2,532 research outputs found

    A Hybrid Approach to the Optimization of Multiechelon Systems

    Get PDF
    In freight transportation there are two main distribution strategies: direct shipping and multiechelon distribution. In the direct shipping, vehicles, starting from a depot, bring their freight directly to the destination, while in the multiechelon systems, freight is delivered from the depot to the customers through an intermediate points. Multiechelon systems are particularly useful for logistic issues in a competitive environment. The paper presents a concept and application of a hybrid approach to modeling and optimization of the Multi-Echelon Capacitated Vehicle Routing Problem. Two ways of mathematical programming (MP) and constraint logic programming (CLP) are integrated in one environment. The strengths of MP and CLP in which constraints are treated in a different way and different methods are implemented and combined to use the strengths of both. The proposed approach is particularly important for the discrete decision models with an objective function and many discrete decision variables added up in multiple constraints. An implementation of hybrid approach in the ECLiPSe system using Eplex library is presented. The Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP) and its variants are shown as an illustrative example of the hybrid approach. The presented hybrid approach will be compared with classical mathematical programming on the same benchmark data sets

    Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Get PDF
    In this paper a multi-period multi-product multi-objective aggregate production planning (APP) model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP) approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method

    E-Fulfillment and Multi-Channel Distribution – A Review

    Get PDF
    This review addresses the specific supply chain management issues of Internet fulfillment in a multi-channel environment. It provides a systematic overview of managerial planning tasks and reviews corresponding quantitative models. In this way, we aim to enhance the understanding of multi-channel e-fulfillment and to identify gaps between relevant managerial issues and academic literature, thereby indicating directions for future research. One of the recurrent patterns in today’s e-commerce operations is the combination of ‘bricks-and-clicks’, the integration of e-fulfillment into a portfolio of multiple alternative distribution channels. From a supply chain management perspective, multi-channel distribution provides opportunities for serving different customer segments, creating synergies, and exploiting economies of scale. However, in order to successfully exploit these opportunities companies need to master novel challenges. In particular, the design of a multi-channel distribution system requires a constant trade-off between process integration and separation across multiple channels. In addition, sales and operations decisions are ever more tightly intertwined as delivery and after-sales services are becoming key components of the product offering.Distribution;E-fulfillment;Literature Review;Online Retailing

    Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry

    Get PDF
    In the design of the supply chain, the use of the returned products and their recycling in the production and consumption network is called reverse logistics. The proposed model aims to optimize the flow of materials in the supply chain network (SCN), and determine the amount and location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, maximizing the total profit of operation, minimizing adverse environmental effects, and maximizing customer and supplier service levels have been considered as the main objectives. Accordingly, finding symmetry (balance) among the profit of operation, the environmental effects and customer and supplier service levels is considered in this research. To deal with the uncertainty of the model, scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve the model with actual data from a case study of the steel industry in Iran. The results obtained from the model, solving and validating, compared with actual data indicated that the model could optimize the objectives seamlessly and determine the amount and location of the necessary facilities for the steel industry more appropriately.This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problem

    Многоцелевая модель смешанного целочисленного программирования для построения и оптимизации многоэшелонной сети постановок

    Get PDF
    Застосовується змішане лінійне цілочислове програмування до побудови багатоешелонної мережі поставок (SCN) за допомогою оптимізації перевезень і розподілу в SCN. Запропонована модель дозволяє враховувати багато задач SCN за допомогою розгляду загальних витрат на транспортування і місткості всіх ешелонів. У модель включено три різні цільові функції: перша – мінімізує повні вартості перевезень між усіма ешелонами; друга – мінімізує витрати від збереження і вартості замовлення в центрах розподілу (DCs), а остання цільова функція мінімізує зайву і невикористану потужність заводів і DCs.This paper applies a mixed integer linear programming to designing a multi echelon supply chain network (SCN) via optimizing commodity transportation and distribution of a SCN. Proposed model attempts to aim multi objectives of SCN by considering total transportation costs and capacities of all echelons. The model composed of three different objective functions. The first one is minimizing the total transportation costs between all echelons. Second one is minimizing of holding and ordering costs in distribution centers (DCs) and the last objective function is minimizing the unnecessary and unused capacity of plants and DCs.Применяется смешанное линейное целочисленное программирование к построению многоэшелонной сети поставок (SCN) посредством оптимизации перевозок и распределения в SCN. Предложенная модель позволяет учесть многие задачи SCN посредством рассмотрения общих затрат на транспортировку и емкостей всех эшелонов. В модель включены три различные целевые функции: первая – минимизирует полные стоимости перевозок между всеми эшелонами; вторая – минимизирует затраты от сохранения и стоимости заказа в центрах распределения (DCs), а последняя целевая функция минимизирует излишнюю и неиспользованную способность заводов и DCs

    Modeling of Biological Intelligence for SCM System Optimization

    Get PDF
    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms

    The two-echelon capacitated vehicle routing problem: models and math-based heuristics

    Get PDF
    Multiechelon distribution systems are quite common in supply-chain and logistics. They are used by public administrations in their transportation and traffic planning strategies, as well as by companies, to model own distribution systems. In the literature, most of the studies address issues relating to the movement of flows throughout the system from their origins to their final destinations. Another recent trend is to focus on the management of the vehicle fleets required to provide transportation among different echelons. The aim of this paper is twofold. First, it introduces the family of two-echelon vehicle routing problems (VRPs), a term that broadly covers such settings, where the delivery from one or more depots to customers is managed by routing and consolidating freight through intermediate depots. Second, it considers in detail the basic version of two-echelon VRPs, the two-echelon capacitated VRP, which is an extension of the classical VRP in which the delivery is compulsorily delivered through intermediate depots, named satellites. A mathematical model for two-echelon capacitated VRP, some valid inequalities, and two math-heuristics based on the model are presented. Computational results of up to 50 customers and four satellites show the effectiveness of the methods developed
    corecore