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Abstract  

Rotating machines play a vital role in many process industries. Vibration analysis is a common form of monitoring 

their condition. This paper reviews the application of wavelet transforms and artificial intelligence, an advanced 

form of vibration analysis, for condition monitoring of rotating machines. The review considers different feature 

extraction methods and shows how wavelet transforms have been applied as a preprocessor for feature extraction 

with different families of mother wavelet function; and how different artificial intelligence methods have been used 

for fault classification. It concludes with remarks on the advantages and disadvantages of the applied methods and 

consideration of future developments to address the current gaps.    

Keywords: Rotating Machinery, Wavelet Transform, Artificial Intelligence, Genetic Algorithm, Accuracy Rate.  

1. Introduction  

Condition monitoring based maintenance strategies for rotating machines are widely used in industry; balancing the 

cost of frequent maintenance against the effects of failures, which can incur expensive replacement costs, or 

catastrophic accidents leading to production downtime and potential failure to supply. Breakdown of complex 

machines can affect profitability due to loss of availability, cost of spares, cost of breakdown labor, and cost of 

secondary damage and risk of injury to people and the environment. Companies seek to achieve optimum production 

at the lowest cost so maintenance should be a reliability function rather than a repair function [1]. Several techniques 

for condition monitoring are presented and discussed in the next sections. Vibration monitoring  is an appropriate 

technique for fault detection in all rotating machines [2-5] and can be used to detect rolling element bearing faults 

[6], rotor unbalance [7, 8], and gear faults [9].  Accelerometers extract vibration signals which can then be analyzed 

using software to present useful information about the condition of the machine. There are different methods that 

can be used to interpret the vibration signal starting from the conventional ones like time domain analysis [10] and 

frequency domain analysis where methods like FFT are applied [6, 11]. Recently, a powerful multi-resolution 

technique called wavelet transform (WT) has been applied in rotating machinery fault detection and has proved its 

ability to analyze non-stationary signals [11-14]. There are significant advantages of applying a wavelet transform 

for signal analysis; it is more suitable for non-stationary signals comparing with FFT method [15], and it is able to 

present a high frequency resolution at low frequencies and a high time resolution at high frequencies and it is able to 

minimize noise of some raw signals [16]. The wavelet transform method has been applied in diverse industries, 

including biomedical; civil; and manufacturing engineering [16]. Recently artificial intelligence systems have been 

applied in the fault diagnosis of rotating machinery by researchers as automatic fault diagnosis and classification 

systems [17-32]. Automatic fault detection methods can reduce errors due to human misinterpretation [33] and 

various techniques have been deliberate and investigated. This review of the state of the highlights various fault 

diagnosis techniques for rotating machines, focusing on some of the seminal and more recent developments.  
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This paper provides an overview of the applications of artificial intelligence systems combined with wavelet 

transform in fault diagnosis of rotating machineries and then to identify the significant advantages and disadvantages 

of the different applied systems and to predict future possibilities and approaches. It is divided into seven parts, 

including the introduction. Section 2 presents a brief review on condition monitoring and fault diagnosis. Section 3 

reviews non-automatic fault detection methods for rotating machinery. Section 4 reviews time-domain methods and 

wavelet functions. Section 5 reviews artificial intelligence systems which have been applied in the context of 

condition monitoring, after which section 6 reviews the application of these techniques, including the different 

feature extraction methods. Finally, a conclusion with remarks and recommendation is given in section 7.     

2. Condition monitoring and fault diagnosis 

Condition monitoring, in terms of maintenance, forms part of a predictive strategy, as it follows this saying: 

"monitor it, and if it is not deteriorating, leave it alone" [1]. Data are taken from a machine continuously or 

periodically in order to assess its condition and make decisions for proper maintenance [12]. Condition monitoring 

has the potential to provide many benefits: in most cases providing early prediction of wear, damage and other 

faults; frequency of plant shutdowns should be minimized; consumption of energy, spare parts and cost  can all be 

reduced compared to scheduled maintenance strategies; and overall efficiency and quality of products may be 

improved, resulting in enhanced customer satisfaction [1]. Condition monitoring consists of several techniques and 

each technique has its proper applications and usage; the main techniques in condition monitoring are vibration 

analysis [34 ,4] which is used to monitor dynamic systems, rotating machines, and machinery components that have 

vibration patterns which are used as indicators for their condition; oil and debris monitoring [35, 36] which is used 

to assess the condition of the oil and the components that are in contact with oil; current monitoring [34] which is 

used to detect faults of electrical equipment such as induction motors; conductivity and insulation monitoring [37] 

are used to diagnosis the conditions of conductivity and insulation of electrical equipment; thermal monitoring [38] 

is used to diagnose machine faults by monitoring temperature ; and corrosion monitoring [39], used to detect 

corrosion which can be used as an indicator of other failures in the machine. Vibration analysis is widely used for 

condition monitoring of centrifugal pumps [2,15], and the conventional technique of Fast Fourier Transform (FFT) 

is one of the most popular vibration methods for fault detection, having been widely and successfully applied for 

analysis of stationary signals [40, 5, 11-14]. FFT has also been used successfully to extract statistical parameters 

from frequency domain data [33]. However, complex machines usually consists of many different parts and their 

vibration signals contain many non-stationary signals, for which the FFT is not well suited [11-15]. 

