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Abstract

Flows of fluids and solid particles through microchannels have a very wide

range of applications in biological and medical science and engineering. Under-

standing the mechanism of microflows will help to improve the development of the

devices and systems in those applications. The aim of this study is to develop a

sophisticated simulation and analysis technique for the study of fluid-particle flow

through microchannels. This work involves construction of mathematical models,

development of analytical methods and numerical algorithms, and numerical inves-

tigation and analysis.

The study consists of three parts. The first part of the research focuses on

the transient flow of an incompressible Newtonian fluid through a micro-annual

with a slip boundary. The flow of the fluid is governed by the continuity equation

and the Navier-Stokes equations, and is driven by the pressure field with a time-

varying pressure gradient. By using the Fourier series expansion in time and Bessel

functions in space, an exact solution is derived for the velocity field. The velocity

solution is then used to obtain the exact solutions for the flow rate and the stress

field. Based on the exact solutions, the influence of the slip parameter on the flow

behaviour is then investigated.

The second part of the research focuses on the particle-fluid flow in mi-

crochannels. The transport of fluid in the vessel is governed by the continuity equa-

tion and the transient Navier-Stokes equations, while the motion of the particles is

governed by Newton’s laws. The particle-wall and particle-particle interactions are

modelled by the interacting forces, while the particle-fluid interaction is described
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by the fluid drag force. A numerical scheme based on the finite element method

and the Arbitary Lagrangian-Eulerian method is developed to simulate the motion

of the particles and the fluid flow in the vessels. The influence of boundary slip on

the velocity field in the fluid is also investigated numerically.

Based on the work in the second part, the third part of the research focuses on

the control of the movement of particles in the fluid by applying an external mag-

netic field to the system. Maxwell’s equations are used to model the magnetic field

generated by the external magnetic source, and a finite element based numerical

scheme is developed to solve the underlying boundary value problem for the mag-

netic flux density generated. From the computed flux density and magnetic vector

potential, the magnetic forces acting on the particles are determined. These mag-

netic forces together with the drag force and the particle-particle interacting forces

dominate the behaviour of the particle motion. A numerical scheme, similar to that

for the second part of the research, is then developed to study the fluid-particle flow

in microchannels under magnetic forces, followed by a numerical investigation on

the influence of the magnetic forces on the particle flow behaviour.
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Chapter 1

Introduction

1.1 Background

Recent advance in microtechnologies has led to the development of many biologi-

cal and engineering devices and systems in microscales. Typical examples include

biochemical lab-on-the-chip systems, micro-electromechanical systems (MEMS),

fuel cell devices, biological sensing and energy conversion devices [58], and drug

delivery systems [76]. Most of these devices and systems involve flows of fluids

and particles in microchannels, referred to as microflows [10, 33, 35, 37]. Since the

functional characteristics and physical phenomena of the systems are determined by

the behaviour of fluid and particle flow in these systems, it is extremely important to

study the mechanism of microflows in order to gain better understanding [5, 28, 85].

In recent years, many research projects involving fluid or particle flow study

have been undertaken. In the lab-on-the-chip application, it has been reported that

the DEParray(tm) Chip can be used to capture and control movement of lipid mi-

croparticles [80]. Microfluidic devices integrated with a DNA computer model

can be used for medical diagnostics and drug screening [49]. Nanocrystalline di-

amond with Chromatin immunoprecipitation protocols (ChIP)can be used for an-

alyzing DNA [43]. Magnetic beads are separated from fluid in microfluidic chan-

nels using microelectromagnets [72]. For the MEMS application, the microthermal

preconcentrators (µTPCs) is used for gas analysis of volatile organic compounds

(VOCs) [2]. A MEMS viscometer is used in the oil well logging process by an-

1



alyzing the density and viscosity of fluids [26]. A microfluidic device consisting

of MEMS-fabricated channels is used to produce microbubbles [69]. A micro-

rheometer is used as a tool to measure the linear viscoelastic properties of small

volumes of a fluid [19]. For the fuel cell application, a polymeric electrolyte mem-

brane (PEM) is used to produce fuel cell from methanol gas by conducting the

protons that are generated by the catalytic oxidation of the gas at the anode [39].

A microbial fuel cell (MFC) can be used as an electricity generator by converting

bio-chemical energy to electrical energy [31].

Another important process which involves fluid-particle flow is the targeted

drug delivery in cancer therapies. Cancer is one of the most threatening diseases

that cause death to human beings. The growth rate of tumor depends on the angio-

genesis which is the process in which new blood vessels develop from an existing

vasculature through endothelial cell sprouting, proliferation and fusion [64]. Nu-

trient supplied via new blood vessels results in proliferating of cancer cells, which

is in favor of tumor growth. Tumor cells need an adequate blood supply in order to

perform vital cellular functions. The modern-day approach to cancer treatment is a

multidisciplinary one involving varying combination of surgery, radiation therapy,

chemotherapy and targeted therapies. In targeted therapies, a medication or drug is

controlled to target a specific pathway in the growth and development of a tumor.

Although most of the drugs used to date have proven to be successful on small ani-

mals such as mice [30, 86], their efficiency in humans remains highly variable from

one patient to another.

Understanding the flow of blood and drug in the capillary bed is very impor-

tant for investigating the efficiency of drug treatment as they pass from the parent

blood vessel to tumor surface via an associated capillary bed. Over the last 15 years,

a number of mathematical models for blood vessel formation [12, 47], blood flow

and/or particle flow in capillary networks [75, 66, 60, 32] in the area of tumor-

induced angiogenesis have been developed. One of these is magnetically targeted

drug delivery, which was first introduced by Mosbach and Schroder [57]. This

approach involves binding a drug to small biocompatible magnetic particles with
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diameters less than 5µm. On the surface, the particles are coated with a surfactant

to functionalise some specific tasks. These particles are injected to the blood circu-

lation system and are guided to tumor sites using an external magnetic field. Once

targeted to the locations wanted, these particles release drugs to kill the cancer cells

on the wall of blood vessel. This treatment has many advantages. Firstly, the size of

nanoparticles carrying drugs is small enough to avoid being detected and eliminated

from human immune system. The mechanism of magnetic guidance can extend the

duration for the particles to be captured to the disease sites. Thus it can release

drugs more efficiently.

Driscoll et al. [24] had studied magnetically targeted drug delivery by track-

ing each individual particle under the influence of Stokes drag force and magnetic

force. Grief and Richardson [32] conducted a theoretical analysis of targeted drug

delivery using magnetic particles and proposed a two-dimensional network model.

In their model, the motion of fluid is described by Poiseuille flow, while the mo-

tion of a magnetic particle, due to balancing hydrodynamic and magnetic force, is

governed by an advection-diffusion equation for the particle concentration. They

found that drug targeting can be achieved by pulling magnetic particles to the edge

of the vessel, and that the use of magnetically targeted drug delivery with an exter-

nally applied magnetic field is appropriate only for targets close to the surface of

the body.

Although intensive research relating to the fluid-particle flow in microchannel

and their applications in magnetically targeted drug delivery has been conducted,

there are still some aspects that are not fully understood. The use of mathematical

models will allow us to gain more understanding of fluid flow, particle flow in fluid,

and the interaction between fluid and particles under a magnetic field.

1.2 Objectives

Based on the previous research, in this project, we will study the fluid-particles

flow in microchannels under magnetic field. The specific objectives include the

3



following

(i) Study the transient behaviour of fluid flow through micro-annulus with bound-

ary slip with particular emphases on the influences of boundary slip on the

transient flow rate, velocity and stresses fields.

(ii) Construct a mathematical model and numerical scheme to study the particle-

fluid flow in microchannels.

(iii) Construct a mathematical model and numerical scheme to determine the mag-

netic forces acting on particles by external magnetic sources, and then study

the particle motion in fluids under magnetic forces.

1.3 Outline of the Thesis

This thesis consists of six chapters. Chapter one gives the background of the

research highlighting the importance of the subject of fluid-particle flow in mi-

crochannels. Some specific applications which involve particle-fluid flow are re-

viewed with particular emphases on the magnetic drug targeting. The objectives are

also given in this chapter.

Chapter two reviews relevant theories and previous work closely related to the

scope of this study.

Chapter three studies the pressure driven transient flow of a Newtonian fluid

in micro-channels. Exact solutions for the velocity and stress fields are derived and

the effect of boundary slip is investigated based on the exact solutions.

Chapter four presents a mathematical model and numerical scheme for simu-

lating particle-fluid flows utilizing the finite element method and the arbitary Lagragian-

Eulerian method. The influence of boundary slip on the velocity and stress fields

are also presented.

Chapter five presents the boundary value problem and numerical scheme for

the determination of the magnetic vector potential and magnetic forces, followed by

the modelling of particle movement in fluids under magnetic forces. A numerical

4



investigation on the influence of the magnetic field on the particle motion is also

presented.

Chapter six presents the conclusions from this study. Further researches are

also given in this chapter.

5



Chapter 2

Literature Review

2.1 General Overview

In this chapter, we review the basic theories and previous work relevant to the study

of fluid-particle flow under magnetic forces. In section 2.2, the basic theories for

the determination of magnetic fields and magnetic forces are presented. In section

2.3, a review of the fundamental theories for the flow of fluids are given followed by

previous work on the development and applications of the subject. In section 2.4,

the principal approaches and numerical techniques for simulating the flow of solid

particles in fluid is reviewed.

2.2 Modelling of Magnetic Field

Magnetic fields are generated by a magnetic material such as, bar magnets and

Earth. The magnetic fields exert forces on electric charges that enter to the field.

Unlike electric fields, the magnetic fields only interacts with electric charges that

are moving. In addition, the simplest magnetic objects are dipoles.

There are two types of magnetic field: the magnetic induction field B and the

magnetic field H. The magnetic induction field B (unit of T) is the actual magnetic

field. By Faraday’s law, the time variation of the magnetic flux ΦB generates the

electric field. The magnetic field H is the field that is produced by a wire carrying

current. Its strength H = |H| is proportional to the number of turns of that wire.

The magnetic dipole moment m of a magnetic material is defined as the
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strength of the magnetic field. The magnetic field is proportional to |m| and in-

versely proportional to r3, where r is a distance from the outer of the dipole. The

magnetization M of a magnetic object is defined as the magnetic moment per unit

volume, that is,

M =
m

V
, (2.1)

where V is the volume of the material. This property determines the maximum

magnetic by an object that is fully magnetized.

The magnetic force exerted on a dipole m by a non-uniform static magnetic

field H is given by [74]

F = ∇(m ·H). (2.2)

If the current producing the magnetic field does not overlap with the current distri-

bution of the magnetic dipole, we have

∇×H = 0. (2.3)

Recall a vector identity

∇(a · b) = b× (∇× a) + a× (∇× b) + (b · ∇)a + (a · ∇)b. (2.4)

Using (2.3) and (2.4), and assuming that the magnetic dipole is small, the magnetic

force in (2.2) becomes

F = (m · ∇)H. (2.5)

In vacuum, the relation between B and H is given by

B = µ0H, (2.6)

where µ0 = 4π × 10−7 T ·m ·A−1 is the permeability of free space.

Inside materials, the three vector fields B,H and M are related by the consti-

tutive relation

B = µ0(H + M). (2.7)

In magnetostatic problems, a generalized form of the constitutive relation for

the magnetic field is given by

B = µ0µrH + Br, (2.8)
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where the dimensionless number µr is the relative magnetic permeability, and Br

is the remanent magnetic flux density, which is the magnetic flux density when no

magnetic field is present.

Based on the above relations, materials are classified into three categories:

paramagnetic, diamagnetic, and ferromagnetic.

In paramagnetic and diamagnetic objects, the magnetic field B is linearly

proportional to H,

B = µ0µrH. (2.9)

If µr > 1, the material is paramagnetic. If µr < 1, the material is diamagnetic. The

value µr usually differs from unity by a factor of 10−5.

For material that are not permanent magnets, M and H are linearly related by

M = χmH, (2.10)

where χm is the magnetic susceptibility and is dimensionless.

Substituting (2.10) into (2.7), we obtain

B = µ0(1 + χm)H. (2.11)

Comparing (2.11) and (2.9), we have

µr = 1 + χm. (2.12)

Thus, for a paramagnetic material, χm > 0, and for a diamagnetic material, χm < 0.

In general, the governing equations for the electromagnetic field consist of the

Maxwell’s equations and the constitutive equations. The Maxwell’s equations are

as follows:

∇×H = J +
∂D

∂t
, (2.13)

∇× E = −∂B

∂t
, (2.14)

∇ ·B = 0, (2.15)

∇ ·D = ρd, (2.16)
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where H is the magnetic field, E is the electric field, J is the total current density,

D is the electric displacement, ρd is the free charge density, and B is the magnetic

flux density. The constitutive equations are

B = µH, (2.17)

D = εE, (2.18)

Je = σ(E + v ×B) + ρdv, (2.19)

where σ is the electric conductivity, and v is the velocity. Since metal materials are

good conductors, it can be assumed that the field that changes in one part of the

system radiates to other part instantaneously. Therefore, ∂D
∂t

can be neglected and

(2.13) becomes

∇×H = J. (2.20)

If the magnetic Reynolds number is very small, the term (v × B) in (2.19) can be

neglected. The Maxwell’s equations together with the constitutive equations can be

simplified to the following systems:

∇×H = J, (2.21)

∇× E = −∂B

∂t
, (2.22)

∇ ·B = 0, (2.23)

∇ ·D = 0, (2.24)

B = µH, (2.25)

Je = σE. (2.26)

A number of mathematical models and numerical methods for modelling

magnetic fields in fluid flows have been carried out. In 2000, Oldenburg et al. [59]

studied the flow of ferrofluids in porous media caused by an external magnetic field

due to the magnet. To simulate the flow, the external magnetic field, the mag-

netic field strength and its gradient were calculated by direct equations in two flow

characteristics: miscible and immiscible flows. Then the magnetic body force was

obtained using the force balance equations solved by the integral finite difference
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method. Compared to the experimental results, the two ferrofluid models provide

some new simulation capabilities. In 2002, Voltairas et al. [84] developed a general

theory based on the ferrohydrodynamics to describe the magnetic drug targeting.

