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A B S T R A C T

A homogenization approach for the simulation of multi-phase flows in heterogeneous porous media is
presented. It is based on the lattice Boltzmann method and combines the grayscale with the multi-component
Shan–Chen method. Thus, it mimics fluid–fluid and solid–fluid interactions also within pores that are smaller
than the numerical discretization. The model is successfully tested for a broad variety of single- and two-phase
flow problems. Additionally, its application to multi-scale and multi-phase flow problems in porous media is
demonstrated using the electrolyte filling process of realistic 3D lithium-ion battery electrode microstructures
as an example. The approach presented here shows advantages over comparable methods from literature. The
interfacial tension and wetting conditions are independent and not affected by the homogenization. Moreover,
all physical properties studied here are continuous even across interfaces of porous media. The method is
consistent with the original multi-component Shan–Chen method (MCSC). It is as stable as the MCSC, easy
to implement, and can be applied to many research fields, especially where multi-phase fluid flow occurs in
heterogeneous and multi-scale porous media.
1. Introduction

Fluid flow in porous media plays an important role in many techni-
cal and natural processes such as hydrogeology, reservoir and process
engineering, electrochemical energy storage, or medical applications.
Most of these examples involve complex flow phenomena such as
transport of solutes, reactions, or the interaction of multiple phases or
immiscible fluid components (Kang et al., 2007; Dentz et al., 2011;
Steefel et al., 2005; Baveye et al., 2017; Laubach et al., 2019; Yuan
et al., 2019), structures that are heterogeneous regarding their chemical
composition and wetting properties (Dentz et al., 2011; Blunt et al.,
2013; Laubach et al., 2019; Zhang et al., 2020), and pore sizes that
range from nanometers to the macroscale (Sok et al., 2010; Bai et al.,
2013; Blunt et al., 2013; Zhang et al., 2016; Kang et al., 2019; Soulaine
et al., 2019; Zhang et al., 2020; Mehmani et al., 2020). Thus, and
because most of the interesting physical phenomena happen on the pore
scale, they are hard to study experimentally (Sok et al., 2010; Kang
et al., 2002b; Dentz et al., 2011; Mehmani et al., 2020).

Therefore, in the literature often direct numerical simulations and
more specifically the lattice Boltzmann method (LBM) are used to con-
duct pore-scale simulations. LBM is a reliable tool for studying multi-
scale and multi-physics transport processes within complex porous
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geometries (Krueger et al., 2016; Liu et al., 2016). It has also been
successfully applied to solve multi-phase flows in high-resolution real-
world image data of porous media samples that were recorded using
X-ray micro-computed tomography (𝜇-CT) or focused ion beam scan-
ning electron microscopy (FIB-SEM) (Sok et al., 2010; Blunt et al., 2013;
Chen et al., 2014; Liu et al., 2016; Zhang et al., 2016; Baveye et al.,
2017; Kang et al., 2019; Zhang et al., 2020; Mehmani et al., 2020).

Unfortunately, LBM is computationally expensive, especially when
simultaneously simulating flow in structurally resolved pores at differ-
ent length scales. Therefore, homogenization methods have been devel-
oped, where the detailed structure of pores at the smallest length scale
is ignored and, instead, the flow is described by a Darcy–Brinkman-
type approach. A volume average of the structurally resolved geometry
is taken and its effects on fluid flow are mimicked as permeability-
related parameter. These homogenization methods can be basically
subdivided into two groups. Those are the Brinkman force-adjusted
models (BF) (Spaid and Phelan, 1997; Freed, 1998; Guo and Zhao,
2002; Kang et al., 2002b; Ginzburg, 2008; Gao et al., 2014; Ginzburg
et al., 2015; Kang et al., 2019), where a drag force is applied locally,
and the grayscale models (GS) (Dardis and McCloskey, 1998; Thorne
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and Sukop, 2004; Chen and Zhu, 2008; Walsh et al., 2009; Zhu and Ma,
2013; Yoshida and Hayashi, 2014; Yehya et al., 2015; Ginzburg et al.,
2015; Ginzburg, 2016; Zhu and Ma, 2018), where flow populations are
partially bounced back to mimic flow resistance.

Although the aforementioned homogenization methods have been
heavily discussed and further developed for single-phase fluids (Chen
and Zhu, 2008; Walsh et al., 2009; Zhu and Ma, 2013; Ginzburg et al.,
2015; Ginzburg, 2016; Zhu and Ma, 2018), this is not the case for
multi-phase or multi-component fluids. Only a few methods combining
GS and multi-phase physics (McDonald and Turner, 2016; Zalzale
et al., 2016; Lei and Shi, 2019) as well as methods combining other
homogenization approaches with multi-component physics (Ning et al.,
2019; An et al., 2020) have been reported recently. However, despite
the fact that the multi-component Shan–Chen method (MCSC) is most
widely used for studying all kinds of immiscible fluids (Chen et al.,
2014; Krueger et al., 2016), only one homogenized method has been
developed combining GS with MCSC (Pereira, 2016). This method is
however not fully consistent with the original MCSC regarding model
parametrization and shows deficiencies with respect to discontinuities
of properties in heterogeneous porous media.

Therefore, in the current paper, a new approach is presented, that
follows the approach of Pereira (2016) and combines GS by Walsh et al.
(GS-WBS) (Walsh et al., 2009) with MCSC (Shan and Chen, 1993).
It is therefore called the homogenized multi-component Shan–Chen
method (HMCSC) in the following. GS-WBS is chosen as it is known to
recover Darcy–Brinkman flow, conserves mass, and allows an efficient
computational parallelization as only local bounce-back operations are
performed. MCSC uses a physically-based approach to model fluid–fluid
and solid–fluid interactions without the need for interface tracking. It
also achieves a good compromise between computational efficiency and
physical reality, and thus is widely adopted for modeling immiscible
fluids (Chen et al., 2014; Krueger et al., 2016).

The HMCSC inherits all positive features from the aforementioned
models, but overcomes their deficiencies which are mainly related to
the discontinuity of properties in heterogeneous porous media. For ex-
ample, using HMCSC, the interfacial tension and the wetting properties
are constant and not affected by the homogenization. Thus, especially
the MCSC-related model parameters can be chosen consistently to the
original MCSC and no further parametrization is required. Besides, sim-
ilar to all other LBM homogenization approaches, the HMCSC switches
freely between free-flow and Darcy regime, and can also be applied to
study single-phase flows.

As part of this paper, the HMCSC was rigorously tested for a
broad variety of single-phase and two-phase flow benchmark cases
that are relevant in the context of porous media. Those were Stokes–
Brinkman–Darcy flow under Couette and Poiseuille conditions, fluid
flow in stratified heterogeneous porous media and partially porous
channels, as well as steady bubble tests and Washburn-type capil-
lary flow. It was also tested regarding its numerical stability and
shown to be comparable to the original MCSC. In addition, it predicts
Buckley–Leverett waterflooding to some extent (cf. Section SI-3 in the
Supporting Information). The results were compared with analytical
and semi-analytical solutions where available. Finally, the HMCSC was
applied to a two-phase flow issue of current research interest in the field
of electrochemical energy storage: The electrolyte filling of lithium-ion
battery microstructures with partially permeable nanoporous compo-
nents. However, other research fields where multi-phase fluid flow
occurs in multi-scale porous media can benefit from the new method,
too. In the context of hydrology, geoscience and petroleum engineering,
potential applications are the prediction of microbiologically affected
groundwater flow (Ghezzehei, 2012; Hassannayebi et al., 2021), geo-
logic carbon storage or sequestration (Krevor et al., 2012; Mehmani
and Tchelepi, 2018), and the recovery of oil, dry natural gas, or shale
gas from tight gas sandstones (Mehmani et al., 2015, 2020), carbon-
ates (Mehmani et al., 2015, 2020) and shale formations (Soulaine et al.,
2

2019), respectively. a
This paper is organized as follows. In Section 2, the HMCSC is
described. In Section 3, it is tested for a broad variety of benchmark
cases and the corresponding results, features of the approach, and
its numerical stability are discussed. In Section 4, the results of the
electrolyte filling simulations in realistic and partially homogenized
battery microstructures are presented. Finally, conclusions are drawn
in Section 5.

2. Model

The LBM fundamentals, including the determination of macroscopic
variables, as well as the underlying methods are given in Appendix A.
For further information, especially regarding GS-WBS and MCSC, the
reader is directed to the corresponding Refs. Walsh et al. (2009),
Shan and Chen (1993). In the following, only relevant parts that are
necessary to understand the HMCSC are described. The full declaration
of notations is also given in Appendix A.

The main equation of the HMCSC that combines the GS-WBS ho-
mogenization approach (Walsh et al., 2009) with the original MCSC
and the Shan–Chen forcing scheme (Shan and Chen, 1993) is

𝑓𝑖,𝜎
(

𝐱 + 𝐜𝑖𝛥𝑡, 𝑡 + 𝛥𝑡
)

= (1 − 𝑛s,𝜎 (𝐱))𝑓𝑖,𝜎 (𝐱, 𝑡)

− (1 − 𝑛s,𝜎 (𝐱))
𝛥𝑡
𝜏𝜎

(

𝑓𝑖,𝜎 (𝐱, 𝑡) − 𝑓 eq
𝑖,𝜎 (𝐱, 𝑡)

)

+ 𝑛s,𝜎 (𝐱)𝑓𝑖,𝜎
(

𝐱, 𝑡∗
)

.

