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ABSTRACT 

Blade fault diagnosis is conventionally based on interpretation of vibration 
spectrum and wavelet map. These methods are however found to be difficult and 
subjective as it requires visual interpretation of chart and wavelet color map. To 
overcome this problem, important features for blade fault diagnosis in a multi row of 
rotor blade system was selected to develop a novel blade fault diagnosis method 
based on artificial intelligence techniques to reduce subjective interpretation. Three 
artificial neural network models were developed to detect blade fault, classify the 
type of blade fault, and locate the blade fault location. An experimental study was 
conducted to simulate different types of blade faults involving blade rubbing, loss of 
blade part, and twisted blade. Vibration signals for all blade fault conditions were 
measured with a sampling rate of 5 kHz under steady-state conditions at a constant 
rotating speed. Continuous wavelet transform was used to analyse the vibration 
signals and its results were used subsequently for feature extraction. Statistical 
features were extracted from the continuous wavelet coefficients of the rotor 
operating frequency and its corresponding blade passing frequencies. The extracted 
statistical features were grouped into three different feature sets. In addition, two new 
feature sets were proposed: blade statistical curve area and blade statistical 
summation. The effectiveness of the five different feature sets for blade fault 
detection, classification, and localisation was investigated. Classification results 
showed that the statistical features extracted from the operating frequency to be more 
effective for blade fault detection, classification, and localisation than the statistical 
features from blade passing frequencies. Feature sets of blade statistical curve area 
was found to be more effective for blade fault classification, while feature sets of 
blade statistical summation were more effective for blade fault localisation. The 
application of feature selection using genetic algorithm showed good accuracy 
performance with fewer features achieved. The neural network developed for blade 
fault detection, classification, and localisation achieved accuracy of 100%, 98.15% 
and 83.47% respectively. With the developed blade fault diagnosis methods, manual 
interpretation solely dependent on knowledge and the experience of individuals can 
be reduced. The novel methods can therefore be used as an alternative method for 
blade fault diagnosis.    
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ABSTRAK 

Diagnosis kecacatan bilah adalah lazimnya berdasarkan interpretasi ke atas 
spektrum getaran dan peta gelombang kecil. Kaedah ini akan tetapi didapati sukar 
dan subjektif kerana ia memerlukan interpretasi secara visual ke atas carta dan peta 
berwarna gelombang kecil. Untuk mengatasi masalah ini, sifat-sifat penting untuk 
diagnosis kecacatan bilah pada satu sistem rotor bilah yang berbilang baris telah 
dipilih untuk membangunkan satu kaedah diagnosis kecacatan bilah novel 
berdasarkan kepada teknik-teknik kecerdasan buatan bagi mengurangkan interpretasi 
subjektif. Tiga tiruan rangkaian neural model telah dibangunkan bagi mengesan 
kecacatan bilah, mengelas jenis kecacatan bilah, dan mencari lokasi kecacatan bilah. 
Satu eksperimen telah dijalankan untuk mensimulasikan beberapa jenis kecacatan 
bilah yang berbeza termasuk geseran bilah, kehilangan sebahagian bilah, dan bilah 
terpiuh. Isyarat getaran untuk semua keadaan kecacatan bilah telah diukur pada 
keadaan mantap dengan kadar pensampelan 5 kHz pada kelajuan tetap. Transformasi 
gelombang kecil berterusan telah digunakan untuk menganalisa isyarat getaran dan 
keputusan seterusnya digunakan bagi pengekstrakan sifat. Sifat-sifat statistik telah 
diekstrak dari pekali gelombang kecil berterusan pada frekuensi operasi pemutar dan 
frekuensi berlalu bilah yang sepadan. Sifat-sifat statistik yang telah diekstrak telah 
dikumpulkan kepada tiga set sifat yang berasingan. Di samping itu, dua set sifat baru 
telah dicadangkan iaitu blade statistical curve area dan blade statistical summation. 
Keberkesanan lima set sifat yang berbeza untuk pengesanan kecacatan bilah, 
pengelasan, dan penyetempatan telah dikaji. Keputusan klasifikasi menunjukkan 
bahawa sifat-sifat statistik diekstrak dari frekuensi operasi lebih berkesan bagi 
pengesanan kecacatan bilah, pengelasan, dan penyetempatan berbanding sifat-sifat 
statistik dari frekuensi berlalu bilah. Set sifat blade statistical curve area adalah 
didapati lebih berkesan bagi pengelasan kecacatan bilah, manakala set sifat blade 
statistical summation adalah lebih berkesan bagi penyetempatan kecacatan bilah. 
Aplikasi pemilihan sifat menggunakan algoritma genetik menunjukkan prestasi 
ketepatan yang baik dengan sifat-sifat yang lebih sedikit dicapai. Rangkaian neural 
yang dibangunkan bagi pengesanan kecacatan bilah, pengelasan, dan penyetempatan 
masing-masing mencapai ketepatan 100%, 98.15% dan 83.47%. Dengan kaedah 
diagnosis kecacatan bilah yang dibangunkan, interpretasi secara manual yang 
semata-matanya bergantung kepada pengetahuan dan pengalaman individu dapat 
dikurangkan. Dengan ini, kaedah novel ini boleh digunakan sebagai kaedah alternatif 
bagi diagnosis kecacatan bilah. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Turbine and compressor that utilise blades to extract energy are of importance 

in power generation, petrochemical plants, and aerospace industries.  Over the years, 

blade related failures have caused significant problems for rotating machinery 

operators in the industry. Even a single blade failure can lead to significant financial 

losses, severe damages, and catastrophic failure. The Electric Power Research 

Institute (EPRI) study on the power generation industry for example reported that 

failure of blades alone caused over US$1.1 billion of lost power production during 

the years 1970–1981. Costs for blades, diaphragm, and rotor replacements were 

reported at US$87 million [1]. Barnard [2] reported that 2 catastrophic failures of a 

gas turbine totaling more than US$ 25million in production downtime. Marsh, one of 

the global leader in insurance broking and risk management reported that turbine and 

turbine-blade failures in 2015 remain the most common form of machinery 

breakdown experienced by their clients [3]. Some examples of blade failures are 

shown in Figure 1.1. To reduce the turbine failures caused by blade faults, research 

on new blade design, new blade fabrication technology, and more accurate blade 

fault diagnosis methods are of current and on-going interest. 
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Failed gas turbine engine, [4] Damaged 4th stage disk, [5] 

  
Compressor rotor blades due to foreign object impact, [6] 

 

Figure 1.1 Example of blade failures 

To avoid blade failure and to optimise the use of the blades, it is necessary to 

have reliable and sensitive condition monitoring and signal processing methods to 

both measure and extract important information or features for blade fault diagnosis. 

The health of the blade can be observed by measuring and analysing the vibration, 

pressure, acoustic, and thermal measurement signals.  

1.2 Problem Statement 

Over the years, research on the condition monitoring methods and signal 

processing techniques used to diagnose various types of blade faults (e.g., blade 

deformation, blade rubbing, loose blade, blade fouling, and blade fatigue failure) 

have been widely reported in the open literature. Condition monitoring methods; 
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commonly used for blade faults diagnosis, include but are not limited to temperature 

analysis, vibration analysis, acoustic analysis, and pressure analysis. Among these, 

the most widely used for blade faults diagnosis is vibration analysis because it is the 

most practical method to use under field conditions. 

Frequency domain (Fourier Transform) and time-frequency domain (wavelet 

analysis) vibration analysis are the most widely deployed techniques for both blade 

faults detection and diagnosis. The application of Fourier analysis and wavelet 

analysis has been successful in blade fault detection and diagnosis, comparing the 

amplitude or pattern of the vibration spectrum or the wavelet map for a faulty 

condition to a healthy condition [7][8]. Changes in the operating frequency and blade 

passing frequencies, however, require individuals to detect and diagnose blade faults. 

Previous studies showed that wavelet analysis is more reliable and sensitive for blade 

fault diagnosis [8][9]. Interpretation of vibration spectrum and wavelet results is 

however difficult and challenging. Blade faults diagnosis becomes difficult when the 

interpretation of vibration spectrum or wavelet results is not possible. Furthermore, 

the accuracy of these methods is affected by the knowledge and the experience of 

individuals in interpreting vibration spectrum and wavelet results. 

