosis was proposed by 

Goddu et al. (1998) in which a fuzzy logic-based method was used to interpret 

vibration signals from an electric motor in order to diagnose bearing faults. Spectrum 

data of the vibration signal was entered into the fuzzy decision system and a valid 

fault diagnosis result obtained. It was suggested that incorporation of neural 

networks or genetic algorithms with fuzzy logic to improve the capabilities of the 

fuzzy decision system, would be beneficial.

Vicente et al. (2001) presented a work on an automatic diagnosis system for 

detection and classification defects in rolling bearings using fuzzy logic. The 

measured vibration signals were analysed using spectral and statistical techniques. 

The variables used as inputs for the fuzzy system included: radial load, shaft speed, 

kurtosis, skewness and RMS. The designed system was able to classify three types of 

pre-established defects in rolling element bearings which operated under several 

shaft speeds and load conditions. The results showed that the designed system was 

able to diagnose 97% of the test database to distinguish between normal conditions 
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and a fault case. The system achieved 95% accuracy in the classification of fault 

cases of normal, pit corrosion, and scratched condition.

Miguel and Blazquez (2005) applied fuzzy logic in a model-based diagnosis 

application for a DC motor controller. Fuzzy logic was used to handle the uncertainty 

of the system model, noise and others variables that reduce the reliability and 

robustness of the fault diagnosis method. The FL fault detection and isolation system 

was successfully applied in a laboratory in which the uncertainty caused by 

disturbances and modelling errors was reduced.

Celik and Bayir (2007) studied the application of a complementary fuzzy logic 

system in fault diagnosis of an internal combustion engine. The fuzzy rules of the 

system were constructed by using theoretical knowledge, expert knowledge and the 

experimental results. The accuracy of the fuzzy logic classifier was tested by 

experimental studies which were performed under differing fault conditions. Using 

the developed fault diagnosis system, ten general faults which were observed in the 

internal combustion engine were successfully diagnosed in real time.

Wu and Hsu (2009) studied the development of a gear fault identification scheme 

using vibration signals with fuzzy logic inference and discrete wavelet transforms 

(DWT) for an experimental gear-set system. A proposed scheme that employed the 

combination of signal feature extraction using discrete wavelet transform techniques 

and fault identification using fuzzy logic inference was investigated. The fuzzy logic 

inference was proposed to develop the diagnostic rules of the database in the fault 

identification system. The experimental works were performed to evaluate the effect 

of fault diagnosis in a gear-set system under various operation conditions. The 

experimental results showed that the proposed fault diagnosis scheme was effective 

as it increased the accuracy in gear fault identification of the gear-set system. The 

aim of using FL was to overcome difficulties in the fault diagnosis of rotating 

machinery in a complex and noisy environment and to reduce the need for the 

knowledge of an experienced technician.

Saravanan et al. (2009) used a fuzzy classifier that was obtained from intuitive 

information and related domain knowledge of fault characteristics for a bevel gear 
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fault diagnosis scheme. A decision tree was used in selecting the best statistical 

features that could discriminate the fault condition of the gearbox vibration signals.  

It was followed by the formation of a rule set from the extracted features and then 

given to a fuzzy classifier for the fault classification process. The results of the fuzzy 

classifiers were found to be encouraging.

3.7 Hybrid AI Techniques in Fault Diagnosis

The combination of two or more of AI techniques to construct a hybrid model is 

based on the objective of simultaneously integrating the advantages of each 

individual approach and overcoming their weaknesses or shortcomings. The most 

common combination found in the application fault diagnosis systems combines 

ANN and Fuzzy Logic (FL) techniques. It forms a hybrid system that employs a 

combination of ANN and FL which is called a neuro-fuzzy system.

3.7.1 Neuro-Fuzzy System

A neuro-fuzzy system refers to the system by which various learning techniques are 

used by using neural networks and are integrated with a fuzzy inference system 

model. The system aims to use the advantages of fuzzy and neural networks in order 

to provide an accurate initialisation of the neural network in terms of the fuzzy 

reasoning scheme (Zhao et al. 2009).

The main objective of the integration of neural networks and fuzzy systems is to 

combine the strengths of both methods in order to achieve adaptive learning in 

diagnostic systems with a transparent knowledge representation (Leonhardt and 

Ayoubi, 1997).

Implementation of the combined advantage features of fuzzy logic and neural 

networks provides a superior diagnosis process of a system. In addition, the 

advantage of combining the features provides the fault detector with an adaptability 

feature which gives greater solution accuracy in different operating conditions 

(Altuget al. 1999).

The integration aims to utilise the fuzzy logic feature in handling imprecise 

information originating from imprecise conditions, and to provide initial modelling 
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requirements for neural-networks systems that have trainable capability, can perform 

calculations in parallel and have noise tolerance. The integration provides a robust 

fault diagnosis system that combines both numerical (quantitative) and symbolic 

(qualitative) information (Patton et al. 2000).

3.7.2 Application of Neuro-fuzzy System in Fault Diagnosis

Garga et al. (2001) introduced a hybrid reasoning method that integrated machinery 

data into a feed-forward neural network. The system used the training process to 

obtain a representation of the explicit domain knowledge for prognosis of faults of a 

gearbox. The method combined neural networks and fuzzy inference systems which 

constructed a neuro-fuzzy predictor. By using this combination, the ability of the 

fuzzy inference system to use linguistic descriptions is enhanced by the learning 

procedures used by neural networks.

A neuro-fuzzy system was used by Wang et al. (2004a) to evaluate the condition of 

spur gears during operation. The structure of the fuzzy inference system (FIS) was 

produced by using experts’ knowledge, and a neural network training procedure was 

used to generate the related fuzzy membership functions. The test results 

demonstrated that the proposed neuro-fuzzy system significantly improved 

diagnostic accuracy due of its adaptability and robustness.

Results of a comparison between recurrent neural networks (RNN) and neuro-fuzzy 

(NF) inference systems used to predict fault propagation trends was presented by 

Wang et al. (2004b). It was found that a properly trained neuro-fuzzy (NF) system 

performed better than RNNs in forecasting accuracy and training process efficiency.

Chinnam and Baruah (2004) presented an application of neuro-fuzzy systems to 

estimate the remaining useful life (RUL) of a drilling tool. In the study, the existence 

of a specific failure definition of the model, and failure data were not available for 

the system under investigation. However, a neuro-fuzzy system, along with the 

knowledge and experience of an expert in the domain, were needed to construct an 

estimator model. The estimator system was trained using information derived from 

domain experts who had suitable knowledge of the process. The estimator model was 

constructed by using a neuro-fuzzy scheme and produced a good result in carrying 

out the RUL estimation.
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Satish and Sarma (2005) proposed a combination of neural-networks and fuzzy logic 

to form a fuzzy back-propagation network to identify the present condition of a 

bearing, and estimate the remaining useful life (RUL) of an electric motor. In their 

work, the results of the fuzzy back-propagation network were compared to a generic 

neural network. It showed that the hybrid approach was preferable for use in 

assessing the present condition of the bearing and the time available before 

replacement was required.

A neuro-fuzzy modelling approach was presented by Kothamasu and Huang (2007), 

in which the system was based on adaptive learning using a Mamdani fuzzy model 

for system diagnosis and prognosis. It was designed to function as a decision-making 

tool in assisting condition-based maintenance. It had a feature allowing an adaptation 

to provide continuous improvement through interaction with users.

Castejon et al. (2010) implemented a combination of FL and ANN systems to form 

an integrated neuro-fuzzy system aimed at handling complex fault classification 

problems. It used the relationship between a set of patterns and fault types without 

the need to model the internal processes explicitly. The combined system performed 

well in handling uncertain information, which was very similar to the human 

reasoning process. ANN was used since it has abilities of real-time learning, parallel 

computation and self-organisation. Fuzzy logic was chosen, based on its ability to 

deal with imprecise or inexact information which is useful in handling vague or 

imprecise classification tasks.

3.7.3 Adaptive Neuro-Fuzzy Inference System (ANFIS)

A variant of neural-network-based systems which is commonly used in bearing fault 

diagnosis research is the Adaptive Neuro-Fuzzy Inference System (ANFIS). It was 

first introduced by Jang (1993). It is one of the most widely used hybrid intelligent 

systems and provides the advantages of both fuzzy logic and neural networks. It uses 

a given input-output data set to construct a Fuzzy Inference System (FIS),the 

membership function parameters of which are tuned (adjusted) using either a back-

propagation algorithm, or in combination with a least squares type of method. This 

allows the fuzzy system to learn from the data used for the modelling purpose.
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The neuro-adaptive learning technique incorporated in ANFIS is based on a method 

by which the fuzzy modelling procedure is able to learn information about the data 

set. It then computes the parameters of membership function that model the given 

input-output data set.

In terms of fuzzy logic, it provides a mapping feature between inputs and outputs. 

The mapping process is achieved by using membership functions (MFs) of the input 

and its associated parameters in relation to the MFs of the output. It is a tool that is 

used to accomplish the creation and adjustment of fuzzy logic membership functions 

in combination with the ANN learning feature.

ANFIS formulated a Sugeno fuzzy inference model (SFIM), which was originally 

proposed in Takagi and Sugeno (1985) and Sugeno and Kang (1988). The SFIM is a 

special case of the Mamdani FIS in which each rule’s consequent is specified by a 

fuzzy singleton (or a pre-defuzzified consequent) (Jang et al. 1997). It is embedded 

into the framework of a multi-layer ANN in which synaptic weights (the connection 

strength between two neurons) are not used. Instead, it uses adaptive and non-

adaptive nodes (Reddy and Mohanta, 2007).

ANFIS functionality is equivalent to an SFIM. As an SFIM, ANFIS uses set of 

input–output training data pairs in order to regulate the membership function and 

other associated parameters by using a back-propagation gradient descent or a least 

square type method. ANFIS represents an integration of a Sugeno fuzzy model where 

optimisation of the final fuzzy inference system is achieved through the ANN 

training.

ANFIS is useful in cases where there is a need to apply FIS to a system for which a

collection of input-output data sets are available and the data is intended to be used 

for modelling, model-following, or similar needs.

In practice, there are some modelling cases of fault diagnosis in which the 

construction of the fuzzy logic membership functions can be carried out easily only 

by manually discerning the available data. There are also cases where determining 

fuzzy logic membership functions manually is not preferred due to the complexity of 
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input-output relationships of the data set. In these cases, selection of the parameters 

associated with a given membership function is mainly carried out by trial and error 

procedures. By using ANFIS, a pre-determined model structure based on 

characteristics of variables of the designed system is not needed.

The preferred method is to use a parameter selection process in a way that can create 

the membership functions automatically, based on the input-output data 

relationships.This method is also able to accommodate variations that exist within 

the data. This is where a neuro-fuzzy learning technique such as ANFIS is useful.

The expertise of a human operator, or experts, can be used on the modelled system to 

generate the initial membership functions and the rules for the Fuzzy Inference 

System (FIS). ANFIS is then used to refine the initial fuzzy IF-THEN rules and 

membership functions to best match the relationship between the inputs and the 

output characteristics of the system or data (Lou and Loparo, 2004).

This feature provides the ability to use predetermined input–output training data sets 

which employ ANFIS, in the regulation of the membership functions and other 

associated parameters by means of back-propagation gradient descent and least 

square type methods. These methodologies provide greater objectivity in using the 

ANFIS model since they provide a more systematic way that is less dependent on 

expert knowledge, which is useful in fault diagnosis (Zhang et al. 2010).

3.7.4 ANFIS Structure

A fuzzy reasoning scheme implemented in an ANFIS model is shown in Figure 3.5. 

Figure 3.6 shows the layer structure of ANFIS. Figures 3.5 and 3.6 are used to 

provide a brief explanation of ANFIS. For simplicity, an example of ANFIS which 

has two inputs x and y and one output f is used for the purpose of explaining its 

structure.It is assumed that the rule base contains only two if–then rules of the first 

order Sugeno fuzzy inference model.

The concept of an ANFIS structure can be represented by using a simple rule base 

which is defined as follows:
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Rule 1: If x is 1A and y is 1B , then ,1111 ryqxpf 

Rule 2: If x is 2A and y is 2B , then ,2222 ryqxpf 

where x and y are the inputs, and 1A , 2A , 1B and 2B are fuzzy sets which 

represent linguistic labels such as small, medium,large. These fuzzy sets would be 

determined during the training process. 1p , 1q , 1r , 2p , 2q and 2r are design 

parameters which are also determined during the training process.

Figure 3.5 illustrates the fuzzy reasoning scheme of a two input and one output 

parameter. The related equivalent ANFIS architecture is shown in Figure 3.6. The 

nodes and layers functions are explained below:

Layer 1: This layer is also termed an adaptive node. The nodes in this layer 

represent input nodes. The membership grade is generated by nodes in this layer 

using functions:

O1i  Ai (x) i 1,2.

O2 i  Bi (y) i 1,2.

where iO1 and iO2 are the fuzzy membership grades which are used to specify the 

degree of “belongingness” of the given crisp inputs x and y in terms of the 

linguistic labels iA and iB . iA and iB which are fuzzy sets constructed using their 

membership functions Ai and Bi . The selected shape of the membership functions 

are normally bell-shaped with a maximum equal to 1 and a minimum equal to 0, as 

defined in Equation 3.5,
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where ia , ib and ic are membership function parameters that determine the form of 

the membership function based on linguistic labels. These parameters are in the 

premise part of the if–then rules, and hence are called premise parameters.

Figure 3.5 Fuzzy reasoning scheme (Jang, 1993), (Zhang et al. 2010)

Figure 3.6 ANFIS layer structure (Zhang et al. 2010)
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Layer 2: This layer contains fixed nodes labelled  which are used to multiply the 

incoming signals and to obtain the product. For instance,

)()( xxw BiAii   (3.6)

A rule “firing strength”, the membership grade of the antecedent of the rule, in this 

layer is represented by the output of each node in this layer.

Layer 3: This layer contains fixed nodes labelled N which are used to calculate the 

ratio between the firing strength of the ith rule and the sum of all rules’ firing 

strengths. The ratio is called the normalised firing strength:
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Layer 4: This layer contains the adaptive nodes. Each node produces the product of 

the normalised firing strength and (for a first order SFIM) a first order polynomial. 

The outputs of Layer 4 are defined by:

.2,1)(  iryqxpwfw iiiiii (3.8)

where w i is the output of layer 3, and pi,qi and ir are linear parameters of the first 

order SFIM, which are referred to as consequent parameters.

Layer 5: There is only a single node in this layer. It is a fixed node which is labelled 

Σ. As its label suggests, it performs the summation of all incoming signals. Hence, 

the total output of the model is defined by:
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i i

i ii

ii w

fw
fwoutputtotalf (3.9)

The five layers explained above function as a first order SFIM in which there are two 

adaptive layers, i.e., the first and the fourth layer. The first layer contains Premise 
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parameters  iii cba ,, and the fourth layer contains consequent parameters iii rqp ,, . 

These parameters are obtained through a hybrid learning algorithm. The algorithm 

used is a combination of the gradient descent approach and least squares estimation 

which is comprises two stepsin order to improve training efficiency and eliminate 

possible trapping due to local minima.

In the first step, the premise parameters are assumed to be fixed. The optimal 

consequent parameters are then obtained by using the least squares estimate. In the 

second step, the consequent parameters are assumed to be fixed. The premise 

parameters are then updated by using the back-propagation gradient descent method, 

based on the error values.

3.7.5 Advantages of ANFIS

The expertise of human operators or experts on the modelled system or data can be 

used to generate initial membership functions and rules for the Fuzzy Inference 

System. ANFIS is then used to refine the initial fuzzy if-then rules and membership 

function to best match the relationship between the input and output characteristics 

of a complex system or data set (Lou and Loparo, 2004).

Using predetermined input–output training data sets, an ANFIS can be used to 

regulate the membership function and other associated parameters by using back 

propagation gradient descent and least square type of methods. These methodologies 

provide better objectivity in using the ANFIS model since it provides a more 

systematic way and that is less dependent on expert knowledge which thus providing 

more objectivity to the problems (Zhang et al. 2010).

3.7.6 Application of ANFIS in Fault Diagnosis

The idea of using ANFIS in fault diagnosis is to obtain a more robust diagnostic 

method which can integrate several raw features generated from the data. 

There are various fault diagnosis systems that use ANFIS in automating the final 

condition identification of faults and several examples are presented below.
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Zhang and Morris (1996) presented a recurrent neuro-fuzzy model for long-term 

forecasting, which was very similar to ANFIS, where the function outputs were local 

linear autoregressive models. The fuzzy models were implemented by fuzzy neural 

networks which combined the capability of fuzzy reasoning in handling uncertain 

information and the capability of neural networks in learning from examples. The 

fuzzy sets were used to represent process abnormalities which were then used in a 

fuzzy approach in representing process abnormalities that made the diagnosis system 

more resistant to measurement noise.

A method to enhance the detection of diagnostics information from low-speed rolling 

element bearing faults was presented by Altmann and Mathew (2001). It was based 

on the application of an adaptive neuro-fuzzy inference system that was employed to 

automatically select suitable wavelet packets that matched the fault features.

A neuro-fuzzy system was used by Wang et al. (2004a) to evaluate several faults of a 

spur gear set during operation. The neuro-fuzzy system was used to identify fault 

types, such as a cracked gear, with 20% and 40% tooth root width and a chipped gear 

with 20% and 50% tooth surface area. In this work, the structure of the FIS was 

produced using expert knowledge, while the neural network training procedure was 

employed to generate the related fuzzy membership functions. Through experimental 

tests, it was found that the developed neuro-fuzzy classifier produced promising 

results due to its adaptation capabilities and robustness.

Zhang et al. (2010) studied the application of ANFIS and multi-scale entropy (MSE) 

for the purposes of feature extraction and fault recognition in the diagnosis of faults 

in electric motor bearings. Several scales of MSE were calculated from vibration 

signals. There were five statistical parameters like maximum value, minimum value, 

arithmetic mean value, geometric mean value and standard deviation which were 

obtained from MSE and used as features. The features were then presented to the 

ANFIS for fault classification. The experimental results indicated that the ANFIS 

classifier could obtain higher diagnosis results. Thus, the proposed approach had the 

possibility for incipient fault diagnosis in bearings.
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3.8 Concluding Remarks

In this chapter, a review of Artificial Intelligence (AI) techniques that are widely 

used in fault diagnosis has been presented. The three most-used AI techniques 

discussed are, artificial neural networks (ANN), Fuzzy Logic, and Neuro-Fuzzy 

(ANFIS). 

The types of ANN and list of fault diagnosis applications in rotating machinery have 

been reviewed by presenting several applications of various ANN according to 

machinery component groupings. The background and an introduction to fuzzy logic 

concept were presented. The advantages and disadvantages of fuzzy logic techniques 

in fault diagnosis application were also detailed.

The last section of the chapter presented motivation and needs for implementing a 

hybrid or combined AI technique for better performance in fault diagnosis. The 

neuro-fuzzy technique, which is one of the most used AI techniques, was discussed. 

The aforementioned is a hybrid system that is formed to incorporate the advantages 

of ANN and FL for the purposes of fault diagnosis.
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Chapter 4 – Review of Features Extraction Techniques 
in Bearing Fault Diagnosis

Feature extraction from vibration signals is a significant and challenging field of 

research in engineering, especially in the area of fault diagnosis of rotating 

machinery. It is one of the most fundamental issues in intelligent monitoring (Rafiee 

et al. 2010). Feature extraction processes are required prior to performing fault 

diagnosis or fault classification. The processes aim to reduce the dimensionality of 

the data and to produce a transformation by which hidden signal features in the 

original time-domain are extracted (Yen and Lin, 2000). In the feature extraction 

process, an initial processing of sensor data measurement is carried out to obtain 

suitable parameters to indicate whether a pattern of interest is appearing.

In the development of feature extraction, a wide range of new techniques has been 

proposed in recent decades. Each technique has different theoretical foundations and 

produces different results. Furthermore, in a particular system, the implementation of 

some techniques may be better suited than others in relation to operational conditions 

(Bin et al. 2012). 

The motivation behind the wide range of combined applications of feature extraction 

techniques for bearing fault diagnosis is in the importance of selecting the most 

effective and suitable techniques – those producing reliable diagnostic results. This 

motivation has led to continuous new developments of feature extraction techniques 

aimed at finding better and more applicable feature extraction and generation 

techniques for bearing fault diagnosis.

4.1 Feature Extraction Applications

Examples of combined feature extraction techniques are presented in Table 4.1.  As 

the table shows, many feature extraction applications combine several techniques 

which are enhanced by using artificial intelligence methods such as artificial neural 

networks (ANN) and fuzzy logic systems (neuro-fuzzy). It shows that the structures 

of combined (hybrid) systems and the methods are varied. Among the proposed 

combinations, the most common techniques are combined feature extraction 
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techniques using time-domain, frequency domain, frequency-time domain, neural 

networks and fuzzy logic methods.

Table 4.1 - Summary of Combined Feature Extraction Techniques

References Objects Defects 
Considered

Techniques Features Classifiers Results

Dyer and
Stewart, 
(1978)

Rolling 
element 
bearings

Outer race 
defect

Time-
domain 
analysis

Skewness, 
Kurtosis

NA NA

Mathew and
Alfredson, 
(1984)

Rolling 
element 
bearings

Outer race 
defect, Inner 
race defect

Time-
domain 
analysis

Peak, RMS, 
standard 
deviation, 
RMS * 
Kurtosis, 
arithmetic 
mean, & 
geometric 
mean values

NA recommend 
the 
combination 
of several 
parameters 
in diagnostic 
process

Liu and
Mengel, 
(1992)

Ball 
bearings

Inner race 
defect, outer 
race defect, 
ball defect, 
combinations

Time-
domain 
analysis

Peak 
Amplitude of 
the freq. 
domain, 
power 
percentage, 
peak RMS 
values

Artificial 
neural 
networks

Success rate 
up to 97 
percent for 
classifying 
six 
categories.

Liuet al. 
(1996)

Bearings Inner race 
defect, outer 
race defect, 
rolling 
element 
defect

Time-
domain 
analysis

Statistical 
features: 
Kurtosis, 
Crest factor

ANN, Fuzzy 
Logic

A PC-based 
expert 
system 
produced. 
Fuzzy 
system 
achieved 
100 percent 
accuracy

Paya et al. 
(1997)

Bearings 
and Gears

Defects on 
inner race of 
bearing and 
gear tooth 
irregularity 

Daubechies 
4

Ten wavelet 
numbers 
indicting both 
time and 
frequency and 
their 10 
corresponding 
amplitudes

Artificial 
neural 
networks

96 percent

Xiet al. 
(2000)

Tapered 
roller 
bearings

Single spall 
in inner 
race, single 
spall in 
outer race & 
broken roller

Time-
domain 
analysis

Peak, RMS, 
Crest factor 
(Cf), Kurtosis, 
Impulse 
factor, Shape 
factor.

Two 
dimensional 
feature 
spaces

provide a 
visualization 
of the 
diagnostics 
results on a 
two-
dimensional 
plane of the 
computer

Nikolaou 
and 
Antoniadis, 
(2002a)

Rolling 
element 
bearings

Inner race & 
outer race

Daubechies 
12

Mean and 
standard 
deviation of 
wavelet 
packet 
coefficients

NA NA
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Prabhakar 
et al. (2002)

Rolling 
element 
bearings

One scratch 
mark each 
on inner 
race (on the 
track) and 
outer race 
(on the 
track), two 
scratch 
marks on 
outer race 
(180° apart 
on the 
track), one 
scratch 
mark on 
each of 
inner race 
and outer 
race (on the 
track)

Daubechies 
4

RMS, Kurtosis NA NA

Rubini and
Meneghetti, 
(2000)

Three 
double row 
self aligning 
ball bearings

Inner race, 
outer race & 
ball defects 
(each 
bearing 
only)

Gaussian & 
Morlet

spectrum of 
the average of 
the wavelet 
transform

NA NA

Seker and
Ayaz, 
(2003)

Bearings Failure 
caused by 
electric 
discharge to 
bearing

Wavelet 
basis used: 
Daubechies 
15 & 
Daubechies 
20

Statistical 
parameters: 
Mean, 
Standard 
deviation, 
Skewness, 
Kurtosis & 
RMS values 
(of cD)

NA RMS values 
of d1 
increase as 
the motor 
bearing 
degrades 
toward 
failure

Samanta 
and Al-
Balushi, 
(2003)

Rolling 
element 
bearings

Outer race 
defect

Daubechies 
4 & Time-
domain 
analysis

Statistical 
parameters: 
RMS, 
variance, 
skewness, 
kurtosis and 
normalised 
sixth central 
moment.

Artificial 
neural 
networks

The test 
achieved 
success rate 
between 98 -
100 percent

Lou and
Loparo, 
(2004)

Ball 
Bearings

Normal 
conditions, 
inner race 
faults, a ball 
fault, & 
outer race 
faults. 
Loads: 0,1,2 
& 3 HP

Daubechies 
2 (db4) and 
10 (db20) -
data 
normalised 
(0,1)

Feature 
vectors v 
generated 
from wavelet 
transform cD 
parts - (v1, … 
, v6), 
Euclidean 
vector 
distance, 
vector 
correlation 
coefficients

Adaptive 
Neural 
Networks 
Fuzzy 
Inference 
System 
(ANFIS)

Some 
characteristic
components 
associated/in
vestigated 
increase in 
fault severity 
level.

Sun et al. 
(2004)

Rolling 
element 
bearings

Inner race 
defect, roller 
defect, outer 
race defect

Time-
domain 
analysis

Statistical 
parameters: 
Crest factor 
(Cf), Kurtosis 
value (Kv), 
clearance 

Artificial 
neural 
networks

To generate 
boundary 
curves 
separating 
different 
classes in 2-



Chapter 4 – Review of Feature Extraction Techniques 81

factor (Cl) and 
Impulse factor 
(If). Energy 
level using 
RMS, 
absolute 
amplitude 
using peak-to-
peak values.

dimensional 
classification 
space.

Purushotha-
met al. 
(2005)

Rolling 
element 
bearings

Single and 
multiple 
point 
defects on 
inner race, 
outer race, 
ball fault 
and 
combination 
of these 
faults

Daubechies 
wavelet

Mel 
Frequency 
Complex 
Cepstrum 
(MFCC) 
coefficients

Hidden 
Markov 
model 
Classifiers

Best 
efficiency 
obtained as 
99 percent

Rafieeet al. 
(2007)

Gears and 
bearings

Three 
different 
fault 
conditions 
on gears 
(slight-worn, 
medium-
worn and 
broken 
tooth), faulty 
bearings

Daubechies 
4 (wavelet 
packet)

Standard 
deviation of 
wavelet 
packet 
coefficients

Artificial 
neural 
networks

best 
efficiency 
obtained as 
100 percent

Wu and Liu, 
(2008)

Internal 
Combustion 
Engine

Five 
synthetic 
faults: air 
leakage on 
intake 
manifold, 
electronic 
control 
thermal 
(ETC) 
sensor fault, 
cam-shaft 
sensor fault, 
one cylinder 
misfiring & 
tow 
cylinders 
misfiring

Daubechies 
4, 8 & 20 
(DWT)

Energy 
spectrum of 
DWT 
components 
based on 
Parseval's 
theorem

Artificial 
neural 
networks

Recognition 
rate 
obtained: 
over 95 
percent. 
Fault finding 
technique 
using db20 
is superior 
than the one 
of db4 and 
db8

Liet al. 
(2008)

Rolling 
element 
bearings

Single point 
faults with 
different 
dimensions 
to balls and 
races.

Daubechies 
20 - db20 
(WPT-DWT)

Kurtosis NA NA

Saravanane
t al. (2008)

Gears gear tooth 
breakage, 
gear with 
crack at root 
and with 
face wear

Morlet 
wavelet

Standard 
error, sample 
variance, 
kurtosis and 
minimum 
value

Support 
Vector 
Machines 
(SVM) & 
Proximal 
SVM 
(PSVM)

best 
efficiency 
obtained as 
100 percent
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Wu and Liu, 
(2009)

Internal 
Combustion 
Engine

Sound 
emission 
recorded for 
without fault 
condition, 
air leakage 
of the intake 
manifold, 
camshaft 
sensor fault, 
electronic 
control 
thermal 
(ETC) 
sensor fault, 
one cylinder 
misfiring, 
and two 
cylinders 
misfiring

Daubechies 
4, 8 & 20 
(wavelet 
packet)

Shannon 
entropy of 
each wavelet 
coefficients 
(psi function)

Artificial 
neural 
networks

Recognition 
rate 
obtained: 
over 95 
percent. 
Fault finding 
technique 
using db20 
superior than 
db4 and db8

Wuet al. 
(2009)

Gears 
system

General 
fault among 
several 
gears

Daubechies 
(db4, db8, 
db20)

Energy 
spectrum of 
DWT 
components 
based on 
Parseval's 
theorem (4 
levels 
decomposition
)

Adaptive 
Neural 
Networks 
Fuzzy 
Inference 
System 
(ANFIS)

The total 
recognition 
rates are 
over 96 
percent.

Zhaoet al. 
(2009)

Bearings Life 
accelerated 
test 
condition

Wavelet 
transform, 
time 
domain, 
frequency 
domain

Statistical 
features: 
value error 
(AVE), root 
mean square 
error (RMSE) 
and mean 
absolute 
percentage 
error (MAPE), 
Kurtosis, 
RMS, Energy 
index

Radial-
based 
Function NN 
& Neuro-
Fuzzy

Neuro-fuzzy 
classifier 
performs 
better than 
RBF NN 
classifier

Stepanicet 
al. (2009)

Rolling 
element 
bearing 
(6203Z)

Normal and 
defective 
condition

Time-
domain 
analysis

Statistical 
parameters: 
arithmetic 
mean value, 
RMS, SM, 
Skewness, 
Kurtosis, C-L-
S-I factors. 
Frequency 
domain 
features 
(bearing 
characteristic 
frequencies)

Linear and 
Quadratic 
classifiers 
(Fukunaga, 
1990)

Achieved 
accuracy 
between 
97.45 -
99.49 
percent

Rafieeet al. 
(2010)

Gears and 
bearings

Ball, cage, 
inner race, 
outer race 
defects on 
bearings 
and three 
different 

324 mother 
wavelets 
from various 
wavelet 
families like 
Haar, 
Daubechies, 

Variance, 
standard 
deviation, 
kurtosis and 
4th central 
moment of 
CWC-SVS

Artificial 
neural 
networks

Recommend
that the best 
efficiency 
can be 
achieved 
using db 44 
for gear and 
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fault 
conditions 
on gears 
(slight-worn, 
medium-
worn and 
broken 
tooth)

Coiflet, 
Morlet, etc.

bearing fault 
diagnosis (> 
96 percent)

Castejonet 
al. (2010)

Ball bearing 
(FAG7206B)

Normal 
conditions, 
inner race 
faults, outer 
race faults, 
and ball 
faults

Daubechies 
6 (wavelet 
packet)

cD of level 5 
(cD5) chosen 
as 
characteristic 
features. cD5 
normalised in 
[-1 1] interval

Artificial 
neural 
networks

classifier 
accuracy 
around 85 
percent

Jayaswal et 
al. (2010)

Bearings Inner race, 
outer race & 
ball defects 
(constant 
speed & 
load)

Daubechies 
8 - db8 
(WPT)

Statistical 
features: 
Mean, Max, 
Min values of 
RMS at node-n

ANN, Fuzzy 
Logic

Proposed 
Fuzzy BP 
network can 
be used for 
diagnosis 
and 
prognosis of 
bearing 
condition.

Marichalet 
al. (2010)

Roller 
bearings 
(FAG 
7206B)

Rolling 
element 
fault, inner 
race fault & 
outer race 
fault

Frequency-
domain 
analysis

Demodulated 
signal via 
FFT-based 
Hilbert 
Transform

ANFIS Output value 
of training 
data set in 
range [0,1]

Kankaret al. 
(2011)

Rolling 
element 
bearings

Spall in 
inner race, 
outer race, 
rolling 
element and 
combined 
defects

Daubechies 
44, Meyer, 
Coiflet5, 
Symlet2, 
Gaussian 
complex 
Morlet and 
Shannon 
wavelets

Statistical 
features:
kurtosis, 
skewness, 
and standard 
deviation from 
wavelet 
coefficients 
corresponding 
to scale 
maximising 
energy to 
Shannon 
Entropy ratio

Support 
Vector 
Machines 
(SVM), 
artificial 
neural 
networks, 
self-
organising 
maps

The best 
efficiency 
obtained 
using 
complex 
Morlet 
wavelet and 
SVM 
classifier as 
100 percent

Sugumaran 
and
Ramachand
ran, (2011)

Roller 
bearings (4 
units of SKF 
30206)

Normal 
condition, 
inner race 
defect & 
outer race 
defect

Time-
domain 
analysis

Histogram of 
time-domain 
signal, 
Decision tree 
method to 
generate 
fuzzy rules

Fuzzy Logic 
system

The results 
are found to 
be 
encouraging. 
The results 
shows a 
good 
performance

Prieto et al. 
(2013)

Rolling 
element 
bearing in 
electric 
motor

Single point 
defects, 
combined 
single point 
defects and 
generalised 
degradation 
over 
different 
speed and 
torque.

Time 
domain 
analysis 
combined 
with 
‘curvilinear 
components 
analysis’ 
(CCA)

Statistical 
features: 
kurtosis, 
variance, 
standard 
deviation, 
crest factor, 
skewness, 
RMS, etc.

Artificial 
Neural 
Networks 
(hierarchical 
multi-layer 
perceptrons)

Successful 
classification 
ratio of 95 % 
achieved
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Present 
work

Rolling 
element 
bearing FAG 
2705 TVH

Normal 
condition, 
inner race 
defect & 
outer race 
defect

Hybrid 
method: 
wavelets 
(db4, db8, 
db12, db22 
& db44), 
statistical 
parameters, 
ANFIS

Statistical 
features: 
kurtosis, 
variance, 
standard 
deviation. 
Also level of 
energy of 
wavelet 
results, RMS 
of wavelet 
results.

Artificial 
Neural 
Networks 
Fuzzy 
Inference 
System 
(ANFIS)

To Be 
Concluded

Several important investigations that use combined feature extraction techniques for 

the purpose of fault diagnosis of rolling element bearings, as seen in Table 4.1 are 

explained in chronological order in the next section.