 

 

3. Time-Frequency Domain 

This section reviews some of the literature relating to time-frequency domain methods, viz. the Short Time Fourier 

Transform (STFT), Continuous Wavelet Transform (CWT), Discrete Wavelet Transform (DWT) and Wavelet 

Packet Transform (WPT); and presents various families of these wavelet transforms.   

The presence of non-stationary signals in the vibration data of complex machines provides a need for a method to 

analyse these signals [13, 41]. A time-frequency method was proposed by Gabor in 1946 [42] which is the Short 

Time Fourier Transform (STFT) and introduced the elementary concept of wavelet; where STFT is an adjusted 

Fourier Transform (FT) as a proper time window is applied to window the signal prior to the process of Fourier 

transforming, and maps a signal into a two-dimensional function of both time and frequency domains [12], defined 

as: 

𝐹(𝑓, 𝑏) =  ∫ 𝑥(𝑡)𝑊(𝑡 − 𝑏)𝑒−𝑖2𝜋𝑓𝑡
∞

−∞
𝑑𝑡                                                                                                                (1) 

Where 𝑥(𝑡) is the original signal that has to be multiplied by the window 𝑊 which is used with time-frequency 

shift(𝑡 − 𝑏).  

However, STFT has a constant window which makes it incapable of localization in both the time and frequency 

domains [12, 41]. An alternative for STFT, the wavelet transform (WT), was then theoretically discussed by 
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Goupillaud and his colleagues Grossmann and Morlet in 1984 [43], building on the earlier work of Gabor [42], they 

set the first mathematical equation for a wavelet, known as continuous wavelet transform (CWT): 

𝑊𝑥(𝑎 + 𝑏; 𝜑) = 𝑎
−1
2 ∫𝑥(𝑡)𝜑∗ (

𝑡 − 𝑏

𝑎
)𝑑𝑡                                                                                                           (2) 

Where 𝑊𝑥 is the wavelet transform that is linked with the two parameters; a which is the scale parameter, and b is 

the time parameter, 𝜑 is wavelet function,  is the complex conjugate, and 𝑥(𝑡) is the original signal. 

The term wavelet refers to small waves or wave-like-functions that are subject to variation in a short period in the 

time domain [13]. WT is similar to STFT, except WT has a flexible time-frequency resolution that depends on the 

frequency of the signal [13]. 

CWT is similar in concept to the Fourier Transform, but uses families of wavelets as its basis functions instead of 

sine and cosine functions [17]; a family of wavelets consists of two parameters (scale and translation); hence the 

signal will be represented as a two dimensional time-scale plane, instead of only one dimensional plane, thus 

addressing an important limitation of the Fourier Transform [17].  

A wavelet transform is a mathematical operation that converts a time domain signal into another form, comprising a 

series of wavelet coefficients, representing time and scale. To apply a wavelet transform, a wavelet function is 

required, which represents a small wave with oscillating wavelike characteristics and focuses on its short time 

energy (e.g. magnitude and zero crossing rate). Wavelet transforms can be classified into three groups: continuous 

wavelet transform (CWT), discrete wavelet transform (DWT), and wavelet packet transform (WPT) [17]. DWT was 

first introduced and developed by Mallat in 1989 [44] where DWT is the discretization of CWT [13] which is 

defined as: 

𝐷𝑊𝑇(𝑗, 𝑘) = 1/(√2𝑗) ∫ 𝑠(𝑡)𝜑∗((𝑡 − 2𝑗𝑘)/2𝑗
∞

−∞
)𝑑𝑡                                                                                          (3) 

Where j and k are integers that represent scale and translation processes respectively, and 2𝑗 and 2𝑗𝑘 are scale and 

time parameters.  

DWT also differs from CWT in terms of selection of values for scale (a) and time (b) parameters; there are no 

constraints in selection with CWT, but with DWT, restrictions apply for the selection of (a, b) parameters [45]. In 

addition, reconstruction of the original signal using DWT is not guaranteed, but it would be possible to use CWT 

[46]. Previously DWT has been applied by many other researchers for applications of rotating machinery 

accountability diagnosis and mostly combined with AI systems [47-50], further discussions and review on such 

studies are investigated on section 5. WPT was introduced by Coifman, Meyer, and Wickerhauser in 1992 [51] and  

is a multi-stage filtering method that decomposes a signal into packets or levels of approximation which are denoted 

with A, and details coefficients which are denoted with D, as illustrated in Figure 1 [52, 13, 4]. The WPT is defined 

as: 

𝑊(𝑗,𝑘)(𝑡) =  2
𝑗

2 𝑤(2𝑗𝑥 − 𝑘)𝑗𝜖Z                                                                                                                                 (4) 

 
Figure1.  Level of approximation (A) and details coefficients (D) in wavelet packet transform [51]. 

 

 



4 
 

WPT has been applied by many researchers for rotating machinery fault detection [26, 27, 52-55].  

