2,683 research outputs found

    Morphology-based detection of premature ventricular contractions

    Get PDF
    Premature ventricular contraction (PVC) is the type of ectopic heartbeat, commonly found in the healthy population and is often considered benign. However, they are reported to adversely affect the accuracy of R-R variability based electrocardiographic (ECG) algorithms. This study proposes a Principal Component Analysis (PCA) based algorithmic approach to detect the PVCs based on their morphology. The eigenvectors were derived from signal window around the R-peak, where signal window for the PVC (wPVC) and that of NSR (wNSR) were set to 0.55 seconds and 0.16 seconds respectively. We used 24 ECG recordings from MIT BIH arrhythmia database as training dataset and the remaining 24 ECG recordings as testing dataset. Using the derived eigenvectors and the Linear regression (LR) analysis; complexes corresponding to the wNSR and wPVC were estimated from training and testing datasets. Four different classification methods were employed to differentiate between wPVS and wNSR, namely, Root mean squared error (RMSE), Pearson product-moment correlation coefficient comparision, Histogram probability distribution and k-Nearest Neighbour (KNN). All four methods were implemented individually to classify the wPVC and wNSR. The performance of each of the classification approach was evaluated by computing sensitivity and specificity. With the sensitivity of 93.45% and specificity of 93.14%, KNN based classification method has shown the best performance. The method proposed in this study allows for an effective differentiation between NSR beats and PVC beats

    Morphology-based detection of premature ventricular contractions

    Get PDF
    Premature ventricular contraction (PVC) is the type of ectopic heartbeat, commonly found in the healthy population and is often considered benign. However, they are reported to adversely affect the accuracy of R-R variability based electrocardiographic (ECG) algorithms. This study proposes a Principal Component Analysis (PCA) based algorithmic approach to detect the PVCs based on their morphology. The eigenvectors were derived from signal window around the R-peak, where signal window for the PVC (wPVC) and that of NSR (wNSR) were set to 0.55 seconds and 0.16 seconds respectively. We used 24 ECG recordings from MIT BIH arrhythmia database as training dataset and the remaining 24 ECG recordings as testing dataset. Using the derived eigenvectors and the Linear regression (LR) analysis; complexes corresponding to the wNSR and wPVC were estimated from training and testing datasets. Four different classification methods were employed to differentiate between wPVS and wNSR, namely, Root mean squared error (RMSE), Pearson product-moment correlation coefficient comparision, Histogram probability distribution and k-Nearest Neighbour (KNN). All four methods were implemented individually to classify the wPVC and wNSR. The performance of each of the classification approach was evaluated by computing sensitivity and specificity. With the sensitivity of 93.45% and specificity of 93.14%, KNN based classification method has shown the best performance. The method proposed in this study allows for an effective differentiation between NSR beats and PVC beats

    Premature atrial and ventricular contractions detected on wearable-format electrocardiograms and prediction of cardiovascular events

    Get PDF
    AIMS: Wearable devices are transforming the electrocardiogram (ECG) into a ubiquitous medical test. This study assesses the association between premature ventricular and atrial contractions (PVCs and PACs) detected on wearable-format ECGs (15 s single lead) and cardiovascular outcomes in individuals without cardiovascular disease (CVD). METHODS AND RESULTS: Premature atrial contractions and PVCs were identified in 15 s single-lead ECGs from N = 54 016 UK Biobank participants (median age, interquartile range, age 58, 50-63 years, 54% female). Cox regression models adjusted for traditional risk factors were used to determine associations with atrial fibrillation (AF), heart failure (HF), myocardial infarction (MI), stroke, life-threatening ventricular arrhythmias (LTVAs), and mortality over a period of 11.5 (11.4-11.7) years. The strongest associations were found between PVCs (prevalence 2.2%) and HF (hazard ratio, HR, 95% confidence interval = 2.09, 1.58-2.78) and between PACs (prevalence 1.9%) and AF (HR = 2.52, 2.11-3.01), with shorter prematurity further increasing risk. Premature ventricular contractions and PACs were also associated with LTVA (P < 0.05). Associations with MI, stroke, and mortality were significant only in unadjusted models. In a separate UK Biobank sub-study sample [UKB-2, N = 29,324, age 64, 58-60 years, 54% female, follow-up 3.5 (2.6-4.8) years] used for independent validation, after adjusting for risk factors, PACs were associated with AF (HR = 1.80, 1.12-2.89) and PVCs with HF (HR = 2.32, 1.28-4.22). CONCLUSION: In middle-aged individuals without CVD, premature contractions identified in 15 s single-lead ECGs are strongly associated with an increased risk of AF and HF. These data warrant further investigation to assess the role of wearable ECGs for early cardiovascular risk stratification

    Incidence and predictors of premature ventricular complexes following catheter ablation for atrial fibrillation