(1)

Here, 𝒇𝜎 is the distribution function of the component 𝜎, 𝒇 eq
𝜎 is the

Maxwell–Boltzmann equilibrium distribution function (cf. Eq. (A.3) in
the Appendix), and 𝜏𝜎 is the relaxation time. The last term in Eq. (1)
corresponds to the bounce-back scheme. The parameter 𝑛s,𝜎 comes from
the homogenization approach. Originally it was called the solid fraction
which is due to the intuitive interpretation of relating flow properties
to the solid volume fraction. In the following, the same parameter is
called the bounce-back fraction to highlight its technical origin and to
prevent a misinterpretation. Note that the bounce-back fraction has to
be chosen to retrieve the permeability and should be seen as a space-
dependent, internal model parameter which is not necessarily directly
proportional to the amount of solid material in a lattice cell. Its general
relation to the permeability for a single-phase fluid (Walsh et al., 2009)
is

𝑘 =
1 − 𝑛s
2𝑛s

𝜈𝛥𝑡. (2)

Similar to the MCSC (Shan and Chen, 1993), Eq. (1) is solved for
ach component 𝜎 involved in the multi-phase flow. Thus, all lattice
ells are occupied by every component simultaneously. A cell belonging
o component 𝜎 is composed of the main component density 𝜌𝜎 and the
issolved densities with 𝜌dis ≪ 𝜌𝜎 . The fluid–fluid and solid–fluid inter-
ctions are incorporated as interaction forces via 𝒇 eq

𝜎 (cf. Eq. (6)). They
re physically motivated by a pseudopotential that similar to molecular
ynamic simulations models molecular interactions to recover cohesion
nd adhesion, e.g., in wetting or transport processes (Lautenschlaeger
nd Hasse, 2019b,a; Diewald et al., 2020; Lautenschlaeger and Hasse,
020).

The separation of component 𝜎 by another component �̄� is driven
y a fluid–fluid interaction force 𝑭 inter

inter,𝜎 (𝐱) = −𝜌𝜎 (𝐱)𝐺inter,𝜎�̄�
∑

𝑖
𝑤𝑖𝜌�̄�

(

𝐱 + 𝐜𝑖𝛥𝑡
)

𝐜𝑖𝛥𝑡, (3)

here the interaction parameter 𝐺inter,𝜎�̄� determines the strength of the
ohesion.

The wettability or adhesion of the component 𝜎 at a solid wall is
odeled with the solid–fluid interaction force 𝑭 ads,𝜎

ads,𝜎 (𝐱) = −𝜌𝜎 (𝐱)𝐺ads,𝜎
∑

𝑖
𝑤𝑖𝑠

(

𝐱 + 𝐜𝑖𝛥𝑡
)

𝐜𝑖𝛥𝑡, (4)

here the adhesion parameter 𝐺ads,𝜎 determines the wetting behavior
nd 𝑠 is an indicator function which is 𝑠 = 𝑛 here.
s,𝜎
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Table 1
Overview of the physical quantities of the system consisting of fluid 1 and fluid 2.
Values are given in LBM units (lu: length unit; ts: time step; mu: mass unit).

Density 𝜌1 = 𝜌2 = 0.99 mu
lu3

𝜌dis,1 = 𝜌dis,2 = 0.01 mu
lu3

Kinematic viscosity 𝜈1 = 𝜈2 = 1.667 ⋅ 10−1 lu2

ts
Surface tension 𝛾 = 7.68 ⋅ 10−2 mu

ts2

Model parameters 𝜏1 = 𝜏2 = 1.0
𝑛s = 𝑛s,1 = 𝑛s,2
𝐺inter,12 = 𝐺inter,21 = 1.75
𝐺ads,2 = −𝐺ads,1 =

1
4
𝐺inter,12(𝜌1 − 𝜌dis,2) cos 𝜃 (Huang et al., 2007)

𝛥𝐱 = 𝛥𝑡 = 1

It was shown by Huang et al. (2007) how 𝐺inter,𝜎�̄� and 𝐺ads,𝜎 relate to
the interfacial tension 𝛾 and the contact angle 𝜃, respectively. It will be
shown in Section 3, that the same parametrization can be used for the
HMCSC, too, which underlines its physical consistency with the original
MCSC.

Additional external forces 𝑭 ext which act on all components, such
as gravity, are distributed to each component 𝜎 by their density ratios

𝑭 ext,𝜎 =
𝜌𝜎
𝜌
𝑭 ext , (5)

here 𝜌 =
∑

𝜎 𝜌𝜎 is the total density of all components in a lattice cell.
All aforementioned force contributions are summarized to the total

orce 𝑭 tot,𝜎 = 𝑭 inter,𝜎 + 𝑭 ads,𝜎 + 𝑭 ext,𝜎 . Using the Shan–Chen forcing
pproach, 𝑭 tot,𝜎 is finally incorporated into 𝒇 eq

𝜎 (𝜌𝜎 ,𝐮
eq
𝜎 ) (cf. Eq. (A.3)

in the Appendix) as a force-induced equilibrium velocity shift of each
component

𝐮eq𝜎 =
∑

𝜎 𝜌𝜎𝐮𝜎∕𝜏𝜎
∑

𝜎 𝜌𝜎∕𝜏𝜎
+

𝜏𝜎𝑭 tot,𝜎

𝜌𝜎
. (6)

Note that the equilibrium velocity 𝐮eq must not be confused with
the macroscopic streaming velocity of the mixture. For the HMCSC, the
latter is given by

𝐮macro =
1
𝜌
∑

𝜎
(1 − 𝑛s,𝜎 )

(

∑

𝑖
𝑓𝑖,𝜎𝐜𝑖 +

𝑭 tot,𝜎𝛥𝑡
2

)

, (7)

where the factor (1 − 𝑛s,𝜎 ) comes from the homogenization approach
Walsh et al., 2009; Yehya et al., 2015; Pereira, 2016).

. Model validation

The HMCSC has been implemented in the open-source LBM tool Pal-
abos (version 2.3) (Latt et al., 2021). This extended version of Palabos
was used to test the HMCSC for typical porous media benchmark sce-
narios for single- and two-phase flow. The benchmark scenarios were
chosen to cover a wide range of levels of complexity and are discussed
in the following. All results are given in lattice units or dimensionless
units and compared with analytical or semi-analytical solutions where
available. Only 2D simulations were conducted for the validation. A
3D application of the HMCSC is described in Section 4. All relevant
model parameters are given in Table 1. This default parameter setting
represents a simple, clearly defined, frequently used, and relevant case,
and is therefore most suitable to benchmark the HMCSC approach.
Unless specified otherwise, it is used for all simulations of the present
work. For studying single-phase flows using the HMCSC, the MCSC-
related model parameters were set to zero, i.e. 𝐺inter,𝜎�̄� = 𝐺ads,𝜎 =
0.0. Under these conditions, the model reduces to the GS-WBS with
Shan–Chen forcing scheme and no-slip boundary conditions at solids.

3.1. Permeability

The key parameter of the homogenization is the bounce-back frac-
3

tion 𝑛s. For GS-WBS it was shown to be related to the permeability 𝑘 w
following Eq. (2) (Walsh et al., 2009). It is shown in the following that
Eq. (2) is also true when using the HMCSC for single-phase flows.

The simulation domain represents a fully homogenized porous
medium, where 𝑛s was identical in all lattice cells. The system was
fully periodic, and its dimensions along the 𝑥- and 𝑦-direction were
𝐻 = 50 lu each. The fluid flow was driven by the body force 𝐹ext =
10−5 (mu lu)/ts2 in +𝑥-direction.

The permeability 𝑘 was calculated using Darcy’s law for a single-
component fluid

𝑘 =
𝜈⟨𝜌𝑢⟩
𝐹ext

, (8)

where ⟨𝜌𝑢⟩ is the average momentum in 𝑥-direction.
In addition, the relative permeabilities 𝑘r,𝜎 were determined for a

two-phase flow in the absence of adhesion
(

𝐺ads,𝜎 = 0.0
)

𝑘r,𝜎 =
𝑘(𝑆𝜎 )

𝑘(𝑆𝜎 = 1.0)
. (9)

Here, the index 𝜎 denotes fluid 1 or fluid 2, respectively. 𝑆𝜎 is the
saturation of the simulation domain with fluid 𝜎, and the right-hand
side is the ratio between the permeability at a certain saturation 𝑆𝜎

ith the corresponding single-phase permeability, i.e. 𝑆𝜎 = 1.0, both
etermined using Eq. (8).

For the single-phase flow, 𝑛s was varied in the range 𝑛s = [0.0001,
.9999]. For the two-phase flow, exemplary values

(

𝑛s = {0.1, 0.5, 0.9}
)

ere chosen, where for each value of 𝑛s, 𝑆𝜎 was varied in the range
1 = 1 − 𝑆2 = [0, 1].

Fig. 1(a) shows the simulation results and the analytical solution
cf. Eq. (2)) of 𝑘 for the single-phase flow. They are in excellent
greement which confirms the consistency with the GS-WBS and the
pplicability of Eq. (2) for the HMCSC. Fig. 1(b) shows the simulation
esults of 𝑘r,1 and 𝑘r,2 for different 𝑛s and as a function of 𝑆1. Hardly
ny dependence on 𝑛s was observed. The results follow an almost
inear trend which is typical for fluids with low interfacial tension (Mu
t al., 2019). Moreover, as both fluids have identical properties (cf.
able 1), it holds 𝑘r,1(𝑆1) = 𝑘r,2(1 − 𝑆1). However, note that also other
ealistic scenarios with more general shapes of permeability curves can
e considered using the HMCSC, e.g. for different simulation setups or
f the properties of the two fluids are not identical.