They demonstrated that their analytical results, based on the Stokes model, agree

with the experimental results in a carotid artery. They derived an upper bound of

the mean blood velocity which depends on the external applied magnetic field.

In 2003, Li and Kwok [48] presented a lattice Boltzmann model using a

single-relaxation-time approximation as a collision model for studying microflu-

idic problems which include external pressure and the Lorentz force from external

electric and magnetic fields. This model can be potentially applied to magnetic drug

targeting. The numerical results are in good agreement with the experimental re-

sults in the case of pressure-driven microchannel flows. In 2004, Loukopoudos and

Tzirtzilakis [51] derived a mathematical model for biomagnetic fluid dynamics for

the flow of the biofluid under an external magnetic field. The numerical results, ob-

tained from the finite difference method, show the effects of a magnetic field on the

flow of a biomagnetic fluids including vortex arising and increase in temperature,

skin friction coefficient and heat transfer rate with an increase in the magnetic field

strength. In 2006, Tzirtzilakis [83] et al. developed a mathematical model, based on

the Reynolds averaged Navier- Stokes (RANS) equations, to simulate the turbulent

flow of a biomagnetic fluid with a locally applied magnetic field. The low Reynolds

number k − ε turbulence model was used for the turbulence formulation. The com-

putational results show that, when compared between laminar and turbulent flow,

the turbulence causes huge reduction on the effect of the magnetic field.

A lot of mathematical models and numerical methods for the motion of par-

ticles in fluid flow under an external magnetic field have been developed. In 1984,

Driscoll [24] et al studied magnetic targeting of magnetic microspheres carrying

drugs to tumorous microvasculature in rat tails. Their calculations of the magnetic

force required to move microspheres to blood vessel walls, the fluid drag force, and

the interparticle force were used for the analysis of microsphere capture from the

experiment. In 2005, Rotariu and Strachan [65] investigated magnetic targeting of
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drugs in tumor capillaries deep inside the human body using magnetic particles and

an external needle magnet. A two dimensional finite element model based on the

FEMM software using the magnetohydrodynamics and the motion of particles was

used to solve the problem. The numerical results show that the particles of size 1

µm can be captured at a distance up to 15 cm.

Aviles et al. [7] presented a two dimensional Newtonian model with magnetic

forces and used FEM to simulate the movement of magnetic drug carrier particles

used to treat carotid artery diseases under the affect of an external magnetic field.

In addition to a permanent magnet, the use of a near-skin implanted ferromagnetic

wire was shown to improve the collection efficiency of the magnetic particles. Ally

et al. [4] used the finite element package ANSYS to study magnetically targeted

aerosols in lung cancer. They computed drag forces using the Stokes flow and the

magnetic forces were used to calculate the motion of particles by Newton’s second

law. The experimental results and numerical results are in good agreement and show

that the magnetic field gradient and aerosol particle concentration are important

factors for magnetic targeting of aerosols.

Chen et al. [18] developed a two dimensional mathematical model using the

Navier-Stokes equations and Maxwell’s equations, to simulate magnetic targeting

of magnetic particles using a magnetizable intravascular stent (MIS) inserted intro

a blood vessel. They suggested that the radii of the MIS and its wire are important

parameters for the collection efficiency. Grief and Richardson [32] conducted a the-

oretical analysis of the targeted drug delivery using magnetic particles and proposed

a two-dimensional network model. In their model, the motion of fluid is described

by Poiseuille flow, while the motion of the magnetic particles, due to balancing

hydrodynamic and magnetic force, is governed by an advection-diffusion equation

for the particle concentration. They found that drug targeting can be achieved by

pulling magnetic particles to the edge of the vessel, and that the use of magnetically

targeted drug delivery with an externally applied magnetic field is appropriate only

for targets close to the surface of the body.

In 2007, Aviles [6] et al proposed a new approach of magnetic drug targeting
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by using ferromagnetic particles as seeds to collect magnetic drug carrier particles

at a specific site in the body. They used the Navier-Stokes equations to model the

fluid flow, and the Maxwell equations to capture the magnetic potentials, and the

force balance equation to calculate the motion of the carrier particles. The magnetic

particle-particle interactions were neglected. The numerical results show that using

the ferromagnetic seeds increases the performance of the magnetic drug targeting

determined by the capture cross section.

Furlani and Furlani [27] developed a mathematical model based on the mag-

netic force, the drag force under the Stokes flow and the motion of magnetic parti-

cles for magnetic drug delivery in microvessels. They derived analytical expressions

for the prediction of particle trajectory and the volume fraction of magnetic parti-

cles required to ensure capture of the particle, which is conversely proportional to

the square of the radius of particles. Chertok et al. [20] used a simple mathematical

model for the magnetohydrodynamic problem to distinguish the tumor brain from

healthy brain by using magnetic nanoparticles and an external magnet. The predic-

tion results were confirmed by the in vivo ratio of nanoparticle capture in bearing

rats. In 2008, Chen [17] et al. developed a high-gradient magnetic separator to

improve magnetic particle separation from blood flow in magnetic targeting appli-

cation by introducing an array of capillary tubing and ferromagnetic wires which

was immersed in an external magnetic field from two permanent magnets. They

used a three dimensional finite element model, based on the equations similar to

those in [18], to investigate the effect of the tubing-wire configurations. The numer-

ical results show that an optimal design is to have bi-directionally alternating wires

and tubes.

2.3 Modelling of Fluid Flow

Fluid dynamics involves the study of fluids in motion. More specifically, it concerns

the kinematics of the flow field, and the stress distribution throughout the field.

Based on the compressibility, fluids can be classified into compressible fluids and
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incompressible fluids. Based on the constitutive equations, fluids can be categorized

into three types: non-viscous, Newtonian, and non-Newtonian.

For most problems, liquids can be treated as incompressible fluids, and in

general, gasses except low speed gas flows must be considered as compressible

fluids. Furthermore, many common fluids, such as air and water, can be modelled

as Newtonian fluids.

The governing equations of the flow of an incompressible Newtonian fluid

consists of the equations of motion

∂σij

∂xj

+ ρfXi = ρf
Dui

Dt
, (2.27)

the equation of continuity

div(u) =
∂uj

∂xj

= 0, (2.28)

and the constitutive equations

σij = −pδij + 2µdij, (2.29)

where
Dui

Dt
=

∂ui

∂t
+ uj

∂ui

∂xj

is the material derivative, σij are the components of

stress tensor, ρf is the density of fluid, Xi are the components of body force in

the xi direction, δij is the Kronecker symbol, ui are the velocity of fluids in the xi

direction, p is the pressure, µ is the viscosity of fluid, and dij are the components of

the rate of deformation (also known as strain rate) and is related to the velocity by

dij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
.

The above equations are all field equations which must be satisfied at all points

within a continuum. To solve the above equations, substituting (2.33) into (2.27),

we obtain

ρf
Dui

Dt
= ρfXi − ∂p

∂xj

δij + µ

(
∂2ui

∂xj∂xj

+
∂2ui

∂xi∂xj

)
. (2.30)

Using the continuity equation (2.28), we have

∂2ui

∂xi∂xj

=
∂

∂xi

(
∂uj

∂xj

)
= 0,
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and thus equation (2.30) becomes

Dui

Dt
= Xi − 1

ρf

∂p

∂xi

+
µ

ρf

∇2ui, (2.31)

which are the so-called Navier-Stokes equations for incompressible Newtonian flu-

ids. It should be noted that the Navier-Stokes equations for other kinds of fluids

can be derived using the same process but with different constitutive equations. The

Navier-Stokes equations (2.31) together with the continuity equation (2.28) consti-

tute a system of four partial differential equations for unknown variables u, v, w, and

p and thus are solvable in principle. These four partial differential equations define

all possible motions of an incompressible Newtonian fluid. The feature which dis-

tinquishes one flow situation from another is the nature of the boundary conditions

satisfied by the velocity field u and p.

In historical development of fluid theories and simulations, many studies have

shown that fluids behave approximately like Newtonian fluid for which the shear

stress in fluid is linearly proportional to the deformation rate, namely

µ = constant. (2.32)

However, most fluids are non-Newtonian, that is, the shear stress is related to the

deformation rate nonlinearly by

σij = −pδij + 2µ(γ̇)dij, (2.33)

where γ̇ is the shear rate. Many non-Newtonian models for fluids have been sug-

gested. Each model can be used to describe different fluid behaviour and contains

different parameters. For bloods, a summary of non-Newtonian models of blood

viscosity including the model parameters is given in [42], as in Table 2.1.

Many studies have been carried out to study the non-Newtonian behaviour of

fluid and many models have been developed including, for example, the Carreau

model, the Power-law model, the Casson model, and the generalized Power-law

model. Mooney and Black [56] investigated the flow of raw rubber in extrusion

operations. Both two and three dimensional flows were investigated. It was con-

cluded that the non-Newtonian model was in a good agreement with Nadai’s law of
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Table 2.1: Blood viscosity models, µ , given in Poise (P) as a function of strain rate,
γ̇ , given in s−1 [42].

Blood model Effective viscosity µ

Newtonian µ = 0.0345 P

Carreau µ = µ∞ + (µ0 − µ∞)[1 + (λγ̇)2](n−1)/2

where µ0 = 0.56 P,µ∞ = 0.0345 P,
λ = 3.313s and n = 0.3568

Walburn-Schneck µ = C1e
C2H [eC4(TPMA/H2)](γ̇)−C3H ,

where C1 = 0.00797, C2 = 0.0608,

C3 = 0.00499, C4 = 14.585lg−1,

H = 40% and TPMA = 25.9gl−1

Power Law µ = µ0(γ̇)n−1

where µ0 = 0.035 and n = 0.6

Casson µ = [(η2J2)
1/4 + 2−1/2τ

1/2
y ]2J

−1/2
2 ,

where |γ̇| = 2
√

J2, τy = 0.1(0.625H)3,

η = η0(1−H)−2.5 with η0 = 0.012 P and H = 0.37

Generalised Power Law µ = λ|γ̇|n−1,

λ(γ̇) = µ∞ + ∆µ exp [−(1 + |γ̇|
a

) exp (−b
|γ̇| )],

n(γ̇) = n∞ −∆n exp [−(1 + |γ̇|
c
) exp (−d

|γ̇| )],

where µ∞ = 0.035, n∞ = 1.0, ∆µ = 0.25,
∆n = 0.45, a = 50, b = 3, c = 50 and d = 4
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steady creep. Ali and Hayat [3] employed the Carreau model to study the peristaltic

mechanism of a non-Newtonian fluid in an asymmetric channel. A perturbation

technique was used to derive solutions in terms of power of a small Weissenberg

number. Batra and Jena [8] studied the flow of a non-Newtonian fluid through a

curved blood vessel using the Casson model. It was concluded that the ratio of the

friction factor for the fluid in a curved tube to that in a straight tube depends on the

Dean number and yield number.

Buick [11] studied the flow of a non-Newtonian fluid in a single-screw ex-

truder using the power-law model. The lattice-Boltzmann method was used to sim-

ulate the behaviour of fluid flow. It was reported that the non-Newtonian model

has an effect on the behaviour of the flow. Mandal et al. [52] investigated the flow

of a non-Newtonian fluid through a simplex atomizer by simulating the transient

flow of a viscous power-law fluid in the simplex atomizer using the volume-of-fluid

method. It is found that the varying of power law index has no influence on the

problem parameters including the angle and discharge coefficient. Mangadoddy et

al. [53] investigated the flow of an incompressible non-Newtonian fluid in cross-

ing over a bank of circular cylinders by using a power-law model. It is found that

the Nusselt number depends on the Reynolds number, Prendtl number or Peclet

number, power law index and the voidage of tube banks. Ismail et al. [41] studied

blood flow in a tapered stenotic artery using the generalised power-law model. A

finite difference scheme was used to simulate the behaviour of blood flow. They

reported that the model showed lower values of the axial velocity profiles, flow rate,

and wall shear stress, and higher values of the resistive impedances, compared with

the Newtonian model. Soh and Mureithi [73] studied the flow of a non-Newtonian

fluid down a heated inclined plane using the power-law temperature-dependent vis-

cosity. The exact solutions were obtained using Bessel functions. The numerical

solutions showed that the Froude number had significant effects on the flow velocity

and temperature.

Gao and Wang [29] theoretically presented a mathematical model to study

the incompressible non-Newtonian fluid using the generalized power-law model. A
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similarity solution was detained using a perturbation technique and the Schander’s

fixed point theorem. The asymptotic behaviour of the solutions was also investi-

gated.