4.2 Combined Feature Extraction Methods in Bearing Fault Diagnosis

An early application of bearing fault analysis that combines the application of 

statistical and other parameters of time-domain signals with an artificial neural 

network (ANN) classifier to identify the characteristics of bearing faults was 

proposed by Liu and Mengel (1992). The features used to train the ANN classifier 

were peak amplitude of the frequency domain, peak RMS, and power spectrum 

percentage values. The type of neural network used was a feed forward network. In 

the study, Liu and Mengel identified faults in ball bearings based on indices which 

consisted of the features mentioned above. These features were used as indirect 

indices to develop a system for monitoring and classifying ball bearing defects which 

employed a feed-forward neural networks system. The results showed that all the 

trained neural networks were capable of distinguishing normal bearings from 

defective bearings with a 100 percent success rate. The networks could also classify 

the bearing condition into six different states with a success rate of up to 97 percent.

Application of a PC-based fuzzy expert system for failure detection of rolling 

element bearings using an expert system was explored by Liu et al. (1996). The 

system aimed to provide specific knowledge of various aspects related to bearing 

monitoring. These aspects included defection of frequency, failure selection, 

diagnostic methods, fuzzy-based bearing fault classification. Experiments were 

conducted to investigate the effectiveness of the system. The results showed that 

there were five values of frequency response in the high frequency region (5-22 kHz) 
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which were the best features for the detection of rolling bearing defects. The system 

achieved a 100% reliability rate for the detection of roller bearing defects using fuzzy 

reasoning.

Another early application of hybrid systems in which wavelet transforms and 

artificial neural networks were combined in analysing bearing fault conditions was 

presented by Paya et al. (1997). In the investigation, the vibration signal was 

processed using wavelet transforms; this was followed by a process that recorded 

thresholds. The thresholds were based on the levels of the most dominant values of 

the reference signals (valid bearing signals). The ten most dominant features were 

selected as input vectors to the back-propagation neural network. The results showed 

that the combination of the wavelet transform with an artificial neural network 

provided a useful tool for intelligent diagnostics of faults in rotating machinery. The 

results also showed that the combination of wavelets with neural networks achieved 

an overall success classification rate of 96 per cent.

Garga et al. (2001) introduced a hybrid reasoning method that integrated machinery 

data into a feed-forward neural network through a training process based on the 

representation of explicit domain knowledge for the prognosis of gearbox faults. This 

method combined neural networks and a fuzzy inference system which resulted in a 

neuro-fuzzy predictor. By using this combination, the ability of the fuzzy inference 

system to use linguistic descriptions was enhanced by the learning procedures of the 

neural networks. The outcome showed that the proposed hybrid automated reasoning 

system was able to combine domain knowledge and machinery operational and test 

data.

Investigations of feature extraction for the purposes of bearing fault diagnosis by the 

use of statistical parameters calculated from wavelet packet transforms were 

performed by Nikolaou and Antoniadis (2002a). In the investigation, standard 

deviation and mean values were calculated from all wavelet coefficients and used as 

features. The feature values were selected based on the thresholding process. The 

resulting standard deviation and mean values from the thresholding process were 

then used to calculate the energy vectors. The diagnosis stage continued with the 

selection of the best energy vector and the taking of the FFT of the results. The 
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investigation aimed to propose a method that could utilise the underlying modulated 

features present in the vibration signal of faulty bearings. The method used the 

Wavelet Packet Transform (WPT) and the systematic parameter selection criteria 

that reduced any interventions of the end user in the fault analysis process.

Application of the wavelet transform as an agent for multi-resolution analysis of 

bearing vibration signal was studied by Seker and Ayaz (2003). In the study, bearing 

vibration signals, recorded from an accelerated fluting ageing condition in an 

induction motor, were transformed using wavelet multi-resolution analysis (MRA). 

The MRA produced segmented selected frequency bands that were used to extract 

information from the signal with minimum distortion. In the analysis, the RMS of the 

vibration signal was compared with the wavelet Detailed (cD) part of the wavelet 

transform results. It was found that the ratio between the RMS of the vibration signal 

and the cD part increased as the motor bearing degraded toward failure.

Samanta and Balushi (2003) investigated the application of statistical parameters 

generated from bearing vibration signals used as features in an application of 

artificial neural networks (ANN) as a bearing fault classifier. The values of RMS, 

variance, skewness, kurtosis and normalised sixth central moment (skewness 

multiplied by 2) were calculated directly from the time-domain vibration signals and 

used as features to the node inputs to the ANN system. The study also included 

investigation of the effect of pre-processing techniques such as high-pass filtering, 

band-pass filtering, envelope detection (demodulation) and wavelet transformation of 

the vibration signals. These investigations were carried out prior to the feature 

extraction process. The proposed method aimed to reduce the number of features 

needed in ANN training in order to achieve a faster ANN training process. The 

results showed that an ANN could be used effectively in the diagnosis of the 

bearing’s condition.

The applications of hybrid techniques in bearing fault diagnosis have continued, 

producing more variations of combined methods aimed to increase the accuracy of 

diagnosis. Combined or hybrid systems that utilise a combination of neuro-fuzzy 

(ANFIS), statistical parameters and wavelet transform results have been widely 
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investigated and evaluated. Several examples of these combined methods are 

presented below.

A neuro-fuzzy system was used by Wang et al. (2004a) to evaluate the condition of a 

spur gear operation. In this work, the structure of the FIS (fuzzy inference system) 

was produced by experts, while the neural network training procedure was used to 

generate the related fuzzy membership functions. Using experimental tests, it was 

found that the developed neuro-fuzzy classifier produced promising results. In 

addition, the test results showed that the proposed learning algorithm could 

effectively update the fuzzy system, which was necessary to improve the diagnostic 

performance.

Results of the comparison between recurrent neural networks (RNN) and neuro-

fuzzy (NF) inference systems used to predict the fault propagation trend were 

presented by Wang et al. (2004b). It was found that a properly trained NF system 

performed better than recurrent neural networks, both in forecasting accuracy and 

training process efficiency.

A method for analysing localised defects in ball bearings using statistical parameters, 

wavelet transforms and a neuro-fuzzy classifier was studied by Lou and Loparo 

(2004). In the study, the vibration signal was acquired from a motor-driven 

experimental system with normal bearings and then with bearings with inner race, 

outer race and ball faults. The first feature vector was calculated for a given signal by 

using Discrete Wavelet Transform (DWT) results and their standard deviation 

values. The second was calculated by using Euclidean vector distance (calculated 

from the square of Euclidean distance metric) and vector correlation coefficients 

(Lou and Loparo, 2004). The feature generation method led to a fast fault detection 

scheme that was developed using the standard deviation of the wavelet 

decomposition parts. A fuzzy neural inference technique was implemented to provide 

a reliable diagnostic decision. The fuzzy neural inference technique was based on an 

adaptive neural-fuzzy inference system (ANFIS) proposed by Jang (1993). In 

comparing the results of the proposed method, Lou and Loparo used the Euclidean 

vector distance method and the vector correlation coefficient method. The findings 
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showed that the proposed diagnostic method could be used to identify different fault 

conditions under a variety of load conditions.

A combination of neural-networks and fuzzy logic which formed a fuzzy back 

propagation network which was used to identify the present condition of a bearing 

and estimating the RUL of an electric motor was proposed by Satish and Sarma, 

(2005). In their work, the results of a fuzzy back-propagation network were 

compared with the neural network. The hybrid approach result showed proved more 

effective in assessing the present condition of the bearing, and the time available 

before the replacement of the bearing was required.

The exploration of applications for hybrid feature extraction methods has continued 

with more methods proposed in the area of bearing fault diagnosis. For instance, 

Rafiee et al. (2007) investigated the use of a single statistical parameter which was 

calculated from wavelet packet coefficients. It was used in an intelligent condition 

monitoring system which included general fault analysis of a bearing using ANN. 

The vibration signal was processed using the wavelet transform, and the feature 

vectors were generated by calculating standard deviation values of the wavelet 

packet coefficients. The type of wavelet used was Daubechies wavelet type 4 (db4), 

the decomposition level of vibration signal was taken up to the 4th level. The features 

for the ANN training process were generated by calculating the standard deviation of 

the wavelet packet components. Instead of using the energy level of the wavelet as a 

coefficient, the investigation used a new feature vector that employed standard 

deviation as a feature to train the neural network and identify the faults.

A neuro-fuzzy modelling approach was presented by Kothamasu and Huang (2007) 

in which the system was based on adaptive learning using the Mamdani fuzzy model 

for diagnosis and prognosis of a system. The system was designed to function as a 

decision making aid for condition-based maintenance. It also had a feature to allow 

some general modifications to be made with continuous improvement through 

interaction with users.

A combination of kurtosis and wavelet transforms applied in fault diagnosis of 

rolling element bearing was investigated by Li et al. (2008). The input signal was 
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processed using both Discrete Wavelet Transform (DWT) and Wavelet Packet 

Transform (WPT) and followed by using inverse DWT and WPT to obtain the time-

dependent signals of each frequency-band. The process continued with the 

calculation of the kurtosis value of each frequency band signal in order to obtain the 

kurtosis curves of DWT and WPT. The results showed that the proposed method was 

able to distinguish faulty bearings from those in good working order.

The application of neuro-fuzzy systems in bearing life prognosis was explored by 

Zhao et al. (2009). In their work, the features or parameters of the time domain, 

frequency domain and wavelet domain were extracted by using the corresponding 

signal processing and filtering methods. The extracted features were then compared 

in order to select the best one for prediction.  The features used in the selection 

process were RMS, kurtosis, energy index and peak-to-peak. Based on the best 

selected feature (i.e., RMS) a prediction model for bearing health condition was 

constructed using a neuro-fuzzy scheme.

An approach in implementing statistical pattern recognition in constructing the 

classifier for rolling element bearing faults was carried out by Stepanic, et al. (2009). 

In this implementation, the signal’s time-varying statistical parameters and 

characteristic rolling element bearing fault frequency components were obtained 

through the envelope analysis method and then used as the vectored features. A 

linear and quadratic statistical parameters recognition method was used in building 

the classifier. The results showed that the proposed approach achieved a 

classification accuracy rate of 97.45% - 99.49%.

Wu and Kuo (2009) used feature extraction with Parseval's theorem (energy level 

distribution), calculated from the discrete wavelet transform (DWT) results for fault 

analysis of an automotive generator. Prior to the calculation of energy level, the 

vibration signal was processed using a wavelet transform with up to 9 frequency 

bands (9 levels). The feature extraction scheme was performed by using db2, db4, 

db10 & db20 Daubechies wavelets. The features were used to train neural network 

systems which were later used to identify the fault signals. The proposed method was 

able to detect and classify the distorted signal with high accuracy. It was found that 
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the most accurate results were obtained when the energy feature was calculated from 

the Daubechies wavelet db4. 

Rafiee et al. (2010) focused their study on finding applicable features for bearing and 

gear fault detection and diagnosis. It was posited that feature extraction and feature 

reliability were important factors in intelligent systems. Furthermore, since there 

were no standard rules on practical feature extraction of vibration signals, a proposed 

method which used continuous wavelet transform (CWT) was used in the research. 

The focus was on using Wavelet transform (WT) that was capable of processing 

stationary and non-stationary signals simultaneously in the time and frequency 

domains for the feature extraction process. Continuous wavelet coefficients (CWC) 

were calculated for the gear and bearing segmented signals using 324 mother wavelet 

candidates from different wavelet families: Haar, Daubechies, Symlet, Coiflet, 

Gaussian, Morlet, complex Morlet, Mexican hat, bio-orthogonal, reverse bio-

orthogonal, Meyer, discrete approximation of Meyer, complex Gaussian, Shannon, 

and frequency B-spline wavelets. The results showed that db44 had the most 

similarity in shape with signals across both faulty gears and bearings. It matched 

with random high impact signals (e.g., broken-tooth gear). Also, it was found that 

standard deviations and variance of the CWCs were suitable for use as features for 

bearings fault diagnosis. On the other hand, kurtosis of the CWC showed that it did 

not have any consequential relation that related to the fault which was presented in 

the bearing dataset.

The detection of an incipient fault in bearings was studied by Castejon et al. (2010). 

In the study, an automated rolling bearing fault analysis was implemented, based on 

the analysis and classification of signature vibrations. Multi-resolution analysis 

(MRA) was used in a first stage in order to extract the most interesting features from 

signals. The features were used in a second stage as inputs of a supervised neural 

network for classification purposes. The vibration signals were processed using the 

multi-resolution analysis (MRA) of the wavelet transform. The application of MRA 

aimed to extract the most interesting features from signals. Features obtained were 

then used in supervised training of a neural network for classification process. The 

pattern selection process was employed to select the best pattern of the wavelet 

coefficients. The selected pattern was then used to construct a classifier which 
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employed an ANN training procedure. The experimental results showed the ability of 

the method to detect four bearing conditions (normal, inner race fault, outer race 

fault, and ball fault) in a very early stage.

Jayaswal et al. (2010) applied the wavelet transform and statistical parameters as a 

bearing fault analysis system. In their investigation, statistical parameters like mean 

and RMS values were calculated from parts of the wavelet transform of the bearing 

vibration signal. The features obtained from mean and RMS of the wavelet packets 

was used to build the classifier for bearing faults based on a fuzzy back-propagation 

neural networks system. The results showed that the proposed hybrid method 

successfully diagnosed the bearing faults.

Kankar et al. (2011) used wavelet-based feature extraction to fault diagnose ball 

bearings which had localised defects on the various bearing components. A wavelet-

based methodology was constructed using Relative Wavelet Energy (RWE) and 

Shannon entropy criteria (Shannon entropy measures the diversity of a possibility 

series (Shi et al. 2004)). These criteria were used to calculate the statistical features 

needed for the training and testing of artificial intelligence techniques.RWE criterion 

and Maximum Energy to Shannon Entropy ratio criterion was calculated from 

several wavelets. It was used to select suitable wavelets that had maximum energy, 

for the purpose of building a bearing fault classifier. The wavelets which had 

maximum energy were then used to generate three statistical features, i.e., kurtosis, 

skewness, and standard deviation. The features were then used to train three machine 

learning techniques, i.e., Support Vector Machine (SVM) (Jack and Nandi, 2001), 

ANN and SOM. The results showed that the wavelet selected using Maximum 

Energy to Shannon Entropy ratio criterion (Meyer wavelet) produced a better 

classification efficiency than others.

Sugumaran and Ramchandran (2011) carried out a time-domain analysis of vibration 

signals generated by a faulty roller bearing and obtained the amplitude magnitude 

histogram of the signal.  The decision-tree method was used to generate features 

based on the best selected histogram that differentiated the fault conditions of the 

bearing. Fuzzy logic was implemented as a bearing fault classifier and the rules for 

the fuzzy logic system were generated automatically based on the features by using 
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the decision-tree method. The fuzzy classifiers were tested for their ability to classify 

normal conditions, inner race faults and outer race faults. The fuzzy logic classifiers 

showed promising results in identifying faults.

Wang and Chen (2011) explored the application of fuzzy neural networks with 

frequency-domain features of the vibration signals in order to process the ambiguous 

relationship between the symptom parameters and the fault types. The exploration 

aimed to construct a system that could automatically identify bearing faults. 

Automatic identification was carried out using possibility theory, fuzzy neural 

networks and frequency-domain features extracted from the bearing signals. The 

findings showed that the non-dimensional fault symptom parameters described in the 

frequency-domain could represent the characteristics of the signals measured for 

fault diagnosis in a rolling bearing. The proposed method was successfully applied in 

the fault diagnosis of a rolling bearing used in a centrifugal blower.

Prieto et al. (2013) combined statistical-time features, curvilinear component 

analysis (CCA) (Demartines and Herault, 1997) and neural networks in the detection 

of bearing faults in an electric motor. Statistical-time features such as root mean 

square (RMS), standard deviation, variance and crest factorwere calculated from 

acquired vibration signals. The discriminant analysis (DA) value was used for the 

selection of the most significant features based on the value of the DA. A large DA 

value implied that the investigated feature(s) contributed to a proper representation of 

the measurements in the data space, hence the features(s) were significant and useful. 

The final classification tasks were carried out using a hierarchical neural network 

structure which employed hierarchal multi-layer perceptrons (hMLP) (Vasquez et al. 

2009). The effectiveness of the method was verified by experimental results obtained 

under different operating conditions. The proposed method achieved a success rate of 

95 per cent of the overall test set.

4.3 Concluding Remarks

The literature reviews presented in this chapter have shown the technique trends that 

are being applied to feature extractions in fault diagnoses. There are several 

important findings from the results of the reviews.
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 One of the most important applications of the wavelet transform is 

feature extraction (Wang et al. 2011), and despite the amount of previous 

research on the wavelet transform, the selection of the mother wavelet 

function, which is a significant topic in signal analysis, is still open to 

question (Rafiee et al. 2010). Hence there are possibilities for exploration 

of the implementation and combination of various wavelet functions in 

the feature extraction process.

 Even though feature extraction is important in the application of 

intelligent systems, there is no clear standardised rule which can be used 

as guidance for its implementation in the application to vibration signals. 

In this case, there is no standard methodology for finding and generating 

reliable features (Rafiee et al. 2010). Hence it is an open area in which 

new methodologies may be proposed to process the vibration signals for 

the purposes of studying the feature extraction process.

 Even though the application of the Daubechies wavelet (db) has been 

covered by several researchers, they have mainly referred to the 

applications of low-order db types (db1-db20) (Wu and Liu, 2007). The 

application of high-order Daubechies (db) wavelets is rare (Antonino-

Daviu et al. 2006, Rafiee et al. 2009b). It can be inferred that the 

application of high-order Daubechies wavelets (i.e., db22, db44, etc) is 

open for investigation.

 One of issues in the application of wavelets in fault analysis is that the

selection of the base wavelet function has remained largely an ad hoc

process. For example, there was a suggestion that shape matching be 

used as a way of selecting the best base wavelet for vibration signal 

analysis (Ling and Qu, 2000, Yan and Ren, 2004). The suitable basis 

function that determines the shape of a wavelet is related to the 

sensitivity characteristics of the extracted features technique. It 

determines the ability of the feature extraction method to enhance the 

detection of faults. The selection of a suitable basis function for 

particular fault detection is still an area which is open to investigation.

 The research in constructing the automatic selection of an integrated 

feature extraction technique for bearing fault diagnosis through 
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application of artificial intelligent techniques is still developing. This is 

particularly the case in the application of hybrid methods that combine 

neuro-fuzzy (ANFIS), wavelet transforms and statistical parameters as 

features in fault diagnosis.
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Chapter 5 – Adaptive Neural-Fuzzy Inference System and 
Wavelet-Based Feature Extraction

In this research a new method of wavelet-based feature extraction combined with an 

adaptive neural-fuzzy inference system (ANFIS) is proposed and investigated based 

on developments and findings obtained from the extensive literature review 

presented in Chapter 3 and Chapter 4.

The feature extraction method combines the use of statistical parameters calculated 

from wavelet MRA results and ANFIS for learning and building bearing fault 

classifiers. The proposed method was influenced by previous work in the related 

areas. The proposed method generated several statistical features calculated from 

wavelet transforms using the MRA technique. There were four statistical features in 

use; RMS, kurtosis, standard deviation and variance. In addition, there were three 

others features investigated: the energy levels of wavelet transform results, the 

dominant frequency of each wavelet transform result and the amplitude of the 

dominant frequency of each wavelet transform result. These seven features were 

used as input-output data for ANFIS training for the purposes of building a bearing 

fault classifier for three fault conditions.

Several statistical feature applications for bearing fault diagnoses, as presented in 

Table 4.1 of Chapter 4, were the motivation for further investigation. The research 

extended the application of ANFIS for bearing fault diagnosis, and the background 

that led to the construction of the proposed method was based on variants of feature 

extraction methods and the ANFIS applications listed in Table 4.1. Specific findings 

are presented below.

The option to use Daubechies wavelet in the feature extraction process in this 

research was based on findings that it is rarely used. Hence its usefulness for the 

purposes of fault analysis could be explored further.  This led to the use of five 

Daubechies wavelets (i.e., db4, db8, db12, db22 and db44). The research extended 

the fault diagnosis applications investigated and used by Wu and Liu (2008) for 
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engine fault diagnosis, Wu et al. (2009) and Rafiee et al. (2009b) for gear and 

gearbox fault diagnoses.

The ANFIS was used in this research since it harnesses the advantages of fuzzy logic 

and neural network modelling. In addition, it was chosen because of its wide range of 

applications in fault diagnoses. Examples of an induction motor fault may be found 

in Tran et al. (2009), for a gear faultWu et al. (2009), and for an electrical bearing 

fault Zhang et al. (2010).

In addition, this proposed project introduced and investigated a new scheme for the 

selection of dominant or related fault features using the Exsrch function of Matlab.

Furthermore, the proposed method aims to contribute additional information 

regarding the use of db wavelet functions in bearing fault diagnosis. The 

investigation might be used to add information to the selection of the most suitable 

Daubechies type for certain fault diagnoses in the context of feature extraction. This 

still remains a challenging and open area for research.

The research also aims to investigate the application of statistical parameters 

generated from a wavelet-based feature extraction method and used in the 

construction of a fault classifier with a neuro-fuzzy system (i.e., ANFIS). The 

applications of statistical parameters, wavelet transforms and ANFIS have been 

various (Lei et al. 2007, Zhao et al. 2009, and Kankar et al. 2011) and this research 

intends to expand upon and explore different schemes for using the combined feature 

extraction of statistical parameters, wavelet transforms and ANFIS. 

The feature extraction method and the construction of bearing classifiers, using 

ANFIS proposed in this research, form an integrated investigation based on the 

abovementioned findings which were obtained from the literature review.

5.1 The Proposed Method

The proposed feature extraction technique utilises Daubechies wavelet to pre-process 

(transform) the time-domain vibration signals acquired from a bearing test rig. The 

pre-processing uses the multi-resolution analysis of the wavelet transform. 
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In the proposed scheme, the vibration signals acquired from a bearing test rig were 

pre-processed using the discrete wavelet transform (DWT). The wavelet type 

adopted was Daubechies (db). There were five types of Daubechies (db-n) wavelet 

utilised: 4 (db4), 8 (db8), 12 (db12), 22 (db22) and 44 (db44). A schematic diagram 

of the new feature extraction method is depicted in Figures 5.1 to 5.3.

Figure 5.1 shows the first step of the proposed feature extraction method. The 

process began by acquiring a signal from the test rig through the data acquisition 

process. The resulting raw vibration signal was then processed using Daubechies 

(db-n) wavelet transform, applying up to 10 levels of decomposition using the MRA 

technique. There were two parts produced by the db-n transform; cA (Approximated 

coefficients) and cD (Detailed coefficients) parts. In this research, only the cA parts 

of each db-n transform were used to generate the features since the cA parts 

contained an approximation of the transformed vibration signals.

The outputs of each db-n wavelet transform were the 10 cA parts. These cA parts 

were used to generate seven features, being Energy level, Root Mean Square (RMS), 

Kurtosis, cA dominant frequency (labelled cA_x), Amplitude of cA dominant 

frequency (labelled cA_y), Standard Deviation and Variance. All of these features 

were obtained from the cA parts of the db4, db8, db12, db22, and db44 wavelets in 

decomposition levels 1 to 10.
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Figure 5.1 The first stage of the proposed method

Figure 5.2 The second stage of the proposed method

The second stage of the proposed method is shown in Figure 5.2; a continuation of 

the feature generation process of Figure 5.1. The second stage depicts the generation 
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of the seven features. There were 10 groups of the seven features that resulted from 

10 decomposition levels for each db-n wavelet transform. Each group contained the 

seven features produced from each type of db-n transform (i.e., db4, db8, db12, 

db22, and db44). All of the db-n 10 values of the seven features were then stored into 

text files for later use in subsequent stages of the process.

The third stage of the proposed feature extraction method is depicted in Figure 5.3. 

In this stage, the process began by selecting the highest energy level of db-n features 

in a data group from level 1 to 10. Only the feature data group which had the highest 

energy level was selected to be used in the next step. The calculation of the energy 

levels was carried out for all of 10 groups of the db-n feature data. The energy level 

results determined which particular data group would be used. There was only one 

data group out of the 10 groups of each db-n features data that was used in ANFIS 

training, based on its energy level.

Figure 5.3 The third stage of the proposed method

As shown in Figure 5.3, prior to the ANFIS training process, two dominant inputs 

were selected that related to a Target Output from the seven features available. The 

following ANFIS training procedure aimed to produce a Fuzzy Inference System 

(FIS) with units based on the two most highly-related inputs and a single Target 
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Output of the seven available features. The process then continued with selection of 

the best FIS units as shown in Figure 5.3.

The best selected FIS units were then verified. The results of the verification process 

produced FIS units that related to the fault vibration data in use. There were four 

types of fault vibration signal used in the process: outer race fault (ORF), inner race 

fault (IRF), ball fault (BF) and no fault (NF) vibration signals. The process produced 

four types of FIS unit related to the four types of bearing fault respectively.

The selected FIS units for each type of fault were then tested. The test results were 

used to analyse the Target Output accuracy and db-n sensitivity of the corresponding 

FIS units.

5.2 Extended Multi-Resolution Analysis (MRA)

In the proposed method, a wavelet multi-resolution analysis (MRA) of the vibration 

signal was used. This technique was adopted previously by Zhu et al. (2009), Wu 

and Kuo (2009), Qiu et al. (2006) and Wu and Hsu (2009). However, in this case it 

was extended up to ten decomposition levels. This number of decomposition levels 

was chosen as a trade-off that aimed at applying a reasonable number of inputs for 

the purpose of the neuro-fuzzy system application. It also aimed to ensure the 

availability of adequate data so that loss of essential information from the original 

vibration signal was avoided (Marichal et al. 2011).

The MRA scheme, using ten decomposition levels, is depicted in Figure 5.4. The 

resulting cA parts (i.e., cA1 – cA10) were used to generate the seven features that 

were needed to train the ANFIS model for the purpose of fault diagnosis and 

classification.
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Figure 5.4 Ten-level multi-resolution analysis (MRA)
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Figure 5.5 Frequency band separation of 10-level MRA

Figure 5.5 shows the frequency band divisions of the ten levels of the MRA. The 

tabulated values are shown in Table 5.1.
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Table 5.1 – Frequency Bands of cA Parts

Segments / parts Frequency Bands (Hz)

Original signal 0 – 24096 

cA1 0 – 12048

cA2 0 – 6024

cA3 0 – 3012

cA4 0 – 1506 

cA5 0 – 753

cA6 0 – 376.5 

cA7 0 – 188.25

cA8 0 – 94.125

cA9 0 – 47.0625

cA10 0 – 23.5313

In this research, the computation of the wavelet transforms was carried out using a 

freeware Wavelet Toolbox for Matlab called Uvi Wave, 

http://cas.ensmp.fr/~chaplais/UviWave/About_UviWave.html , which was developed 

by the University of Vigo in Spain and used by Jensen and La Cour-Harbo (2001). 

Version 3 of Uvi Wave was used for wavelet computation in this research. The Uvi 

Wave wavelet toolbox was preferred over Matlab’s version since the codes of the 

function scripts were open, hence the scripts were easier to modify to suit the 

research needs.

5.3 The Seven Features

Each of cA- i th parts resulting from i th decomposition level was used to calculate the 

seven features that were used in the ANFIS training process. The training process 

was implemented to identify the most dominant features that represented the 

characteristics of the vibration signals. Figure 5.6 shows the features that were 

generated using the proposed method.



Chapter 5 – ANFIS & Wavelet-Based Feature Extraction 104

Figure 5.6 The seven features generated from cA parts of level 1 - 10

The explanation of each feature is given below.

5.3.1 Feature 1: Energy level

In this research, energy levels were one of the features generated from the wavelet 

transform result. They were calculated for each cA part of the wavelet results, using 

the modified formula of Equation 5.1, reported in Latuny and Entwistle (2010).
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where

p = next power of two based on data length

i = decomposition level (i = 1, …, n)

Ai = Approximation (A) result of wavelet transform at ith level

5.3.2 Feature 2: RMS

The RMS of the cA-n part was calculated using the formula (Howard, 1994). It 

evaluated:
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where N was the number of signal data points. x was the mean value of the signal 

and xiwas the i th element of the data set.

5.3.3 Feature 3: Kurtosis

Kurtosis was calculated using the available Matlab built-in function. It was evaluated 

as follows:
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where xi was i th data point of the data set, N was the number of data points, x was 

the mean value of the signal and  was the standard deviation.

5.3.4 Features 4 & 5: cA_x&cA_y

The feature labelled cA_x is the dominant frequency (the frequency which has the 

highest amplitude magnitude) and cA_y is the amplitude of that dominant frequency 

for each cA-n wavelet transform result. 

These two features were introduced to investigate their significance as features 

suitable for bearing fault diagnosis. The motivation for investigating these two 

features was that for each cA of the wavelet transform result, the frequencies were 

found to be different from one condition to another. The inclusion of these two 

features was also based on the findings by Rafiee and Tse (2009) which showed that 

different classes of faulty signals produced different amplitudes in their dominant 

frequencies and harmonics as well as in the related side bands.

The cA_x and cA_y were extracted from the FFT result of each cA-n wavelet 

transform part. The dominant frequency and the corresponding amplitudes of the cA 

parts were taken as two additional features.

5.3.5 Feature 6: Standard Deviation

The standard deviation was calculated using the available Matlab built-in function. It 

evaluated:
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where xiwas each value in the data set, x was the mean of the data set, N was the 

number of data points.
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5.3.6 Feature 7: Variance

Variance was calculated using the available Matlab build-in function. It evaluated

 
N
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where x = mean of the data set, xiwas each value in the data set and N was the 

number of data points.

5.3.7 Numerical examples of the Seven Features

The feature values shown in Table 5.2 were calculated from the data set dt2111 at 

sequence number (data set number) 492 using a db4 wavelet type. This data set is 

explained fully in Section 5.4. The row labelled cA7 is highlighted, showing that the 

maximum energy level yielded was in the cA7 results.

Table 5.2 – Sample of db4 Numeric Values of the Seven Features 

db4
Energy
(mag)

RMS
(mag)

Kurtosis
(mag)

cA_x 
(Hz)

cA_y 
(mag)

Std Dev
(mag)

Variance
(mag)

cA1 0.000202 0.01172 15.78845 8001 37.09885 0.01172 0.000137

cA2 0.001086 0.019216 22.29063 3538 78.15219 0.019216 0.000369

cA3 0.005221 0.029791 27.68568 2277 141.6847 0.029791 0.000887

cA4 0.002023 0.013113 22.93234 1267 70.06699 0.013113 0.000172

cA5 0.001475 0.007918 7.300608 473 67.00256 0.007918 6.27E-05

cA6 0.006111 0.011395 12.47108 282 117.1511 0.011395 0.00013

cA7 0.014211 0.012288 9.98194 183 147.3439 0.012288 0.000151

cA8 0.01276 0.008233 4.198542 51 1.39E+02 0.008233 6.78E-05

cA9 0.011877 0.005617 3.117982 45 105.0766 0.005617 3.15E-05

cA10 0.001383 0.001355 3.561562 20 22.99631 0.001355 1.84E-06

5.4 Visualisation of the Seven Features

Examples of these features are shown in Figure 5.7 and 5.14. The examples were 

based on vibration signals which coded dt2111 at sequence number (data set number) 

492. Figure 5.7 shows the cA parts FFT results of levels 1 - 5. The dominant 

frequency or the frequency which had the highest amplitude magnitude is highlighted 

with a red circle. Figure 5.8 shows the cA parts FFT results of levels 6 - 10.
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Figure 5.7 Sample of FFT results of cA parts (cA1 - cA5)

Figure 5.8 Sample of FFT results of cA parts (cA6 - cA10)

The visualisation of values in Table 5.2 is depicted in Figure 5.9 and 5.10.
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Figure 5.9 Plot of features of Table 1 (part 1)

Figure 5.10 Plot of features of Table 1 (part 2)
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Samples of the seven features applied in this research for outer race faults (ORF), 

inner race faults (IRF), ball faults (BF) and no fault (NF) cases are shown in Figures 

5.11 –5.14.

Visualisation of the features samples is presented to show the randomness in the 

characteristics of each feature for each fault case investigated. It is difficult for a 

human expert to draw any particular pattern from each feature’s characteristics 

except for the cA_x which shows a pattern. 

In order to overcome the difficulty in assessing the randomness of the feature 

patterns, the ANFIS was then used to learn and obtain conclusions regarding the 

relationships of the seven features.
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Figure 5.

ANFIS & Wavelet-Based Feature Extraction

Figure 5.11 Sample of seven features of ORF
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Figure 5.

ANFIS & Wavelet-Based Feature Extraction

Figure 5.12 Sample of seven features of IRF
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Figure 5.
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Figure 5.13 Sample of seven features of BF
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Figure 5.
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Figure 5.14 Sample of seven features of NF
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The integrated training scheme consists of two main parts. The first part (part A) is 

shown in Figure 5.15, and part B is shown in Figure 5.16. 

All of the raw vibration signals analysed in this study which comprised Outer Race 

(OR), Inner Race (IR) Ball Fault (BF) and no fault (NF) vibration signals, were 

processed using this integrated scheme. The Matlab code for the integrated training is 

listed in Appendix 3.



Chapter 5 – ANFIS & Wavelet-Based Feature Extraction 115

5.5 Integrated ANFIS Training Scheme

Figure 5.15 Integrated ANFIS training scheme (part A)
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The process starts by choosing the data code that corresponds to the data identifier of 

a stored raw vibration signal acquired from the test rig. A routine check was 

performed to determine whether the input data code referred to an existing data file 

(mat file) of the stored raw vibration signals. The script would show an error 

message where a problem was identified. The process continued in the form of 

checking to confirm the data that had already been processed. 

A routine loaded each single mat data file of the 984 mat data files and the vibration 

signals were processed from data segment no. 1 up to data segment no. 984. This 

cycle is shown in Figure 5.15. Each of the loaded mat data file (raw vibration data) 

was then transformed using a db-n wavelet transform up to 10 decomposition levels. 