Recently, a number of researchers have shown an increased interest in 

developing artificial intelligence-based pattern recognition techniques for rotating 

machinery fault diagnosis, especially for bearings and gears [10][11]. In-depth 

interpretation of vibration spectrum and wavelet map requires human intervention, 

which can be minimised by an artificial intelligence-based classification system. The 

artificial intelligence method has also been employed by many previous researchers 

for blade fault detection and diagnosis. Features extracted from frequency domain 

analysis are usually used as input to the classifier. The application of features 

extracted using time-frequency domain analysis for blade fault diagnosis is, however, 

still lacking.  
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1.3 Research Questions 

This study addressed the following research questions: 

1. Do features extracted via time-frequency analysis contain useful 

information that can assist in developing a novel blade fault diagnosis 

method? 

2. Is a genetic algorithm capable of selecting important features and 

enhancing the network performance? 

3. Do artificial intelligence techniques have the capability to detect, 

classify, and locate both single blade faults in a single row and single 

blade faults in multiple rows? 

4. What method can be used to address the above issues? 

1.4 Objectives 

The objectives of this study were: 

1. Formulation of important features for blade fault diagnosis in a multi 

row of rotor blade system.  

2. Development of a novel blade fault diagnosis method based on 

artificial intelligence techniques using the extracted and the selected 

features. 

1.5 Scope of the Study 

Typical rotating machinery has a number of sub-components which upon 

mechanical or physical failure can lead to severe machinery damage and economic 

losses. This study was for rotor blade related failures, consisting of blade rubbing, 

loss of blade part and twisted blade. Laboratory testing was undertaken for faults 

simulation in a multi row rotor blade system. Faults investigated included single 

blade fault in a single row and single blade fault in multiple rows. Multiple blade 

faults in a single row or multiple rows were not considered in this study. The 
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condition monitoring employed vibration measurement. The study was for constant 

speed condition. The effectiveness of Fast Fourier Transform (FFT) and wavelet 

analysis for blade fault diagnosis were examined using experimental data. This study 

involved use of an artificial intelligence-based classification system to detect, 

classify and locate different blade fault conditions. Effectiveness of the proposed 

blade fault diagnosis method using testing data was undertaken. 

1.6 Thesis Outline 

This thesis consists of eight chapters. The second chapter in this thesis 

presents a literature review on the state-of-the-art approaches employed in blade fault 

diagnosis. The review discusses the types of blade faults, as well as the strategies 

used in blade fault monitoring and diagnostics.  Applications of artificial intelligence 

techniques used in rotating machinery fault diagnosis are also included in this 

chapter. Chapter 3 focuses on the theoretical backgrounds of wavelet analysis and 

explains Artificial Neural Network (ANN), Genetic Algorithm (GA), and cross-

validation techniques. Chapter 4 presents the details of the blade fault test rig, the 

experimental work, and the experiment setup. The effectiveness of FFT and wavelet 

analysis for blade fault diagnosis in a multi row rotor blade system is examined and 

the results are discussed in Chapter 5. In Chapter 6, the novel blade fault diagnosis 

methods are presented. This chapter first describes the proposed feature extraction 

technique and the newly proposed features for blade fault diagnosis. The feature 

selection method using GA is also explained. Finally, Chapter 7 presents the three 

ANN networks developed for blade fault detection, classification, and localisation. 

The effectiveness of the extracted features, the newly proposed features, and the 

feature selection technique are summarized. This chapter also discusses the 

performance of ANNs on experimental data. Chapter 8 summarises the findings, as 

well as the contributions of the study. The recommendations for future research are 

also presented in this chapter.  
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	CHAPTER 1
	INTRODUCTION
	1.1 Overview
	Turbine and compressor that utilise blades to extract energy are of importance in power generation, petrochemical plants, and aerospace industries.  Over the years, blade related failures have caused significant problems for rotating machinery operato...
	Figure 1.1 Example of blade failures
	To avoid blade failure and to optimise the use of the blades, it is necessary to have reliable and sensitive condition monitoring and signal processing methods to both measure and extract important information or features for blade fault diagnosis. Th...

	1.2 Problem Statement
	Over the years, research on the condition monitoring methods and signal processing techniques used to diagnose various types of blade faults (e.g., blade deformation, blade rubbing, loose blade, blade fouling, and blade fatigue failure) have been wide...
	Frequency domain (Fourier Transform) and time-frequency domain (wavelet analysis) vibration analysis are the most widely deployed techniques for both blade faults detection and diagnosis. The application of Fourier analysis and wavelet analysis has be...
	Recently, a number of researchers have shown an increased interest in developing artificial intelligence-based pattern recognition techniques for rotating machinery fault diagnosis, especially for bearings and gears [10][11]. In-depth interpretation o...

	1.3 Research Questions
	This study addressed the following research questions:
	1. Do features extracted via time-frequency analysis contain useful information that can assist in developing a novel blade fault diagnosis method?
	2. Is a genetic algorithm capable of selecting important features and enhancing the network performance?
	3. Do artificial intelligence techniques have the capability to detect, classify, and locate both single blade faults in a single row and single blade faults in multiple rows?
	4. What method can be used to address the above issues?

	1.4 Objectives
	The objectives of this study were:
	1. Formulation of important features for blade fault diagnosis in a multi row of rotor blade system.
	2. Development of a novel blade fault diagnosis method based on artificial intelligence techniques using the extracted and the selected features.

	1.5 Scope of the Study
	Typical rotating machinery has a number of sub-components which upon mechanical or physical failure can lead to severe machinery damage and economic losses. This study was for rotor blade related failures, consisting of blade rubbing, loss of blade pa...

	1.6 Thesis Outline
	This thesis consists of eight chapters. The second chapter in this thesis presents a literature review on the state-of-the-art approaches employed in blade fault diagnosis. The review discusses the types of blade faults, as well as the strategies used...
	CHAPTER 2


	2. LITERATURE REVIEW
	2.1 Introduction
	In this chapter, a review on the state of the art in blade fault diagnosis is presented. The review discusses the types of blade faults and the strategies used in blade fault monitoring and diagnostics. An overview of artificial intelligence (AI) appr...

	2.2 Types of Blade Faults
	The most common and frequent blade faults mechanisms can be classified into four categories according to their characteristics: blade rubbing, blade fatigue failures, blade fouling, and blade deformation.
	Blade rubbing can occur when the clearance between the rotating blade and casing is reduced. This kind of rubbing, also known as creep rubbing, occur when the elongated blade rub against the casing. Details of the dynamic characteristics of creep rubb...
	Blade fatigue failure can be further classified into loss of blade parts, cracks, and foreign object damage. Overheating of the blade due to long-term operation of turbo-machinery may result in a change in the mechanical properties and cause cracking....
	Adherence of various types of particles on the airfoils and annulus surfaces are the major causes of fouling [13]. Rotating and stationary blades coated with particles from the air and gases may affect the turbine flow coefficient and subsequently, de...
	Blade twisting, erosion, and corrosion are examples of blade deformation that may occur in turbomachinery. Blade deformation in turbomachinery affects the flow of a machine and can lead to the decrease of performance in turbomachinery. An example of b...
	Figure 2.1 Example of blade deformation [16]

	2.3 Condition Monitoring of Blade
	Extensive work has been done in condition monitoring of blades using analytical models and finite element models to establish a fault signatures database for blade fault diagnosis  [17][18][19]. This often includes correlation between blade vibration ...
	The health of the blade can be observed by using various types of condition monitoring techniques to measure signals, using suitable signal processing methods to analyse the measured signals, and deploy relevant methodology for pattern recognition. Ov...
	2.3.1 Condition Monitoring of Blade via Pressure Analysis
	Pressure signal based analysis method analyses the pressure field around the rotating blades for blade fault diagnosis. Mathioudakis et al. [26] studied the feasibility of using the pressure signal to diagnose blade fouling and blade twisting. Experim...

	2.3.2 Condition Monitoring of Blade via Temperature Analysis
	The temperature analysis technique had been used for blade monitoring by Annerfeldt et al. [30] and Kim et al. [31]. It was found that by using temperature analysis, blades with higher temperature could be detected and thus provide early warning of po...