.2. Darcy-Brinkman flow

A critical requirement for all homogenization approaches is that
hey recover Darcy–Brinkman-type flow behavior in porous media (Chen
nd Zhu, 2008; Zhu and Ma, 2013; Li et al., 2014; Yehya et al., 2015;
inzburg, 2016; Pereira, 2016; Zhu and Ma, 2018; Ning et al., 2019),
hich is described by the Darcy-Brinkman equation

𝜈B
𝜙

𝜕2𝑢
𝜕𝑥2

+ 𝐹ext −
𝜈
𝑘
𝑢 = 0. (10)

Here, 𝜈B is the effective Brinkman viscosity, 𝜈 is the viscosity of the
luid, 𝐹ext is the driving force, and 𝜙 and 𝑘 are the porosity and

permeability of the porous medium, respectively.
The analytical solution of Eq. (10) depends on the choice of bound-

ary conditions. Three Darcy-Brinkman flow types were studied and
compared to their analytical solutions. The different variants were:
(1) Poiseuille flow, (2) Couette flow, and (3) open boundary flow.

The overall simulation scenario is schematically shown in Fig. 2.
It consisted of two stratified layers of porous media for which the
permeabilities were independently adjusted by 𝑛s,lef t and 𝑛s,right . The
simulation domain had the dimensions 𝐻 and 𝐿 along the 𝑥- and 𝑦-
irections, respectively. The flow was driven along the +𝑦-direction
ither by applying constant velocities to the boundary cells or a body
orce 𝐹ext to all lattice cells. At steady state, the velocity profile 𝑢(𝑥)
as determined.
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Fig. 1. Profiles of (a) the permeability 𝑘 for single-phase flow and (b) the relative permeabilities 𝑘r for two-phase flow as a function of 𝑛s and the saturation 𝑆1. The simulation
results are denoted by the symbols. For 𝑘 also the analytical solution (solid line, cf. Eq. (2)) is shown.
w

Fig. 2. Schematic simulation setup for Darcy–Brinkman-type flow phenomena. The
imensions of the channel along the 𝑥- and 𝑦-directions are 𝐻 and 𝐿, respectively.

The left (𝑥 = [0,𝐻∕2], light gray) and the right (𝑥 = [𝐻∕2,𝐻], medium gray) half of
the channel are filled with porous media defined by 𝑛s,lef t and 𝑛s,right , respectively. The
hannel is bounded by boundary cells (dark gray) in the 𝑥-direction and has periodic
oundaries in the 𝑦-direction. The flow is driven in +𝑦-direction, e.g. by a body force
ext .

1) Poiseuille flow. The Poiseuille flow was studied for a single-phase
luid in an homogeneous medium

(

𝑛s = 𝑛s,lef t = 𝑛s,right
)

for which 𝑛s
as varied in the range 𝑛s = {0.001, 0.01, 0.1, 0.5, 0.9}. No-slip boundary

onditions were applied as bounce-back at the boundary cells. The
imensions and the body force were 𝐻 = 50 lu, 𝐿 = 50 lu, and 𝐹ext =
0−5 (mu lu)/ts2, respectively. The analytical solution of Eq. (10) for
his case is

=
𝐹ext𝑘
𝜈

(

1 −
cosh

[

𝑟(𝑥 −𝐻∕2)
]

cosh(𝑟𝐻∕2)

)

, (11)

where 𝑟 =
√

𝜈𝜙∕𝑘𝜈B =
√

2𝑛s∕𝜈 for 𝜙 = (1 − 𝑛s) and 𝜈B = 𝜈, and 𝑘 was
determined using Eq. (2).

Fig. 3 shows the simulation results and analytical solutions (cf.
Eq. (11)) of the velocity profiles. They are in excellent agreement over
a wide range of 𝑛s, i.e. within Darcy

(

�̃� = Da−0.5 = (𝑘∕𝐻2)−0.5 ≳ 100
)

nd Brinkman (100 ≳ �̃� ≳ 1) regime.

2) Couette flow. The Couette flow was also studied for a single-phase
luid in an homogeneous medium

(

𝑛s = 𝑛s,lef t = 𝑛s,right
)

for which 𝑛s
as varied in the range of 𝑛s = {0.001, 0.01, 0.1, 0.5, 0.9} again. Velocity
oundary conditions were applied to the boundary cells, i.e. 𝑢(0) =
4

lu/ts and 𝑢(𝐻) = 𝑈0 = 0.01 lu/ts. The dimensions and the body force Z
Fig. 3. Velocity profiles of single-phase Darcy–Brinkman-type flow under Poiseuille
conditions and at different bounce-back fractions 𝑛s. The dimensions of the channel are
𝐻 = 50 lu and 𝐿 = 50 lu. The flow is driven by the body force 𝐹ext = 10−5 (mu lu)/ts2.
Simulation results (circles) are shown together with their analytical solutions (solid
lines, cf. Eq. (11)).

were 𝐻 = 50 lu, 𝐿 = 50 lu, and 𝐹ext = 0 (mu lu)/ts2, respectively. The
analytical solution of Eq. (10) for this case is given as

𝑢 = 𝑈0
sinh(𝑟𝑥)
sinh(𝑟𝐻)

, (12)

where again 𝑟 =
√

2𝑛s∕𝜈.
Fig. 4 shows the simulation results and the analytical solutions

(cf. Eq. (12)) of the velocity profiles. They are in excellent agreement
within the Brinkman regime, i.e. for 𝑛s ≤ 0.1. For larger values of 𝑛s, i.e.
in the Darcy regime, deviations are observed close to the boundary cells
𝑥∕𝐻 ≳ 0.95. This was also reported for other GS models and explained

ith an 𝑛s-dependence of the no-slip conditions (Chen and Zhu, 2008;
hu and Ma, 2013).
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Fig. 4. Velocity profiles of single-phase Darcy–Brinkman-type flow under Couette
conditions and at different bounce-back fractions 𝑛s. The dimensions of the channel are
𝐻 = 50 lu and 𝐿 = 50 lu. The flow is driven by the wall velocity 𝑈0 = 𝑢max = 0.01 lu/ts.
Simulation results (circles) are shown together with their analytical solutions (solid
lines, cf. Eq. (12)).

(3) Open boundary flow. The open boundary flow was studied for both
a single-phase fluid and a two-phase fluid in an heterogeneous medium
(

𝑛s,lef t ≠ 𝑛s,right
)

. The influence of adhesion was neglected
(

𝐺ads,𝜎 = 0.0
)

.
In the left half of the domain a constant value 𝑛s,lef t = 0.9 was chosen,
while 𝑛s,right was varied in the range of 𝑛s,right = {0.001, 0.01, 0.1, 0.5, 0.8}.
Instead of the boundary cells, periodic boundary conditions along the
𝑥-direction were applied. The dimensions and the body force were
𝐻 = 100 lu, 𝐿 = 50 lu, and 𝐹ext = 10−6 (mu lu)/ts2, respectively. In
case of the two-phase flow, the system was initialized with fluid 1 in
the left half (𝑥 = [0,𝐻∕2]) and fluid 2 in the right half of the domain
(𝑥 = [𝐻∕2,𝐻]). The piece-wise analytical solution of Eq. (10) for the
open boundary flow is given as

𝑢l = 𝑈0,l

⎡

⎢

⎢

⎢

⎣

1 −
(1 − 𝑝l) cosh(𝑟l(𝑥 − 𝐻

4 ))

sinh(𝑟l
𝐻
4 )

[

𝑞l coth(𝑟r
𝐻
4 ) + coth(𝑟l

𝐻
4 )

]

⎤

⎥

⎥

⎥

⎦

,∀𝑥 ∈ [0, 1
2
𝐻],

(13a)

r = 𝑈0,r

⎡

⎢

⎢

⎢

⎣

1 +
(𝑝r − 1) cosh(𝑟r (

3𝐻
4 − 𝑥))

sinh(𝑟r
𝐻
4 )

[

𝑞r coth(𝑟l
𝐻
4 ) + coth(𝑟r

𝐻
4 )

]

⎤

⎥

⎥

⎥

⎦

,∀𝑥 ∈ ]1
2
𝐻,𝐻].

(13b)

he corresponding parameters 𝑈0, 𝑝, 𝑞, and 𝑟 are given in Table 2. The
abels ‘l’ and ‘r’ denote the left (𝑥 = [0,𝐻∕2]) and the right (𝑥 =]𝐻∕2,
]) half of the simulation domain, respectively.
Fig. 5 shows the simulation results for (a) the single-phase flow

nd (b) the two-phase flow as well as the corresponding analytical
olutions (cf. Eq. (12)) for half the channel width only close to the
nterface (𝑥 = [1∕4, 3∕4]𝐻). The results of the single-phase flow are in
xcellent agreement over a wide range of 𝑛s,right , i.e. within Darcy and
rinkman regime. The results of the two-phase flow are also in good
greement with the analytical solutions. However, they are slightly
5

verestimated for 𝑛s,right < 0.1 due to slip at the interface. Moreover,
Table 2
Declaration of the parameters from
Eq. (13).
𝑈0,l =

𝑘l𝐹ext

𝜈
𝑈0,r =

𝑘r𝐹ext

𝜈
𝑝l =

𝑘r
𝑘l

𝑝r =
𝑘l
𝑘r

𝑞l =
√ 𝑛s,lef t

𝑛s,right
𝑞r =

√ 𝑛s,right
𝑛s,lef t

𝑟l =
√

2𝑛s,lef t
𝜈

𝑟r =
√

2𝑛s,right
𝜈

the results indicate that the HMCSC inherently overcomes an issue of
the GS-WBS, which was reported by Zhu and Ma (2013) and Ginzburg
(2016). They found that the GS-WBS in the formulation of Zhu and Ma
(2013) revealed a non-physical velocity discontinuity at the interface
for cases where 𝑛s,lef t ≈ 𝑛s,right ≈ 1.0. This was not observed here (cf.
imulation with 𝑛s,lef t = 0.9 and 𝑛s,right = 0.8) and is assumed to be
ue to using the Shan–Chen forcing scheme in the present study (cf.
ppendix B).