The result of this wavelet transform using multi-resolution algorithm produced a 

composite matrix in a Matlab workspace that contained both Approximation (cA) 

and Detailed (cD) parts for decomposition level 1 to 10. 

The process to extract the corresponding cA and cD parts was carried out in ten 

cycles (cycle 1 to 10), and each cycle produced corresponding cAn and cDn parts 

(i.e., cA1 & cD1, cA2 & cD2, …, cA10 & cD10). All the data for each vibration 

signal from sequence 1 to sequence 984 was processed using five Daubechies (db-n) 

bases, i.e., db4, db8, db12, db22 & db44, and the decomposition level used was up to 

10 levels.

The process continued with the calculation of the seven features using the 

Approximation (cA) part of the wavelet transform. It is reiterated that in this study, 

only the cAn part of the multi-resolution wavelet transform was used to generate the

seven features.

An indexing scheme was provided to index each features calculated within cycle 1 –

10. For instance, there was rms1, rms2, …, rms 10 which represented the RMS 

feature at decomposition levels 1, 2, …, 10. A similar indexing scheme was also

implemented for the other features calculated from the cA parts in decomposition 

levels 1 to 10.
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After 10 cycles of extraction and indexing of the calculated features, the results were 

grouped based on the type of each feature (i.e., 10 values of energy level, 10 values 

of RMS, etc) and each of 10 value groups were stacked as a matrix in the Matlab 

workspace for the later use.

For each single mat data file processed, a matrix of 1 row  70 columns of feature 

data was produced. Since there are 7 features, 70 columns are needed to store each of 

10 values (7  10 = 70).

The 70 columns contain values for Energy magnitude for levels 1 – 10 which were 

stored in column 1 to column 10 of the data matrix. Columns 11 – 20 of the data 

matrix contained 10 values of RMS magnitude, and the sequence continued like this 

for all of the features.

The overall process continues until 984 mat data files of the selected raw vibration 

data were processed. It produced a data matrix with 984 rows  70 columns for each 

data code identifier (raw vibration data) processed. This was saved as a text file into 

the hard drive, and each file was given an appropriate naming scheme for the 

purposes of identification and later use in the ANFIS training in part B of the 

integrated training scheme.

The calculation of the average energy level value for each decomposition level value 

was carried out using the existing calculated features data. The average energy level 

information for all decomposition levels was then evaluated to obtain which had the 

highest level. For the purposes of visual interpretation, a plot was drawn up to show 

the average energy level of levels 1 – 10.

The information on the highest energy level was obtained from the data of levels 1 –

9 only (Level 10 data was not included because of its high value trend (Wu and Liu, 

2008)). The information was then used to determine which decomposition level data 

of the seven features would be used for the ANFIS training procedure (in part B). For 

example, if the highest average value of energy level existed in the result of level 8 

then the features data of level 8 would be used in the ANFIS training process.
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5.6 Detail of ANFIS Training Process

Part B of the integrated process used in building the core bearing fault classifier is 

the training of the ANFIS. The flow chart of the ANFIS training procedure is shown 

in Figure 5.16.



Chapter 5 – ANFIS & Wavelet-Based Feature Extraction 119

Figure 5.16Integrated ANFIS training scheme (part B)
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The ANFIS training procedure continued from part A. The process began by 

retrieving the information of the highest energy level that occurred in a particular 

level of the seven-feature data. This was used to determine which corresponding 

level features data would be used in the ANFIS training.

The process continued with the grouping process of the seven features data according 

to their decomposition levels (1 – 10) with each of the data calculated for ease of 

storage and retrieval. This process produced 10 groups of matrix data in the 

workspace. Each of these 10 matrix groups contained the values of the 7 features at 

levels 1 to 10.

The size of each matrix group was 984 rows  7 columns. The seven columns 

represented the seven features in the 984 rows representing the number of original 

raw vibration data sets used to generate the features by using a multi-resolution db-n 

wavelet transform.

The selection of which matrix data group (among group 1 - 10) would be used in the 

ANFIS training was determined by the index (number) of the highest average energy 

level that was calculated in part A. The number or index of the decomposition level 

that achieved the highest average energy level was used as an index to select among 

the 10 matrix group data sets available. For example, if the highest average energy 

magnitude existed in the result of the 8th decomposition level, then seven features of 

level 8 would be used as training data for the ANFIS training process.

The process entered seven iterations or loops; the number of cycles needed to 

accomplish complete position swapping for each of the seven features.  At the 

beginning of each cycle, a routine procedure was used to check whether the results 

data of the particular swap-cycle existed or had been calculated before. The results 

data of a complete seven-feature calculation were stored in the form of text files on 

the hard drive. If the results data file existed, a message was generated to show that 

the result existed and the script would skip the calculation process for the particular 

swap cycles. The whole procedure was then resumed by returning to Part A and 

beginning again.
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There were seven data columns that represented the seven features in the data matrix, 

as shown in Figure 5.17. The arrangement in Figure 5.17 was the initial column 

arrangement, by which column c1 was assigned to energy level values, column c2 to 

RMS values, column c3 to kurtosis, column c4 to cA_x values, column c5 to cA_y 

values, column c6 for Standard Deviation values, and column c7 to Variance values.

Figure 5.17 Columns assignment for ANFIS training data

All of the features in column 1-6 also needed to be rotated in turn to the Target 

Output except the one which was already at column 7. 

The assignment of the last column as the Target Output was based on the 

requirement for ANFIS training data in the Supervised Training scheme. The 

arranged data was configured as 6 inputs – 1 output format, and the arrangement of 

the column data that matched the ANFIS training requirements was constructed as 

shown in Figure 5.17.

In Figure 5.18, the first 6 columns of data matrices were assigned as inputs and the 

last column (column 7) was assigned as the Target Output as required for the 

construction of the ANFIS training data.
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Figure 5.18 Swapping data of column 1 to column 7

The data sets were rotated in sequence so that each had its turn of being the target 

output. The order of the remaining six sets remained intact, as illustrated in Figure 

5.19.
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Figure 5.19 Graphical illustration of swapping process

5.7 Permutations Check for Six Inputs

In each of the seven swapping process iterations, a routine to check possible 

combinations of the six inputs was carried out. The purpose of the permutations 

check was to test all of the possible combinations in which 6 input features were 

arranged in the data column matrix. This was required as the ANFIS function is 

sensitive to the order / sequence / position of the data column when used in a training 

session. 

This checking procedure was needed to ensure that all possible combinations of six 

inputs and a single Target Output were completed and presented to the ANFIS during 

the training process.
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In each of the permutation combinations check process, an FIS unit was produced 

based on the corresponding six inputs and a single Target Output arrangement 

determined by the indices of the six permutations.

Using the permutation indices of six variables (input), there were 720 possible 

combinations of six input arrangements.

This would produce 720 FIS units during each rotation (swapping) of the Target 

Output. The 720 FIS units resulting from a complete permutations check process 

were later processed in order to select the best FIS candidates to be used as bearing 

fault classifiers.

The permutations check of 6 input combination positions were processed in each 

swapping step as shown in Figure 5.20. 

Figure 5.20 Permutation check of possible six input combinations in swap 1-7

Figure 5.20 shows an example using the swap 1-7 procedure. There were 720 

possible combinations of the 6 inputs arrangement. For permutation #1 (Perms 1), 

there were 6 inputs which were arranged in the sequence of [6 5 4 3 2 7]. It was 

presented together with a feature (feature #1) which had been swapped to column 7 
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as the Target Output. The original data column 7 had been swapped to the position of 

data column 6 in the inputs data of the sequence [6 5 4 3 2 7].

The process then continued to enter a swap 2-7 procedure and the detail of the 6 

inputs – 1 output arrangements are shown in Figure 5.21.

Figure 5.21 Permutations check of possible six input combinations in swap 2-7

Figure 5.21 shows the continuation of swapping procedures, combined with the 

permutation check in the swap cycle 2-7. In the swap 2-7 process, permutation #1 

(Perms 1) had the 6 input index sequence of [6 5 4 3 7 1]. The 6 inputs, arranged in 

the sequence of [6 5 4 3 7 1] were tested against feature variable #2 which had been 

swapped to data column 7 to become the Target Output. The previous data column 7 

had been swapped to data column 5 in the inputs of the sequence [6 5 4 3 7 1].

The process was carried out until 720 iterations had been completed for each of the 

swap cycles which started from Perms 1: [6 5 4 3 7 1], continued to Perms 2: [6 5 4 3 

1 7], Perms 3: [6 5 4 7 3 1], and finished at Perms 720: [1 6 5 4 3 2 7], as shown in 

Figure 5.21.
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5.8 Selection of the Dominant Two Inputs and Output

Prior to the main training procedure, a process to determine the two best inputs that 

produced the best input-output correlation was carried out by using the Exhsrch

function. Exhsrch is a built-in function in Matlab available via the Fuzzy Logic 

Toolbox. According to the Matlab documentation, Exhsrch performs an exhaustive 

search within the available inputs to select the set of inputs that most influences the 

Target Output data.

The search for the two most related inputs was carried out by the Exhsrch function 

based on the lowest error achieved by combining two input features as shown in 

Figure 5.22. This example is a snapshot of the process of searching for the best two 

inputs which had the lowest RMS Error (RMSE). In this example, Variance and 

Standard Deviation are shown to have achieved the lowest error among all the other 

combinations of the two input features. Therefore, in this case, Variance and 

Standard Deviation were the two features most related to the Target Output, Energy 

level.

Figure 5.22 Search for the lowest error using Exhsrch function

The Exhsrch function was invoked for each permutation test for the six inputs to 

determine the two best related inputs towards a Target Output. 
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In detail, Exhsrchwas used to select the two best inputs among the 6-input feature 

which had the most influential connection with any given Target Output of the 

features data. Exhsrch  may also be seen as a process for testing for the dominant 

relation between two selected features (out of 6) and a Target Output (swapped 

feature between column 1 - 7). 

The information regarding the two best selected inputs (labelled Input 1 and Input 2) 

in relation to the Target Output were then used in the main training procedure. For 

this purpose, indices of the two selected inputs representing numbers of column 

positions of the training data and checking data were used. The column number of 

Target Output data was permanently assigned to the data column positioned at 

column 7. The content of data column 7 changed based on the swap-cycle sequence 

(1 - 7) encountered in the training process.

In the core process, the Exhsrch function built an initial ANFIS model for each input 

combination and carried out the training process. The training was performed using 

only a single epoch and reported the results achieved. 

A fuzzy inference system (FIS) unit was generated in the Matlab workspace as the 

result of the initial training via Exhsrch. The generated FIS unit contained 

information of the best two selected input features which had the dominant 

relationship to a feature in data column 7 which was assigned as the Target Output. 

Indices of the two selected inputs and the Target Output were extracted from the 

initial FIS. The index information was then used for the core ANFIS training in part 

B of the integrated training procedure.

5.9 Training and Checking Data

The core of the ANFIS training process required two types of data to be used. The 

first, called the Training data, was used in the training process to build an FIS unit. 

The second, called the Checking data was used to prevent the ANFIS from being 

trapped in the generalisation of the data (i.e., learning data too well). It was also used 

for the purpose of testing any FIS produced during the training process.
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The provision of these two types of data was carried out by dividing the overall data 

matrix (which contained 984 rows) of data into two parts. This produced two groups 

of data where each contains half of the original data (492 rows).

The Training data part was generated by taking only the odd rows from the 984 

available rows, whilst the Checking data was generated by taking only the even rows. 

The process of creating Training and Checking data was carried out in each cycle of 

the permutations check sequence numbered 1 to 720.

5.10 ANFIS Training Parameters

The ANFIS parameters utilised in the core training process are shown in Table 5.3.

Table 5.3 List of ANFIS Parameters

Parameters Values Remarks
Number of membership function 4

Membership function type
gbellmf (Gaussian bell 
shaped)

Training method 1 hybrid
Maximum epoch 100
Step size 0.01 default
Error tolerance Matlab default default
Display result option 0 (not displayed) default
Step size of decremental rate 0.5 default 0.9
Step size of incremental rate 1.5 default 1.1
Initial FIS type genfis1 default

The initial FIS needed in the ANFIS training was generated by using the genfis1 

function in Matlab. The function generates a single-output Sugeno-type fuzzy 

inference system (FIS) using a grid partition on the data (no clustering). FIS is used 

to provide initial conditions for the ANFIS training.

The new FIS generated in each permutation test sequence was then tested using the 

data of the corresponding two inputs (Input 1 and Input 2) taken from checking data 

parts. The parameters used to determine whether the new generated FIS in a 

particular permutation cycle could be used for further evaluation was determined by 

the sets of numerical requirements which are as follows:
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 Root Mean Squared Error: 310

 Number of epoch cycle: 5  Epoch  75

 Correlation factor: > 0.99

The correlation factor was calculated based on the correlation between the Target 

Output predicted by the evaluated FIS compared to the Target Output of the training 

features data.

Each generated FIS that had testing results that satisfied these numerical 

requirements was then recorded and saved onto a hard drive using the appropriate 

file naming scheme. The file naming scheme used to save each FIS unit was 

designed for ease of tracing and subsequent recall (load).

The naming scheme included the following information: a four-digits vibration data

code (trn_out_nnnn), type of Daubechies wavelet (dbn) used to process the data, 

decomposition level index of the data (Ln), number of swap index sequence (Sn), 

and the number of epochs (training cycles) (En) in which the FIS was generated.

An example of the FIS unit name generated is trn_out_2112_db44_L8_S7_E11_a.fis, 

which can be interpreted as the FIS generated, based on ANFIS training using data 

2112 (trn_out_2112), features / training data calculated using Daubechies 44 (db44) 

at decomposition level 8 (db44_L8).  The corresponding FIS unit was generated 

during the swap sequence 7 (S7) at Epoch 11 (E11). In addition, strings _a were used 

for the purpose of an internal identification process in showing which scheme of FIS 

algorithm was used. The strings .fis were the standard file name extensions of the 

Matlab Fuzzy Logic Toolbox used in saving a FIS file.

The corresponding text file employed the file names of four digits of data code used 

(fis_rec_nnnn), wavelet type (dbn), decomposition level (Ln) and swap cylcle 

number (Sn).

An example of the text file name was fis_rec_2112_db44_L8_S7.txt, by which 

fis_rec_2112 represents four digits of the original vibration data used, db44 
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represents the type of Daubechies wavelet used to generate the features data, L8 

represents the decomposition level of the features data, and S7 represents the swap 

index sequence in use during the training step. The extension .txt represents the type 

of file in use in the operating system (i.e., Windows).

All of the .fis and .txt files were later used in the detailed final selection process of all 

the FIS units obtained. The purpose of the final selection process was to select only 

the best FIS candidates.

5.11 RMS Error (RMSE) of ANFIS Training and Checking Data

There were two types of data used in the ANFIS training process. The first type of 

data was training data and the second was checking data.Training data was used to 

train the ANFIS model in order to produce FIS unit based on the data. The checking 

data was used to prevent model over-fitting during the training process (Mathworks, 

1998). Over-fitting or data generalisation was prevented through the use of the 

lowest RMS error of the checking data. In this case, the model parameters associated 

with the minimum value of the checking were used to generate a FIS unit. An 

example of the lowest checking error value is shown in Figure 5.23.
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Figure 5.23 RMS error (RMSE) of training and checking data

The lowest RMS error at epoch (iteration) number 32 is shown in a circle in Figure 

5.23. At this epoch, the FIS unit was selected as the appropriate result of the training 

process. FIS units constructed after an epoch of the lowest RMSE were not used or 

selected in order to prevent the FIS units having over-fitted characteristics. This 

shows the importance of using checking data in the ANFIS training process utilised 

in this research.

5.12 Selection of the Best FIS Units

There were hundreds of FIS units produced in the ANFIS training processes.

Therefore, a process to reduce the number of the FIS units that needed to be further 

examined was needed.

The reduction of the number of FIS units was carried out in the second evaluation 

and selection process. The second evaluation process could be seen also as a 
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verification process. The process was carried out by increasing the requirements or 

standards to filter the best useful candidate of the FIS units.

The verification process used an algorithm to load and test the stored and recorded 

FIS units of each vibration data set processed. The process utilised all of the 

information generated and stored from the main training procedures. In this case, 

information from all of the generated FIS in the form of .fis files (FIS file) and .txt 

files (FIS name) were loaded and used. The .fis files were the FIS units from the 

training processes while the .txt files contained information (names) of the FIS units.

The saved FIS units generated from a particular training session can be loaded into 

the workspace by using their name stored in a text file (.txt).

Each of the loaded FIS units was then tested using a similar scheme of requirements 

as those used during its generation in the main or core ANFIS training process. 

However, the evaluation process used a higher value of correlation check in selecting 

only FIS units which had correlation values > 0.99. The correlation check was 

calculated by comparing the correlation between the FIS Target Output results and 

the Target Output of the feature data used.

In the evaluation process, the same training data used to generate a FIS was used to 

evaluate its characteristics. Only the FIS units which produced correlation factors > 

0.99 between the FIS predicted Target Output and the training data Target Output 

were selected for the next processing step.

5.13 Final Evaluation Process

The final processing step aimed to evaluate the performance of the best FIS units. 

There were two parts in the final evaluation process. The first part (part A) is shown 

in Figure 5.24. In this part, the FIS units were evaluated using the same features 

(training) data which were used to generate the corresponding FIS units. In addition, 

the first part of the evaluation process aimed to get detailed information on the 

selected FIS units, such as which features were selected as Input1 and Input2, and 

which feature was selected as the Target Output.
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In the second part of the process, the FIS units were evaluated using different feature 

(training) data segments. Evaluation using different features (training) data aimed to 

test the generalisation characteristics of the FIS units.

5.13.1 Final Evaluation Process (Part A)

Unique FIS units were selected from storage and loaded. The procedure then 

continued to load the corresponding training data used to generate the FIS units. At 

this stage, the same training and checking data sets that were used to train the 

evaluated FIS were used again to check whether the FIS could reproduce a Target 

output (i.e., energy level) that matched that in the training data. The output of energy 

levels predicted by the evaluated FIS was then compared using a correlation 

relationship toward the energy level values of the same training data. The unity 

correlation value would show that the energy level predicted or produced by the 

evaluated FIS matched the one in the training data. The FIS units and correlation / 

recognition factors were obtained and stored in the workspace.
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Figure 5.24 FIS selection and evaluation scheme

The next step was the removal of any redundant FIS units leaving unique FIS units 

for evaluation. This was followed by loading the similar training / features data that 

had been used to generate the corresponding FIS units.
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The process entered a cycle in order to process all of the selected unique FIS units. In 

each cycle, a routine was used to extract information from the FIS to be evaluated. 

The information extracted was Input1, Input2, Target Output, Level of 

decomposition data, Swap indices. These indices referred to the details of an FIS unit 

which were embedded in the FIS when it was generated during the ANFIS training 

process. The information (indices) extracted showed which of the seven features 

were selected as Input1, Input 2 and the Target Output. It also showed which 

decomposition level data (i.e., 1 – 9) and Swap index (i.e., 1-7) were used during the 

ANFIS training.

The information gathered from the FIS unit under evaluation was used to determine 

which level of feature/training data would be used to evaluate the FIS unit. In 

particular, the information of Input 1 and Input 2 was used to assign which columns 

in the feature (training) data would be used as Inputs in the evaluation process. For 

instance, if the Input 1 index was 5 and the Input 2 index was 2 then the two inputs 

would be taken from column 5 and 2 of the feature (training) data. Column 5 refers 

to Standard deviation and column 2 refers to RMS. In this case, the FIS unit would 

be evaluated using Standard deviation and RMS features.

The index of Target Output determined which one of the seven features was selected 

in relationship to Input 1 and Input 2 during the production process of the FIS in the 

ANFIS training process. For instance, if the index of Target Output was 1, it referred 

to column 1 of the feature data which was the Energy level. In this example, it was 

shown that the FIS under evaluation would use the Standard deviation and RMS as 

inputs (Input 1 and Input 2) and it would produce the Energy level as the Target 

Output.

Once the suitable feature data was loaded and proper inputs and output values and 

names were assigned using the indices information obtained, then the FIS unit was 

evaluated. The evaluated FIS unit then produced the intended Target Output values.

The process continued with a step to compare the similarity between the FIS Target 

Output and the one in the features (training) data, and the similarity was measured 

using a correlation factor. A unity correlation factor meant that the FIS Target Output 
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and the one in the features (training) data were similar. It showed that the evaluated 

FIS unit was 100% accurate in producing the Target Output based on the two input 

features supplied.

The process continued with saving the correlation factor results and plot graphs of 

the FIS Target Output and the Target Output of the feature (training) data. The 

process was then continued on its cycle if there were further FIS units to be 

evaluated. Once all of the FIS units had been evaluated the process ended.

5.13.2 Final Evaluation Process (Part B)

All routines in part B of the evaluation were similar to the ones in part A with the 

exception that the features (training) data used were different than the one used to 

generate the evaluated FIS through ANFIS training. 

The objective of this final evaluation part was to test the performance of an FIS unit 

when it was supplied with a different feature data set. The different data is data that 

was not used to generate the evaluated FIS. This data was obtained using similar 

bearing fault conditions but it was acquired under different loading conditions and 

different shaft speeds. Part B of the evaluation process provided the ability to assess 

the generalisation of the evaluated FIS through the utilisation of different data 

segments in the evaluation process.
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Chapter 6 - Bearing Test Rig and Vibration Signal 
Acquisition

The fault detection scheme outlined in previous chapters was trialled using vibration 

data acquired from a test rig containing a bearing, sequentially and with and without 

fault. The conditions were tightly controlled with the faults being artificially 

introduced and exactly known. This controlled test data was then used to train the 

ANFIS to evaluate the scheme’s effectiveness and suitability for condition 

monitoring applications.

The data acquisition scheme that was used to acquire sets of bearing vibration signal 

is shown in Figure 6.1.

Figure 6.1 Data acquisition scheme

6.1 The Test Rig

A photograph of the bearing test rig is shown in Figure 6.2. It consists of a shaft 

driven by a variable-speed AC motor. The shaft was supported by two roller bearings 

that were known to be in good condition. The overhung shaft carried the test bearing 

within its floating housing. The bearing can be loaded in the radial and thrust 

directions by adjustable screws, the load being measured with strain gauge load cells. 

The rotational speed was set to be constant at 35 Hz (2100 RPM).

This particular speed was chosen based on the precaution to eliminate possible 

interference from half the AC power line frequency of 60/2 = 30 Hz. A constant 

speed was used for convenience, especially for reducing the number of variables that 

needed to be used or presented in the feature extraction process.
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Figure 6.2 Bearing test rig

Figure 6.3 Detail components of the test rig

6.2 Test Bearings

The bearing under test was a self-aligning double-row bearing (FAG 2307-TVH) as 

shown in Figure 6.3. 

This type of bearing was chosen for two reasons. Firstly, to accommodate the self-

inclination construction of the bearing test compartment of the test rig, and secondly, 

because this type of bearing is rarely used in fault diagnoses applications.
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The three types of faults used in gathering faulty vibration signals were outer race 

faults (ORF), inner race faults (IRF) and Ball faults (BF).  Faults were introduced 

(individually) into the test bearing by using an EDM wire-cut machine to cut a .7mm 

groove on the surface of the outer race, inner race and two axially aligned balls. 

Photographs of the test bearings and the types of faults are shown in Figure 6.4 to 

6.6, respectively.

Each bearing with its specific fault was then installed into the floating housing in the 

test rig. The bearing was then loaded by adjusting the radial and axial loading 

mechanisms. The load was displayed in Newtons by means of two calibrated load 

cells attached to the radial and axial pull rods. The radial load was set to 

approximately 1100 N and the thrust load to approximately 2100 N. Smooth loading 

adjustment was achieved by using a stack of cup springs (Belleville washers).

An accelerometer was attached at the upper surface of the tested bearing 

compartment with its active axis aligned with the radial load vector. This 

accelerometer was used to record the vibration signals.
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Figure 6.4 Test bearing with outer race fault

Figure 6.5 Test bearing with inner race fault
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Figure 6.6 Test bearing with balls fault

6.3 Accelerometer and Signal Conditioner

The accelerometer in use was an ICP Accelerometer model-353B03 from PCB 

Piezotronics. The accelerometer was stud-mounted on the test-rig bearing housing 

and connected to a conditioning box which also served as an amplifier. The signal 

conditioner in use was battery-powered ICP® sensor signal conditioner, model 

480E09 from PCB Piezotronics. Using the stud-mounting method, the accelerometer 

could achieve a bandwidth of up to 100 kHz according to its datasheet.

6.4 Analogue Anti-aliasing Low Pass Filter

An anti-aliasing filter with a cut-off frequency of 10 kHz was used to filter the 

vibration signal from the accelerometer. The analogue electronic filter in use was a 

Sallen-Key low-pass filter which was constructed using an LM 324 integrated 

circuit. A circuit schematic and details of this filter are presented in Appendix 4.
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6.5 Data Acquisition Device

The data acquisition hardware used was a National Instruments USB-6251 device 

which was driven and controlled using the Matlab Data Acquisition Toolbox. Matlab 

source codes used to control data acquisition process are listed in Appendix 5.

The vibration data of each fault type was acquired in multiple segments of 1 second 

in duration, using a sampling rate of 48 kHz (48192 data points per second) (Qiu et 

al. 2006). The time domain vibration signals from each tested bearing were saved in 

the form of binary files.

The sampling rate of 48 kHz was chosen for convenience, its only disadvantage 

being an increased file size. The anti-aliasing filter was rolled off at 10 kHz which is 

sufficient to provide useful vibration signals with a bandwidth below 10 kHz. This 

bandwidth is similar to the one used in Qiu et al. (2006).

6.6 Vibration Data Structure

For each test of each type of bearing fault, case data acquisition was carried out for 1 

second and then paused for 1 second. A 1 second pause was used to ensure that all of 

the acquisition data and process had been processed before continuing. This 

produced 984 data sequences of 48kHz data in the Matlab mat file format. There 

were 984 parts of 1 second’s duration acquired. The vibration data was then used to 

generate the seven numerical features viadiscrete wavelet transform (DWT), as 

described in the previous chapter.
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Chapter 7 – Fuzzy Inference System (FIS) and 
ANFIS Training Results

This chapter presents detailed characteristics of the Fuzzy Inference System (FIS) 

units obtained using the proposed method along with the related sensitivity 

comparison of db-n wavelet types used in the feature extraction method. The 

application results of the FIS units in the complete bearing fault classification system 

are presented.

There were four types of FIS unit produced by the proposed ANFIS training. These 

were based on the four types of fault feature data used in the ANFIS training 

procedures that aimed to build the FIS units, namely outer race faults (ORF) FIS, 

inner race faults (IRF) FIS, ball faults (BF) FIS and no fault (NF) FIS.

7.1 Outer Race Fault (ORF) FIS Units

The main characteristics of the FIS units obtained using the ORF feature data 

through ANFIS training was the association between Standard Deviation as Input 1, 

RMS as Input 2 and Energy level as the Target Output. Hence the structure of the 

ORF FIS units was based on Standard Deviation and RMS as Input 1 and Input 2 and 

Energy level as the Target Output.

By using the proposed method, the ANFIS model had the ability to capture the core 

relationships of the ORF feature data presented in the training session. As a result, it 

associated ORF features with the input-output relationships between Standard 

Deviation, RMS and Energy level features. Visualisation of the FIS unit structure 

obtained through the ANFIS training session using ORF features data is shown in 

Figure 7.1.
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Figure 7.1 Outer race fault (ORF) FIS unit structure

In Figure 7.1, the ORF FIS obtained from the ANFIS supervised training process had 

two associated inputs in relation to the single Target Output. These two inputs and 

the single output were selected and associated by the ANFIS model during the 

training session. 

The input and output association of the RMS, Standard Deviation, and Energy level 

were the best available characteristics selected by ANFIS from the ORF features data 

through the training process.

As an independent check of the FIS model, the ORF FIS units were supplied with the 

two suitable feature inputs (i.e., Standard Deviation and RMS features) and produced 

a matching pattern of Energy Level (Target Output). In this case, the Target Output 

pattern was independently produced by the ORF FIS units by using two suitable 

inputs that were generated through the wavelet-based feature extraction method 

utilised.

The Target Output (Energy level) pattern produced by the ORF FIS unit was 

matched to the Energy level pattern of the related feature in the training data. The 

matching was achieved due to the ANFIS training procedures which had successfully 

taught the ORF FIS to map the relationship between Standard Deviation (Input 1) 

and RMS (Input 2) towards the Energy level as the Target Output. The relationships 

between these three features were the best available characteristics the FIS units 

obtained through ANFIS training utilising wavelet-based ORF feature data.
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It was concluded that the result of the ANFIS training using the ORF features data 

produced FIS units that found associations between two inputs (RMS and Standard 

Deviation) as Input 1 and Input 2, with the Energy level as the Target Output.

7.2 FIS Units of Inner Race Fault (IRF) Training Results

The main characteristics of the FIS units obtained using IRF feature data through the 

ANFIS training process is shown in Figure 7.2.

Figure 7.2 Inner race fault (IRF) FIS unit structure

The IRF FIS units had an association of Standard Deviation as Input 1, Variance as 

Input 2 and Energy level as the Target Output. This input-output association gave the 

best available characteristics which were automatically obtained through ANFIS 

training using the IRF feature data.

It was concluded that the result of the ANFIS training using IRF feature data 

produced FIS units that found associations of two inputs (Standard Deviation and 

Variance) as Input 1 and Input 2 with Energy level as the Target Output.

7.3 Ball Fault (BF) FIS Results

Figure 7.3 shows the main characteristics of the FIS units obtained using BF feature 

data through the ANFIS training process.
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Figure 7.3 Ball fault (BF) FIS unit structure

The BF FIS units had an association of Variance as Input 1, Standard Deviation as 

Input 2 and RMS as the Target Output. This input-output association gave the best 

available characteristics which were automatically obtained through the ANFIS 

training process using BF feature data.

7.4 No Fault (NF) FIS Results

Figure 7.4 depicts the structure of the NF FIS units.The FIS units had an association 

of RMS as Input 1, Kurtosis as Input 2 and Standard Deviation as the Target Output

Figure 7.4 No fault (NF) FIS unit structure

This input-output association gave the best available characteristics which were 

automatically obtained through the ANFIS training process using NF feature data.

7.5 The summary of FIS units Input-Output Relationships

A summary of the selected two Inputs and Target Output features of the FIS units for 

all the fault cases based on the processed fault data is presented in Table 7.1.
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Table 7.1 Summary of FIS Selected Inputs – Target Output Relationships

Fault Type Input 1 feature Input 2 feature Target Output 
feature

Outer Race fault 
(ORF)

Standard 
Deviation

RMS Energy

Inner Race fault 
(IRF)

Standard 
Deviation

Variance Energy

Ball fault (BF) Standard 
Deviation

Variance RMS

No Fault (NF) RMS Kurtosis Standard 
Deviation

7.6 ANFIS Model Structure

The ANFIS model structure of ORF, IRF, BF and NF FIS units consist of five 

neuron layers as shown in Figure 7.5. This structure was similar to the ANFIS 

general structure proposed by Jang et al. (1993). The first layer was the input layer, 

the second was inputmf (input membership function), the third was the rule layer, the 

fourth was the outputmf (output membership function) and the last was the output 

layer. There were two inputs and a single output used as they were generated based 

on input-output features provided in the training and checking data.
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Figure 7.5 ANFIS Model Structure

There were 16 rules used and each rule connected to one of 16 outputmf (output 

membership functions). All of the 16 rules were constructed using AND logic. There 

were no OR and NOT logic operators used.

7.7 FIS Unit Evaluation and Selection Procedures

The evaluation process was carried out to assess performance of the FIS units 

obtained.  The aim of the procedure was to collect the FIS units which had the ability 

to produce an accurate Target Output. The accuracy level of the Target Output was 

set to a required level which was measured using a correlation factor value. In this 

case, the Target Output produced by a particular FIS unit was compared to the Target 

Output of the training data which was used to train and generate the corresponding 

FIS unit under investigation. The matching rate between these two Target Outputs 

was measured using correlation factors. An FIS unit which produced a matching rate 

 0.9 was selected as the best candidate to be used as a core classifier in a bearing 

fault classifier.

The evaluation process was carried out to assess the ability of the FIS units to 

produce matching Target Output patterns using only two suitable input features (i.e., 
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Input 1 and Input 2) which were generated from different fault data segments than 

those recorded in Table 7.1.

The ability to produce a matching Target Output was an important aspect that was 

used as an indicator to classify a particular bearing fault case. A bearing fault 

classification case was determined based on the ability of the FIS unit (classifier) to 

generate a matching Target Output using the suitable two inputs (Input 1 and Input 

2). The ability to produce a matching Target Output was based on the embedded 

fuzzy rules generated and tuned by the proposed ANFIS training procedures, using 

wavelet-based feature data of the ORF, IRF, BF and NF cases.

The accuracy level of an FIS unit in producing a matching Target Output was 

measured as the error level which was obtained by comparing the Target Output 

produced by an FIS unit with one of the checking data sets. The error values between 

these two Target Outputs were used to assess the performance of the FIS under 

investigation. The assessment process was carried out to select the best FIS units that 

were later used in the classification of fault cases.

Another objective of the evaluation process was to obtain information on the 

dominant db-n wavelet type in generating features data for ORF, IRF, BF and NF 

cases. The FIS units selected as the candidates for the final evaluation process were 

based on the lowest error achieved from across all of the db-n results obtained (i.e., 

db4, db8, db12, db22 and db44).

A block diagram of the selection scheme process that was used in the evaluation and 

selection processes of the best FIS unit is presented in Figure 7.6.
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Figure 7.6 Evaluation and selection scheme of FIS units

In Figure 7.6, the Data(i) represents the checking data segment used in the evaluation 

process. Db-n data(i) represents the group of checking data(i) which was generated 

based on db-n wavelets (i.e., db4, db8, db12, db22 and db44). Each of the db-n 

data(i) data was supplied to the FIS units. The resulting error rate of the 

corresponding FIS unit under investigation was then calculated. The process was 

carried out until all of the db-n data(i) was processed.

The results of FIS units of db4, db8, db12, db22 and db44 were then evaluated to 

obtain the lowest average error rate. The db-n FIS unit that had the lowest average 

error was then selected as the best FIS for the corresponding fault case.