2.4 Modelling of Particle-fluid Flow

Here we consider the cases where fluids adhere to rigid, but possible moving, sur-

faces bounding the fluids. It is evident that on a rigid surface, the normal component

of the fluid velocity must be the same as that of the rigid surfaces, as fluids cannot

penetrate the solid. For the tangential component of fluid velocity, two different

boundary conditions may be used: no-slip condition and slip condition. For the

no-slip condition, it is assumed that the tangential velocity component is likewise

the same as that of the rigid surface. For the slip condition, it is assumed that slip

can occur between the fluid and the rigid body. It has been found that the no-slip

condition accords with experimental observation on most real materials.

Various mathematical models and numerical algorithms for the motion of

particles in fluids have been developed. The numerical methods can be divided

into three types including the continuum theory, the Lagrangian numerical simula-

tion (LNS), and the direct numerical simulation (DNS). Based on these approaches,

many research has been done to simulate the behaviour of particle flow in fluid.

The DNS approach is able to fully couple the motion of fluid flow and par-

ticles. In this method, various numerical methods have been developed. The first

method is the Arbitary Lagrangian-Eulerian method (ALE). Takashi and Hughes [78]

studied the vibration of a circular cylinder in a circular domain filled with a viscous

fluid. In the ALE method, the material time derivative of a physical property ϕ is

given by

ϕ̇ = ϕ′ + ciϕ,i, (2.34)

where ϕ′ is the referential time derivative keeping coordinates in the referential

domain constant, and ci is the convective velocity given by

ci = ui − ûi, (2.35)
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where ui is the material velocity and ûi is the mesh velocity. Applying the convec-

tive velocity to the equations of fluid motion, the ALE description of the Navier-

Stokes equations and the continuity equation is given by

ρu′i + ρ(uj − ûj)
∂uj

∂xj

=
∂τij

∂xj

+ fi, in ΩF (t),

∂ui

∂xi

= 0, in ΩF (t),

(2.36)

where ui is the velocity vector of the fluid, ρ is the density, τij is the stress tensor,

and fi is the body force vector. The fluid motion is described in the moving spatial

domain ΩF (t), while the domain occupied by the moving rigid body is denoted by

ΩG(t). The interface ΓI(t) between ΩF (t) and ΩG(t) moves as the domain ΩG(t)

changes its position. The boundary condition consists of two parts given by

ui = gi on Γg,

ti = τijnj = hi on Γh,
(2.37)

where ti is the traction, ni is the unit outward normal vector to Γh, and both gi and hi

are specified functions of space and time. With the no-slip condition on the moving

interface ΓI(t), the unknown velocity uI
i on ΓI(t) can be determined by

uI
i = ûi. (2.38)

Based on this ALE formulation, Hu [36] simulated the Poiseuille flow of

solid-fluid mixtures of 400 solid particles in fluid contained in a vertical channel.

The second method in DNS is the lattice-Boltmann method (BLM). Ladd [44]

developed the method to solve the Navier-Stokes equations and gave some simple

examples in solving the Stokes equations. In this method, the mass density ρ, the

momentum density j = ρu, and the momentum flux Π are given by

ρ =
∑

i ni,

j =
∑

i nici,

Π =
∑

i nicici,

(2.39)

where ni(r, t) is the continuous velocity distribution function of the discretized

quantities r, t, and ci, where r is the number of particles at a particular node of

the lattice at time t with velocity ci.
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In 2000, Pereira [62] studied the fluid-particle flow problem using the finite

difference model. The motion of spherical and cylindrical particles in steady state

Newtonian and non-Newtonian fluid flow inside a tube was investigated by deter-

mining the ratio between the additional force and the drag force on the particle, and

the ratio between the additional force on the duct wall and the drag force on the

particles. In 2004, Longest et al. [50] presented a mathematical model based on the

Eulerian-Lagrangian method to simulate the trajectories of discrete blood particles

including particle-wall interactions and the quantification of near-wall stasis, us-

ing the near-wall residence time model. They used the CFX finite volume package

to apply a femoral bypass end-to-side anastomosis as a real model geometry. The

numerical results show that an extended form of the particle trajectory equation is

needed when particle-wall interaction terms dominate.

In 2006, Bikard et al. [9] studied a three dimensional mathematical model for

the fluid flow around a rigid sphere suspended in a Newtonian matrix and submitted

to a simple shear. They used the Rem3D finite element software to calculate the flow

and the hydrodynamic stresses around the particle. The numerical results agree with

the results from the direct calculation, and the matrix has significant effects on the

proximity of the matrix walls toward the particles. In 2007, Al Quddus et al. [1]

developed a mathematical model based the Navier-Stokes equations and an arbitary

Lagragian Eulerian method and used the finite element approach to study the motion

of particles in fluids in infinite and finite length channels. The simulation results

are in good agreement with other analytical and numerical results for the Stokes

hindrance factors in capillary flows. A double exponential relation between the

wall correction factors and particle to channel radii ratio was obtained. They also

investigated the effect of entrance and exit of an open channel, and a capped end of

a channel.
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2.5 Concluding Remarks

A large number of studies related to the fluid flow and particle flow in fluid in

microscale have been carried out over the last few decades in order to understand

the interaction between fluids and particles. Many mathematical models have been

used to simulate the fluid-particle flow. A large amount of work have also been

conducted to study the effect of magnetic fields to fluid flow. This research will

focus on the fluid-particle flow through microchannels under magnetic fields.
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Chapter 3

Transient Flow of Fluids through
Micro-annuals

3.1 General Overview

From the fundamental principles of continuum mechanics, the flow of incompress-

ible Newtonian fluids is governed by the continuity equation, the Navier-Stokes

equations and a set of boundary conditions. Traditionally the so-called no-slip

boundary condition is used, namely the fluid velocity relative to the solid is as-

sumed to be zero on the fluid-solid interface [71]. However, evidences of slip of

a fluid on a solid surface have been reported [63]. Chauveteau [16], Tuinier and

Taniguchi [82], and Vargas and Manero [22] studied the flow of polymer solutions

in porous media and showed that the apparent viscosity of the fluids near the wall is

lower than that in the bulk and consequently the fluids can exhibit the phenomenon

of apparent slip on the wall. More recently, experiments in micrometer scale and

molecular dynamic simulations showed that the flow of fluids in microsystems is

granular and slip can occur on the fluid-solid interface [14, 15, 77, 91, 95]. Hence,

under certain conditions such as those investigated in [81, 85], the no-slip condi-

tion is not acceptable for fluid flows in microchannels. On the other hand, many

experimental results have provided evidences to support the Navier slip condition

[38, 63, 93], namely the fluid velocity component tangential to the solid surface,

relative to the solid surface, is proportional to the shear stress on the fluid-solid in-
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terface. The proportionality is called the slip length which describes the slipperiness

of the surface [45, 93]. Some attempts have also been made to derive alternative

formulae for the determination of the slip length [79], and to use nanotechnologies

for the surface treatment of microchannels so as to achieve large slip for maximiz-

ing the transport efficiency of fluids through microchannels. Based on the nature of

boundary slip of microflows, we will use the Navier slip condition for fluid flow in

micro-annuals.

Over the last couple of decades, many investigations have been made to study

various flow problems of Newtonian and non Newtonian fluids with the no-slip

boundary condition or a slip boundary condition [13, 21, 23, 46, 54, 61, 67, 68, 81,

94]. Although exact and numerical solutions to many flow problems of Newtonian

fluids under the no-slip assumption have been obtained and are available in literature

[71, 87, 88, 89], very few exact solutions for the slip case are available in literature.

Recently, some steady state slip solutions for the flows through a pipe, a channel

and an annulus have been obtained [55, 92]. An exact solution for the transient

flow through microtubes has also been derived and discussed in the paper [90].

Motivated by the previous work, we study the transient flow of an incompress-

ible Newtonian liquid through a micro-annual with a slip boundary in this paper.

The work is basically an extension of our previous work in [90]. Here we should

address that micro-devices with annulus geometry, such as microreactor with mul-

ticylindrical mixer structure [34], are extremely difficult to fabricate using current

microfabrication technology. The rest of the paper is organized as follows. In the

following section, we first define the problem and then present its mathematical for-

mulation. In section 3, we solve the underlying boundary value problem to derive

the exact solution for the velocity field and show that the solution includes some

existing known solutions as special cases. In section 4, we derive exact solutions

for the flow rate, the rate of deformation tensor and the stress field in the fluid using

the exact solution of velocity field derived in section 3. In section 5, an analysis

is carried out to study the influence of the slip parameter on the flow behaviour.

Finally a conclusion is given in section 6.
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Figure 3.1: The coordinate system used .

3.2 Governing Equations

Consider the transient flow of an incompressible Newtonian liquid through a circu-

lar annual of inner radius a and outer radius R with the z-axis being in the axial

direction as shown in Figure 3.1. We limit our analysis to fully developed flow and

assume that the slip length does not change along the flow. The field equations gov-

erning the flow include the continuity equation and the Navier-Stokes equations.

As the flow is axially symmetric and fully developed, there is no swirling flow

and the velocity components in the radial and transverse directions vanish, namely

v = (vr, vθ, vz) = (0, 0, u). Thus, from the continuity equation and the Navier-

Stokes equations, as shown in [90], u must satisfy the following equation

µ

ρ

(
∂2u

∂r2
+

1

r

∂u

∂r

)
− ∂u

∂t
=

1

ρ

∂p

∂z
. (3.1)

Since a wide range of functions can be expressed in terms of Fourier series, in this

work, we consider the fluid flow driven by the pressure field with a pressure gradient

that can be expressed by the Fourier series

∂p

∂z
= a0 +

∞∑
n=1

[ancos(nωt) + bnsin(nωt)] := q(t). (3.2)

To completely define the problem, the field equations must be supplemented

by the boundary condition. In this work, we use the Navier slip boundary condition.

That is, on the solid-fluid interfaces r = a (inner surface) and r = R (outer surface),

the axial fluid velocity, relative to the solid surface, is proportional to the shear stress
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on the interface. For Newtonian fluids, the shear stress is related to the shear strain

rate by σrz = µ∂u
∂z

where µ is the fluid viscosity. Thus, for the case where the rigid

micro-annulus is fixed spatially, the Navier slip condition can be written in the form

of

u(a, t) = ±l1
∂u

∂r
(a, t), u(R, t) = ±l2

∂u

∂r
(R, t), (3.3)

where l1 and l2 denote the slip parameters of the inner surface and the outer surface

respectively. In this study, we assume that the slip parameter does not change along

the flow. The signs for the terms on the right hand sides of the above equations

have been discussed by various authors. In literature, all the four possible cases are

considered and the physically feasible cases are determined based on the solution

derived. Here, we give a different method for choosing the sign for the terms on the

right hand sides of the equations in (3.3) without the need of finding the solution

first, as detailed below.

From the physics of fluids, when the fluid moves relative to the solid surface

in the tangential direction of the solid surface, the relative movement of the fluid

particles will be restricted by a resistance force acting on the opposite direction of

the relative movement. Let the unit outward normal vector of the surface S of the

fluid is n = (n1, n2, n3), and the positive tangential direction is t = (t1, t2, t3).

Suppose the stress tensor in the fluid is σij , then the surface traction on S is Xi =

σjinj which has the tangential component ft = Xiti = σjinjti, where we have used

the index notation with the repeated literal indexes representing summation over the

index range. On the other hand, the velocity component of the fluid relative to the

solid surface on the tangential direction is vt − vst = (vi − vsi)ti. Hence the Navier

type boundary condition for Newtonian fluids can be written as

vt − vst = − lft

µ
or (vi − vsi)ti = − l(σjinjti)

µ
. (3.4)

The negative sign in the above equations is to indicate that the direction of

the relative tangential velocity is opposite to the surface traction force exerted on

the fluid by the solid surface. Now for our problem in the (r, θ, z) system, v =

(0, 0, u), vs = (0, 0, 0). For the outer surface r = R, n = (1, 0, 0) and t =
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(0, 0, 1), and so vt − vst = viti = u and ft = σrz = µ∂u
∂r

and consequently (3.3)2

for the outer surface takes the following form

u(R, t) = −l2
∂u

∂r
(R, t). (3.5)

For the inner surface r = a, n = (−1, 0, 0) and t = (0, 0, 1), and so vt−vst =

viti = u and ft = −σrz = −µ∂u
∂r

and consequently (3.3)1 for the inner surface takes

the following form

u(a, t) = l1
∂u

∂r
(a, t). (3.6)

It should also be addressed here that for li = 0, conditions (3.5)-(3.6) reduce

to the no-slip boundary condition; while, for li → ∞, equations (3.5) and (3.6)

give the surface traction condition for perfectly smooth surfaces, i.e, σrz(a, t) =

σrz(R, t) = 0.

Remark 2.1 The formula (3.4) is more precise than (3.3) and is more suitable for

application in numerical analysis.

3.3 Exact Solution for Velocity Field

To solve equation (3.1), firstly we use complex number to express the above Fourier

series by exponential functions, namely

∂p

∂z
= Re

( ∞∑
n=0

cneinωt

)
, (3.7)

where cn = an − bni and einωt = cos(nωt) + isin(nωt).

