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Abstract

Mimicking the autonomous behaviors of animals and their adaptability to

changing or foreign environments lead to the development of swarm intelligence tech-

niques such as ant colony optimization (ACO) and particle swarm optimization (PSO)

now widely used to tackle a variety of optimization problems. The aim of this dis-

sertation is to develop an alternative swarm intelligence model geared toward decen-

tralized congestion avoidance and to determine qualities of the model suitable for

use in a transportation network. A microscopic multi-agent interaction network in-

spired by insect foraging behaviors, especially ants, was developed and consequently

adapted to prioritize the avoidance of congestion, evaluated as perceived density of

other agents in the immediate environment extrapolated from the occurrence of di-

rect interactions between agents, while foraging for food outside the base/nest. The

agents eschew pheromone trails or other forms of stigmergic communication in favor

of these direct interactions whose rate is the primary motivator for the agents’ de-

cision making process. The decision making process at the core of the multi-agent

interaction network is consequently transferred to transportation networks utilizing

vehicular ad-hoc networks (VANETs) for communication between vehicles. Direct in-

teractions are replaced by dedicated short range communications for wireless access in

vehicular environments (DSRC/WAVE) messages used for a variety of applications

like left turn assist, intersection collision avoidance, or cooperative adaptive cruise
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control. Each vehicle correlates the traffic on the wireless network with congestion

in the transportation network and consequently decides whether to reroute and, if

so, what alternate route to take in a decentralized, non-deterministic manner. The

algorithm has been shown to increase throughput and decrease mean travel times sig-

nificantly while not requiring access to centralized infrastructure or up-to-date traffic

information.
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Chapter 1

Introduction

This thesis can be roughly divided into two parts: first, the study of social
insects and development of a multi-agent model inspired by their foraging behaviors.
This model was subsequently optimized for emergent behaviors that foster congestion
avoidance while retaining individual agents’ abilities to successfully complete their
tasks. Several aspects of the resulting behaviors were then adapted to the second part
of the thesis, a connected vehicle simulation utilizing V2V technology for decentralized
congestion avoidance. The resulting model’s performance is analyzed and several
possible improvements evaluated.

1.1 Motivation

Connected vehicle technology has the potential to greatly increase both the
efficiency and safety of travel by vehicle, with the capability to reducing accidents in
the US by over 500,000 per year [1] as well as cut waiting times at traffic lights in half
[2]. Additional travel costs directly attributable to congestion amounted to 6.9 billion
hours and 3.1 billion gallons of fuel in 2014, amounting to $160 billion in losses [3].
Reducing congestion goes hand in hand with reducing these costs, and connected
vehicle technology promises grand strides in that direction by efficiently leveraging
existing road infrastructure instead of costly expansions. Paramount to the adaption
of the technology is cheap integration to both entice OEMs to integrate radios into
their vehicles and consumers to see value in the increased vehicle costs, estimated
to be around $329 per automobile [1]. This added cost however dwarfs the costs of
RSU deployment which are estimated to be around $17,600 per site [4]. We therefore
decided to focus on developing a decentralized V2V application to ensure functionality
under most circumstances, without relying on infrastructure or competing with a slew
of other applications by not adding any bandwidth of our own.
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1.2 Swarm intelligence

The study of decentralized, self-organized, often biologically-inspired systems
is relatively young. Boids [5], a simulation of bird flocking behavior, was first pub-
lished in 1987, while the term swarm intelligence was introduced in 1989 [6]. Swarm
intelligence models usually consist of elementary agents, limited in memory and pro-
cessing power. Following simple rules, interactions between agents lead to emer-
gent behaviors whose complexity surpasses the capabilities of its unaware executors.
Prominent examples of such systems include ant colony optimization (ACO) [7], a
probablistic optimization technique for finding good paths in graphs based on the for-
aging behavior of pheromone-laying ants, and particle swarm optimization (PSO) [8],
a metaheuristic which optimizes problems by iteratively moving candidate solutions
around a search space using simple rules inspired by bird flocking behaviors.

ACO draws on the observation that ants distribute pheromone trails between
areas of interest, such as food sources, and the nest. Other ants who encounter such
a path are likely to follow it and reinforce it if they also find food. As the pheromone
evaporates over time, paths which are both short and frequently traveled increase
in pheromone density while longer paths are less frequently traveled and fade away,
optimizing the route. Applied to graphs, it has been used to tackle a variety of issues
such as the traveling salesman problem and transportation systems. A drawback
of the model is that it relies on stigmergy - communication using the environment -
instead of direct exchange of information between agents. Consequently it is unusable
in environments that rapidly change or cause pheromones to evaporate quickly and
implementation in a transportation system would be difficult.

PSO was first intended as a simulation of the movement of groups of animals
such as bird flocks or fish schools and was later observed to be performing optimiza-
tion. A survey of the wide variety of use cases was published by Poli [9]. Agents in the
simulation represent candidate solutions and update their velocity by both the entire
swarm’s best known position as well as their own best known position until a good
solution is found. This requires every agent to be able to communicate with every
other agent, referred to as swarm communication structure. This topology however
may be adjusted in various ways, for example to only share information with a close
subset of particles. This variant bears several similarities to the congestion avoidance
model discussed in this work.

1.3 VANETs and ITS

Intelligent transportation systems (ITS) have been formally defined as ”are
advanced applications which without embodying intelligence as such aim to provide
innovative services relating to different modes of transport and traffic management
and enable various users to be better informed and make safer, more coordinated and

2



smarter use of transport networks” [10]. ITS provide a tool to reducing congestion
alongside expanding infrastructure, by using existing roads more efficiently. Specific
applications range from traffic signal control and emergency notification systems to
collision avoidance systems and other cooperative efforts. One aspect of these systems
is the use of dedicated short range communications (DSRC) to enable radio-equipped
vehicles to communicate both with each other, referred to as vehicle-to-vehicle com-
munications (V2V) and with infrastructure (vehicle-to-infrastructure or V2I) such as
traffic signals or other roadside units (RSUs).

Mobile ad-hoc networks (MANETs), self-configuring infrastructure-less net-
works consisting of mobile devices, such as smart phones, can be used as an alterna-
tive to cellular networks for data exchange in an immediate environment. Vehicular
ad-hoc networks (VANETs) are a type of MANET comprised of radio-equipped vehi-
cles and aforementioned RSUs to enable safety applications such as electronic brake
lights or even provide entertainment such as discovery services. Vehicular networks
pose a unique challenge as their topology rapidly changes due to high speeds, yet also
offers certain constraints as the vehicles are defined to roads. Wireless access in ve-
hicular environments (WAVE), specified by IEEE 802.11P and IEEE1609, is an effort
to meet the technical challenges of these networks to achieve low latency usable for
collision avoidance systems even in high doppler spread situations as well as function
in high density environments such as crowded cities. Maximum transmission power
ranges from 0 dBm to 28.8 dBm, roughly equating to a distance of 10m to 1km in
unobstructed environments [11].

Use cases for VANETs often include both V2V and V2I communications, es-
pecially concerning congestion relief: traffic lights as RSUs can relay the amount of
vehicles traveling toward another traffic light in order to optimize signal timings, or
RSUs distributed over an area may collect traffic data to be analyzed by a server clus-
ter, with relevant information relayed back to individual vehicles. The use of RSUs
however requires a significant investment in infrastructure and will most likely only
be seen in major cities and highways initially, constraining the use of VANET tech-
nology. Applications which only rely on V2V communications, by way of comparison,
may entice faster adoption of the technology.

1.4 Contributions of the thesis

The National Highway Traffic Safety Administration (NHTSA) and the De-
partment of Transportation (DOT) issued a Notice of Proposed Rulemaking in 2016
concerning V2V communications technology. Meanwhile, General Motors has moved
forward in offering connected vehicle technology in certain Cadillac models. At this
point it seems inevitable that the integration of connected vehicle technology will
move forward in the coming years, alongside smarter, semi-autonomous vehicles. An
extensive set of disruptive applications for the technology is already in development.

3



We do not intend to add to the multitude of bandwidth-consuming applications but
to achieve the highest impact with the lowest amount of added bandwidth and re-
quired data set with a V2V application for both autonomous and non-autonomous
vehicles. Our congestion avoidance model can therefore be utilized by a significant
cross-section of connected vehicles, and our decentralized approach which does not
require a cellular connection ensures functionality in a wide range of environments.

1.5 Organization of the thesis

The thesis is organized in roughly chronological order of the conducted re-
search. Section 2 introduces and elaborates on the ant-inspired model for multi-agent
interaction networks without stigmergy and analyze its general performance. Section
4 details the congestion avoidance mechanisms inherent in the model and examines
those behaviors in detail. Together these sections cover the first half of the disserta-
tion. Section 5 proposes a congestion avoidance algorithm for transportation networks
consisting of vehicles equipped with short-range radios which inherits its many of its
features from the ant-inspired multi-agent model, adapted from its 2D environment
to the vehicular network’s graph-like structure. Finally, section 6 explores a multi-
tude of alterations and possible improvements to the model as well as their impact
on performance.
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Chapter 2

An ant-inspired model for
multi-agent interaction networks
without stigmergy

2.1 Abstract

The aim of this chapter is to construct a microscopic model of multi-agent
interaction networks inspired by foraging ants that do not use pheromone trails or
stigmergic traces for communications. The heading and speed of each agent is influ-
enced by direct interactions or encounters with other agents. Each agent moves in
a plane using a correlated random walk whose probability distribution for heading
change is made adaptable to these interactions and is superimposed with probability
distributions that emulate how ants remember nest and food source locations. The
speed of each agent is likewise influenced by a superposition of impetus and resistance
effects that arise from its recent interactions. Additionally, the agents use a quorum
sensing mechanism to trigger a non-deterministic decentralized congestion avoidance
scheme. A discrete time non-deterministic recruitment model is adopted and incor-
porated to regulate the population of foraging agents based on the amount of food
perceived to exist in the environment. Simulation experiments were conducted to
evaluate and demonstrate how agents employ the interaction network when foraging
in open and closed environments as well as in scenarios with narrow pathways that
trigger congestion.

