
Research Article
A Hybrid Approach to the Optimization of Multiechelon Systems

PaweB Sitek and JarosBaw Wikarek

Institute of Management and Control Systems, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7,
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In freight transportation there are two main distribution strategies: direct shipping and multiechelon distribution. In the direct
shipping, vehicles, starting from a depot, bring their freight directly to the destination, while in the multiechelon systems, freight
is delivered from the depot to the customers through an intermediate points. Multiechelon systems are particularly useful for
logistic issues in a competitive environment. The paper presents a concept and application of a hybrid approach to modeling
and optimization of the Multi-Echelon Capacitated Vehicle Routing Problem. Two ways of mathematical programming (MP) and
constraint logic programming (CLP) are integrated in one environment. The strengths of MP and CLP in which constraints are
treated in a different way and differentmethods are implemented and combined to use the strengths of both.The proposed approach
is particularly important for the discrete decision models with an objective function and many discrete decision variables added
up in multiple constraints. An implementation of hybrid approach in the ECLiPSe system using Eplex library is presented. The
Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP) and its variants are shown as an illustrative example of the hybrid
approach.The presented hybrid approach will be compared with classical mathematical programming on the same benchmark data
sets.

1. Introduction

In the modern freight transportation there are two main
distribution strategies: direct shipping and multiechelon
distribution. In the direct shipping, vehicles, starting from a
depot, bring their freight directly to the destination, while in
the multiechelon systems, freight is delivered from the depot
to the customers through an intermediate point.

The majority of multiechelon systems presented in the
literature usually explicitly consider the routing problem at
the last level of the transportation system, while a simplified
routing problem is considered at higher levels [1].

In recent years multiechelon systems have been intro-
duced in different areas:

(i) logistics enterprises and express delivery service com-
panies under competitions;

(ii) hypermarkets and supermarkets products distribu-
tion;

(iii) multimodal freight transportation;

(iv) supply chains;
(v) delivery in logistic competition;
(vi) E-commerce and home delivery services under com-

petitions;
(vii) city and public logistics.

The vast majority of models of optimization in freight
transportation and logistics industry have been formulated
as the mixed integer programming (MIP) or mixed integer
linear programming (MILP) problems and solved using the
operations research (OR) methods [2]. Their structures are
similar and proceed from the principles and requirements of
mathematical programming (MP) [2, 3].

Unfortunately, high complexity of decision-makingmod-
els and their integer nature contribute to the poor efficiency
of OR methods. Therefore a new approach to solving these
problems was proposed. As the best structure for the imple-
mentation of this approach, a declarative environment was
chosen [4, 5].
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It seems that better results will be obtained by the
use of the declarative constraint programming paradigms
(CP/CLP) especially in modeling. The CP-based environ-
ments have advantage over traditionalmethods ofmathemat-
ical modeling in that they work with a much broader variety
of interrelated constraints and allow producing “natural”
solutions for highly combinatorial problems.

The main contribution of this paper is hybrid approach
(mixed CP with MP paradigms) to modeling and opti-
mization of the Multi-Echelon Capacitated Vehicle Routing
Problems or the similar vehicle routing problems. In addition,
some extensions and modifications to the standard Two-
Echelon Capacitated Vehicle Routing Problems (2E-CVRP)
are presented.

The paper is organized as follows. In Section 2 the
literature related to Multi-Echelon Vehicle Routing Problems
has been reviewed. Next section is about our motivation and
contribution. In Section 4 the concept of hybrid approach
to modeling and solving and the solution hybrid framework
have been presented. Then, the general description of Multi-
Echelon Vehicle Routing Problems and mathematical model
of 2E-CVRP has been discussed. Finally test instances for
2E-CVRP with extension variants and some computational
results were discussed in Section 6.

2. Literature Review

The Vehicle Routing Problem (VRP) is used to design an
optimal route for a fleet of vehicles to serve a set of customers’
orders (known in advance), given a set of constraints. The
VRP is used in supply chain management in the physical
delivery of goods and services. The VRP is of the NP-hard
type.

Nowadays, the VRP literature offers a wealth of heuristic
and metaheuristic approaches, which are surveyed in the
papers of [6, 7] because exact VRP methods have a size limit
of 50–100 orders depending on the VRP variant and the time-
response requirements.

There are several variants and classes of VRP like
the capacitated VRP (CVRP), VRP with Time Windows
(VRPTW), andDynamicVehicle Routing Problems (DVRP),
sometimes referred to as Online Vehicle Routing Problems
and so forth [6].

Different distribution strategies are used in freight trans-
portation.Themost developed strategy is based on the direct
shipping: freight starts from a depot and arrives directly
to customers. In many applications and real situations, this
strategy is not the best one and the usage of a multiechelon
and particular two-echelon distribution system can optimize
several features as the number of the vehicles, the transporta-
tion costs, loading factor, and timing.