7.7.1 Outer Race Fault (ORF) FIS Evaluation Result

In order to assess the performance of FIS units obtained from the ANFIS training 

sessions using ORF features data, the procedures explained in Section 5.2, with 

details depicted in Figure 7.6, were carried out.

The following section explains the evaluation results of the ORF FIS units generated 

using wavelet-based features that employed db4, db8, db12, db22 and db44 wavelets.

There were five groups of ORF FIS units obtained based on the number of db-n 

wavelet types used. Each group related to a Daubechies (db-n) wavelet-based feature 
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data set. These five groups of ORF FIS units were db4 ORF FIS units, db8 ORF FIS 

units, db12 ORF FIS units, db22 ORF FIS units and db44 ORF FIS units.

The performance evaluation process was employed to test and select the FIS units 

obtained based on the lowest error of Target Output criteria. The error level of the 

Target Output was obtained by comparing the error between the Target Output of 

FIS unit and one of the checking data sets.

The ORF FIS performance evaluation was carried out by testing the FIS units using 

seven checking ORF data sets. The testing was applied for five FIS units groups 

obtained from db4, db8, db12, db22, and db44 wavelet-based features.

The results of the evaluation process produced information on errors. The error 

information was obtained by comparing the FIS Target Output to the Target Output 

of the checking data. The FIS units that had the lowest error results during the testing 

process were the ones selected for use. In this process, the lower the error values, the 

more they represented a well-performing FIS unit.

In the evaluation process, two suitable inputs from each feature data set were 

supplied to the ORF FIS units. The corresponding Target Output produced by the 

ORF FIS units was then compared to the Target Output of the checking data sets. 

The error between the two Target Output values was then calculated. The generated 

error from the ORF FIS unit for each checking data set was visualised, as seen in 

Figures 7.7 to 7.11.

In Figures 7.7 to 7.11, the chkdata set axis represented seven checking data sets that 

were used to evaluate the FIS units obtained. The FIS unit axis represented the eight 

FIS units under evaluation. The z-axis represented the error or difference between the 

FIS Target Outputs and those of the checking data.

The data set chkdata no. 1 was the feature data set used in the production of the 

corresponding FIS during the ANFIS training session. The other chkdata sets were 

different ORF checking data sets which were acquired under different loading 

conditions.
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Figure 7.7 Evaluation results of db4 ORF FIS units

Figure 7.7 shows the evaluation results of ORF FIS units that were generated through 

ANFIS training using the features processed using db4 wavelet-based features. 

Figure 7.7 shows that FIS unit no. 1, 2 and no. 3 produced lower error values across 

the checking data. These two FIS units were selected for comparison with the other 

evaluation results of the db8, db12, db22, and db44.
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Figure 7.8 Evaluation results of db8 ORF FIS units

Figure 7.8 shows the evaluation results of the ORF FIS units that were obtained 

through ANFIS training, using the features data processed using the db8 wavelet. 

The FIS units no. 1 and no. 5 produced lower errors compared to the others. Based 

on these results, FIS units no. 1 and no. 5 were selected for further comparison. 

These two FIS units were compared to the evaluation results of ORF FIS db4, db12, 

db22, and db44 units.
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Figure 7.9 Evaluation results of db12 ORF FIS units

Figure 7.9 shows the evaluation results of the ORF FIS units that were obtained 

through ANFIS training using the features data that was processed using the db12 

wavelet. FIS units no. 1 and no. 5 produced lower errors compared to the others. FIS 

units no. 1 and no. 5 results were compared to the evaluation results of ORF FIS db4, 

db8, db22, and db44 units.
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Figure 7.10 Evaluation results of db22 ORF FIS units

Figure 7.10 shows the evaluation results of the ORF FIS units that were obtained 

through ANFIS training using the feature data processed using db22 wavelet. FIS 

units no. 1, no. 5 and no. 6 produced lower error values compared to the others. The 

results of FIS units no. 1, no. 5 and no. 6 were selected for a further comparison with 

results from the evaluation results of ORF FIS db4, db8, db12 and db44 units.
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Figure 7.11 Evaluation results of db44 ORF FIS units

Figure 7.11 shows the evaluation results of the ORF FIS units that were obtained 

through ANFIS training using the feature data processed using db44 wavelet. FIS 

units no. 1, no. 5 and no. 6 produced lower errors across the checking data used. FIS 

units no. 1, no. 5, and no. 6 were selected for further comparison with the evaluation 

results of db4, db8, db12, and db22 ORF FIS units.

After evaluating the ORF FIS results, all evaluation results obtained from db4, db8, 

db12, db22 and db44 of ORF FIS units were compared. It was found that the overall 

lowest error results were produced by the FIS units generated using db4 wavelet-

based features.

The visual information on the average errors is shown in Figure 7.12. The lowest 

error was achieved by the db4 ORF FIS units group. The FIS units of this group were 

selected as the best candidate FIS units for use as fault classifiers. The FIS units were 

produced through the utilisation of statistical and wavelet-based features data 

generated from outer race fault (ORF) bearing vibration signals.
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Figure 7.12 Average errors of all db-n results of ORF FIS units

Figure 7.13 (a) ORF FIS Target Output and training data Target Output, (b) error 
between FIS Out and training data Target Output

The performance of the selected ORF FIS units in producing the intended Target 

Output (FIS Out) values based on two inputs (Input 1 and Input 2) is shown in Figure 

7.13 which shows the ORF FIS unit output pattern in comparison to the Target 
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Output of the checking data used to evaluate the corresponding selected ORF FIS 

unit. The x-axis represents number of training data points (498) and the y-axis 

represents the amplitude of the Energy level.

Figure 7.13(a) shows the Target Output of ORF FIS under evaluation when presented 

with Standard Deviation as Input 1 and Variance as Input 2 and the Target Output of 

the checking data that had to be matched by the ORF FIS unit under evaluation. 

Figure 7.13(b) shows the error between the FIS output and the Target Output. The 

error was of the magnitude 10-5 order which was considered to be valid.

The characteristics of the ORF FIS units in producing the Target Output values based 

only on Input 1 and Input 2 represented the ability to capture the most distinct 

relation of input-output of the seven features that were presented in the training data. 

The assignment of Standard Deviation and RMS as Input 1 and Input 2 related to 

Energy level as the Target Output was the characteristic that was automatically 

obtained by the ANFIS model through the training process. In this case, the ANFIS 

training process was able to learn and map the unique relationships of the three 

features out of the seven provided in the ORF training data. The ORF input-output 

relationship was an important characteristic for the purposes of ORF case 

classification since the unique input-output relationship applies only to the ORF case.

7.7.2 Inner Race Fault (IRF) FIS Performance Evaluation

The procedures used to evaluate the IRF FIS units was similar to the one used for the 

OR FIS units, as explained in Section 7.7.1.

It was found that the overall lowest error results were produced by the IRF FIS units 

generated using db12 wavelet-based features. The finding was based on the 

evaluation of the IRF FIS results that were obtained by comparing all evaluation 

results of db4, db8, db22 and db44 of IRF FIS units.

The test results of the IRF FIS obtained through ANFIS training by using db12 fault 

features data is shown in Figure 7.14. There were eight FIS units evaluated using 14 

checking data sets. The lower error trend results are shown by IRF FIS no.1 and FIS 

no. 4.
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Figure 7.14 Test results of db12 IRF FIS units

The evaluation results of the six selected db12 IRF FIS units through the use of 14 

checking data sets were shown in Figure 7.14 which shows that the lowest error was 

achieved by FIS units no.1 and 4. 

Information in Figure 7.14 was used to evaluate and select IRF FIS units of db12 that 

were intended for use as fault classifiers. Figure 7.14 shows that a lower error value 

was produced by FIS no. 1 and FIS no. 4 across the testing results of a 14 checking 

data set. The lowest error values produced by the db12 IRF FIS units were used as a 

standard in selecting the FIS units.
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Figure 7.15 (a) IRF FIS Target Output and training data Target Output, (b) error 
between FIS out and training data Target Output

Figure 7.15 shows IRF FIS unit output pattern based on Input 1 and Input 2 that was 

compared to the Target Output of the checking data used to evaluate the 

corresponding selected IRF FIS unit. The x-axis represents the number of training 

data points (498) and the y-axis represents the amplitude magnitude of the Energy 

level.

Figure 7.15(a) shows the Target Output of the IRF FIS under evaluation when it was 

supplied with Standard Deviation as Input 1 and Variance as Input 2. It also shows 

the Target Output of the checking data that had to be matched by the IRF FIS unit 

under evaluation. The error between the FIS Output and the training data Target 

Output is shown in Figure 7.15(b).

The characteristics of the IRF FIS units able to produce the Target Output based only 

on Input 1 and Input 2 represented the ability to capture the most distinct input-

output relation of the seven features presented in the training data.
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7.7.3 Ball Fault (BF) FIS Performance Evaluation

The overall lowest error results were produced by ball fault (BF) FIS units which 

were generated using db8 wavelet-based features. This finding was based on the 

evaluation of all BF FIS performance results that were obtained by comparing all 

evaluation results of db4, db12, db22 and db44 of BF FIS units.

The performance evaluation results of BF FIS units are presented in Figure 7.16 

which show eight FIS units that were evaluated using 19 checking (chkdata) data 

sets. The lowest error was produced by BF FIS units nos. 1, 2, 5 & 6. An additional 

evaluation process was carried out to select the lowest average error results among 

the results of FIS units nos. 1, 2, 5 & 6.

Figure 7.16 Test results of db8 BF FIS
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Figure 7.

The results of the additional selection proces

depicted in Figure 7.17. Th

overall performance using 19 checking data sets was yielded by BF FIS no. 1, 

hadthe lowest average error. Hence the BF FIS no. 1 was selected as the candidate 

for the fault classifier of BF case.

Figure 7.18 shows the BF FIS unit output pattern in comparison to the Target Output 

of the checking data used to evaluate the corresponding BF FIS unit. The 

represents the number of training data points (498) and the 

amplitude magnitude of the Energy level. 

Figure 7.18(a) shows the Target Output of the BF FIS under evaluation when it was 

supplied with Standard Deviation as Input 1 and Variance as Input 2. It also shows 

the Target Output of the checking data that had to be mat

under evaluation. The error between the Target Output and the FIS output is shown 

in Figure 7.18(b).
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Figure 7.17 Average errors of db8 BF FIS nos. 1, 2, 5 

The results of the additional selection process for BF FIS units no

depicted in Figure 7.17. This shows that the lowest average error resulting from 

overall performance using 19 checking data sets was yielded by BF FIS no. 1, 

average error. Hence the BF FIS no. 1 was selected as the candidate 

for the fault classifier of BF case.

Figure 7.18 shows the BF FIS unit output pattern in comparison to the Target Output 

of the checking data used to evaluate the corresponding BF FIS unit. The 

represents the number of training data points (498) and the y-

magnitude of the Energy level. 

Figure 7.18(a) shows the Target Output of the BF FIS under evaluation when it was 

supplied with Standard Deviation as Input 1 and Variance as Input 2. It also shows 

the Target Output of the checking data that had to be matched by the BF FIS unit 

under evaluation. The error between the Target Output and the FIS output is shown 
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1, 2, 5 & 6
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is shows that the lowest average error resulting from 

overall performance using 19 checking data sets was yielded by BF FIS no. 1, which 

average error. Hence the BF FIS no. 1 was selected as the candidate 

Figure 7.18 shows the BF FIS unit output pattern in comparison to the Target Output 

of the checking data used to evaluate the corresponding BF FIS unit. The x-axis 

-axis represents the 

Figure 7.18(a) shows the Target Output of the BF FIS under evaluation when it was 

supplied with Standard Deviation as Input 1 and Variance as Input 2. It also shows 

ched by the BF FIS unit 

under evaluation. The error between the Target Output and the FIS output is shown 
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Figure 7.18(a) the BF FIS Target Output and training data Target Output, (b) error 
between the FIS out and the training data Target Output

The characteristics of the BF FIS units able to produce the Target Output values 

based only on Input 1 (Standard Deviation) and Input 2 (Variance) represents the 

ability to capture the most distinct input-output relationship of the seven features 

presented in the training data.

Note that even though Input 1 and Input 2 of the BF FIS are similar to those of the 

IRF FIS, the Target Output for the BF FIS is RMS which is different to that for IRF 

FIS (i.e., Energy level).

7.7.4 No Fault Performance Evaluation

The overall lowest error results were obtained from the no fault (NF) FIS units 

generated using db44 wavelet-based features. The performance evaluation results of 

these NF FIS units are presented in Figure 7.19.

Figure 7.19 shows that the lowest average error using six checking data sets was 

yielded by NF FIS nos. 1, 2, 5 &6.
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There were eight NF FIS units that were evaluated using 6 checking 

sets. The lowest error trend was sho

evaluation process using only data from the NF FIS unit nos. 1, 2, 5 

out to obtain the lowest average error results among the result

2, 5 and 6.

The graphical results of the average err

in Figure 7.20.
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Figure 7.19Test results of db44 NF FIS

There were eight NF FIS units that were evaluated using 6 checking 

sets. The lowest error trend was shown by NF FIS unit nos. 1, 2, 5 

evaluation process using only data from the NF FIS unit nos. 1, 2, 5 

out to obtain the lowest average error results among the results of the FIS unit 

The graphical results of the average error of NF FIS unit nos. 1, 2, 5 
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There were eight NF FIS units that were evaluated using 6 checking (chkdata) data 

wn by NF FIS unit nos. 1, 2, 5 & 6. An 

evaluation process using only data from the NF FIS unit nos. 1, 2, 5 & 6 was carried 

s of the FIS unit nos. 1, 

or of NF FIS unit nos. 1, 2, 5 & 6 are shown 
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Figure 7.20 Average error of db44 FIS nos. 1, 2, 5 & 6

Figure 7.21 shows the NF FIS unit output compared to the Target Output of the 

checking data sets which was used in the evaluation process.
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Figure 7.21 (a) NF FIS Output and training data Target Output, (b) error between NF 
FIS output and training data Target Output

Figure 7.21(a) shows the NF FIS output when supplied with RMS as Input 1 and 

Kurtosis as Input 2. It also shows the training data Target Output that must be 

matched by the NF FIS unit under evaluation. The error between the FIS output and 

the training data Target Output is shown in Figure 7.21(b).

The ability of the NF FIS units to produce the Target Output based only on Input 1 

and Input 2 represents the most distinct input-output relationship of the seven 

features presented in the training data. This input-output relationship was an 

important aspect for the purpose of NF case classification since it is uniquelyapplied 

in the NF case.

7.8 Sensitivity Comparison of db-n Wavelet-based Feature Schemes

The db-n sensitivity comparison of the ORF, IRF BF, and NF FIS units aimed to find 

which type of Daubechies (db-n) wavelet was sensitive in relation to the feature 

extraction of the seven features for each of the ORF, IRF, BF and NF cases. 
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The investigation focused on finding which type of db-n wavelet used to generate 

feature data yielded the lowest error in the FIS unit implementation for ach fault 

case. 

The FIS units of the db-n based wavelet which gained the lowest average error were 

used as indicators showing that a particular type of db-n was the most sensitive or 

suitable for use in producing the seven feature data sets provided for the ANFIS 

training.

The sensitivity comparison results were obtained by investigating the average lowest 

error among the FIS units which were generated using db4, db8, db12, db22 and

db44 wavelets for each type of fault condition. 

7.8.1 Outer Race Fault (ORF) db-n Sensitivity Comparison

The db-n output error comparison of the ORF FIS is depicted in Figure 7.22. There 

were 7 checking data sets used to evaluate the db4, db8, db12, db22 and db44 FIS 

units.
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Figure 7.22 Average errors of all db-n results of ORF FIS units

The comparison of the overall db-n sensitivity was based on the error values obtained 

from all db-n ORF FIS Target Outputs and compared to the Target Outputs of the 

chkdata.

In Figure 7.22, the overall lowest error of Target Output was achieved by FIS units 

produced using db4 features data. The finding implies that Daubechies 4 (db4) 

wavelet was the most sensitive db-n wavelet (the best wavelet function) for use in 

generating the seven feature data sets for the ORF in the ANFIS training process. 

The total average error of the results of Figure 7.22 is summarised in Figure 7.23.
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Figure 7.23

In Figure 7.23, the db4 FIS unit yielded the lowest total average error. Hence it was 

concluded that the best wavelet type to generate seven features was the db4. 

7.8.2 Inner Race Fault (IRF) db

The db-n output error comparison of the IRF FIS is depicted in Figure 7.24. There 

were seven checking data sets used to evaluate db4, db8, db12 

was noted that there were no FIS unit candidates available for 
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23 Average errors of all db-n results of ORF FIS units

In Figure 7.23, the db4 FIS unit yielded the lowest total average error. Hence it was 

concluded that the best wavelet type to generate seven features was the db4. 

7.8.2 Inner Race Fault (IRF) db-n Sensitivity Comparison

n output error comparison of the IRF FIS is depicted in Figure 7.24. There 

were seven checking data sets used to evaluate db4, db8, db12 and

was noted that there were no FIS unit candidates available for the 
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n results of ORF FIS units

In Figure 7.23, the db4 FIS unit yielded the lowest total average error. Hence it was 

concluded that the best wavelet type to generate seven features was the db4. 

n output error comparison of the IRF FIS is depicted in Figure 7.24. There 

and db44 FIS units. It 

the db22 group.
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Figure 7.24 Average error across all db-n results of IRF FIS units

The comparison results of the overall db-n sensitivity (suitability) based on the error 

values among db-n IRF FIS Target Output compared to the Target Output of chkdata 

are depicted in Figure 7.24. The lowest error of the Target Output was achieved by 

the FIS units producing db44 features data. Hence it was implied that the Daubechies 

44 (db44) wavelet was the most sensitive (the best wavelet function) for use in 

generating the seven-feature data for IRF for the ANFIS training process.

The total average error of the results of Figure 7.24 is summarised in Figure 7.25.
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Figure 7.25

In Figure 7.25, the db44 FIS units yielded the lowest total average error. It was 

concluded that the db44 wavelet was the most sensitive (the best wavelet function) to 

generate the seven features data for the IRF case.

7.8.3 Ball Fault (BF) db

The db-n output error comparison of the BF FIS is depicted in Figure 7.26. There 

were seven checking data sets used to evaluate db4, db8, db12 
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25 Average error of all db-n results of IRF FIS units

In Figure 7.25, the db44 FIS units yielded the lowest total average error. It was 

concluded that the db44 wavelet was the most sensitive (the best wavelet function) to 

generate the seven features data for the IRF case.

7.8.3 Ball Fault (BF) db-n Sensitivity Comparison

n output error comparison of the BF FIS is depicted in Figure 7.26. There 

were seven checking data sets used to evaluate db4, db8, db12 and
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FIS units

In Figure 7.25, the db44 FIS units yielded the lowest total average error. It was 

concluded that the db44 wavelet was the most sensitive (the best wavelet function) to 

n output error comparison of the BF FIS is depicted in Figure 7.26. There 

and db44 FIS units.
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Figure 7.26 Average error of all db-n results of BF FIS units

The comparison results of the overall sensitivity, based on error values for all db-n 

BF FIS Target Outputs was compared to the Target Output of chkdata set. The 

results are shown in Figure 7.26. The lowest error of Target Output was achieved by 

the BF FIS unit producing the db8 features data. It was concluded that the 

Daubechies 8 (db8) wavelet was the most sensitive (suitable) wavelet type for use in 

generating features data for the IRF case.

The total average error of the results of Figure 7.26 is summarised in Figure 7.27.
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Figure 7.

7.8.4 No Fault (NF) db
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FIS Target Output was compared to the Target Output of chkdata set. The results are 

shown in Figures 7.28 and 7.29. The lowest error of Target Output was achieved by 

NF FIS units producing db44 features data. Hence it was concluded that
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generating features data for the NF case.
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The comparison results of the overall sensitivity based on error values of all db-n NF 

FIS Target Output was compared to the Target Output of chkdata set. The results are 

shown in Figures 7.28 and 7.29. The lowest error of Target Output was achieved by 

NF FIS units producing db44 features data. Hence it was concluded that Daubechies 

44 (db44) wavelet was the most sensitive or suitable wavelet type to be used in 
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Figure 7.28 Average error of all db-n results of NF FIS units

The total average error of the results of Figure 7.28 is visualised in Figure 7.29.

Figure 7.29 Average error of all db-b results of NF FIS units
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In Figure 7.29, the db44 FIS unit yielded the lowest total average error. It was 

concluded that the db44 wavelet was the best wavelet for generating the seven 

features data for NF case. 

7.9 The Application of the FIS Units as Fault Classifiers

In this study, the FIS units of ORF, IRF BF and NF were applied and tested in an 

automatic bearing fault classification system. The scheme of the system is shown in 

Figure 7.30. The Matlab code for the fault classification system in Figure 7.30 is 

listed in Appendix 6.
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Figure 7.30 Application scheme of the FIS unit as a bearing fault classifier

In the application of the system, vibration signals being investigated were processed 

using the proposed wavelet-based feature extraction to generate the seven extracted 

features. The features were generated using the most sensitive Daubechies (db-n) 

wavelet type for each type of fault case. The proposed feature extraction method was 

used to provide input-output information (input features and output feature) 

previously obtained for each fault case. The information was used to assemble the 

input-output features data set. The assembled features data was then sent to the 
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appropriate FIS unit (core classifier).  The FIS unit (core classifier) then produced 

the particular Target Output based on the presented parameters of Input 1 and Input 

2.

The information of the two dominant inputs (Input 1 and Input 2) for each fault case 

was taken from the information of the known two dominant input-outputs related to a 

specific fault case (i.e., ORF, IRF, BF or NF). This input information is shown in 

Table 7.2.

Table 7.2 Summary of FIS Selected Inputs – Target Output features

Fault Type Input1 Feature Input2 Feature Target Output 

Feature

Outer Race fault 

(ORF)

Standard 

Deviation (6)

RMS (2) Energy (1)

Inner Race fault 

(IRF)

Standard 

Deviation (6)

Variance (7) Energy (1)

Ball fault (BF) Standard 

Deviation (6)

Variance (7) RMS (2)

No Fault (NF) RMS (2) Kurtosis (3) Standard 

Deviation (6)

As shown in Table 7.2, the statistical and Energy level features showed input-output 

relationships in each fault case. These relationships were the results obtained 

automatically by the ANFIS model. The relationships were used to construct the FIS 

units for all fault cases investigated.

The two dominant inputs (Input 1 and Input 2) listed in Table 7.2 were used to 

instruct the classifier (FIS unit) to generate or produce the Target Output in each 

fault case classification process. The Target Output was later used as a parameter or 

indicator in determining the type of bearing fault. The online Target Output was then 

compared to the Target Output of fault patterns stored in the database (training data). 

The online Target Output and that stored in the database were compared for 
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similarity. The similarity results of these two Target Outputs were presented as 

correlation numbers. The correlation result was used as an indicator to determine the 

type of fault or diagnosis results in conjunction with matching the checked results of 

the Input indexes.

7.10 Fault Classification Results

The overall fault classification results of the system shown in Figure 7.31 have been 

investigated using the complete sets of vibration features data. The results are shown 

in Table 7.3.

The success-rate of the FIS classifiers to differentiate non-related fault features data 

was varied. The classifier system shown in Figure 7.31 was tested by using different 

types of fault data (i.e., different loading conditions) to test the different FIS units 

implemented. There were cross checking processes carried out to evaluate how ORF, 

IRF, BF and NF FIS units performed when these FIS units were subjected to non-

related fault features data. For instance, the ORF classifier (FIS unit) was subjected 

to IRF, BF and NF features data that was generated for each corresponding vibration 

signal that contained each type of fault.

The ability of ORF, IRF, BF and NF FIS units to differentiate non-related features 

data is shown as a “percentage of recognition” in Tables 7.3a –7.3d.

Table 7.3a Summary of NF FIS Classification Rates

FIS db-n Recognition 
Rate

Remarks

NF FIS db12 100% (NF self recognition) fault case 

NF FIS db4 27% (ORF recognition) non-related case

NF FIS db4 27% (IRF recognition) non-related case

NF FIS db4 77% (BF recognition) non-related case
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Table 7.3b Summary of BF FIS Classification Rates

FIS db-n
Recognition 

Rate
Remarks

BF FIS db22 100% (BF self recognition) fault case 

BF FIS db12 0% (ORF recognition) non-related case

BF FIS db12 0% (IRF recognition) non-related case

BF FIS db12 0% (NF recognition) non-related case

Table 7.3c Summary of IRF FIS Classification Rates

FIS db-n
Recognition 

Rate
Remarks

IRF FIS db12 93% (IRF self recognition) fault case 

IRF FIS db8 32% (ORF recognition) non-related case

IRF FIS db22 95% (BF recognition) non-related case

IRF FIS db22 89% (NF recognition) non-related case

Table 7.3d Summary of ORF FIS Classification Rates

FIS db-n
Recognition 

Rate
Remarks

ORF FIS db44 99% (ORF self recognition) fault case 

ORF FIS db4 56% (IRF recognition) non-related case

ORF FIS db4 88% (BF recognition) non-related case

ORF FIS db4 77% (NF recognition) non-related case

The high percentages for all self-recognitions (fault cases) showed that the FIS 

classifiers achieved a high recognition of the related fault case, which the units which 

recognised and classified for the purposes of bearing fault diagnosis.

Clearly, low percentages are preferred for the successful identification of all non-

related cases of fault feature data for the classifiers. These conditions are preferred in 

the classification process as they produce better performance and reduce 

misclassification results.
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Figure 7.31 Overall FIS classifiers recognition rate

The summary of recognition rate (classification rate) shown in boldface font in Table 

7.3a through Table 7.3d is depicted in Figure 7.31. The recognition rate represents 

the successful classification rate of each fault case achieved by the FIS units used in 

the bearing fault classification system. The classification rate for NF and BF FIS 

units achieved an overall recognition rate of 100%. The recognition rate of IRF units 

achieved 93% and ORF FIS units achieved a 99% recognition rate.
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Figure 7.32 Overall FIS classifiers mis-classification rate

A summary of the non-related case classification rate is shown in Table 7.3a through 

Table 7.3d and visualised in Figure 7.32. Only the BF FIS units (classifiers) achieved 

0% mis-classification when tested with non-related cases data. The non-related data 

was fault feature data that was not generated from a vibration signal containing the 

same fault case.  In this context, the BF FIS unit used in the bearing fault 

classification system successfully identified the BF case as intended. The ORF, IRF 

and NF cases were completely rejected. The BF classifier reacted only to classify the 

BF case and it was therefore not confused with other cases.

The mis-classification rate (confusion rate) of NF, ORF and IRF varied, as shown in 

Figure 7.32(a), 7.32(c) and 7.32(d). The mis-classification rate ranged from a low of 

48% to 95% at the highest. The FIS units obtained for NF, ORF and IRF cases had 
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the highest mis-classification rate for BF cases. The NF, ORF and IRF FIS classifier 

had a high tendency to mis-interpret BF feature data as NF, ORF or IRF cases.

There are several findings which are highlighted based on the information shown in 

Tables 7.3a – Table 7.3d. The findings were as follows:

7.10.1 No Fault (NF) Classifiers

The NF FIS units used as classifiers achieved 100% recognition for a signal with No 

Fault (NF). The rejection percentage of NF classifiers towards non-related cases of 

ORF and IRF cases was 73%. However, it was found that the rejection percentage 

towards BF cases was low at 33%. This showed that the NF classifier had a tendency 

to misclassify a BF case as an NF case 77% of the time. It was also found that NF 

FIS generated from db12 was chosen for the purpose of classifying the NF cases, 

while NF FIS units generated from db4 were used to classify other non-related cases 

(ORF, IRF, and BF).

This means that in the application of the NF classifier, it produced 100%, or a unity 

correlation in the classification result for its related case (i.e., NF case). For other 

non-related cases, it would not produce a result > 73% (correlation > 0.73) for the 

three other fault cases (i.e., ORF, IRF and BF). Preferably, the results for the other 

(non-related) cases would be < 50%. It would therefore be useful to distinguish the 

NF case from the others.

7.10.2 Ball Fault (BF) Classifiers

The BF FIS units that used as classifiers achieved 100% recognition for signals with 

a ball fault (BF). The rejection percentage of BF classifiers towards non-related cases 

of ORF and IRF cases was 100%. This meant that the BF classifiers had 0% 

tendency toward misclassification for all non-related cases. BF FIS units generated 

from db22 were chosen to to classify the BF cases and for ORF, IRF, and NF cases.

In the testing process of the BF FIS, It produced correct classification for BF cases 

with a 100 per cent success rate or unity correlation. For non-related cases of ORF, 

IRF and NF cases, it produced non-unity correlation, which meant that the classifier 

would not produce any classification result for the fault cases which were not 
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intended to be classified. This is preferred as the BF FIS does not react to produce 

any correlation for the other fault cases which are not intended to be classified, while 

producing 100% correlation for the BF case.

7.10.3 Inner Race Fault (IRF) Classifiers

IRF FIS used as classifiers achieved a 93% recognition rate for signals with an inner 

race fault (IRF). 

This means that the IRF FIS would only produce a result of 93% (0.93 correlation) 

out of the preferred 100% (unity correlation) for the intended classification of the 

IRF case. 

The rejection percentage of IRF classifiers towards non-related cases of ORF was 

32%. It meant that the IRF classifiers had a 68% tendency to misclassify an ORF 

case as an IRF case. 

The classifier produced a 68 % (0.68 correlation) result for the non-intended ORF 

case which was preferred to be 0 % (non unity correlation result).

For non-related cases, or non-related signals of BF, the rejection percentage of the 

IRF classifier was 5%. It meant that the IRF classifiers had a 95% tendency to 

misclassify in BF cases.

The classifier produced 95 % (0.95 correlation) result for the non-intended BF case 

which was preferred to be 0% (non unity correlation) result. This result could 

produce confusion in conclusions regarding faults, since the correlation result of non-

intended fault cases (i.e., BF case) is higher than the correlation result for the 

intended cases. It is clear that further refinement is needed to reduce the correlation 

produced by the IRF classifiers for the non–related BF case. Hence it would then not 

produce such a high correlation classification result for the BF case which could lead 

to mis-classification results in using this classifier.

For non-related cases of NF, the rejection percentage of the IRF classifier was 11%. 

This meant that the IRF classifiers had an 89% tendency towards misclassification of 
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NF cases. That is, the classifier produced a 0.89 correlation for the non-intended NF 

case. 

This result implies that a further refinement for the classifier is needed to reduce the 

correlation result of the classifier (preferably < 50%) for the classification of the non-

related IRF case.

IRF FIS units generated from db12 were chosen to classify the IRF case. IRF FIS 

units generated from db8 were used to classify non-related case of ORF. IRF FIS 

units generated from db22 were used to classify non-related cases of BF and NF.

7.10.4 Outer Race Fault (IRF) Classifiers

ORF FIS units used as classifiers achieved a 99% recognition rate (0.99 correlation) 

(of successful classification) for signals with outer race faults (ORF). The rejection 

percentage of ORF classifiers for non-related cases of IRF was 44%. This meant that 

the ORF classifiers had a 56% tendency toward misclassification or showed a 0.56 

correlation for IRF cases.

This result is preferred since the difference between the intended ORF case 

correlation and the non-intended ORF case was sufficient distinguish them.

The rejection percentage of ORF classifier for non-related case of BF was 12%. It 

meant that the BF classifiers had 88% tendency of misclassification for BF case. This 

result is a not preferred one since the classifier produced a 0.88 correlation to the BF 

case which is not intended for it. A refinement process could be done to improve the 

rejection characteristics of the ORF classifier towards the BF case.

The rejection percentage of ORF classifiers for non-related cases of NF was 23%. 

This meant that the NF classifiers had a 77% tendency toward misclassification for 

NF cases.

These results imply that a refinement process should be carried out to reduce the high 

percentage (i.e, 77%) of mis-classification tendency (0.77 correlation) of the ORF 

classifier towards the NF case.
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ORF FIS generated from db8 was chosen to classify the ORF case, while ORF FIS 

units generated from db4 were used to classify non-related cases (IRF, BF and NF).

7.11 Unrelated Features

The introduction of cA_x and cA_y parameters into features data for ANFIS training 

showed no significant relationship to other features as these two parameters were not 

selected by the ANFIS model during training sessions. The parameters or features 

were not related to Inputs or Output in the ANFIS features selection used to construct 

a FIS unit of each investigated fault case. This implied that these two features could 

have been left out as features without detriment to the building of fault classifiers 

through ANFIS training.

7.12 Test of ClassifiersUsing Different Data

The test of classifiers (FIS units) using external vibration data obtained from another 

test rig at NASA was also carried out. The test aims to assess the applicability of the 

produced classifier.

Suitable data for the test was found at the URL:

http://ti.arc.nasa.gov/m/project/prognostic-repository/bearing_IMS.zip. 

The details regarding the bearing data is available on a readme document provided 

within the zip file on the site. This data was also used in a study of roller bearing 

prognostics by Qiu et al. (2006).

There are three sets or group of data available. However, only one set of data could 

be used as it had clear documentation regarding the type of fault. The data set 

number 2 (second test data) was seen as suitable for the purposes of testing the FIS 

classifier. This data contained an ORF case which was acquired during the “go to 

fail” life-test of a roller bearing. The data set also contained the file number that 

matched the file number used in this research.

The second group or the second test of the NASA repository contained 4 columns of 

data sets. All of this column-data was used to generate the required features (i.e., the 

seven features) through the use of wavelet transforms and statistical parameters, as 

proposed in this research. The seven features were then used to test the 
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corresponding classifier (i.e., the ORF classifier). The related two dominant inputs 

(Input 1 and Input 2) and the Target Output which represent the characteristics of the 

ORF case embedded in the structure of the classifier were used to select the correct 

input-output. In this case, for the ORF case, the two inputs were Standard Deviation 

(Input 1) and RMS (Input 2). The Target Output was the Energy level.

The results were similar for all four columns of data sets used. An example of the 

results is shown in Figure 7.33.