.3. Bubble test

The interfacial tension 𝛾 is an inherent thermodynamic property
hat depends on the molecular interaction of a set of immiscible fluids
s well as on the thermodynamic state of the system. Therefore, unlike
n other GS models (McDonald and Turner, 2016; Pereira, 2016), it
hould not depend on the homogenization of a nanoporous medium.
his is especially important, when the medium is heterogeneous, i.e. 𝑛s

s space-dependent. Thus, for each homogenized multi-phase LB model
o be physically consistent, it has to be ensured that setting the model
arameter 𝐺inter,12 to a constant value for the whole simulation domain,
oes not lead to spatial variations of the interfacial tension.

This was verified using bubble tests. The simulation setup is shown
n Fig. 6(a). The simulation domain consisted of an homogenized
orous medium where all lattice cells had the identical bounce-back
raction 𝑛s. The system was fully periodic. The dimensions of the
imulation domain along the 𝑥- and 𝑦-direction were 𝐻 . The system was
nitially filled with a bubble consisting of fluid 1 which was submersed
n fluid 2. Both components had equal masses. The pressure difference
etween the center of the bubble and its surroundings, i.e. 𝛥𝑝 = 𝑝1−𝑝2,
s well as the bubble radius 𝑅 were determined from the simulations.
herefrom, 𝛾 follows Laplace’s law 𝛾 = 𝛥𝑝𝑅. The influence of the
arameters 𝐻 , 𝐺ads,1, 𝑛s, and 𝐺inter,12 on 𝛾 was studied. For the reference
imulation case, the parameters were 𝐻 = 100 lu, 𝐺ads,1 = 0.0, 𝑛s =
.5, and 𝐺inter,12 = 1.75. Unless specified otherwise, the subsequent
imulations used those default parameters.

Fig. 6(b) shows the results of 𝛾 for different values of 𝐻 , 𝐺ads,1,
s, and 𝐺inter,12. It was observed that 𝛾 does not depend on 𝐺ads,1
nd 𝑛s. This was also confirmed for bubble spreading in structurally
esolved porous media and is shown in Figure SI-1 in the Supporting
nformation. Thus, the interfacial tension was only affected by 𝐻 and
inter,12. For increasing 𝐻 , 𝛾 decreased slightly and converged towards

he asymptotic value 𝛾 = 0.077mu∕ts2. This was related to the imprecise
etermination of the bubble radius 𝑅 for small systems, but worked
ell for 𝐻 ≥ 100 lu. In contrast, the influence of the fluid–fluid in-

eraction 𝐺inter,12 on 𝛾 was large which was to be expected. 𝛾 increased
ith increasing 𝐺inter,12. The results were in perfect agreement with the

orresponding values reported by Huang et al. (2007). These were 𝛾 =
0.051, 0.078, 0.104}mu∕ts2 for 𝐺inter,12 = {1.50, 1.75, 2.00}, respectively.
hey were determined using the original MCSC, which corresponds to
sing the HMCSC for 𝑛s = 0.

.4. Washburn simulations

The Washburn equation (Washburn, 1921)

inter =

√

𝛾 cos(𝜃)√
𝑅eff 𝑡 = 𝐴

√

𝐵𝑡, (14)

2𝜂
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Fig. 5. Velocity profiles for (a) the single-phase and (b) the two-phase Darcy–Brinkman-type flow under open boundary conditions. The velocity is normalized by the maximum
velocity 𝑢max for which the numerical values are given in Table C.1 in Appendix A. The bounce-back fraction 𝑛s,lef t is kept constant at 𝑛s,lef t = 0.9, while 𝑛s,right is varied in the range
f 𝑛s,right = {0.001, 0.01, 0.1, 0.5, 0.8}. The dimensions of the channel are 𝐻 = 100 lu and 𝐿 = 50 lu. The flow is driven by the body force 𝐹ext = 10−6 (mu lu)/ts2. Simulation results for

single-phase (circles) and two-phase flow (asterisks) are shown together with their analytical solutions (solid lines, cf. Eq. (13)).
Fig. 6. Bubble test. (a) Simulation setup in which a bubble of fluid 1 (gray) is submersed in fluid 2 (white). The domain size is 𝐻 along the 𝑥- and 𝑦-directions. The radius 𝑅
nd the pressures of both fluids, i.e. 𝑝1 and 𝑝2, were determined to calculate the interfacial tension 𝛾. (b) Simulation results of 𝛾 as a function of different influencing factors, for
hich the specific values are given in the plot.
a
w
u
o
C
r
r

𝑛
r

v

escribes imbibition into homogeneous and isotropic porous media as
D flow through a bundle of cylindrical tubes with effective radius 𝑅eff .
he position of the moving interface is denoted by 𝑥inter . The equation is
nly valid if gravity is negligible (Das and Mitra, 2013; Li et al., 2015).

The flow is driven by the interplay of capillary forces and viscous
orces, where the former depend on the interfacial tension 𝛾 and the
ontact angle 𝜃, and the latter are determined by the dynamic viscosity
f the fluid 𝜂 = 𝜌𝜈. The parameters 𝐴 and 𝐵 in Eq. (14) are fit
arameters that are used in the following to fit the simulation data to
he Washburn equation.

The simulation scenario consisted of a homogenized porous medium
n which all lattice cells had the identical bounce-back fractions 𝑛s. The
ystem dimensions along the 𝑥- and 𝑦-direction were 𝐻 = 500 lu and
= 5 lu, respectively. The system was initially filled with fluid 2. The

ensities of fluid 1 and fluid 2 were prescribed at the inlet
(

𝜌 (𝑥 = 0)
)

6

1 v
nd outlet
(

𝜌2(𝑥 = 𝐻)
)

, respectively. Periodic boundary conditions
ere applied along the 𝑦-direction. Fluid 1 penetrated into the sim-
lation domain in +𝑦-direction and displaced fluid 2. The influence
f the solid–fluid interaction and bounce-back fraction was studied.
orrespondingly, the contact angle 𝜃 was varied by changing 𝐺ads in the
ange of 𝐺ads = −𝐺ads,1 = [0.05, 0.40], and the permeability or effective
adius 𝑅eff was varied by changing 𝑛s in the range of 𝑛s = {0.1, 0.5, 0.9}.

Fig. 7 shows the simulation results for different values of 𝐺ads and
s. Results are given for 𝑡 ≤ 5 ⋅104 ts. This corresponds to the Washburn
egime

(

𝑥inter ∼
√

𝑡
)

where viscous effects dominate the flow (Das
et al., 2012; Das and Mitra, 2013; Li et al., 2015). The data was used
for fitting the Washburn equation Eq. (14).

For the simulations shown in Fig. 7(a), 𝑛s = 0.5 and only 𝐺ads was
aried, while for the simulations in Fig. 7(b), 𝐺ads = 0.2 and only 𝑛s was
aried. Correspondingly, for all fits in Fig. 7(a), parameter 𝐵 was the
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Fig. 7. Washburn simulations. Interface position 𝑥inter as a function of time. The influence of (a) the solid–fluid interaction 𝐺ads and (b) the bounce-back fraction 𝑛s were studied.
Simulation results (circles) are compared with fits to the analytical solutions of the Washburn equation (solid lines, cf. Eq. (14)) for which the parameters 𝐴 and 𝐵 are given in
Table 3.
Table 3
Fit parameters 𝐴 and 𝐵 determined from the simulations (cf. Eq. (14)). The uncertainty of the fit is estimated
by the corresponding coefficients of determination, i.e. 𝑅2

𝐴 and 𝑅2
𝐵 , respectively. The data of 𝜃 and 𝑅eff

determined from the simulations using the Washburn equation Eq. (14) are given. They are compared to
𝜃H using the correlation by Huang et al. (2007) (cf. Eq. (15)).

𝐺ads 𝐴
[√

lu
√

ts

]

𝑅2
𝐴 𝜃 [◦ ] 𝜃H [◦ ] 𝑛s 𝐵 [lu] 𝑅2

𝐵 𝑅eff [lu]

0.05 0.275 0.979 70.8 83.3 0.1 0.0737 0.999 0.0737
0.10 0.295 0.984 67.7 76.5 0.5 0.0481 0.990 0.0481
0.15 0.317 0.988 64.1 69.5 0.9 0.0138 0.972 0.0138
0.20 0.344 0.990 59.2 62.2
0.25 0.373 0.992 52.9 54.3
0.30 0.401 0.995 45.9 45.6
0.35 0.432 0.996 36.0 35.3
0.40 0.463 0.995 21.4 21.1
c
f
o
5
𝑦
f
(

d
t

(
b
w
D
l
p
i

same and only 𝐴 was freely adapted. Vice versa for all fits in Fig. 7(b),
𝐴 was fixed and only 𝐵 was fitted to the simulations. Overall, the fits
and the data are in good accordance. This is also confirmed by the large
coefficients of determination, i.e. 𝑅2

𝐴, 𝑅
2
𝐵 > 0.97.

The values for 𝐴 and 𝐵 as well as 𝜃 and 𝑅eff are given in Table 3. In
ddition, 𝜃 determined from the Washburn simulations was compared
ith the correlation for the contact angle of Huang et al. (2007)

cos(𝜃H) =
4𝐺ads,2

𝐺inter,12(𝜌1 − 𝜌dis,2)
, (15)

which was derived from sessile droplet simulations using the original
MCSC. Interestingly, a good accordance of 𝜃 and 𝜃H was observed,
especially for 𝜃 ∈ [0, 60]◦. For larger values of 𝜃, the correlation slightly
verestimated the simulation results. This was to some extent also
bserved in the paper of Huang et al. (2007) and is amplified by the
ncreasing uncertainty of the fitting for 𝜃 > 60◦ (cf. 𝑅2

𝐴 in Table 3).