In the literature the multiechelon system and the two-
echelon system in particular refer mainly to supply chain and
inventory problems [1].These problems do not use an explicit
routing approach for the different levels, focusing more on
the production and supply chainmanagement issues.Thefirst
real application of a two-tier distribution network optimizing
the global transportation costs is due to [8] and is related
to the city logistics area. They developed a two-tier freight

distribution system for congested urban areas, using small
intermediate platforms, called satellites (intermediate points
for the freight distribution). This system is developed for a
specific situation and a generalization of such a systemhas not
already been formulated. The complete mathematic model
of The Two-Echelon Capacitated Vehicle Routing Problem
(2E-CVRP) with the solution for sample test data in the
classical approach has been proposed by [7], complemented
with the method for boosting the computing efficiency (see
Section 5).

The increasing role of supply chains and their urban
parts evokes a need to focus greater attention on this
issue in modeling and efficient optimization methods, in
particular.

3. Motivation and Contribution

Based on [2, 5–7, 9–11] and our previous work [3, 4, 12]
we observed some advantages and disadvantages of both
(CP/MP) paradigms.

An integrated approach of constraint programming/
constraint logic programming (CP/CLP) and mixed inte-
ger programming/mixed integer linear programming
(MIP/MILP) can help to solve optimization problems
that are intractable with either of the two methods alone
[13–15]. Although Operations Research (OR) and Constraint
Programming (CP) have different roots, the links between
the two environments have grown stronger in recent years.

Approaches known from the literature are based mostly
on the division of the main problem into sub-problems and
iteratively solving each of them in the proper CP/CLP or
MP/MILP technique.This is usually a collection ofmany local
optimization points of feasible solutions. Other approaches
are based on a “blind” transformation for the CLP to the
MILP model. In most cases, this results in an explosion
of the number of constraints and variables, which has a
negative impact on the effectiveness of optimization. In the
proposed hybrid approach, a very important element is the
transformation of the initial problem and its solution in the
field of domains, which takes place in CP/CLP environment.
Then the converted and “slimmed down” problem is solved
in the MILP environment, thus creating a global approach to
optimization [14, 16].

Both MIP/MILP and finite domain CP/CLP involve
variables and constraints. However, the types of the variables
and constraints that are used, and the way the constraints are
solved, are different in the two approaches [13, 15].

MIP/MILP relies completely on linear equations and
inequalities in integer variables; that is, there are only two
types of constraints: linear arithmetic (linear equations or
inequalities) and integer (stating that the variables have to
take their values in the integer numbers). In finite domain
CP/CLP, the constraint language is richer. In addition to
linear equations and inequalities, there are various other
constraints such disequalities, nonlinear and symbolic (alldif-
ferent, disjunctive, cumulative, etc.) constraints. In both MIP/
MILP and CP/CLP, there is a group of constraints that can be
solved with ease and a group of constraints that are difficult
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to solve.The easily solved constraints inMIP/MILP are linear
equations and inequalities over rational numbers.

Integer constraints are difficult to solve using mathemat-
ical programming methods and often the real problems of
MIP/MILP make them NP-hard.

In CP/CLP, domain constraints with integers and equa-
tions between two variables are easy to solve. The system
of such constraints can be solved over integer variables in
polynomial time. The inequalities between two variables,
general linear constraints (more than two variables), and
symbolic constraints are difficult to solve, which makes
real problems in CP/CLP NP-hard. This type of constraints
reduces the strength of constraint propagation. As a result,
CP/CLP is incapable of finding even the first feasible
solution.

Both environments use various layers of the problem
(methods, the structure of the problem, data) in different
ways. The approach based on mathematical programming
(MIP/MILP) focuses mainly on the methods of optimization
and, to a lesser degree, on the structure of the problem.
However, the data is completely outside the model. The
same model without any changes can be solved for multiple
instances of data. In the approach based on constraint
programming (CP/CLP), due to its declarative nature, the
methods are already built-in. The data and structure of the
problem are used for its modelling in a significantly greater
extent.

To use so much different environments and a variety of
functionalities such as modeling, optimization, and transfor-
mation, the declarative approach was adopted.

The motivation and contribution behind this work were
to create a hybrid method for constrained decision problems
modelling and optimization instead of using mathematical
programming or constraint programming separately.

It follows from the above that what is difficult to solve in
one environment can be easy to solve in the other.

Moreover, such a hybrid approach allows the use of all
layers of the problem to solve it. In our approach, tomodelling
and optimisation, we proposed the environment, where:

(i) knowledge related to the problem can be expressed as
linear, logical, and symbolic constraints;

(ii) the optimization models solved using the proposed
approach can be formulated as a pure model of
MIP/MILP or of CP/CLP, or it can also be a hybrid
model;

(iii) the problem is modelled in the constraint program-
ming environment by CLP-based predicates, which
is far more flexible than the mathematical pro-
gramming environment/very important for decision-
making problems under competitions;

(iv) transforming the decision model to explore its struc-
ture has been introduced by CLP-based predicates;

(v) constrained domains of decision variables, new con-
straints, and values for some variables are transferred
fromCP/CLP intoMILP/MIP/IP byCLP-based pred-
icates;

(vi) optimization is performed by MP-based environ-
ment.