2.2 Introduction

Social insects such as ants, bees, and wasps are known to exhibit complex
group-level problem solving capabilities, despite the simplicity of the capabilities and
behaviors of the individual insect. This observation has inspired a surge of research
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efforts to derive computational models that abstract the behavior of social insects.
Such models for ant colonies have received significant attention following their suc-
cessful application to many different types of combinatorial optimization problems.
The first of these models and algorithms were proposed by [7]. Today, various refine-
ments of ant colony optimization (ACO) algorithms have been applied to optimization
problems ranging from the traveling salesman problem [12] to data network routing
and scheduling [13] to protein folding [14]. Further applications influenced by mod-
els of the behaviors of ants and other social insects include multi-agent systems for
swarm robotics [15]; [16], reconfigurable manufacturing systems [17] and other systems
relying on self-organizing principles, such as sensor networks, computing grids and
software for business processes and network security [18]. Most discussions on ant-
based foraging are based on mimicking ants that communicate through pheromone
secretions and create probabilistically optimal trails between places of interest, like
the nest (or a home base) and a food source. This kind of indirect communication by
altering the environment is known as stigmergy. However, depositing environmental
markers may be costly or impractical for artificial systems such as transportation net-
works and swarms of drones in which we aim to incorporate features of our model. For
example, using roadside infrastructure for indirect communication between vehicles is
expensive and too restrictive for transportation networks. Therefore, instead of stig-
mergy, we lean on the fact that many species of insects, especially of the Hymenoptera
order, also possess spatial abilities enabling them to navigate their environments, in-
cluding returning to the nest without the use of a trail [19]. These primarily exploit
the guidance abilities afforded by the interactions between agents.

The direct encounters or interactions between agents may be interpreted and
used in different ways. In some ant species, such as the ant Lasius niger, the en-
counters manifest as repulsive interactions where ants turn away from each other to
prevent congestion [20]. We explore an alternative concept: in lieu of turning away
from each agent encountered, the individual agent counts interactions from the recent
past and modifies its walk accordingly. When registering many interactions, indicat-
ing congestion, agents will move both faster and more directly in order to clear the
congested area. Behaviors observed in Cataglyphis velox, which have been shown
to move more erratically close to the nest [21], contradict our model in this case.
We alter several other naturally occurring behaviors as well to emphasize congestion
avoidance. For that reason, our model also employs quorum sensing, a mechanism
used by the ant Temnothorax albipennis [22] and certain honeybee species [23], to
choose between future nest sites for purposes of emigration [24]. The quorum sensing
(QS) mechanism is also used for similar purposes by honey bees [25] and by the bac-
teria Vibrio harveyi [26]. A good discussion of the non-deterministic, yet resilient and
robust characteristics of QS can be found in [27]. In this chapter, we apply the QS
mechanism to trigger a non-deterministic congestion avoidance scheme. By estimat-
ing the density of other individuals in their environment, the agents can collectively
change their behavior [28]. We use this to trigger a congestion avoidance behavior in
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our agents wherein they try to estimate the center of the congested area and avoid it,
finding alternate routes to their destination. This behavior is similar to that observed
in pheromone-laying ants, which form additional trails under crowded conditions [29].
A related study of lane formation and congestion avoidance with pheromone trails,
specific to the behavior of the army ant Eciton burchelli, was conducted by [30]. With
pheromone trails absent in our model, the mechanism we propose enables a similar
behavior especially in environments consisting of narrow pathways.

There have been many other efforts at modeling multi-agent traffic. The sim-
plest models adopt the total asymmetric simple exclusion process (TASEP) [31] of-
fered for modeling ants, cars and pedestrians. Therein, the agents are treated as
particles. In the TASEP process, the particles enter a one-dimensional lattice, com-
posed of individual cells, from one direction. A particle can only advance if the next
cell is empty. If the cell is occupied, it must wait. The process can be extended to
an n-dimensional grid of cells forming a cellular automaton, in which the cells are
updated according to some rule and with regards to the states of both the cell being
updated as well as its surrounding cells. By using a 2-dimensional cellular grid, for
example, various types of traffic such as trails of ants and pedestrians [32], as well
as of vehicular traffic of whole cities [33], may be simulated. Since cells are updated
only based on their own state and that of cells in their immediate surroundings, these
models are computationally efficient and lend themselves to large-scale computation.
The model we propose in this chapter differs from these cell-based approaches in that
instead of cell states, our model updates the motion state of each individual agent at
each time-step, regardless of its spatial location. This is similar to one-dimensional
trail models as those explored by [34], though our model relies on direct touch instead
of distance information. Additionally, each agent in our model makes probabilistic
decisions about its heading and speed based on its interactions with others in its
immediate surroundings.

The behaviors to be outlined in this chapter are loosely based on those de-
scribed in Gordon’s book “Ant Encounters” [35] for red harvester ants. We have
recently come across yet another work [36] that attempts to simulate the seed forag-
ing behavior of the ants described in Gordon’s book. The model described therein
draws heavily on cell-grid based modeling notions that complicate congestion mod-
eling. For example, in that model, ants occupying a grid cell are assumed to walk
over each other in heavy traffic to model an agent’s/ant’s memory of the location
of the base and of the last location at which food was found. We will be referring
to the objects that the agents are to retrieve as “food”, but they can of course be
any number of things. The “task” to be completed by the agents is to retrieve all
the food items and return them to the base. We combine this with a decentralized
congestion and wall avoidance mechanism based on quorum sensing and a notion of
an avoidance sector that each agent estimates. In addition, we implement the re-
cruitment algorithm model proposed in [38] to regulate the rate at which agents leave
the base. A model following similar rules was evaluated by [39], with a focus on the
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geometry of the foraging environment and the decision-making process between trail
bifurcations. Additionally, Garnier’s model was evaluated using Alice micro-robots
instead of a computer simulation.

The simulation model of the interaction network proposed here is a discrete-
time non-deterministic model that captures the decentralized decisions by individual
agents, which subsequently create emergent collective behaviors such as the estab-
lishment of chains of agents to food sources, avoiding congested areas and walls, and
regulation of the foraging population based on the availability of food. However, we
don’t claim that the model is faithful to the behavior of any particular species of ants
or insects, but rather combines features that have been observed across various species
of insects with extrapolations and designs of our own. Our eventual goal is to ab-
stract observations from this microscopic model of a multi-agent interaction network
to offer insights for the practical design and management of decentralized networks
with minimal needs for extra infrastructure, stigmergy, memory, and bandwidth.

The rest of the chapter is organized as follows: section 2 describes the mod-
eling framework in detail, including navigation and communication between ants,
recruitment strategy, and congestion and wall avoidance. Section 3 applies the model
to several environments and scenarios and analyzes the results. Section 4 offers some
conclusions, including the future envisaged applications of the model.
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Chapter 3

Modeling

This section details the different components of the model. We start with
a brief description of the modeling environment and list some basic assumptions in
subsection 3.1, followed by the model for the navigation and communication in 3.2,
the recruitment model in 3.3, and the decentralized avoidance mechanisms in 3.4.
Finally, pseudocode of the agent’s decision loop is given in subsection 3.5.

3.1 Environment

x axis

y axis
agent wall food base

Figure 3.1: Objects in the simulation

The environment in our model is
a two-dimensional plane of infinite length
and width, though square wall segments
may be used to create obstructions, hall-
ways, and other navigational features.
Geometrically, agents and the base are
modeled as circles, while walls and food
items are modeled using squares. The
relative size of the main objects in the
model is illustrated in Figure 3.1. Agents are homogeneous in size, while the lengths
of the sides of wall segments, food items, and the diameter of the base are twice that
of an agent’s.

Additionally, the following assumptions are made: the base is an unlimited
source of agents. Agents that return to the base with food, and therefore memory
of that food source’s location, are placed in a FIFO (first in, first out) queue. If the
queue is empty, a new agent is recruited to forage. Otherwise, the agent at the front
of the queue is released in accordance with the recruitment algorithm to be detailed
later. Recruited agents possess a random initial heading selected from a uniform
distribution. All objects in the model (agents, food, etc.) are represented as rigid,
inelastic bodies, unable to move through each other. Collisions between an agent and
other agents or objects constitute the basic interactions to be used by the rest of the
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model. Each collision event is recorded by each agent. An agent that collides with
the base while returning to it is removed from the 2D plane and put in a queue to be
released again in accordance with the recruitment algorithm.

3.2 Navigation and communication

The motion of the agents is modeled using a correlated random walk. . The
change in direction from step i to step i + 1, denoted by θ, is sampled from the von
Mises distribution with probability density function given by [40]:

f(θ) = M(θ;µ;κ) =
1

2πI0(κ)
eκcos(θ−µ) (3.1)

where θ takes values in [0◦, 360◦), µ is the mean heading change, κ is the concentration
parameter, which varies the intensity of the peak of the distribution about the mean,
and I0 is the modified Bessel function of the first kind of order 0. Early uses of the
von Mises distribution include the modeling of the movement of mammals such as
foxes [41], but it has since been applied to model a wide range of biological motions,
including those of ants [42].
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Figure 3.2: Examples of different κ values used in
the von Mises distribution

A key feature of this dis-
tribution that we exploit for
modeling the persistence of an
agent’s movement in a specific
direction is the concentration
parameter κ, whose effect on the
distribution is shown in Figure
3.2. A low value of κ leads to an
erratic walk, causing an agent
to, on average, remain in its im-
mediate surroundings. A high
value leads to a highly corre-
lated walk in which the agent
likely continues in its current di-
rection.