The first published paper on the application of WT for machinery fault detection was published by Leducq in 1990 

[56], analysing the hydraulic noise of a centrifugal pump. Since then, WT has been widely applied for machine fault 

detection and feature extraction of bearing faults [15,17],  unbalance and misalignment [57] and centrifugal pump 

faults [16, 58-60]. Yan et al. [16] summarized the applications of wavelet transform in rotating machinery fault 

diagnosis, following an earlier review by Peng [14]; and stated that applications of wavelets in rotating machinery 

fault diagnosis still faced some challenges. It has been noted that there is a relationship between the extracted signal 

and the wavelet function at different scales; and that this relation is based on the fact that signal features are better 

extracted when the wavelet function is similar to the signal. Hence, building new wavelet functions that have more 

similarity in terms of signal shape with machine fault signals would be the key solution to enhance the efficiency of 

wavelet transform applications.  The importance of the shape of a wavelet basis function when using WT as a pre-

processor for feature extraction is a significant reason for research into the development of new wavelet functions 

that have greater similiarity with the extracted vibration data [16]. 

There are many different wavelet families that can be used as mother functions to produce a wavelet function that 

transforms the original signal, using a process of translation, scaling and multiplication. These families include 

Daubechies, Coiflet, Bi-orthogonal, Reverse biorthogonal, Symlets, Meyer, Morlet, and Gaussian wavelets. The 

Haar wavelet function is the oldest and simplest wavelet; it has the shape of step function and was introduced by 

Hungarian mathematician Alfred Haar in 1910 [61].  Gaussian wavelet function is represented both domains of time 

and frequency and is infinitely derivable function where Mexican-Hat wavelet function is the second derivative of 

Gaussian function [62] as Gabor introduced Mexican-Hat wavelet function [42]. Previously, Goupillaud and his 

colleagues Grossmann and Morlet in1984 [43] introduced the Morlet wavelet function, which is also known as the 

‘Gabor Wavelet’ honoring the first introducer of the original concept of wavelet in 1946. The mathematician Yves 

Meyer introduced the second orthogonal wavelet called Meyer wavelet in 1985 [63, 64]. In 1988, Daubechies 

proposed a family of wavelets [65] which include many different functions and are indicated by (dbN), where N is 

the order such as db1, db2, db3, db4…etc.; and Coiflet wavelets (denoted by coifN) which are more symmetrical 

[63]. The first order db1 has the same characteristics as the original Haar wavelet function. In 1992 Cohen, 

Daubechies and Feauveau proposed Biorthogonal wavelets [66]. Daubechies introduced Symlet wavelet families as 

modifications to the db family in order to be more symmetrical [63]. Daubechies wavelets have been widely used for 

fault diagnosis of rotating machines; particularly the types db4 [20, 26, 28], db10 [31] and db5 [24]. Figure 2 shows 

the most common wavelet functions that have been applied as mother functions for WT in the area of rotating 

machinery fault diagnosis. 
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𝜑(𝑡) = {
1 0 ≤ 𝑡 < 1/2
−1 1/2 ≤ 𝑡 < 1
0    𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

Haar wavelet function [61] 
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−
(𝑥−𝑏)2
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Gaussian wavelet function [62] 
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2/2 

Mexican-Hat wavelet function [42] 
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Meyer wavelet function [64] 

 

 

 

 

 

 

 

 

 

 

𝜑(𝑥) = √2 ∑ (−1)𝑘2𝑁−1
𝑘=0 ℎ2𝑁 − 1 − 𝑘 𝜑(2𝑥 − 𝑘)  

Daubechies [65] 

Figure 2 Wavelet functions 

 

4. Rotating machinery non-automatic fault detection methods 

Fault detection methods may be automatic or non-automatic. This section reviews non-automatic methods, while 

automatic techniques are reviewed in the subsequent section. 

Non-automatic fault detection has been performed using all three of the common vibration analysis methods: time-

domain, frequency-domain and time-frequency (i.e. Wavelet Transform).    
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Atoui et. al, 2013 [7] proposed DWT and FFT to diagnose rotor imbalance. Vibration signals were extracted from 

the experimental setup using a piezoelectric accelerometer at three speeds (600, 1200, and 1800 RPM). DWT was 

used based on Daubechie's wavelet mother function (db3) to decompose the signals of different frequencies and 

those of useful frequencies were analysed directly by using FFT. The results showed that DWT was better for fault 

diagnosis than FFT as shown in Figure 3, where (a) refers to FFT analysis with the respective time-domain signal, 

and (b) refers to DWT analysis with the respective time-domain signal. 

 

Figure 3 Vibration signal of rotor unbalance and its spectrum for 600 rpm (10Hz) (a) FFT analysis (b) DWT 

analysis [7]. 

Isayed et al., 2007 [8] used WPT and FFT to detect four machinery faults, namely, misalignment, unbalance, oil 

whipping, and shaft crack. The results showed that WPT was more effective than FFT. WPT was used to decompose 

the signals in order to exploit the mean values of the energy in the signal. 