As a result, a more effective hybrid solution environment for
a certain class of decision and optimization problems (2E-
CVRP or similar) was obtained.

4. A Hybrid Solution Framework for
Capacitated Vehicle Routing Problems
(HSFCVRP)

Both environments have advantages and disadvantages. Envi-
ronments based on the constraints such as CLPs are declara-
tive and ensure a very simple modeling of decision problems,
even those with poor structures if any. In the CLP a problem
is described by a set of logical predicates. The constraints
can be of different types (linear, nonlinear, logical, binary,
etc.). The CLP does not require any search algorithms. This
feature is characteristic of all declarative backgrounds, in
whichmodeling of the problem is also a solution, just as it is in
Prolog, SQL, and so on.The CLP seems perfect for modeling
any decision problem.

Numerous MP models of decision-making have been
developed and tested, particularly in the area of decision
optimization. Constantly improved methods and mathemat-
ical programming algorithms, such as the simplex algorithm,
branch and bound, and branch-and-cost, have become clas-
sics now [2].

The proposed method’s strength lies in high efficiency
of optimization algorithms and a substantial number of
tested models. Traditional methods when used alone to
solve complex problems provide unsatisfactory results. This
is related directly to different treatment of variables and
constraints in those approaches (Section 3).

This schema of the hybrid solution framework forCapaci-
tated Vehicle Routing Problems (HSFCVRP) and the concept
of this framework with its predicates (P1–P7) are presented in
Figure 1. The names and descriptions of the CLP predicates
and the implementation environment are shown in Table 1.

From a variety of tools for the implementation of
the CP/CLP, ECLiPSe software [4, 12] of constraint pro-
gramming applications. ECLiPSe contains several constraint
solver libraries, a high-level modelling and control language,
interfaces to third-party solvers, an integrated development
environment, and interfaces for embedding into host envi-
ronments. ECLiPSe was used to model the problem, trans-
form it, and search for a domain solution by constraint
propagation. This solution was then the basis for the final
MP model, developed in the Eplex library [9] of the ECLiPSe

environment. Since ECL𝑖PS𝑒 version 5.7, standalone Eplex
have become the standard. The previous lib(eplex), which
loads Eplex with the range bounds keeper and the IC variant
have now been phased out, so users of these old variants
must now move to using standalone Eplex. The Eplex library
allows MP/MIP/MILP problems to be modelled in ECLiPSe
and solved (optimized) by an external MP solver.
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Figure 1: The scheme of the hybrid solution framework for Capacitated Vehicle Routing Problems (HSFCVRP).

Table 1: Description of CLP predicates.

Predicate Description
P1
CLP environment

The implementation of the model in CLP, the term representation of the problem in the
form of predicates.

P2
CLP environment

The transformation of the original problem aimed at extending the scope of constraint
propagation. The transformation uses the structure of the problem.The most common effect
is a change in the representation of the problem by reducing the number of decision
variables and the introduction of additional constraints and variables, changing the nature
of the variables, and so forth.

P3
CLP environment

Constraint propagation for the model: constraint propagation is one of the basic methods of
CLP. As a result, the variable domains are narrowed, and in some cases, the values of
variables are set, or even the solution can be found.

P4
CLP environment

Generation by the AG:
(i) the model for mathematical programming: generation performed automatically using
CLP predicate;
(ii) additional constraints on the basis of the results obtained by predicate P3;
(iii) domains for different decision variables and other parameters based on the propagation
of constraints. Transmission of this information in the form of fixed value of certain
variables and/or additional constraints to the MP.
Merging files generated by predicate AG into one file. It is a model file format in MP format.

P5
EPLEX environment Finding the consistent area based on information from the CLP.

P6
EPLEX environment The solution of the model from the P4 by MP solver.

P7
EPLEX environment Solution transfer from EPLEX to CLP (predicate eplex get(vars,Zm))

5. Two-Echelon Capacitated Vehicle Routing
Problem as an Illustrative Example

The Two-Echelon Capacitated Vehicle Routing Problem (2E-
CVRP) is an extension of the classical Capacitated Vehicle
Routing Problem (CVRP) where the delivery depot-cust-
omers pass through intermediate depots (called satellites).
As in CVRP, the goal is to deliver goods to customers with
known demands, minimizing the total delivery cost in the
respect of vehicle capacity constraints. Multiechelon systems
presented in the literature usually explicitly consider the
routing problem at the last level of the transportation system,

while a simplified routing problem is considered at higher
levels [7, 8].

In 2E-CVRP, the freight delivery from the depot to
the customers is managed by shipping the freight through
intermediate depots. Thus, the transportation network is
decomposed into two levels (Figure 2): the 1st level connect-
ing the depot (d) to intermediate depots (s) and the 2nd one
connecting the intermediate depots (s) to the customers (c).
The objective is to minimize the total transportation cost of
the vehicles involved in both levels. Constraints on the maxi-
mum capacity of the vehicles and the intermediate depots are
considered, while the timing of the deliveries is ignored.
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Figure 2: Example of 2E-CVRP transportation network.