We use the above observation to implement an important feature: the effect
of agent encounters. The concentration parameter κ is made dependent on recent
encounters with other agents. The only information transmitted during the interac-
tion is whether or not the encountered agent is carrying food, and, if it is, its current
heading. To model the limited memory of such agents, the impact of each encounter
is modeled to decrease exponentially with time. From these recent interactions, an
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agent computes its κ with:

κ(t) = κmin +
n∑

i=1

Ae−T (t−ti) (3.2)

where n is the number of interactions and ti is the time of each interaction’s oc-
currence. A and T are parameters, while kmin denotes the minimum concentration
parameter of an agent and is used to retain an amount of directionality in the ab-
sence of interactions. Note that the above continuous time equation is implemented
in discrete time after discretizing it at the sampling rate of the simulation.

In our model, agents who are in densely traveled areas and experience more
interactions travel in a straighter line, leading to a subsequent decrease in the den-
sity of agents. On the other hand, agents who are further away from the base and
therefore, less likely to experience many interactions, will move more erratically. By
doing so, they are more likely to remain in their current area and not travel too far
without further interactions. The result is a more even distribution of agents com-
pared to a static random walk with a constant concentration parameter. This specific
property of the model is discussed further in Section 3.7. If the agent encountered is
carrying food, then the foraging agent will change its heading to the opposite of the
food-bearing agent in an effort to locate the source of the food. Given that multiple
agents are returning to the base with food, the foraging agent will be able to follow
this impromptu trail followed by returning agents to the neighborhood of the food
source. These encounters simultaneously increase the concentration parameter of the
foraging agent, making it less likely to change direction.
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Figure 3.3: Example combination of the von Mises
probability distributions for the base compass and
the correlated random walk

Agents return to the base
either because they found food
or to save energy. To do
so, they continuously integrate
their path in order to main-
tain an internal vector of the
base’s location, similar to ants
[43]. This effective base com-
pass is integrated into our model
as a second von Mises distribu-
tion whose mean always points
in the direction of the base rela-
tive to the agent’s current head-
ing. The two von Mises distribu-
tions are added and normalized,
and the agent chooses its next
heading from the resulting distribution. Figure 3.3 illustrates the implementation of
this concept for an agent whose current heading is at a 90◦ angle to the base. The
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combination of multiple sources of information pertaining to the agents’ random walk
with homing trajectories has been observed in Cataglyphis fortis [44] and is similar to
cue integration, wherein multiple sources of information are averaged based on their
relative importance [21].

In several simulation experiments that used a fixed base compass, combined
with an interaction-adapted random walk, individual agents exhibited odd behav-
iors such as overshooting the base or becoming stuck along long obstacles. In these
cases, the correlated random walk dominated the agent’s navigation at high interac-
tion rates. Therefore, in our model, the base compass distribution’s concentration
parameter is adapted with interactions as above, while that of the correlated random
walk is held at a minimum value kmin when agents are returning to the base. This
configuration emphasizes returning to the base over exploration and area coverage.
Since the density of agents, and therefore encounters, generally increases as distance
to the base decreases, the returning agents’ confidence in their heading should also
increase accordingly.

Once an agent has found food and successfully returned to the base, it is very
likely to be sent out again in the near future [35], when the likelihood of retaining
memory of the food’s location is high. We model this behavior in the form of another
von Mises distribution oriented toward the location of the food. It operates just like
the base compass, and will be referred to as the food compass. However, unlike
the base compass, the concentration parameter κ is not influenced by interactions.
Instead, interactions still affect the concentration parameter of the correlated random
walk as described above. The food compass’s distribution and that of the correlated
random walk are added and normalized. The agent chooses its next heading from the
resulting distribution. In this manner, the food compass embeds a small, consistent
bias toward the food source. If an agent with a food compass arrives at the general
area in which it has previously found food, the feature ceases to have any impact on
the agent’s navigation. This helps the agent avoid staying in the area after the food
source has been consumed.

Just like its heading, an agent’s speed is impacted by its recent interaction
memory. When encountering other agents, an agent desires to move faster either to
cover more space, or in order to reach a food source faster. We refer to this as the
agent’s impetus. Yet at the same time, its speed is impeded by the interaction itself:
the agents need to shuffle past each other to continue, and touch each other for the
interaction to occur. We refer to this opposing effect as resistance. We model the
combined effect as a sharp decrease in speed followed by a prolonged, but smaller
increase in speed :

v(t) = v +
∞∑
i=1

Ie−λI(t−ti) −
∞∑
i=1

Re−λR(t−ti) (3.3)

where v is the default speed at which an agent travels without any interactions, and
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ti is the time for the ith interaction. The impetus and resistance parameters, I, λI ,
R, and λ are selected such that I < R and λI < λR. The Resistance parameters R
and λR are made larger than the impetus parameters I and λI in order to achieve an
initial decrease in speed. These effects of the interactions are continually added to the
default speed v as the interactions happen. Note that the effect of older interactions
on the speed diminishes exponentially as time goes on and that the above continuous
time equation is implemented in discrete time in the multi-agent simulation

3.3 Recruitment

Since the multi-agent simulation model is primarily motivated by the foraging
behavior of ants, the recruitment of foraging agents from the base is abstracted via a
discrete time recruitment model proposed by [38]:

αk = max(αk−1 − qDk−1 + cAk − d, α), α0 = 0 (3.4)

Dk ∼ Poisson(αk) (3.5)

where αk is the rate at which agents are recruited from the base at the kth time step,
Ak is the number of returning food-bearing foragers at the kth time step, and the
actual number of agents departing the base, Dk, is set to a Poisson random variable
with αk as its mean. The coefficient q, c, and d control the contributions of other
terms already defined, while α denotes the minimum recruitment rate from the base.

Agents leave the nest at a minimum rate α and return to the base after a
certain period if they don’t find any food in order to conserve energy. We refer to
this period as a timeout. Agents that return to the base without food do not count
toward Ak. Therefore, in the absence of a food source, the population of foraging
agents will eventually stabilize as ants return at the same rate at which they are sent
out. When an agent encounters food, it immediately attempts to return to the base.
The number of returning food-bearing agents Ak increases the amount of outgoing
foragers Dk. As already noted, food-bearing foragers are assumed to retain memory
of the food source’s location; and they are likely to be sent back out first in order to
retrieve more [35].

3.4 Decentralized avoidance mechanisms

The correlated random walk, the Base and food compass and speed modifi-
cations described above are sufficient for the multi-agent model to simulate foraging
behaviors in an unrestricted environment up to a certain agent density. However,
scenarios that constrict agent movement such as walls and tunnels require additional
behavior modifications. Large concentrations of agents can lead to traffic jams and
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pile-ups. We propose a mechanism whereby agents sense or estimate the density
of agents based on interaction rates and subsequently the center of the congested
area, and use this information to make decisions that help them avoid high-traffic
areas. Similarly, agents can be made to avoid contact with a wall or obstruction for a
certain time after an initial encounter. These behaviors are entirely decentralized ac-
tions consistent with the rest of the model. We detail this congestion and obstruction
avoidance mechanisms and behaviors in the following subsections.

3.4.1 Congestion avoidance

As mentioned in the introduction, the quorum sensing mechanism is known
to be used by certain species of ants, bees and bacteria for the purposes of collec-
tive site selection and emigration. Since the agents in our simulation model already
count interactions for navigation purposes (to update their correlated random walk’s
heading and speed), we use quorum sensing as a trigger for their avoidance strategy.
Agents also keep track of the directions from which they have experienced recent con-
tacts/interactions for a certain period of time. Then, each agent estimates an average
direction which ideally points toward the center of the congestion as experienced by
it. This direction is computed using:

θC = atan(

∑m
i=1 sin(θi)∑m
i=1 cos(θi)

) (3.6)

where θC is the heading pointing to the perceived center of congestion, θi the direction
of contact of a given recent interaction andm is the total number of recent interactions
retained during a small time frame. Through experimentation we arrived at 4 seconds
as an acceptable value for our simulations. Higher numbers of interactions enable
the agent to more precisely estimate both the level and the perceived center of the
congestion. Once the agent estimates the direction of the congestion, it creates an
avoidance area/sector of a certain number of degrees equally distributed on either
side of the congestion direction vector. To be consistent with the non-determinism
of the modeling approach, the avoidance sector itself is estimated as a function of
the interaction rates as described below. This sector is then excluded from possible
headings that the agent might choose at its next decision step, in order to get away
from the area of congestion. The probabilities of the remaining directions are re-
normalized, and used for further heading decisions by the agent.

In Figure 3.4, a foraging agent (vertical lines) has recently encountered several
other agents (horizontal lines). Given the directions of the interactions, the foraging
agent estimates the average direction of the congestion (dots) and decides to avoid
the area. The estimation of the avoidance sector is randomized using a von Mises
distribution, whose mean is estimated from recent interactions according to Eq. 3.6,
and the arc of the congestion avoidance sector is also made dependent on the perceived
amount of congestion experienced by the agent by selecting the sector angle as ^S =
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Figure 3.4: Example congestion avoidance sector

2κ, where κ is the concentration parameter (variance) of its heading distribution
which is already updated with interactions as discussed before. Consequently, an
agent experiencing mild congestion will estimate a small congestion avoidance sector
with a random mean, while an agent experiencing high congestion will estimate a
large congestion avoidance sector whose mean is more likely to be true to the actual
center of congestion. As we illustrate later, this feature has been found to significantly
increase the performance of the avoidance mechanism in constricted areas.