Praneethchandran et al., 2013 [9] implemented a comparative study where two wavelet functions were used to 

identify gear fault detection. The Lablace and Morlet wavelet functions were linked to the kurtosis factor where 

wavelet parameters have been optimized to maximize the kurtosis parameter. The Lablace and Morlet wavelet 

kurtosis were calculated from the wavelet transform. It has been noted that the Lablace wavelet kurtosis was better 

at detecting gear faults, with performance improving a as the magnitude of the fault increased.  

5. Artificial Intelligence systems 

Automatic fault detection methods make use of Artificial Intelligence (AI) which seeks to replicate mental 

capabilities with the support of computational systems [67]. Artificial neural network (ANN) was first introduced by 

McCulloch and Pitts in 1943 [68], and Fuzzy logic was first introduced by Zadeh in 1965 [69]. Artificial intelligence 

systems have been applied for centrifugal pump fault diagnosis using different methods for the feature extraction, 

starting from a simple method of statistical analysis [70-73], later FFT [33, 74, 75], and also a wavelet transform has 

been applied using time-frequency method [15, 58-60, 76]. ILott [77] proposed ANN with Back Propagation (BP) 

algorithm to diagnose pump faults. Then, Zouari [78] applied ANN and a fuzzy neural network to diagnose 

centrifugal pump faults; statistical methods of time and spectral analysis were used for the feature extraction. 

There are many types of AI that have been applied as automatic fault diagnosis systems for different rotating 

machines and components such as Back Propagation-Artificial Neural Network (BP-ANN) or Multilayer Perceptron 

(MLP) [17-20,23,27-30,32, 79], Radial Basis Function (RBF) [17,19, 27], Probabilistic Neural Network (PNN) 

[17,19], and Support Vector Machine (SVM) [23,28-31, 79]. In this section, a brief theoretical review and 

discussion on each type will be presented; for further details, readers are referred to [80, 81]. In the following 

sections the performance of each type is reviewed and discussed, including a comparative summary of the 

performance.   
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5.1 Multilayer Perceptron with Back Propagation Artificial Neural Network  

MLP consists of three layers, namely, input, hidden, and output layer of neurons. There may be several hidden 

layers between the input and output layers. The number of neurons in each section affects the generalization ability 

of the system, while the number of neurons and hidden layers affects the efficiency of the system. With larger 

number, there is a possibility of over-fitting the training data and weak generalization of new data. Therefore, some 

methods might be used to select the proper number of hidden layers and neurons such as Genetic Algorithm [19]. 

The output layer can be more than one layer according to the required fault classifications. Each hidden layer has a 

number of neurons; the role of each is to calculate the weighted sum of its inputs and apply the sum as the input of 

an activation function that is usually a sigmoid function. Back Propagation algorithm has been widely used in 

training of MLP. It was firstly introduced in 1986 [82]. Figure 4 depicts the basic structure of a MLP network [80]. 

 

 

 

 

 

 

Figure 4 The basic structure of MLP network [80] 

Comparative studies have demonstrated the efficiency of MLP over other ANN types [17, 19] while considering 

important factors that affect   efficiency, such as the number of hidden layers and neurons [19]. However, a 

drawback of MLP is that it is slow in training and needs longer time than other methods [17, 19, 26, 27]; but such 

weakness can be minimized by reducing the number of input features [18, 20].  

5.2 Radial Basis Function 

RBF was first defined in 1988 by Broomhead and Lowe [83] as another option after MLP. Initially, its concept had 

been rooted to the technique of potential functions which was introduced by Bashkirov, Braverman, and Muchnik in 

1964 [84]. The hidden layers in a neural network afford a set of functions which create a basis for the input features 

while they are moving to the hidden area; these functions are known as radial basis function (RBF) [81].      

The RBF has some similarity with MLP except that the number of hidden layers is limited to one layer only as 

shown in Figure 5. The role of hidden layer is to cluster the inputs and a Gaussian kernel function is used for the 

activation of the hidden layer neurons [80]. The hidden layers are nonlinear in both types of network, but the outputs 

differ; MLP has a nonlinear output layer whereas the RBF output layer is linear [81].       

The advantage of RBF over other AI classifiers like MLP and PNN is the shorter training time [19, 27]. However, 

the performance of the RBF has been mostly observed to be poorer [19, 17]. 

 

 

 

 

 

 

Figure 5 The basic structure of RBF network [85] 
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5.3 Support Vector Machine 

Support Vector Machine (SVM) was initially introduced in 1993 by Corinna Cortes and Vladimir Vapnik [86] 

where used as a new approach for the pattern recognition which employs the non-linear projections of input features 

to a greater dimensional pattern area [86].  

SVM is a curve square optimisation problem which makes it able to provide a globally optimal solution. In addition, 

it could handle many practical problems with acceptable solutions for small sample sets, high dimensional and non-

linear value [30]. There are three main kernel functions that can be used with SVM, namely, linear, polynomial, and 

RBF functions. In [31], Zhong et al. Selected RBF due to its nonlinear mapping efficiency and ability to map 

features onto a high dimensional space.    

SVM has been widely recommended by many researchers for rotating machinery fault diagnosis as it has proved its 

high efficiency and out-performance over other AI classifiers e.g. MLP (ANN-BP) [79, 23, 28-30, 32] and RBF 

[28].   

