37 research outputs found

    Topology Control, Routing Protocols and Performance Evaluation for Mobile Wireless Ad Hoc Networks

    Get PDF
    A mobile ad-hoc network (MANET) is a collection of wireless mobile nodes forming a temporary network without the support of any established infrastructure or centralized administration. There are many potential applications based the techniques of MANETs, such as disaster rescue, personal area networking, wireless conference, military applications, etc. MANETs face a number of challenges for designing a scalable routing protocol due to their natural characteristics. Guaranteeing delivery and the capability to handle dynamic connectivity are the most important issues for routing protocols in MANETs. In this dissertation, we will propose four algorithms that address different aspects of routing problems in MANETs. Firstly, in position based routing protocols to design a scalable location management scheme is inherently difficult. Enhanced Scalable Location management Service (EnSLS) is proposed to improve the scalability of existing location management services, and a mathematical model is proposed to compare the performance of the classical location service, GLS, and our protocol, EnSLS. The analytical model shows that EnSLS has better scalability compared with that of GLS. Secondly, virtual backbone routing can reduce communication overhead and speedup the routing process compared with many existing on-demand routing protocols for routing detection. In many studies, Minimum Connected Dominating Set (MCDS) is used to approximate virtual backbones in a unit-disk graph. However finding a MCDS is an NP-hard problem. In the dissertation, we develop two new pure localized protocols for calculating the CDS. One emphasizes forming a small size initial near-optimal CDS via marking process, and the other uses an iterative synchronized method to avoid illegal simultaneously removal of dominating nodes. Our new protocols largely reduce the number of nodes in CDS compared with existing methods. We show the efficiency of our approach through both theoretical analysis and simulation experiments. Finally, using multiple redundant paths for routing is a promising solution. However, selecting an optimal path set is an NP hard problem. We propose the Genetic Fuzzy Multi-path Routing Protocol (GFMRP), which is a multi-path routing protocol based on fuzzy set theory and evolutionary computing

    GSAR: Greedy Stand-Alone Position-Based Routing protocol to avoid hole problem occurance in Mobile Ad Hoc Networks

    Get PDF
    The routing process in a Mobile Ad Hoc Network (MANET) poses critical challenges because of its features such as frequent topology changes and resource limitations. Hence, designing a reliable and dynamic routing protocol that satisfies MANET requirements is highly demanded. The Greedy Forwarding Strategy (GFS) has been the most used strategy in position-based routing protocols. The GFS algorithm was designed as a high-performance protocol that adopts hop count in soliciting shortest path. However, the GFS does not consider MANET needs and is therefore insufficient in computing reliable routes. Hence, this study aims to improve the existing GFS by transforming it into a dynamic stand-alone routing protocol that responds swiftly to MANET needs, and provides reliable routes among the communicating nodes. To achieve the aim, two mechanisms were proposed as extensions to the current GFS, namely the Dynamic Beaconing Updates Mechanism (DBUM) and the Dynamic and Reactive Reliability Estimation with Selective Metrics Mechanism (DRESM). The DBUM algorithm is mainly responsible for providing a node with up-to-date status information about its neighbours. The DRESM algorithm is responsible for making forwarding decisions based on multiple routing metrics. Both mechanisms were integrated into the conventional GFS to form Greedy Stand-Alone Routing (GSAR) protocol. Evaluations of GSAR were performed using network simulator Ns2 based upon a defined set of performance metrics, scenarios and topologies. The results demonstrate that GSAR eliminates recovery mode mechanism in GFS and consequently improve overall network performance. Under various mobility conditions, GSAR avoids hole problem by about 87% and 79% over Greedy Perimeter Stateless Routing and Position-based Opportunistic Routing Protocol respectively. Therefore, the GSAR protocol is a reasonable alternative to position-based unicast routing protocol in MANET

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Spectrum and transmission range aware clustering for cognitive radio ad hoc networks