	2.3.3 Condition Monitoring of Blade via Acoustic Emission Analysis
	Recently applications of acoustic emission analysis have been widely used in machine fault diagnosis to monitor the health of the machine [33]. Acoustic emission analysis methods have been proven capable of detecting faults at an early stage. In 1990,...

	2.3.4 Condition Monitoring of Blade via Vibration Analysis
	The vibration analysis method is the most widely used technique in rotating machinery fault diagnosis due to the advantages it offers over other methods of condition monitoring. For decades, vibration analysis had been used as a condition monitoring t...
	2.3.4.1 Vibration Signal and Frequency Domain Analysis for Blade Fault Diagnosis
	Time domain signals captured using vibration sensors are usually transformed into frequency domain (Fourier analysis) or time-frequency domain (Wavelet analysis) to extract important information for fault diagnosis. Using frequency domain analysis, bl...
	In 1975, vibration signals in an axial flow compressor were studied by Mitchell [46] to determine the effectiveness of information extracted from blade passing frequency for blade monitoring. He found that the amplitude change of the blade passing fre...
	Blade fault diagnosis using casing vibration has also been carried out by Rao et al. [49] to detect the occurrence of blade vibration in operating plants. The research study by Forbes and Randall [50][51] also reported that information about blade vib...
	Lim et al. [57]  proposed the use of the vibration spectrum to predict the severity and location of the blade rubbing in a single row rotor system. They reported that the amplitude and pattern of the vibration spectrum could be used to predict the sev...
	Artificial intelligent methods that offer automated fault diagnosis was also used by the previous researcher for blade diagnosis. Features extracted from vibration signal using frequency domain analysis are widely used. Kuo [61] used an artificial neu...
	Frequency domain signal analysis has been widely used for blade fault diagnosis. However, time information is lost when the time domain vibration signal is transformed into the frequency domain. Advanced signal processing methods that are capable of p...

	2.3.4.2 Vibration Signal and Time-Frequency Domain Analysis for Blade Fault Diagnosis
	Peng et al. [64] used three different signal processing methods to detect oil whirl, rotor to stator rub and coupling misalignment. Experimental results show that the reasssigned wavelet scalogram is more efficient than the frequency spectrum and wave...
	Abdelrhman [67][68] investigated the effectiveness of wavelet analysis for blade fault diagnosis in a multi row rotor system. It was found that wavelet analysis was unable to separate closely located frequency components. To overcome this problem, nov...



	2.4 Consolidated Observations
	For decades, extensive research has been undertaken on the subject of blade fault diagnosis. Condition monitoring techniques commonly used for blade fault diagnosis include pressure analysis, performance analysis, vibration analysis, temperature analy...
	Figure 2.2 provides a summary of vibration analysis in blade fault diagnosis discussed in the preceding section. Based on the figure, conclusions that can be drawn are as follows:
	1. Applications of frequency domain analysis (Fourier transform) and time-frequency domain analysis (wavelet analysis) on vibration signals had been reasonably successful in blade fault diagnosis. Time-frequency domain analysis which capable of provid...
	2. Singularity detection approaches and artificial intelligence (AI) approaches are normally used to detect, classify and locate blade conditions. Singularity detection approaches involve creating a visual representation of the signal, finding singula...
	3. Existing blade fault diagnosis based on AI approaches use features extracted from frequency domain analysis. However, to the best of the author’s knowledge, the application of features extracted from time-frequency domain analysis to develop AI app...
	4. Applications of AI approaches in blade fault diagnosis have achieved great success in detecting the occurrence of blade faults and classify the types of blade faults. The feasibility of AI approaches in locating blade fault location using wavelet a...
	Figure 2.2 Summary of vibration analysis in blade fault diagnosis

	2.5 Overview of AI Approaches in Rotating Machinery Fault Diagnosis
	A high level of performance is required to work in hostile environments. Effective condition monitoring and fault diagnostics of the machines are necessary to minimise machine failures that can lead to safety problems and financial losses [74]. In the...
	Recent research shows an increased interest in the use of AI approaches for rotating machinery fault diagnosis. The AI fault diagnostics consist of data collection, feature extraction, and pattern recognition using AI approaches as shown in Figure 2.3.
	Figure 2.3 The procedure of AI approaches fault diagnostics methods
	2.5.1 Data Collection
	The first step in fault diagnosis is data collection. Signals that represent the machine’s actual condition can be collected using various types of sensors such as ultrasonic sensors, velocity transducers, accelerometers, and acoustic emission sensors...

	2.5.2 Feature Extraction
	Before feature extraction, the collected raw data are pre-processed because most of the collected data are polluted with noise. After pre-processing, signal processing methods can be applied to extract useful features from the data. In machinery condi...
	Time domain based feature extraction methods are based directly on the time signal. Statistical parameters such as peak factor, root mean square, crest factor, variance, standard deviation, kurtosis, and skewness were commonly used in the past to comp...
	The most commonly used method for rotating machinery fault detection and diagnosis is to perform analysis in the frequency domain. Fast Fourier Transform (FFT) is a common technique used to analyse vibration signals for fault detection and diagnosis. ...
	Recently, time-frequency domain methods that offer time and frequency information have been widely used in rotating machinery fault diagnosis. These techniques are extensively used to analyse non-stationary signals. Short time Fourier transform (STFT)...
	Dimensionality reduction is an important step in AI approaches fault diagnostics. Too many features increase computational time and decrease the performance due to the existence of unwanted or redundant features. Feature selection is a dimensionality ...

	2.5.3 Pattern Recognition using AI Approaches
	Features extracted and selected from the previous step are used to evaluate the condition of the machinery. Fault detection, classification, and localisation employ AI approaches for pattern recognition. There are two types of learning algorithms name...


	2.6 Application of AI Approaches in Rotating Machinery Fault Diagnosis
	Recently, researchers have shown an increased interest in developing AI-based pattern recognition techniques for rotating machinery fault diagnosis. Chen and Wang [105] proposed an intelligent method to classify patterns of the wavelet map using a mul...
	Kankar et al. [108] studied the effectiveness of features extracted from continuous wavelet coefficients in fault diagnosis of rolling element bearings. A novel method to select the most suitable mother wavelet also has been proposed. Three different ...
	In another study, a feature extraction method based on empirical mode decomposition (EMD) energy entropy was proposed by Ali et al. [110] .  ANN trained with statistical features and EMD energy entropy was used to classify seven different bearing clas...
	In summary, various AI techniques have been used with time-frequency domain analysis as a diagnostic tool for fault diagnosis in rotating machinery. Vibration data are commonly collected to extract features for fault diagnosis using time-frequency dom...
	CHAPTER 3


	3. THEORETICAL BACKGROUND
	3.1 Introduction
	In this chapter, the theories of wavelet analysis and ANN are briefly described. An overview of the theories related to cross-validation and GA are also included.

	3.2 Wavelet Analysis
	Wavelet analysis is a powerful time-frequency domain analysis tool that is widely applied in several fields of engineering. Noteably, it is commonly used as a post-processing analysis tool for machinery fault detection and diagnosis [87][77]. In machi...
	3.2.1 Continuous Wavelet Transform (CWT)
	During computation of CWT, the wavelet is scaled and shifted over the entire domain of the analyzed signal. Therefore, a wavelet map derived from a continuous wavelet transform is smoother and loses no information. The following formula defines CWT,
	where
	x: scale parameter
	y: time parameter
	𝜑,𝑡.: the mother wavelet
	,𝜑.: complex conjugate

	3.2.2 Mother Wavelet Selection
	For wavelet analysis, many types of mother wavelets have been developed and indeed are available in the wavelet toolbox of Matlab. Various mother wavelets are used to analyse the same signal that produces different results. Many selection methods have...
	Figure 3.1 Morlet wavelet
	(Adapted from the wavelet documentation of Math Works, Inc)

	3.2.3 Relationship between Scale and Frequency
	In wavelet analysis, a time-scale plane is used rather than time-frequency plane. There is, however, a relationship between the scale and the frequency. The relationship between the scale and its corresponding pseudo-frequency depends on the mother wa...
	where
	a: scale level
	Fa: pseudo-frequency corresponding to the scale a
	Δ: sampling rate
	Fc: centre frequency of the mother wavelet


	3.3 Artificial Neural Network (ANN)
	The ANN is one of the best-known supervised learning methods. It is based on the behaviour of biological neurons. ANNs can be classied into feed-forward and feedback neural networks. In feed-forward neural networks, information travels from the input ...
	Figure 3.2 Feed-forward neural network
	Figure 3.3 Feedback neural network
	In general, a neural network consists of an input layer, one or more hidden layers and an output layer, as shown in Figure 3.2. Each layer is inter-connected through the neuron. The number of neurons in the input layer is usually equivalent to the num...
	3.3.1 Transfer Function
	Transfer functions are used as threshold functions in the neural network. In fact, many types of transfer function can be applied to the hidden layer and the output layer. The three different types of transfer functions, namely linear transfer functio...
	Figure 3.4 Different types of transfer functions

	3.3.2 Network Training and Testing
	Constructing a neural network involves two steps: training and testing. Training attempts to get the predicted output as close as the actual output by adjusting the weights and biases. Testing assesses the performance of the network. The ultimate goal...