Figure 7.33ORF FIS Target Output and training data Target Output, (b) error 
between FIS Out and training data Target Output using NASA bearing data

It is shown from the results depicted in Figure 7.33 that the ORF FIS classifier shows 

similar characteristics to those shown by using in-house vibration data. The ORF 

classifier produced an accurate Target Output with an error in the magnitude of 310

which was based on Standard Deviation and RMS features. This result shows that in 

general, the ORF classifier is able to produce an accurate Target Output for the 

features data of similar fault cases used in the training. The ORF classifier shows a 

general applicability to an ORF case. It was able to recognise the relationships 
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between input-output of features data, even if the features data was generated from a 

different test rig or from a different fault investigation project.

The next step of the test, which was conducted using the external data, was to test the 

ORF classifier with different sets of data which were not related to an ORF case. In 

this case, the first test data set from the NASA repository, which was not an ORF 

case, was used. This data set contained vibration signals from a spall fault in the 

roller bearing which was subjected to a life-span test.

The data set contains 8 columns each. There were only four data columns used for 

the simplicity of generating the seven features using the proposed wavelet transform 

and statistical parameters techniques. The features data was then used to test the ORF 

classifier. The results were similar for all four columns of data sets used. An example 

of the results is shown in Figure 7.34.

Figure 7.34 ORF FIS Target Output and training data Target Output, (b) error 

between FIS Out and training data Target Output using NASA bearing data for a non 

related case

The ORF classifier produced a larger scale of error when it was tested using non-

related features data. Figure 7.34(b) shows this finding in which the error scale of the 



Chapter 7 – FIS and ANFIS Training Results 188

Target Output for non related cases was of the magnitude of 110 . In Figure 7.33(b), 

for the ORF (related) case, the error scale was of the magnitude of 310 .These 

findings suggest promising results in the context of the general applicability of the 

proposed method.  The Target Output errors for the ORF case and the non-related 

cases show a distinct level of error which may be useful for the purposes of further 

fault classification.
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Chapter 8 - Conclusions and Future Research

8.1 Conclusions

The proposed feature extraction and classification scheme for bearing fault diagnosis 

was investigated in order to further explore bearing fault diagnosis techniques. This 

area has not yet been fully researched and is still open to new discoveries. The 

investigations in this paper produced new knowledge on the advantages and 

disadvantages of using wavelet transforms and ANFIS models in building bearing 

fault classifiers. The findings of the investigation provided new knowledge and 

methodology regarding the feature extraction of vibration signals from rolling 

element bearings. These findings have also contributed to the application of artificial 

intelligence methodology which interprets extracted features.

The investigation of a new feature extraction method was carried out and this led to 

the construction of the bearing fault classification system reported on in this thesis. 

The features extraction method combined the application of generated features based 

on wavelet-transform results, their energy levels, and other statistical indicators. The 

bearing fault classifiers generated by using the ANFIS training procedures in the 

proposed method were used successfully in the determination of the relationships 

between the chosen seven statistical features.

The development of wavelet-based features extraction, combined with an ANFIS 

model, aimed to search for a new features extraction method that might lead to the 

construction and application of new bearing fault classifiers.

The proposed wavelet extraction method produced a set of unique features from the 

original vibration signals. The unique features were then used as training data for an 

ANFIS model. The results of the ANFIS training procedures were FIS units which 

were capable of recognising the related features which represented the unique 

features of input-output relationships. These FIS units were used as the core 

classifiers in a classification system for bearing faults.
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The procedure tested four classifiers which were generated for four types of bearing 

fault signals in order to determine the performance of each classifier. The test results 

showed that the BF case classifier achieved 100% accuracy in identifying a BF case. 

The rejection rate or mis-classfication rate of the BF classifier towards non-related 

cases (i.e., ORF, IRF and NF) was 100%.

The lowest accuracy level in the classification results was 93 %, although this result 

was obviously quite high. This percentage occurred in the test results of the IRF 

classifier. The NF and ORF test results showed that both classifiers achieved 100% 

accuracy for fault classification in the cases of NF and ORF.

However, the test results showed also that the ORF, IRF and NF classifiers were 

affected by mis-classification or confusion in classifying feature data which did not 

belong to the particular classifiers. This condition refers to the situation where a 

classifier had the tendency to classify a non-related fault in a particular fault case of 

its own. The highest mis-classification trend, found in the test results of the ORF 

classifier towards BF features data, was 95%. The lowest (and hence the best) result 

was 27% which was found in the test results of the NF classifier towards the IRF, 

ORF and BF features data, respectively.

The mis-classification characteristics were related to the features data used to 

generate the FIS units in the ANFIS training process. The mis-classification of a 

classifier unit of a particular non-related case was caused by some level of similarity 

with the features data used to generate the FIS classifier. A high similarity level of 

features data produced a high level of ambiguity or confusion in the classification 

process. Therefore, it was important to provide a higher level of unique 

characteristics in the features data in the ANFIS training for each fault case 

investigated.

The following sections document the final conclusions of the investigation of the 

proposed ANFIS and wavelet-based feature extraction process.

As was inferred from the results of the literature review, feature extraction methods 

in the area of bearing fault diagnosis are still open to exploration, especially in the 
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area of the combination between wavelet-based features extraction and artificial 

intelligence models such as a neuro-fuzzy system (i.e., ANFIS).

This research focused on exploring a new method of generating the related features 

of bearing faults by using a combination of wavelet transforms and an ANFIS model. 

There were seven features generated from the wavelet transform results of a 

vibration signal from a faulty bearing acquired from the test rig. An ANFIS was used 

to select the three most dominant features that were mapped as two Inputs towards a 

single Target Output. These three most dominant features were produced for each of 

the four fault cases investigated. Further, core FIS units were implemented in a 

complete bearing classifier system that was generated by using the ANFIS training 

procedure proposed in this research.

The test results show that only the BF classifier achieved 100 % accuracy for the BF 

case classification. In addition, it also achieved 0% mis-classification when presented 

with other non-related cases (i.e., ORF, IRF and NF cases). This means that only the 

BF classifier could uniquely determine the presence of a BF fault.

The statistical parameters (i.e., RMS, kurtosis, standard deviation and variance, 

Energy level, dominant frequency and maximum amplitude of dominant frequency) 

calculated from the wavelet transform results were used as fault features. The 

features were introduced into the ANFIS model in order to select the highest 

correlated features that might best represent a particular fault characteristic. The 

relationships between three features selected were learned by the ANFIS model, and 

the learned result was represented as an FIS unit for each training session.

The application of the ANFIS in the selection process of the most dominant Input-

Output features provided an enhancement to the feature extraction process and 

reduced the required post-processing tasks which are usually conducted by human 

experts. ANFIS offered an automatic selection of the most related or dominant 

features that best represented a particular fault case. In this case, the unrelated 

features which were not best characterised as a fault case, were rejected or removed 

prior to the construction of FIS units.



Chapter 8 – Conclusions and Future Research 192

Test results for the classifier units for each type of bearing fault case shows that only 

the BF case can determine a fault without mis-classification. The results also exposed 

the limitations of the proposed feature extraction method and FIS classifiers. It was 

found that the separation or distinction rate of the FIS units in identifying signals that 

were not intended to contain the related fault was low in several FIS units.

There was no single db-n wavelet type tested that proved successful for all feature 

extractions in the ORF, IRF, BF and NF cases. Rather, each fault case had to be 

detected with a different db-n FIS unit.

The feature extraction methods and bearing fault classifiers proposed in this research 

achieved a mixed success rate across ORF, IRF, BF and NF classification cases. The 

mis-classification in ORF, IRF and NF classifiers hindered the ability of these 

classifiers in identifying each of the fault cases correctly. The only exception was 

found in the BF classifiers, which produced a 100 % successful classification rate, 

i.e., there were no mis-classifications.

To conclude this section and in answering the research questions posed, it can be said 

that the proposed feature extraction scheme can be used for the purpose of fault 

identification and classification, with several limitations as pointed out the previous 

discussions. That is, the BF classifiers can be used immediately after they have been 

produced, while the other classifiers cannot.

8.2 Future Work

There are several areas related to this research that could be investigated further in 

order to explore refinements of the proposed feature extraction method and the 

bearing classifiers.

There is a need to investigate the use of different types of wavelets to generate the 

data features in the proposed feature extraction method beyond those used here. For 

instance, the utilisation of wavelet types such as symlet and coifflet in the feature 

extraction process may be beneficial.
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Investigation of the effect of db-n wavelet types used to generate wavelet-based 

features is needed, since the results show that there were certain db-n types that 

produced better classification results for each particular bearing fault type. On the 

other hand, the results also showed that there were certain db-n types which were not 

suited for use in feature generation for a particular fault case. For example, there 

were no FIS units that matched the error and correlation standard in the selection of 

FIS units for the NF case that was generated using the db22 wavelet during ANFIS 

training. This implies that the db22 wavelet is not suited for the purpose of feature 

extraction for the NF case, since all of the obtained FIS units failed to produce a 

correlation > 0.99 to the Target Output of the training data.

The findings infer there was a relationship of sensitivity in the application of db-n 

type wavelets investigated in this research. The sensitivity of a db-n wavelet type 

used to generate features data for the ANFIS training was related to the shape of the 

mother wavelet function. Further investigation is needed to explore the results which 

showed that the mother wavelet function with higher similarity to the “peakness” of 

the vibration signal was more sensitive to be used in features extraction. The mother 

wavelet shape’s similarity to the “peakness” of the vibration signal enhanced the 

characteristics of the vibration signal. The enhanced characteristics were produced in 

the form of the resulting wavelet transform of the processed vibration signal.

An investigation to explore the possibility of streamlining the permutations check 

procedures is advisable. This would shorten the ANFIS training time and reduce 

computation loads. A method of selecting only the useful permutation combinations 

could be investigated with the aim of obtaining a method that would select only 

useful permutation combinations (indices). These indices need to be tested during the 

training process and others that are not useful would be rejected.

Further exploration of the selection procedures for features data is needed, with the 

aim of increasing the accuracy of the FIS classifiers, especially in the classification 

of cases that showed a low rejection rate for the non-related cases. The initial step 

towards this future work would be started with the analysis of the characteristics of 

the features data. Specifically, the analysis would focus on the Target Output features 

data that was used to train the ANFIS and that generated the FIS units (classifiers).
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The proposed feature extraction method and the bearing classification system needs 

to be tested using different vibration data generated from different sources. This test 

would assess the generalisation ability of the proposed methods. A test using external 

data would be useful for the purpose of assessing the general performance of the 

proposed feature extraction method and the fault classification system.

There is scope to investigate additional fault types which are not studied here. These 

additional faults could be diagnosed and classified by the proposed bearing 

classification system. This could be achieved by introducing additional types of 

bearing fault cases to increase the diversity in applications of the classifier. However, 

until the mis-classifications can be reduced significantly, this work will remain 

secondary.

There is scope for investigating the reduction of the number of training and checking 

data points needed to train an ANFIS without losing the accurate representation and 

generalisation of the feature data. This would contribute to the reduction of feature 

data pre-processing time.

Future work could also aim to extend the application of the proposed methods to 

fault detection and classification in other rotating machinery systems such as gears 

and pumps.



References 195

References

Abbasion, S., Rafsanjani, A., Farshidianfar, A., and Irani, N. 2007, ‘Rolling Element 

Bearings Multi-fault Classification Based on the Wavelet Denoising and 

Support Vector Machine’, Mechanical Systems and Signal Processing, vol. 

21, no. 7, pp. 2933-2945.

Abu-Mahfouz, I.A. 2005, ‘A Comparative Study of Three Artificial Neural Networks 

for the Detection and Classification of Gear Faults’, International Journal of 

General Systems, vol. 34, no. 3, pp. 261-277.

Al-Badour, F., Sunar, M., and Cheded, L. 2011, ‘Vibration Analysis of Rotating 

Machinery Using Time–frequency Analysis and Wavelet Techniques’, 

Mechanical Systems and Signal Processing, vol. 25, no. 6, pp. 2083-2101.

Alguindigue, I.E., Loskiewicz-Buczak, A., and Uhrig, R.E. 1993, ‘Monitoring and 

Diagnosis of Rolling Element Bearings Using Artificial Neural Networks’, 

IEEE Transaction on Industrial Electronics, vol. 40, no. 2, pp. 209-217.

Altmann, J., and Mathew, J. 2001, ‘Multiple Band-pass Autoregressive 

Demodulation for Rolling-element Bearing Fault Diagnosis’, Mechanical 

Systems and Signal Processing, vol. 15, no. 5, pp. 963-977.

Altug, S., Chow, M.-Y., and Trussell, H.J. 1999, ‘Fuzzy Inference Systems 

Implemented on Neural Architectures for Motor Fault Detection and 

Diagnosis’, IEEE Transactions on Industrial Electronics, vol. 46, no. 6, pp. 

1069-1079.

Antonino-Daviu, J.A., Riera-Guasp, M., Folch, J.R., and Palomares, M.P.M. 2006, 

‘Validation of A New Method for the Diagnosis of Rotor Bar Failures via 

Wavelet Transform in Industrial Induction Machines’, IEEE Transactions on 

Industry Applications, vol. 42, no. 4, pp. 990-996.

Baillie, D., and Mathew, J. 1994, ‘Diagnosing Rolling Element Bearing Faults with 

Artificial Neural Networks’, Acoustics Australia, vol. 22, no. 3, pp. 79-84.

Bay, O.F., and Bayir, R. 2005, ‘Kohonen Network Based Fault Diagnosis and 

Condition Monitoring of Pre-engaged Starter Motors’, International Journal 

of Automotive Technology, vol. 6, no. 4, pp. 341-350.

Bazovsky, I. 1961, Reliability Theory and Practice, Prentice-Hall, New York.



References 196

Bin, G.F., Gao, J.J., and Dhillon, B.S. 2012, ‘Early Fault Diagnosis of Rotating 

Machinery Based on Wavelet Packets - Empirical Mode Decomposition 

Feature Extraction and Neural Network’, Mechanical Systems and Signal 

Processing, vol. 27, pp. 696-711.

Braun, S., and Datner, B. 1979, ‘Analysis of Roller / Ball Bearing Vibrations’, 

Journal of Mechanical Design, Transactions of ASME, vol. 101, no. 1, pp. 

118-125.

Brigham, E., 1988, the Fast Fourier Transform and Its Applications, Prentice-Hall, 

Englewood Cliffs, New Jersey.

Broomhead, D.S., and Lowe, D. 1988, ‘Multivariable Function Interpolation and 

Adaptive Networks’, Complex System, vol. 2, pp. 321-355.

Brotherton, T., Jahns, G., Jacobs, J., and Wroblewski, D. 2000, ‘Prognosis of Faults 

in Gas Turbine Engines’, IEEE Aerospace Conference Proceedings 2000, 

vol. 6, pp. 163-171.

Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., and Rosen, D.B. 

1992, ‘Fuzzy ARTMAP: A Neural Network Architecture for Incremental 

Supervised Learning of Analog Multidimensional Maps’, IEEE Transactions

on Neural Networks, vol. 3, no. 5, pp. 698-713.

Castejon, C., Lara, O., and Garcia-Prada, J.C. 2010, ‘Automated Diagnosis of 

Rolling Bearings Using MRA and Neural Networks’, Mechanical Systems 

and Signal Processing, vol. 24, no. 1, pp. 289-299.

Celik, M.B., and Bayir, R. 2007, ‘Fault Detection in Internal Combustion Engines 

Using Fuzzy Logic’, Proceedings of the Institution of Mechanical Engineers,

vol. 221, no. D5, pp. 579-587.

Chaturvedi, G.K., and Thomas, D.W. 1982, ‘Bearing Fault-Detection Using 

Adaptive Noise Cancelling’, Journal of Mechanical Design, vol. 104, no. 2, 

pp. 280-289.

Chen, Z., and Mechefske, C.K. 2000, ‘Diagnosis of Machine Faults Based on 

Transient Vibration Signals’, INSIGHT – Non-Destructive Testing and 

Condition Monitoring, vol. 42, no. 8, pp. 504-511.

Chen, Z., and Mechefske, C.K. 2002, ‘Diagnosis of Machinery Fault Status Using 

Transient Vibration Signal Parameters’, Journal of Vibration and Control, 

vol. 8, no. 3, pp. 321-335.



References 197

Chinnam, R.B., and Baruah, P. 2004, ‘A Neuro-fuzzy Approach for Estimating Mean 

Residual Life in Condition-based Maintenance Systems’, International 

Journal of Materials and Product Technology, vol. 20, no. 1-3, pp. 166-179.

Chui, C. K. 1992, Wavelet Analysis and Its Applications Vol.1: Introduction to 

Wavelets, Academic Press, Boston, Massachusetts.

Crandall, R.E., 1994, Projects in Scientific Computation, TELOS, Santa Clara, 

California.

Daadbin, A. 1991, ‘Different Vibration Monitoring Techniques and Their 

Application to Rolling Element Bearings’, International Journal of 

Mechanical Engineering Education, vol. 19, no. 4, pp. 295-304.

Dalpiaz, G., and Rivola, A. 1997, ‘Condition Monitoring and Diagnostics in 

Automatic Machines: Comparison of Vibration Analysis Techniques’, 

Mechanical Systems and Signal Processing, vol. 11, no. 1, pp. 53-73.

Dalpiaz, G., Rivola, A., and Rubini, R. 2000, ‘Effectiveness and Sensitivity of 

Vibration Processing Techniques for Local Fault Detection in Gears’, 

Mechanical Systems and Signal Processing, vol. 14, no. 3, pp. 387-412.

Daubechies, I. 1990, ‘The Wavelet Transform, Time-frequency Localization and 

Signal Analysis’, IEEE Transactions on Information Theory, vol. 36, no. 5, 

pp. 961-1005.

Demartines, P., and Herault, J. 1997, ‘Curvilinear Component Analysis: A Self-

organizing Neural Network for Nonlinear Mapping of Data Sets’, IEEE 

Transactions on Neural Networks, vol. 8, no. 1, pp. 148-154.

Donat, W., Choi, K., An., W., Singh, S. and Pattipati, K. 2008, ‘Data Visualization, 

Data Reduction and Classifier Fusion for Intelligent Fault Diagnosis in Gas 

Turbine Engines’, Journal of Engineering for Gas Turbines and Power 

(Transactions of the ASME), vol. 130, no. 4.

Du, Q., and Yang, S, 2007, ‘Application of the EMD Method in the Vibration 

Analysis of Ball Bearings’, Mechanical Systems and Signal Processing, vol. 

21, no. 6, pp. 2634-2644.

Dyer, D., and Stewart, R.M. 1978, ‘Detection of Rolling Bearing Element Damage 

by Statistical Vibration Analysis’, Journal of Mechanical Design, vol. 100, 

no. 2, pp. 229-235.



References 198

Evsukoff, A., and Gentil, S. 2005, ‘Recurrent Neuro-fuzzy System for Fault 

Detection and Isolation in Nuclear Reactors’, Advanced Engineering 

Informatics, vol. 19, no. 1, pp. 55-66.

Fukunaga, K. 1990, Introduction to Statistical Pattern Recognition, Academic Press, 

Boston, Massachusetts.

Gaing, Z.-L. 2004, ‘Wavelet-based Neural Network for Power Disturbance 

Recognition and Classification’, IEEE Transactions on Power Delivery, vol. 

19, no. 4, pp. 1560-1568.

Galushkin, A.I. 2007, Neural Networks Theory, Springer, Heidelberg.

Gao, X.Z., and Ovaska, S.J. 2001, ‘Soft Computing Methods in Motor Fault 

Diagnosis’, Applied Soft Computing, vol. 1, no. 1, pp. 73-81.

Garga, A.K., McClintic, K.T., Campbell, R.L., Yang, C.-C., Lebold, M.S.,  Hay, 

T.A., and Byington, C.S. 2001, ‘Hybrid Reasoning for Prognostic Learning 

in CBM Systems’, IEEE Aerospace Conference 2001 Proceedings, vol. 1-7, 

pp. 2957-2969.

Gebraeel, N., Lawley, M., Liu, R., and Parmeshwaran, V. 2004, ‘Residual Life 

Predictions from Vibration-Based Degradation Signals: A Neural Network 

Approach’, IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 

694-700.

Gelle, G., Colas, M., and Serviere, C. 2001, ‘Blind Source Separation: A Tool for 

Rotating Machine Monitoring by Vibrations Analysis?’, Journal of Sound 

and Vibration, vol. 248, no. 5, pp. 865-885.

Gertsbakh, I.B. 1976, Models of Preventive Maintenance, North-Holland Publication 

Co., Amsterdam.

Goddu, G., Li, B., Chow, M.-Y., and Hung, J.C. 1998, ‘Motor Bearing Fault 

Diagnosis by A Fundamental Frequency Amplitude Based Fuzzy Decision 

System’, IEEE Annual Conference Proceedings of Industrial Electronics 

Society, vol. 1-4, pp. 1961-1965.

Goode, P.V., and Chow, M.-Y. 1995, ‘Using A Neural/Fuzzy System to Extract 

Heuristic Knowledge of Incipient Faults in Induction Motors: Part II-

Application’, IEEE Transactions on Industrial Electronics, vol. 42, no. 2, pp. 

139-146.

Goswami, J.C., and Chan, A.K. 1999, Fundamentals of Wavelets: Theory, 

Algorithms and Applications, John Wiley & Sons, New York.



References 199

Goumas, S., Zervakis, M., Pouliezos, A., and Stavrakakis, G.S. 2001, ‘Intelligent 

On-line Quality Control of Washing Machines Using Discrete Wavelet 

Analysis Features and Likelihood Classification’, Engineering Applications 

of Artificial Intelligence, vol. 14, no. 5, pp. 655-666. 

Graps, A. 1995, ‘An Introduction to Wavelets’, IEEE Computational Science and 

Engineering, vol. 2, no. 2, pp. 50-61.

Graupe, D. 1997, Principles of Artificial Neural Networks, World Scientific, 

Singapore.

Hauer, J.F., Demeure, C.J., and Scharf, L.L. 1990, ‘Initial Results in Prony Analysis 

of Power System Response Signals’, IEEE Transactions on Power Systems, 

vol. 5, no. 1, pp. 80-89.

Haykin S., 1999, Neural Networks. A Comprehensive Foundation, Second Edition, 

Pearson Prentice-Hall Publications, Ontario, Canada. 

Heng, A., Zhang, S., Tan, A.C.C., and Mathew, J. 2009, ‘Rotating Machinery 

Prognostics: State of the Art, Challenges and Opportunities’, Mechanical 

Systems and Signal Processing, vol. 23, no. 3, pp. 724-739. 

Heng, R.B.W., and Nor, M.J.M. 1998, ‘Statistical Analysis of Sound and Vibration 

Signals for Monitoring Rolling Element Bearing Condition’, Applied 

Acoustics, vol. 53, no. 1-3, pp. 211-226.

Ho, D., and Randall, R.B. 2000, ‘Optimization of Bearing Diagnostic Techniques 

Using Simulated and Actual Bearing Fault Signals’, Mechanical Systems and 

Signal Processing, vol. 14, no. 5, pp. 763-788.

Honarvar, F., and Martin, H.R. 1997, ‘New Statistical Moments for Diagnostics of 

Rolling Element Bearings’, Journal of Manufacturing Science and 

Engineering, vol. 119, no. 3, pp. 425-432.

Howard, I. 1994, A Review of Rolling Element Bearing Vibration: “Detection, 

Diagnosis and Prognosis”, DSTO Aeronautical and Maritime Research 

Laboratory, Melbourne, Australia.

Hu, N.-S., He, N.-N., and Hu, S. 2003, ‘Fault Diagnosis of the Steam Turbine 

Condenser System Based on SOM Neural Network’, International 

Conference on Machine Learning and Cybernetics, vol. 1-5, pp. 1222-1225.

Igarashi, T., and Hamada, H. 1982, ‘Studies on the Vibration and Sound of Defective 

Rolling Bearings .1. Vibration of Ball-bearings with One Defect’, Bulletin of 

the Japan Society of Mechanical Engineers, vol. 25, no. 204, pp. 994-1001.



References 200

Ilott, P.W., and Griffiths, A.J. 1997, ‘Fault Diagnosis of Pumping Machinery Using 

Artificial Neural Networks’, Proceedings of the Institution of Mechanical 

Engineers, vol. 211, no. E3, pp. 185-194.

Jack, L.B., and Nandi, A.K. 2001, ‘Support Vector Machines for Detection and 

Characterization of Rolling Element Bearing Faults’, Proceedings of the 

Institution of Mechanical Engineers, Part C; Journal of Mechanical 

Engineering Science, vol. 215, no. 9, pp. 1065-1074.

Jang, J.-S.R, Sun, C.-T., and Mizutani, E. 1997, Neuro-fuzzy and Soft Computing: A 

Computational Approach to Learning and Machine Intelligence, Prentice-

Hall, Upper Saddle River, New Jersey.

Jang, J.-S.R. 1993, ‘ANFIS: Adaptive-Network-Based Fuzzy Inference System’, 

IEEE Transaction on Systems, Man, and Cybernetics, vol. 23 no. 3, pp. 665-

685. 

Jang, J.-S.R., and Sun, C.-T. 1995, ‘Neuro-fuzzy Modeling and Control’, 

Proceedings of the IEEE, vol. 83, no. 3, pp. 378-406.

Jardine, A.K.S. 1973, Maintenance, Replacement and Reliability, Pitman, London.

Jardine, A.K.S., Lin, D., and Banjevic, D. 2006, ‘A Review on Machinery 

Diagnostics and Prognostics Implementing Condition-based Maintenance’, 

Mechanical Systems and Signal Processing, vol. 20, no. 7, pp. 1483-1510.

Jayaswal, P., Verma, S.N., and Wadhwani, A.K. 2010. ‘Application of ANN, Fuzzy 

Logic and Wavelet Transform in Machine Fault Diagnosis Using Vibration 

Signal Analysis’, Journal of Quality in Maintenance Engineering, vol. 16, 

no. 2, pp. 190-213.

Jensen A., and La Cour-Harbo, A. 2001, Ripples in Mathematics - The Discrete 

Wavelet Transform, Springer-Verlag, New York.

Junsheng, C., Dejie, Y., and Yu, Y. 2005, ‘Time-energy Density Analysis Based on 

Wavelet Transform’, NDT & E International, vol. 38, no. 7, pp. 569-572.

Kankar, P.K., Sharma, S.C., and Harsha, S.P. 2011, ‘Fault Diagnosis of Ball 

Bearings Using Continuous Wavelet Transform’, Applied Soft Computing, 

vol. 11, no. 2, pp. 2300-2312.

Kohonen, T. 1997, Self-Organizing Maps, Second Edition, Springer, New York.

Kohonen, T., Oja, E., Simula, O., Visa, A., and Kangas, J. 1996, ‘Engineering 

Applications of the Self-Organizing Map’, Proceedings of the IEEE, vol. 84, 

no. 10, pp. 1358-1384.



References 201

Komgom, C.M., Mureithi, N.W., and Lakis, A.A. 2008,‘Application of Time 

Synchronous Averaging, Spectral Kurtosis and Support Vector Machines for 

Bearing Fault Identification’, Proceedings of ASME Pressure Vessels and 

Piping Conference, vol. 7, pp. 137-146.

Kothamasu, R., and Huang, S.H. 2007, ‘Adaptive Mamdani Fuzzy Model for 

Condition-based Maintenance’, Fuzzy Sets and Systems, vol. 158, no. 24, pp. 

2715-2733.

Kowalski, C.T., and Orlowska-Kowalska, T. 2003, ‘Neural Networks Application for 

Induction Motor Faults Diagnosis’, Mathematics and Computers in 

Simulation, vol. 63, no. 3-5, pp. 435-448.

Kung, S.J., and Hwang, J.N. 1988, ‘An Algebraic Projection Analysis for Optimal 

Hidden Units Size and Learning Rates in Back-propagation Learning’, IEEE 

International Conference on Neural Networks, pp. 363-370.

Kuo, H.-C., Wu, L.-J., and Chen, J.-H. 2002, ‘Neural-fuzzy Fault Diagnosis in A 

Marine Propulsion Shaft System’, Journal of Materials Processing 

Technology, vol. 122, no. 1, pp. 12-22.

Latuny, J., and Entwistle, R.D. 2010, ‘Bearing Fault Analyses through the 

Application of ANFIS and Vector Array Indicators Based on Statistical 

Parameters of Wavelet Transformation Components’, Proceedings of the 6th 

Australasian Congress on Applied Mechanics (ACAM 6) Conference, pp. 

552-559.

Lee, C.C. 1990, ‘Fuzzy Logic in Control Systems: Fuzzy Logic Controller - Parts I 

and II’, IEEE Transaction on Systems, Man, and Cybernetics, vol. 20, no. 2, 

pp. 404-435.

Lee, S.K., and White, P.R. 1997, ‘Higher-order Time-frequency Analysis and Its 

Application to Fault Detection in Rotating Machinery’, Mechanical Systems 

and Signal Processing, vol. 11, no. 4, pp. 637-650.

Lei, Y., He, Z., Zi, Y., & Hu, Q. 2007, ‘Fault Diagnosis of Rotating Machinery 

Based on Multiple ANFIS Combination with Gas’, Mechanical Systems and 

Signal Processing, vol. 22, no. 5, pp. 2280-2294.

Lei, Y., He, Z., and Zi, Y. 2009, ‘Application of an Intelligent Classification Method 

to Mechanical Fault Diagnosis'’, Expert Systems with Applications, vol. 36, 

no. 6, pp. 9941-9948.



References 202

Leonhardt, S., and Ayoubi, M. 1997, ‘Methods of Fault Diagnosis’. Control 

Engineering Practice, vol. 5, no. 5, pp. 683-692.

Li, C.J., and Wu, S.M. 1989, ‘On-line Detection of Localized Defects in Bearings by 

Pattern Recognition Analysis’, Transaction of ASME,Journal of Engineering 

for Industry, vol. 101, no. 4, pp. 331-336.

Li, F., Meng, G., Ye, L., and Chen, P. 2008, ‘Wavelet Transform-based Higher-order 

Statistics for Fault Diagnosis in Rolling Element Bearings’, Journal of 

Vibration and Control, vol. 14, no. 11, pp. 1691-1709.

Li, H., Zhang, Y., and Zheng, H. 2009, ‘Gear Fault Detection and Diagnosis Under 

Speed-up Condition Based on Order Cepstrum and Radial Basis Function 

Neural Network’, Journal of Mechanical Science and Technology, vol. 23, 

no. 10, pp. 2780-2789.

Li, L., Qu, L., and Liao, X. 2007, ‘Haar Wavelet for Machine Fault Diagnosis’, 

Mechanical Systems and Signal Processing, vol. 21, no. 4, pp. 1773-1786.

Li, L.X., Mechefske, C.K., and Li, W.D. 2004, ‘Electric Motor Faults Diagnosis 

Using Artificial Neural Networks’, INSIGHT, vol. 46, no. 10, pp. 616-621.

Liao, G., Shi, T., and Xuan, J. 2005, ‘Feature Selection and Condition Monitoring of 

Gearbox Using SOM’, IEEE International Joint Conference on Neural 

Networks (IJNN), vol. 1-5, pp. 2313-2318.

Lim, H.S., and Su, H. 2006, ‘Motor Fault Detection Method for Vibration Signal 

Using FFT Residuals’, International Journal of Applied Electromagnetics 

and Mechanics, vol. 24, no. 1, pp. 209-223.

Ling, J., and Qu, L. 2000, ‘Feature Extraction Based on Morlet Wavelet and Its 

Application for Mechanical Fault Diagnosis’, Journal of Sound and 

Vibration, vol. 234, no. 1, pp. 135-148.

Liu, B., Ling, S.-F., and Meng, Q. 1997, ‘Machinery Diagnosis Based on Wavelet 

Packets’, Journal of Vibration and Control, vol. 3, no. 1, pp. 5-17.

Liu, S., and Shi, W. 2001, ‘Rough Set Based Intelligence Diagnostic System for 

Valves in Reciprocating Pumps’, IEEE International Conference on Systems, 

Man, and Cybernetics, vol. 1-5, pp. 353-358.

Liu, T.I., and Mengel, J.M. 1992, ‘Intelligent Monitoring of Ball Bearing 

Conditions’, Mechanical Systems and Signal Processing, vol. 6, no. 5, pp. 

419-431.



References 203

Liu, T.I., Singonahalli, J.H., and Iyer, N.R. 1996, ‘Detection of Roller Bearing 

Defects Using Expert System and Fuzzy Logic’, Mechanical Systems and 

Signal Processing, vol. 10, no. 5, pp. 595-614.

Lou, X., and Loparo, K.A. 2004, ‘Bearing Fault Diagnosis Based on Wavelet 

Transform and Fuzzy Inference’, Mechanical Systems and Signal Processing,

vol. 18, no. 5, pp. 1077-1095.

Loutridis, S.J. 2008, ‘Gear Failure Prediction Using Multiscale Local Statistics’, 

Engineering Structures, vol. 30, no. 5, pp. 1214-1223.

Lu, C., Ma, N., and Wang, Z. 2011, ‘Fault Detection for Hydraulic Pump Based on 

Chaotic Parallel RBF Network’, EURASIP Journal on Advances in Signal 

Processing, vol. 49.

Luo, J., Yu, D., and Liang M. 2013, ‘A Kurtosis-guided Adaptive Demodulation 

Technique for Bearing Fault Detection Based on Tunable-Q Wavelet 

Transform’, Measurement Science and Technology, vol. 24, no. 5.

Mahamad, A.K., and Hiyama, T. 2011, ‘Fault Classification Based Artificial 

Intelligent Methods of Induction Motor Bearing’, International Journal of 

Innovative Computing Information and Control, vol. 7, no. 9, pp. 5477-5494.

Malhi, A., Yan, R., and Gao, R.X. 2011, ‘Prognosis of Defect Propagation Based on 

Recurrent Neural Networks’, IEEE Transactions on Instrumentation and 

Measurement, vol. 60, no. 3, pp. 703-711.

Mallat, S.G. 1989, ‘A Theory for Multiresolution Signal Decomposition: the Wavelet 

Representation’, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 11, no. 7, pp. 674-693.

Marichal, G.N., Artes, M., and Garcia-Prada, J.C. 2010, ‘An Intelligent System for 

Faulty-bearing Detection Based on Vibration Spectra’, Journal of Vibration 

and Control, vol. 17, no. 6, pp. 931-942.