    Get PDF
    Cognitive radio network (CRN) is a promising technology to overcome the problem of spectrum shortage by enabling the unlicensed users to access the underutilization spectrum bands in an opportunistic manner. On the other hand, the hardness of establishing a fixed infrastructure in specific situations such as disaster recovery, and battlefield communication imposes the network to have an ad hoc structure. Thus, the emerging of Cognitive Radio Ad Hoc Network (CRAHN) has accordingly become imperative. However, the practical implementation of CRAHN faced many challenges such as control channel establishment and the scalability problems. Clustering that divides the network into virtual groups is a reliable solution to handle these issues. However, previous clustering methods for CRAHNs seem to be impractical due to issues regarding the high number of constructed clusters and unfair load distribution among the clusters. Additionally, the homogeneous channel model was considered in the previous work despite channel heterogeneity is the CRN features. This thesis addressed these issues by proposing two clustering schemes, where the heterogeneous channel is considered in the clustering process. First, a distributed clustering algorithm called Spectrum and Transmission Range Aware Clustering (STRAC) which exploits the heterogeneous channel concept is proposed. Here, a novel cluster head selection function is formulated. An analytical model is derived to validate the STRAC outcomes. Second, in order to improve the bandwidth utilization, a Load Balanced Spectrum and Transmission Range Aware Clustering (LB-STRAC) is proposed. This algorithm jointly considers the channel heterogeneity and load balancing concepts. Simulation results show that on average, STRAC reduces the number of constructed clusters up to 51% compared to conventional clustering technique, Spectrum Opportunity based Clustering (SOC). In addition, STRAC significantly reduces the one-member cluster ratio and re-affiliation ratio in comparison to non-heterogeneity channel consideration schemes. LB-STRAC further improved the clustering performance by outperforming STRAC in terms of uniformity and equality of the traffic load distribution among all clusters with fair spectrum allocation. Moreover, LB-STRAC has been shown to be very effective in improving the bandwidth utilization. For equal traffic load scenario, LB-STRAC on average improves the bandwidth utilization by 24.3% compared to STRAC. Additionally, for varied traffic load scenario, LB-STRAC improves the bandwidth utilization by 31.9% and 25.4% on average compared with STRAC for non-uniform slot allocation and for uniform slot allocation respectively. Thus, LB-STRAC is highly recommended for multi-source scenarios such as continuous monitoring applications or situation awareness applications

    Un cadre inter-couches pour la protection contre les interférences dans les réseaux ad-hoc radio cognitive