	3.4 Cross-validation
	As a supervised learning method, ANN attempts to attain the relationship between the given input values and the given output values by determining the weights and the biases of the network. Theoretically, it is possible to get the computed output valu...
	The holdout form of cross-validation divides the data into two sets of the specified ratio for training and validation, whereas the k-folds cross-validation splits the training data into k subsets (folds) of equal size [118]. The training process is r...
	Figure 3.5 k-fold cross-validation
	Figure 3.6 leave-one-out cross-validation

	3.5 Genetic Algorithm (GA)
	The performance of any classifier largely depends on the input or features used to train the classifier. Too many inputs or features increases computational time, the tendency of overfitting, and decreases the performance due to the existence of unwan...
	GA is one of the most popular optimization techniques based on evolutionary computation. The basic concept of GA is shown in Figure 3.7. GA starts by randomly creating an initial population that consists of a group of individuals. The performance of e...
	Figure 3.7 Basic concept of GA
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	4. RESEARCH METHODOLOGY
	4.1 Introduction
	In this chapter, the overall research flow undertaken in this study is briefly described. The configuration of the blade faults test rig and its functionality are explained. Experimental studies conducted in this study are presented at the end of the ...

	4.2 Research Approach
	An overview of the overall research flow carried out in this study is shown in  Figure 4.1. This study began with literature survey of the existing blade fault diagnosis methods and identified the problems associated with these methods. An experimenta...
	Figure 4.1 Flow chart of research methodology

	4.3 Laboratory Experiments
	This section presents an overview of the blade faults test rig, and describes its configuration and its functionality. The experimental studies that were undertaken in this study are covered at the end of this chapter.
	4.3.1 Blade Fault Test Rig
	The blade fault simulator test facility used by Ahmed [69] to simulate various blade fault conditions is shown in Figure 4.2. The design of this test rig offered easy replacement of blades to simulate various blade fault conditions. A normal blade was...
	Figure 4.2 Blade fault test rig
	The first row of rotor blade consists of 8 blades. The dimensions of the blades are 158 mm in length, 46.19 mm in width, and 2 mm in thickness. The second row of rotor blades had 11 blades, and their dimensions are 145.5 mm in length, 46.19 mm in widt...
	Figure 4.3 Configuration of the rotor blade and stator blade
	The rotor casing consists of the lower part and the upper part, and the parts are fastened to each other with bolts and nuts. The top of the rotor casing consists of three sections (one section for each row of rotor blade) and has to be opened for bla...
	Figure 4.4 Design of the rotor casing

	4.3.2 Experiment Setup
	In this study, three different types of blade faults at various rows of the rotor blade were induced using the blade fault test rig. It should be mentioned that four sets of vibration signals and tacho signals for the baseline condition (no blade faul...
	Table 4.1: Blade faults induced onto the test rig
	4.3.2.1 Blade Rubbing
	The initial intention to introduce blade rubbing by replacing one of the normal blades with a blade that is longer in length was dismissed because of the possibility of the rotor casing wearing out. In this study, blade rubbing was induced in the test...
	Figure 4.5 Blade rubbing condition
	Table 4.2: Test conditions for blade rubbing

	4.3.2.2 Loss of Blade Part
	The loss of blade part fault was introduced in the experiment by replacing one of the normal blades with a prefabricated blade that had a partial loss. A 25% of the loss of the blade part for rotor blade in the first, second, and third rows were prefa...
	Figure 4.6 Loss of blade part condition
	Table 4.3: Test conditions for loss of blade part

	4.3.2.3 Twisted Blade
	In order to study the vibration response due to a twisted blade, one piece of the standard blade was replaced with another blade tightened into the rotor disk in the reverse direction. In this study, a single twisted blade condition was induced on the...
	Figure 4.7 Twisted blade condition
	Table 4.4: Test conditions for twisted blade


	4.3.3 Data Collection
	For all blade fault configurations, two types of signals were measured: vibration and tacho. Two accelerometer sensors (see the accelerometer sensor specifications in Appendix A) were used to obtain information about blade vibration from the rotor cas...
	Figure 4.8 Vibration measurement using accelerometer
	An optical laser probe with reflective tape was used to capture the tacho signal for speed measurement (see Figure 4.9). Ono Sokki CT-742 Digital Tachometer was also used in the experiment to display the operating speed of the experiment.
	Figure 4.9 Tacho signal measurement using optical laser probe
	In this experiment, a multi-channel data acquisition system was employed to capture the vibration and the tacho signals. The time series data were fed into a laptop for post-processing using FAMOS software. In the FAMOS software, time series data were...
	Figure 4.10 Photograph of the data acquisition device (imc cs-3008)
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	5. FFT AND WAVELET BASED BLADE FAULT DIAGNOSIS OF EXPERIMENTAL DATA
	5.1 Introduction
	In this chapter, FFT and wavelet analyses are applied to the experimental data for blade fault diagnosis. The capabilities of FFT and wavelet analyses (using the Morlet wavelet) for blade fault diagnosis are presented in the following section.

	5.2 Signal Processing
	In this study, three different blade faults were investigated: blade rubbing, loss of blade part, and twisted blade. Each blade fault was simulated in different locations in a blade fault test rig. All blade fault conditions were measured with a sampl...
	To evaluate the capability of FFT and wavelet analyses for blade fault diagnosis, the signal processing methods as illustrated in Figure 5.1 were applied. From a vibration signal, a half second of data was extracted (typically representing 10 complete...
	followed by integration. The signal is analysed in velocity because of the consistent response over the frequency range of interest.  The signal was then analysed using FFT to yield the corresponding vibration spectrum. The same vibration signal was t...
	Figure 5.1 Signal processing procedure

	5.3 Baseline Condition
	In this study, the baseline data are measured based on the condition that all the blades are in good condition. It should be noted that the raw vibration time signal for baseline condition (healthy or no blade fault) is acquired before any blade fault...
	Figure 5.2 FFT spectra of baseline condition
	Figure 5.3 Wavelet map of baseline condition

	5.4 Blade Rubbing
	Blade rubbing is introduced by attaching a piece of sheet metal (1 mm thickness) to one of the standard blades to extend the length of the blade. Figure 5.4  to Figure 5.6 illustrate the FFT spectra of the blade rubbing at rows 1, 2, and 3, respective...
	Figure 5.4 FFT spectra of baseline condition
	Figure 5.5 FFT spectra of blade rubbing at row 1
	Figure 5.6 FFT spectra of blade rubbing at row 2
	Figure 5.7 FFT spectra of blade rubbing at row 3
	Figure 5.7 to Figure 5.9 show the wavelet maps for different blade rubbing conditions. It was found that when blade rubbing occurred, the operating frequency of the vibration increased accordingly. This was noted from the increment of wavelet coeffici...
	Figure 5.8 Wavelet map of baseline condition
	Figure 5.9 Wavelet map of blade rubbing at row 1
	Figure 5.10 Wavelet map of blade rubbing at row 2
	Figure 5.11 Wavelet map of blade rubbing at row 3

