975 research outputs found

    Modelling microbial fuel cells using Lattice Boltzmann methods

    Get PDF
    An accurate modelling of bio-electrochemical processes that govern Microbial Fuel Cells (MFCs) and mapping their behaviour according to several parameters will enhance the development of MFC technology and enable their successful implementation in well defined applications. The geometry of the electrodes is among key parameters determining efficiency of MFCs due to the formation of a biofilm of anodophilic bacteria on the anode electrode, which is a decisive factor for the functionality of the device. We simulate the bioelectrochemical processes in an MFC while taking into account the geometry of the electrodes. Namely, lattice Boltzmann methods are used to simulate the fluid dynamics and the advection-diffusion phenomena in the anode compartment. The model is verified on voltage and current outputs of a single MFC derived from laboratory experiments under continuous flow. Conclusions can be obtained from a parametric analysis of the model concerning the design of the geometry of the anode compartment, the positioning and microstructure of the anode electrode, in order to achieve more efficient overall performance of the system. An example of such a parametric analysis is presented here, taking into account the positioning of the electrode in the anode compartment

    Wastewater Based Microbial Biorefinery for Bioenergy Production

    Get PDF
    A rapid growth in various industries and domestic activities is resulting in a huge amount of wastewater. Various types of wastewaters, such as textile, municipal, dairy, pharmaceutical, swine, and aquaculture, etc., are produced regularly by respective industries. These wastewaters are rich in nutrient content and promote eutrophication in the ecosystem and pose a threat to flora and fauna. According to an estimate, eutrophication causes losses of almost 2 billion US dollars annually, affecting real estate and fishing activities. Treatment of wastewater is a costly process and recently wastewater treatment with simultaneous energy production has received more attention. Microorganisms can be used to recover nutrients from wastewater and produce bioenergy (biodiesel, biohydrogen, bioelectricity, methane, etc.). A better understanding of the composition of various types of wastewaters and the development of technologies like anaerobic digestion (AD), microbial fuel cell (MFC), and microbial electrolysis cell (MEC) can help to make wastewater-based biorefinery a reality. To provide an overall overview to students, teachers, and researchers on wastewater to bioenergy technology ten chapters are included in this book

    Study of microvascular blood flow modulated by electroosmosis

    Get PDF
    An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer (EDL) in the microvascular regime. With long wavelength, lubrication and Debye-HĂĽckel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time-period, pressure rise along one wavelength and stream function. A plug width is featured in the solutions. Via symbolic software (MathematicaTM), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length (thickness) and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. An increase in plug flow width is observed to accelerate the axial flow, enhance volumetric flow rate and has a varied influence on the pressure rise depending on whether the flow is in the free pumping or pumping region. Increasing electrical Debye length consistently enhances axial flow, volumetric flow rate and also pressure rise (at any value of volumetric flow rate)

    Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach

    Get PDF
    © 2019 The Author(s) Microbial fuel cells (MFCs) is a promising technology that is able to simultaneously produce bioenergy and treat wastewater. Their potential large-scale application is still limited by the need of optimising their power density. The aim of this study is to simulate the absolute power output by ceramic-based MFCs fed with human urine by using a fuzzy inference system in order to maximise the energy harvesting. For this purpose, membrane thickness, anode area and external resistance, were varied by running a 27-parameter combination in triplicate with a total number of 81 assays performed. Performance indices such as R2 and variance account for (VAF) were employed in order to compare the accuracy of the fuzzy inference system designed with that obtained by using nonlinear multivariable regression. R2 and VAF were calculated as 94.85% and 94.41% for the fuzzy inference system and 79.72% and 65.19% for the nonlinear multivariable regression model, respectively. As a result, these indices revealed that the prediction of the absolute power output by ceramic-based MFCs of the fuzzy-based systems is more reliable than the nonlinear multivariable regression approach. The analysis of the response surface obtained by the fuzzy inference system determines that the maximum absolute power output by the air-breathing set-up studied is 450 μW when the anode area ranged from 160 to 200 cm2, the external loading is approximately 900 Ω and a membrane thickness of 1.6 mm, taking into account that the results also confirm that the latter parameter does not show a significant effect on the power output in the range of values studied

    Homogenized lattice Boltzmann model for simulating multi-phase flows in heterogeneous porous media