    Get PDF
    A fixed spectrum assignment scheme has a problem with resource deficiency in a wireless network. In 2002, the US Federal Communication Commission (FCC) reported that the radio spectrum was 20% to 85% under-utilized. The insufficient use of the spectrum is a critical issue for radio communication; as communication grows, a fixed spectrum becomes more limiting. The FCC then changed its spectrum management policy to make it more flexible by investigating the cognitive radio (CR) approach. Cognitive radio is a type of intelligent radio that explores the radio frequency environment, learns, and decides to use the unused portion of the frequency. The main functions of a CR are sensing, decision making, and sharing. However, these radios have to respect the standard wireless infrastructures by ensuring the least impact with their devices, also known as primary radios. Coexistence between CR systems and primary systems requires dedicated observation processes and interference management. In this thesis, observation from a CR point of view is presented. The overlapping area between a CR transmitter and primary radio (PR) transmitter is analysed so that it can be taken into account. The impact of this area is learnt by simulation and presented in Chapter 4. As a consequence, potential interference is envisaged. Along with observation, we investigate a proper mechanism to better prevent perturbation on PR devices using the Grey model and Kalman filter as a prediction model for predicting the density of primary receivers. In addition, we provide a strategy to combine the obtained observations into a metric that can be used in routing design in the context of coexistence between Cognitive Radio Networks (CRNs) and primary networks. The proposed strategy, using fuzzy logic, is presented in Chapter 5. In this chapter, we investigate how the routing layer reacts and makes the right decisions to maximise the spectrum resources, while avoiding interference with the primary receivers. For instance, a CR node can operate in an overlap region if primary receivers are inactive within this area. Also, we propose a routing mechanism based on the DYMO routing protocol that takes into account the observed relative impact. In the same chapter, we provide some practical scenarios illustrating the usefulness of our proposal. Interconnecting the CR nodes in CRNs is also a critical problem for the establishment of the network. We therefore present a beacon-based dissemination process in Chapter 6. In this chapter, we also describe a practical device designed for cognitive radio experiments. Even though our work affects different protocol layers, the designed framework is cross-layered. Indeed, the different components of the proposed framework access the various layers to retrieve information, process it, and react accordingly. Thus, our work constitutes a cross-layer framework for a local cognitive radio that aims to minimise the interference and maximise the network resources in cognitive radio networks.Le plan d’attribution du spectre présente un problème de déficit de ressources dans les réseaux sans fil. En 2002, la FCC (Federal Communication Commission) a rapporté que le spectre radioélectrique était de 20% à 85% sous-utilisé. L’utilisation inefficace du spectre est un problème majeur qui doit être résolu si l’on veut que les communications radio se développent. La FCC a ensuite changé la politique de gestion du spectre pour la rendre plus souple en s’interessant à l’approche radio cognitive (CR). La radio cognitive est un type de radio intelligente qui explore l’environnement de fréquences radio, apprend et décide d’utiliser la partie inutilisée du spectre. Les principales fonctions de la CR sont la détection, la prise de décision, et le partage. Cependant, ces radios doivent respecter les infrastructures sans fil standards en minimisant leur impact sur les appareils prioritaires, également appelés systèmes primaires. La coexistence entre les systèmes CR et les systèmes primaires nécessite des processus d’observation et de gestion des interférences dédiés. Dans cette thèse, nous nous sommes intéressés à la phase d’observation du point de vue CR. La zone de chevauchement entre un émetteur CR et l’émetteur primaire (PR) est analysée et prise en compte. L’impact de cette zone est appris par simulation et présenté dans le chapitre 4. En conséquence, des interférences potentielles sont envisagées. Durant la phase d’observation, nous étudions un mécanisme permettant de mieux prévenir la perturbation sur les dispositifs PR en utilisant le Grey Model et le filtre de Kalman comme modèle de prédiction de la densité des récepteurs primaires. En complément à cette observation, nous fournissons une stratégie visant à combiner les observations obtenues en une mesure qui pourra être utilisée par le routage dans le cadre de la coexistence entre réseaux radio cognitive (CRN) et réseaux primaires. La stratégie proposée utilise la logique floue et est présentée dans le chapitre 5. Dans ce chapitre, nous étudions comment la couche réseau réagit et prend les bonnes décisions pour maximiser l’utilisation des ressources du spectre, tout en évitant les interférences avec les récepteurs primaires. Par exemple, un noeud CR peut fonctionner dans une zone de recouvrement, si les récepteurs primaires sont inactifs dans cette zone. Ainsi, nous avons proposé un mécanisme de routage basé sur le protocole de routage DYMO qui prend en compte l’impact relatif observé. Dans ce même chapitre, nous avons également présenté des scénarios pratiques illustrant l’utilité de notre proposition. L’interconnexion des noeuds CR dans le CRN est aussi un problème crucial pour la mise en place du réseau. C’est pourquoi nous présentons un processus de diffusion par balises au chapitre 6. Dans ce chapitre, nous décrivons également un dispositif pratique conçu pour des expériences en radio cognitive. Même si notre travail se rapporte à différentes couches de la pile protocolaire, le cadre général que nous avons conçu est multicouches. En effet, les composants accèdent aux différentes couches pour récupérer l’information, la traiter et réagir en conséquence. Ainsi, notre travail constitue un environnement inter-couches pour un dispositif radio cognitive local visant à minimiser les interférences et à maximiser les ressources réseau dans les réseaux radio cognitive

    Ant-inspired Interaction Networks For Decentralized Vehicular Traffic Congestion Control

    Get PDF
    Mimicking the autonomous behaviors of animals and their adaptability to changing or foreign environments lead to the development of swarm intelligence techniques such as ant colony optimization (ACO) and particle swarm optimization (PSO) now widely used to tackle a variety of optimization problems. The aim of this dissertation is to develop an alternative swarm intelligence model geared toward decentralized congestion avoidance and to determine qualities of the model suitable for use in a transportation network. A microscopic multi-agent interaction network inspired by insect foraging behaviors, especially ants, was developed and consequently adapted to prioritize the avoidance of congestion, evaluated as perceived density of other agents in the immediate environment extrapolated from the occurrence of direct interactions between agents, while foraging for food outside the base/nest. The agents eschew pheromone trails or other forms of stigmergic communication in favor of these direct interactions whose rate is the primary motivator for the agents\u27 decision making process. The decision making process at the core of the multi-agent interaction network is consequently transferred to transportation networks utilizing vehicular ad-hoc networks (VANETs) for communication between vehicles. Direct interactions are replaced by dedicated short range communications for wireless access in vehicular environments (DSRC/WAVE) messages used for a variety of applications like left turn assist, intersection collision avoidance, or cooperative adaptive cruise control. Each vehicle correlates the traffic on the wireless network with congestion in the transportation network and consequently decides whether to reroute and, if so, what alternate route to take in a decentralized, non-deterministic manner. The algorithm has been shown to increase throughput and decrease mean travel times significantly while not requiring access to centralized infrastructure or up-to-date traffic information