3.4.2 Behavior near obstructions

Collisions with obstructions, obstacles or walls, are handled in a similar man-
ner to congestion. When an agent comes into contact with a wall, it will avoid possible
further contact with the wall for a certain period of time . It avoids the wall by creat-
ing a 180◦ avoidance sector whose central angle is perpendicular to the encountered
wall. Consequently the agent will, for the near future, only move parallel to or away
from the wall. Upon wall contact, the direction parallel to the wall and closest to
the agent’s heading upon contact is the most likely to be chosen as the next heading.
Due to the peaked shape of the von Mises distribution, when parallel to the wall, an
agent is most likely to continue moving alongside it or away at a slight angle. For our
model, we chose 2 seconds as the time span for which this behavior persists. At base
speed, an agent will traverse the length of 2.5 wall segments during that time before
resuming its normal behavior.

3.5 Pseudocode

The individual agent’s decision loop is outlined in Algorithm 1. The decision
loop combines all elements of the modeling approach described in the preceding sec-
tions. The agent makes decisions several times a second, but continues moving in
between decisions. Therefore, interactions and encounters with obstacles can occur
in between decision points.
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Algorithm 1 Agent Decision Loop

1: procedure Decision Loop
2: repeat
3: calculate κ . Equation 2
4: calculate Speed . Equation 3
5: if time spent foraging > timeout then
6: returning = true
7: end if
8: calculate heading change . See function

CALCULATEHEADINGCHANGE
9: move
10: until agent has returned
11: end procedure
12:

13: function calculateHeadingChange
14: if returning or carrying food then
15: add base compass distribution
16: else if has food memory then
17: add food compass distribution
18: end if
19: if recently contacted walls then
20: avoid walls
21: end if
22: if κ > congestion threshold then
23: estimate mean congestion angle . Equation 6
24: avoid congestion
25: end if
26: choose heading change from final distribution
27: end function

3.6 Experiments and results

The simulation model was built in Unity3D 5. It uses Unity’s 2D physics
system for purposes of collision detection. The physics time step is set to 0.02 seconds,
and agents make decisions every 0.1 seconds. Experiments were run for 600 seconds
and repeated 100 times for each scenario and averaged results are reported, unless
otherwise noted. At every time step, we log data about each agent: its speed, position,
ID and concentration parameter. Additionally, time stamps of agents leaving the base
and picking up food as well as interaction events are logged for further analysis.

The values of model parameters used in the experiments are listed in Table 3.1.
The recruitment algorithm is tuned to provide a steady growth of foraging agents
as long as food is available. Navigational parameters are set to have agents move
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erratically in the absence of encounters, but move with purpose upon encountering
other agents. The memory of an interaction is set to decay to negligible amounts after
10 seconds, and each agent’s timeout is set to 180 seconds. Many of these parameter
values were chosen through numerous trials in our simulation environment defined
earlier. If different simulation time and spatial scales (agent size, and object/tile
sizes, etc) are selected, one could arrive at other parameter combinations that work
with the main modeling components.

For the simulation, samples that satisfy the Von Mises distribution (for the cor-
related random walk, base and food compasses, as well as the randomized congestion
avoidance sector) are obtained using the following procedure: The possible heading
change of an agent was discretized to 360 degree values. The probability values
corresponding to each degree heading change are assembled in the probability vector
P = (p1, p2, ..., pd) based on the von Misses distribution. From this, the cumulative
probability vector C = (c1, c2, ..., cd) is defined as cj =

∑i
j=1 pi where j ∈ 1, 2, ...d,

where d is the index of the degree heading change under consideration. Then, a
uniform random value 0 < x < 1 is found and j determined s.t. cj−1 < x <= cj.

In the following sections, we describe the following scenarios which showcase
certain behaviors of the multi-agent interaction network as captured by our proposed
simulation model: coverage of the search space, foraging behavior and congestion
avoidance evaluated in open and restricted environments.

3.7 Coverage of search space

We first compare the multi-agent interaction network with a network created
using agents with fixed/static concentration parameters. The latter is a network in
which agents are indifferent to interactions. The minimum concentration parameter
for the interaction network is selected experimentally as κmin = 3.5, forming a rela-
tively peaked distribution that can still be adapted substantially by interactions to
higher values of κ. Agents are released from the base at a rate of 1 agent per second
in unrestricted environment. As there is no food source in this scenario, the rate of
recruitment does not increase. The tile size used to quantize the data constitutes a
square with side length equal to an agent’s radius. The environment is devoid of
obstructions for these experiments.

Figure 3.5, which portrays the coverage of the area around the base, shows
that the agents cover a mostly regular circular region, decreasing in density inversely
to the distance from the base. This coverage map looks visually the same both for
the random walk with static κ and the interaction network with adaptive κ (coverage
map not shown for the former). However, there are major differences in how coverage
is achieved with and without the interaction network. To analyze this, experiments
were run at a static κ = 6.4312, 5.0, 6.0 and 7.0 to compare with the interaction
network with the adaptive κ. The value κ = 6.4312 is the average concentration
parameter of the agent population that employs the interaction network.
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Table 3.1: Parameters used in the implementation

Umbrella Parameter Symbol Value

Recruitment

Minimum Recruitment Rate α 1
Foraging Parameter q 0.05
Forager Return Parameter c 0.005
Decay Parameter d 0

Navigation

Minimum κ κmin 3.5
Minimum Compass κ κradar 4.5
Interaction Amplitude A 2
Interaction Decay T 20
timeout (seconds) 180

Speed

Impetus Amplitude I 1.5
Congestion Amplitude C 3.5
Impetus Decay λI 2
Congestion Decay λC 1
Default Speed v 20

Memory

Interaction Memory 10s
Wall Memory 2s
Congestion Memory 4s
Quorum Threshold Tq 40
Decision Interval 0.1s
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Figure 3.5: Agent density with the interaction net-
work

Figure 3.6a shows that
the average concentration pa-
rameter of the foraging agents
stabilizes quickly. As the
population levels off due to
agents returning to the base,
the average concentration pa-
rameter slightly increases due to
the increase in interactions be-
tween the returning and forag-
ing agents. The distribution of
agents around the base is similar
between the interaction network
and one where agents do not in-
teract but instead possess a con-
centration parameter κ equal to
the mean κ of the interaction
network (κ= 6.4312), as seen in Figure 3.6a. However, as depicted in Figure 3.6b,
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most of the interactions, and therefore, the highest agent concentration parameters
are found closer to the base. That is, the interactions near the base effectively push
the agents away from it as can be seen in the shifted location of the most traversed
tiles for the case with the interaction network. This behavior clearly differs from that
with the static case that uses the average κ = 6.4312.
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Figure 3.6: Characteristics of coverage using the interaction network

Table 3.2: Statistics of tiles discovered over 600 seconds

Algorithm κ value Tiles discovered Standard deviation

Static κ
5.0 1120086.01 33644.11
6 138621.00 43038.18
6.4312 1386542.73 42644.36
7.0 1484031.90 44276.23

Interaction network variable 1171721.83 30156.08

When comparing the statistics of the tiles covered with the interaction network
to those of several static κ cases, as shown in Table 3.2, the interaction network is not
as efficient. Although its mean κ is high at 6.4312, the cumulative coverage with the
interaction network over the 600 seconds is close to that of the static case with κ = 5.0.
However, this outcome can be attributed to the sharp drop-off in the concentration
parameter of the agent population in the interaction network as the distance from the
base increases (see Figure 3.6b). The drop-off leads to more random motion of agents
and to a slightly denser spread of agents as illustrated in Figure 3.6b. This behavior
may be beneficial when responding to environmental factors, e.g in the desert for the
harvester ants mentioned earlier. Furthermore, as will be evident next, the interaction
network is crucial to successful foraging and congestion avoidance.
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3.8 Foraging behavior
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Figure 3.7: Foraging population compared to per-
ceived availability of food over time

To study the foraging be-
havior captured by the model,
we situated the base in an open
environment without obstruc-
tions and located a food source
at three distances from the base:
at 20, 40, or 60 times the agent
radius. The food piles are com-
prised of 20 stacks arranged in a
3x3 rectangle. Here, the recruit-
ment algorithm outlined in Sec-
tion 3.3 becomes important as
the rate of food-bearing agents
returning to the base causes
more agents to be sent out in re-
sponse to the availability of food, as seen in Figure 3.7. Once the food source has
been used up, the population of foraging agents returns to a steady state as more
agents are still recruited at the minimum rate and they return to the base after their
timeout of 180 seconds.

Figure 3.8a shows the impact of distance of the food source from the base. We
observe that a linear increase in distance of the food source leads to a roughly linear
increase in task completion time. The shape of the curves is reminiscent of a sigmoid
or Gombertz function: As individual agents establish a memory of the food source
and point more agents toward the food source on their return trip; this leads to higher
recruitment and the rate of food pickup increases. As the food source diminishes, the
rate again decreases as the stacks closest to the base are used up, and the chance of
an agent encountering a food stack diminishes.

The coverage map in Figure 3.8b shows a high concentration of agents between
the base and the food source at a distance of 60 times the agent radius to the right
of the base. There is a clear interaction chain created by the direct contact between
food-bearing and foraging agents, both with and without food compass. However,
a part of the agent population still covers other areas around the base in search of
additional food sources.