From a practical point of view, a 2E-CVRP system
operates as follows (Figure 2):

(i) freight arrives at an external/first/base zone, the
depot, where it is consolidated into the 1st-level
vehicles, unless it is already carried into a fully loaded
1st-level vehicles;

(ii) each 1st-level vehicle travels to a subset of satellites
that will be determined by the model and then it will
return to the depot;

(iii) at a satellite, freight is transferred from 1st-level
vehicles to 2nd-level vehicles.

5.1. Mathematical Model. The formal mathematical model
(MILP) was taken from [7]. Table 2 shows the parameters and
decision variables of 2E-CVRP. Figure 2 shows an example of
the 2E-CVRP transportation network for this model:

min ∑
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𝑐
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𝑗
) ⋅ 𝑌
𝑘,𝑖,𝑗
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𝑐
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) for 𝑘 ∈ 𝑉

𝑠
. (24)

The objective function minimizes the sum of the routing and
handling operations costs. Constraints (3) ensure, for 𝑘 = 𝑉

0
,

that each 1st-level route begins and ends at the depot, while
when 𝑘 is a satellite, impose the balance of vehicles entering
and leaving that satellite. Constraints (5) force each 2nd-level
route to begin and end to one satellite and the balance of
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Table 2: Summary indices, parameters, and decision variables.

Symbol Description
Indices

𝑛
𝑠 Number of satellites
𝑛
𝑐 Number of customers
𝑉
0
− [V
0
] Deport

𝑉
𝑠
= {V
𝑠1
, V
𝑠2
, . . . , Vsn} Set of satellites

𝑉
𝑐
= {V
𝑐1
, V
𝑐2
, . . . , Vcn} Set of customers

Parameters
𝑀
1 Number of the 1st-level vehicles

𝑀
2 Number of the 2nd-level vehicles

𝐾
1 Capacity of the vehicles for the 1st level

𝐾
2 Capacity of the vehicles for the 2nd level

𝑑
𝑖 Demand required by customer 𝑖
𝑐
𝑖,𝑗 Cost of the arc(𝑖, 𝑗)
𝑠
𝑘 Cost of loading/unloading operations of a unit of freight in satellite 𝑘

Decision variables
𝑋
𝑖,𝑗 An integer variable of the 1st-level routing is equal to the number of 1st-level vehicles using arc(𝑖, 𝑗)

𝑌
𝑘,𝑖,𝑗

A binary variable of the 2nd-level routing is equal to 1 if a 2nd-level vehicle makes a route start from
satellite 𝑘 and go from node 𝑖 to node 𝑗 and 0 otherwise

𝑄1
𝑖,𝑗

The freight flow arc(𝑖, 𝑗) for the first level
𝑄2
𝑘,𝑖,𝑗

The freight arc(𝑖, 𝑗) where 𝑘 represents the satellite where the freight is passing through.

𝑍
𝑘,𝑗

A binary variable that is equal to 1 if the freight to be delivered to customer 𝑗 is consolidated in
satellite 𝑘 and 0 otherwise

Table 3: Summary indices, parameters, and decision variables for transformed model.

Symbol Description
Indices

𝑛
𝑠 Number of satellites
𝑛
𝑐 Number of customers
𝑇𝑠 Number of possible routes from depot to satellites (CLP-determined)
𝑇𝑐 Number of possible routes from satellites to customers (CLP-determined)
𝑖 Satellite index
𝑙 Depot-satellite route index
𝑗 Customer index
𝑘 Satellite-customer route index
𝑀
1 Number of the 1st-level vehicles

𝑀
2 Number of the 2nd-level vehicles

Input parameters
𝑠
𝑠 Cost of loading/unloading operations of a unit of freight in satellite 𝑠
𝐷
𝑗 Demand required by customer 𝑗

𝑃𝑐
𝑘 Total demand for route 𝑘 (CLP-determined)

𝐾𝑠
𝑙 Route 𝑙 cost (CLP-determined)

𝐾𝑐
𝑘 Route 𝑘 cost (CLP-determined)

𝑈
𝑙,𝑖 If 𝑖 is located on route 𝑙 𝑈

𝑙,𝑖
= 1, otherwise 𝑈

𝑙,𝑖
= 0

𝑊
𝑘,𝑠 If satellite or receipient s is located on route 𝑘 𝑊

𝑘,𝑠
= 1, otherwise𝑊

𝑘,𝑠
= 0

𝐾
1 Capacity of the vehicles for the 1st level

Decision variables

𝑌
𝑙

If the tour takes place along the route 𝑙 from the route set generated for level 1, then 𝑌
𝑙
= 1, otherwise

𝑌
𝑙
= 0

𝑋
𝑘

If the tour takes place along the route 𝑘 from the route set generated for level 2, then𝑋
𝑘
= 1,

otherwise𝑋
𝑘
= 0

Computed quantities
𝑃𝑠
𝑙 Total demand for route 𝑙
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Table 4: Decision variables and constraints before 𝑖 after transformation.