From the linear property of equation (3.1), we have u =
∑∞

n=0 Re(un), where

un is defined by

µ

ρ

(
∂2un

∂r2
+

1

r

∂un

∂r

)
− ∂un

∂t
=

cn

ρ
einωt. (3.8)

As in [90], let

un = fn(r)einωt. (3.9)
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Then, we have
µ

ρ

(
∂2fn

∂r2
+

1

r

∂fn

∂r

)
− inωfn =

cn

ρ
. (3.10)

For n = 0, equation (3.10) has the following general solution

f0(r) = (A1 + A2lnr) +
c0

4µ
r2. (3.11)

For n ≥ 1, equation (3.10) can be written as

r̄2∂2fn

∂r̄2
+ r̄

∂fn

∂r̄
+ r̄2fn =

cn

β2
nµ

r̄2, (3.12)

where β2
n = nβ2 in which β2 = −ρω

µ
i, and r̄ = βnr.

As the associated homogeneous equation is the zero-order Bessel equation,

equation (3.12) has the following general solution

fn = dnJ0(r̄) + enY0(r̄) +
cn

β2
nµ

= dnJ0(βnr) + enY0(βnr) +
cni

ρnω
, (3.13)

where dn and en are integration constants; J0 and Y0 denote the zero-order Bessel

functions of the first kind and the second kind respectively. Thus, we have

u =
∑∞

n=0 Re(un) = A1 + A2ln(r) + a0

4µ
r2

+
∑∞

n=1 Re
[(

dnJ0(βnr) + enY0(βnr) + cni
ρnω

)
einωt

]
,

(3.14)

from which we obtain

∂u

∂r
= A2

1

r
+

a0

2µ
r − Re

∞∑
n=1

[dnJ1(βnr) + enY1(βnr)] βneinωt, (3.15)

where, in the above formulation, we have used the identities

dJ0(x)

dx
= −J1(x),

dY0(x)

dx
= −Y1(x). (3.16)

Substituting (3.14) and (3.15) into boundary conditions (3.5-3.6) yields
(
A1 + A2ln(a) + a0

4µ
a2 − A2

1
a
l1 − a0

2µ
al1

)
+ Re

∑∞
n=1[dnJ0(βna) + enY0(βna)

+ cni
ρnω

+ l1βndnJ1(βna) + l1βnenY1(βna)]einωt = 0,
(
A1 + A2ln(R) + a0

4µ
R2 + A2

1
R
l2 + a0

2µ
Rl2

)
+ Re

∑∞
n=1[dnJ0(βnR) + enY0(βnR)

+ cni
ρnω

− l2βndnJ1(βnR)− l2βnenY1(βnR)]einωt = 0.
(3.17)
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For the above equations to hold for any instant of time t, we require that

A1 + A2

(
ln(a)− 1

a
l1

)
= − a0

4µ
(a2 − 2al1) ,

A1 + A2

(
ln(R) + 1

R
l2

)
= − a0

4µ
(R2 + 2Rl2) ,

dn[J0(βna) + l1βnJ1(βna)] + en[Y0(βna) + l1βnY1(βna)] = − cni
ρnω

,

dn[J0(βnR)− l2βnJ1(βnR)] + en[Y0(βnR)− l2βnY1(βnR)] = − cni
ρnω

.

(3.18)

Solving the above system of equations for A1, A2, dn and en, and then sub-

mitting them into (3.14), we obtain

u = −a0R2

4µ

(
1− (

r
R

)2
+ 2l2

R
+

1−( a
R)

2
+2( l2

R
+

al1
R2 )

ln R
a

+
l2
R

+
l1
a

(
ln r

R
− l2

R

))

−Re∑∞
n=1

cnieinωt

ρnω

{
N1

D
J0(βnr) + N2

D
Y0(βnr)− 1

}
,

(3.19)

where

N1 = N1(a,R, βn, l1, l2) = Y0(βnR)− Y0(βna)− [l2Y1(βnR) + l1Y1(βna)]βn,

N2 = N2(a,R, βn, l1, l2) = J0(βna)− J0(βnR) + [l1J1(βna) + l2J1(βnR)]βn,

D = D(a,R, βn, l1, l2) = J0(βna)Y0(βnR)− J0(βnR)Y0(βna)

+[J1(βna)Y0(βnR)− J0(βnR)Y1(βna)]l1βn

+[J1(βnR)Y0(βna)− J0(βna)Y1(βnR)]l2βn

+[J1(βnR)Y1(βna)− J1(βna)Y1(βnR)]l1l2β
2
n.

(3.20)

Remark 3.1 If l1 = l2 = 0, solution (3.19) becomes

u = −a0R2

4µ

{
1− (

r
R

)2
+

[
1− (

a
R

)2
]

ln(r/R)
ln(R/a)

}

−Re∑∞
n=1

cnieinωt

ρnω

{
[Y0(βnR)−Y0(βna)]J0(βnr)+[J0(βna)−J0(βnR)]Y0(βnr)

J0(βna)Y0(βnR)−J0(βnR)Y0(βna)
− 1

}
,

(3.21)

which is the solution for the traditional no-slip case [40].

Remark 3.2 If a0 = −A ∈ R, cn = 0 for all n ≥ 1, l1/R = l2/R = l, a =

κR, u = −vz
a0R2

4µ
then the solution reduces to a recent result given in equation

(3.19) in reference [55].

3.4 Exact Solution of the Flow Rate and Stress Field

From the axial velocity solution (3.19), the flow rate can be determined as

Q(t) =

∫ R

a

2πru(r, t) dr = Q0 +
∞∑

n=1

Qn, (3.22)
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where Q0 and Qn are respectively the flow rate corresponding to the constant com-

ponent and the nth harmonic component of the pressure gradient and

Q0 = −a0πR4

8µ

{[
1− (

a
R

)2
] [

1− (
a
R

)2
+ 4l2

R

]

−1−( a
R)

2
+2( l2

R
+

al1
R2 )

ln R
a

+
l2
R

+
l1
a

[
1− (

a
R

)2
+ 2l2

R
− 2l2a2

R3 + 2
(

a
R

)2
ln a

R

]}
,

(3.23)

Qn = −Re
{[

N1

D

∫ R

a
rJ0(βnr) dr + N2

D

∫ R

a
rY0(βnr) dr − 1

2
(R2 − a2)

]
2πcnieinωt

nρω

}
.

(3.24)

From the identities

d

dx
[xJ1(x)] = xJ0(x),

d

dx
[xY1(x)] = xY0(x), (3.25)

we have ∫ R

a
rJ0(βnr) dr = 1

βn
[RJ1(βnR)− aJ1(βna)],

∫ R

a
rY0(βnr) dr = 1

βn
[RY1(βnR)− aY1(βna)].

(3.26)

Thus, by substituting the above formula into (3.22), we have

Qn = −Re2πcnieinωt

nρω

{
N1

βnD
[RJ1(βnR)− aJ1(βna)]

+ N2

βnD
[RY1(βnR)− aY1(βna)]− 1

2
(R2 − a2)

}
.

(3.27)

Remark 4.1 From the above solution form, it is not immediately clear whether the

transient flow rate increases as l1 and/or l2 increases, and thus we will study this in

section 5.

The stress in the fluid is related to the velocity field by the following constitu-

tive equations

σ = −pI + 2µd, (3.28)

while the rate of deformation tensor is related to the velocity vector by

d =
1

2

(∇v + (∇v)T
)
, (3.29)

where σ ≡ (σij) and d = (dij) denote respectively the second order stress tensor

and the rate of deformation tensor, I is an identity matrix. As v = (0, 0, u(r, t)),

we have

d =
1

2

(
0 0 ∂u/∂r
0 0 0

∂u/∂r 0 0

)
. (3.30)
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From the above formula and using (3.19), we obtain drr = dθθ = dzz = drθ =

dθz = 0 and

drz = −a0R
8µ

[
−2r

R
+

1−( a
R)

2
+2( l2

R
+

al1
R2 )

ln R
a

+
l2
R

+
l1
a

R
r

]

+Re
∑∞

n=1
cnieinωt

2ρnω

{
N1(a,R,βn,l1,l2)
D(a,R,βn,l1,l2)

βnJ1(βnr) + N2(a,R,βn,l1,l2)
D(a,R,βn,l1,l2)

βnY1(βnr)
}

.

(3.31)

Hence from the constitutive equations (3.28), we obtain

σrr = σθθ = σzz = −p = q(t)z + p0(t), σrθ = σθz = 0

σrz = −a0R
4

[
−2r

R
+

1−( a
R)

2
+2( l2

R
+

al1
R2 )

ln R
a

+
l2
R

+
l1
a

R
r

]

+Re
∑∞

n=1
cnµieinωt

ρnω

{
N1(a,R,βn,l1,l2)
D(a,R,βn,l1,l2)

βnJ1(βnr) + N2(a,R,βn,l1,l2)
D(a,R,βn,l1,l2)

βnY1(βnr)
}

,

(3.32)

where q(t) is as given in (3.2) while p0(t) is arbitrary and can be chosen to meet

certain pressure condition.

3.5 Influence of Boundary Slip

With the exact solutions obtained in the previous sections, in this section, we discuss

the influences of the slip length on velocity, flow rate and stresses in the fluid. As

the solution for a general pressure field given by (3.2) is the superposition of the

solution due to the constant pressure gradient and the solutions due to the sine and

cosine wave form pressure gradients, without loss of generality, we consider here

two different cases of driving pressure fields in this discussion. The first case is

for a pressure field with a constant pressure gradient, while the second one is for

a pressure field with a sine wave form pressure gradient. For convenience in the

discussion, we introduce the following dimensionless variables

r∗ =
r

R
, k =

a

R
, l =

l2
R

, λ =
l1
l2

, t∗ =
ωt

2π
, β∗ = βR. (3.33)

Case 1: dp
dz

= a0.

For this case, cn = 0 for all n ≥ 1. Then from (3.19), (3.22)-(3.23) and (3.32),
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we obtain the following normalized velocity, normalized flow rate and shear stress

u∗ = − 4µ

a0R2
u =

[
1− r∗2 + 2l +

1− k2 + 2(1 + kλ)l

ln 1
k

+
(
1 + λ

k

)
l

(ln r∗ − l)

]
, (3.34)

Q∗ = − 8µ
a0πR4 Q

= (1− k2)(1− k2 + 4l)− 1−k2+2(1+kλ)l

ln 1
k
+(1+λ

k )l
[(1− k2)(1 + 2l) + 2k2ln(k)] ,

(3.35)

σ∗rz = − 4

a0R
σrz =

[
−2r∗ +

1− k2 + 2(1 + kλ)l

ln 1
k

+
(
1 + λ

k

)
l

1

r∗

]
. (3.36)

It should be addressed here that for l = 0, the solution (34) reduces to the solution

for the no-slip case [40]. To study the influence of l on the velocity, we examine the

derivative of u∗ with respect to l. From (3.34), we have

du∗

dl
=

[
a(k, λ, r∗) + b(k, λ)l + c(k, l)l2

] [
ln

1

k
+

(
1 +

λ

k

)
l

]−2

, (3.37)

where

a(k, λ, r∗) = (2ln(k)+1−k2)(ln(k)− ln(r∗))−λkln(r∗)(2ln(k)+ 1
k2 −1),

b(k, λ) = 4λln(k)(k − 1
k
), c(k, λ) = 2λ( 1

k
− k)(1 + λ

k
).

As λ > 0, 0 < k < 1, and k ≤ r∗ ≤ 1, we can easily prove that a > 0, b >

0 and c > 0, and hence du∗
dl

> 0 for l ≥ 0, which means that the velocity is

a monotonically increasing function of l. Similarly, we can also prove that the

flow rate also increases monotonically as l increases from zero. Also, for l >>

max
{
1, ln 1

k

}
, from (35), we have

∂Q∗
∂l

≈ 4
(
1− k2

) (
1− 1 + kλ

1 + λ/k

)
> 0,

which indicates that Q* increases almost linearly with increasing l when l is suffi-

cient large.

To further demonstrate the characteristics of the variation of the flow rate with

l and k, we show the solution (3.35) graphically in Figure 2 for the case where both
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Figure 3.2: Variation of the flow rate with l and k obtained from solution (3.35)
with λ = 1: (a) 3D graph for Q∗(k, l); (b) contour plot of Q∗(k, l) on (k, l) plane.

the inner and outer surfaces have the same smoothness, i.e. λ = 1. The result shows

that there exists different (l, k) parameter designs for obtaining a given fixed flow

rate, which opens a way for the optimal design of the annual. The result also shows

that the influence of l on the flow rate is more significant for lower k values. It is also

interesting to note that the velocity field in the annual is not a simple superposition

of the no-slip solution and a rigid body translation, as is in the circular microtubes

[90].

Case 2: dp
dz

= b1sin(ωt).