.5. Porous obstacle flow

The last test concerned the simultaneous occurrence of free flow
nd Darcy-Brinkman flow. It followed an example of Spaid and Phelan
1998) which is also typically used as advanced benchmark in the liter-
ture (Yoshida and Hayashi, 2014; Silva and Ginzburg, 2015; Pereira,
7

016).
The simulation scenario is shown in Fig. 8(a). It consisted of a
hannel with five circular porous obstacles with diameter 2𝑅 = 33 lu
rom which the center-to-center distance was 𝐷 = 60 lu. The dimensions
f the system along the 𝑥- and 𝑦-direction were 𝐿 = 300 lu and 𝐻 =
0 lu, respectively. Periodic boundary conditions were applied along the
-direction. The system was initially filled with fluid 2. The densities of
luid 1 and fluid 2 were prescribed at the inlet

(

𝜌1(𝑥 = 0)
)

and outlet
𝜌2(𝑥 = 𝐿)

)

, respectively. A body force 𝐹ext = 5 ⋅ 10−5 (mu lu)/ts2 in +𝑥-
irection was applied to both fluids, leading to fluid 1 penetrating into
he simulation domain.

To ensure consistency with the simulations of Spaid and Phelan
1998), viscous effects of fluid 2 within the obstacles were neglected
y setting 𝑛s,2 = 0 in all lattice cells of the domain. In contrast, 𝑛s,1
as set to 𝑛s,1 = {0.1, 0.5, 0.9} within the obstacles to account for the
arcy–Brinkman-type behavior of fluid 1 and to 𝑛s,1 = 0 for all other

attice cells. Thus, large viscosity ratios between the two fluids in the
orous obstacles could be mimicked without running into numerical
nstabilities.

This scenario can be mathematically described by Darcy’s law
d𝑥inter
d𝑡

=
𝑘unsat
𝜙𝜂

𝐹ext , (16)

where 𝑥inter is the interface position, 𝑘unsat is the permeability of the

unsaturated system, 𝜙 is the effective porosity of the obstacles, 𝜂 is the
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Fig. 8. Two-phase flow through a series of circular porous obstacles. (a) Schematic sim-
ulation setup. The dimensions along the 𝑥- and 𝑦-direction are 𝐿 and 𝐻 , respectively.
The system contains five circular porous obstacles (gray shaded area) with radius 𝑅
that are equidistantly distributed by the distance 𝐷. Within the obstacles 𝑛s,1 is varied
in the range of 𝑛s,1 = {0.1, 0.5, 0.9}. A body force 𝐹ext is applied along the +𝑥-direction.
(b)-(d) Exemplary simulation results at different values of 𝑛s,1. The snapshots show the
distribution of fluid 1 (blue) and fluid 2 (red) at the time step 𝑡 = 50,000 ts each.

Table 4
Comparison of unsaturated and saturated permeabili-
ties, i.e. 𝑘unsat and 𝑘sat , respectively.
𝑛s,1 𝑘unsat [lu2] 𝑘sat [lu2] 𝑘unsat∕𝑘sat
0.1 10.71 35.86 0.299
0.5 7.42 29.38 0.253
0.9 6.31 27.59 0.229

dynamic viscosity of fluid 1 and 𝐹ext is the body force. The analytical
solution of Eq. (16) is

𝑥inter =
𝑘unsat
𝜙𝜂

𝐹ext 𝑡, (17)

which was used to determine 𝑘unsat from the simulations.
Representative snapshots of the simulations at 𝑡 = 50,000 ts are

shown in Fig. 8(b)-(d) for different values of 𝑛s,1. They reveal that
increasing 𝑛s,1 retards the filling of the channel. For 𝑛s,1 = 0.9 even
a distinct bubble or droplet formation within the porous obstacles
was observed. These results agree qualitatively with results from the
literature (Spaid and Phelan, 1998; Pereira, 2016).

Complementary, Fig. 9 shows quantitative simulation results and
the corresponding fits to Eq. (17) for different values of 𝑛s,1. The
position of the interface was determined as 𝑥inter = 𝐿∕2

(

𝑆1(𝑦 = 0) + 𝑆1
(𝑦 = 𝐻∕2)

)

, where the proportions of cells in the boundary and
the center column of the simulation domain which were filled with
fluid 1 were denoted 𝑆1(𝑦 = 0) and 𝑆1(𝑦 = 𝐻∕2), respectively. The
oscillations around the linear fits correspond to alternating deceleration
and acceleration of the fluid front which depends on the varying width
of the free-flow channel. The unsaturated permeabilities 𝑘unsat were
determined fitting Eq. (17) to the simulation data. The corresponding
permeability of a saturated medium 𝑘sat was determined following the
lubrication theory of Phelan and Wise (1996).

Both 𝑘unsat and 𝑘sat are given in Table 4. The data shows that 𝑘unsat <
𝑘sat and its ratio 𝑘unsat∕𝑘sat decreases for increasing 𝑛s,1. These results
are in qualitative agreement with simulative (Spaid and Phelan, 1998;
Yoshida and Hayashi, 2014) and experimental (Parnas et al., 1995)
observations.
8

Fig. 9. Interface position 𝑥inter for a two-phase flow through a series of circular porous
obstacles. Results are shown as a function of time 𝑡 and 𝑛s,1. Simulation results (solid
lines) are compared with the fits to the analytical solutions (dashed lines, cf. Eq. (17))
for which 𝑘unsat is given in Table 4.

3.6. Numerical stability

Multi-component models in general are numerically stable for a
limited range of density and viscosity ratios only (Krueger et al., 2016;
Chen et al., 2014). Moreover, due to an imbalance of discretized forces
especially at curved interfaces, they typically show spurious currents
which can exacerbate the occurrence of numerical instabilities (Con-
nington and Lee, 2012). Also the original MCSC on which the HMCSC
is based is known to suffer from spurious currents (Connington and Lee,
2012; Chen et al., 2014). It is stable for a maximum density ratio of 2
as well as a maximum viscosity ratio of 5–10 (Kang et al., 2002a, 2004;
Chen et al., 2014; Krueger et al., 2016). Remedies for those issues have
been discussed in the literature (Shan, 2006; Sbragaglia et al., 2007;
Connington and Lee, 2012; Chen et al., 2014), they were however not
in the focus of this study.

To ensure that the coupling of MCSC and GS, i.e. the HMCSC,
maintains the numerical stability characteristics of the original MCSC,
the aforementioned two-phase flow benchmark scenarios from this
section were conducted for different viscosity ratios 𝑀 = 𝜈2∕𝜈1 and
density ratios 𝐺 = 𝜌1∕𝜌2. Thus, bubble tests, Washburn simulations, and
porous obstacle flows were simulated using the same simulation setups
and model parameters as described in the corresponding subsections,
unless they are specified otherwise.

Washburn simulations were conducted for 𝑀 = 5 (𝐺inter,12 = 2.75,
𝐺 = 1), 𝑀 = 10 (𝐺inter,12 = 2.25, 𝐺 = 1), and 𝐺 = 2 (𝐺inter,12 = 1.75, 𝑀 =
1). For each of the cases, 𝑛s was varied in the range of 𝑛s = {0.1, 0.5, 0.9}
and 𝐺ads,1 was varied in the range of 𝐺ads,1 = {−0.2, 0.0, 0.2}. Porous
obstacle simulations were conducted for the same parameter set while
fixing 𝐺ads,1 = 0.0. For the bubble test the system was initialized close to
mechanical equilibrium, i.e. 𝐺 = 1, and the viscosity ratio (𝑀 = {5, 10}
with 𝐺inter,12 = {2.75, 2.25}, respectively) and 𝑛s = {0.0, 0.1, 0.5, 0.9}
were varied.

All simulations, i.e. 𝑀 ≤ 10 and 𝐺 ≤ 2, were numerically stable.
This is a strong indicator that the coupling of MCSC and GS via HMCSC
has no negative effect on the numerical stability. In the following,
exemplary results are shown for the bubble test scenario only. All other
results are given in the Supporting Information.

Fig. 10 shows results of 𝛾 for 𝑀 = 5 and 𝑀 = 10 for different values
of 𝐺ads,1 and 𝑛s each. It can be observed that 𝛾 does hardly depend on
𝐺 and 𝑛 . Thus, the interfacial tension is only affected by 𝐺
ads,1 s inter,12
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Fig. 10. Bubble test for different viscosity ratios 𝑀 . Simulation results of 𝛾 as a
function of different influencing factors, for which the specific values are given in
the plot.

and the viscosities or 𝜏, respectively. This is in agreement with the
results shown in Fig. 6(b) for 𝑀 = 1 and 𝐺 = 1.

Also the spurious currents were analyzed for the bubble test sce-
ario. Results are shown in Fig. 11 for 𝑀 = 1 and 𝑀 = 5. There,
he results for 𝑛s = 0.0 correspond to the original MCSC. It can be
bserved that larger viscosity ratios induce larger spurious currents and
hus are numerically more unstable. This effect is however reduced
hen increasing 𝑛s, i.e. decreasing the permeability of the porous
edium (cf. Fig. 1(a)). When, e.g., increasing 𝑛s from 0.0 to 0.9, the
aximum velocity of spurious currents 𝑣max is reduced by two orders

f magnitude.