Before transformation After transformation Description
Decision variables

𝑋
𝑖,𝑗 𝑋𝑇

𝑙

Transformation of decision variables level 1 from the arc model arc(𝑖, 𝑗) to the route
model (𝑙).𝑄1

𝑖,𝑗

𝑌
𝑘,𝑖,𝑗

𝑌𝑇
𝑘

Transformation of decision variables level 2 from the arc model arc(𝑖, 𝑗) to the route
model (𝑘).𝑄2

𝑘,𝑖,𝑗

𝑍
𝑘,𝑗

Constraints

(1) (T1) Objective function after transformation, different decision variables, the same in
terms of the essence and functionality.

(2) (T7) Number of 1-type resources (CLP-determined)

(3) — Supply balance equation for 1-level nodes is unnecessary after transformation. This
is a result of the route model to which particular vehicles are allocated.

(4) (T2) Number of 2-type resources (CLP-determined)

(5) — Vehicle balance equation for level 2 is unnecessary after transformation. This is a
result of the route model to which particular vehicles are allocated.

(6) (T4) Supply balance for satellites.
(7) (T6) Number of tours for level 1 resulting from the capacity of vehicles.

(8) — Supply balance constraint for recipients is not required. In the route model, the
supply volume is calculated for the route.

(9) — Supply volume constraint resulting from the vehicle capacity is unnecessary for
level 2. The routes are generated only for the allowable capacities.

(10) — No return loads from satellite to depot (10). The routes are generated so as to
automatically ensure this.

(11) — No return loads from the customer to satellite (11). The routes are generated so as to
automatically ensure this.

(12), (13) — No 𝑧
𝑘,𝑗

variable after transformation.
(14)–(16) (T3) No overlapping deliveries to customers.
(17) — This is ensured by the route model.
(18)–(20) (T8), (T9) Integer and binary
(21)–(23) — Additional constraints are not necessary in the model with routes.

vehicles entering and leaving each customer. The number
of the routes in each level must not exceed the number of
vehicles for that level, as imposed by constraints (2) and
(4). The flows balance on each network node is equal to
the demand of this node, except for the depot, where the
exit flow is equal to the total demand of the customers and
for the satellites at the 2nd-level, where the flow is equal
to the demand (unknown) assigned to the satellites which
provide constraints (6) and (8). Moreover, constraints (6)
and (8) forbid the presence of subtours not containing the
depot or a satellite, respectively. In fact, each node receives an
amount of flow equal to its demand, preventing the presence
of subtours. Consider, for example, that a subtour is present
between the nodes 𝑖,𝑗, and 𝑘 at the 1st level. It is easy to
check that, in such a case, any value does not exist for the
variables𝑄1

𝑖,𝑗
,𝑄1
𝑗,𝑘
, and𝑄1

𝑘,𝑖
, satisfying the constraints (6) and

(8). The capacity constraints are formulated in (7) and (9),
for the 1st-level and the 2nd-level, respectively. Constraints
(10) and (11) do not allow residual flows in the routes, making
the returning flow of each route to the depot (1st-level)

and to each satellite (2nd-level) equal to 0. Constraints (12)
and (13) indicate that a customer 𝑗 is served by a satellite
𝑘 (𝑍
𝑘,𝑗

= 1) only if it receives freight from that satellite
(𝑌
𝑘,𝑖,𝑗

= 1). Constraint (16) assigns each customer to one
and only one satellite, while constraints (14) and (15) indicate
that there is only one 2nd-level route passing through each
customer and connect the two levels. Constraint (17) allows
the start of a 2nd-level route from a satellite 𝑘 only if a
1st-level route has served it. Constraints from (17) to (20)
result from the character of the MILP-formulated problem.
Additional constraints were introduced by [7] to increase the
solution search efficiency. They strengthen the continuous
relaxation of the flowmodel. In particular, authors in [7] used
two families of cuts, one applied to the assignment variables
derived from the subtour elimination constraints (edge cuts)
and the other based on the flows. The edge-cuts explicitly
introduce the well-known subtours elimination constraints
derived from the TSP (Traveling Sales Problem). They can
be expressed as constraint (21). The inequalities explicitly
forbid the presence in the solution of subtours not containing
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Table 5: The results of numerical examples for 2E-CVRP.