	5.5 Loss of Blade Part
	The loss of blade part fault was induced onto the blade fault test rig by replacing one of the blades with another blade that had a partial loss of part. Figure 5.10 to Figure 5.12 exhibit the FFT spectra for the loss of blade part fault at row 1, row...
	Figure 5.12 FFT spectra of baseline condition
	Figure 5.13 FFT spectra of loss of blade part at row 1
	Figure 5.14 FFT spectra of loss of blade part at row 2
	Figure 5.15 FFT spectra of loss of blade part at row 3
	Figure 5.13 to Figure 5.15 show typical wavelet map for the loss of blade part conditions. These findings are consistent with the results of the FFT spectra, in which blade faults could indeed be detected by monitoring the change of wavelet coefficien...
	Figure 5.16 Wavelet map of baseline condition
	Figure 5.17 Wavelet map of loss of blade part at row 1
	Figure 5.18 Wavelet map of loss of blade part at row 2
	Figure 5.19 Wavelet map of loss of blade part at row 3

	5.6 Twisted Blade
	A twisted blade was induced onto the blade fault test rig by replacing one of the blades with one tightened into the rotor disc in the reverse direction. Figure 5.16 to Figure 5.18 illustrate the FFT spectra of the twisted blade at row 1, 2, and 3, re...
	Figure 5.20 FFT spectra of baseline condition
	Figure 5.21 FFT spectra of twisted blade at row 1
	Figure 5.22 FFT spectra of twisted blade at row 2
	Figure 5.23 FFT spectra of twisted blade at row 3
	Wavelet maps for different twisted blade conditions are presented in Figure 5.19 to Figure 5.21. The findings obtained from the wavelet maps are consistent with the results of FFT spectra in which the blade faults were detected by monitoring the chang...
	Figure 5.24 Wavelet map of baseline condition
	Figure 5.25 Wavelet map of twisted blade at row 1
	Figure 5.26 Wavelet map of twisted blade at row 2
	Figure 5.27 Wavelet map of twisted blade at row 3

	5.7 Concluding Remarks
	Conventional FFT and wavelet analyses were applied to blade fault diagnosis. The results show that FFT spectrum and wavelet analyses were comparable in detecting blade faults by comparing the amplitude or the wavelet coefficient of the operating frequ...
	Moreover, the effectiveness of FFT and wavelet analyses for blade fault diagnosis mainly depends on the ability to detect or to identify the existence of singularity.  Singularity detection or interpretation of the amplitude change or pattern of the v...
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	6. BLADE FAULT DIAGNOSIS USING ARTIFICIAL INTELLIGENCE METHODS
	6.1 Introduction
	This chapter explains the development of the proposed blade fault diagnosis method. The method consists of feature extraction, feature selection, and classifier modelling. Each of these processes is further explained in this chapter.

	6.2 Proposed Novel Blade Fault Diagnosis using Artificial Intelligence Method
	This section briefly describes the proposed blade fault diagnosis method. Three artificial intelligence-based methods were proposed for blade fault detection, classification, and localisation, respectively. To develop the proposed methods, important f...
	Figure 6.1 Schematic diagram of the proposed blade fault diagnosis method
	6.2.1 Feature Extraction
	In this section, the proposed feature extraction method is explained. As mentioned earlier, most of the previous research on blade fault diagnosis is based on the rotor operating frequency, its corresponding blade passing frequencies, or both.  In thi...
	Statistical features were extracted for blade fault detection, classification, and localisation based on the proposed feature extraction method shown in Figure 6.2. The steps for its implementation are further explained as follows:
	1. Raw vibration signals and tacho signals were recorded from the blade fault test rig. The experiment was begun by measuring the effects of blade faults on the vibration of the rotor one at a time. Two data sets (data set A and data set B) were acqui...
	2. Using the raw vibration signal obtained from one of the blade fault conditions, all frequencies, other than the operating frequency and its corresponding blade passing frequencies, were filtered. In this study, the operating frequency was 20Hz, and...
	3. The vibration signal was converted from acceleration to velocity with high pass filtering of the signals followed by integration. The signal is analysed in velocity because of the consistent response over the frequency range of interest.
	4. The signal was divided into 780 smaller segments (which represented 780 complete rotation cycles) using the tacho signal as the marker. With a rotating speed of 1200 rpm (20Hz), each segment consisted of a total of 250 data points.
	5. STA operation was then applied to every 10th vibration segment to produce the STA signal, which represented the averaged vibration signal of one cycle of rotation.
	6. Each STA signal was then used as the input for continuous wavelet transform using the Morlet wavelet to yield the corresponding wavelet coefficients. The Morlet wavelet was chosen because it has been shown to achieve good performance for machinery ...
	7. Wavelet coefficients of the operating frequency and the blade passing frequencies were extracted to calculate 11 statistical parameters.
	8. Steps (1) through (8) were repeated for raw vibration signals in vertical and horizontal axes.
	9. Steps (1) through (9) were repeated for all blade fault conditions.
	Figure 6.2 Feature extraction methods
	In this study, wavelet coefficients of the operating frequency and the blade passing frequencies were extracted to calculate 11 statistical parameters, which consisted of mean, variance, standard deviation, root mean square, skewness, kurtosis, energy...
	Table 6.1: List of statistical parameters
	Table 6.2 illustrates the statistical features obtained from the wavelet coefficients of the operating frequency. A specific term was assigned to each statistical feature (denoted as OF_statistical_direction). For example, kurtosis is calculated from ...
	Table 6.2: Statistical features from the wavelet coefficients of the operating frequency
	Table 6.3 shows the statistical features obtained from the wavelet coefficients of the blade passing frequencies. A specific term was assigned to each of the statistical feature (denoted as BPF_row_statistical_direction). For example, skewness is calc...
	Table 6.3: Statistical features from the wavelet coefficients of the blade passing frequencies
	For each vibration signal, a total of 78 samples is considered. Each sample consists of 88 statistical features (from operating frequency and blade passing frequencies).

	6.2.2 Proposed New Features
	Two new feature sets were proposed to obtain more information and to generate a better blade fault classification system. To have better understanding of the relationship between the operating frequency and the blade passing frequencies for blade faul...
	6.2.2.1 Blade Statistical Curve Area
	Blade statistical curve area describes the behaviour between the operating frequency and the blade passing frequencies by assuming the behaviour is linear. The following formula defines this feature,
	where
	(𝑥𝑛+1 − 𝑥𝑛): spacing between each consecutive pair of points
	f (𝑥𝑛):  statistical value
	N:   numbers of statistical value, 4
	This feature is calculated by determining the area under the statistical value curve using the trapezoidal method. The statistical values (e.g., kurtosis) of the operating frequency and the blade passing frequencies are plotted to get the area under t...
	Figure 6.3 Features of blade statistical curve area and blade statistical summation
	Table 6.4:  New features of blade statistical curve area

	6.2.2.2 Blade Statistical Summation
	The operating frequency and the blade passing frequencies are essential features for blade fault diagnosis. In this study, the summation of statistical value is proposed and is given by the following formula:
	where
	f (𝑥𝑛):  statistical value
	N:   number of statistical value, 4
	The statistical values (e.g., kurtosis) of the operating frequency and the blade passing frequencies were summed to attain this new feature, as shown in Figure 6.3. A total of 22 features of blade statistical summation have been calculated by using th...
	Table 6.5: New features of blade statistical summation