3.9 Congestion avoidance

As described in subsection 3.4, after the congestion direction is estimated by
an agent, it establishes an avoidance sector, a set of directions that it will not consider
as long as its concentration parameter is above the quorum sensing threshold required
to trigger the congestion avoidance behavior. In the non-deterministic (randomized)
implementation, the avoidance sector is modeled using a von Mises distribution with
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Figure 3.8: Foraging behavior with interaction network in open environment

the mean estimated from recent interactions and its sector ^S = 2κ. In order to
evaluate the congestion avoidance feature of the interaction network, we consider the
bottleneck scenario shown in Figure 3.9, which is designed to encourage congestion
with narrow pathways. In this scenario, the base is on the left and the food is on the
right.

Figure 3.9: Bottleneck
scenario

We compare the non-deterministic (randomized)
avoidance scheme with an implementation that uses a
static avoidance sector. The latter does not vary the cen-
ter of the sector around the mean but it computes a vari-
able sector size based on the κ parameter. Figure 3.10a
shows that with the non-deterministic version, there is a
significant reduction in interactions and therefore of the
concentration parameter after the first 150 seconds com-
pared to the static case. This enables the agents to return
food even after the population increased to a point where
the simulation without a randomized sector is starting to
reach deadlocks around 200 seconds. This is indicated by
the sharp decrease in food returns. When evaluating κ with respect to distance from
the base, as shown in Figure 3.10b, we note a high amount of congestion close to
the base and at the beginning of the pathways for the case with the static avoidance
sector, while the randomized version shows a more even distribution of interactions.

We have omitted discussion of simulation results without congestion avoidance,
as they lead to deadlocks in all 3 possible pathways between the base and the food.
As a result, the agents are unable to complete retrieval of all food available.
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Figure 3.10: Decentralized congestion avoidance in the bottleneck scenario

3.10 Conclusions

This chapter detailed a non-deterministic multi-agent simulation model com-
prised of agents that do not use stigmergy for mutual communication. Instead agents
primarily interact via direct physical contact. The model has three main components:
1) navigation and communication, which rely on an interaction-adapted correlated
random walk superimposed with notions of a base compass and food compass as
well as speed updates due to Impetus and Resistance effects arising from the same
interactions, along with decaying memory of these interactions, 2) a decentralized
congestion and wall avoidance scheme which is triggered with quorum sensing, and
3) a previously proposed recruitment model that regulates the foraging population.
The performance of the overall multi-agent model is illustrated with simulations of
search space coverage and foraging in open environments and congestion avoidance
in constricted scenarios.

The main conclusion is that it is possible to create common collective behav-
iors using only the rates of direct encounters/interactions between agents, as opposed
to reliance on pheromone trails or other stigmergic cues for communication. The
interaction network is able to achieve behaviors such as targeted food retrieval with
interaction chains as well as traffic balancing across multiple pathways in a completely
decentralized manner. However, unlike traditional stigmergic models, the present
model requires superpositions of the correlated random walk of each agent with other
secondary distributions of, for example, the Food and Base Compass to achieve these
behaviors. Furthermore, the communication requirements are minimal - for a ma-
jority of encounters/interactions the fact of their occurrence is enough, without the
need to exchange any information. Only in certain circumstances, like interactions
between food-bearing and foraging agents, is any additional information exchanged
on encounter between the agents. A non-deterministic collision avoidance scheme is
also proposed in which each agent uses the same interaction rates to probabilistically
estimate a congestion sector and avoid the area. Finally, we remark that while the key
parameters of the multi-agent simulation model we used in our illustrations are given
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in Table 1, one can easily scale these parameters to examine the collective coverage,
foraging and avoidance behaviors in different time and length scales.

Some interesting analyses can be pursued as future work on the proposed
model. For example, the trade-off between food retrieval and exploration of the
environment can be further characterized in relation to individual agents - like what
percentage of agents form the interaction chains from the base to the food sources,
compared to the percentage that explore the rest of the environment. By extension
we might explore the percentage of agents actually retrieving food, given that agents
who have previously returned with food are recruited again for subsequent trips. The
response of the interaction network to a changing environment, such as appearing and
disappearing food sources or obstacles, would need to be characterized as well. Finally,
it is necessary to do a systematic robustness analysis with respect to the parameters
required for the different aspects of the model to function - base speed, span rate,
memory decay rates, agent geometry, etc. - and to establish specific relationships
between these parameters that will result in a successful, optimal interaction network.

We aim to abstract observations from this microscopic model of a multi-agent
interaction network and apply them to the design and management of decentralized
mobile radio networks such as those that could be deployed on individual vehicles
and field robots. Attractive scenarios for this include those where infrastructure such
as roadside units or cell towers are not readily available or are very costly. These are
similar to environments unsuitable to pheromone trails or other stigmergic traces. We
envision such networks to provide services as alternative to those employing vehicle-
to-infrastructure communication. Specific aspects include decentralized congestion
management of the radio networks and/or of the traffic of the mobile agents utilizing
such a network. A preliminary example of extending the basic ideas of the presented
model for decentralized vehicular traffic congestion management appears in our recent
work [45].
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Chapter 4

Decentralized congestion control in
multi-agent networks

4.1 Abstract

Interaction networks formed by foraging ants are among the most studied
self-organizing multi-agent systems in nature that have inspired many practical ap-
plications. However, the vast majority of prior investigations assume pheromone trails
or stigmergic strategies used by the ants to create foraging behaviors. We first review
an ant network model where the direction and speed of each ant’s correlated random
walk are influenced by direct and minimalist interactions, such as antennal contact.
We incorporate basic ant memory with nest and food compasses, and adopt a discrete
time, non-deterministic forager recruitment strategy to regulate the foraging popula-
tion. The chapter’s main focus is on decentralized congestion control and avoidance
schemes that are activated with a quorum sensing mechanism. The model relies on
individual ants’ ability to estimate a perceived avoidance sector from recent inter-
actions. Through simulation experiments it is shown that a randomized congestion
avoidance scheme improves performance over alternative static schemes.

4.2 Background

Ants and other social insects exhibit complex problem solving capabilities in
groups despite the limited capabilities of the individual insect/agent. They can share
information by secreting pheromones into the environment, which can later be picked
up by other ants. This mechanism of communication through the environment is
referred to as stigmergy and is the focus of a multitude of algorithms and heuristics
such as ant colony optimization or ACO [7]. Similar algorithms have since been
applied to many optimization problems such as the traveling salesman problem (TSP)
[12] to network routing and scheduling [46],protein folding [14] and others [15] [17].
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Ants can also communicate directly by exchanging hydrocarbons on antennal
contact. In habitats unsuited for environmental markers, ants like Pogonomyrmex
barbatus and Lasius Niger instead rely on encounter rates with fellow ants for navi-
gational purposes: by counting interactions, these ants are able to discern basic infor-
mation about distance to the nest or points of interest as well as initiate behavioral
changes in the case of nest migration. The ant species Temnothorax albipennis [22]
uses encounter rates to choose new nesting sites: when enough ants congregate at
a certain site, increasing encounter rates above a certain threshold and signaling a
consensus [28], individual ants change from nest searching to migration. This mech-
anism is referred to as quorum sensing [24] and is used for similar purposes in honey
bees [23] and the bacteria V. harveyi [47]. A good discussion of the non-deterministic,
yet resilient and robust characteristics of quorum sensing are summarized in [27].

In this chapter, we briefly describe a microscopic model for ants that use en-
counter rates for the purposes of navigation and congestion avoidance. Many aspects
of the model are discussed in further detail in our journal paper [48] and are inspired
by the detailed descriptions of ant interaction networks by biologist D. Gordon [35].
Here, we specifically focus on decentralized congestion control by first implement-
ing the quorum sensing mechanism to congestion control instead of colony migration.
Each ant is considered to also estimate the perceived center of, and sector around, the
congestion when detecting a concentration of ants above the quorum threshold. Three
possible implementations of a decentralized congestion control scheme are proposed
and evaluated. To regulate the foraging ant population, we adopt the recruitment
model proposed by Gordon [38], where the rate of spawning of the ants from the nest
is related to the rate of return of food bearings ants.

This chapter is motivated by possible applications of ant-inspired decentralized
congestion control that could use minimalist direct communication without using
external infrastructure or other analogues of stigmergy. Congestion control problems
are prevalent in the management of transportation networks [49], data networks [50],
and other multi-agent resource/information dissemination/consumption applications,
such as social networks [51].

The rest of this chapter is organized as follows: Section 4.3 reviews the mod-
eling assumptions and the navigation scheme used by each ant, while section 4.4
details the decentralized congestion control scheme. Section 4.5 briefly reviews the
recruitment model adopted and section 4.6 presents results and discussions focusing
on variations of the congestion control scheme. Section 4.7 concludes the chapter.

4.3 Navigation

The ants’ (the agents’) movement across a 2-dimensional plane is modeled as a
correlated random walk updating at fixed time steps. During their movement, agents
may physically contact other agents, which triggers an interaction during which the
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ants exchange whether or not they are carrying food, and, if they are, their current
heading. However, the simple occurrence of the encounter/interaction is the most
important information for the agents. The change in heading at each step, θ, is
sampled from the von Mises distribution [40] in Equation 4.1,

f(θ) = M(θ;µ;κ) =
1

2πI0κ
eκcos(θ−µ) (4.1)

where κ is the concentration parameter. It varies the dispersion of the distribution:
at κ = 0, the distribution is uniform; when κ is large, the distribution becomes
concentrated about its mean µ. I0 denotes the modified Bessel equation of the first
kind. This distribution is commonly applied to model a wide range of biological
motions including those of ants [42]. Note that θ denotes the change in the ant’s
heading direction from step i to step i + 1. We model each ants’ response to recent
encounter with other ants or interactions by updating its concentration parameter
using equation 3.2.

The speed of each ant is also made directly dependent on the number of recent
interactions it experiences as seen in Equation 3.3.