.7. Discussion

In this section, the HMCSC was successfully validated using differ-
nt single- and two-phase flow benchmark scenarios. Altogether, they
emonstrate the broad applicability of the coupling approach presented
ere. Moreover, and just as important, it was shown that the HMCSC
nherits all positive attributes and numerical stability characteristics
rom the original MCSC, the GS-WBS, and its multi-phase extension by
ereira (2016). At the same time, the HMCSC overcomes some defi-
iencies of these methods, i.e. non-physical discontinuities of interfacial
ension and velocity at interfaces between different porous media. The
eatures of the HMCSC are briefly summarized as follows:

1. As was shown by the bubble tests, the interfacial tension 𝛾 is
independent of 𝑛s and 𝐺ads. Thus, the interfacial tension is a
property of the fluids only and is not affected by the homoge-
nization. This was also shown to be valid for viscosity ratios and
density ratios above 1.

2. As was shown by the Washburn simulations, also the contact
angle 𝜃 is independent of 𝑛s. It is a property of the solid–
fluid material combination only and is also not affected by the
homogenization.

3. As was shown by the open boundary Darcy-Brinkman flow simu-
lations, the HMCSC inherently ensures velocity continuity at in-
terfaces of porous media with different 𝑛s. No additional smooth-
ing procedure as suggested by Yehya et al. (2015) is required.

4. The HMCSC is fully consistent with the original MCSC. Thus, the
values for 𝐺ads and 𝐺inter can be chosen identical to the values
that are used for the original MCSC. The same parametrization
approach following the paper of Huang et al. (2007) as well as
Eq. (15) can be applied to study the identical physical situations.
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No further parametrization is required. f
5. The HMCSC is especially suitable for studying multi-phase flow
in heterogeneous porous media where both the wetting prop-
erties and the permeability vary in space and time, while the
physical properties of the fluid mixture are unaffected.

6. The HMCSC is accurate, intuitive, and easy to implement. Re-
garding its numerical stability, the HMCSC shows similar charac-
teristics as the original MCSC, i.e. it is stable for density ratios up
to 2 and viscosity ratios up to 5–10. Moreover, spurious currents
can even be reduced when increasing 𝑛s.

In contrast to most other GS models (Thorne and Sukop, 2004;
Chen and Zhu, 2008; Zhu and Ma, 2013, 2018) including the model
proposed by Pereira (2016) where forces were included using the Guo
forcing scheme (Guo et al., 2002), the HMCSC uses the common Shan–
Chen forcing scheme. Although, this leads to a 𝜏-dependence of the
viscosity (Yu and Fan, 2010; Silva and Ginzburg, 2015), it involves
substantial advantages over the aforementioned models. The corre-
sponding differences and their potential effects are briefly discussed in
Appendix B.

4. Application and results

Practical applications of the HMCSC are most scenarios in which
multi-phase fluid flow occurs in multi-scale porous media. In the con-
text of hydrology, geoscience and petroleum engineering, the HMCSC
can be especially interesting to study transport in pores, vugs and
microfractures simultaneously, while also considering local changes of
the permeability due to geochemical or biological processes. Thus, the
HMCSC might be helpful to predict and gain insight into groundwater
hydrology, geologic carbon storage and sequestration, and the recovery
of oil and gas from different multi-scale porous rocks, such as sand-
stones, carbonates, and shale (Krevor et al., 2012; Ghezzehei, 2012;
Mehmani et al., 2015; Soulaine et al., 2019; Mehmani et al., 2020;
Hassannayebi et al., 2021).

However, as the research focus of our group is on energy stor-
age materials, here the electrolyte filling of lithium-ion batteries was
studied exemplarily. The pore sizes in such microstructures typically
range from nano- to micrometers and its filling is not yet fully un-
derstood. Thus, it is of recent research interest with the objective
to optimize the corresponding manufacturing process as well as the
battery performance and lifetime (Wood et al., 2015; Weydanz et al.,
2018).

A realistic 3D reconstruction of a lithium-ion battery cathode (West-
hoff et al., 2018) with a porosity of 𝜙A = 40% and neutral wetting
conditions was used as a geometrical basis for all simulations. The
filling of three variants of this structure was studied: (1) The pure
electrode structure, (2) the electrode structure infiltrated with 𝑉B = 21%
volume fraction of a nanoporous binder, and (3) the electrode structure
attached to a nanoporous and fully homogenized separator for which
the generation is described in Appendix C.

The contact angles of the active material, binder, and separator were
𝜃A = 90◦, 𝜃B = 60◦, and 𝜃S = 90◦, respectively. They were converted
o the model parameter 𝐺ads,2 = −𝐺ads,1 using Eq. (15). The bounce-
ack fractions in the homogenized porous media were 𝑛s = 𝑛s,1 =
s,2 = 0.5 for the binder, while in the separator 𝑛s was space-dependent
nd identical to the normalized grayscale value of each voxel of the
eparator image data.

Fig. 12 shows the schematic simulation setup where also the three
ifferent variants of microstructures are indicated. It is similar to the
etup that was used in a recent study of our group (Lautenschlaeger
t al., 2022) in which the electrolyte filling process was studied in
ery detail. Initially, the pore space was filled with gas only. Periodic
oundary conditions were applied along the 𝑥- and 𝑧-direction. Along
he 𝑦-direction an electrolyte reservoir and a gas reservoir were added
t the inlet and outlet, respectively. The reservoirs had a thickness of

our layers each in which the density of both fluids was prescribed.
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Fig. 11. Spurious currents during bubble tests using the HMCSC for different viscosity ratios 𝑀 and bounce-back fractions 𝑛s. The sizes of arrows in the velocity field are scaled
by the corresponding 𝑣max. The color code is given by the legend on the right for which the units are lu/ts.
Fig. 12. Simulation setup schematically shown for the three different electrode structures. The pure electrode (left) consists of active material (black) and mesoscopic pore space
(light gray) only. For the variant with binder (middle), the binder (darker gray) is infiltrated into this pore space. For the variant with separator (right), the separator (grayscale
reconstruction) replaces the upper half of the electrode. The reservoirs in which the densities of electrolyte and gas are prescribed are marked in blue and cyan, respectively. The
semi-permeable membranes adjacent to the reservoirs are depicted in yellow.
The initial electrolyte density at the inlet was 𝜌1 and was incrementally
increased during the simulation run. The gas density at the outlet
was constant, i.e. 𝜌2. Thereby, a pressure difference between the two
fluids was applied to drive the electrolyte imbibition (cf. Eq. (18)).
Between the reservoirs and the microstructures semi-permeable mem-
branes were placed to prevent an unwanted fluid breakthrough. The
inlet membrane was permeable for the electrolyte only. The outlet
membrane was permeable for the gas only. This approach is in accor-
dance with imbibition experiments and simulations that are typically
used to analyze porous media in the context of geoscience or energy
storage materials (Gostick et al., 2008; Karpyn et al., 2009; Pini et al.,
2012; Krevor et al., 2012; Zhao et al., 2015; Danner et al., 2016;
Tavangarrad et al., 2019; Zhu et al., 2021; Lautenschlaeger et al.,
2022).
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The model parameters for the simulations are given in Table 1,
where fluid 1 and fluid 2 correspond to electrolyte and gas, respec-
tively.

From each simulation, pressure-saturation curves were determined.
They are a characteristic property of porous media and relate the
pressure difference 𝛥𝑝 needed for the imbibition to the amount of
electrolyte in the pore space, i.e. the saturation 𝑆1.

The pressure difference 𝛥𝑝 was determined as

𝛥𝑝 = ⟨𝑝⟩inlet − ⟨𝑝⟩outlet , (18)

where 𝑝 was evaluated using Eq. (A.6), and ⟨𝑝⟩ denotes the average
pressure in the inlet and outlet reservoirs. The electrolyte saturation
𝑆1 was determined as

𝑆1 =
𝑁pore(𝜌1 ≥ 0.5) + (1 − 𝑛s)𝑁hom(𝜌1 ≥ 0.5)

, (19)

𝑁pore + (1 − 𝑛s)𝑁hom
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Fig. 13. Electrolyte filling of electrode structures. (a) Pressure-saturation behavior of the pure electrode (solid line), the electrode with binder (dashed line), and the electrode
attached to the separator (dotted line). The hashes denote the state at time step 𝑡 = 400,000 ts for which snapshots are shown on the right. (b)-(d) Snapshots of cross sections in
the 𝑥𝑦-plane at 𝑡 = 400,000 ts for (b) the pure electrode, (c) the electrode with binder, and (d) the electrode attached to the separator. The active component is depicted dark blue,
the gas is depicted blue, the electrolyte is depicted red, and the binder is depicted yellow.
where the denominator and numerator correspond to the total pore
space and the pore space in which 𝜌1 ≥ 0.5mu/lu3, respectively.
The number of pore lattice cells in the electrode structures and the
homogenized nanoporous components are denoted by 𝑁pore and 𝑁hom,
respectively. The latter were multiplied by the effective fluid fraction
(1 − 𝑛s). Note, that for the calculation of the saturation only the lattice
cells between the two membranes were considered.

A simulation run consisted of approximately 1,000,000 time steps.
The pressure difference and the saturation were determined every
10,000 time steps during the production run. The simulations stopped
when a further saturation was not possible and led to a steep increase
of 𝛥𝑝.

Fig. 13(a) shows the pressure-saturation curves for the three dif-
ferent microstructures. They follow a sigmoidal behavior which is
typically observed in the literature and can be explained based on the
Young–Laplace equation. For all cases, the final saturation 𝑆1,f inal de-
viated from the theoretical optimum of 100% which indicates residual
gas being entrapped in the pore space (Weydanz et al., 2018; Sauter
et al., 2020).