Marichal, G.N., Artesa, M., Prada, G., and Casanova, O. 2011, ‘Extraction of Rules 

for Faulty Bearing Classification by A Neuro-Fuzzy Approach’, Mechanical 

Systems and Signal Processing, vol. 25, no. 6, pp. 2073-2082.

Mathew, J. and Alfredson, R.J. 1984, ‘The Condition Monitoring of Rolling Element 

Bearings Using Vibration Analysis’, Journal of Vibration Acoustics Stress 

and Reliability in Design, vol. 106, no. 3, pp. 447-453. 

Mathworks Inc. 1997, Wavelet Toolbox for Use With MATLAB - User's Guide, the 

Mathworks, Inc., Natick, Massachusetts.



References 204

Mathworks Inc. 1998, Fuzzy Logic Toolbox for Use With MATLAB - User's Guide, 

the Mathworks Inc., Natick, Massachusetts.

McCormick, A.C., and Nandi, A.K. 1997, ‘Real-time Classification of Rotating Shaft 

Loading Conditions Using Artificial Neural Networks’, IEEE Transactions 

on Neural Networks, vol. 8, no. 3, pp. 748-757.

McFadden, P.D., and Smith, J.D. 1984, ‘Vibration Monitoring of Rolling Element 

Bearings by the High Frequency Resonance Technique - A Review’, 

Tribology International, vol. 17, no. 1, pp. 3-10.

McFadden, P.D., and Toozhy, M.M. 2000, ‘Application of Synchronous Averaging 

to Vibration Monitoring of Rolling Element Bearings’, Mechanical Systems 

and Signal Processing, vol. 14, no. 6, pp. 891-906.

Meesad, P., and Yen, G.G. 2000, ‘Pattern Classification by A Neurofuzzy Network: 

Application to Vibration Monitoring’, ISA Transactions, vol. 39, no. 3, pp. 

293-308.

Meireles, M.R.G., Almeida, P.E.M., and Simoes, M.G. 2003, ‘A Comprehensive 

Review for Industrial Applicability of Artificial Neural Networks’, IEEE 

Transactions on Industrial Electronics, vol. 50, no. 3, pp. 585-601. 

Mevel, L., Hermans, L., and Van der Auweraer, H. 2000, ‘Application of A 

Subspace-based Fault Detection Method to Industrial Structures’, Mechanical 

Systems and Signal Processing, vol. 13, no. 6, pp. 823-838.

Miguel, L.J. d., and Blazquez, L.F. 2005, ‘Fuzzy Logic-based Decision-Making for 

Fault Diagnosis in A DC Motor’, Engineering Applications of Artificial 

Intelligence, vol. 18, no. 4, pp. 423-450. 

Mohammadi, R., Naderi, E., Khorasani, K., and Hashtrudi-Zad, S. 2011, ‘Fault 

Diagnosis of Gas Turbine Engines by Using Dynamic Neural 

Networks’,Proceedings of the IEEE 54th International Midwest Symposium 

on Circuits and Systems (MWSCAS).

Newland, D.E. 1994a, ‘Wavelet Analysis of Vibration .1. Theory’, Transactions of 

The ASME - Journal of Vibration and Acoustics, vol. 116, no. 4, pp. 409-416.

Newland, D.E. 1994b, ‘Wavelet Analysis of Vibration .2. Wavelet Maps’, 

Transactions of The ASME - Journal of Vibration and Acoustics, vol. 116, 

no. 4, pp. 417-425.



References 205

Nikolaou, N.G., and Antoniadis, I.A. 2002a, ‘Rolling Element Bearing Fault 

Diagnosis Using Wavelet Packets’, NDT & E International, vol. 35, no. 3, 

pp. 197-205.

Nikolaou, N.G., and Antoniadis, I.A. 2002b, ‘Demodulation of Vibration Signals 

Generated by Defects in Rolling Element Bearing Using Complex Shifted 

Morlet Wavelet’, Mechanical Systems and Signal Processing, vol. 16, no. 4, 

pp. 677-694.

Niu, X., Zhu, L., and Ding, H. 2005, ‘New Statistical Moments for the Detection of 

Defects in Rolling Element Bearings’, International Journal of Advanced 

Manufacturing Technology, vol. 26, no. 11-12, pp. 1268-1274.

Onel, I.Y., and Benbouzid, M.E.H. 2008, ‘Induction Motors Bearing Failures 

Detection and Diagnosis Using a RBF ANN Park Pattern Based Method’, 

International Review of Electrical Engineering, vol. 3, no. 1, pp. 159-165.

Pan, M.-C., and Sas, P. 1996, ‘Transient Analysis on Machinery Condition 

Monitoring’, the 3rd International Conference on Signal Processing, vol. 2, 

no. 1-2, pp. 1723-1726.

Patil, M.S., Mathew, J., and RajendraKumar, P.K. 2008, ‘Bearing Signature Analysis 

as A Medium for Fault Detection: A Review’, Journal of Tribology, 

Transactions of ASME, vol. 130, no. 1.

Patton, R.J., Chen, J., and Benkhedda, H. 2000, ‘A Study on Neuro-fuzzy Systems 

for Fault Diagnosis’, International Journal of Systems Science, vol. 31, no. 

11, pp. 1441-1448. 

Paya, B.A., and Esat, I.I. 1997, ‘Artificial Neural Network Based Fault Diagnostics 

of Rotating Machinery Using Wavelet Transforms as A Processor’, 

Mechanical Systems and Signal Processing, vol. 11, no. 5, pp. 751-765.

Peng, Y., Dong, M., and Zuo, M.J. 2010, ‘Current Status of Machine Prognostics in 

Condition-based Maintenance: A Review’, The International Journal of 

Advanced Manufacturing Technology, vol. 50, no. 1-4, pp. 297-313.

Peng, Z.K., and Chu, F.L. 2004, ‘Application of the Wavelet Transform in Machine 

Condition Monitoring and Fault Diagnostics: A Review with Bibliography’, 

Mechanical Systems and Signal Processing, vol. 18, no. 2, pp. 199-221.

Poyhonen, S., Jover, P., and Hyotyniemi, H. 2004, ‘Signal Processing of Vibrations 

for Condition Monitoring of An Induction Motor’, ISCCSP: 2004 First 



References 206

International Symposium on Control, Communications and Signal 

Processing, pp. 499-502.

Prabhakar, S., Mohanty, A.R., and Sekhar, A.S. 2002, ‘Application of Discrete 

Wavelet Transform for Detection of Ball Bearing Race Faults’, Tribology 

International, vol. 35, no. 12, pp. 793-800.

Premrudeepreechacharn, S., Utthiyoung, T., Kruepengkul, K., and Puongkaew, W. 

2002, ‘Induction Motor Fault Detection and Diagnosis Using Supervised and 

Unsupervised Neural Networks’, IEEE International Conference on 

Industrial Technology, vol. 1-2, pp. 93-96.

Prieto, M.D., Cirrincione, C., Espinosa, A.G., Ortega, J.A., and Henao, H. 2013, 

‘Bearing Fault Detection by A Novel Condition Monitoring Scheme Based 

on Statistical-Time Features and Neural Networks’, IEEE Transactions on 

Industrial Electronics, vol. 60, no. 8, pp. 3398-3407.

Purushotham, V., Narayanan, S., and Prasad, S.A.N. 2005, ‘Multi-fault Diagnosis of 

Rolling Bearing Elements Using Wavelet Analysis and Hidden Markov 

Model Based Fault Recognition’, NDT & E International, vol. 38, no. 8, pp. 

654-664.

Qiu, H., Lee, J., and Lin, J. 2006, ‘Wavelet Filter-based Weak Signature Detection 

Method and Its Application on Roller Bearing Prognostics’, Journal of Sound 

and Vibration, vol. 289, no. 4-5, pp. 1066-1090.

Rafiee, J., and Tse, P.W. 2009, ‘Use of Autocorrelation of Wavelet Coefficients for 

Fault Diagnosis’, Mechanical Systems and Signal Processing, vol. 23, no. 5, 

pp. 1554-1572.

Rafiee, J., Arvani, F., Harifi, A., and Sadeghi, M.H. 2007, ‘Intelligent Condition 

Monitoring of A Gearbox Using Artificial Neural Network’, Mechanical 

Systems and Signal Processing, vol. 21, no. 4, pp. 1746-1754.

Rafiee, J., Rafiee, M.A., and Tse, P.W. 2010, ‘Application of Mother Wavelet 

Functions for Automatic Gear and Bearing Fault Diagnosis’, Expert Systems 

with Applications, vol. 37, no. 6, pp. 4568-4579.

Rafiee, J., Rafiee, M.A., Prause, N., and Tse, P.W. 2009b, ‘Application of 

Daubechies 44 in Machine Fault Diagnostics’, Proceedings of the 2nd

International Conference on Computer, Control and Communication, pp. 

430-435.



References 207

Rai, V.K., and Mohanty, A.R., 2007, ‘Bearing Fault Diagnosis Using FFT of 

Intrinsic Mode Functions in Hilbert–Huang Transform’, Mechanical Systems 

and Signal Processing, vol. 21, no. 6, pp. 2607-2615.

Randall, R.B. 1987, Frequency Analysis, Third Edition, Bruel & Kjaer, Naerum, 

Denmark.

Randall, R.B. 2011, Vibration-based Condition Monitoring: Industrial and 

Automotive Applications, John Wiley & Sons, Ltd., West Sussex, United 

Kingdom.

Randall, R.B., and Antoni, J. 2011, ‘Review: Rolling Element Bearing Diagnostics -

A Tutorial’, Mechanical Systems and Signal Processing, vol. 25, no. 2, pp. 

485-520.

Randall, R.B., Antoni, J., and Chobsaard, C. 2001, ‘The Relationship Between 

Spectral Correlation and Envelope Analysis in the Diagnostics of Bearing 

Faults and Other Cyclostationary Machine Signals’, Mechanical Systems and 

Signal Processing, vol. 15, no. 5, pp. 945-962.

Rao, B.K.N., Pai, P.S., and Nagabhushana, T.N. 2012, ‘Failure Diagnosis and 

Prognosis of Rolling Element Bearings Using Artificial Neural Networks: A 

Critical Overview’, the 25th International Congress on Condition Monitoring 

and Diagnostic Engineering (Comadem 2012), vol. 364.

Reda Taha, M.M., Noureldin, A., Lucero, J.L., and Baca, T.J. 2006, ‘Wavelet 

Transform for Structural Health Monitoring: A Compendium of Uses and 

Features’, Structural Health Monitoring, vol. 5, no. 3, pp. 267-295.

Reddy, M.J., and Mohanta, D.K. 2007, ‘A Wavelet-neuro-fuzzy Combined Approach 

for Digital Relaying of Transmission Line Faults’, Electric Power 

Components and Systems, vol. 35, no. 12, pp. 1385-1407.

Rong, J., Zhang, X.-W., Chen, X.-Y., Li, H., Liu, J., and Song, X.-F. 2009, 

‘Hydraulic Turbines Vibration Fault Diagnosis by RBF Neural Network 

Based On Particle Swarm Optimization’, Asia-Pacific Power and Energy 

Engineering Conference 2009, vol. 1-7, pp. 961-964.

Rubini, R., and Meneghetti, U. 2001, ‘Application of the Envelope and Wavelet 

Transform Analyses for the Diagnosis of Incipient Faults in Ball Bearings’, 

Mechanical Systems and Signal Processing, vol. 15, no. 2, pp. 287-302.



References 208

Rumelhart, D.E., and McClelland, J.L. 1986, Parallel Distributed Processing: 

Explorations in the Microstructure of Cognition, MIT Press, Cambridge, 

Massachusetts.

Samanta, B., and Al-Balushi, K.R. 2003, ‘Artificial Neural Network Based Fault 

Diagnostics of Rolling Element Bearings Using Time-Domain Feature’, 

Mechanical Systems and Signal Processing, vol. 17, no. 2, pp. 317-328.

Saravanan, N., and Ramachandran, K.I. 2010, ‘Incipient Gear Box Fault Diagnosis 

Using Discrete Wavelet Transform (DWT) for Feature Extraction and 

Classification Using Artificial Neural Network (ANN)’, Expert Systems with 

Applications, vol. 37, no. 6, pp. 4168-4181.

Saravanan, N., Cholairajan, S., and Ramachandran, K.I. 2009, ‘Vibration-based Fault 

Diagnosis of Spur Bevel Gear Box Using Fuzzy Technique’, Expert Systems 

with Applications, vol. 36, no.2, pp. 3119-3135.

Satish, B., and Sarma, N.D.R. 2005, ‘A Fuzzy BP Approach for Diagnosis and 

Prognosis of Bearing Faults in Induction Motors’, IEEE Power Engineering 

Society General Meeting, pp. 2291-2294 

Schwartz, D.G., Klir, G.J., Lewis III, H.W., and Ezawa. Y. 1994, ‘Applications of 

Fuzzy Sets and Approximate Reasoning’, Proceedings of IEEE, vol. 82, no. 

4, pp. 482-498.

Seker, S., and Ayaz, E. 2003, ‘FeatureExtraction Related to Bearing Damage in 

Electric Motors by Wavelet Analysis’, Journal of the Franklin Institute –

Engineering and Applied Mathematics, vol. 340, no. 2, pp. 125-134.

Selaimia, Y., Moussaoui, A., and Abbassi, H.A. 2006, ‘Multi Neural Networks 

Based Approach for Fault Detection and Diagnosis of A DC-Motor’, Neural 

Network World, vol. 16, no. 5, pp. 369-379.

Senguler, T., Karatoprak, E., and Seker, S. 2010, ‘A New MLP Approach for the 

Detection of the Incipient Bearing Damage’, Advances In Electrical and 

Computer Engineering, vol. 10, no. 3, pp. 34-39.

Serviere, C., and Fabry, P. 2004, ‘Blind Source Separation of Noisy Harmonic 

Signals for Rotating Machine Diagnosis’, Journal of Sound and Vibration, 

vol. 272, no. 1-2, pp. 317-339.

Seryasat, O.R., Shoorehdeli, M.A., Honarvar, F., and Rahmani, A. 2010, ‘Multi-fault 

Diagnosis of Ball Bearing Using FFT, Wavelet Energy Entropy Mean and 



References 209

Root Mean Square (RMS)’, IEEE International Conference on Systems, Man 

and Cybernetics (SMC), pp. 4295-4299.

Shao, Y., and Nezu, K. 1999, ‘Detection of Self-aligning Roller Bearing Fault by 

Asynchronous Adaptive Noise Cancelling Technology’, JSME International 

Series C: Dynamics, Control, Robotics, Design and Manufacturing, vol. 42, 

no. 1, pp. 33-43.

Shi, D.F., Wang, W.J., and Qu, L.S. 2004, ‘Defect Detection for Bearings Using 

Envelope Spectra of Wavelet Transform’, Journal of Vibration and Acoustics 

– Transactions of the ASME, vol. 126, no. 4, pp. 567-573.

Shibata, K., Takahashi, A., and Shirai, T. 2000, ‘Fault Diagnostics of Rotating 

Machinery through Visualisation of Sound Signals’, Mechanical Systems and 

Signal Processing, vol. 14, no. 2, pp. 229-241.

Sreejith, B., Verma, A.K., and Srividya A. 2008, ‘Fault Diagnosis of Rolling 

Element Bearing Using Time-domain Features and Neural Networks’, IEEE 

Region 10 Colloquium and the Third International Conference on Industrial 

and Information Systems, vol. 1-2, pp. 619-624.

Stepanic, P., Latinovic, I.V., and Djurovic, Z. 2009, ‘A New Approach to Detection 

of Defects in Rolling Element Bearings Based on Statistical Pattern 

Recognition’, International Journal of Advanced Manufacturing Technology, 

vol. 45, no. 1-2, pp. 91-100.

Sugeno, M., and Kang, G.T. 1988, ‘Structure Identification of Fuzzy Model’, Fuzzy 

Sets and Systems, vo. 28, no. 1, pp. 15-33.

Sugumaran, V., and K.I. Ramachandran. 2011, ‘Fault Diagnosis of Roller Bearing 

Using Fuzzy Classifier and Histogram Features with Focus on Automatic 

Rule Learning’, Expert Systems with Applications, vol. 38 no. 5, pp. 4901-

4907.

Sun, Q., and Tang, Y. 2002, ‘Singularity Analysis Using Continuous Wavelet 

Transform for Bearing Fault Diagnosis’, Mechanical Systems and Signal 

Processing, vol. 16, no. 6, pp. 1025-1041.

Sun, Q., Chen, P., Zhang, D., and Xi, F. 2004, ‘Pattern Recognition for Automatic 

Machinery Fault Diagnosis’, Journal of Vibration and Acoustics, vol. 126, 

no. 2, pp. 307-316.



References 210

Takagi, T., and Sugeno, M. 1985, ‘Fuzzy Identification of Systems and Its 

Applications to Modelling and Control’, IEEE Transactions on Systems, Man 

and Cybernetics, vol. 15, no. 1, pp. 116-132.

Tandon, N., and Choudhury, A. 1999, ‘A Review of Vibration and Acoustic 

Measurement Methods for the Detection of Defects in Rolling Element 

Bearings’, Tribology International, vol. 32, no. 8, pp. 469-480.

Theodoridis, S., and Koutroumbas, K. 2003, Pattern Recognition, Second Edition, 

Academic Press, San Diego, California.

Tsoukalas, L.H., and Uhrig, R.E. 1997, Fuzzy and Neural Approaches in 

Engineering, John Wiley & Sons, New York.

Tu, P.Y.L., Yam, R., Tse, P., and Sun, A.O.W. 2001, ‘An Integrated Maintenance 

Management System for an Advanced Manufacturing Company’, 

International Journal of Advances in Manufacturing Technology, vol. 17, no. 

9, pp. 692-703.

Vasquez, D., Aradilla, G., Gruhn, R., and Minker, W. 2009, ‘On Speeding Phoneme 

Recognition in A Hierarchical MLP Structure’, IEEE Workshop on 

Automatic Speech Recognition & Understanding (ARSU), pp. 345-348.

Vicente, S.A.d., Fujimoto, R.Y., and Padovese, L.R. 2001, ‘Rolling Bearing Fault 

Diagnostic System Using Fuzzy Logic’, the 10th International Conference on 

Fuzzy System, vol. 1-3, pp. 816-819.

Wang, C.-C., Kang, Y., Shen, P.-C., Chang, Y.-P., and Chung, Y.-L. 2010, 

‘Applications of Fault Diagnosis in Rotating Machinery by Using Time 

Series Analysis with Neural Network’, Expert Systems with Applications, vol. 

37, no. 2, pp. 1696-1702.

Wang, H., and Chen, P. 2011,‘Intelligent Diagnosis Method for Rolling Element 

Bearing Faults Using Possibility Theory and Neural Network’, Computers & 

Industrial Engineering, vol. 60, no. 4, pp. 511-518.

Wang, K., and Lei, B. 2001, ‘Using B-spline Neural Network to Extract Fuzzy Rules 

for A Centrifugal Pump Monitoring’, Journal of Intelligent Manufacturing,

vol. 12, no. 1, pp. 5-11.

Wang, W. 2001, ‘Early Detection of Gear Tooth Cracking Using the Resonance 

Demodulation Technique’, Mechanical Systems and Signal Processing, vol. 

15, no. 5, pp. 887-903.



References 211

Wang, W., Ismail, F., and Golnaraghi, F. 2004a, ‘A Neuro-Fuzzy Approach to Gear 

System Monitoring’, IEEE Transactions on Fuzzy Systems, vol. 12, no. 5, pp. 

710-723.

Wang, W.J., and McFadden, P.D. 1993, ‘Early Detection of Gear Failure by 

Vibration Analysis – I. Calculation of the Time-Frequency Distribution’, 

Mechanical Systems and Signal Processing, vol. 7, no. 3, pp. 193-203.

Wang, W.J., and McFadden, P.D. 1996, ‘Application of Wavelets to Gearbox 

Vibration Signals for Fault Detection’, Journal of Sound and Vibration, vol. 

192, no. 5, pp. 816-828.

Wang, W.J., Chen, J., Wu, X.K., and Wu, X.T. 2001, ‘The Application of Some 

Non-Linear Methods in Rotating Machinery Fault Diagnosis’, Mechanical 

Systems and Signal Processing, vol. 15, no. 4, pp. 697-705.

Wang, W.Q., Golnaraghi, M.F., and Ismail, F. 2004b, ‘Prognosis of Machine Health 

Condition Using Neuro-fuzzy Systems’, Mechanical Systems and Signal 

Processing, vol. 18, no. 4, pp. 813-831.

Wang, X., Zi, Y., and He, Z. 2011, ‘Multiwavelet Denoising with Improved 

Neighboring Coefficients for Application on Rolling Bearing Fault 

Diagnosis’, Mechanical Systems and Signal Processing, vol. 25, no.1, pp. 

285-304. 

White, M.F. 1984, ‘Simulation and Analysis of Machinery Fault Signals’, Journal of 

Sound and Vibration, vol. 93, no. 1, pp. 95-116.

Widrow, B., and Lehr, M.A. 1960, ‘Adaptive Switching Circuits’, IRE Western 

Electric Show and Convention Record, part 4, pp. 96-104.

Widrow, B., and Lehr, M.A. 1990, ‘30 Years of Adaptive Neural Networks: 

Perceptron, Madaline, & Backpropagation’, Proceedings of the IEEE, vol. 

78, no. 9, pp. 1415-1442.

Williams, T., Ribadeneira, X., Billington, S., and Kurfess, T. 2001, ‘Rolling Bearing 

Diagnostics in Run-to-failure Lifetime Testing’, Mechanical Systems and 

Signal Processing, vol. 15, no. 5, pp. 979-993.

Wu, J.-D. and Kuo, J.-M. 2009, ‘An Automotive Generator Fault Diagnosis System 

Using Discrete Wavelet Transform and Artificial Neural Network’, Expert 

Systems with Applications, vol. 36, no. 6, pp. 9776-9783.



References 212

Wu, J.-D., and C.-H. Liu. 2008, ‘Investigation of Engine Fault Diagnosis Using 

Discrete Wavelet Transform and Neural Network’, Expert Systems with 

Applications, vol. 35, no. 3, pp. 1200-1213.

Wu, J.-D., and Chan, J.-J. 2009, ‘Faulted Gear Identification of a Rotating 

Machinery Based on Wavelet Transform and Artificial Neural Network’, 

Expert Systems with Applications, vol. 36, no. 5, pp. 8862-8875.

Wu, J.-D., and Hsu, C.-C. 2009, ‘Fault Gear Identification Using Vibration Signal 

with Discrete Wavelet Transform Technique and Fuzzy–logic Inference’, 

Expert Systems with Applications, vol. 36, no. 2, pp. 3785-3794.

Wu, J.-D., and Liu, C.-H. 2009, ‘An Expert System for Fault Diagnosis in Internal 

Combustion Engines Using Wavelet Packet Transform and Neural Network’, 

Expert Systems with Applications, vol. 36, no. 3, pp. 4278-4286.

Wu, J.-D., Hsu, C.-C., and Wu, G.-Z. 2009, ‘Fault Gear Identification and 

Classification Using Discrete Wavelet Transform and Adaptive Neuro-fuzzy 

Inference’, Expert Systems with Applications, vol. 36,  no. 3, pp. 6244-6255.

Wu, J.-F., Hu, N.-S., Hu, S., and Zhao, Y. 2002, ‘Application of SOM Neural 

Network in Fault Diagnosis of the Steam Turbine Regenerative System’, 

International Conference on Machine Learning and Cybernetics, vol. 1-4, 

pp. 184-187.

Xi, F., Sun, Q., and Krishnappa, G. 2000, ‘Bearing Diagnostics Based on Pattern 

Recognition of Statistical Parameters’, Journal of Vibration and Control, vol. 

6, no. 3, pp. 375-392.

Xu, Z., Xuan, J., Shi, T., Wu, B., and Hu, Y. 2009, ‘A Novel Fault Diagnosis Method 

of Bearing Based on Improved Fuzzy ARTMAP and Modified Distance 

Discriminant Technique’, Expert Systems with Applications, vol. 36, no. 9, 

pp. 11801-11807.

Yam, R.C.M., Tse, P.W., Li, L., and Tu, P. 2001, ‘Intelligent Predictive Decision 

Support System for Condition-based Maintenance’, Advanced Manufacturing 

Technology, vol. 17, no. 5, pp. 383-391.

Yan, R., and Gao, R.X. 2009, ‘Energy-based Feature Extraction for Defect Diagnosis 

in Rotary Machines’, IEEE Transactions on Instrumentation and 

Measurement, vol. 58, no. 9, pp. 3130-3139.



References 213

Yang, B.S., Han, T., and An, J.L. 2004, ‘ART-Kohonen Neural Network for Fault 

Diagnosis of Rotating Machinery’, Mechanical Systems and Signal 

Processing, vol. 18, no. 3, pp. 645-657.

Yang, H., Mathew, J., and Ma, L. 2002, ‘Intelligent Diagnosis of Rotating Machinery 

Faults - A Review’, the 3rd Asia-Pacific Conference on Systems Integrity and 

Maintenance, Cairns, Australia.

Yang, H., Mathew, J., and Ma, L. 2003, ‘Vibration Feature Extraction Techniques 

for Fault Diagnosis of Rotating Machinery: A Literature Survey’, Asia-

Pacific Vibration Conference, Gold Coast, Australia.

Yang, S., Li, W., and Wang, C. 2008, ‘The Intelligent Fault Diagnosis of Wind 

Turbine Gearbox Based on Artificial Neural Network’, Proceedings of 

International Conference on Condition Monitoring and Diagnosis, pp. 1327-

1330. 

Yang, W.-X., and Ren, X.-M. 2004, ‘Detecting Impulses in Mechanical Signals by 

Wavelets’, EURASIP Journal on Advances in Signal Processing, vol. 2004, 

no. 8, pp. 1156-1162.

Yen, G.G., and Lin, K.-C. 2000, ‘Wavelet Packet Feature Extraction for Vibration 

Monitoring’, IEEE Transactions on Industrial Electronics, vol. 47, no. 3, pp. 

650-667.

Zadeh, L.A. 1965, ‘Fuzzy Sets’, Information and Control, vol. 8, no. 1, pp. 338-353. 

Zadeh, L.A. 1973, ‘Outline of A New Approach to the Analysis of Complex Systems 

and Decision Processes’, IEEE Transactions on Systems, Man and 

Cybernetics, vol. 3, no. 1, pp. 28-44.

Zarei, J., Poshtan, J., and Poshtan, M. 2008, ‘Bearing Fault Detection in Induction 

Motor Using Pattern Recognition Techniques’, IEEE 2nd International 

Power and Energy Conference, vol. 1-3, pp. 749-753.

Zhan, Y., Makis, V., and Jardine, A.K.S. 2003, ‘Adaptive Model for Vibration 

Monitoring of Rotating Machinery Subject to Random Deterioration’, 

Journal of Quality in Maintenance Engineering, vol. 9, no. 4, pp. 351-375.

Zhang, J., and Morris, J. 1996, ‘Process Modelling and Fault Diagnosis Using Fuzzy 

Neural Networks’, Fuzzy Sets and Systems, vol. 79, no. 1, pp. 127-140.

Zhang, L., Xiong, G., Liu, H., Zou, H., and Guo, W. 2010, ‘Bearing Fault Diagnosis 

Using Multi-scale Entropy and Adaptive Neuro-fuzzy Inference’, Expert 

Systems with Applications, vol. 37, no. 8, pp. 6077-6085.



References 214

Zhang, S., and Ganesan, R. 1997, ‘Multivariable Trend Analysis Using Neural 

Networks for Intelligent Diagnostics of Rotating Machinery’, Journal of 

Engineering for Gas Turbines and Power - Transactions of the ASME, vol. 

119, no. 2, pp. 378-384.

Zhao, F., Cheng, J., Guo, L., and Li, X. 2009, ‘Neuro-fuzzy Based Condition 

Prediction of Bearing Health’, Journal of Vibration and Control, vol. 15, no. 

7, pp. 1079-1091.

Zhong, F., Shi, T., and He, T. 2005, ‘Fault Diagnosis of Motor Bearing Using Self-

Organizing Maps’, Proceedings of the Eighth International Conference on 

Electrical Machines and Systems, vol. 1-3 pp. 2411-2414.

Zhu, K., Wong, Y.S., and Hong, G.S. 2009, ‘Wavelet Analysis of Sensor Signals for 

Tool Condition Monitoring: A Review and Some New Results’, International 

Journal of Machine Tools and Manufacture, vol. 49, no. 7-8, pp. 537-553.

Every reasonable effort has been made to acknowledge the owners of copyright 

material. I would be pleased to hear from any copyright owner who has been omitted 

or incorrectly acknowledged.



Appendix 1 – Daubechies 4 Wavelet Transform Implementation 215

Appendix 1 – Daubechies Wavelet Transform
Implementation

In relation to the wavelet topic which is presented in Chapter 2 Section 2.4, a detail 

example implementation of Daubechies 4 transform is presented here. The 

mathematical formulation is adapted from Jensen and la Cour-Harbo (2001) which is

based on the following Equations:

s(1)[n]  S[2n] 3S[2n 1], (A1.1)

  ],1[2325.0][325.0]12[[] )1()1()1(  nsnsnSnd (A1.2)

s2)[n] s(1)[n]d(1)[n1], (A1.3)

s[n] 
3 1

2
s(2)[n], (A1.4)

d[n] 
3 1

2
d(2)[n], (A1.5)

Implementation of Daubechies 4 using Equation A1.1 is carried out to calculate 

s(1)[n] for all values of n. In this case, for a signal of length N, the calculation can 

be carried out using iteration (loop) which is written in Matlab syntax as follows:

For n=1:N/2

s1((n) = S(2*n-1) + sqrt(3)*S(*n);

end

Equation 1 can be interpreted as a vector equation, where n starts from 1 to N/2. It is 

illustrated as follows:
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The indices are related to indexing in Matlab and Matlab syntax of the vector 

equation is presented as follows:

s1 = S(1:2:N-1) + sqrt(3)*S(2:2:N);

In this implementation, periodization method is used since it provides unitary 

transformation. By using periodised signal, undefined elements are taken from the 

other end of the signal. Hence, it is defined that s(1)[1] s(1)[N /2], then Equation 

A1.2 is interpreted as follows:
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Translation of Equation A1.2 into a Matlab syntax becomes

d1=S(2:2:N) – sqrt(3)/4*s1 – (sqrt(3)-2)/4*[s1[N/2] s1(1:N/2-1];

The change of a vector from s1 to [s1(N/2) s1(1:N/2-1)] is referred as a cyclic 

permutation of the vector s1.

The complete Matlab codes for implementing Daubechies 4 wavelet transform is 

presented as below.

s1 = S(1:2:N-1) + sqrt(3)*S(2:2:N);

d1 = S(2:2:N) – sqrt(3)/4*s1 – (sqrt(3)-2)/4*[s1(N/2) s1(1:N/2-1)];

s2 = s1 – [d1(2:N/2) d1(1)];

s = (sqrt(3)-1)/sqrt(2) * s2;

d = (sqrt(3)+1/sqrt(2) * d1;

A practical implementation of the complete codes of Daubechies 4 transform is 

presented using a simple sinusoidal signal which was generated in Matlab using the 

following codes:



Appendix 1 – Daubechies 4 Wavelet Transform

t = 0.0009765625:0.0009765625:1; 

signal = 20*(t.^2).*((1

The original sinusoidal signal is shown in Figure 

points of the signal is 1024.  The Daubechies 4 (db4) wavelet transform result is 

shown in Figure A1.1(b).

The original signal is transformed using the complete code that represent

signal decomposition using Daubechies 4 algorithm.

The transform result is presented as a combined plot of Approximation (A) and 

Details (D) coefficients. In Figure 

data points) is the Approximation (A) results of the transform

of the plot (512 data points) is the Details (D) results of the transform

Figure A1.

The separated plots which show Approximation (A) and Details (D) results are 

presented in Figure 

Daubechies 4 Wavelet Transform Implementation

t = 0.0009765625:0.0009765625:1; % 1024 samples

signal = 20*(t.^2).*((1-t).^4).*cos(12*pi.*t);

The original sinusoidal signal is shown in Figure A1.1(a). The numbers of data 

points of the signal is 1024.  The Daubechies 4 (db4) wavelet transform result is 

1(b).

inal signal is transformed using the complete code that represent

signal decomposition using Daubechies 4 algorithm.

The transform result is presented as a combined plot of Approximation (A) and 

Details (D) coefficients. In Figure A1.1(b). The first half of the plot (the first 512 

data points) is the Approximation (A) results of the transformation

of the plot (512 data points) is the Details (D) results of the transform

A1.1. Original signal and Daubechies 4 transform results

The separated plots which show Approximation (A) and Details (D) results are 

presented in Figure A1.2 and Figure A1.3. The first half 512 data points that 
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1(a). The numbers of data 

points of the signal is 1024.  The Daubechies 4 (db4) wavelet transform result is 

inal signal is transformed using the complete code that represents 1 level of 

The transform result is presented as a combined plot of Approximation (A) and 

first half of the plot (the first 512 

ation, and the rest half 

of the plot (512 data points) is the Details (D) results of the transformation.

transform results

The separated plots which show Approximation (A) and Details (D) results are 

3. The first half 512 data points that 
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represent Approximation (A) results are plotted in Figure 

points which represent Details (D) results are plotted in Figure 

Figure A1.

Figure 

It shown that 1 level wavelet transformation of the signal pr

which are labelled Approximation (A) part and Detail (D) part in accordance with the 

wavelet transform scheme presented in Chapt

Daubechies 4 Wavelet Transform Implementation

represent Approximation (A) results are plotted in Figure A1.2. The rest of 512 da

points which represent Details (D) results are plotted in Figure A1.

A1.2. Approximation (A) part of the transform result

Figure A1.3. Details (D) part of the transform result

It shown that 1 level wavelet transformation of the signal produce two parts of results 

which are labelled Approximation (A) part and Detail (D) part in accordance with the 

wavelet transform scheme presented in Chapter 2 Section 2.4.
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2. The rest of 512 data 

A1.3.