    Mobilidade de comunicações entre veículos e infraestrutura

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesThe unique characteristics of VANETs, such as high mobility, dynamic topology and frequent loss of connectivity, turn the network selection scheme into a complex problem. In a crowded wireless environment that surrounds us, mainly in urban areas, there is a proliferation and superposition of multiple networks and technologies. Therefore, in order to guarantee connectivity in a transparent way for users, the presence of a connection manager capable of taking informed decisions is crutial. With the increase of mobile traffic, several initiatives have been performed for deploying free/low-cost Wi-Fi hotspots across the cities, in order to offload traffic from the cellular networks into more cost-effective networks. On the one hand, clients benefit from lower data prices, and on the other hand, operators may reduce the amount of cellular infrastructure deployed. Furthermore, users will certainly prefer to connect to a free source of Internet whenever it is available instead of paying for it. Since nodes in VANETs are vehicles, the perception of the surrounding networks is constantly changing, becoming unstable with speed. Therefore, the high mobility of nodes in VANETs jeopardizes the existing network selection mechanisms, which for the network election, are based on Received Signal Strength (RSS) to choose where to connect. Moreover, in a VANET environment, there are no mechanisms capable of taking into account V2V communication according to the WAVE/DSRC technology. Thereby, we propose a connection manager which considers the Wi-Fi networks, cellular networks and the WAVE/DSRC technology to provide connectivity to vehicles. This connection manager is capable of looking into relevant data that is available in VANET-equipped vehicles, increasing the dynamic of the decision process. VCM is a connection manager optimized to operate in VANET scenarios, which takes into account the vehicle speed and heading, the infrastructure position along with their availability and also the number of hops to reach the service provider, besides the link quality. The proposed connection manager is based on an Analytical Hierarchic Process (AHP) that combines several candidate networks, geographic inputs and physical factors to determine the best connection at all times, including the technology and the best network, for each user. To determine the priority of each parameter, we proposed the combination of pairwise comparisons between the criteria involved, according to Saaty's pairwise comparison scale, enhancing the process through simulation and using a Genetic Algorithm (GA). To observe the enhancements provided by VCM, two typical connection managers were implemented: BCM which only looks to the signal quality to choose where to connect, and PCM which takes into account users preference besides the RSS. The evaluation was performed in a Manhattan grid, composed by several vehicles using SUMO's car-following model and with equal turn probabilities, and infrastructure randomly spread across the scenario. The results show that VCM outperforms the other two connection managers, proving that it is capable of operating in general scenarios minimizing the packet loss and with a reduced number of performed handovers.As características únicas das redes veiculares, como a elevada mobilidade, a topologia dinâmica e a frequente perda de conectividade, tornam o esquema da escolha de rede num problema complexo. Num ambiente replecto de redes sem fios, principalmente nas áreas urbanas, existe um aglomerado e sobreposição de varias redes e tecnologias. Assim, para garantir ao utilizador a conectividade de forma transparente, é necessário a presença de um mecanismo capaz de tomar decisões informadas. Com o aumento do trafego móvel, varias iniciativas estão a ser realizadas, disponibilizando hotspots IEEE 802.11 a/g/n (Wi-Fi) pelas cidades, de forma a retirar trafego das redes celulares. Por um lado, os clientes podem usufruir de preços mais baixos e por outro lado, os operadores conseguem reduzir a quantidade de trafego móvel. Alem disso, os utilizadores irão preferir ligar-se a uma rede mais barata/grátis sempre que estiver disponível, desde que tenha boa qualidade. Uma vez que nas redes veiculares os nos são veículos, as redes disponíveis estão sempre a mudar, tornando-se cada vez mais instáveis com o aumento da velocidade. Assim, a mobilidade dos nos põe em causa as soluções existentes para mecanismos de selecção de redes, que maioritariamente para elegerem a melhor rede se baseiam apenas na qualidade do sinal. Alem disso, para um ambiente de redes veiculares, não existem mecanismos de selecção capazes de ter em conta comunicação Vehicle-to-Vehicle (V2V) de acordo com a tecnologia Wireless Access in Vehicular Environments (WAVE) / (Dedicated Short-Range Communications (DSRC). Assim, é proposta a criação de um gestor de conectividade capaz de ter em conta determinados factores que se encontram disponíveis nos veículos Vehicular Ad-hoc NETwork (VANET)-equipados para aumentar a dinâmica do processo de seleccao. O Vanet Connection Manager (VCM) é um gestor de conectividade optimizado para ambientes veiculares, que considera a disponibilidade de redes Wi-Fi, redes celulares e a tecnologia WAVE / DSRC para veículos. Este gestor tem em conta a velocidade e direcção do veículo, a posição das infraestructuras bem como a sua disponibilidade, o numero de saltos ate ao destino, alem da qualidade do sinal. O mecanismo proposto e baseado num Processo Analítico Hierárquico que combina varias redes candidatas, parâmetros geográficos e factores físicos para determinar a melhor ligação possível, incluindo a tecnologia e a melhor rede, para cada utilizador. Para o calculo das prioridades de cada parâmetro, foi proposto o método das combinações emparelhadas desenvolvido por Saaty, optimizando o processo através de simulação e recorrendo a um Algoritmo Genético. Para observar o desempenho do gestor de conectividade, implementaram-se dois gestores típicos de conectividade: Basic Connection Manager (BCM) que apenas tem em conta a força de sinal para escolher o melhor candidato, e o Preference-based Connection Manager (PCM) que tem em conta as preferências dos utilizadores para além da força de sinal. A avaliação foi realizada num cenário Manhattan, composto por vários veículos com modelos de simulação importados do SUMO e infraestrutura aleatoriamente colocada ao longo do cenário. Os resultados mostram que o VCM apresenta melhores resultados que os outros dois gestores de rede, provando que e capaz de operar em qualquer cenário, minimizando as perdas de dados e com um reduzido numero de mudanças de rede