	6.2.3 Feature Selection
	Feature selection is an important step in machine learning algorithm to remove unwanted features and to pick only important features to maximise the accuracy of classifications. In fact, many features can be extracted from the time domain, frequency d...
	Figure 6.4 Architecture of feature selection algorithm
	6.2.3.1 Architecture of Genetic Algorithm
	GA has been widely used in optimisation and machine learning application, particularly for classifier’s architecture optimisation and feature selection [125][126]. Hence, the chromosome design, the fitness function, and the system architecture for the...
	Table 6.6: Parameter of the GA
	A.  Chromosome Design and Population Initialization
	The GA algorithm was begun by randomly generating the initial population. The size of the population used in this study was 25. The previous study indicated that small population show better result than the large population size [127]. The binary repr...
	Figure 6.5 Binary representation of a feature subset in the GA
	B.  Fitness Function
	By using the information obtained from the previous step, the selected features were used as input for ANN training process. The fitness function for this study was to optimise the classification error. Hence, the fitness value of each chromosome F(i)...
	where CE(i) is the classification error when the feature subset represented by  chromosome i is applied to the training data.
	C.  Architecture of Artificial Neural Network for Fitness Evaluation
	The ANN architecture is described in this section. In this study, every feature subset from GA was trained with ANN and the classification error is reflected the fitness function of the GA. The feed-forward neural network was used in this study becaus...
	The training function used in this study is scaled conjugate gradient (trainsig) because it has been proven to solve machinery faults via vibration data [131]. Thus, the transfer function employed in both the hidden layer and the output layer was the ...
	Table 6.7: Parameter of the ANN
	D.  Generation of New Population for the Next Generation
	From the current generation, a new population was produced for the next generation through the selection of parent, crossover, and mutation operations. Based on the fitness function, the two best populations in the current generation were moved to the...
	E.  Stopping Criterion
	The process was continued until the stopping criterion was satisfied. In this study, the maximum number of generations was set to 100 to prevent the GA stop prematurely. Once the stopping criterion had been met, GA was halted. The best population in t...


	6.2.4 Blade Fault Diagnosis using Artificial Intelligence Technique
	In this study, three novel methods for blade fault diagnosis have been proposed: the Artificial Intelligence Blade Fault Detection, Artificial Intelligence Blade Fault Classification and Artificial Intelligence Blade Fault Localisation. These three me...
	6.2.4.1 Artificial Intelligence Blade Fault Detection
	A neural network was constructed, or trained using the extracted features from wavelet coefficients and the newly proposed features. The neural network was developed based on a two-class problem. The function of this network was to detect the existenc...

	6.2.4.2 Artificial Intelligence Blade Fault Classification
	This network had been obtained based on the features extracted from wavelet coefficients and the newly proposed features. The neural network was developed based on a three-class problem. The function of the network is to identify the type of blade fau...

	6.2.4.3 Artificial Intelligence Blade Fault Localisation
	This neural network was developed based on a seven-class problem. The function of this network was to determine the blade fault location (row with blade fault). The seven classes had been represented as blade faults at row 1, row 2, row3, rows 1 and 2...
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	N - number of features
	7. RESULTS AND DISCUSSION OF THE PROPOSED BLADE FAULT DIAGNOSIS METHOD
	7.1 Introduction
	This chapter discusses the performance of the proposed blade fault diagnosis methods. The effects of the statistical features, the newly proposed features, and the feature selection on classification results are also included in this chapter.

	7.2 Experimental Data
	The blade fault conditions induced onto the blade fault test rig and those described in Chapter 4 are briefly reviewed below. A total of 25 blade fault conditions (4 baseline conditions and 21 blade faulted conditions) are examined in this study. Two ...
	For each blade fault condition, a total of 78 samples sets has been calculated. Each sample set consists of 88 statistical features (from operating frequency and blade passing frequencies) and 44 newly proposed features (from blade statistical curve a...
	from data set A, a total of 1950 samples (25 conditions x 78 samples) were generated from 25 different blade fault conditions, and each condition contributed to 78 samples. Out of the 78 samples from data set A, 60 samples were used for feature select...
	Table 7.1: Statistical features and new proposed features
	In this study, the effectiveness of the statistical and the newly proposed feature sets for blade fault detection, classification and localisation are examined. Three different statistical feature sets were considered as inputs in ANN, as shown in Tab...
	Table 7.2: Statistical feature sets as input for ANN
	In addition to the three statistical feature sets described above, two other newly proposed feature sets were also considered as the input of ANN. The newly proposed feature sets were blade statistical curve area feature set (refer to Table 6.4) and t...
	Table 7.3: Proposed feature sets as input for ANN

	7.3 Development of Artificial Neural Network for Blade Fault Diagnosis without Feature Selection
	In this section, development of the neural network for blade fault diagnosis without feature selection is presented. In this study, a feed-forward neural network with two hidden layers is used to detect, classify, and locate blade faults. The architec...
	Table 7.4: Parameter of the ANN

	7.4 Development of Artificial Neural Network for Blade Fault Diagnosis with Feature Selection
	In this section, the development of the neural network for blade fault diagnosis with feature selection is presented. The details of the feature extraction and the feature selection procedures are given in Chapter 6. After the feature selection proces...
	To further improve the diagnosis performance and to ensure the reliability of the diagnosis, the best selected statistical feature subset, and the best selected newly proposed feature subsets were combined and optimised to yield the corresponding clas...

	7.5 Modelling of Artificial Neural Network for Blade Fault Detection
	A feed-forward neural network was used to classify this two-class classification problem based on the features extracted from the continuous wavelet coefficients, as explained in Chapter 6. The network was developed to detect the presence of blade fau...
	7.5.1 Artificial Neural Network for Blade Fault Detection without Feature Selection
	The effectiveness of statistical features for blade fault detection is examined in this section. Three different statistical feature sets were considered as the input of ANN, as shown in Table 7.2. The number of neurons in the input layer for the firs...
	In this case, 4 healthy conditions and 21 blade fault conditions are considered. For each condition, 60 samples from data set A were used for training and validation, and 18 samples each from data sets A and B were used to test the network. In summary...
	Table 7.5: The number of training and testing samples for blade fault detection
	Moreover, three ANNs were trained by using the same ANN parameters with different statistical feature sets, and the performances of these statistical feature sets are discussed. As shown in Table 7.6, the effectiveness of these statistical feature set...
	As a result, the SFS_A2 produced the lowest accuracy among the three varied feature sets. This shows that the features extracted from the blade passing frequencies fail to detect blade faults. This observation is in line with the work of Louis et al. ...
	Table 7.6: Accuracy of statistical feature sets as input for blade fault detection
	On top of that, Table 7.7 to Table 7.9 project the overall performance in the form of a confusion matrix for SFS_A1, SFS_A2, and SFS_A3, respectively. The confusion matrix is often used to evaluate the performance of a classifier. The diagonal element...
	The performance of SFS_A2 in detecting blade fault was low, with 74 healthy conditions and 43 faulty conditions incorrectly classified by using BFD_ANN_SFS_A2. Moreover, as mentioned earlier, all blade conditions were correctly classified by using SFS...
	Table 7.7: Confusion matrix for network with SFS_A1 for blade fault detection
	Table 7.8: Confusion matrix for network with SFS_A2 for blade fault detection
	Table 7.9: Confusion matrix for network with SFS_A3 for blade fault detection

	7.5.2 Performance of the Newly Proposed Features for Blade Fault Detection
	In addition to the three ANNs trained with statistical feature sets described above, two other ANNs were trained with the newly proposed feature sets using the same ANN parameter. The newly proposed feature sets used as the input of ANN are shown in T...
	The performance details of the proposed new features for blade fault detection are provided in Table 7.10. Also, the overall performance in the form of a confusion matrix is shown in Table 7.11 and Table 7.12. Classification accuracy shows that the fe...
	From all the above results, it can be concluded that SFS_A1, SFS_A3, NFS_A1, and NFS_A2 performed exceptionally well in blade fault detection. However, there is a possibility of redundant features in the feature sets. What follows is an evaluation of ...
	Table 7.10: Accuracy of proposed feature sets as input for blade fault detection
	Table 7.11: Confusion matrix for network with NFS_A1 for blade fault detection
	Table 7.12: Confusion matrix for network with NFS_A2 for blade fault detection