5.4 Probabilistic Neural Network 

Probabilistic neural network (PNN) was first introduced in 1990 by Specht [87] and its concept is based on the 

approximation of the optimum limits between categories. It consists of two hidden layers, the first layer contains a 

devoted neuron for each training feature and the second layer contains a devoted neuron for each class as shown in 

Figure 6. PNN shares with RBF the usage of Gaussian Kernel function which is used for the activation of the hidden 

layer neurons. Training features are applied by PNN to approximate the class probability distribution while training 

process [88].  

PNN has an advantage of saving the training features to escape from the iterative procedure which makes it 

reasonably fast in training process [19]. However, the large number of stored training features requires a large 

network [88].   

 

 

 

 

 

 

Figure 6 The basic structure of PNN network [85] 

 

6 Application of artificial intelligence systems in rotating machinery faults diagnosis 

Applications of machine artificial intelligence in vibration-based continuous monitoring and analysis are attracting 

researchers. For the purpose of continuous monitoring and fault detection, artificial neural networks-machine 

learning has been applied.  

 

Artificial intelligence systems have been applied for many different rotating machines and parts such as bearing 

fault detection [17-19, 27, 29, 30], blower fault detection [20], and gear fault detection [23, 31, 32, 79].  

Al-Raheem & Abdul-karem, 2010 [17] studied the performance of bearing fault diagnosis using three types of 

artificial neural network which are Multilayer Perceptron (MLP) with BP algorithm, Radial Basis Function (RBF) 

network, and Probabilistic Neural Network (PNN). Feature extraction was implemented using Laplace wavelet 

analysis based on the scale-kurtosis value technique for the healthy condition and faulty bearing condition. The most 
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dominant scales were selected from wavelet scales, the features were extracted are: root mean square RMS, standard 

deviation (SD), kurtosis in the time domain, the wavelet-scale power spectrum (WPS) peak frequency to the shaft 

rotational frequency, and (WPS) maximum amplitude. Genetic Algorithm was utilized to optimize the number of 

hidden nodes. The results illustrated that MLP with BP performed the best classification success rate of 100%, PNN 

showed a classification success rate of 97.5%, and RBF trailed with a classification rate of 72.1%. Results clearly 

indicated the advantage of combining wavelet with ANN and particularly with MLP-BP.   

Al-Raheem et al., 2008 [18] proposed a new technique for the rolling bearing faults diagnosis using Laplace-

Wavelet combined with ANN. Laplace-Wavelet was applied as a pre-processor for time-domain vibration signals of 

the different bearing conditions and hence generally was applied for the feature extraction of both domains; time and 

frequency. Laplace was selected as wavelet based function and optimized using genetic algorithm (GA) by 

maximizing kurtosis of the WT to improve similarity with the extracted vibration signals. The dominant Laplace-

Wavelet scales were selected to reduce the number of input vectors and speed up the training process. GA was also 

applied to optimise ANN classification by minimizing the mean square error (MSE). This work showed the 

effectiveness of combining Laplace-Wavelet with ANN and illustrated a very high classification success rate of 

100%.   

Samanta et al., 2006 [19] applied three different AI classifiers, namely, MLP, RBF, and PNN to diagnose bearing 

faults. GA was used for all classifiers in this study, where for MLP, GA was used to select the number of neurons in 

the hidden layer and the number of features; for RBF and PNN, GA used to select the width and the number of 

features. The results showed that GA based feature selection for all classifiers, and based neuron selection for MLP 

was effective after results both with and without GA were compared. It has been observed that without GA, 

classification rates were 83.33% (RBF), 85.06% (MLP), and 95.83% (PNN). However, using GA, the classification 

rates have been improved to 87.50%, 96.53%, and 99.31%, respectively. The selection of six features provided the 

maximum rate of 100% for both PNN and MLP; RBF achieved its best rate of 99.31% with 8 features selected. This 

study showed that training the PNN was faster than for the other two classifiers.    

Zhenyou Zhang, 2013 [20] integrated WPT and principal component analysis (PCA) together with Back-

Propagation (BP) ANN for the fault diagnosis of a rotating machinery which was represented by a blower. WPT was 

used to extract standard deviations and wavelet packet coefficients (SDWPC). Only one fault was detected which is 

unbalance. Firstly, features were processed and extracted using SDWPC as direct inputs for ANN and then 

forwarded to PCA to generate new features to be inputs for ANN. Daubechies (db4) was selected as a wavelet 

function. This study compared the results with SDWPC alone, and with both SDWPC and PCA as an integrated 

system. It was observed that results of SDWPC and PCA together were much better than SDWPC alone, as the 

number of features was reduced; hence, training speed of the ANN was faster. Generally, it was remarked that PCA 

provided higher speed and accuracy for fault diagnosis.   

Zhao et al., 2011[21] proposed WT based on wavelet packet-characteristic entropy combined with ANN and BP as 

learning algorithm to diagnose the faults of rolling element bearing. Wavelet packet-characteristic entropy was used 

as a pre-processor to extract the vibration features. Different number of neurons was used and it was clearly 

observed that the highest test accuracy and training accuracy was achieved with 11 and 33 hidden neurons 

respectively.  