For this case, a0 = 0, c1 = −b1i, cn = 0 for all n ≥ 2. As β2 = −ρω
µ

i =

ρω
µ

e−πi/2, we have

β =

√
ρω

2µ
(1− i) =

β̄

R
(1− i),

1

β
=

R

2β̄
(1 + i), β∗ = β̄(1− i), (3.38)

where β̄ = R
√

ρω
2µ

is a dimensionless parameter. Then, using the dimensionless

variables in (3.33), we have from (3.19), (3.27) and (3.32) that

u∗ = − ρ
b1

u,

= Re
{[

N1

D
J0(β

∗r∗) + N2

D
Y0(β

∗r∗)− 1
]

1
ω
e2πt∗i

}
,

(3.39)
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Q∗ = − ρ
2πb1R2 Qn,

= Re
{[

N1

β∗D [J1(β
∗)− kJ1(β

∗k)] + N2

β∗D [Y1(β
∗)− kY1(β

∗k)]

−1
2
(1− k2)

]
1
ω
e2πt∗i

}
,

(3.40)

σ∗rz = ρR
µb1

σrz,

= Re
{[

N1

D
β∗J1(β

∗r∗) + N2

D
β∗Y1(β

∗r∗)
]

1
ω
e2πt∗i

}
,

(3.41)

where
N1 = Y0(β

∗)− Y0(β
∗k)− [Y1(β

∗) + λY1(β
∗k)]lβ∗,

N2 = J0(β
∗k)− J0(β

∗) + [λJ1(β
∗k) + J1(β

∗)]lβ∗,
D = J0(β

∗k)Y0(β
∗)− J0(β

∗)Y0(β
∗k)

+[J1(β
∗k)Y0(β

∗)− J0(β
∗)Y1(β

∗k)]λlβ∗

+[J1(β
∗)Y0(β

∗k)− J0(β
∗k)Y1(β

∗)]lβ∗

+[J1(β
∗)Y1(β

∗k)− J1(β
∗k)Y1(β

∗)]λl2β∗2.

(3.42)

For convenience in discussion, let

N1

ωβ∗D
[J1(β

∗)− kJ1(β
∗k)] +

N2

ωβ∗D
[Y1(β

∗)− kY1(β
∗k)] := a + bi, (3.43)

then equation (40) can be written as

Q∗ = Q∗
m(k, l) sin(2πt∗ + φ(k, l)),

where Q∗
m(k, l) and φ(k, l) are respectively the amplitude and phase angle of the

normalized transient flow rate defined by

Q∗
m(k, l) =

((
a− 1

2ω
(1− k2)

)2
+ b2

)1/2

,

φ(k, l) = arctan
(

1
2ω

(1−k2)−a

b

)
.

(3.44)

In the following, we first study the influence of the angular frequency ω on

the amplitude of the transient flow rate Q∗
m(k, l), and compare the transient solu-

tions with the quasi steady-state solution which is obtained by neglecting the time

derivative term in equation (1) to yield

u∗ = − ρ

b1

u =
ρR2

4µ

[
1− r∗2 + 2l +

1− k2 + 2(1 + kλ)l

ln 1
k

+
(
1 + λ

k

)
l

(ln r∗ − l)

]
sin(2πt∗),

(3.45)
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and

Q∗
s = − ρ

2πb1R2 Q,

= ρR2

16µ

{
(1− k2)(1− k2 + 4l)− 1−k2+2(1+kλ)l

ln 1
k
+(1+λ

k
)l

[(1− k2)(1 + 2l) + 2k2ln(k)]
}

× sin(2πt∗).
(3.46)
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Figure 3.3: Variation of the amplitude of the flow rate Q∗
m with l and k obtained for

different frequencies ω = αµ/ρR2 with (a) α = 0.005, (b) α = 0.00025, and (c)
α = 0.00005.

Figure 3.3 shows the variations of the amplitude of the flow rate with l and
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Figure 3.4: Influence of l on the quasi steady-state solution Q∗
s and the transient

solution Q∗
m under different frequencies ω = αµ/ρR2 with five different α values:

α = 5.0× 10−3 (dash-box line), α = 1.0× 10−3 (dash-circle line), α = 5.0× 10−4

(dash-diamond line), α = 2.5× 10−4 (dash-cross line), α = 5.0× 10−5 (dash line).

k for different angular frequencies. Figure 3.4 shows the influence of l on Q∗
m for

different angular frequency ω. Obviously, as the angular frequency decreases, the

amplitude of the transient flow rate increases and the transient solution converges

toward the quasi steady-state solution. It is also noted that the dependence of the

amplitude of the transient flow rate on l is very different for different frequencies.

At high frequency, the amplitude of the flow rate increases initially as l increases

but tends to a constant value once l becomes sufficiently large. On the other hand,

at low frequency the flow rate continues to increase with l and depends on l almost

linearly for large l values.

Next, as an illustration, we investigate in more detail the influence of k and

l on the flow rate for the frequency, ω = 5.0 × 10−4µ/ρR2, corresponding to a

state that is not so close to the quasi steady state as shown by the dash-diamond line

in Figure 3.4. We consider here the case where both the inner and outer surfaces

have the same smoothness, i.e λ = 1. For this case, (3.44) give the amplitude of

the normalized flow rate as a function of the variables l and k which is shown

graphically in Figure 3.5. From the results, various findings can be obtained.
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Figure 3.5: Variation of the amplitude of the flow rate with l and k obtained from
solution (44) with λ = 1, R = 1.0 × 10−5, ρ = 1060, µ = 0.001, ω = 5.0 ×
10−4 µ/ρR2: (a) 3D graph for Q∗

m; (b) contour plot of Q∗
m on (k, l) plane.

(i) Unlike for the case of constant pressure gradient, the flow rate in this case

no longer increases linearly with l for large l values. For each fixed k value,

as l increases, the flow rate increases first and then tends to a constant once

l becomes large. The critical l value at which the amplitude of the flow rate

tends to a constant value decreases with the increase of the k value.

(ii) The amplitude of the flow rate decreases as k increases, as shown in Fig-

ure 3.6. This is because the increase of k not only reduces the cross-section

area for the fluid flow, but also leads to lower slip velocity on the solid surface

as shown in Figure 3.7.

(iii) As for the constant case, one could have different (k, l) designs to achieve a

given flow rate and Figure 3.5(b) provides a tool for the design.

(iv) The influence of l on the flow rate becomes less and less significant as k in-

creases.
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Figure 3.6: Variation of the amplitude of the flow rate with l for ω = 5.0 ×
10−4 µ/ρR2 and various different k values in case 2: k = 0.1 (solid line), k = 0.3
(dash line), k = 0.5 (dash-cross line), k = 0.7 (dash-box line), and k = 0.9 (solid-
circle line).
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Figure 3.7: Variations of the amplitude of the slip velocity u∗m on the outer surface
r∗ = 1 with l for ω = 5.0 × 10−4 µ/ρR2 and various different k values in case
2: k = 0.1 (solid line), k = 0.3 (dash line), k = 0.5 (dash-cross line), k = 0.7
(dash-box line), and k = 0.9 (solid-circle line).
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3.6 Concluding Remarks

In this section, we derive the exact solutions for the pressure gradient-driven tran-

sient flow of an incompressible Newtonian liquid through a circular annual with a

Navier slip boundary. Based on the analytical expressions of the solutions, we an-

alyze the influence of the slip parameter l and the geometry of the cross-section on

the flow rate of fluid through the annual. The study shows that

(i) The influence of boundary slip on the flow through the annual is different for

different types of pressure gradients. For flows driven by a constant pressure

gradient, the flow rate always increases with the slip parameter l and achieves

a linear increase rate for large l value; while, for the flows driven by the wave

form pressure gradient with high frequency, the flow rate initially increases

significantly as l increases from zero but tends to a constant when l becomes

sufficiently large.

(ii) To achieve a fixed value of flow rate, one could have different (k, l) designs.

The exact solutions obtained in this section, together with the contour plots

of the solutions (Figure 3.2(b) and Figure 3.5(b)), provide a tool for engineers

and scientists to determine the proper (k, l) values.
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Chapter 4

Simulation of Particle-fluid Flow

4.1 General Overview

In this chapter, we present a mathematical model to describe the particle-fluid flow

in micro-channels. The fluid is assumed to be Newtonian and the motion of particles

is asumed to follow Newton’s laws of motion. The finite element method, based on

the Arbitary Lagrangian-Eulerian approach, is used to solve the problem. The stress

and velocity fields in fluids and the particle movement are presented and discussed.

The rest of the chapter is organized as follows. The complete set of equa-

tions for the fluid-particle flow, based on the Newtonian model, is presented in sec-

tion 4.2. In section 4.3, an Arbitary Lagrangian-Eulerian formulation for the mesh

movement is presented. In section 4.4, a numerical scheme for solving the problem

is developed based on the Bobnov-Galerkin finite element method and the Arbitary

Lagrangian-Eulerian method. In section 4.5, the solution procedure for the problem

is given. In section 4.6, a numerical investigation on the stress and velocity fields

in fluids is presented followed by the numerical investigation on the movement of

particles in section 4.7.

4.2 Formulation of the Problem

In this section, the mathematical model for the fluid flow and particle motion in

fluids is described. The governing equations for the fluid flow include the Navier-

Stokes equations and the continuity equation. The governing equations for particle
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motion are Newton’s second law of motion. The particle-particle interaction and

particle-wall interaction are taken into account.

To study the motion of solid particles immersed in a fluid, we assume that the

fluid-solid particle system occupies a bounded domain Ω̄ in R3. At a typical instant

of time t, Q particles occupy Q closed connected subsets
∑Q

q=1 Ωq ⊂ R3 which are

surrounded by a viscous homogeneous fluid filling the domain Ω̄−∑Q
q=1 Ωq called

the flow-channel area.

In this study we use two coordinate systems: a reference system, Ω, where the

model is drawn and the particle movement is solved, and a moving mesh system,

Ωdef , corresponding to the deformed mesh of the flow channel, where we simulate

the fluid flow. The time evolution of the domain Ωdef is determined by means of an

Arbitrary Lagrangian-Eulerian (ALE) mapping x : Ω × R+ 7→ Ωdef which maps

any point (X, t) in Ω to its image x(X, t) in Ωdef .

Now we will formulate the mathematical model to describe the fluid flow and

particle motion in fluids. Firstly, consider the model for fluid flow. Fluid is assumed

to be an incompressible Newtonian fluid. The flow of fluid is described by the

continuity equation and the Navier-Stokes equations, in terms of total derivatives,

∇ · u = 0, (4.1)

ρf
Du

Dt
−∇ · σ = F, (4.2)

for x = (x, y, z) in Ωdef (t) where ρf denotes the blood density, u = [ui]|i=1,2,3 =

[u, v, w]T represents the 3D velocity vector, and F is the volume force acting on the

fluid. For this model, we neglect the effect of gravitational force and thus F = 0.

The quantity σ in equation (4.2) is the viscous stress tensor given by

σ = −pI + µ(∇u + (∇u)T ), (4.3)

where µ is the fluid viscosity, p is the fluid pressure, and δij is the Kronecker symbol.

The indicial expression of the equations (4.1)-(4.3) are

∂uj

∂xj

= 0, (4.4)
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ρf
Dui

Dt
− ∂σij

∂xj

= 0, (4.5)

σij = −pδij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
. (4.6)

Two types of boundary conditions on the wall will be investigated in the work,

incluiding the no-slip condition and the slip condition. Both types of boundary

conditions can be written as

u = −l
∂u

∂y
on Γw, (4.7)

where l is the slip parameter. It should be addressed here that l = 0 corresponds to

the no-slip case.

The flow in microscale is known to be laminar profile. Thus the inlet boundary

condition is assumed to be laminar, which is given by,

−Lenter∇t · (−pI + µ(∇tu + (∇tu)T ) = −pentern on Γin,

∇t · u = 0 on Γin,
(4.8)

where Lenter is the entrance length of the fictitious channel inlet, penter is the en-

trance pressure at the channel inlet, n is the outward normal vector. The pressure

penter on the inlet is determined by solving (4.8) such that the computed average

velocity of the laminar flow equals to a given mean velocity umean, and ∇t denotes

that this equation is solved for tangential components on the boundary.

On the outflow boundary Γout, the stress-free condition is used:

σ · n = 0 on Γout. (4.9)

On the boundary of particles, the velocity of blood is assumed to be the same

as that of particles, which is

u = Vq on Γq, (4.10)

where Vq will be determined later.

Therefore the boundary conditions for the velocity field of fluids are of the
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Dirichlet type and Neumann type,

−Lenter∇t(−pI + µ(∇tu + (∇tu)T ) = −pentern on Γin,

∇t · u = 0 on Γin,

ut = −l
∂ut

∂y
on Γw,

µ(ui,j + (uj,i)) · n = 0 on Γout,

ui = Vqi
on Γq.

(4.11)

Now consider the mathematical model for particle flow. To study the motion

of particles in the fluid flow channel, we assume that the gravitational force can be

neglected and the particle motion is governed by Newton’s second law:

mq
∂Vq

∂t
= Fv + Fq, q = 1, 2, 3..., Q

Vq|t=0 = 0.
(4.12)

The position Xq of the center of the qth particle can be determined by the equation:

dXq

dt
= Vq , q = 1, 2, 3..., Q

Xq|t=0 = X0
q.

(4.13)

In equation (4.12)1, Vq and mq denote, respectively, the velocity vector and the

mass of the qth particle. Next, we will determine the two applied loads, drag force

Fv and collision force Fq. For the drag force Fv acting on particle Ωq, it is assumed

that all the boundaries of particles experience drag force Fv from the fluid given by

Fv =

∫

∂Ωq

(−nf · σ)dS = −
∫

∂Ωq

nf · (−p I + η(∇u + (∇u)T ))dS, (4.14)

where nf is the normal vector of the fluid domain. It is seen that the drag force

Fv consists of the pressure and the viscous drag of the fluid. To prevent collision

among the particles and the collision between the particles and vessel walls, the

particle-particle interaction force Fq,p and the particle-wall interaction force Fq,w

are applied when the distance between two particles, or between a particle and a

wall, is within the order of the element size [70]. Thus

Fq =

Q∑

p=1,p6=q

Fq,p +
2∑

w=1

Fq,w, (4.15)
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in which

Fq,p =

{
0, for dq,p > Rq + Rp + α

1
εq

(Xq −Xp)(Rq + Rp + α− dq,p)
2, for dq,p ≤ Rq + Rp + α

(4.16)

and

Fq,w =

{
0, for dq,w > 2Rq + α

1
εw

(Xq −Xw)(2Rq + α− dq,w)2, for dq,w ≤ 2Rq + α
(4.17)

where dq,p denotes the distance between the centers of the qth and pth particles,

dq,w denotes the distance between the centers of the qth particle and the imaginary

particle on the other side of the wall, Xq and Rq are respectively the center and

radius of the qth particle, α is the force range, and εq and εw are small positive

stiffness parameters.