	7.5.3 Artificial Neural Network for Blade Fault Detection with Feature Selection
	The performance details of the feature selection method using GA are discussed in this section. Five different feature sets considered in the previous section have been optimised by using the feature selection method discussed in Chapter 6. As mention...
	Figure 7.1 shows the number of features in each feature set after feature selection. For each feature set, about 40% to 50% of the features were removed. An example of feature selection’s procedures and the selected feature subset for each feature set...
	Figure 7.1 Number of features after feature selection for blade fault detection
	The performance details of the ANNs with features selected by using GA for blade fault detection are shown in Table 7.13. In addition, the overall performance in the form of a confusion matrix is shown in Table 7.14 and Table 7.15. It can be observed ...
	Table 7.13: Accuracy of different selected feature sets as input for blade fault detection
	Table 7.14: Confusion matrix for network with selected features of SFS_A1, SFS_A3, NFS_A1 and NFS_A2 for blade fault detection
	Table 7.15: Confusion matrix for network with selected features of SFS_A2 for blade fault detection
	The performance comparison between ANNs without feature selection and ANNs with feature selection is illustrated in Figure 7.2. It clearly shows that all ANNs with selected features using GA performed well in blade fault detection, except for the ANN ...
	Figure 7.2 Overall accuracy of blade fault detection for ANNs without feature selection and ANNs with feature selection
	Table 7.16: Selected features of SFS_A1 for blade fault detection
	Figure 7.3 shows a summary of classification accuracy for blade fault detection. The effectiveness of the statistical features extracted from the proposed feature extraction method, the proposed new feature sets and the feature selection using GA for ...
	1. The features extracted from the blade passing frequencies (SFS_A2) were not effective for blade fault detection.
	2. The proposed blade statistical curve area feature set (NFS_A1) and blade statistical summation feature set (NFS_A2) were effective for blade fault detection.
	3. The features selection method using GA managed to remove unwanted features, while maintaining or increasing the classification accuracy and network generalisation.
	Figure 7.3 Summary of classification accuracy for blade fault detection


	7.6 Modelling of Artificial Neural Network for Blade Fault Classification
	A feed-forward neural network is used to classify the three-class classification problem based on the features extracted from the continuous wavelet coefficients, as explained in Chapter 6. The network was developed to identify the type of blade fault...
	7.6.1 Artificial Neural Network for Blade Fault Classification without Feature Selection
	Three different statistical feature sets considered in developing the ANN for blade fault detection were also considered in the development of the ANN for blade fault classification. The three different statistical feature sets are shown in Table 7.2....
	Table 7.17: The number of training and testing samples for blade fault classification
	Furthermore, three ANNs were trained with different statistical feature sets using the same ANN parameters. The effectiveness of these statistical feature sets in identifying the types of blade faults was compared, and the results are shown in Table 7...
	Table 7.18: Accuracy of statistical feature sets as input for blade fault classification
	Table 7.19: Confusion matrix for network with SFS_A1 for blade fault classification
	Table 7.20: Confusion matrix for network with SFS_A2 for blade fault classification
	Table 7.21: Confusion matrix for network with SFS_A3 for blade fault classification

	7.6.2 Performance of the Newly Proposed Features for Blade Fault Classification
	In order to evaluate the performance of the newly proposed feature sets for blade fault classification, two ANNs were trained with the new feature sets using the same ANN parameters, and the performance of the newly proposed feature sets are discussed...
	In Table 7.22, the effectiveness of these newly proposed features sets in identifying types of blade faults is compared. In addition, the overall performance in the form of a confusion matrix is shown in Table 7.23 and Table 7.24. Furthermore, the cla...
	Table 7.22: Accuracy of proposed feature sets as input for blade fault classification
	Table 7.23: Confusion matrix for network with NFS_A1 for blade fault classification
	Table 7.24: Confusion matrix for network with NFS_A2 for blade fault classification

	7.6.3 Artificial Neural Network for Blade Fault Classification with Feature Selection
	In this section, five different feature sets considered in the previous section were optimised by using the feature selection method discussed in Chapter 6. The selected feature subset with its corresponding weights and biases was used to construct th...
	Figure 7.4 shows the number of features for each feature set after feature selection. About 45% to 60% of the features were removed from each feature set. The performance of the ANNs with feature selection is discussed in the next section. The selecte...
	Figure 7.4 Number of features after feature selection for blade fault classification
	Table 7.25 compares the performance of the ANNs with features selected by GA for blade fault classification. Table 7.26 to Table 7.30 shows the overall performance in the form of a confusion matrix. It can be seen that SFS_A2 after feature selection p...
	Table 7.25: Accuracy of different selected feature sets as input for blade fault classification
	Table 7.26: Confusion matrix for network with selected features of SFS_A1 for blade fault classification
	Table 7.27: Confusion matrix for network with selected features of SFS_A2 for blade fault classification
	Table 7.28: Confusion matrix for network with selected features of SFS_A3 for blade fault classification
	Table 7.29: Confusion matrix for network with selected features of NFS_A1 for blade fault classification
	Table 7.30: Confusion matrix for network with selected features of NFS_A2 for blade fault classification
	In Figure 7.5, the performance of the ANNs without feature selection and ANNs with feature selection for blade fault classification is compared. As depicted, improvement in terms of the ANN’s classification accuracy was insignificant. Moreover, featur...
	Figure 7.5 Overall accuracy of blade fault classification for ANNs without feature selection and ANNs with feature selection
	From the above analysis, the best statistical feature set for blade fault classification is the selected feature subset of SFS_A1. The selected feature subset of NFS_A1 had been the best among the newly proposed feature sets. To further improve the di...
	Table 7.31 shows the selected features after feature selection using GA. From the selected feature subset, seven statistical features of SFS_A1 and five blade statistical curve area features had been selected. The performance of this feature subset is...
	The overall accuracy of the SFS_A1_NFS_A1 is the best with a classification rate of 98.15%. The increase in classification accuracy for testing data set B indicates that the network generalisation was further improved after feature selection using the...
	Table 7.31: Selected features of SFS_A1_NFS_A1for blade fault classification
	Table 7.32: Accuracy of selected features of SFS_A1_NFS_A1 as input for blade fault classification
	Table 7.33: Confusion matrix for network with selected features of SFS_A1_NFS_A1 for blade fault classification
	Figure 7.6 shows a summary of the classification accuracy for blade fault classification. From the above analysis, several issues were observed:
	1. For blade fault classification, the features extracted from the operating frequency (SFS_A1) are better than the features extracted from blade passing frequencies (SFS_A2).
	2. The proposed blade statistical curve area feature set (NFS_A1) and blade statistical summation feature set (NFS_A2) are capable of effectively classifying the types of blade faults. The performance of the proposed feature sets is also better than t...
	3. The features selection method using GA managed to remove unwanted features and further increased the network diagnosis performance and generalisation.
	Figure 7.6 Summary of classification accuracy for blade fault classification


	7.7 Modelling of Artificial Neural Network for Blade Fault Localisation
	A feed-forward neural network was used to classify this seven-class classification problem based on the features extracted from the continuous wavelet coefficients, as explained in Chapter 6. The function of this network is to locate the blade fault l...
	7.7.1 Artificial Neural Network for Blade Fault Localisation without Feature Selection
	The three statistical feature sets use to the develop ANN for blade fault detection and classification were also used to develop the ANN for blade fault localisation. The three different statistical feature sets are shown in Table 7.2. In developing t...
	In summary, a total of 1260 samples from data set A were used to train and validate the network and 756 samples from data sets A and B were used to test the performance of the network. The number of training and testing samples is shown in Table 7.34.
	Table 7.34: The number of training and testing samples for blade fault localisation
	The performance of the statistical feature sets for blade fault localisation was evaluated by using three different statistical feature sets as input for the ANN. The effectiveness of these classical statistical feature sets in determining blade fault...
	Table 7.36 to Table 7.38 shows the overall performance in the form of confusion matrix for SFS_A1, SFS_A2, and SFS_A3, respectively. The performance of SFS_A1 and SFS_A2 in locating blade faults that occurred in rows 1 and  3 (r1r3) simultaneously had...
	Table 7.35: Accuracy of statistical feature sets as input for blade fault localisation
	Table 7.36: Confusion matrix for network with SFS_A1 for blade fault localisation
	Table 7.37: Confusion matrix for network with SFS_A2 for blade fault localisation
	Table 7.38: Confusion matrix for network with SFS_A3 for blade fault localisation

	7.7.2 Performance of the Newly Proposed Features for Blade Fault Localisation
	In addition to the three ANNs trained with classical statistical feature sets, two other ANNs were trained with the newly proposed feature sets using the same ANN parameters, and the performance of the newly proposed features sets are discussed in thi...
	Table 7.39: Accuracy of proposed feature sets as input for blade fault localisation
	Table 7.40: Confusion matrix for network with NFS_A1 for blade fault localisation
	Table 7.41: Confusion matrix for network with NFS_A2 for blade fault localisation