A remarkable influence of the homogenized microstructures was ob-
served. Compared to the pure electrode, the pressure-saturation curve
for the electrode with binder shows a similar qualitative behavior, but
appears to be shifted by 𝛥𝑝 < 0 and 𝑆1 > 0. Thus, by infiltrating a
binder, the characteristics of the pore space were largely maintained.
Only the enhanced wetting of the binder facilitated the electrolyte
imbibition, led to a reduction of 𝛥𝑝 and increased 𝑆1,f inal close to 100%.
The pressure-saturation curve for the electrode attached to the separa-
tor shows a stronger influence as also the proportion of homogenized
medium was larger compared to the structurally resolved electrode. For
𝑆1 < 15%, it behaves similar to the pure electrode, but is shifted by
𝑆1 > 0. This similarity is because the electrolyte had not yet reached
the separator, but was influenced by the pure electrode only. At larger
saturations, a pressure plateau is reached which was also observed in
the literature (Tavangarrad et al., 2019; Sauter et al., 2020). Here, it
corresponds to the smooth filling of the fully homogenized separator.
Along this plateau, the pressure increased by 0.4 kPa only, while at the
end of the filling, a large pressure increase was observed due to the
electrolyte imbibition into the small pores of the electrode. However,
a notable gas entrapment remains. Note that in general, the shift along
𝑆1 > 0 for the homogenized microstructures was also influenced by
the definition of the saturation (cf. Eq. (19)), where adding lattice cells
with a bounce-back fraction 𝑛s ≠ 0 led to a reduction of the total pore
space.
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Fig. 13(b)-(d) show snapshots of simulation cross sections (𝑥𝑦-plane)
at 𝑡 = 400,000 ts for the three different microstructures. The correspond-
ing state points on the pressure-saturation curves are indicated by the
hashes in Fig. 13(a). Compared to the pure electrode (cf. Fig. 13(b)), in
Fig. 13(c) slightly more electrolyte is imbibed into pores with binder.
Fig. 13(d) shows the electrolyte distribution in the resolved electrode
and the homogenized separator. While the electrode part is not yet
completely filled, a breakthrough of the electrolyte into the separator
is observed. This state corresponds to the pressure plateau shown in
Fig. 13(a). Moreover, Fig. 13(d) indicates some interesting model-
related phenomena. On the one hand, the heterogeneity of 𝑛s values in
the separator can be used to mimic structural effects that influence gas
entrapment, the flow orientation and deformation of the electrolyte-gas
interface. On the other hand, and even more importantly, the interface
thickness in the homogenized separator is constant and not affected by
the distribution of 𝑛s. It is also identical to the interface thickness in
the structurally resolved pores for which 𝑛s = 0.

Similar simulations were conducted by a different research group
in an earlier study (Pereira, 2019) for a two-phase flow (𝐺 = 1,
𝑀 = 1) in a tight sandstone sample composed of different partially
permeable minerals using the approach of Pereira (2016). The results
there confirm that Pereira’s method has deficiencies with respect to
discontinuities of properties in heterogeneous porous media. More
specifically, Figures 7 and 8 in Pereira (2019) show strong density
variations within the invading fluid phase. This is most likely a model
artifact and related to a non-physical diverging interface thickness in
the partially permeable regions.

In contrast, the simulation results of the current study determined
using the HMCSC do not show such density variations. This gives
further evidence of the potential and strength of the HMCSC. Moreover,
it demonstrates possible applications of multi-phase flows in hetero-
geneous porous media going beyond electrochemical energy storage
showcased in this work.

5. Conclusion

A simple but effective lattice Boltzmann approach was presented
which is especially useful for the simulation of multi-phase flows in
heterogeneous porous media, but can also be used to study single-
phase flows. It follows the approach of Pereira (2016) and combines
the grayscale method of Walsh et al. (GS-WBS) (Walsh et al., 2009),
i.e. a homogenization approach, with the multi-component Shan–Chen
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model (MCSC) (Shan and Chen, 1993). Therefore, it was called the
homogenized multi-component Shan–Chen method (HMCSC).

The HMCSC was tested using a broad variety of benchmark sce-
narios that are typically used to validate single- and two-phase flow
phenomena in porous media. The results were compared to analytical
and semi-analytical solutions where available and shown to agree well.
In addition, the HMCSC was applied to study the electrolyte filling of
different variants of a realistic 3D reconstruction of a lithium-ion bat-
tery microstructure. Hereby, the HMCSC was shown to reproduce the
relevant physical phenomena also within the homogenized nanoporous
binder and separator. For example, including the wetting binder led to
a reduction of the capillary pressure and an improvement of the final
degree of saturation which is beneficial for the battery performance.
Moreover, when adding the fully homogenized separator with space-
dependent 𝑛s values, structural effects which influence gas entrapment,
characteristic flow paths, and the deformation of the electrolyte-gas
interface were mimicked appropriately.

The HMCSC brings together the physical as well as numerical
characteristics of GS-WBS and MCSC, i.e. it is applicable to immiscible
fluids with viscosity ratios of up to 5–10. In addition, it overcomes
some deficiencies of GS-WBS as well as the model reported by Pereira
(2016) which are related to discontinuities of properties in heteroge-
neous porous media. In contrast to the aforementioned methods, the
HMCSC is consistent with the original MCSC. This means, the MCSC-
related model parameters 𝐺ads and 𝐺inter can be chosen identically to
the parameters in the original MCSC (cf. Huang et al. (2007)). The
corresponding physical properties, i.e. contact angle and interfacial
tension, are not affected by the homogenization. They are constant and
properties of the fluid only, even in heterogeneous porous media where
𝑛s is space-dependent. Thus, no further parametrization is required.
Moreover, in contrast to the GS-WBS, no artificial force and velocity
discontinuity was observed at interfaces between different porous me-
dia. We assume that this is due to the Shan–Chen forcing scheme that
was used for the HMCSC.

Altogether, the HMCSC is physically motivated, accurate, and ef-
ficient. Nonetheless, it is simple, intuitive, easy to implement, and
allows a straightforward parametrization that is consistent with the
original MCSC. Moreover, the HMCSC shows similar numerical stability
characteristics. The results are promising and give cause to believe
that techniques which alleviate limitations of the original MCSC are
equally applicable to the HMCSC. By the right choice of model param-
eters, the HMCSC can be applied to all situations for which either the
original MCSC or the GS-WBS can be used. However, the HMCSC is
not restricted to these particular applications. All other research fields
where multi-phase fluid flow occurs in heterogeneous and multi-scale
porous media can benefit from this method, too. Potential applications
are subsoil or groundwater flow (Pereira, 2016; Ning et al., 2019), oil
recovery via water injection (Spaid and Phelan, 1998; Welge, 1952),
biofilm growth in porous structures (Jung and Meile, 2021), the char-
acterization of gas diffusion electrodes (Danner et al., 2016), water
transport in gas diffusion layers (Zhu et al., 2021), or electrolyte filling
of batteries (Shodiev et al., 2021; Lautenschlaeger et al., 2022).
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Appendix A. Lattice Boltzmann method

LBM solves the discretized Boltzmann equation

𝑓𝑖
(

𝐱 + 𝐜𝑖𝛥𝑡, 𝑡 + 𝛥𝑡
)

= 𝑓𝑖 (𝐱, 𝑡) −
𝛥𝑡
𝜏

(

𝑓𝑖 (𝐱, 𝑡) − 𝑓 eq
𝑖 (𝐱, 𝑡)

)

, (A.1)

using discrete distribution functions 𝑓𝑖, also referred to as populations.
This approach uses the BGK collision (Bhatnagar et al., 1954), which
describes the relaxation of 𝒇 towards the Maxwell–Boltzmann equi-
librium distribution function 𝒇 eq (cf. Eq. (A.3)) with a characteristic
relaxation time 𝜏. The relaxation time determines the kinematic viscos-
ity via 𝜈 = 𝑐2s (𝜏 − 1∕2𝛥𝑡), where 𝑐2s is the velocity set dependent lattice
speed of sound.

The discretization of Eq. (A.1) is done in velocity space on a regular
square or cubic lattice, for 2D and 3D, respectively. Each lattice cell is
linked to its adjacent neighbors, denoted with 𝑖. The resulting velocity
sets, 𝐜, are called D2Q9 and D3Q27, which is often reduced to D3Q19
for efficiency, and are given in Eqs. (A.7) & (A.8). For completeness,
𝑡 and 𝐱 denote time and lattice location, with 𝛥𝑡 and 𝛥x being the
temporal and spatial step. For the non-dimensional computationally
efficient form, 𝛥x and 𝛥𝑡 are unity. As such they are usually omitted,
but are included in this work for clarity and dimensional consistency.

The homogenization approach by Walsh et al. (2009) is

𝑓𝑖
(

𝐱 + 𝐜𝑖𝛥𝑡, 𝑡 + 𝛥𝑡
)

= (1 − 𝑛s(𝐱))𝑓𝑖 (𝐱, 𝑡)

− (1 − 𝑛s(𝐱))
𝛥𝑡
𝜏

(

𝑓𝑖 (𝐱, 𝑡) − 𝑓 eq
𝑖 (𝐱, 𝑡)

)

+ 𝑛s(𝐱)𝑓𝑖
(

𝐱, 𝑡∗
)

.

(A.2)

ere, 𝑛s ∈ [0, 1] acts as an interpolation factor that scales the fluid and
solid behavior of 𝒇 . From all populations 𝒇 in a lattice cell, the fraction
(1 − 𝑛s) is allowed to flow freely and therefore behaves fluid-like (cf.
first and the second line of Eq. (A.2)), while the fraction 𝑛s is bounced
back and therefore behaves solid-like (cf. third line of Eq. (A.2)). The
latter term uses the pre-collision populations which is highlighted by
𝑡∗. The symbol 𝑖 denotes the direction opposite to 𝑖 with the exception
= 0 = 𝑖. Note that for 𝑛s = 0, Eq. (A.2) is equivalent to the default LB
GK equation that describes pure fluid flow, Eq. (A.1), while for 𝑛s = 1

t corresponds to pure bounce-back that describes a no-slip wall.
The MCSC approach has been fully covered in Section 2. It is

terated that for each component 𝜎 used, a unique discrete popula-
tion function 𝒇𝜎 is needed. Therefore, in the following 𝜎 is explicitly
mentioned in all equations.