    Quality of service support for multimedia applications in mobile ad hoc networks

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Power saving and energy optimization techniques for Wireless Sensor Networks

    Full text link
    Wireless sensor networks have become increasingly popular due to their wide range of applications. Energy consumption is one of the biggest constraints of the wireless sensor node and this limitation combined with a typical deployment of large number of nodes have added many challenges to the design and management of wireless sensor networks. They are typically used for remote environment monitoring in areas where providing electrical power is difficult. Therefore, the devices need to be powered by batteries and alternative energy sources. Because battery energy is limited, the use of different techniques for energy saving is one of the hottest topics in WSNs. In this work, we present a survey of power saving and energy optimization techniques for wireless sensor networks, which enhances the ones in existence and introduces the reader to the most well known available methods that can be used to save energy. They are analyzed from several points of view: Device hardware, transmission, MAC and routing protocols.Sendra Compte, S.; Lloret, J.; García Pineda, M.; Toledo Alarcón, JF. (2011). Power saving and energy optimization techniques for Wireless Sensor Networks. Journal of Communications. 6(6):439-459. doi:10.4304/jcm.6.6.439-459S4394596

    Fog Computing

    Get PDF
    Everything that is not a computer, in the traditional sense, is being connected to the Internet. These devices are also referred to as the Internet of Things and they are pressuring the current network infrastructure. Not all devices are intensive data producers and part of them can be used beyond their original intent by sharing their computational resources. The combination of those two factors can be used either to perform insight over the data closer where is originated or extend into new services by making available computational resources, but not exclusively, at the edge of the network. Fog computing is a new computational paradigm that provides those devices a new form of cloud at a closer distance where IoT and other devices with connectivity capabilities can offload computation. In this dissertation, we have explored the fog computing paradigm, and also comparing with other paradigms, namely cloud, and edge computing. Then, we propose a novel architecture that can be used to form or be part of this new paradigm. The implementation was tested on two types of applications. The first application had the main objective of demonstrating the correctness of the implementation while the other application, had the goal of validating the characteristics of fog computing.Tudo o que não é um computador, no sentido tradicional, está sendo conectado à Internet. Esses dispositivos também são chamados de Internet das Coisas e estão pressionando a infraestrutura de rede atual. Nem todos os dispositivos são produtores intensivos de dados e parte deles pode ser usada além de sua intenção original, compartilhando seus recursos computacionais. A combinação desses dois fatores pode ser usada para realizar processamento dos dados mais próximos de onde são originados ou estender para a criação de novos serviços, disponibilizando recursos computacionais periféricos à rede. Fog computing é um novo paradigma computacional que fornece a esses dispositivos uma nova forma de nuvem a uma distância mais próxima, onde “Things” e outros dispositivos com recursos de conectividade possam delegar processamento. Nesta dissertação, exploramos fog computing e também comparamos com outros paradigmas, nomeadamente cloud e edge computing. Em seguida, propomos uma nova arquitetura que pode ser usada para formar ou fazer parte desse novo paradigma. A implementação foi testada em dois tipos de aplicativos. A primeira aplicação teve o objetivo principal de demonstrar a correção da implementação, enquanto a outra aplicação, teve como objetivo validar as características de fog computing
    corecore