Kankar et al., 2011 [22] proposed three AI methods to diagnose faults of rolling element bearing, namely, support 

vector machines (SVM), ANN (MLP-BP), and self-organizing maps (SOM). The features were extracted using WT 

using different wavelet functions as: Meyer, coiflet5, symlet2, Gaussian, complex Morlet and Shannon wavelets. It 

has been observed that the best results were obtained using Meyer wavelet with SVM at a classification accuracy 

rate of 98.6667%.   

Jedli´nski and Jonak, 2015 [23] presented an automatic gearbox fault diagnosis approach where two AI systems 

were applied, namely, SVM and MLP. The input features were extracted using CWT and many wavelet functions 

were tested: Morlet, Birthogonal 3.1, Coiflet3, Daubechies4, Dmeyer, Gaussian, Haar, Mexican-hat, Meyer, 

reverseBior3.1 and Symlet wavelets. Haar wavelet was found as the best function, having a more similarity with the 

shape of the signal. Different activation functions were used with MLP: (logistic, exponential and hyperbolic 

tangent), with different numbers of hidden neurons. The results are shown in Table 2 where it is clearly seen that 
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average performance of SVM slightly outperforms MLP with consideration to the effectiveness of the number of 

hidden neurons and activation functions. This study proved the importance of signal pre-processing as it was clearly 

observed that the accuracy of performance was greatly increased with CWT as a pre-processor compared without a 

pre-processor as shown in Table 2.  

 

Roy et al., 2014 [24] proposed a Radial Basis Function (RBF) neural network combined with different filtering 

methods, namely, five different 8
th

 order Butterworth filters with varying cutoff frequencies and five different 8
th

 

order type-I Chebyshev. Different wavelet functions were used, namely, Daubechies wavelet (db5), Haar wavelet, 

Discrete Meyer wavelet, Coiflets (coif4), and Symlets (sym4). The results showed that the best performance of 

RBF-NN was performed using 8
th

 order Type-I Chebyshev filter of a cutoff frequency of 40 Hz combined with 

(sym4) wavelet function.  

Srinivas et al., 2010 [25] proposed ANN based on multilayer feed forward back propagation marquardt algorithm 

(MLP-BP) and DWT based on Daubechies wavelet function to diagnose faults on rotor unbalance and shaft bent. The 

results showed the following classification success rates: unbalance at 99.78%, shaft bent at 99.81%, and combined 

faults of unbalance with shaft bent at 99.45%. This study illustrated different diagnosis procedures such as: selection 

of Daubechies wavelet function, data normalization, and selection back propagation marquardt as a learning 

algorithm. It might be noted that such applied procedures have contributed in obtaining the good classification 

success rates. However, this study has not provided any comparison with other classifiers, training algorithms and 

wavelet functions. 

Liu, 2011 [26] proposed WPT and ANN (MLP) for helicopter gearbox fault detection. Eight different detection 

locations were identified for the vibration monitoring. WPT used to de-noisie and decompose the vibration signals, 

then the standard deviations were extracted from the decomposed four levels and used as inputs. For the ANN, three 

different square errors were proposed; 0.1, 0.01, and 0.001. For longer training time compared to other errors, it has 

been noted that the classification accuracy results rate was much better for 0.001 at an average rate of 99.25%.   

Wuming et al., 2010 [53] combined WPT with RBF-NN to diagnose four different faults in a traction machine for 

lifts, the four faults are shown in Table 1. Daubechies wavelet represented by (db4) was selected as a mother 

function for WPT. This study proposed Particle Swarm Optimization (PSO) as a training algorithm for the RBF-NN. 

PSO has some similarities with GA. However, PSO is said to be much simpler than GA. The results showed high 

classification accuracy especially for the case when the worm reducer and traction motor were in different axes, at a 

rate of 100% as shown in Table 1. Finally, this study proved that PSO was a good optimization and training 

algorithm for RBF-NN. 

 

 

Table 1 Traction machine faults [52]. 

Fault description No of 

correct 

diagnosis 

(40 sets) 

Classification success rates 

Worm shaft of tractor gear wear, gear backlash increased 38 95% 

The shafts of worm reducer and the traction motor are in 

different axes 

40 100% 

Tractor and the load-bearing beam fixed base is not strong 39 97.5% 

Traction sheave and the elevator car is not in the same straight 

line 

37 92.5% 

 

 

Wang et al., 2010 [27] presented a study to diagnose two different faults for a ball bearing, namely, inner race fault, 

and outer race fault. A healthy ball bearing was involved to allow comparison with the faulty conditions. WPT was 

used to decompose the vibration signals into three levels, and hence input features were extracted (two types of AI 

system were used, namely, RBF-NN and MLP-BP). The results showed that RBF-NN was more effective than BP-
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ANN in terms of classification accuracy rate and training time as shown in Table 2. This study found that RBF-NN 

was easier to implement and more stable than MLP-BP. 