4.3 Arbitary Lagrangian-Eulerian (ALE) Mesh Move-
ment

In order to construct a mesh-based numerical model involving the motion of par-

ticles in fluids, we will introduce the Arbitary Lagrangian-Eulerian method which

will involve the mesh movement of the numerical model.

We follow the ALE description given by [96]. The method is restated as

follow. Let φ be a scalar variable of x in Ωdef (t) and t. The variable φ is transported

from a position P at a time t to a new position Pf at t +4t with a velocity of u.

The mesh point is moved to a new position Pr at t +4t with a mesh velocity of Ψ.

Using Taylor series expansion in time, we calculate φ for position Pf at time t+4t

by

φn+1
Pf

= φn
Pf

+4t
∂φn

Pf

∂t
+ . . . . (4.18)

Using Taylor series expansion in space, we express φ for position Pf at time t by

φn
Pf

= φn
P + ui4t

∂φn
P

∂xi

+ . . . , (4.19)

where xi = x, y, z for i = 1, 2, 3, respectively.
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Substituting (4.21) into (4.18), we have

φPf
= φn+1 = φn

P + ui4t
∂φn

P
∂xi

+4t ∂
∂t

(
φn

P + ui4t
∂φn

P
∂xi

)
+ . . . ,

= φn
P +4t

∂φn
P

∂t
+ ui4t

∂φn
P

∂xi
+ . . . .

(4.20)

Similarly, we express φ at position Pr at time t, using Taylor series expansion in

time, as

φPr = φn = φn
P + Ψi4t

∂φn
P

∂xi

+ . . . , (4.21)

where Ψi = Ψx, Ψy, Ψz for i = 1, 2, 3, respectively.

Neglecting second and higher order terms, the relative value of φ between the

actual particle and the mesh motion is then given by

4φ = φn+1 − φn = 4t
∂φn

P

∂t
+ (ui −Ψi)4t

∂φn
P

∂xi

. (4.22)

As 4t → 0 and dropping super and subscripts, (4.22) can be rewritten as

Dφ

Dt
=

∂φ

∂t
+ (ui −Ψi)c, (4.23)

or
Dφ

Dt
=

∂φ

∂t
+ (u−Ψ) · ∇φ. (4.24)

These total derivatives in the ALE form will be used to describe the motion of

material in the ALE frame.

In the ALE coordinate system, the continuity equation (4.1) and the Navier-

Stokes equations (4.2) can be, using the total derivatives in the ALE form (4.24),

written as,
∂ui

∂xi

= 0, (4.25)

ρf
∂ui

∂t
+ ρf (uj −Ψj)

∂ui

∂xj

− ∂σij

∂xj

= 0. (4.26)

Due to the movement of the coordinate system, the mesh velocity Ψ =

(Ψx, Ψy, Ψz) is introduced in the deformed domain Ωdef . To guarantee a smoothly

varying distribution of the nodes, we assume that the nodes on ∂Ωq move with the

particle (no slip) and that each component of the mesh velocity in the fluid channel

is governed by a Laplace equation:

∇2Ψ = 0, ∀x ∈ Ωdef . (4.27)
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The above equation is to smooth gradient of the mesh velocity over the domain so

as to reduce mesh distortion. Once the mesh velocity components are determined,

we can determine the smoothed deformed mesh for the flow channel at each time

instant by updating the coordinates of the nodes according to the following formulae

x = X +
∫ t

0
Ψx dt,

y = Y +
∫ t

0
Ψy dt,

z = Z +
∫ t

0
Ψz dt.

(4.28)

Another condition that needs to be specified is that the fluid, particle and mesh

all move with the same velocity on the particle boundaries, i.e.,

Ψ = u = Vq on ∂Ωq. (4.29)

4.4 Finite Element Formulation

In order to study the flow of particles, we implement the finite element approach

based on the Arbitary Lagrangian-Eulerian method.

Substituting the stress tensor term from equation (4.6) into equation (4.26),

we obtain the following Navier–Stokes equations

ρf

(
∂ui

∂t
+ (uj −Ψj)ui,j

)
− (µ(ui,j + uj,i)),j + p,i = 0. (4.30)

Note that a new variable Ψj of mesh velocity is added to the Navier–Stokes equa-

tions.

It is seen that these Navier–Stokes equations together with the continuity

equation (4.25) constitute a closed system of seven partial differential equations in

terms of seven coordinate and time–dependent unknown functions u1, u2, u3, p, Ψ1

Ψ2, and Ψ3.

Now we have a complete set of equations to describe the fluid flow and parti-

cle flow in fluid. The governing equations consist of the continuity equation (4.25),

the Navier-Stokes equations (4.30), and the Laplace equation for mesh smoothing

(4.27). For convenience in formulation, we rewrite equations (4.27) in the indicial

notation as follows,

Ψi,jj = 0. (4.31)
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The field equations (4.25), (4.30), and (4.31) are defined in Ωdef (t) with the bound-

ary conditions (4.11) and (4.29). These equations and boundary conditions con-

stitute a closed system of seven partial differential equations in terms of seven un-

known functions ui, p, Ψi. The system, supplemented by the initial condition and

the boundary conditions (4.11) and (4.29), can be solved numerically to yield the

velocity field and the pressure distribution and consequently the shear stresses on

the wall. Thus, the boundary value problem for the fluid-particle flow problem is as

follows:

BVP: Find ui, p, Ψi such that the field equations (4.25), (4.30), and (4.31)

are satisfied in Ωdef (t) and all boundary conditions (4.11) and (4.29) are satisfied.

To derive a variational statement for the BVP, we consider the following as-

sociated variational boundary value problem.

VBVP: Find ui, p, Ψi ∈ H1(Ωdef ) in the deformed mesh system at each

time instant such that all the Dirichlet boundary conditions (4.11) and (4.29) are

satisfied and for all ûi ∈ H1
ui

(Ωdef ) ≡ {ûi ∈ H1(Ωdef )|ûi = 0 on ∂Ωdefui
}, p̂ ∈

H1
p(Ωdef )≡ {p̂ ∈ H1(Ωdef )|p̂ = 0 on ∂Ωdefp}, Ψ̂i ∈ H1

Ψi
(Ωdef )≡ {Ψ̂i ∈ H1(Ωdef )|

Ψ̂i = 0 on ∂ΩdefΨi
}, and

(ui,i, p̂) = 0, (4.32)
(
ρf

∂ui

∂t
, ûi

)
+

(
ρf (uj−Ψj)ui,j, ûi

)
−

(
µ(ui,j +uj,i),j, ûi

)
+

(
p,i, ûi

)
= 0, (4.33)

and

(Ψi,jj, Ψ̂i) = 0, (4.34)

where ∂Ωdefui
, ∂Ωdefp , and ∂ΩdefΨi

are the parts of boundary where the velocity,

the pressure, and the mesh velocity are specified. H1(Ωdef ) is the Sobolev space

W 1,2(Ωdef ) with norm ‖ · ‖1,2,Ωdef
and the inner product (·, ·) is defined by

(a, b) =

∫

Ωdef

(ab)dΩ. (4.35)
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Using the continuity equation, the integration by parts technique, the divergence

theorem, and the boundary condition, we can eliminate the second order derivatives

in (4.33) and (4.34) to obtain

(
ρf

∂ui

∂t
, ûi

)
+

(
ρf (uj−Ψj)ui,j, ûi

)
+µ

(
ui,j, ûi,j

)
+

(
p,i, ûi

)
−µ

(
ui,jnj, ûi

)
B

= 0,

(4.36)

and

(Ψi,j, Ψ̂i,j) = 0, (4.37)

where (a, b)B denotes integration of ab over the boundary of Ω except for the part

with Dirichlet boundary condition.

Since the computations are conducted in the reference coordinates, Ω, we

need to transform equations (4.32), (4.36), and (4.37) in the deformed coordinates

to those equations in the reference coordinates. Through this, the inner product

expression in (4.35) is re-defined as

(a, b) =

∫

Ωdef

(ab)dΩ =

∫

Ω

(ab) |J| dΩ, (4.38)

where the so-called Jacobian matrix J and the derivatives of the unknown functions

ui, p and Ψi in equations (4.32), (4.36), and (4.37) are defined as follows.

In the flow-channel area, the two coordinate systems, (X, Y, Z) ∈ Ω and

(x, y, z) ∈ Ωdef , are connected through a transformation T . At the initial state at

t = 0, the two mesh systems are assumed to coincide. The transformation T maps

the point initially located at (X, Y, Z) to the point (x, y, z) at time t:

T :

x = x(X,Y, Z, t)

y = y(X, Y, Z, t)

z = z(X, Y, Z, t).

Suppose that the functions x, y and z are continuous differentiable with respect

to X, Y, Z. Then the infinitesimals dX, dY, dZ transform into dx, dy, dz

according to
dx = x,XdX + x,Y dY + x,ZdZ,

dy = y,XdX + y,Y dY + y,ZdZ,

dz = z,XdX + z,Y dY + z,ZdZ,

(4.39)
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where (·),X denotes differentiation with respect to X . System (4.39) can be written

in matrix form as



dx

dy

dz


 =

[ x,X x,Y x,Z

y,X y,Y y,Z

z,X z,Y z,Z

] 


dX

dY

dZ


 . (4.40)

The 3× 3 matrix of partial derivatives in (4.40) is called the Jacobian matrix of the

transformation. Denote the matrix by J, then

|J| = x,X(y,Y z,Z − y,Zz,Y )− x,Y (y,Xz,Z − y,Zz,X) + x,Z(y,Xz,Y − y,Y z,X).

For |J| 6= 0, the transformation is invertible and there exists an inverse transforma-

tion at time t, i.e.,

T−1 :

X = X(x, y, z)

Y = Y (x, y, z)

Z = Z(x, y, z).

As in (4.40), we have



dX

dY

dZ


 =




X,x X,y X,z

Y,x Y,y Y,z

Z,x Z,y Z,z







dx

dy

dz


 . (4.41)

From (4.40), we also have



dX

dY

dZ


 = J−1




dx

dy

dz


 , (4.42)

where

J−1 =
1

|J|




y,Y z,Z − y,Zz,Y x,Zz,Y − x,Y z,Z x,Y y,Z − x,Zy,Y

y,Zz,X − y,Xz,Z x,Xz,Z − x,Zz,X y,Xx,Z − y,Zx,X

y,Xz,Y − y,Y z,X x,Y z,X − x,Xz,Y x,Xy,Y − x,Y y,X


 , (4.43)
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Equating terms in (4.41) and (4.42), we obtain

X,x = 1
|J|(y,Y z,Z − y,Zz,Y ),

X,y = 1
|J|(x,Zz,Y − x,Y z,Z),

X,z = 1
|J|(x,Y y,Z − x,Zy,Y ),

Y,x = 1
|J|(y,Zz,X − y,Xz,Z),

Y,y = 1
|J|(x,Xz,Z − x,Zz,X),

Y,z = 1
|J|(y,Xx,Z − y,Zx,X),

Z,x = 1
|J|(y,Xz,Y − y,Y z,X),

Z,y = 1
|J|(x,Y z,X − x,Xz,Y ),

Z,z = 1
|J|(x,Xy,Y − x,Y y,X).

(4.44)

These relations are crucial in transforming the calculation results from Ωdef to Ω.

Now the derivatives of the unknown functions ϕi (i = x, y, z), where ϕi

represents ui, p, and Ψi, can be determined by the following expressions:

ϕi,x = ϕi,XX,x + ϕi,Y Y,x + ϕi,ZZ,x,

ϕi,y = ϕi,XX,y + ϕi,Y Y,y + ϕi,ZZ,y,

ϕi,z = ϕi,XX,z + ϕi,Y Y,z + ϕi,ZZ,z,

(4.45)

or

ϕi,j = ϕi,Xk
Xk,j, (4.46)

and for the test functions:

ϕ̂i,x = ϕ̂i,XX,x + ϕ̂i,Y Y,x + ϕ̂i,ZZ,x,

ϕ̂i,y = ϕ̂i,XX,y + ϕ̂i,Y Y,y + ϕ̂i,ZZ,y,

ϕ̂i,z = ϕ̂i,XX,z + ϕ̂i,Y Y,z + ϕ̂i,ZZ,z,

(4.47)

or

ϕ̂i,j = ϕ̂i,Xk
Xk,j. (4.48)

Using (4.46) and (4.48), equations (4.32)-(4.34) become

(ui,Xk
Xk,i, p̂) = 0, (4.49)

(
ρf

∂ui

∂t
, ûi

)
+

(
ρf (uj −Ψj)ui,Xk

Xk,j, ûi

)

+µ
(
ui,Xk

Xk,j, ûi,Xk
Xk,j

)
+

(
p,Xk

Xk,i, ûi

)
− µ

(
ui,Xk

Xk,j, ûi

)
B

= 0,
(4.50)
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(
Ψi,Xk

Xk,j, Ψ̂i,Xk
Xk,j

)
= 0. (4.51)

To get the solution of the above VBVP problem, the Bubnov-Galerkin fi-

nite element method is used in this work. We choose an M -dimensional subspace

Hh ⊂ H1(Ωdef ) for ui, Ψi and the corresponding test functions, and N -dimensional

subspace for Hβ ⊂ H1(Ωdef ) for p and the corresponding test functions. Let

{φm}M
m=1 be the basis functions of Hh, and {φp

n}N
n=1 be the basis functions of Hβ .