    Get PDF
    A homogenization approach for the simulation of multi-phase flows in heterogeneous porous media is presented. It is based on the lattice Boltzmann method and combines the grayscale with the multi-component Shan–Chen method. Thus, it mimics fluid–fluid and solid–fluid interactions also within pores that are smaller than the numerical discretization. The model is successfully tested for a broad variety of single- and two-phase flow problems. Additionally, its application to multi-scale and multi-phase flow problems in porous media is demonstrated using the electrolyte filling process of realistic 3D lithium-ion battery electrode microstructures as an example. The approach presented here shows advantages over comparable methods from literature. The interfacial tension and wetting conditions are independent and not affected by the homogenization. Moreover, all physical properties studied here are continuous even across interfaces of porous media. The method is consistent with the original multi-component Shan–Chen method (MCSC). It is as stable as the MCSC, easy to implement, and can be applied to many research fields, especially where multi-phase fluid flow occurs in heterogeneous and multi-scale porous media

    Mathematical modelling of particle-fluid flows in microchannels

    Get PDF
    Flows of fluids and solid particles through microchannels have a very wide range of applications in biological and medical science and engineering. Understanding the mechanism of microflows will help to improve the development of the devices and systems in those applications. The aim of this study is to develop a sophisticated simulation and analysis technique for the study of fluid-particle flow through microchannels. This work involves construction of mathematical models, development of analytical methods and numerical algorithms, and numerical investigation and analysis.The study consists of three parts. The first part of the research focuses on the transient flow of an incompressible Newtonian fluid through a micro-annual with a slip boundary. The flow of the fluid is governed by the continuity equation and the Navier-Stokes equations, and is driven by the pressure field with a timevarying pressure gradient. By using the Fourier series expansion in time and Bessel functions in space, an exact solution is derived for the velocity field. The velocity solution is then used to obtain the exact solutions for the flow rate and the stress field. Based on the exact solutions, the influence of the slip parameter on the flow behaviour is then investigated.The second part of the research focuses on the particle-fluid flow in microchannels. The transport of fluid in the vessel is governed by the continuity equation and the transient Navier-Stokes equations, while the motion of the particles is governed by Newton’s laws. The particle-wall and particle-particle interactions are modelled by the interacting forces, while the particle-fluid interaction is described by the fluid drag force. A numerical scheme based on the finite element method and the Arbitary Lagrangian-Eulerian method is developed to simulate the motion of the particles and the fluid flow in the vessels. The influence of boundary slip on the velocity field in the fluid is also investigated numerically.Based on the work in the second part, the third part of the research focuses onthe control of the movement of particles in the fluid by applying an external magneticfield to the system. Maxwell’s equations are used to model the magnetic fieldgenerated by the external magnetic source, and a finite element based numericalscheme is developed to solve the underlying boundary value problem for the magneticflux density generated. From the computed flux density and magnetic vectorpotential, the magnetic forces acting on the particles are determined. These magneticforces together with the drag force and the particle-particle interacting forcesdominate the behaviour of the particle motion. A numerical scheme, similar to thatfor the second part of the research, is then developed to study the fluid-particle flowin microchannels under magnetic forces, followed by a numerical investigation onthe influence of the magnetic forces on the particle flow behaviour

    Geomechanics for Energy and a Sustainable Environment

    Get PDF
    This book describes recent advances in geomechanics for energy and the sustainable environment. Four research articles, related to high-level radioactive nuclear waste disposal stability, geological effect and wellbore stability considerations for methane gas hydrate production, and artificial soil freezing, are presented in this book. In addition, a comprehensive state-of-the-art review verifies the strong correlation between global climate change and the occurrence of geotechnical engineering hazards. The review also summarizes recent attempts to reduce CO2 emissions from civil and geotechnical engineering practices. Readers will gain ideas as to how we can deal with conventional and renewable energy sources and environment-related geotechnical engineering issues

    Recent advances on fluid flow in porous media using digital core analysis technology