The goal of each foraging ant is to acquire food and return to the nest from
which it is spawned. Using the mechanisms described above, the ants travel across
the search space. When an ant encounters food or decides to return to the nest
after a certain time of foraging unsuccessfully it it does so using a Nest Compass. In
nature, ants continuously integrate their walk in order to maintain an internal vector
of the nests location [43]. We integrate this behavior into our model using a second
von Mises distribution whose mean points in the direction of the nest relative to
the agent’s current heading. This is superimposed onto the ant’s correlated random
walk. The result is then normalized and used for heading decisions. While an ant is
returning to the nest, interactions are used to modify the Nest Compass instead of
the random walk: as the ant travels closer to the nest, it is more likely to encounter
other ants and in return reaffirmed in its general direction. When a foraging ant
encounters an ant carrying food, it sets its heading to the opposite of the encountered
ant’s heading before making its next decision. The assumption made is that the food
source will be located in the general area opposite to where the food-carrying ant
is headed, since its Nest Compass urges it to return. Similar to the Nest Compass,
ants who have previously found food and successfully returned it to the nest possess
a Food Compass, which is modeled via an additional von Mises distribution added to
the random walk that points to the location at which food has recently been found by
the ant. With the above model components, given a certain number of food-bearing
and foraging ants, if the food source is concentrated in an area, a interaction chain
is eventually formed where ants influence each other in their relative directions and
speeds.
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4.4 Decentralized congestion avoidance strategy

While the navigational attributes mentioned above enable the ants/agents to
successfully forage in open environments, constricted scenarios such as those incor-
porating corridors and closed spaces greatly hinder the ants ability to forage: they
get stuck in corners, are often unable to move past each other when interacting along
walls, and may be unable to return to the nest depending on the geometry of the
environment. Additionally, congestion in bottlenecks may cause a standstill for the
colony and total loss of productivity.

We first describe how we model the behavior near walls or obstacles. When
an ant contacts an obstacle other than an ant, the component of its heading per-
pendicular to the wall is nullified and the ant slows down, covering less distance.
Additionally, we have found in computational experiments that this behavior encour-
ages the coalescence of groups of ants along the walls; often times ants keep trying
to move into opposite directions yet get stuck as they are unable to efficiently move
past each other. To combat this behavior, we endow ants to avoid contact with a
wall after an initial encounter with it. All directional changes that would move an
ant closer to the direction of an encountered wall are avoided for a short time frame.
This avoidance region is taken to be a nearly 178◦ sector directly perpendicular to
the direction of the encountered wall. This simple behavior assumes that the wall
extends a certain distance in either direction, but is found to increase the colony’s
productivity.

Away from obstacles, a decentralized congestion control scheme is implemented
starting with the quorum sensing mechanism: when ants sense a high density of other
ants around them, indicated by the concentration parameter κ reaching or exceeding
a threshold value TC , the ants change their behavior to prioritize the avoidance of
further interactions [52]. To model this, we assume each ant to not only count re-
cent interactions but also the directions from which they occurred. Then, each ant
estimates the average direction to the center of the congestion using:

θC = atan(

∑m
i=1 sin(θi)∑m
i=1 cos(θi)

) (4.2)

where θC is the heading pointing to the perceived center of congestion and θi the
direction of contact of a given recent interaction. Higher numbers of interactions
enables the ant to more precisely estimate the center of congestion, as well as the level
of congestion. Once the ant estimates the direction to the center of the congestion,
it creates an avoidance area/sector of a certain number of degrees equally distributed
on either side of the congestion direction vector. This sector is then excluded from
possible headings that the ant might choose at its next decision step, in order to avoid
the congested area. The probabilities of the remaining directions are normalized and
then used for further heading decisions. This behavior is illustrated in Figure 3.4,
where a foraging ant is avoiding a cluster of ants surrounding it.
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The size of the avoidance area can be made directly dependent on the concen-
tration parameter. This is a notion consistent our model of the formation of the ant
network formed by interactions.

βC = XC ∗ κ (4.3)

where βC is the size of the congestion area, XC is a scaling constant, and κ is the
concentration parameter. When the avoidance area is dependent on the number of re-
cent interactions, a small amount of congestion will result in less evasive action which
leads to a less drastic change in ant behavior and higher throughput in moderately
traveled bottlenecks.

Instead of the static estimates of the congestion area sector offered above
or the one varying with the concentration parameter, we also consider a randomized
estimate. This can be done by using the von Mises distribution with a mean estimated
as above and a concentration parameter κ of the random walk (indicator of encounter
rates). By looking up the direction of the congestion’s center as perceived by the
agent from this distribution, we introduce some randomness to prevent standstills
which may occur when groups of ants traveling in opposite directions encounter each
other in corridors or bottlenecks. We shall refer to this case as randomized variable
sector in the results below.

For an in-depth discussion on the decision loop of the agents, see [48].

4.5 Recruitment

The recruitment of foragers in the nest is abstracted using a discrete time
recruitment model proposed by Prabhakar, Dektar, and Gordon [38]:

αn = max(αn−1 − qDn−1 + cAn − d, α), α0 = 0 (4.4)

Dn ∼ Poisson(αn) (4.5)

where αn is the rate at which ants are spawned from the nest at time n, An is the
number of returning, food-bearing foragers at time n, and the actual number of ants
departing the nest, Dn, is set to a Poisson random variable using the spawn rate as its
mean. q, c, and d are parameters for the variables already discussed, while α denotes
the minimum spawn rate of the nest.

Ants that have previously found food and therefore possess a Food Compass
are recruited first since according to Gordon [35], a relatively small amount of the
foraging population does a majority of the work. The parameters of equations 4.4
and 4.5 are tuned as to recruit ants at a rate similar to the number of ants returning
plus the minimum rate. This leads to steady growth of the population until the food
source is fully consumed.
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4.6 Results and discussion

We implemented the model described above in the modeling environment
Unity t 3D using C#. Unity’s built-in physics system was used for collision detec-
tion between ants as well as their navigation around each other and obstacle. Values
of important parameters used for generating the simulation results presented in this
section are listed in our journal paper [48]. Each experiment was executed 100 times.

We consider two geometric scenarios to primarily evaluate the decentralized
congestion avoidance scheme. Scenario 1, shown in Figure 4.1, depicts the nest area
and food area connected by 3 paths. This was chosen to encourage interactions and
create congested areas. It is a version of the double bridge experiment [53], though
with two longer routes instead of one. The direct route between the two areas will
be most traveled due to the ants’ Nest Compass. We hypothesized that a correctly
working congestion avoidance strategy would divert a number of ants from the shortest
paths to the two alternate paths. Scenario 2 adds two additional pathways at the
north and south ends of scenario 1. We run all tests in this scenario as well in order
to evaluate the scalability of our strategy. The task in all experiments is to collect
180 food items arranged in a 3x3 square in the back of the food area. The results
for scenario 2 were found to be in agreement with observations from scenario 1, and
most of its results were therefore not included here, except where noted (discussion
of Table 4.1), for lack of space.

Figure 4.1: Scenario 1

Figure 4.2a shows the task com-
pletion times on scenario 1 when using
three static sectors (with deterministi-
cally estimated perceived center, Equa-
tion 4.2; and sectors of 120◦, 180◦, and
240◦), varying the congestion area/sector
in relation to the concentration parame-
ter (Equation 4.3) or randomized vari-
able sector. It can be seen that the vari-
able and randomized sectors lead to im-
proved task completion times by about
40 seconds. Furthermore, there appears
to be only minute differences between the results for the experiments using static
congestion avoidance sectors.

More information about the interactions in the network under the different
congestion avoidance settings can be gleaned from Figure 4.2b, which shows the
history of the average concentration parameter of the network during the experiment.
The concentration parameter is a direct result of the recent interactions experienced
by each ant. While a wider static congestion avoidance area setting results in less
interactions/second on average, the ants in these experiments are unable to resolve
the congestion created by the constricted pathways: the rate of interaction increases
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Figure 4.2: Experimental data comparing several congestion avoidance strategies
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even after task completion (240s, in Figure 4.2a). Varying the avoidance area using κ
shows a reduced trend, yet the number of interactions is still steadily increasing with
time. However, randomizing the perceived center of congestion seems to allow the
ants to move past each other in the congested pathways and reduce both the number
of interactions which is reflected in the concentration parameter.

Table 4.1: Mean Avoidance Sector sizes for both scenarios and congestion avoidance
strategies

Scenario Avoidance Strategy Mean Avoidance Sector (◦)

1
Variable 243.3
Randomized Variable 232.6

2
Variable 229.5
Randomized Variable 214.0

Table 4.1 references the average sizes of congestion avoidance sectors for both
scenarios and the two congestion avoidance strategies using a variable sector size.
The size of the congestion avoidance sector for each ant in these experiments was
set to 2*κ, or TC = 2. While the difference between the variable and randomized
variable sectors are small relative to how differently they perform, the results do
support the observations made earlier that the randomized variable strategy leads to
less interactions and consequently smaller concentration parameters, thereby reducing
the size of the congestion avoidance sector and increasing the efficiency of the network
via a faster task completion time as in Figure 4.2a. Additionally, the increased number
of pathways in scenario 2 compared to scenario 1 leads to less interactions as the ants
are able to efficiently spread out across the increased search space in scenario 2.

Another way to evaluate the effectiveness of each congestion avoidance strat-
egy or setting might be to measure how well it diffuses ants across the environment.
To this effect, Figure 4.2c illustrates the average κ for the agents with respect to
their distance from the nest. What this data shows is that a high congestion avoid-
ance angle is beneficial in avoiding interactions, lowering the concentration parameter
and indicating even diffusion. The randomized variable strategy performs poorly by
comparison, yet we can conclude that even distribution does not necessarily indicate
higher throughput, supported by Figure 4.2b. Instead the higher, static congestion
avoidance sectors simply leads to a standstill, restricting individual ants’ mobility
and confining them to their immediate areas.