E-n13-k4 HSFCVRP (P3) MP + Edge-Cuts (P2) MP (P1)
𝑇 Fc 𝑇 Fc 𝑇 Fc

E-n13-k4-01 17,36 280 600∗ 280 600∗ 280
E-n13-k4-02 17,22 286 600∗ 286 600∗ 286
E-n13-k4-03 15,39 284 600∗ 284 600∗ 284
E-n13-k4-04 10,09 218 44 218 65 218
E-n13-k4-05 9,58 218 48 218 108 218
E-n13-k4-06 11,05 230 78 230 154 230
E-n13-k4-07 9,16 224 39 224 64 224
E-n13-k4-08 13,03 236 46 236 75 236
E-n13-k4-09 13,22 244 67 244 93 244
E-n13-k4-10 14,08 268 107 268 183 268
E-n13-k4-11 18,91 276 159 276 600∗ 276
E-n13-k4-12 20,38 290 600∗ 290 600∗ 290
E-n13-k4-13 15,14 288 600∗ 288 600∗ 288
E-n13-k4-14 9,53 228 29 228 67 228
E-n13-k4-15 9,38 228 42 228 86 228
E-n13-k4-16 11,48 238 61 238 90 238
E-n13-k4-17 10,38 234 40 234 64 234
E-n13-k4-18 10,28 246 52 246 79 246
E-n13-k4-19 11,30 254 78 254 126 254
E-n13-k4-20 12,14 276 76 276 487 276
E-n13-k4-21 15,11 286 600∗ 286 600∗ 286
E-n13-k4-22 9,97 312 600∗ 312 600∗ 312
E-n13-k4-23 15,36 242 51 242 50 242
E-n13-k4-24 14,39 242 54 242 92 242
E-n13-k4-25 10,38 252 67 252 121 252
E-n13-k4-26 12,19 248 36 248 67 248
E-n13-k4-27 12,02 260 51 260 69 260
E-n13-k4-28 24,09 268 53 268 65 268
E-n13-k4-29 17,11 290 83 290 94 290
E-n13-k4-30 15,00 300 104 300 136 290
E-n13-k4-31 16,27 246 61 246 84 246
E-n13-k4-32 10,28 246 100 246 600∗ 246
E-n13-k4-33 15,17 258 93 258 123 258
E-n13-k4-34 11,00 252 48 252 55 252
E-n13-k4-35 8,92 264 40 264 52 264
E-n13-k4-36 11,11 272 97 272 138 272
E-n13-k4-37 16,06 296 109 296 213 296
E-n13-k4-38 16,69 304 124 304 600∗ 304
E-n13-k4-39 12,58 248 58 248 65 248
E-n13-k4-40 11,50 254 27 254 38 254
E-n13-k4-41 16,19 256 58 256 79 256
E-n13-k4-42 14,20 262 58 262 74 262
E-n13-k4-43 14,34 262 62 262 64 262
E-n13-k4-44 15,28 262 40 262 41 262
E-n13-k4-45 15,14 262 32 262 55 262
E-n13-k4-46 11,42 280 135 280 600∗ 280
E-n13-k4-47 12,20 274 95 274 142 274
E-n13-k4-48 13,17 280 76 280 257 280
E-n13-k4-49 11,16 280 79 280 117 280
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Table 5: Continued.

E-n13-k4 HSFCVRP (P3) MP + Edge-Cuts (P2) MP (P1)
𝑇 Fc 𝑇 Fc 𝑇 Fc

E-n13-k4-50 12,30 280 63 280 83 280
E-n13-k4-51 14,97 280 48 280 62 280
E-n13-k4-52 15,30 292 63 292 98 292
E-n13-k4-53 12,33 300 66 300 150 300
E-n13-k4-54 14,28 304 94 304 600∗ 304
E-n13-k4-55 14,19 310 216 310 600∗ 310
E-n13-k4-56 17,05 310 60 310 162 310
E-n13-k4-57 14,13 326 221 326 600∗ 326
E-n13-k4-58 9,17 326 78 326 600∗ 326
E-n13-k4-59 12,02 326 56 326 112 326
E-n13-k4-60 13,91 326 42 326 68 326
E-n13-k4-61 12,20 338 600∗ 338 600∗ 338
E-n13-k4-62 10,05 350 79 350 365 350
E-n13-k4-63 11,92 350 83 350 239 350
E-n13-k4-64 10,13 358 122 358 600∗ 358
E-n13-k4-65 12,94 358 219 358 600∗ 358
E-n13-k4-66 11,91 400 600∗ 400 600∗ 400
∗Calculations stopped after 600 s, the feasible value of the objective function.
Fc: the optimal value of the objective function.

Table 6: The results of numerical examples for 2E-CVRP with logical constraints.

E-n13-k4 Fc 𝑇 𝐶 𝑉 exCustomer∗

E-n13-k4-01 284 15,36 21 788 2,3; 2,4; 2,6; 2,7; 1,8; 1,9
E-n13-k4-07 240 7,16 21 788 2,3; 2,4; 2,6; 2,7; 1,8; 1,9
E-n13-k4-11 290 16,91 21 788 2,3; 2,4; 2,6; 2,7; 1,8; 1,9
E-n13-k4-20 280 13,14 21 788 2,3; 2,4; 2,6; 2,7; 1,8; 1,9
E-n13-k4-26 270 10,72 21 788 2,3; 2,4; 2,6; 2,7; 1,8; 1,9
E-n13-k4-32 270 10,88 21 788 2,3; 2,4; 2,6; 2,7; 1,8; 1,9
E-n13-k4-33 276 14,124 21 788 2,3; 2,4; 2,6; 2,7; 1,8; 1,9
E-n13-k4-40 284 11,23 21 788 2,3; 2,4; 2,6; 2,7; 1,8; 1,9
E-n13-k4-46 308 11,12 21 788 2,3; 2,4; 2,6; 2,7; 1,8; 1,9
E-n13-k4-54 334 14,28 21 788 2,3; 2,4; 2,6; 2,7; 1,8; 1,9
∗Pairs of customers that cannot be served on one route.

the depot, already forbidden by constraint (8). The number
of potential valid inequalities are exponential, so that each
customer reduces the flow of an amount equal to its demand
𝑑
𝑖
-constraints (22) and (23).