A.1. Maxwell–Boltzmann distribution

The Maxwell–Boltzmann equilibrium distribution function is given
by

𝑓 eq
𝑖,𝜎 = 𝑤𝑖𝜌𝜎

[

1 +
𝐜𝑖𝐮

eq
𝜎

𝑐2s
+

(𝐜𝑖𝐮
eq
𝜎 )2

2𝑐4s
−

𝐮eq𝜎 𝐮eq𝜎
2𝑐2s

]

. (A.3)

ere, 𝑤𝑖 are the lattice specific weights, 𝜌𝜎 is the fluid density of
omponent 𝜎 (cf. Eq. (A.4)) and 𝐮eq is the equilibrium velocity (cf.
q. (6)).
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[

𝐜0, 𝐜1, 𝐜2, 𝐜3, 𝐜4, 𝐜5, 𝐜6, 𝐜7, 𝐜8, 𝐜9, 𝐜10, 𝐜11, 𝐜12, 𝐜13, 𝐜14, 𝐜15, 𝐜16, 𝐜17, 𝐜18
]

(A.8)

= 𝛥𝑥
𝛥𝑡

⎡

⎢

⎢

⎣

0 −1 0 0 −1 −1 −1 −1 0 0 1 0 0 1 1 1 1 0 0
0 0 −1 0 −1 1 0 0 −1 −1 0 1 0 1 −1 0 0 1 1
0 0 0 −1 0 0 −1 1 −1 1 0 0 1 0 0 1 −1 1 −1

⎤

⎥

⎥

⎦

Box I.
𝐮
𝒇
t
t

m

.2. Multi-phase physical quantities

The macroscopic physical quantities can be recovered from the
iscrete distribution function. In the following they are expressed in
erms of multiple phases, but apply for single-phase fluids as well.

The fluid density of component 𝜎 is the zeroth moment of 𝒇𝜎 and
etermined as

𝜎 =
∑

𝑖
𝑓𝑖,𝜎 . (A.4)

The velocity of component 𝜎 is the first moment of 𝒇𝜎 and deter-
mined as

𝐮𝜎 = 1
𝜌𝜎

∑

𝑖
𝑓𝑖,𝜎𝐜𝑖. (A.5)

The total pressure 𝑝 of the mixture follows the ideal gas law. It is
xtended by a contribution from the fluid–fluid interaction which is
specially relevant at the interface. 𝑝 is determined as

𝑝(𝐱) = 𝑐2𝑠
[

𝜌(𝐱) + 𝐺inter,𝜎�̄�𝜌𝜎 (𝐱)𝜌�̄� (𝐱)𝛥𝑡2
]

. (A.6)

A.3. Velocity sets

The HMCSC has been implemented for both 2D and 3D simulations.
The corresponding velocity sets used for the simulations of the present
work, i.e. D2Q9 and D3Q19, are given in the following:

D2Q9
[

𝐜0, 𝐜1, 𝐜2, 𝐜3, 𝐜4, 𝐜5, 𝐜6, 𝐜7, 𝐜8
]

(A.7)

= 𝛥𝑥
𝛥𝑡

[

0 −1 −1 −1 0 1 1 1 0
0 1 0 −1 −1 −1 0 1 1

]

he D2Q9 weights are: 𝑤𝑖 = 4∕9 for |𝐜𝑖| = 0, 𝑤𝑖 = 1∕9 for |𝐜𝑖| = 1, and
𝑖 = 1∕36 for |𝐜𝑖| =

√

2 with the speed of sound 𝑐s = 1∕
√

3𝛥𝐱∕𝛥𝑡.

D3Q19
See Box I. The D3Q19 weights are: 𝑤𝑖 = 1∕3 for |𝐜𝑖| = 0, 𝑤𝑖 = 1∕18

or |𝐜𝑖| = 1, and 𝑤𝑖 = 1∕36 for |𝐜𝑖| =
√

2 with the speed of sound
𝑐s = 1∕

√

3𝛥𝐱∕𝛥𝑡.

ppendix B. Guo vs. Shan–chen forcing

It has been reported in literature (Zhu and Ma, 2013; Yehya et al.,
015; Ginzburg, 2016) and also mentioned in the main text of this
aper, that using the GS-WBS can result in velocity discontinuities at
nterfaces between different porous media. This was not observed when
sing the HMCSC (cf. Fig. 5). The reason might be due to the fact
hat the HMCSC uses the Shan–Chen forcing scheme (Shan and Chen,
993), while the Guo forcing scheme (Guo et al., 2002) was used for
he simulations reported in Zhu and Ma (2013), Ginzburg (2016).

The differences between both forcing schemes are briefly outlined
n the following. For brevity regarding the notation, the position 𝐱 is
mitted and the time step is indicated in the exponent. The meaning of
hich is: 𝑡 is the current time step, and 𝑡 denotes the state just before

treaming. To emphasize and avoid confusion, 𝑡∗ is used in addition to
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enote the pre-collision state.
Table C.1
Numerical values of the maxi-
mum velocities 𝑢max that were used
to normalize the velocity profiles
in Fig. 5.
𝑛s,2 𝑢max [lu/ts]

0.001 4.732 ⋅10−4

0.01 4.948 ⋅10−5

0.1 4.500 ⋅10−6

0.5 5.000 ⋅10−7

0.8 1.250 ⋅10−7

𝐆𝐒 −𝐖𝐁𝐒 ∶𝑓 𝑡
𝑖 = (1 − 𝑛s)𝑓 𝑡

𝑖 − (1 − 𝑛s)
𝛥𝑡
𝜏

(

𝑓 𝑡
𝑖 − 𝑓 eq,𝑡

𝑖 (𝐮macro)
)

+ 𝑛s𝑓
𝑡∗
𝑖

(B.9)
+(1 − 𝑛s)𝐹𝑖(𝑭 tot ,𝐮macro)

𝐇𝐌𝐂𝐒𝐂 ∶𝑓 𝑡
𝑖 = (1 − 𝑛s)𝑓 𝑡

𝑖 − (1 − 𝑛s)
𝛥𝑡
𝜏

(

𝑓 𝑡
𝑖 − 𝑓 eq,𝑡

𝑖 (𝐮eq)
)

+ 𝑛s𝑓
𝑡∗
𝑖

(B.10)

Eqs. (B.9) & (B.10) show the GS-type LB BGK equation in the Guo and
Shan–Chen forcing scheme, respectively. The most obvious difference
between both is the force term 𝐹𝑖 in Eq. (B.9). It is directly dependent
on the total force 𝑭 tot . The whole term is scaled by the factor (1 − 𝑛s).
This means that also the fluid–fluid and solid–fluid force contributions
are scaled by (1−𝑛s) leading to an 𝑛s-dependent interfacial tension and
wetting behavior which was shown to be circumvented when using the
HMCSC. Moreover, at the interface between two porous media from
which the 𝑛s values differ, the force term is also scaled differently,
which might be one reason for the force and velocity discontinuity
observed in the literature (Zhu and Ma, 2013; Yehya et al., 2015;
Ginzburg, 2016).

Another might be that 𝑭 tot enters also indirectly into Eq. (B.9) via
macro which in the Guo forcing scheme is needed for the calculation of
eq. However, as 𝐮macro itself is already scaled by (1 − 𝑛s) (cf. Eq. (7)),

he factor (1−𝑛s) might be unintentionally considered several times for
he force calculation.

Now, considering the Shan–Chen forcing scheme, the situation is
uch clearer. 𝑭 tot is only indirectly incorporated into 𝐮eq (cf. Eq. (6))

which in the Shan–Chen forcing scheme is needed for the calculation
of 𝒇 eq. Thus, a repeated scaling by (1 − 𝑛s) is impossible.

Nevertheless, the actual reason why GS-WBS in Guo forcing leads
to velocity discontinuities, while it does not when using the HMCSC in
the Shan–Chen forcing scheme remains still unclear. A detailed analysis
would be necessary which, however, goes far beyond the scope of this
study.

Appendix C. Data

C.1. Maximum velocity in open boundary flow

The maximum velocities in lattice units for the open boundary flow
validation test are presented in Table C.1.
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C.2. Structure generation of homogenized separator

The homogenized separator structure has been created by downsam-
pling the original binarized image by a factor of 20 in each direction.
The original structure consisted of 600 × 820 × 560 voxels with a
oxel length of 2.19 ⋅ 10−8 m. This structure has been subdivided into
0 × 20 × 20 cubes, with the volume fraction of each cube being the
ean volume fraction of its containing voxels. The resulting structure

s of shape 30 × 41 × 28. The voxel length, i.e. 4.38 ⋅ 10−7 m, is
dentical to that of voxels of the electrode structure. But since the
lectrode structure is much larger, the separator has been stacked
ultiple times in both directions perpendicular to the filling direction

o fit the dimensions of the electrode.
This procedure seems trivial and one could get the impression that

t would be possible to run simulations using the gray values from CT
mages directly. However, as discussed in Ref. Baveye et al. (2017),
his is not the case. The model parameter called the bounce-back
raction 𝑛s does not correspond to the physical bounce-back fraction
hat is determined through images. With no information about the
ctual penetrability of the material, the relation between the physical
arameter and the model parameter can only be guessed. To overcome
his limitation, investigating a method for converting both will be one
opic of our future research.

ppendix D. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.advwatres.2022.104320.
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