    Get PDF
    The scientific and engineering challenges of research on porous media have gained substantial attention in recent decades. These intricate issues span different disciplines and fields, manifesting in natural and industrial systems like soils, oil and gas reservoirs, tissues, plants, etc. Meanwhile, digital core analysis technology has rapidly developed, proving invaluable not just in oil and gas reservoirs development, but also in geothermal energy, carbon and hydrogen storage. The China InterPore Chapter and the Research Center of Multiphase Flow in Porous Media at China University of Petroleum (East China) have established a conference platform for global scholars to exchange ideas and research in porous media utilizing digital core analysis technology. The 6th International Conference on Digital Core Analysis & the 2023 China Interpore Conference on Porous Media was successfully held in Qingdao from July 5 to 7, 2023. The conference facilitated discussions among 150 participants, including over 20 invited experts from academia and industry, and the recent advances in research of fluid flow in porous media using digital core analysis technology were thoroughly presented.Document Type: EditorialCited as: Yang, Y., Horne, R. N., Cai, J., Yao, J. Recent advances on fluid flow in porous media using digital core analysis technology. Advances in Geo-Energy Research, 2023, 9(2): 71-75. https://doi.org/10.46690/ager.2023.08.0

    Blood Vessel Tortuosity Selects against Evolution of Agressive Tumor Cells in Confined Tissue Environments: a Modeling Approach

    Get PDF
    Cancer is a disease of cellular regulation, often initiated by genetic mutation within cells, and leading to a heterogeneous cell population within tissues. In the competition for nutrients and growth space within the tumors the phenotype of each cell determines its success. Selection in this process is imposed by both the microenvironment (neighboring cells, extracellular matrix, and diffusing substances), and the whole of the organism through for example the blood supply. In this view, the development of tumor cells is in close interaction with their increasingly changing environment: the more cells can change, the more their environment will change. Furthermore, instabilities are also introduced on the organism level: blood supply can be blocked by increased tissue pressure or the tortuosity of the tumor-neovascular vessels. This coupling between cell, microenvironment, and organism results in behavior that is hard to predict. Here we introduce a cell-based computational model to study the effect of blood flow obstruction on the micro-evolution of cells within a cancerous tissue. We demonstrate that stages of tumor development emerge naturally, without the need for sequential mutation of specific genes. Secondly, we show that instabilities in blood supply can impact the overall development of tumors and lead to the extinction of the dominant aggressive phenotype, showing a clear distinction between the fitness at the cell level and survival of the population. This provides new insights into potential side effects of recent tumor vasculature renormalization approaches

    Overview on the hydrodynamic conditions found in industrial systems and its impact in (bio)fouling formation

    Get PDF
    Supplementary data to this article can be found online at https://doi.org/10.1016/j.cej.2021.129348.Biofouling is the unwanted accumulation of deposits on surfaces, composed by organic and inorganic particles and (micro)organisms. Its occurrence in industrial equipment is responsible for several drawbacks related to operation and maintenance costs, reduction of process safety and product quality, and putative outbreaks of pathogens. The understanding on the role of operating conditions in biofouling development highlights the hydrodynamic conditions as key parameter. In general, (bio)fouling occurs in a higher extension when laminar flow conditions are used. However, the characteristics and resilience of biofouling are highly dependent on the hydrodynamic conditions under which it is developed, with turbulent conditions being associated to recalcitrant biodeposits. In industrial settings like heat exchangers, fluid distribution networks and stirred tanks, hydrodynamics play a dual function, affecting the process effectiveness while favouring biofouling formation. This review summarizes the hydrodynamics played in conventional industrial settings and provides an overview on the relevance of hydrodynamic conditions in biofouling development as well as in the effectiveness of industrial processes.This work was financially supported by: Base Funding - UIDB/00511/2020 of LEPABE and UIDB/00081/2020 of CIQUP funded by national funds through the FCT/MCTES (PIDDAC); Project Bio cide_for_Biofilm - PTDC/BII-BTI/30219/2017 - POCI-01-0145-FEDER 030219, ABFISH – PTDC/ASP-PES/28397/2017 - POCI-01-0145- FEDER-028397 and ALGAVALOR - POCI-01-0247-FEDER-035234, fun ded by FEDER funds through COMPETE2020 – Programa Operacional Competitividade e Internacionalizaçao ˜ (POCI) and by national funds (PIDDAC) through FCT/MCTES; Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and BioTecNorte operation (NORTE-01-0145-FEDER 000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte; FCT/ SFRH/BD/147276/2019 (Susana Fernandes) and SFRH/BSAB/150379/2019 (Manuel Simoes).info:eu-repo/semantics/publishedVersio
    • …
    corecore