Approximation (A) part of the transform result

Details (D) part of the transform result

oduce two parts of results 

which are labelled Approximation (A) part and Detail (D) part in accordance with the 
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The reconstruction of the original signal 

transformation results of A and D parts can be carried out using the following codes,

d1 = d * ((sqrt(3)
s2 = s * ((sqrt(3)+1)/sqrt(2));
s1 = s2 + circshift(d1,
S(2:2:N) = d1 + sqrt(3)/4*s1 + (sqrt(3)
S(1:2:N-1) = s1 -

Figure 4 shows the comparison between the original signal and the un

reconstructed signal. There is amplitude difference between these two signals. The 

correction to equalize the amplitude of both signals is carrie

codes:

rec_signal = S; % reconstructed signal
scl_factor = sum(rec_signal) / sum(signal); 
rec_signal = S./scl_factor; 

Figure A1.

The corrected reconstructed signal that has been scaled to match the amplitude of the 

original signal is presented in Figure 

Daubechies 4 Wavelet Transform Implementation

The reconstruction of the original signal (inverse transform) by using the

results of A and D parts can be carried out using the following codes,

d1 = d * ((sqrt(3)-1)/sqrt(2));
s2 = s * ((sqrt(3)+1)/sqrt(2));
s1 = s2 + circshift(d1,-1);
S(2:2:N) = d1 + sqrt(3)/4*s1 + (sqrt(3)-2)/4*circshift(s1,1);

- sqrt(3)*S(2:2:N);

Figure 4 shows the comparison between the original signal and the un

reconstructed signal. There is amplitude difference between these two signals. The 

correction to equalize the amplitude of both signals is carried out using the 

% reconstructed signal
scl_factor = sum(rec_signal) / sum(signal); % get scaling factor
rec_signal = S./scl_factor; % scaling

A1.4. Original signal and un-scaled reconstructed signal

The corrected reconstructed signal that has been scaled to match the amplitude of the 

original signal is presented in Figure A1.5.
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(inverse transform) by using the

results of A and D parts can be carried out using the following codes,

2)/4*circshift(s1,1);

Figure 4 shows the comparison between the original signal and the un-scaled 

reconstructed signal. There is amplitude difference between these two signals. The 

d out using the following 

% get scaling factor

scaled reconstructed signal

The corrected reconstructed signal that has been scaled to match the amplitude of the 
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Figure A1.

Daubechies 4 Wavelet Transform Implementation

A1.5. Original signal and scaled reconstructed signal

220

Original signal and scaled reconstructed signal
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Appendix 2 – Fuzzy Sets Theory 

A.2.1. Basic Definitions and Terminology

Let assume that X be a space of objects and x be a regular element of X then a 

conventional set A in which A X , is defined as a collection of elements x X , 

with the condition that each x can either be included or not be included to the set A

by stating a characteristic function for each element x in X.  In this case, the 

conventional set A can be represented by a set of ordered pairs (x, 0) or (x, 1), which 

indicates x  Aor x  A , respectively.

In contrast to the conventional set, a fuzzy set expresses the degree to which an 

element is included to a set. Hence the characteristic function of a fuzzy set is 

allowed to have values between interval 0 and 1. In this context, the characteristic 

function denotes the degree of membership of an element in a given set.

A.2.2. Fuzzy Sets and the Membership Functions

If X is a collection of objects denoted by x, then a fuzzy set A in X is defined as a set 

of ordered pairs:

  XxxxA A  )(, (A2.1)

where )(xA is called the membership function (MF for short) for the fuzzy set A

and X is referred to the universe of discourse. The MF maps each element of X to a 

membership grade (or membership value) between 0 and 1. It is clear that the 

definition of a fuzzy set is a simple definition or generalization of a conventional set 

in which the characteristic function is allowed/permitted to have any values between 

0 and 1. If the value of membership function )(xA is reduced to either 0 or 1, then 

the fuzzy set A becomes conventional set with membership function 0 and 1.

                                                       


Jang et al. 1997, Neuro-Fuzzy and Soft Computing, Prentice-Hall, New York
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The universe of discourse may consist of discrete objects or continuous space. It is 

shown in the following example.

Example A2.1. Fuzzy sets with a discrete universe

Let X = {10, 15, 20, 25, 30, 35, 40} be the set of comfortable room temperature in C 

for human. Then the fuzzy set A for "comfortable room temperature" may be 

explained as follows:

A = {(10,0.1), (15,0.3), (20,0.7), (25,1), (30,0.7), (35,0.3), (40,0.1)}.

The MF for fuzzy set A is shown is shown in Figure A2.1(a). The membership grades 

of this fuzzy set are clearly based on subjective measures.

Figure A2.1. (a) A = "comfortable room temperature"; (b) B = "about 50°C".

Example 2. Fuzzy sets with a continuous universe

Let assume that X = R be the set of temperature range from 0 °C to 100 °C. Then the 

fuzzy set B for "about 50 °C" is expressed as:

  XxxxB B  )(, (A2.2)

where

4

10

50
1

1
)(







 




x

xB
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It is illustrated in Figure A2.1(b).

For simplicity of notation, fuzzy set A can be denoted as follows:

A = 
xi X

 (xi) / xi, if X is a collection of discrete objects (A2.3a)

A = 
X

A xx ,/)( if X is a continuous space in R (A2.3b)

Fuzzy sets in Examples A2.1 and A2.2 can be rewritten based on the standard 

notation from Equation A2.3a and A2.3b, respectively as

A = 0.1/10 + 0.3/15 + 0.7/20 + 1.0/25 + 0.7/30 + 0.3/35 + 0.1/40,

and














 





R

x
x

B 4

10

50
1

1

The summation and integration sign in the above equations stand for the union of 

))(,( xx A pairs. The signs do not indicate summation or integration. Similarly, "/" is 

only used as a marker and does not imply division.

A2.3. Fuzzy Sets Partition

Fuzzy sets are defined by partitioning a continuous space or real line R universe of 

discourse X. The partition of X into several fuzzy sets which MFs cover X in a more 

or less uniform manner.  

The fuzzy set in the partitions usually use names that are taken from the adjective 

words of human linguistics such as "low", "medium", or "high." The adjective words 

that are used to name fuzzy sets in X partition are called linguistic values or linguistic 

labels.



Appendix 2– Fuzzy Sets Theory 224

Figure A2.2. Typical MFs of linguistic variables "low", "medium" and "high".

Figure A2.2 shows the universe of discourse of water temperature in °C. There are 

three fuzzy sets, low, medium and high. These fuzzy sets are characterized by MFs 

low (x), medium (x), andhigh(x) . As a real variable can assume various values, 

similarly a linguistic variable "Temperature" can assume different linguistic values, 

such as "low", "medium" and "high". If the values of "temperature" is in the fuzzy set 

"high", then the expression "temperature is high" is applied, and so forth for other 

values.

A2.4. Properties of Fuzzy Sets

Core of fuzzy set. A core are elements which have membership degree = 1 as shown 

Figure A2.3. 

core(A) =  0)(,  xXxx A

Support of fuzzy set. A support of a subset of the universe X is collection of elements 

of which each has a membership degree bigger than zero (Figure A2.3). 

support (A) =  0)(,  xXxx A

For example, the support of the fuzzy set A in Figure A2.3 is the interval (3, 7).



Appendix 2– Fuzzy Sets Theory 225

Figure A2.3. Support and Core of Fuzzy Set A

A2.5. Operations on Fuzzy Sets

Operations on Fuzzy sets are based on operations of conventional Boolean logic with 

several extensions to their fuzzy equivalents. The set operations are AND 

(intersection), OR (union) and NOT (complement). Basic classical set operations of 

union, intersection, and complements are shown in Table A2.1.

Table A2.1. Logic Operations of Classical Set

A B A & B 
Conj

A U B 
Disj.

Not Comp.

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

Definition A2.1. Union (disjunction)

The union of two fuzzy sets A and B is a fuzzy set C, written as C = AB or C = A 

OR B, whose MF is related to those of A and B by

  )()()(),(max)( xxxx BABAc  

Definition A2.2. Intersection (conjunction)

The intersection of two fuzzy sets A and B is a fuzzy set C, written as BAC  or 

C = A AND B, whose MF is related to those of A and B by
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  )()()(),(min)( xxxx BABAc  

Definition A2.3. Complement (negation)

The complement of fuzzy set A, denoted by A or ( A , NOT A) and it is defined as 


A 
1 A (x)

Figure A2.4.Operations on fuzzy sets: a) two fuzzy setsA and B; (b) A ; 

(c) AB; (d) AB

Figure A2.4 shows these three basic operations. In the detail, Figure A2.4(a) 

illustrates two fuzzy sets A and B; Figure A2.4(b) is the complement of A; Figure 

A2.4(c) is the union of A and B; Figure A2.4(d) is the intersection of A and B.

A2.6. MF Formulation and Parameterization

This section explains several MFs that are commonly used to characterize fuzzy sets 

in its universe of discourse. It is convenient and concise to express a MF as a 

mathematical formula as in Example A2.2.
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Definition A2.4.Triangular MFs

A triangular MF is specified by three parameters {a, b, c} as follows:

Triangle (x; a, b, c) = 


























xc

cxb
bc

xc

bxa
ab

ax

ax

,0

,

,

,0

The parameters {a, b, c} with (a < b < c) determine the x coordinates of the three 

corners of the underlying triangular MF. Figure A2.5(a) shows a triangular MF 

define by a triangle (x; 20, 50, 80).

Definition A2.5.Trapezoidal MFs

A trapezoidal MF is specified by four parameters {a, b, c, d} as follows:

Trapezoid (x; a, b, c, d) = 






























xd

dxc
cd

xd

cxb

bxa
ab

ax

ax

,0

,

.,1

,

,0

The parameters {x; a, b, c, d}(with a < b < c < d) determine the x coordinates of the 

four corners of the underlying trapezoidal MF.

Figure A2.5(b) shows a trapezoidal MF defined by trapezoid (x; 10, 20, 60, 95). Note 

that a trapezoidal MF with parameter {a, b, c, d} reduces to a triangular MF when b

is equal to c.
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Figure A2.5. Examples of four classes of parameterised MFs: 

(a) triangle (x; 20, 50, 80); (b) trapezoid (x; 10, 20, 60, 95); 

(c) gaussian (x; 50, 20); (d) bell (x; 20, 4, 50)

Both triangular MFs and trapezoidal MFs have been used extensively, especially in 

real-time implementations, due to their simple formulas and computational 

efficiency. However, since the MFs are composed of straight-line segments, these 

segments are not smooth at the corner points specified by the parameters. The next 

two MFs definition are other types of MFs that have smooth curve and these curves 

are defined by non-linear functions.

Definition A2.6.Gaussian MFs

A Gaussian MF is specified by two parameters {g, }:

gaussian (x; g, ) = 

2

2

1






 




gx

e

A Gaussian MF is determined completely by parameters g and ; g represents the 

MF centre and  determines the MFs width. Figure A2.5(c) plots a Gaussian MF 

defined by gaussian (x; 50, 20).
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Definition A2.7. Generalised bell MFs

A generalised bell MF (or bell MF) is specified by three parameters fed ,, :

Bell (x ; d,e, f )= e

d

fx
2

1

1




where the parameter e is usually positive. (If e is negative, the shape of bell MF 

becomesan upside down bell.) Figure A2.5(d) shows a generalized bell MF defined 

by bell (x; 20, 4, 50).
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Appendix 3 – Integrated ANFIS Training Code

% Integrated Script for ANFIS Training.
% Created by Jonny Latuny - Perth - December 19, 2011

clear all;
close all;
clc;

win_env = 0; mac_env = 0; 
override_mat_files_check = 0;

if exist('c:\Users\2103900\works2009','dir')
   target_dir='c:\Users\2103900\works2009\text_data\';
   source_dir='c:\Users\2103900\works2009\text_data\';
   target_dir_fis='c:\Users\2103900\works2009\fis_data\';
%res_code = 'ch1wxf';
   win_env = 1;
elseif exist('c:\works2009','dir')
   target_dir='c:\works2009\text_data\';
   source_dir='c:\works2009\text_data\';
   target_dir_fis='c:\works2009\fis_data\';
   override_mat_files_check = 1;
%res_code = 'ch1wxt';
   win_env = 1;
elseif exist('d:\works2009','dir')
   target_dir='d:\works2009\text_data\';
   source_dir='d:\works2009\text_data\';
   target_dir_fis='d:\works2009\fis_data\';
   override_mat_files_check = 1;
%res_code = 'ch1wxq';
   win_env = 1;
elseif exist('e:\works2009','dir')
   target_dir='e:\works2009\text_data\';
   source_dir='e:\works2009\text_data\';
   target_dir_fis='e:\works2009\fis_data\';
   override_mat_files_check = 1;
%res_code = 'ch1wx';
   win_env = 1;
else
   disp('Assigning target dir for Mac OS X');
   target_dir='/Users/jonnylatuny/works2009/text_data/';
   source_dir='/Users/jonnylatuny/works2009/text_data/';
   target_dir_fis='/Users/jonnylatuny/works2009/fis_data/';
   override_mat_files_check = 1;
%res_code = 'ch1mx';
   mac_env = 1;
end

res_code = 'ch1all';
xdecomp_level = 10;

xdata_code = input('Enter data code identifier: ');
xdata_id = num2str(xdata_code);
[brs,klm] = size(xdata_id);
if klm >= 4
    xdata_code = xdata_id;
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elseif klm == 3
    xdata_code = ['0',num2str(xdata_code)];%add string 0data code
else
    disp('Data code identifier number not match');
end

xdb_init = 4;
for db_idx = 1:5 % db4,db8,db12,db22&db44
if db_idx == 1
      xdb_type = xdb_init;
end
if db_idx == 2
      xdb_type = xdb_init * 2;
end
if db_idx == 3
      xdb_type = db_idx * xdb_init;
end
if db_idx == 4
      xdb_type = 22;
end
if db_idx == 5
      xdb_type = xdb_init * 11;
end

    filedata1 = ['ch12_',num2str(xdata_code),'_','1.mat'];
    filedata2 = ['ch12_',num2str(xdata_code),'_','984.mat'];
    chk_mat1 =  exist(filedata1,'file');
    chk_mat2 =  exist(filedata2,'file');

if override_mat_files_check == 1
        chk_mat1 = 2;
        chk_mat2 = 2;
end

    filename1 = [target_dir,'multires10_db',num2str(xdb_type),...
'_ch1d_mvar_',num2str(xdata_code),'_984.txt'];
    filename2 = [target_dir,'multires10_db',num2str(xdb_type),...
'_ch2d_mvar_',num2str(xdata_code),'_984.txt'];
    chk_file1 =  exist(filename1,'file');
    chk_file2 =  exist(filename2,'file');

if chk_mat1 == 0 && chk_mat2 == 0 
        disp('MAT files Not exist: calculation aborted');

elseif chk_file1 == 2 && chk_file2 == 2 
        disp(['File hasil: ',filename1,' exists']);
        disp(['File hasil: ',filename2,' exists']);
        disp('Plotting existing Ch1 and Ch2 results ....');
        result1_avr = [];
        result2_avr = [];
% ====== load data existing data and do plotting ======
        data_ch1 = load(filename1);
        data_ch2 = load(filename2);

for i=1:xdecomp_level %level 1-10 wavelet decomposition
            data_plot_ch1 = eval(['data_ch1(:,',num2str(i),')']);
            data_plot_ch2 = eval(['data_ch2(:,',num2str(i),')']);
            data_ch1_avr = (sum(data_plot_ch1)) / 984;
            data_ch2_avr = (sum(data_plot_ch2)) / 984;
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            eval(['data_ch1_avr_all_' num2str(i) ' = ...
data_ch1_avr;']);
            eval(['data_ch2_avr_all_' num2str(i) ' = ...
data_ch2_avr;']);

            result1_avr = [result1_avr; ...
eval(['data_ch1_avr_all_'num2str(i)])];
            result2_avr = [result2_avr; ...
eval(['data_ch2_avr_all_'num2str(i)])];

            chk_ith = mod(i,2);
if chk_ith == 1 
                   attrib = 'r-';
else
                   attrib = 'b-';
end
            disp(['plotting cA data db',num2str(xdb_type),'-', ...
                num2str(i),'-th energy level of ch1 & ch2 data']);

            figure(1)
            subplot(2,1,1)
            plot(data_plot_ch1, attrib);
            title(['(a) Ch1 cA energy: db',...
num2str(xdb_type),'-',num2str(i), ...
' ith level - data code: ', ...
num2str(xdata_code)]);
            subplot(2,1,2)
            plot(data_plot_ch2, attrib);
            title(['(b) Ch2 cA energy: db',...
num2str(xdb_type),'-', ...
num2str(i), ' ith level - data code: ', ...
num2str(xdata_code)]);

pause(0.5);
end

        result1_avr = result1_avr(1:9,:);
        result2_avr = result2_avr(1:9,:);

        figure(2)
        subplot(2,1,1);
        bar(result1_avr,'r');
        title(['(a) Average Ch1 cA En - ',num2str(xdata_code),...
' max values - db',num2str(xdb_type),...
' level 1 - 10']); 
[ye,exj] = max(result1_avr);

        subplot(2,1,2);
        bar(result2_avr);
        title(['(b) Average Ch2 cA En - ',num2str(xdata_code),...
' max values - db',num2str(xdb_type),...
' level 1 - 10']);
[ye2,exj2] = max(result2_avr); 

else

       xdata_awal = 1;
       xdata_akhir = 984;

       results1 =[]; 
       results2 =[]; 
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% Channel 1 Signal processing
for j=xdata_awal:xdata_akhir

% Read signal in sequence
       signal_in = ...
['ch12_',num2str(xdata_code),'_',num2str(j),'.mat'];

       disp(['Processing Ch1 data no: ',...
signal_in, ' - db type: ', num2str(xdb_type)]);

%data_in = load(signal_in); %for txt data file
       eval('load(signal_in)'); %for mat data file

       signal_c1 = data_all(:,1);

       fctr = nextpow2(length(signal_c1));

       [h,g,rh,rg] = daub(xdb_type); % specify Daubechies filter
       mrx = multires(signal_c1,h,rh,g,rg,xdecomp_level); %do MRA

for v=1:xdecomp_level
if v==1
               d1 = mrx(1,:);
               a1 = mrx(2,:);
               a1_en = 1/2^(fctr-1) * sum(a1.^2);
               a1_rms = sqrt( ((sum(a1.^2))/length(a1)));
               a1_kurto = kurtosis(a1);
               [a1_y_fft, a1_x_fft] = max(abs(fft(a1)));
               a1_std = std(a1);
               a1_var = var(a1);
end
if v==2
               d2 = mrx(2,:);
               a2 = mrx(3,:);
               a2_en = 1/2^(fctr-2) * sum(a2.^2);
               a2_rms = sqrt( ((sum(a2.^2))/length(a2)));
               a2_kurto = kurtosis(a2);
               [a2_y_fft, a2_x_fft] = max(abs(fft(a2)));
               a2_std = std(a2);
               a2_var = var(a2);
end
if v==3
               d3 = mrx(3,:);
               a3 = mrx(4,:);
               a3_en = 1/2^(fctr-3) * sum(a3.^2);
               a3_rms = sqrt( ((sum(a3.^2))/length(a3)));
               a3_kurto = kurtosis(a3);
               [a3_y_fft, a3_x_fft] = max(abs(fft(a3)));
               a3_std = std(a3);
               a3_var = var(a3);
end
if v==4
               d4 = mrx(4,:);
               a4 = mrx(5,:);
               a4_en = 1/2^(fctr-4) * sum(a4.^2);
               a4_rms = sqrt( ((sum(a4.^2))/length(a4)));
               a4_kurto = kurtosis(a4);
               [a4_y_fft, a4_x_fft] = max(abs(fft(a4)));
               a4_std = std(a4);
               a4_var = var(a4);
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end
if v==5
               d5 = mrx(5,:);
               a5 = mrx(6,:);
               a5_en = 1/2^(fctr-5) * sum(a5.^2);
               a5_rms = sqrt( ((sum(a5.^2))/length(a5)));
               a5_kurto = kurtosis(a5);
               [a5_y_fft, a5_x_fft] = max(abs(fft(a5)));
               a5_std = std(a5);
               a5_var = var(a5);
end
if v==6
               d6 = mrx(6,:);
               a6 = mrx(7,:);
               a6_en = 1/2^(fctr-6) * sum(a6.^2);
               a6_rms = sqrt( ((sum(a6.^2))/length(a6)));
               a6_kurto = kurtosis(a6);
               [a6_y_fft, a6_x_fft] = max(abs(fft(a6)));
               a6_std = std(a6);
               a6_var = var(a6);
end
if v==7
               d7 = mrx(7,:);
               a7 = mrx(8,:);
               a7_en = 1/2^(fctr-7) * sum(a7.^2);
               a7_rms = sqrt( ((sum(a7.^2))/length(a7)));
               a7_kurto = kurtosis(a7);
               [a7_y_fft, a7_x_fft] = max(abs(fft(a7)));
               a7_std = std(a7);
               a7_var = var(a7);
end
if v==8
               d8 = mrx(8,:);
               a8 = mrx(9,:);
               a8_en = 1/2^(fctr-8) * sum(a8.^2);
               a8_rms = sqrt( ((sum(a8.^2))/length(a8)));
               a8_kurto = kurtosis(a8);
               [a8_y_fft, a8_x_fft] = max(abs(fft(a8)));
               a8_std = std(a8);
               a8_var = var(a8);
end
if v==9
               d9 = mrx(9,:);
               a9 = mrx(10,:);
               a9_en = 1/2^(fctr-9) * sum(a9.^2);
               a9_rms = sqrt( ((sum(a9.^2))/length(a9)));
               a9_kurto = kurtosis(a9);
               [a9_y_fft, a9_x_fft] = max(abs(fft(a9)));
               a9_std = std(a9);
               a9_var = var(a9);
end
if v==10
               d10 = mrx(10,:);
               a10 = mrx(11,:);
               a10_en = 1/2^(fctr-10) * sum(a10.^2);
               a10_rms = sqrt( ((sum(a10.^2))/length(a10)));
               a10_kurto = kurtosis(a10);
               [a10_y_fft, a10_x_fft] = max(abs(fft(a10)));
               a10_std = std(a10);
               a10_var = var(a10);
end
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end

       energy_A = [a1_en a2_en a3_en a4_en a5_en a6_en ...
           a7_en a8_en a9_en a10_en];
       rms_A = [a1_rms a2_rms a3_rms a4_rms a5_rms a6_rms ...
           a7_rms a8_rms a9_rms a10_rms];
       kurto_A = [a1_kurto a2_kurto a3_kurto a4_kurto ...
           a5_kurto a6_kurto a7_kurto a8_kurto a9_kurto a10_kurto];
       fft_a_x = [a1_x_fft a2_x_fft a3_x_fft a4_x_fft ...
           a5_x_fft a6_x_fft a7_x_fft a8_x_fft a9_x_fft a10_x_fft];
       fft_a_y = [a1_y_fft a2_y_fft a3_y_fft a4_y_fft ...
           a5_y_fft a6_y_fft a7_y_fft a8_y_fft a9_y_fft a10_y_fft];
       std_A = [a1_std a2_std a3_std a4_std a5_std a6_std ...
           a7_std a8_std a9_std a10_std];
       var_A = [a1_var a2_var a3_var a4_var a5_var a6_var ...
           a7_var a8_var a9_var a10_var];

       hasil_all1 = [energy_A rms_A kurto_A ...
fft_a_x fft_a_y std_A var_A];
       eval(['hasil_final1_' num2str(j) ' = hasil_all1;']);
       results1 = [results1; eval(['hasil_final1_' num2str(j)])];

       clear hasil_final1*;
       clear d*; clear a*;

end

    eval(['save ', filename1 ,' results1 -ASCII'])
    disp('======== Done Processing Ch1 Data ...');

% Channel 2 Signal processing
for j=xdata_awal:xdata_akhir

% Read signal in sequence
       signal_in = 
['ch12_',num2str(xdata_code),'_',num2str(j),'.mat'];

%data_in = load(signal_in); % for txt data file
      eval('load(signal_in)'); % for mat data file
disp(['Processing Ch2 data no: ',...
signal_in, ' - db type: ', num2str(xdb_type)]);

       signal_c2 = data_all(:,2);
       fctr = nextpow2(length(signal_c2));

       [h,g,rh,rg] = daub(xdb_type);
       mrx = multires(signal_c2,h,rh,g,rg,xdecomp_level);

for v=1:xdecomp_level
if v==1
           d1 = mrx(1,:);
           a1 = mrx(2,:);
           a1_en = 1/2^(fctr-1) * sum(a1.^2);
           a1_rms = sqrt( ((sum(a1.^2))/length(a1)));
           a1_kurto = kurtosis(a1);
           [a1_y_fft, a1_x_fft] = max(abs(fft(a1)));
           a1_std = std(a1);
           a1_var = var(a1);
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end
if v==2
           d2 = mrx(2,:);
           a2 = mrx(3,:);
           a2_en = 1/2^(fctr-2) * sum(a2.^2);
           a2_rms = sqrt( ((sum(a2.^2))/length(a2)));
           a2_kurto = kurtosis(a2);
           [a2_y_fft, a2_x_fft] = max(abs(fft(a2)));
           a2_std = std(a2);
           a2_var = var(a2);
end
if v==3
           d3 = mrx(3,:);
           a3 = mrx(4,:);
           a3_en = 1/2^(fctr-3) * sum(a3.^2);
           a3_rms = sqrt( ((sum(a3.^2))/length(a3)));
           a3_kurto = kurtosis(a3);
           [a3_y_fft, a3_x_fft] = max(abs(fft(a3)));
           a3_std = std(a3);
           a3_var = var(a3);
end
if v==4
           d4 = mrx(4,:);
           a4 = mrx(5,:);
           a4_en = 1/2^(fctr-4) * sum(a4.^2);
           a4_rms = sqrt( ((sum(a4.^2))/length(a4)));
           a4_kurto = kurtosis(a4);
           [a4_y_fft, a4_x_fft] = max(abs(fft(a4)));
           a4_std = std(a4);
           a4_var = var(a4);
end
if v==5
           d5 = mrx(5,:);
           a5 = mrx(6,:);
           a5_en = 1/2^(fctr-5) * sum(a5.^2);
           a5_rms = sqrt( ((sum(a5.^2))/length(a5)));
           a5_kurto = kurtosis(a5);
           [a5_y_fft, a5_x_fft] = max(abs(fft(a5)));
           a5_std = std(a5);
           a5_var = var(a5);
end
if v==6
           d6 = mrx(6,:);
           a6 = mrx(7,:);
           a6_en = 1/2^(fctr-6) * sum(a6.^2);
           a6_rms = sqrt( ((sum(a6.^2))/length(a6)));
           a6_kurto = kurtosis(a6);
           [a6_y_fft, a6_x_fft] = max(abs(fft(a6)));
           a6_std = std(a6);
           a6_var = var(a6);
end
if v==7
           d7 = mrx(7,:);
           a7 = mrx(8,:);
           a7_en = 1/2^(fctr-7) * sum(a7.^2);
           a7_rms = sqrt( ((sum(a7.^2))/length(a7)));
           a7_kurto = kurtosis(a7);
           [a7_y_fft, a7_x_fft] = max(abs(fft(a7)));
           a7_std = std(a7);
           a7_var = var(a7);
end
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if v==8
           d8 = mrx(8,:);
           a8 = mrx(9,:);
           a8_en = 1/2^(fctr-8) * sum(a8.^2);
           a8_rms = sqrt( ((sum(a8.^2))/length(a8)));
           a8_kurto = kurtosis(a8);
           [a8_y_fft, a8_x_fft] = max(abs(fft(a8)));
           a8_std = std(a8);
           a8_var = var(a8);
end
if v==9
           d9 = mrx(9,:);
           a9 = mrx(10,:);
           a9_en = 1/2^(fctr-9) * sum(a9.^2);
           a9_rms = sqrt( ((sum(a9.^2))/length(a9)));
           a9_kurto = kurtosis(a9);
           [a9_y_fft, a9_x_fft] = max(abs(fft(a9)));
           a9_std = std(a9);
           a9_var = var(a9);
end
if v==10
           d10 = mrx(10,:);
           a10 = mrx(11,:);
           a10_en = 1/2^(fctr-10) * sum(a10.^2);
           a10_rms = sqrt( ((sum(a10.^2))/length(a10)));
           a10_kurto = kurtosis(a10);
           [a10_y_fft, a10_x_fft] = max(abs(fft(a10)));
           a10_std = std(a10);
           a10_var = var(a10);
end
end

       energy_A = [a1_en a2_en a3_en a4_en a5_en a6_en ...
           a7_en a8_en a9_en a10_en];
       rms_A = [a1_rms a2_rms a3_rms a4_rms a5_rms a6_rms ...
           a7_rms a8_rms a9_rms a10_rms];
       kurto_A = [a1_kurto a2_kurto a3_kurto a4_kurto ...
           a5_kurto a6_kurto a7_kurto a8_kurto a9_kurto a10_kurto];
       fft_a_x = [a1_x_fft a2_x_fft a3_x_fft a4_x_fft ...
           a5_x_fft a6_x_fft a7_x_fft a8_x_fft a9_x_fft a10_x_fft];
       fft_a_y = [a1_y_fft a2_y_fft a3_y_fft a4_y_fft ...
           a5_y_fft a6_y_fft a7_y_fft a8_y_fft a9_y_fft a10_y_fft];
       std_A = [a1_std a2_std a3_std a4_std a5_std a6_std ...
           a7_std a8_std a9_std a10_std];
       var_A = [a1_var a2_var a3_var a4_var a5_var a6_var ...
           a7_var a8_var a9_var a10_var];

       hasil_all2 = [energy_A rms_A kurto_A fft_a_x ...
fft_a_y std_A var_A];

       eval(['hasil_final2_' num2str(j) ' = hasil_all2;']); 
       results2 = [results2; eval(['hasil_final2_' num2str(j)])];

      clear hasil_final2*;
       clear d*; clear a*;

end

    eval(['save ', filename1 ,' results1 -ASCII'])
    eval(['save ', filename2 ,' results2 -ASCII'])
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    disp('======== Done Processing Ch2 Data ...');

    data_ch1 = results1;
    data_ch2 = results2;
    result1_avr = [];
    result2_avr = [];

for i=1:xdecomp_level

            data_en_ch1 = eval(['data_ch1(:,',num2str(i),')']);
            data_en_ch2 = eval(['data_ch2(:,',num2str(i),')']);
            data_ch1_avr = (sum(data_en_ch1)) / 984;
            data_ch2_avr = (sum(data_en_ch2)) / 984;

            eval(['data_ch1_avr_all_'...
num2str(i) ' = data_ch1_avr;']);
            eval(['data_ch2_avr_all_'...
num2str(i) ' = data_ch2_avr;']);

            result1_avr = [result1_avr; ...
eval(['data_ch1_avr_all_' num2str(i)])];
            result2_avr = [result2_avr; ...
eval(['data_ch2_avr_all_' num2str(i)])];

            chk_ith = mod(i,2);
if chk_ith == 1 
                   attrib = 'r-';
else
                   attrib = 'b-';
end
            disp(['plotting data cA db',num2str(xdb_type),'-', ...
                num2str(i),'-th energy level of ch1 & ch2 data']);

            figure(3)
            subplot(2,1,1)
            plot(data_en_ch1, attrib);
            title(['(a) Ch1 cA energy: db',num2str(xdb_type),'-',...
num2str(i), ' ith level - data code:...
',num2str(xdata_code)]);

            subplot(2,1,2)
            plot(data_en_ch2, attrib);
            title(['(b) Ch2 cA energy: db', ...
                num2str(xdb_type),'-',num2str(i), ...
' ith level - data code: ',num2str(xdata_code)]);

            pause(0.5);

end

        result1_avr9 = result1_avr(1:9,:); 
        result2_avr9 = result2_avr(1:9,:); 
        [ye,exj] = max(result1_avr9); 
        [ye2,exj2] = max(result2_avr9);

end

    beep2(800,0.3);
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if chk_mat1 == 0 || chk_mat2 == 0
        exj = 0; % set exj (max level) to zero 
break;
end

    disp('-----------------------------------------------');
    disp(['Max energy magnitude of ch1 data at level: ', ...
        num2str(exj)]); % show max level info

% ================== training & checking ====================
level_start = exj; % data level group to be used
    level_end = exj; % data level group to be used
    perms_start = 1; % number of permutations combination
    perms_end = 721; % max value 721
    swap_start = 1; % number of swap index
    swap_end = 7; % max 7

% Set string of filename of data files needed for training
    filename1 = [source_dir,'multires10_db',...
num2str(xdb_type),'_ch1d_mvar_',...
num2str(xdata_code),'_984.txt'];
    filename2 = [source_dir,'multires10_db',...
num2str(xdb_type),'_ch2d_mvar_',...
num2str(xdata_code),'_984.txt'];
    chk_file1 =  exist(filename1,'file');
    chk_file2 =  exist(filename2,'file');

if chk_file1 == 0 && chk_file2 == 0
           disp('Results files Not exist - process cancelled');
else

%Load data existing data from TXT result files
       data_ch1 = load(filename1);
       data_ch2 = load(filename2);

% Preparing empty container for 10 level of data
       data_level1 = []; data_level2 = [];
       data_level3 = []; data_level4 = [];
       data_level5 = []; data_level6 = [];
       data_level7 = []; data_level8 = [];
       data_level9 = []; data_level10 = [];