Figure 4.2d illustrates the foraging population of the simulated ant colony over
the length of the experiment. Ants are spawned at the minimum rate according to the
recruitment algorithm until the first ants return with food around 100 seconds into the
simulation, at which point additional ants are spawned to keep the population growing
at a steady pace while food is available. Once the food source has been consumed,
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the population should stabilize as foraging ants will return to the nest after their 180
second timeout. The population only stabilizes in the case of the randomized variable
congestion avoidance area, indicating that in the other cases ants are unable to return
to the nest, an observation that is also indicated by Figure4.2b. This confirms our
conjecture above that the randomized variable sector gives a realistic decentralized
congestion control scheme for the random interaction network created by the foraging
ants.

A visual comparison of this trend is shown in Figure 4.3, comparing cover-
age in scenario 1 between a static 120◦ avoidance sector and a randomized variable
congestion avoidance sector. Note how most of the activity in (a) is confined to the
starting area while (b) shows a more even distribution of activity. This visual approx-
imation is supported by Figure 4.2e, which shows that congestion avoidance sectors
of size 180◦ and 240◦ as well as the randomized variable sector lead to more even tile
coverage compared to the smaller 120◦ sector and the variable sector size.

(a) A static 120◦ avoidance sector (b) Randomized variable avoidance sector

Figure 4.3: Examples of cumulative coverage maps for different congestion avoidance
strategies

4.7 Conclusions

This chapter detailed a non-deterministic multi-agent simulation model com-
prised of agents that do not use stigmergy for mutual communication. Instead, agents
primarily interact via direct physical contact. The model has three main components:
1) navigation and communication, which rely on an interaction-adapted correlated
random walk superimposed with notions of a base compass and food compass as
well as speed updates due to impetus and resistance effects arising from the same
interactions, along with decaying memory of these interactions; 2) a decentralized
congestion and wall avoidance scheme which is triggered with quorum sensing; and
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3) a previously proposed recruitment model that regulates the foraging population.
The performance of the overall multi-agent model is illustrated with simulations of
search space coverage and foraging in open environments and congestion avoidance
in constricted scenarios.

The main conclusion is that it is possible to create common collective behaviors
using only the rates of direct encounters/interactions between agents, as opposed
to reliance on pheromone trails or other stigmergic cues for communication. The
interaction network is able to achieve behaviors such as targeted food retrieval with
interaction chains as well as traffic balancing across multiple pathways in a completely
decentralized manner. However, unlike traditional stigmergic models, the present
model requires superpositions of the correlated random walk of each agent with other
secondary distributions of, for example, the food compass and base compass to achieve
these behaviors. Furthermore, the communication requirements are minimal — for a
majority of encounters/interactions the fact of their occurrence is enough, without the
need to exchange any information. Only in certain circumstances, like interactions
between food-bearing and foraging agents, is any additional information exchanged
on encounter between the agents. A non-deterministic collision avoidance scheme is
also proposed in which each agent uses the same interaction rates to probabilistically
estimate a congestion sector and avoid the area. Finally, we remark that while the key
parameters of the multi-agent simulation model we used in our illustrations are given
in Table 1, one can easily scale these parameters to examine the collective coverage,
foraging and avoidance behaviors in different time and length scales.

Some interesting analyses can be pursued as future work on the proposed
model. For example, the trade-off between food retrieval and exploration of the
environment can be further characterized in relation to individual agents — such
as what percentage of agents form the interaction chains from the base to the food
sources, compared to the percentage that explore the rest of the environment. By
extension, we might explore the percentage of agents actually retrieving food, given
that agents who have previously returned with food are recruited again for subsequent
trips. The response of the interaction network to a changing environment, such as
appearing and disappearing food sources or obstacles, would need to be characterized
as well. Finally, it is necessary to do a systematic robustness analysis with respect
to the parameters required for the different aspects of the model to function — base
speed, span rate, memory decay rates, agent geometry, etc. — and to establish
specific relationships between these parameters that will result in a successful, optimal
interaction network.

Observations from this microscopic model of a multi-agent interaction network
can be abstracted and applied to the design and management of decentralized mo-
bile radio networks such as those that could be deployed on individual vehicles and
field robots. Attractive scenarios for this include those where infrastructure such as
roadside units or cell towers are not readily available or are very costly. These are
similar to environments unsuitable to pheromone trails or other stigmergic traces. We
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envision such networks to provide services as alternative to those employing vehicle-
to-infrastructure communication. Specific aspects include decentralized congestion
management of the radio networks and/or of the traffic of the mobile agents utilizing
such a network.
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Chapter 5

Decentralized traffic rerouting
using minimalist communications

5.1 Abstract

Vehicular ad-hoc networks have the potential to greatly decrease travel times
while increasing traffic safety. Potential applications range from simple turn assist
to complex traffic management via integration with city infrastructure like traffic
lights. In this chapter, inspired by observed behaviors of certain insects, we propose
a decentralized congestion avoidance scheme. The approach measures the level of
congestion in a road transportation network by the amount of wireless network traffic
generated by vehicle-to-vehicle communications. When experiencing high congestion,
a vehicle re-routes non-deterministically using a modified K shortest path algorithm
whose paths are weighted using a Logit model. To illustrate the workings of the
proposed solution, we use a microscopic vehicular traffic simulator coupled with a
communication network simulator. The resulting decentralized congestion avoidance
scheme requires only a minute amount of bandwidth and it can be implemented on
top of existing vehicle-to-vehicle communication applications by both autonomous
and non-autonomous vehicles alike. Significant improvements were obtained in traffic
throughput with the proposed approach.

5.2 Introduction

Congestion is a widespread problem in today’s traffic networks [54], escalat-
ing from an already impressive estimated cost of $37.5 billion in 2004 [55] to $121
billion in 2015 [56]. While the building of additional transportation infrastructure
like highways, streets, subways, and trains can alleviate congestion, it is a very costly
solution. Intelligent use of the existing road infrastructure can decrease travel times,
CO2 emissions, fuel consumption, and driver frustration. This can be achieved, for
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example, by connecting vehicles using cheap short-range radios so that they share
information about traffic status on nearby roads.

Vehicular ad-hoc networks, or VANETs, are a type of mobile ad-hoc networks
specifically consisting of vehicles communicating with each other (vehicle-to-vehicle
or V2V) or roadside units (RSUs, vehicle-to-infrastructure or V2I) [57]. These net-
works enable the development of applications ranging from active safety like left turn
assist to improved traffic efficiency like the dissemination of traffic information and
smart route planning [58]. However, the high mobility of nodes in the network, and
therefore constantly changing topology, leads to challenges with regard to stability
and reliability of the connections [59]. As a consequence, roadside units are often
assumed as an integral part of these networks. However, RSUs may not be present
in smaller cities or emerging regions.

For this reason, we have decided to eschew V2I and focus on creating a univer-
sally useful V2V application. Furthermore, we draw inspiration from certain insects
that form interaction networks chiefly by counting physical encounters to achieve
complex tasks such as navigation and foraging for food, area coverage and decentral-
ized congestion avoidance [60] [61]. In analogous fashion, we explore the possibility
that by measuring the amount of network traffic in the VANET, either as created by
other applications such as file sharing or active prediction [62], or by beacon messag-
ing [63], and using it to estimate the congestion in the transportation network, indi-
vidual vehicles make routing decisions in a completely decentralized manner. Using
non-deterministic route selection, we illustrate that it is possible to relief congestion
and balance the traffic load without requiring any additional information exchange
between vehicles. In the version discussed in this chapter the rate of interaction, not
the information itself, is the deciding factor. While the performance of such a decen-
tralized approach may not compare favorably with a cloud-based solution like Google
Maps or WAZE, we note that the approach could function even in the absence of a
data connection and we surmise that it may be able to respond to changing conditions
with less latency. The low bandwidth requirement of our model and integration into
other applications means that it can be realized using the IEEE 802.11p Wireless Ac-
cess for Vehicular Environment (WAVE) protocol using the Dedicated Short Range
Communications (DSRC) spectrum in the 5.9 GHz band [64].

The rest of the chapter is organized as follows: Section 5.3 describes the in-
spiration for the work further, and reviews options for practical congestion measure-
ment and traffic routing. Section 5.8 discusses the routing algorithm we adopt for
our purposes. Section 5.9 elaborates on how we use the microscopic traffic simulator
SUMO, coupled with the OMNet++ network simulator using the VEINS framework.
Section 5.10 evaluates the model using a base case scenario. Finally, Section 5.11
summarizes the chapter.
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5.3 Background

5.4 A Microscopic model for multi-agent interac-

tion networks without stigmergy

As mentioned above, we draw inspiration from interaction networks created
by certain insects like harvester ants, in which the basis for navigation and routing
decisions are minimalist encounters between agents [35] [20] [22]. In our previous
work [60], we developed a microscopic model for such multi-agent networks that cre-
ate complex foraging behaviors with simplistic physical interactions in which barely
any information is exchanged. No pheromones or environmental/infrastructure mark-
ers (stigmergy) are involved. Instead, the rate of interactions inform the individual
agents’ modifications of its correlated random walk. The model also includes a decen-
tralized congestion avoidance scheme which uses the direction of recent interactions
to create an arc of potential headings which are to be avoided. This mechanism is
explored in depth in our subsequent paper [61]. We adopt the non-deterministic na-
ture of the agents’ heading decisions as well as their reliance on interaction rates for
decision making as the basis of the model explored in this chapter.