Then we have

ui(X, t) ≈ (ui)h =
M∑

m=1

φm(X)(ui)m(t). (4.52)

ûi(X, t) ≈ (ûi)h =
M∑

m=1

φm(X)(ûi)m(t). (4.53)

Ψi(X, t) ≈ (Ψi)h =
M∑

m=1

φm(X)(Ψi)m(t). (4.54)

Ψ̂i(X, t) ≈ (Ψ̂i)h =
M∑

m=1

φm(X)(Ψ̂i)m(t). (4.55)

p(X, t) ≈ ph =
N∑

n=1

φp
n(X)pn(t). (4.56)

p̂(X, t) ≈ p̂h =
N∑

n=1

φp
n(X)p̂n(t). (4.57)

Substituting equations (4.52)-(4.57) into equations (4.49)-(4.51) and using the

arbitrary of (ûi)m, (Ψ̂i)m, and p̂n, we obtain the following system of equations

M∑
m=1

∫

Ω

φp
q

∂φm

∂Xk

∂Xk

∂xi

|J|dΩ(Ui)m = 0, (4.58)

49



ρf

M∑
m=1

∫

Ω

φkφm|J|dΩ(U̇i)m

+ρf

M∑
m=1

∫

Ω

φk(uj −Ψj)
∂φm

∂Xp

∂Xp

∂xj

|J|dΩ(Ui)m

+
M∑

m=1

∫

Ω

µ
∂φk

∂Xl

∂Xl

∂xj

∂φm

∂Xp

∂Xp

∂xj

|J|dΩ(Ui)m

+
N∑

n=1

∫

Ω

φk

∂φp
n

∂Xk

∂Xk

∂xi

|J|dΩ(P)n

−
M∑

m=1

∫

∂Ω

φk

∂φm

∂Xl

∂Xl

∂xj

|J|dS(Ui)m = 0,

(4.59)

M∑
m=1

∫

Ω

∂φk

∂Xl

∂Xl

∂xj

∂φm

∂Xp

∂Xp

∂xj

|J|dΩ(Ψi)m = 0. (4.60)

We then apply boundary conditions ( 4.11) and ( 4.29) to equations ( 4.58)-

( 4.60). After a mathematical derivation, we obtain a system of ordinary differential

equations which can be written in the terms of global vectors of u, p, and Ψ with

each ith entry representing the value of the corresponding unknown function at the

ith node of the finite element mesh.

A standard backward Euler scheme is then used to solve the system of or-

dinary differential equations to determine the velocity and pressure fields at any

instant of time.

4.5 Solution Procedure

Based on the previous formulation, the solution procedure for solving the fluid flow-

particle motion problem is summarized as follows.

Initialization: t0 = 0, n = 0 (index for time step),

Generate initial mesh x0 based on particle positions, Xi
q(0).

Initialize u(X, t0).

Do n = 1, 2, . . . , N (total number of time steps)

1. Select time step 4tn : tn = tn−1 +4tn.
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2. Update particle positions:

Xi
q(tn) = Xi

q(tn−1) + Vi
q(tn−1)4tn.

3. Update mesh nodes:

y(tn) = x(X, tn−1) + Ψ(X, tn−1)4tn.

4. Check mesh quality; if the updated mesh y(tn) is not too deformed, then

generate a new mesh x(tn), and then project the flow field from y(tn)

onto x(tn).

5. Iteratively solve for the flow field u(x(tn), tn), and p(x(tn), tn);

the mesh velocity Ψ(x(tn), tn); and the particle velocities Vi
q(tn).

6. Update V̇i
q(tn) from the equation (4.13).

7. Solve the mesh acceleration.

End Do.

4.6 Stress and Velocity Fields in Fluids

We consider here an example to study the flow of a Newtonian fluid passing around

a solid cylinder in a microchannel with slip boundary. The cylinder is located at

a fixed position in the middle of the channel. The height of the microchannel is

1.2µ m, and the length 3µ m, while the radius of the cylinder is 0.1µ m. Other

parameters have the values as follows: fluid density ρf = 1000 kg / m3, viscosity

of fluid is µ = 0.001 kg /(m · s), slip parameters l = 0 (no slip), 0.25× 10−7, 0.5×
10−7, 1.0× 10−7, and 2.0× 10−7.

The finite element method presented in the previous sections is used to sim-

ulate the fluid flow through the microchannel at the presence of a particle on the

channel. The aim is to investigate the influence of the slip parameter on the flow

behaviour. Figure 4.1 shows the computational domain and its finite element mesh

consisting of 27439 elements together with the coordinates used.

Figure 4.2 (a–c) shows the profiles of the velocity ux on the channel cross-

section at three different locations along the channel for five different values of the

slip parameter l. The results show that at the upstream and downstream sufficiently
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Figure 4.1: The computation domain and its finite element mesh together with the
coordinates.

far from the cylinder, the velocity profile is parabolic for l = 0 (no slip) and tends to

uniform as l increases. It can also be noted that the velocity increases significantly

as the slip parameter l increases.

Figure 4.3 shows the the influence of the slip parameter l on the drag force

exerted on the microcylinder surface by the fluid. It is clear from the results that as

l increases, the drag force increases significantly.

Figure 4.4 shows the flow rate of fluid calculated at the outlet end of the

microchannel for five different values of slip parameter l = 0 (or no slip), 0.25 ×
10−7, 0.5×10−7, 1.0×10−7, and 2.0×10−7. The results show that the slip parameter

has significantly influences on the flow rate. As l increases, the flow rate increases.

Figure 4.5 depicts the steamlines and velocity field of flow in the micro chan-

nel for five different values of slip parameter l = 0 (no slip), 0.25×10−7, 0.5×10−7,

1.0×10−7, and 2.0×10−7. The plots shows the pattern of fluid flow. In downstream

from the cylinder, the velocity profile is similar to that in upstream. As l increases,

the fluid flows faster in the region near the microchannel wall than in the region near

the surface of the cylinder.
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(a)

(b)

(c)

Figure 4.2: Cross-section profile of the velocity ux at three different locations along
the channel for five different slip parameter values l = 0 (or no slip) (solid-box
line), l = 0.25 × 10−7 (solid-cross line), l = 0.5 × 10−7 (solid-asterisk line), l =
1.0 × 10−7 (solid-circle line), and l = 2.0 × 10−7 (solid-triangle line): (a) at the
location x = 0.5µ m, (b) at the location x = 1.5µ m (through the center of the
microcylinder), and (c) at the location x = 2.5µ m along the microchannel. The x
and y coordinates are shown in Figure 4.1.

53



Figure 4.3: Influence of the slip parameter l on the drag force exerted on the cylinder
by fluid. The circles represent numerical results, while the solid line is the least
square fitting of the numerical results.

Figure 4.4: Influence of the slip parameter l on the flow rate of fluid through the
microchannel.
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(a)

(b)

(c)

(d)

(e)

Figure 4.5: Streamlines and vector plots of the velocity fields in fluid in the micro
channel for five different slip parameter values: (a) l = 0 (no slip), (b) l = 0.25 ×
10−7, (c) l = 0.5 × 10−7, (d) l = 1.0 × 10−7, and (e) l = 2.0 × 10−7. The scaled
bar shows the scale of the magnitude of velocity in m/s.
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4.7 Movement of Particles

In the previous section, we study the flow behaviour of a Newtonian fluid passing

around a spatially fixed particle in a microchannel and analyse the influence of

slip boundary. In this section, we will focus on understanding the particle-fluid

interaction and the particle flow driven by the fluid drag force. For this purpose, we

consider the flow of a fluid with one, three, five and nine particles immersed in the

fluid through a microchannel.

The computational domain is a horizontal channel with height of 6.2 µ m and

length of 45 µ m. The particles are circular with diameter of 0.5 µ m. The fluid is

assumed to flow into the channel with speed 0.7 mm/s from the left to the right. The

fluid properties are typical of human blood in capillary vessels with the viscosity η

of 0.002 Pa · s and the density ρf of 1040 kg/m3. All particles are assumed to be

solid particles with the material density of 1400 kg/m3.

The Arbitrary Lagrangian Eulerian approach as presented in section 4.3 is

used to handle the dynamics of deforming geometry and the moving boundaries.

New mesh coordinates on the channel area are calculated based on the movement

of the particles. The Navier-Stokes equations are formulated in the moving coordi-

nate system and are solved by the method presented in section 4.4.

(a) t = 0 sec.

(b) t = 1.62 milli sec.

(c) t = 2.43 milli sec.

Figure 4.6: Velocity profiles at various instants of time for the case with one particle.
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(a) t = 0 sec.

(b) t = 0.81 milli sec.

(c) t = 1.18 milli sec.

Figure 4.7: Velocity profiles at various instants of time for the case with three par-
ticles.

(a) t = 0 sec.

(b) t = 0.69 milli sec.

(c) t = 1.02 milli sec.

Figure 4.8: Velocity profiles at various instants of time for the case with five parti-
cles.

(a) t = 0 sec.

(b) t = 0.39 milli sec.

(c) t = 0.53 milli sec.

Figure 4.9: Velocity profiles at various instants of time for the case with nine parti-
cles.
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Figure 4.10: Pressure profiles along the flow direction at t = 0s.

Figures 4.6– 4.9 show the velocity profiles and particle positions at various

instants of time for the cases with one, three, five and nine particles immersed in

the fluid. Figure 4.10 shows the variation of the fluid pressure along the channel at

a typical instants of time for the four cases. Obviously, except for the region near

the particles, the velocity basically has the parabolic profile. It is also noted that the

inlet pressure required to drive the flow increases significantly with the increase of

the particle number. This is reasonable as larger pressure is required to drive the

flow of more particles through the channel.

To understand the influence of the particle initial velocity Vp(t0), we consider

three different cases of particle initial velocity, Vp(t0) = 0, Vp(t0) = u(t0), and

Vp(t0) = 2u(t0) where Vp(t0) is the particle initial velocity and u(t0) is the fluid

velocity on the inlet of the channel.

Figures 4.11– 4.13 show the details of the evolution of the particle position,

the forces acting on the particles as well as the particle velocity for the three cases

of particle initial velocity.

For the case in which the particle initial velocity is zero, as shown in Fig-

ure 4.11, the drag force and consequently the total force acting on the particle is

positive in the x-direction at the initial stage as the fluid velocity is larger than the

particle velocity. This results in an acceleration of the particle and hence the particle

velocity in the x-direction continues to increase and the particle move gradually to
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.11: Computed results for the fluid-particle flow with Vp(t0) = 0: (a)–(b)
the x and y coordinates of the locations of the particle; (c)–(d) the x and y compo-
nents of the particle velocity along the channel; (e)–(f) the x and y components of
the total force acting on the particle; (g) the trajectory the of particle.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.12: Computed results for the fluid-particle flow with Vp(t0) = u(t0): (a)–
(b) the x and y coordinates of the locations of the particle; (c)–(d) the x and y com-
ponents of the particle velocity along the channel; (e)–(f) the x and y components
of the total force acting on the particle; (g) the trajectory the of particle.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.13: Computed results for the fluid-particle flow with Vp(t0) = 2u(t0):
(a)–(b) the x and y coordinates of the locations of the particle; (c)–(d) the x and y
components of the particle velocity along the channel; (e)–(f) the x and y compo-
nents of the total force acting on the particle; (g) the trajectory the of particle.
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the right. When the particle velocity tends to the fluid velocity, the fluid drag force

acting on the particle becomes zero and consequently the particle velocity remains

constant as shown in figure 4.11 (e).

On the other extreme, when the particle moves much faster than the fluid, the

fluid provides a resistance to the movement of the particle resulting in a negative

total force acting on the particle in the x-direction. Consequently, the particle ve-

locity decreases. Once the particle velocity decreases toward the fluid velocity, the

total force acting on the particle tends to zero and consequently the particle velocity

tends to a constant.

4.8 Concluding Remarks

A mathematical model and numerical technique for simulating particle-fluid flow in

microchannels has been established. The model is then used to study the influence

of boundary slip on the flow of a fluid through a microchannel, and to study the

interaction force acting on the particles by the fluid and its resulting particle motion

for various cases of particle initial velocity.

From the numerical results obtained, it can be concluded that the boundary

slip between the fluid and the solid surface has very significant effect on the cross-

section profile of the fluid velocity and the flow rate as well as the drag force acting

on the immersed particles in the fluid.

It is also found that the inlet pressure required for driving the particles and

fluid to flow with a required velocity increases very significantly with the increase

of the number of particles immersed in the fluid. The results also indicate that the

particle velocity will tend to constant after certain time after being injected into the

fluid regardless its initial velocity.
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Chapter 5

Movement of Particles in Fluids
under Magnetic Forces

5.1 General Overview

To control magnetic particles (say drugs) to move in fluids to the target site, an

external magnetic field is applied to generate a magnetic force acting on the particle

[see 25]. The force is related to the magnetic field by the equation:

Fmag =
1

µr

(M · ∇)B, (5.1)

where µr is the relative permeability of a magnetic material, M = (Mx,My, Mz) is

the magnetization of the particle and B = (Bx, By, Bz) is the magnetic flux density.