5.2. Model Transformation. One of the most important fea-
tures that characterize the hybrid approach is the ease ofmod-
eling and transformation of the problem.The transformation
is usually used to reduce the size of the problem and increase
the efficiency of the search for a solution. In this case the
transformation is based on the transition fromarc to the route
notation. During the transformation in the CLP the TSP,
traveling salesman problem, is repeatedly solved and only the
best routes in terms of costs are generated. In the process of
transformation, the capacity vehicles constraints and those
resulting from the set of orders are taken into account at both

first and second level. For 2E-CVRP variants, time and logic
constraints are also included.

The obtained optimization model after the transforma-
tion (T1)–(T9) has different decision variables (Table 3) and
different constraints than those in the MILP (1)–(24). Some
of the decision variables are redundant; other variables are
subject to aggregation. This results in a very large reduction
in their number. Decision variables before and after the
transformation are shown in Table 4.The transformation also
reduces or eliminates some of the constraints of the model
(Table 4):

min
𝑇𝑐

∑
𝑘=1

(𝑌𝑇
𝑘
⋅ 𝐾𝑐
𝑘
) +
𝑇𝑠

∑
𝑙

𝑋𝑇
𝑙
⋅ 𝐾𝑠
𝑙 (T1)

𝑇𝑐

∑
𝑘=1

𝑌𝑇
𝑘
≤ 𝑀
2 (T2)



10 Mathematical Problems in Engineering

Table 7: (a) The results of numerical examples for 2E-CVRP-TW (hard windows). (b) The results of numerical examples for 2E-CVRP-TW
(soft windows, penalty = 30).

(a)

E-n13-k4 𝑇
40 50 60 70 80 90 100 110 130 150 160

E-n13-k4-01 — — — — — — 280 280 280 280 280
E-n13-k4-07 — 224 224 224 224 224 224 224 224 224 224
E-n13-k4-11 — — 304 276 276 276 276 276 276 276 276
E-n13-k4-20 — 294 280 276 276 276 276 276 276 276 276
E-n13-k4-26 — 248 248 248 248 248 248 248 248 248 248
E-n13-k4-32 — — 262 246 246 246 246 246 246 246 246
E-n13-k4-33 — 258 258 258 258 258 258 258 258 258 258
E-n13-k4-40 — 284 284 254 254 254 254 254 254 254 254
E-n13-k4-46 — — 308 308 280 280 280 280 280 280 280
E-n13-k4-54 — — — 324 304 304 304 304 304 304 304

(b)

E-n13-k4 𝑇
40 50 60 70 80 90 100 110 130 150 160

E-n13-k4-01 358 354 346 346 310 310 280 280 280 280 280
E-n13-k4-07 270 224 224 224 224 224 224 224 224 224 224
E-n13-k4-11 306 306 304 276 276 276 276 276 276 276 276
E-n13-k4-20 366 294 280 276 276 276 276 276 276 276 276
E-n13-k4-26 292 248 248 248 248 248 248 248 248 248 248
E-n13-k4-32 322 278 262 246 246 246 246 246 246 246 246
E-n13-k4-33 336 258 258 258 258 258 258 258 258 258 258
E-n13-k4-40 344 284 284 254 254 254 254 254 254 254 254
E-n13-k4-46 344 310 308 308 280 280 280 280 280 280 280
E-n13-k4-54 342 334 334 324 304 304 304 304 304 304 304

𝑇𝑐

∑
𝑘=1

𝑌𝑇
𝑘
⋅ 𝑊
𝑘,𝑗
= 1 for 𝑗 = 1, . . . , 𝑛

𝑐 (T3)

𝑇𝑐

∑
𝑘=1

𝑋
𝑘
⋅ 𝑊
𝑘,𝑖
⋅ 𝑃𝑐
𝑘
=
𝑇𝑠

∑
𝑙

𝑃𝑠
𝑙
⋅ 𝑈
𝑙,𝑖

for 𝑖 = 1, . . . , 𝑛
𝑠 (T4)

𝑛𝑠

∑
𝑖=1

𝑇𝑐

∑
𝑘=1

𝑌𝑇
𝑘
⋅ 𝑊
𝑘,𝑖
⋅ 𝑃𝑐
𝑘
=
𝑇𝑠

∑
𝑙

𝑃𝑠
𝑙 (T5)

𝑋𝑇
𝑙
⋅ 𝐾
1
≥ 𝑃𝑠
𝑙

for 𝑙 = 1, . . . , 𝑇𝑠 (T6)

𝑇𝑠

∑
𝑙=1

𝑋𝑇
𝑙
≤ 𝑀
1 (T7)

𝑌𝑇
𝑘
∈ {0, 1} for 𝑘 = 1, . . . , 𝑇𝑐 (T8)

𝑋𝑇
𝑙
∈ 𝐶 for 𝑙 = 1, . . . , 𝑇𝑠. (T9)

6. Computational Tests: Two-Echelon
Capacitated Vehicle Routing Problem

For the final validation of the proposed hybrid approach, the
benchmark data for 2E-CVRP was selected. 2E-CVRP, a well

described andwidely discussed problem, corresponded to the
issues to which our approach was applied.