    Full text link
    BACKGROUND: Atrial fibrillation (AF) is the most common cardiac arrhythmia, and previous studies have focused on the epidemiology, mechanisms and risk factors for this global disease (Ryder and Benjamin 1999). Various studies have examined the mechanism, epidemiology, and risk factors for AF. One of the most common triggers for AF is believed to be premature atrial contractions (PACs) usually arising from the pulmonary veins of the left atrium, but the relationship between AF and premature ventricular complexes (PVCs) is not well understood. Studies investigating the triggers of premature beats in both the atria and ventricles are similar, so it is possible that treatment for one arrhythmia may affect the incidence of another. It is hypothesized that due to commonly shared mechanisms of triggered activity or automaticity between PACs and PVCs, and shared risk factors, that patients with AF undergoing treatment with catheter ablation may be prone to develop PVCs. OBJECTIVE: To investigate the incidence of clinically detected PVCs among patients undergoing catheter ablation for AF, and clinical predictors of PVC development in this cohort of patients. We also aim to evaluate if incident PVC detection is associated with recurrent AF following AF ablation in a cohort of 317 patients receiving treatment at a single academic medical center. METHODS: A total of 375 patients undergoing AF ablation from 2009-2012 were reviewed, and patients that underwent repeat ablations were excluded, yielding 317 patients for analysis. T-tests and Chi-squared analyses were used in univariate analyses to test for significance between characteristics of AF patients who did and did not develop PVCs. Kaplan-Meier analyses and Cox proportional hazards models were used for univariate and multivariate survival analyses, respectively, to assess the risks of incident PVC development. RESULTS: Of 317 patients with AF undergoing pulmonary vein isolation (PVI) ablation, 36.3% developed clinically detectable PVCs following ablation. A history of clinically evident PVC prior to catheter ablation for AF was associated with an 80% increase in risk of incident PVC development (HR=1.83, 95% CI 1.02-3.26, p=0.041). Additionally, a history of prior angioplasty, stent, or percutaneous coronary intervention (PCI) was associated with a 73% decreased risk of incident PVCs (HR=0.27, 95% CI 0.08-0.88, p=0.03). In patients with a history of PVC prior to ablation, or who developed PVCs after ablation, there was no significant difference in the risk of AF recurrence (HR=1.01, 95% CI 0.70-1.46, p=0.96; and HR=1.09, 95% CI 0.78-1.53, p=0.60, respectively). CONCLUSIONS: Over 1 in 3 patients develop clinically detected PVCs following catheter ablation. Predictors of incident PVC development include a history of PVC, whereas a history of angioplasty, stent, or PCI was associated with less incident PVC development. Furthermore, there was no significant association between both a history of PVC or incident PVC and risk of recurrent AF following ablation

    Diagnosis and treatment of idiopathic premature ventricular contractions: A stepwise approach based on the site of origin

    Get PDF
    Premature ventricular contractions in the absence of structural heart disease are among the most common arrhythmias in clinical practice, with well-defined sites of origin in the right and left ventricle. In this review, starting from the electrocardiographic localization of premature ventricular contractions, we investigated the mechanisms, prevalence in the general population, diagnostic work-up, prognosis and treatment of premature ventricular contractions, according to current scientific evidence

    Premature atrial and ventricular contractions detected on wearable-format electrocardiograms and prediction of cardiovascular events.

    Get PDF
    AIMS: Wearable devices are transforming the electrocardiogram (ECG) into a ubiquitous medical test. This study assesses the association between premature ventricular and atrial contractions (PVCs and PACs) detected on wearable-format ECGs (15 s single lead) and cardiovascular outcomes in individuals without cardiovascular disease (CVD). METHODS AND RESULTS: Premature atrial contractions and PVCs were identified in 15 s single-lead ECGs from N = 54 016 UK Biobank participants (median age, interquartile range, age 58, 50-63 years, 54% female). Cox regression models adjusted for traditional risk factors were used to determine associations with atrial fibrillation (AF), heart failure (HF), myocardial infarction (MI), stroke, life-threatening ventricular arrhythmias (LTVAs), and mortality over a period of 11.5 (11.4-11.7) years. The strongest associations were found between PVCs (prevalence 2.2%) and HF (hazard ratio, HR, 95% confidence interval = 2.09, 1.58-2.78) and between PACs (prevalence 1.9%) and AF (HR = 2.52, 2.11-3.01), with shorter prematurity further increasing risk. Premature ventricular contractions and PACs were also associated with LTVA (P < 0.05). Associations with MI, stroke, and mortality were significant only in unadjusted models. In a separate UK Biobank sub-study sample [UKB-2, N = 29,324, age 64, 58-60 years, 54% female, follow-up 3.5 (2.6-4.8) years] used for independent validation, after adjusting for risk factors, PACs were associated with AF (HR = 1.80, 1.12-2.89) and PVCs with HF (HR = 2.32, 1.28-4.22). CONCLUSION: In middle-aged individuals without CVD, premature contractions identified in 15 s single-lead ECGs are strongly associated with an increased risk of AF and HF. These data warrant further investigation to assess the role of wearable ECGs for early cardiovascular risk stratification

    International criteria for electrocardiographic interpretation in athletes: Consensus statement.

    Get PDF
    Sudden cardiac death (SCD) is the leading cause of mortality in athletes during sport. A variety of mostly hereditary, structural or electrical cardiac disorders are associated with SCD in young athletes, the majority of which can be identified or suggested by abnormalities on a resting 12-lead electrocardiogram (ECG). Whether used for diagnostic or screening purposes, physicians responsible for the cardiovascular care of athletes should be knowledgeable and competent in ECG interpretation in athletes. However, in most countries a shortage of physician expertise limits wider application of the ECG in the care of the athlete. A critical need exists for physician education in modern ECG interpretation that distinguishes normal physiological adaptations in athletes from distinctly abnormal findings suggestive of underlying pathology. Since the original 2010 European Society of Cardiology recommendations for ECG interpretation in athletes, ECG standards have evolved quickly, advanced by a growing body of scientific data and investigations that both examine proposed criteria sets and establish new evidence to guide refinements. On 26-27 February 2015, an international group of experts in sports cardiology, inherited cardiac disease, and sports medicine convened in Seattle, Washington (USA), to update contemporary standards for ECG interpretation in athletes. The objective of the meeting was to define and revise ECG interpretation standards based on new and emerging research and to develop a clear guide to the proper evaluation of ECG abnormalities in athletes. This statement represents an international consensus for ECG interpretation in athletes and provides expert opinion-based recommendations linking specific ECG abnormalities and the secondary evaluation for conditions associated with SCD
    • …
    corecore