 

Yanjun et al., 2009 [28] proposed WPT and SVM methods to diagnose a rub impact fault using a test rig of dual-

disk cantilever rotor-bearing system. WPT was applied as a pre-processor where the input features were then 

extracted, and SVM used as a classifier to classify three different modes of rub fault, namely, single point of over-

hung impact rub, single point of middle disk impact rub, and uncertain impact-rub. Daubechies wavelet represented 

by (db4) was selected as a mother function for WPT. Three different kernel functions were used for SVM and it was 

observed that the performance and classification accuracy was influenced accordingly, where RBF proved to be the 

best. The average results of SVM were compared with other AI classifiers, namely, MLP-BP and RBF-NN, and 

SVM proved its out-performance as shown in Table 2. 

 

Sui and Zhang, 2009 [29] presented a study to diagnose the fault of rolling element bearing using SVM and BP-

MLP. The feature extraction was based on time-domain using traditional statistical analysis (mean, peak, mean 

square, variance, standard deviation, root mean square, shape factor, dkewness, kurtosis, impulse factor, clearance 

factor and crest factor), frequency-domain analysis (Fmean , Fc, Frms and Fstd) , and finally WPT with Daubechies 

wavelet function to decompose the time-domain signal into 16 packets at level 4. This study compared the obtained 

results with and without feature selection method using class separability criterion. Firstly the results illustrated the 

efficiency of using feature selection method. Secondly it was observed that SVM outperformed ANN in the fault 

classification accuracy as shown in Table 2.  

 

Yajuan Liu and Tao Liu, 2010 [30] presented AI methods, namely, SVM and ANN-BP to diagnose the faults of 

rolling element bearing of a spindle fan test rig. WPT used to process and extract the features. RBF inner product 

function was selected as a kernel function as it can nonlinearly classify the feature onto higher dimension space. 

Table 2 shows the efficiency of SVM over MLP-BP in terms of classification rate accuracy and training time.  

 

Zhong et al., 2010 [31] proposed SVM as an automatic gear box fault diagnosis method. Input features of absolute 

mean, maximum peak value, RMS, square root value, variance, kurtosis, crest factor and shape factor were 

extracted using WPT with Daubechies wavelet represented by (db10) and time-domain statistical calculation. The 

features were selected based on the method of compensation distance evaluation technique (CDET) to reduce the 

number of features and hence enhance classification accuracy. There are three main kernel functions that can be 

used with SVM, namely, linear, polynomial, and RBF functions. In this study, RBF has been selected due to its 

nonlinearly mapping efficiency. Results were obtained for both with normalization and without normalization of 

values and it were observed that classification accuracy was higher with the normalization for SVM at an overall 

rate of 100%. 

 

Yang et al., 2011 [32] proposed MLP-BP different conditions for: healthy, unbalance, looseness, misalignment, and 

gear faults. Features were extracted using both WPT and time-domain statistical analysis. The results were 

compared with other feature selection methods based on GA and without GA. The average results, shown in Table 

2, illustrate the high efficiency of using feature selection based on GA. 
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Table 2 survey on artificial intelligence applications on rotating machinery fault diagnosis 

Ref Machinery 

and fault 

Pre-processing & 

features extraction 

Selected features classifier Accuracy 

rates 

Al-

Raheem 

et al., 

2010 [17] 

Bearing Lablace-Wavelet based on 

the Scale Kurtosis value 

technique 

RMS, SD, Kurtosis, 

(WPS) Peak 

frequency, (WPS) 

maximum amplitude 

MLP 

RBF 

PNN 

100% 

97.5% 

72.1% 

Al-

Raheem 

et al., 

2008 [18] 

Bearing Lablace-Wavelet based on 

the Scale Kurtosis value 

technique 

RMS, SD, Kurtosis, 

(WPS) Peak 

frequency, (WPS) 

maximum amplitude 

MLP 100% 

Samanta 

et al., 

2006 [19] 

Bearing Original signals used with 

some pre-processing 

methods of differentiation 

and integration, low- and 

high-pass filtering 

Mean, RMS, 

Variance, Skewness, 

Kurtosis, normalised 

higher order (up to 

ninth) central 

moments 

MLP 

RBF 

PNN 

MLP+GA 

RBF+GA 

PNN+GA 

 

85.06% 

83.33% 

95.83% 

99.31% 

87.60% 

96.53% 

Samanta, 

2004 [79] 

Gear Original signals used with 

some pre-processing 

methods of differentiation 

and integration, low- and 

high-pass filtering 

Mean, RMS, 

Variance, Skewness, 

Kurtosis, normalised 

higher order (up to 

ninth) central 

moments 

MLP 

SVM 

MLP+GA 

SVM+GA 

SVM with 

6 features 

96.3% 

98.6% 

100% 

98.8% 

100% 

Zhenyou 

Zhang, 

2013 [20] 

Blower  

Unbalance 

WPT with Daubechies 

(db4) as a mother function 

Standard deviations MLP-BP 

with PCA 

and without 

NA 

Jedli´nski 

and 

Jonak, 

2015 [23] 

Gear CWT 

Coiflet3, Daubechies4, 

Dmeyer, Gaussian, Haar, 

Mexican-hat, Meyer, 

reverseBior3.1 and Symlet 

wavelets 

 Without 

pre-

processing 

MLP 

SVM  

With pre-

processing  

MLP 

SVM  

 

 

 

 

59.50% 

60.10% 

 

 

97% 

99.22% 

Wang et 

al., 2010 

[27] 

bearing WPT NA MLP 

RBF 

91.7% 

95% 

Yanjun et 

al., 2009 

[28] 

rub impact 

fault 

WPT 

Daubechies (db4) 

NA MLP 

SVM 

RBF 

82% 

99.3% 

98.6% 

Sui and 

Zhang, 

2009 [29] 

bearing WPT 

Daubechies (db10) 

12 features from 

original signal (time 

domain) and 4 

features from 

frequency domain. 