The instances for computational exampleswere built from
the existing instances for CVRP [17] denoted as E-n13-k4. All
the instance sets can be downloaded from the website [18].
The instance set was composed of 5 instances with 1 depot, 12
customers, and 2 satellites. The full instance consisted of 66
instances because the two satellites were placed over twelve
customers in all 66 possible ways (number of combinations:
2 out of 12). All the instances had the same position for depot
and customers, whose coordinates were the same as those
of instance E-n13-k4. The instances differed in the choice of
two customers who were also satellites (En13-k4-4, En13-k4-
5, En13-k4-6, En13-k4-12, etc.).

Numerical experiments were conducted for the same data
in three runs. The first run was a classical implementation
of models (1)–(20) and its solution in the MP-based envi-
ronment (P1). The second run used the same environment
for models (1)–(24) with additional edge-cuts (P2). In the
next run the models (1)–(20) were transformed (T1)–(T9)
and solved in the proposed hybrid solution framework (P3).
The calculations were performed using a computer with
the following specifications: Intel(R) Core(TM) 2, 2 × 2,
40GHZ RAM 2GB. The analysis of the results for the
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Figure 3: (a) Example of 2E-CVRP transportation network for E-n13-k4-20 instance. (b) Example of 2E-CVRP transportation network for
E-n13-k4-20 instance with logic constraints. (c) Example of 2E-CVRP-TW transportation network for E-n13-k4-20 instance.

benchmark instances demonstrates that the hybrid approach
may be a superior approach to the classical mathematical
programming. For all the examples, the solutions were found
4–40 times faster than they are in the classical approach
(Table 5). In many cases the calculations ended after 600 s
as they failed to indicate that the solution was optimal. The
number of constraints (𝐶) and decision variables/integer
(𝑉/int𝑉) was, for example, P1, P2, and P3, respectively, 𝐶 =
1262, 𝑉 = 744/368 for P1, 𝐶 = 1982, 𝑉 = 744/368 for P2, and
𝐶 = 21, 𝑉 = 1082/1079 for P3. Thus, the combinatorial spaces
(𝑉 × 𝐶) for illustrative examples were

(i) P1 ≈ 1 000 000;
(ii) P2 ≈ 1 400 000;
(iii) P3 ≈ 22 700.

The logical relationship between mutually exclusive vari-
ableswas taken into account, which in real-world distribution
systems means that the same vehicle cannot transport two
types of selected goods or two points cannot be handled at
the same time.

Those constraints result from technological, marketing,
sales safety or competitive reasons. Only declarative applica-
tion environments based on constraint satisfaction problem

(CSP)make it possible to implement of this type of constraint.
Table 6 presents the results of the numerical experiments
conducted for 2E-CVRPs with logical constraints relating to
the situation where two delivery points (customers) can be
handled separately but not together in one route.

The final stage of the research was to optimize Two-
Echelon Capacitated VRP with Time Windows (2E-CVRP-
TW). This problem is the extension of 2E-CVRP where time
windows on the arrival or departure time at the satellites
and/or at the customers are considered. The time windows
can be hard or soft.This variant of the 2E-CVRP is extremely
important in a competitive environment.

In the first case the time windows cannot be violated,
while in the second one if they are violated a penalty cost
is paid. 2E-CVRP-TW has been implemented in a hybrid
environment.This was followed by the optimization problem
under the time constraints (time windows). There have been
experiments with both windows hard and windows soft. The
results are shown in Table 7(a) and Table 7(b). The impact of
these constraints on the value of the objective function can be
clearly seen. For instance E-n13-k4-20 also shows graphically
the optimal way of delivery (see Figure 3(a)) as well as the
impact on the route of logical constraints (Figure 3(b)) and
the time window (Figure 3(c)).
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7. Conclusion and Discussion on
Possible Extension

The efficiency of the proposed approach is based on the
reduction of the combinatorial problem and using the
best properties of both environments. The hybrid approach
(Table 3) makes it possible to find solutions in the shorter
time.

In addition to solving larger problems faster, the proposed
approach provides virtually unlimitedmodeling options with
many types of constraints. Therefore, the proposed solution
is recommended for decision-making problems under com-
petitions and that has a structure similar to the presented
models (Section 5). This structure is characterized by the
constraints and objective function in which the decision
variables are added together.

Further work will focus on running the optimization
models with nonlinear and other logical constraints, multi-
objective, uncertainty, and so on, in the hybrid optimization
framework.The planned experiments will employHSFCVRP
for Two-Echelon Capacitated VRP with Satellites Synchro-
nization, 2E-CVRP with Pickup and Deliveries, and other
VRP issues in Supply Chain Sustainability [19] and other
routing problems [20].
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