	7.7.3 Artificial Neural Network for Blade Fault Localisation with Feature Selection
	In this section, the performance of the feature selection method using GA is discussed. The five feature sets considered in the previous section were selected by using the feature selection method depicted in Chapter 6. As mentioned earlier, the selec...
	Figure 7.7 shows the number of features for each feature sets after feature selection. For each feature set, about 50% to 60% of the features were removed. The performance of the ANNs with feature selection is discussed in the next section. The select...
	Figure 7.7 Number of features after feature selection for blade fault localisation
	The performance details of the ANNs with features selected by GA for blade fault localisation are shown in Table 7.42. It can be seen that the network with the selected features from SFS_A2 was least accurate of the five different feature sets. This s...
	Table 7.42: Accuracy of different selected feature sets as input for blade fault localisation
	In addition, the overall performances in the form of confusion matrix are shown in Table 7.43 to Table 7.47. As discussed earlier, the performance of SFS_A1 and SFS_A2 in locating blade fault occurred in rows 1 and 3 (r1r3) simultaneously is poor. Wit...
	Table 7.43: Confusion matrix for network with selected features of SFS_A1 for blade fault localisation
	Table 7.44: Confusion matrix for network with selected features of SFS_A2 for blade fault localisation
	Table 7.45: Confusion matrix for network with selected features of SFS_A3 for blade fault localisation
	Table 7.46: Confusion matrix for network with selected features of NFS_A1 for blade fault localisation
	Table 7.47: Confusion matrix for network with selected features of NFS_A2 for blade fault localisation
	Figure 7.8 compares the performance of the ANNs without feature selection and the ANNs with feature selection. It clearly shows that ANNs with selected features from GA display good performance with fewer features.
	Figure 7.8 Overall accuracy of blade fault localisation for ANNs without feature selection and ANNs with feature selection
	From the above analysis, it is apparent the SFS_A1 and the NFS_A2 after feature selection are effective feature subsets for blade fault localisation. To further improve the diagnostics performance and to ensure the reliability of diagnosis, the select...
	Table 7.48: Selected features of SFS_A1_NFS_A2 for blade fault localisation
	The performance details of the ANNs with the combined feature set selected by GA for blade fault localisation are shown in Table 7.49. In addition, the overall performance in the form of a confusion matrix is shown in Table 7.50. Table 7.49 indicates ...
	The classification results indicate that the extracted features, the proposed new features, and the feature selection method are effective for blade fault localisation. Higher accuracy, nonetheless, can be achieved when the statistical features and th...
	Table 7.49: Accuracy of selected features of SFS_A1_NFS_A2 for blade fault localisation
	Table 7.50: Confusion matrix for network with selected features of SFS_A1_NFS_A2 for blade fault localisation
	Figure 7.9 shows a summary of classification accuracy for blade fault localisation. In this section, several issues were observed:
	1. The features extracted from the blade passing frequencies (SFS_A2) were ineffective for blade fault localisation.
	2. The newly proposed blade statistical summation feature set (NFS_A2) was effective for blade fault localisation.
	3. The features selection method using GA did not only manage to remove unwanted features, but also increased the classification accuracy and network generalisation.
	Figure 7.9 Summary of classification accuracy for blade fault localisation


	7.8 Discussion
	A major intent of this study was to examine the use of AI for blade fault diagnosis and to formulate a new blade fault diagnosis method that could detect, classify, and locate various blade fault conditions. In this study, three types of blade faults ...
	The current practice of using FFT and wavelet analyses for blade fault diagnosis depends on the existence of singularity. Unique “fingerprint” or “signature” were established based on singularity. The results of the FFT and the wavelet analyses sugges...
	In order to overcome the aforementioned, three neural networks were developed to detect blade faults, classify types of blade faults, and determine the location of the blade faults. Feature extraction using wavelet analysis, newly proposed features, a...
	Besides the classical statistical features, two new feature sets were proposed: blade statistical curve area feature set (NFS_A1) and blade statistical summation feature set (NFS_A2). Both feature sets are able to detect the existence of blade faults ...
	Additionally, the performance of a neural network largely depends on the features used to train the network. In order to enhance network performance and reliability, GA was used to select the important features. It clearly shows that ANNs trained with...
	In summary, the ANN trained with the selected feature subset of SFS_A1 was selected for blade fault detection. The ANN trained with the selected feature subset of SFS_A1_NFS_A1 was selected for blade fault classification. For blade fault localisation,...
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	8. CONCLUSION
	8.1 Summary
	Blade fault diagnosis in gas turbines is essential to ensure safety and to prevent significant economic loss. Therefore, effective and sensitive techniques for blade fault diagnosis are very important. For decades, a variety of condition monitoring te...
	A novel technique for blade fault detection, classification, and localisation was formulated based on artificial intelligence method. The findings of the experimental results are summarised below:
	1. Application of conventional blade fault diagnosis methods (FFT and wavelet analyses) are heavily depended on human intervention. Finding singularity or establishing a unique “fingerprint” or “signature” for blade fault diagnosis was insufficient or...
	2. Statistical features extracted from the proposed feature extraction technique were used to develop the blade fault diagnosis methods. The feasibility of statistical features from operating frequency to blade fault diagnosis was compared to the stat...
	operating frequency (SFS_A1) were found to be more sensitive to blade fault detection, classification, and localisation than the statistical features from blade passing frequencies (SFS_A2).
	3. The proposed new feature sets (blade statistical curve area and blade statistical summation) were found to be effective for blade fault detection. Feature sets of blade statistical curve area (NFS_A1) had been more sensitive for blade fault classif...
	4. The application of feature selection using GA could effectively reduce the number of features by removing unwanted features, and enhancing the performance and the reliability of the network. The experimental results also showed that good performanc...
	5. The developed network for blade fault detection was very effective as it could classify the existence of blade faults perfectly.  The performance of ANNs trained with the selected feature subset of SFS_A1, SFS_A3, NFS_A1 and NFS_A2 are reported to ...
	6. For blade fault classification, the ANN trained with the selected feature subset of SFS_A1_NFS_A1 produced the highest classification accuracy. Meanwhile, ANN trained with the selected feature subset of SFS_A1_NFS_A2 produced the highest classifica...
	7. The classification results indicated that the proposed blade fault diagnosis methods based on artificial intelligence could be used to monitor the blade conditions without involving human intervention.  The developed method could also be applied to...

	8.2 Research Contributions
	The intent of this work was to formulate a more reliable blade fault diagnosis technique based on artificial intelligence approaches. Novel techniques for blade fault detection, classification, and localisation were proposed in this study. The contrib...
	1. The effectiveness of conventional blade fault diagnosis methods, in particular FFT and wavelet analyses were examined using experimental data. Limitations of the existing methods for blade fault diagnosis were demonstrated.
	2. A novel feature extraction technique was proposed by using continuous wavelet transform to extract relevant statistical parameters from the operating frequency and its corresponding blade passing frequencies.
	3. Two new feature sets (blade statistical curve area and blade statistical summation) were proposed to improve the blade fault diagnosis method.
	4. A novel blade fault diagnosis technique was developed using the extracted features, with proposed new feature sets, and feature selection method. In addition, three artificial neural network (ANN) models were developed for blade fault detection, cl...

	8.3 Recommendations for Future Work
	Based on the outcome of this study, recommendations for future work were identified as follow:
	1. The proposed method for blade fault diagnosis could further be explored and validated by using varying speed data.
	2. The current proposed method is capable of detecting blade fault, classifying the types of blade faults and locating the blade faults. Extensions of the work could be made to identify the exact position of the faulty blade.
	3. Features used in this study were extracted from vibration signal using wavelet analysis. Other types of data, such as pressure data, strain gauge data, and acoustic data, could be examined. Other time-frequency domain signal processing techniques c...
	4. The developed neural networks in this study applied a supervised learning approach, whereas an unsupervised learning approach may be used for blade fault detection, classification, and localisation.
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