Without 

feature 

selection 

MLP 

SVM  

With 

features 

selection 

MLP 

SVM  

 

 

 

85.83% 

91.67% 

 

 

 

97.50% 

98.33% 

Yajuan bearing WPT NA MLP 96.24% 
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with GA without GA

Liu and 

Tao Liu, 

2010 [30] 

SVM 93.18% 

Zhong et 

al., 2010 

[31] 

Gear WPT 

Daubechies (db10) 

8 statistical features 

were selected 

SVM 100% 

Hol and 

Zhong, 

2011 [32] 

Unbalance, 

misalignment, 

gear, and 

looseness  

WPT 9 statistical features 

were selected  

MLP+GA 

MLP 

 

97.98%  

83.02% 

(Average 

accuracy rates) 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Average Accuracy rates of different AI classifiers with GA and without GA based on the all studies  

 

From the above reviewed literature which is depicted in Figure 6, the following findings are summarized as follows: 

Average accuracy rates show that the SVM out-performed the other classifiers, MLP, RBF and PNN. It has been 

noted that SVM performance can be improved by using a good feature selection method such as class separability 

criterion method and GA-based feature selection. Kernel selection has an influence on the SVM performance, and 

RBF-kernel has been found to be the best. 

On the other hand, MLP was found to be a successful classifier with high accuracy rates if GA is used for the 

optimization processes in terms of number of feature and hidden neuron selection as shown in Figure 6.  

Generally, SVM and MLP can produce comparable results once the proper processes and methods are provided as 

the average overall accuracy rates based on the comparative studies of SVM and MLP only. 

WT was remarked to be a good pre-processor for feature extraction, and particularly, WPT was noted to be the most 

applied one for the different rotating machineries and components. Daubechies (db4 and db10) found to be more 

preferable and used as mother functions and that indicated to their higher shape similarity with the original signals.  

Testing different wavelet functions would widen options for selecting a wavelet function with a similar shape to the 

original signal according to the obtained results. However, a better option would be the derivation of a new wavelet 

function that is designed specifically to be similar in shape to the signal to be analysed.    
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7 Conclusion  

In this paper, fault diagnosis methods of different rotating machines have been reviewed and it has been observed 

that there is a need to move from conventional techniques to automatic approaches. Throughout the review of the 

literature, some remarks have been identified. Firstly, the vibration signals extracted from some rotating machinery 

components, like bearing and gear, may contain non-stationary signals which change with time; hence, conventional 

vibration analysis methods in the time and frequency domains are not suitable. Thus, the time-frequency domain 

method of wavelet transform has been applied by many researchers for analysis of non-stationary signals. In 

addition, WT has been applied successfully with ANN as an automatic diagnosis system and WPT has been applied 

for the most recent studies and has shown a significant improvement for the different rotating machinery fault 

diagnosis in terms of signal preprocessing where signal can be broken down into different coefficients and levels. 

Daubechies wavelet function (db4) has been noted to be highly accepted for the rotating machinery signals as a 

mother function that works with WT and especially with WPT to decompose the original signals. The appropriate 

understanding of the shape of the acquired vibration signal would be important in order to select the most similar 

wavelet mother function from the available wavelet function families and for same cases, it would be even better to 

derive a new wavelet function.  

From the reviewed literature, the high efficiency of SVM for fault classifications and diagnosis of rotating 

machinery compared to other AI classifiers like ANN-BP, RBF, PNN, in terms of classification accuracy and 

training time, has been noted. For instance, in a study, SVM outperformed both MLP-BP and RBF-NN classifiers 

with three different types of fault; in another study, SVM illustrated better performance than MLP-BP after 

considering that the best results were obtained using feature selection methods where the number of feature was 

properly selected and minimized; and with another study, SVM again outperformed BP-MLP in terms of 

classification accuracy rate and time as it was faster for both stages: testing and training.   However, an important 

consideration which influences the performance of SVM is selection of the kernel function; and it has noted that 

RBF inner product function is a good selection. The more conventional ANN-BP or MLP still have potential to 

provide good classification accuracy as long as an appropriate feature selection method is applied like GA. It has 

been noted that the RBF classifier has a faster training time compared to MLP-BP. PNN has an advantage of saving 

the training features to escape from the iterative procedure, which makes it faster in the training process. However, 

the large stored training features require a large network and this is a reason for limited usage of PNN as a classifier 

for fault detection. 

Selection of appropriate training algorithms is important to speed up the process of training to obtain the best 

classification accuracy. Finally, some general important procedures are recommended: data normalization, feature 

selection method for reducing the number of input features and selection of the most useful and relevant criteria, as 

well as selecting the most appropriate AI classifier.    
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