% Group data into data level 1 - 10
       klm = 1;
for i=1:7
           datax = data_ch1(:,klm);
           data_level1 = [data_level1 datax];
           klm = klm + 10;
end

       klm = 2;
for i=1:7
           datax = data_ch1(:,klm);
           data_level2 = [data_level2 datax];
           klm = klm + 10;
end

       klm = 3;
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for i=1:7
           datax = data_ch1(:,klm);
           data_level3 = [data_level3 datax];
           klm = klm + 10;
end

       klm = 4;
for i=1:7
           datax = data_ch1(:,klm);
           data_level4 = [data_level4 datax];
           klm = klm + 10;
end

       klm = 5;
for i=1:7
           datax = data_ch1(:,klm);
           data_level5 = [data_level5 datax];
           klm = klm + 10;
end

       klm = 6;
for i=1:7
           datax = data_ch1(:,klm);
           data_level6 = [data_level6 datax];
           klm = klm + 10;
end

       klm = 7;
for i=1:7
           datax = data_ch1(:,klm);
           data_level7 = [data_level7 datax];
           klm = klm + 10;
end

       klm = 8;
for i=1:7
           datax = data_ch1(:,klm);
           data_level8 = [data_level8 datax];
           klm = klm + 10;
end

       klm = 9;
for i=1:7
           datax = data_ch1(:,klm);
           data_level9 = [data_level9 datax];
           klm = klm + 10;
end

       klm = 10;
for i=1:7
           datax = data_ch1(:,klm);
           data_level10 = [data_level10 datax];
           klm = klm + 10;
end

       disp('Ten levels of data processed successfully');

for level = level_start:level_end
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%Preparing data for processing
       data_levelx = eval(['data_level',num2str(level)]);

chk_dir = exist('target_dir','var');
if chk_dir == 0
disp('Error: Target Dir not exist')
else

for swap_idx = swap_start:swap_end

          all_results = [];
          fis_record = [];
          fis_recordx = [];

if win_env == 1
            filehasil = [target_dir,'trn_mvar_v9db',...
num2str(xdb_type),'_',res_code,'_',...
num2str(xdata_code),'_res',...
num2str(level),num2str(swap_idx),'.txt'];
            file_fis = [target_dir,'fis_rec_',...
num2str(xdata_code),'_db',num2str(xdb_type),'_L',...
num2str(level),'_S',num2str(swap_idx),'.txt'];      
else
            filehasil = [target_dir,'trn_mvar_v9db',...
num2str(xdb_type),'_',res_code,'_',...
num2str(xdata_code),'_res',num2str(level),...
num2str(swap_idx),'.txt'];
            file_fis = [target_dir,'fis_rec_',...
num2str(xdata_code),'_db',num2str(xdb_type),'_L',...
num2str(level),'_S',num2str(swap_idx),'.txt'];    
end

          chk_file_result = exist(filehasil,'file');

if chk_file_result == 2
            msg_res = ['File hasil for ',num2str(xdata_code),...
' at level ',num2str(level),' swap ',...
                num2str(swap_idx),...
' exist - training process skipped'];
            disp(msg_res);

else
% Swapping data columns according to loop value
            data_levelx(:,[swap_idx 7]) = ...
data_levelx(:,[7 swap_idx]);
            data_output = data_levelx(:,7);

% New inputs data arrangements
if swap_idx == 1
              input_name = char('Variance','RMS',...
'Kurtosis','FFTx','FFTy','StdDev');
              out_name = '1Energy';
              input_idex = [7; 2; 3; 4; 5; 6];
elseif swap_idx == 2
              input_name = char('Energy','Variance','Kurtosis',...
'FFTx','FFTy','StdDev');
              out_name = '2RMS';
              input_idex = [1; 7; 3; 4; 5; 6];
elseif swap_idx == 3
              input_name = char('Energy','RMS','Variance',...
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'FFTx','FFTy','StdDev');
              out_name = '3Kurtosis';
              input_idex = [1; 2; 7; 4; 5; 6];
elseif swap_idx == 4
              input_name = char('Energy','RMS','Kurtosis',...
'Variance','FFTy','StdDev');
              out_name = '4FFTx';
              input_idex = [1; 2; 3; 7; 5; 6];
elseif swap_idx == 5
              input_name = char('Energy','RMS','Kurtosis',...
'FFTx','Variance','StdDev');
              out_name = '5FFTy';
              input_idex = [1; 2; 3; 4; 7; 6];
elseif swap_idx == 6
              input_name = char('Energy','RMS','Kurtosis',...
'FFTx','FFTy','Variance');
              out_name = '6StdDev';
              input_idex = [1; 2; 3; 4; 5; 7];
elseif swap_idx == 7 
              input_name = char('Energy','RMS','Kurtosis',...
'FFTx','FFTy','StdDev');
              out_name = '7Variance';
              input_idex = [1; 2; 3; 4; 5; 6];
end

            input_idx_no = 1:1:6;
            all_index = perms(input_idx_no);
            perms_akhir = [1 2 3 4 5 6]; 
            all_index = [all_index; perms_akhir];

% ============ permutations loop section ==================
for perms_idx = perms_start:perms_end % 
trn_input_idx = all_index(perms_idx,:); 

% assign proper input names 
                input_name_nu = char([ eval(['input_name('...
                    num2str(all_index(perms_idx,1)) ',:)' ]); ...
eval(['input_name('...
num2str(all_index(perms_idx,2)) ',:)' ]); ...
eval(['input_name('...
                    num2str(all_index(perms_idx,3)) ',:)' ]); ...
eval(['input_name('...
num2str(all_index(perms_idx,4)) ',:)' ]); ...
eval(['input_name('...
num2str(all_index(perms_idx,5)) ',:)' ]); ...
eval(['input_name('...
                    num2str(all_index(perms_idx,6)) ',:)' ]) ]);

% getting original index of data index (1 - 7)
                input_idex_nu = ([ ...
eval(['input_idex('...
num2str(all_index(perms_idx,1)) ',:)' ]) ...
eval(['input_idex('...
num2str(all_index(perms_idx,2)) ',:)' ]) ...
eval(['input_idex('...
num2str(all_index(perms_idx,3)) ',:)' ]) ...
eval(['input_idex('...
                    num2str(all_index(perms_idx,4)) ',:)' ]) ...
eval(['input_idex('...
num2str(all_index(perms_idx,5)) ',:)' ]) ...
eval(['input_idex('...
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num2str(all_index(perms_idx,6)) ',:)' ]) ]);

% arranging input data using permutation index
                data_input = [ ...
data_levelx(:,trn_input_idx(:,1)) ...
data_levelx(:,trn_input_idx(:,2)) ...
data_levelx(:,trn_input_idx(:,3)) ...
data_levelx(:,trn_input_idx(:,4)) ...
data_levelx(:,trn_input_idx(:,5)) ...
data_levelx(:,trn_input_idx(:,6))];
                data_in_out = [data_input data_output]; 
% Preparing training and checking data
                trn_data = data_in_out(1:2:end,:);%odd rows
                chk_data = data_in_out(2:2:end,:);%even rows
%=========================================
                input_index = exhsrch(2, trn_data, chk_data,...
                    input_name_nu);
                input_index_x = input_index; 
% ========================================

                new_trn_data = trn_data...
                    (:,[input_index_x, size(trn_data,2)]);
                new_chk_data = chk_data...
                    (:,[input_index_x, size(chk_data,2)]);
input_idx1 = input_index_x(1,1); 
                input_idx1 = input_idex_nu(:,input_idx1);
                input_idx2 = input_index_x(1,2); 
                input_idx2 = input_idex_nu(:,input_idx2);
                input_name1 = eval(['input_name_nu('...
                    num2str(input_index_x(1,1)) ',:)']); 
                input_name2 = eval(['input_name_nu('...
                    num2str(input_index_x(1,2)) ',:)']); 
% =============================================
                chk_var1 =  exist('new_trn_data','var');
                chk_var2 =  exist('new_chk_data','var');
if chk_var1 == 0 && chk_var2 == 0
                    disp('TRN & CHK Data Not exist');
else
trn_data = new_trn_data; 
chk_data = new_chk_data; 
testdat = new_chk_data; 
output_name = char(out_name); 
output_index = 1; 
% ========== Training Parameters ==========
mf_n = 4;
mf_type = 'gbellmf';
method = 1; % hybrid
epoch_n = 100;
err_tol = nan;
ss = 0.01; % default
disp_opt = nan;
ss_dec_rate = 0.5; % default = 0.9
ss_inc_rate = 1.5; % default = 1.1
in_fismat = genfis1(trn_data, mf_n, mf_type);
% ========= Training Method ==============
[trn_out_fismat trnError step_size ...
                        chk_out_fismat chkError] = ...
                        anfis(trn_data, in_fismat, ...
[epoch_n err_tol ss ss_dec_rate ss_inc_rate],...
disp_opt, chk_data, method);
[RMSE, Epoch] = min(chkError);
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disp(['Minimum Training RMSE = ' num2str(RMSE)]);
disp(['Epoch of Minimum Training RMSE = '...
num2str(Epoch)]);
% ==== Assign names to Inputs and Output ====
for i_name=1:length(input_index);
trn_out_fismat = setfis(trn_out_fismat, ...
'input', i_name, 'name', deblank...
(input_name_nu(input_index(i_name), :)));
chk_out_fismat = setfis(chk_out_fismat, ...

'input', i_name, 'name', deblank...
(input_name_nu(input_index(i_name), :)));
end

                    trn_out_fismat = setfis(trn_out_fismat, ...
'output',1, 'name', deblank(output_name...
                        (size(output_name, 1), :)));
                    chk_out_fismat = setfis(chk_out_fismat, ...
'output',1, 'name', deblank(output_name...
                        (size(output_name, 1), :)));

% Test the Generated FIS
                    testdat = testdat(:,1:2);
                    fuzzy_out = evalfis(testdat, trn_out_fismat);

end

disp(['Selected inputs: ',input_name1,' & ', input_name2]);
[eR,Pe] = corrcoef(fuzzy_out, chk_data(:,3));
corr_r = eR(1,2);
corr_p = Pe(1,2);
disp(['Correlation coeff R fuzzy_out & chk_data_c3 = ', ...
num2str(corr_p)]);
disp(['Correlation coeff P fuzzy_out & chk_data_c3 = ', ...
num2str(corr_r)]);

hasil_all = [input_idx1 input_idx2 RMSE ...
                Epoch corr_r corr_p trn_input_idx swap_idx...
input_idex_nu];
eval(['hasil_calc_' num2str(perms_idx) ' = hasil_all;']);
all_results = [all_results; ...
eval(['hasil_calc_' num2str(perms_idx)])];
clear hasil_calc_*;
filename_trn = [target_dir_fis,'trn_out_',...
num2str(xdata_code),'_db_',...
num2str(xdb_type),'_L',...
num2str(level),'_S',num2str(swap_idx),'_E',...
num2str(Epoch),'_a'];
filename_chk = [target_dir_fis,'chk_out_',...
num2str(xdata_code),'_db_',...
num2str(xdb_type),'_L',...
num2str(level),'_S',num2str(swap_idx),'_E',...
num2str(Epoch),'_a'];
filename_trns = ['trn_out_',...
num2str(xdata_code),...
'_db_',num2str(xdb_type),'_L',...
num2str(level),'_S',num2str(swap_idx),'_E',...
num2str(Epoch),'_a'];
if RMSE < 10^-3 && Epoch >=5 && Epoch < 75 &&...
corr_r >= 0.9;
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                eval(['fis_record_chk_'...
                    num2str(perms_idx) ' = filename_trns;']);
                fis_record = [fis_record; ...
{eval(['fis_record_chk_'...
                    num2str(perms_idx)])}];
                file_fis_a = ['trn_out_',...
num2str(xdata_code),'_db_', ...
(xdb_type),'_L',num2str(level),'_S',...
num2str(swap_idx),...
'_E',num2str(Epoch),'_a.fis'];
                chk_fis_a =  exist(file_fis_a,'file'); 
if chk_fis_a == 0
                   writefis(trn_out_fismat,filename_trn);
end
                fis_rec = fis_record;
                clear fis_record_chk_*;
else
                disp(' ===***=== FIS not saved ===***=== ');
end
% ====================================================
             disp(['Calculating ',res_code,' at level: ',...
                 num2str(level),' swap index: ',...
                 num2str(swap_idx),' perms combination: ', ...
num2str(perms_idx), ' db type ',...
num2str(xdb_type)]);

end

% Saving all results data to disk
           eval(['save ', filehasil ,' all_results -ASCII'])
           [brs_fis, klm_fis] = size(fis_record);
if brs_fis > 0         

% save to text file
               fid = fopen(file_fis, 'wt');
               fprintf(fid, '%s\n', fis_rec{:});
               fclose(fid);
end
clear input_index;
           clear all_results;
end
end
end
end
    clear data_levelx;
end
end
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Appendix 4 – Analogue Low-Pass Filter (LPF)

Schematic of the analogue low-pass filter (LPF) used for data acquisition process is 

shown in Figure 1. The LPF design was based on Sallen-Key LPF circuit (2-pole 

Butterworth filter).

Figure 1. LPF Circuit

Design procedures (Carter, 2001) 


 Choose a cut-off frequency fo (Hz).

 In this research fo = 10 kHz.

 Select C1 value between 100 pF and 0.1 uF.

 C1 was chosen to be 1000 pF.

 Make C2 = 2 x C1 

 C2 = 2 x C1 = 2000 pF

 Calculate R1 = R2 = 0.707 / (2 · π · fo · C1)

 R1 = R2 = 0.707 / (2 · π · 10kHz · 1000 pF) = 11.2 K Ohms

                                                       


Carter, B. 2001, Filter Design in Thirty Seconds - Application Report SLOA093, Texas Instruments
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Appendix 5 – Matlab Code for NI-DAQ USB 6251

% Script to run data acquisition session with NI USB-6251 device
% Created by Jonny Latuny

tic
run_speed = 35;
loop_no = 984;

%helpdoc datestr for more info about date string
tanggal = datestr(now);
tgl_date = datestr(tanggal,7);
tgl_month = datestr(tanggal,5);
tgl_year = datestr(tanggal,10);
tgl_time = datestr(tanggal,13);
tgl_ampm = datestr(tanggal, 15);
hour = tgl_ampm(:,1:2);
min = tgl_ampm(:,4:5);
sec = tgl_time(:,7:8);
format_tgl = [tgl_date tgl_month tgl_year '_' hour min sec];
nama_dir=['c:\mat_data\mat_data_',tgl_date,tgl_month,tgl_year,'_', 
...
    num2str(run_speed),'\'];
if exist(nama_dir,'dir')
% do nothing, directory exist
   disp('Directory exist');
else
   mkdir(nama_dir); % create directory;    
end;

plot_graph = 1;
simpan_data = 1;

for i=1:loop_no

AI = analoginput('nidaq','Dev1');
set(AI,'InputType','SingleEnded')
addchannel(AI,0:1); % For NI and MCC

Fs = 48192;
sample_rate = Fs;
blocksize = sample_rate * 1; % 1 or 10 second(s) acquisition

set(AI,'SampleRate', sample_rate); 
set(AI,'SamplesPerTrigger', blocksize);

start(AI);
wait(AI,10); %wait for AI stopped before clearing workspace
data = getdata(AI);
data_daq = data;
data_ch1 = data(:,1);
data_ch2 = data(:,2);

if plot_graph == 1
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    figure(1)
    subplot(2,1,1)
    plot(data_ch1,'r-');
    xlabel('Samples');
    ylabel('Signal (Volts)');
    title('Acceleration data: Channel 1');

    subplot(2,1,2)
    plot(data_ch2,'b-');
    xlabel('Samples');
    ylabel('Signal (Volts)');
    title('Acceleration data: Channel 2');

    fft_data_ch1 = abs(fft(data_ch1))/length(data_ch1);
    [ymax1,xmax1] = max(fft_data_ch1);

    fft_data_ch2 = abs(fft(data_ch2))/length(data_ch2);
    [ymax2,xmax2] = max(fft_data_ch2);

    t = 1:1:length(fft_data_ch1);
    max_freq1 = num2str(xmax1);
    max_freq2 = num2str(xmax2);
    [freq1_db,mag1_db] = daqdocfft(data_ch1,Fs,blocksize);
    [freq2_db,mag2_db] = daqdocfft(data_ch2,Fs,blocksize);

    [ymax1_db,maxindex1_db]= max(mag1_db);
    maxfreq1_db = num2str(maxindex1_db);

    [ymax2_db,maxindex2_db]= max(mag2_db);
    maxfreq2_db = num2str(maxindex2_db);

    figure(3)
    subplot(2,1,1)
    plot(freq1_db,mag1_db,'r-',maxindex1_db,ymax1_db,'bo')
    grid on
    ylabel('Magnitude (dB)')
    xlabel('Frequency (Hz)')
    judul_daq1 = ['Frequency Components of Ch1 - Max Freq: ', ...
        maxfreq1_db, ' Hz'];
    title(judul_daq1);

    subplot(2,1,2)
    plot(freq2_db,mag2_db,'b-',maxindex2_db,ymax2_db,'ro')
    grid on
    ylabel('Magnitude (dB)')
    xlabel('Frequency (Hz)')
    judul_daq2 = ['Frequency Components of Ch2 - Max Freq: ', ...
        maxfreq2_db, ' Hz'];
    title(judul_daq2);
end

delete(AI);
clear AI;

extension = '.mat'; % ekstension utk nama file
namafile = [nama_dir,'ch12_',tgl_date,tgl_month,'_',...
num2str(i),extension];
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data_all = [data_ch1 data_ch2];
if simpan_data == 1
   eval(['save ', namafile ,' data_all']);
end

pesan = ['Processing File No: ',num2str(i)];
disp(pesan);
pause(1);

end

toc
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Appendix 6 – Fault Classifier Testing Code

% Integrated Script for Loading data and Testing FIS units
% This script is used to get input1 & input2 indexes
% and use the information to load appropriate FIS unit
% Created by Jonny Latuny.
% Last Updated: April 9, 2013. Version 3

clear all;
close all;
clc;

xdecomp_level = 10;
win_env = 0; mac_env = 0; linux_env = 0;
show_plot = 0;

if exist('c:\Users\2103900\','dir')
   target_dir='c:\works2009\text_data\';
   source_dir='c:\works2009\text_data\';
   target_dir_fis='c:\works2009\fis_data\';
win_env = 1;
elseif exist('c:\works2009','dir')
   target_dir='c:\works2009\text_data\';
   source_dir='c:\works2009\text_data\';
   target_dir_fis='c:\works2009\fis_data\';

   win_env = 1;
elseif exist('d:\works2009','dir')
   target_dir='d:\works2009\text_data\';
   source_dir='d:\works2009\text_data\';
   target_dir_fis='d:\works2009\fis_data\';
win_env = 1;
elseif exist('e:\works2009','dir')
   target_dir='e:\works2009\text_data\';
   source_dir='e:\works2009\text_data\';
   target_dir_fis='e:\works2009\fis_data\';
win_env = 1;
elseif exist('/home/latunyj/','dir')
   disp('Working in Ubuntu Linux Environment');
   target_dir='/media/LatunyJ500G/works2009/text_data/';
   source_dir='/media/LatunyJ500G/works2009/text_data/';
   target_dir_fis='/media/LatunyJ500G/works2009/fis_data/';
linux_env = 1;
else
   disp('Assigning target dir for Mac OS X');
   target_dir='/Users/jonnylatuny/works2009/text_data/';
   source_dir='/Users/jonnylatuny/works2009/text_data/';
   target_dir_fis='/Users/jonnylatuny/works2009/fis_data/';
mac_env = 1;
end

res_code = 'ch1all';

chk_dir = exist('target_dir','var');
if chk_dir == 0
    disp('Error: Target Dir not exist!.m')
else
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    results_corrx_all = [];
    xdb_init = 4;
for db_idx = 1:5 % cycle between db4,8,12,22, & 44
if db_idx == 1
      xdb_type = xdb_init;
end
if db_idx == 2
      xdb_type = xdb_init * 2;
end
if db_idx == 3
      xdb_type = db_idx * xdb_init;
end
if db_idx == 4
      xdb_type = 22;
end
if db_idx == 5
      xdb_type = xdb_init * 11;
end

%data_id = [1812 1912 2012 2112 0301 0401 0701 0801 0901 1001 1101 
% 1201 1401 1501 1601 1701 1801 2101 2301]; % BF .7mm data DEFAULT
%data_id = [2211 2311 2611 2711 2811 2911 3011 0312 0412 0512 0612
% 0712 1412 1712]; % IRF .7mm
%data_id = [511 611 911 1511 1911 2011 2111]; % ORF .7mm 
data_id = [1402 1502 1802 2002 2202 2602]; % Normal bearing
[brs_id, klm_id] = size(data_id);

corr_container = [];

for jex = 1:klm_id
    xdata_code = data_id(1,jex); % first column (default)
xdata_id = num2str(xdata_code);
[brs,klm] = size(xdata_id);
if klm >= 4
%xdata_code = xdata_code % do nothing
xdata_code = xdata_id;
elseif klm == 3
xdata_code = ['0',num2str(xdata_code)]; % adding 0 string
else
disp('Data code identifier number not match');
end

filename1 = [target_dir,'multires10_db',...
num2str(xdb_type),'_ch1d_mvar_',...
num2str(xdata_code),'_984.txt']; % ch1 data
filename2 = [target_dir,'multires10_db',...
num2str(xdb_type),'_ch2d_mvar_',...
num2str(xdata_code),'_984.txt']; % ch2 data
        chk_file1 =  exist(filename1,'file');
        chk_file2 =  exist(filename2,'file');

        filedata1 = ['ch12_',num2str(xdata_code),'_','1.mat'];
filedata2 = ['ch12_',num2str(xdata_code),'_','984.mat'];
chk_mat1 =  exist(filedata1,'file');
        chk_mat2 =  exist(filedata2,'file');

if chk_mat1 == 0 && chk_mat2 == 0
disp('MAT files Not exist');

elseif chk_file1 == 2 && chk_file2 == 2 % 
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disp_msg1 = ['File hasil: ',filename1,' exists'];
disp_msg2 = ['File hasil: ',filename2,' exists'];
disp(disp_msg1);
disp(disp_msg2);
disp('Plotting existing Ch1 and Ch2 results ....');
result1_avr = [];
result2_avr = [];

% load data existing data and do plotting
data_ch1 = load(filename1); % for txt data file
data_ch2 = load(filename2); % for txt data file

for i=1:xdecomp_level 
data_plot_ch1 = eval(['data_ch1(:,',num2str(i),')']);
data_plot_ch2 = eval(['data_ch2(:,',num2str(i),')']);
data_ch1_avr = (sum(data_plot_ch1)) / 984;
data_ch2_avr = (sum(data_plot_ch2)) / 984;

eval(['data_ch1_avr_all_' num2str(i) ' = data_ch1_avr;']);
eval(['data_ch2_avr_all_' num2str(i) ' = data_ch2_avr;']);

result1_avr = [result1_avr; ...
eval(['data_ch1_avr_all_' num2str(i)])];
          result2_avr = [result2_avr;...
eval(['data_ch2_avr_all_' num2str(i)])];
chk_ith = mod(i,2);
if chk_ith == 1 
attrib = 'r-';
else
attrib = 'b-';
end
pesan = ['plotting cA data db',num2str(xdb_type),'-',...
num2str(i),'-th energy level of ch1 & ch2 data'];
disp(pesan);

if show_plot == 1
figure(1)
subplot(2,1,1)
plot(data_plot_ch1, attrib);
judul1 = ['(a) Ch1 cA energy: db',...
num2str(xdb_type),'-',...
num2str(i), ' ith level - data code: ',...
num2str(xdata_code)];
title(judul1);

subplot(2,1,2)
plot(data_plot_ch2, attrib);
judul2 = ['(b) Ch2 cA energy: db',...
num2str(xdb_type),'-',...
num2str(i), ' ith level - data code: ',...
num2str(xdata_code)];
title(judul2);
end
end

result1_avr = result1_avr(1:9,:);
result2_avr = result2_avr(1:9,:);

if show_plot == 1
figure(2)
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subplot(2,1,1);
bar(result1_avr,'r');
judul1 = ['(a) Average Ch1 cA En - ',...
num2str(xdata_code),' max values - db',...
num2str(xdb_type),' level 1 - 9'];
title(judul1)

subplot(2,1,2);
bar(result2_avr);
judul2 = ['(b) Average Ch2 cA En - ',...
num2str(xdata_code),' max values - db',...
num2str(xdb_type),' level 1 - 9'];
title(judul2)
end
[ye1,ex1] = max(result1_avr); % get the max avr level
[ye2,ex2] = max(result2_avr); % get the max avr level
end

message1 = ['Max energy magnitude of ch1 data occurs at level: ', 
num2str(ex1)];
disp('--------------------------------------------------------');
disp(message1);

level_start = ex1; % data level group to be used
level_end = ex1; % max value 10
swap_start = 1; % number of swap index
swap_end = 7; % max 7

% Data / Result files for ANFIS training
filename1 = [source_dir,'multires10_db',...
num2str(xdb_type),'_ch1d_mvar_',...
num2str(xdata_code),'_984.txt'];
filename2 = [source_dir,'multires10_db',...
num2str(xdb_type),'_ch2d_mvar_',...
num2str(xdata_code),'_984.txt'];
chk_file1 =  exist(filename1,'file');
chk_file2 =  exist(filename2,'file');

if chk_file1 == 0 && chk_file2 == 0 
disp('TXT files of result Not exist - process cancelled');
else%if TXT file exist, continue

%Load data existing data from TXT result files
data_ch1 = load(filename1); % for txt data file
data_ch2 = load(filename2); % for txt data file

data_level1 = []; data_level2 = [];
       data_level3 = []; data_level4 = [];
data_level5 = []; data_level6 = [];
data_level7 = []; data_level8 = [];
data_level9 = []; data_level10 = [];

% Group data into data level 1 - 10
klm = 1; %1st level
for i=1:7 % 7 parameters
datax = data_ch1(:,klm);
data_level1 = [data_level1 datax];
klm = klm + 10;
end
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klm = 2;
for i=1:7 % 7 parameters
datax = data_ch1(:,klm);
data_level2 = [data_level2 datax];
klm = klm + 10;
end

klm = 3;
for i=1:7 % 7 parameters
datax = data_ch1(:,klm);
data_level3 = [data_level3 datax];
klm = klm + 10;
end

klm = 4;
for i=1:7 % 7 parameters
datax = data_ch1(:,klm);
data_level4 = [data_level4 datax];
klm = klm + 10;
end

klm = 5;
for i=1:7 % 7 parameters
datax = data_ch1(:,klm);
data_level5 = [data_level5 datax];
klm = klm + 10;
end

klm = 6;
for i=1:7 % 7 parameters
datax = data_ch1(:,klm);
data_level6 = [data_level6 datax];
klm = klm + 10;
end

klm = 7;
for i=1:7 % 7 parameters
datax = data_ch1(:,klm);
data_level7 = [data_level7 datax];
klm = klm + 10;
end

klm = 8;
for i=1:7 % 7 parameters
datax = data_ch1(:,klm);
data_level8 = [data_level8 datax];
klm = klm + 10;
end

klm = 9;
for i=1:7 % 7 parameters
datax = data_ch1(:,klm);
data_level9 = [data_level9 datax];
klm = klm + 10;
end

klm = 10; % 10th level
for i=1:7 % 7 parameters
datax = data_ch1(:,klm);
data_level10 = [data_level10 datax];
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klm = klm + 10;
end

disp('Ten levels data processed successfully');

for level = level_start:level_end 
data_levelx = eval(['data_level',num2str(level)]); % 
end% iterating 10 times

end% check whether file txt exist

name_idx = 1;
input_name =...
char('Energy','RMS','Kurtosis','cA_x','cA_y',...
'StdDev','Variance');
        input_idex = [1; 2; 3; 4; 5; 6; 7]; 
        all_index = [1 2 3 4 5 6 7]; % clmn 7 as target output

trn_input_idx = all_index(1,:);
input_name_nu = char([ eval(['input_name('...
num2str(all_index(name_idx,1)) ',:)' ]); ...
eval(['input_name(' num2str(all_index(name_idx,2)) ',:)' ]);...
eval(['input_name(' num2str(all_index(name_idx,3)) ',:)' ]);...
eval(['input_name(' num2str(all_index(name_idx,4)) ',:)' ]);...
eval(['input_name(' num2str(all_index(name_idx,5)) ',:)' ]);...
eval(['input_name(' num2str(all_index(name_idx,6)) ',:)' ]);...
eval(['input_name(' num2str(all_index(name_idx,7)) ',:)' ]) ]);

% getting index of data index (1 - 7)
input_idex_nu = ([ ...
eval(['input_idex(' num2str(all_index(name_idx,1)) ',:)' ])...
eval(['input_idex(' num2str(all_index(name_idx,2)) ',:)' ])...
eval(['input_idex(' num2str(all_index(name_idx,3)) ',:)' ])...
eval(['input_idex(' num2str(all_index(name_idx,4)) ',:)' ])...
eval(['input_idex(' num2str(all_index(name_idx,5)) ',:)' ])...
eval(['input_idex(' num2str(all_index(name_idx,6)) ',:)' ])...
eval(['input_idex(' num2str(all_index(name_idx,7)) ',:)' ]) ]);

% arranging input data 
data_input = [ ...
data_levelx(:,trn_input_idx(:,1)) ...
data_levelx(:,trn_input_idx(:,2)) ...
data_levelx(:,trn_input_idx(:,3)) ...
data_levelx(:,trn_input_idx(:,4)) ...
data_levelx(:,trn_input_idx(:,5)) ...
data_levelx(:,trn_input_idx(:,6)) ...
data_levelx(:,trn_input_idx(:,7))];

data_in_out = data_input; %joining 7th column data
trn_data = data_in_out(1:2:end,:); %training data
chk_data = data_in_out(2:2:end,:); %checking data 
new_trn_data = data_in_out(1:2:end,:);%training data
new_chk_data = data_in_out(2:2:end,:);%checking data

trn_data = new_trn_data; % 7 columns data
chk_data = new_chk_data; % 7 columns data
testdat = new_chk_data; % 7 columns data

% ============== Load and Test FIS ==================
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tested_fis = readfis('trn_out_2301_db_44_L7_S2_E14_a.fis');

%testdat = [chk_data(:,6) chk_data(:,2)]; %Inp1 & Inp2
testdat = [chk_data(:,6) chk_data(:,7)]; %Inp1 & Inp2

fuzzy_out = evalfis(testdat(:,1:2), tested_fis); %test FIS
trn_data_out = testdat(:,1); % define Target Output

if show_plot == 1
figure(3)
subplot(3,1,1)
plot(fuzzy_out,'r-');
xlabel(['chk data']);
ylabel('mag');

subplot(3,1,2)
plot(trn_data_out,'b-');
xlabel(['chk data']);
ylabel('mag');

zeros_data = zeros(1,length(fuzzy_out));
zeros_idx = 1:1:length(fuzzy_out);

subplot(3,1,3)
plot(zeros_idx, zeros_data,'c-');
hold on;
plot((fuzzy_out-trn_data_out),'k-');
title(['(c) error of chk data vs FIS Out']);
xlabel(['data points']);
ylabel('error');
hold off;
end

[eR,Pe] = corrcoef(fuzzy_out, trn_data_out);
corr_r1 = eR(1,1);
corr_r2 = eR(1,2);
disp(['Correlation coeff (R) fuzzy_out vs trn_data_out: ', ...
num2str(corr_r1), ' vs ',num2str(corr_r2)]);

eval(['corrx_' num2str(jex) ' = corr_r2;']); 
corr_container = [corr_container; ...
eval(['corrx_' num2str(jex)])];
clear corrx_*;

end

   eval(['hasil_corr_all' num2str(db_idx) ' = corr_container;']); 
   results_corrx_all = [results_corrx_all ...
eval(['hasil_corr_all' num2str(db_idx)])]; 
   clear hasil_corr_all*;

end
end
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Addressing Matter Suggested by an Examiner

Background to the Usage of the Seven Features

The research aimed to integrate all of the features / parameters related to the physical 

faults of a bearing which includes time-domain, frequency-domain and statistical 

parameters into a set of independent features for the purpose of training an intelligent 

system (i.e., ANFIS).

The motivation for the usage of the seven selected parameters as features in the 

research was the finding that, in practice, features or indicators that related to the 

physical condition of rotating machine components (e.g., bearings and gears) of 

interest are needed for the purpose of condition monitoring. This aims to reduce the 

amount of vibration data and offers an efficient representation of a convenient 

method for identifying trends or patterns that relate to the operating condition 

developments of rotating machine components (Wang and McFadden, 1993). The 

selection of statistical parameters was also supported by their wider application in 

bearing fault detection applications and their advantages when used for the purposes 

of tracking bearing damage from an early stage of its development, when the results 

that are not influenced by the variations of both load and speed (Martin and 

Honarvar, 1995)

Furthermore, the inclusion of all related features (i.e., the seven features) that have

relationship to the faults aimed to improve the accuracy of the fault detection system 

designed and implemented in the research. The application of the seven features also 

aimed to extend the coverage to which the fault detection system (i.e., ANFIS) was 

applicable since it was developed with a wider range of features than other systems. 

Hence it could extend the scope of information which was useful for the purposes of

the learning and identification processes utilized in the research.

In addition, the literature shows that statistical parameters such as RMS, kurtosis 

(Boulahbal et al. 1999), (Wang and Wong, 2002), standard deviation (Mathew and 

Alfredson, 1984), (Xu et al. 2009), variance (Loutridis, 2008), (Rafiee et al. 2009) 
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are among the most frequently used features that related to the physical condition of 

a bearing. As an example, the use of the kurtosis parameter was based on its 

popularity in bearing fault detection and its characteristics which are useful in the 

detection of early stages of bearing deterioration. In this case, the variation of the 

vibrations signal’s kurtosis spikiness could be used to detect an incipient fault in a 

bearing (Xi et al. 2000).  This parameter has shown its usefulness and has been 

widely used (Dyer and Stewart, 1978), (Howard, 1994), (Lee and White, 1997), (Xi 

et al. 2000), (Raj and Murali, 2013).

The two features labelled cA_x and cA_y were extracted from the cA parts of wavelet 

transform with MRA were partitioned into several sub-bands section (Qiu et al. 

2006, Zhu et al. 2009, Wu and Kuo, 2009, Wu and Hsu, 2009). Each cA part has a 

dominant frequency and this dominant frequency (cA_x) has a corresponding 

magnitude (cA_y). Therefore, these two parameters have a unique pattern that is a 

candidate for use as features in bearing fault detection. The use of these two features 

may also be seen as an investigation to the possibility of using the results of MRA 

(multi-resolution analysis) of the wavelet transform. 

The use of energy level of the wavelet transform results was encouraged by the 

application of this parameter by Goswami and Chan (1999). However, the 

formulation for the calculation of energy level was modified as presented in Latuny 

and Entwistle (2010). The energy level was included as one of the seven features 

since it has the advantage that it shows up an early sign of bearing deterioration 

condition. Therefore, it was also included as one of the seven features that aimed to 

enhance the detection of low-level energy signatures that corresponding to early 

deterioration of a bearing.
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