In this chapter, we first present a mathematical model to describe the fluid-

particle motion in fluids under magnetic forces. Then we apply the finite element

method, based on the Arbitary Lagrangian-Eulerian approach, to solve the underly-

ing boundary value problem. Finally we consider the control of particle movement

in fluids.

The rest of the chapter is organized as follows. In section 5.2, the boundary

value problem for the determination of the magnetic flux density are presented fol-

lowed by the finite element method for the solution of the problem. In section 5.3,

the equations for the particle motion in fluids under magnetic forces are presented.

In section 5.4, a numerical investigation is undertaken on the control of particle

movement in fluids under magnetic fields.
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5.2 Modelling of Magnetic Fields

For static condition in stationary bodies, the magnetic flux density B is governed

by Maxwell’s equations:
∇ ·B = 0,

∇×H = 0,
(5.2)

where the magnetic flux density B and the magnetic field strength H are related

through the constitutive relation

B = µ0µrH + Br, (5.3)

in which Br = µ0µrM denotes a residual flux density, µ0 is the permeability in

vacuum.

From the first equation of (5.2), the magnetic flux density can be determined

from a vector potential by B = ∇×A which identically satisfies the first equation

of (5.2). Using the identity

∇× (∇×A) = ∇(∇ ·A)−4A,

and the Coulomb gauge ∇ ·A = 0, the second equation of (5.2) takes the form

∇× (µ−1
0 µ−1

r ∇×A−M) = 0, ∀x ∈ Ωdef

or 4A = −∇× (µ0µrM),
(5.4)

which is the vector-valued Poisson equation for the magnetic potential A.

The boundary condition on particle surfaces is assumed to be insulation, that

is,

n×A = 0, (5.5)

where n is the unit normal vector. Equations (5.4) and (5.5) form the boundary

problem for the dertermination of the magnetic field.

For the convenience in formulation, we rewrite the governing equations for

magnetic field in indicial notation as follows,

Ai,jj +
(
∇× (µ0µrM)

)
i
= 0. (5.6)
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The field equations (5.6) are defined in Ωdef (t) with the boundary conditions (5.5).

These equations and boundary conditions constitute a closed system of three partial

differential equations in terms of three unknown functions A1, A2, and A3. The

system, supplemented by the boundary conditions (5.5) can be solved numerically

to yield the magnetic vector potential A.

The variational boundary value problem associated with the problem is as

follows.

VBVP: Find Ai ∈ H1(Ωdef ) in the deformed mesh system at each time

instant such that the Dirichlet boundary condition (5.5) is satisfied and for all Âi ∈
H1

Ai
(Ωdef ) ≡ {Âi ∈ H1(Ωdef )|Âi = 0 on ∂ΩdefAi

}
(
Ai,jj, Âi

)
+

((
∇× (µ0µrM)

)
i
, Âi

)
= 0, (5.7)

where H1(Ωdef ) is the Sobolev space W 1,2(Ωdef ) with norm ‖ · ‖1,2,Ωdef
and the

inner product (·, ·) is defined by

(a, b) =

∫

Ωdef

(ab)dΩ. (5.8)

Using integration by parts and the arbitary of Âi, we have

(
Ai,j, Âi,j

)
−

((
∇× (µ0µrM)

)
i
, Âi

)
= 0, (5.9)

Since the computations are conducted in the reference coordinates, Ω, we

need to transform equations (5.9) in the deformed coordinates to those equations

in the reference coordinates. Through this, the inner product expression in (5.8) is

re-defined as

(a, b) =

∫

Ωdef

(ab)dΩ =

∫

Ω

(ab) |J| dΩ. (5.10)

In the same way as that in chapter 4, the derivatives of the unknown functions Ai

and the test functions Âi are determined by the following expressions:

ϕi,j = ϕi,Xk
Xk,j, (5.11)

ϕ̂i,j = ϕ̂i,Xk
Xk,j. (5.12)
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Using (5.11) and (5.12), equations (5.13) become

(
Ai,j, Âi,j

)
−

((
∇× (µ0µrM)

)
i
, Âi

)
= 0, (5.13)

To find the solution of the above VBVP problem, the Bubnov-Galerkin finite

element method is used. We choose an M -dimensional subspace Hh
A ⊂ H1

A(Ωdef )

for Ai and the corresponding test function. Let {φA
m}M

m=1 be the basis functions of

Hh which is an M -dimensional subspace of H1. Then we have

Ai(X, t) ≈ (Ai)h =
M∑

m=1

φA
m(X)(Ai)m(t), (5.14)

Âi(X, t) ≈ (Âi)h =
M∑

m=1

φA
m(X)(Âi)m(t). (5.15)

Substituting equations (5.14)–(5.15) into equations (5.13), and following the same

procedure as in chapter 4, we can solve the boundary value problem for the magnetic

vector potential A and consequently, the magnetic flux density.

5.3 Modelling of Particle Movement

The motion of particles in fluids under magnetic fields is governed by Newton’s

second law. As in chapter 4, we neglect the gravitational force, and hence the

equations of motion for the particles in fluids under magnetic fields are as follows:

mq
∂Vq

∂t
= Fv + Fq + Fmag, q = 1, 2, 3..., Q

Vq|t=0 = 0,

(5.16)

where Fv is the fluid drag force acting on particle q by the fluid and can be deter-

mined by

Fv = −
∫

∂Ω

σ · ndS,

in which σ is the stress in fluid and can be determined by the methods as presented

in chapter 4. Fq are interaction forces acting on particle q by other particles and

wall, namely

Fq =

Q∑

p=1,p6=q

Fq,p +
2∑

w=1

Fq,w, (5.17)
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in which

Fq,p =

{
0, for dq,p > Rq + Rp + α

1
εq

(Xq −Xp)(Rq + Rp + α− dq,p)
2, for dq,p ≤ Rq + Rp + α

(5.18)

and

Fq,w =

{
0, for dq,w > 2Rq + α

1
εw

(Xq −Xw)(2Rq + α− dq,w)2, for dq,w ≤ 2Rq + α
(5.19)

where dq,p denotes the distance between the centers of the qth and pth particles,

dq,w denotes the distance between the center of the qth particle and the imaginary

particle on the other side of the wall, Xq and Rq are center and radius of the qth

particle, α is the force range, and εq and εw are small positive stiffness parameters.

Fmag are magnetic forces acting on particle q which can be determined from

(5.1). Also in a two dimension case, the magnetic potential is assumed to have

a nonzero component only in the direction perpendicular to the plane, i.e., A =

(0, 0, Az). On ∂Ωq and ∂Ω, the magnetic potential is set to zero, that is, Az = 0.

The magnetization M = (Mx,My) for the magnetic source is given by Mx =

0,My = 5× 104A ·m−1, and for the magnetic particles

Mx = a arctan

(
b

µ0µr

Az,y

)
,

My = a arctan

(
− b

µ0µr

Az,x

)
,

(5.20)

where a and b are two material parameters. Thus from (5.1), the magnetic force,

Fmag = (Fmagx , Fmagy), is given by

Fmagx =
1

µr

(MxAz,yx + MyAz,yy),

Fmagy =
1

µr

(−MxAz,xx −MyAz,xy).

(5.21)

The position Xq of the center of the qth particle can be determined by the

equation:
dXq

dt
= Vq , q = 1, 2, 3..., Q

Xq|t=0 = X0
q.

(5.22)
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Figure 5.1: The computation domain, the location of magnetic source, and the finite
element mesh.

5.4 A Numerical Study on the Control of Particle Move-
ment

In this section, we numerically study the movement of particles in fluids in a small

vessel with the surrounding materials as shown in Figure 5.1. The computation

domain is a horizontal channel with height of 3.1µ m and length of 45µ m. The

particles are circular with diameter of 0.25µ m. The fluid is assumed to flow into the

channel with the speed of 0.7 mm/s from the left to the right. The fluid properties

are typical of human blood with the viscostiy µ of 0.002 Pa · s and the density of

1040 kg ·m-3. All particles are assumed to be solid particles with the same density

of 1400 kg ·m-3. The relative permeability µr is 5 × 103 for the magnet particles

and 0.99998 for the tissue in the blood vessel. The material parameters a and b are

1× 10−4 A / m and 3× 10−5(A / m)−1, respectively.

Many cases with different number of magnetic particles are investigated and

here we present the results for the case with one, three, five, and nine particles.

Figure 5.1 shows the finite element mesh for the case with three particles. This

typical mesh consist of 2956 elements.
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(a) t = 0 sec.

(b) t = 0.01179 sec.

(c) t = 0.017803 sec.

Figure 5.2: Velocity profiles and particle locations at various instants of time for
the case with three magnetic particles, shown together with the contour lines of the
magnetic potential Az.
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(a)

(b)

Figure 5.3: Magnetic forces acting on the particles for the three particles case: (a)
the x-component of the magnetic force; and (b) the y-component of the magnetic
force. The solid-triangle line is for particle 1; the solid-box line is for particle 2;
and the solid-plus line is for particle 3.
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(a)

(b)

Figure 5.4: The location of the particles as a function of time for the three particles
case: (a) the x-coordinate; (b) the y-coordinate. The solid-triangle line is for particle
1; the solid-box line is for particle 2; and the solid-plus line is for particle 3.
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Figure 5.2 shows the velocity profiles and the particle locations at various

instants of time for the case with three magnetic particles together with the contour

lines of the magnetic potential Az. Figure 5.3 shows the magnetic forces acting on

the particles, while Figure 5.4 shows the locations of the particles as a function of

time. The results show that the external magnetic source generates a magnetic field

leading to magnetic forces acting on the magnetic particles. Under these magnetic

forces and the fluid drag forces, the particle moves gradually toward the location of

the magnetic source.

5.5 Concluding Remarks

A mathematical model has been constructed to simulate the fluid-particle flow under

magnetic fields, and has been applied to study the blood flow and the magnetic

particle flow in a capillary vessel with an external magnetic source. From the results,

it can be concluded that the proposed model and technique are capable of simulating

the particle flow in fluid under magnetic forces. The particles move toward the

magnetic source. By changing the location of the magnetic source, one can control

the particles to move to the desired target sites.
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Chapter 6

Conclusions

6.1 Summary

This project focuses on the development of mathematical models, analytical and nu-

merical methods for the study of three microflow problems including the transient

flow of fluids through micro-annulus with boundary slip, the particle-fluid flow in

microchannels, and the particle motion in fluids under magnetic forces. The re-

sults and conclusions gained from the research are summarized below under three

aspects.

(1) A mathematical model has been developed to study the pressure gradient driv-

ing transient flow of fluid through micro-annulus with boundary slip and the

exact solution for the problem has been derived. Based on the analytical ex-

pressions of the solutions, we analyse the influence of the slip parameter l and

the geometry of the cross-section on the flow rate of fluid through the annual.

The study shows that

(i) The influence of boundary slip on the flow through the annual is differ-

ent for different types of pressure gradients. For flows driven by a constant

pressure gradient, the flow rate always increases with the slip parameter l and

achieves a linear increase rate for large l value; while, for the flows driven by

the wave form pressure gradient with high frequency, the flow rate initially

increases significantly as l increases from zero but tends to a constant when l

becomes sufficiently large.
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(ii) To achieve a fixed value of flow rate, one could have different (k, l) de-

signs. The exact solutions obtained, together with the contour plots of the

solutions, provide a tool for engineers and scientists to determine the proper

(k, l) values.

(2) A mathematical model and numerical technique, based on the Arbitary Eulerian-

Lagrangian approach and the finite element method, has been developed for

simulating the particle-fluid flow in microchannels. Based on the model and

the numerical technique, various investigations have been carried out and the

investigations show that

(i) The boundary slip between the fluid and the solid surface has very signifi-

cant effect on velocity profile of the fluid and the flow rate as well as the drag

force acting on the immersed particles in the fluid. For l = 0 correspond-

ing to the no-slip case, the velocity on the channel cross-section is basically

parabolic except for the region close to the particles. As the slip parameter l

increases, the velocity profile tends to uniform on the channel cross-section.

Also, as l increased, the flow rate of fluid through the channel and the drag

force acting on the immersed particles increase significantly.

(ii) The inlet pressure required for driving the particles and fluid to flow with a

required velocity increases very significantly with the increase of the number

of particles immersed in the fluid. Also, the particle velocity in fluid will tend

to constant after certain time after being injected to the fluid regardless its

initial velocity.

(3) A mathematical model and numerical technique has been established to study

the motion of magnetic particles in fluid under magnetic fields generated by

external magnetic sources. The model has been applied to study the blood

flow and the movement of magnetic particles in the blood in a capillary vessel

under an external magnetic source. The results show that the finite element

based numerical technique is capable of simulating the particle flow in fluid

under an external magnetic field. It is shown that the magnetic particles can
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be controlled to move to the targeted site by changing the location of the

external magnetic source.

6.2 Further Research

From the study, it can be concluded that mathematical modelling and numerical

investigation can lead to a deeper understanding of the behaviour of fluid flow and

particle flow in fluid in a micro-channel. Further work include: (a) study the fluid-

particle flow in three dimension; (b) model blood flow at micro and/or nano scale

based on non-Newtonian models.
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