5.5 Measuring congestion

Congestion, whether caused by extraordinary factors such as accidents or as
a manifestation of everyday traffic in urban areas, presents an important problem
increasing fuel consumption, emissions, and travel times. Its measurement and de-
tection can be realized in a multitude of ways.

The simplest method is to define congestion as traffic that is moving at a
slower rate than permitted by the road [65]. Traffic intensity may also be measured
by carefully deployed surveillance systems such as traffic cameras [66], forming sensor
networks whose data can once again be analyzed by central servers. However, infras-
tructure such as this is costly to deploy and maintain, making it available only to the
busiest of intersections in major cities. VANETs reduce the need for expensive sensor
networks. Another method is to correlate the amount of congestion with the density
of vehicles in a certain area [67]. We will adopt a version of the latter approach:
by estimating the density of vehicles in the immediate vicinity using wireless net-
work traffic between vehicles, we compute a congestion parameter that is then used
as the basis of our model’s behavior. Ways this parameter can be derived include
control channel (CCH) messages assuming DSRC/WAVE, other beacon messaging
applications, or even applications which send information non-periodically.
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5.6 Routing

Route assignment in order to improve traffic flow and reduce travel times can
be implemented in a variety of ways. A few examples which route cars as they enter
the network are listed below, however none of them re-route the vehicle as it travels.
The simplest and most inefficient form of routing discussed here is to find the shortest
path from source to destination - shortest path routing. In a transportation network
topology, consisting of major roads connecting areas of varying traffic demands, con-
gestion is likely to occur using this approach. One-shot routing, by contrast, incre-
mentally assigns vehicles to routes as they enter the network according to current
travel times. The resulting trips do not represent a stochastic user-equilibrium, but
drastically improve throughput and travel times in most networks over shortest path
routing. We chose this method as a basis of comparison for our model due to its sim-
plicity, though it does require route and travel time information for each vehicle in the
network at the time of departure, while the vehicles in our model only possess limited
up-to-date information about their immediate vicinity. Dynamic User Assignment
(DUA) is an iterative process in which the simulation is run and then a number of
vehicles are chosen to be assigned alternative routes. This is repeated for a number
of steps and also does not guarantee an equilibrium state - and can not be applied
to live scenarios due to its iterative nature - but can be useful in analyzing trans-
portation networks. Stochastic User Equilibrium (SUE) Assignment routes vehicles
by determining a number of k shortest paths to the destination and then weighing
them according to a choice model, for example Logit, C-Logit, Probit, or modified
Lohse Logit [68]. Our model functions similarly, except vehicles begin by computing
the shortest path and only using the k shortest path algorithm and Logit model upon
encountering a congested area as measured using the congestion parameter.

5.7 Related work

A study using beacon messaging by vehicles subject to accidents in order to re-
route other vehicles was conducted by [69]. [70] outlines a similar approach to ours in
which vehicles send beacons when approaching an intersection, asking for information
in routes of interest in order to evaluate congestion and make an informed routing
decision. CoTEC (Co-Operative Traffic congestion detECtion) is a traffic congestion
quantification model using traffic density acquired via beacon messaging and the
vehicle’s speed and processed via fuzzy logic to detect congestion [71]. Once a vehicle
detects congestion, it exchanges traffic estimation messages with nearby vehicles to
further estimate the extent and duration thereof. SOTIS (Self-Organizing Traffic
Information System) uses a decentralized V2V approach by disseminating periodic
data packets between vehicles, which is then used to analyze the traffic situation
by every individual agent [72]. The analysis is then re-distributed to surrounding
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vehicles. StreetSmart Traffic has vehicles disseminate information about roads on
which they had to travel with slower speeds than anticipated [73]. These approaches
function well, but require the distribution of information between vehicles which is
specific to their application.

5.8 Congestion-triggered rerouting

Once the congestion parameter (see section 5.5) reaches or exceeds the thresh-
old TC , the vehicle makes a decision about whether or not to reroute, and, if so,
which route it should take. The threshold is implemented to avoid any and all route
alterations without sufficient information to indicate that a route change may have a
positive impact on travel time. Additionally, the rerouting response will not trigger
again until the congestion parameter has decreased below a reset threshold, TR, where
TR < TC . Yen’s Algorithm [74] is used to find K shortest paths, A1 through AK , from
the vehicle’s current location to its destination. However, in order to facilitate the
relief of congestion near the vehicle’s current location, the amount of spur nodes used
to determine additional short paths was reduced: instead of ranging from the first
node to the next to last node, only up to the first 3 spur nodes were used to deter-
mine alternative paths. Consequently, A does not contain K shortest paths anymore,
but the shortest path A1 and collection of the shortest paths which deviate from the
overall shortest path within the next 3 nodes, A2 through AK . The modification
prevents paths which do not immediately contribute to congestion relief by omitting
those who do not differ from the current path on which congestion is encountered,
until the vehicle has already endured the congestion it is currently experiencing. The
modified Yen’s algorithm is outlined in Algorithm 2.

These options are weighed against each other and assigned a probability using
the modified Lohse Logit model [75], similar to SUE assignment. However, the vehicle
does not possess any information about the routes of other vehicles and can therefore
only use the cost of the paths as stored in its memory.

p(k) =
exp[−(βXk)

2]∑
h∈Ry

expJ−(βXh)2K
∀k ∈ Rij,∀i ∈ I, ∀j ∈ J (5.1)

where Xk =
Ck

Cmin,ij
and Cmin,ij is the travel cost of the shortest route of origin-

destination pair ij. Rij is the set of routes from i to j. β is the dispersion parameter
of the perception of travel time among drivers as empirically devised by Lohse and
in form of β = 12

1+exp(0.7−0.015Cmin,ij)
.
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Figure 5.1: Model implementation overview

5.9 Network and traffic modeling

Our simulation consists both of a network simulator, OMNet++, and a traffic
simulator, SUMO, coupled using the open-source framework VEINS. We equip each
vehicle with a radio transmitter to send multi cast messages using the IEEE1609
WAVE standard.

SUMO (Simulation of Urban MObility) is a GPL-licensed traffic simulator
written in C++ [76]. The simulator is able to import networks from a multitude of
sources and possesses a host of utilities for creating traffic demands. Its feature set
includes a TCP client/server architecture dubbed Traffic Control Interface, TraCI for
short, enabling the setting and retrieval of variables in SUMO.

OMNet++ is a event-based network simulation framework written in C++
[77]. It is able to simulate a wide variety of networks, but our use is confined to wire-
less communication networks. Alternatives include J-Sim [78], NS-3, and OPNET.
OMNet++ was chosen for its ease of integration with SUMO via the VEINS frame-
work, its maturity, and our familiarity with the programming language. OMNet++
also features built-in data collection, which was used extensively for this project.

VEINS is an open-source framework that couples OMNet++ and SUMO along
with several other tools, enabling realistic vehicular network simulations [79]. Bi-
directional coupling via SUMO’s TraCI TCP server enables us to influence a vehicle’s
routing based on its communications with surrounding vehicles. Messages received
are stored in the OMNet++ node, which can send a reroute command to SUMO
via TraCI. The modified Yen’s Algorithm and Lohse Logit model have both been
implemented in SUMO. Each simulator’s roles are outlined in Figure 5.1.
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5.10 Experiments

The proposed congestion avoidance approach was evaluated using the reduced
scenario in Figure 5.2. A east/west main road is divided by an intersection with traffic
lights and surrounded by capillary roads which may be used by vehicles to avoid the
congestion created by the intersection. While the main roads are two lanes wide, the
capillary roads are one-way streets: east to west to the north of the main road, and
vice versa, to avoid left turns which could increase the variance encountered in the
experiment. Using SUMO’s randomTrips.py script, 3600 trips were created with a
period of 1/sec. Important to note is that if a vehicle cannot be inserted on an edge
due to heavy traffic, it waits until insertion is possible, in effect extending the road
segment as far as needed. Potential starting edges include the west- and east-most
edges as well as the edges to the south and north of the intersection. Trips have
been generated to be 10 times more likely to start on the east or west edges, and all
trips terminate on one of those two edges. This creates heavy congestion designed to
create a traffic jam on both sides of the intersection. The traffic light favors east/west
traffic with a 31 second long green period, while the north/south road is green for 6
seconds, and the length of the yellow light period is 4 seconds.

Figure 5.2: The reduced scenario

We compare our model with a base case in which all vehicles simply take
the shortest route to their destination as well to the one-shot routing algorithm (see
section 5.8). In the case of the reduced scenario used here, this means that, using
shortest path routing, the vehicles only use the main east/west road and avoid the
capillary roads around the intersection, while both our model and one-shot routing
will use the capillary roads depending on the amount of traffic on the main road.

Vehicles are equipped with a 20mW short-range radio and communicate using
WAVE with an empty frame body field. The payload may instead by used for other
applications. Even though beacon periods of down to 0.1 seconds are supported
by modern DSRC technology, beacon messaging with a period of 3 seconds is used.
Vehicles retain each message for 3 seconds, and then a reroute is triggered as the
message memory exceeds 20 messages, meaning TC = 20. TR = 10 was chosen for the
reset threshold.

An example of the utilization of the capillary roads for a single experiment
using the rerouting algorithm we propose is illustrated in Figure 5.3. Uneven utiliza-
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Figure 5.3: Heatmap of vehicle density using rerouting algorithm

tion indicates that the algorithm’s parameter may be tuned even more aggressively,
as the majority of vehicles still use the main road. This is a result of the use of the
Lohse Logit model, which always examines the shortest path as the most desirable,
which may not be the case in heavily congested scenarios.
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Figure 5.4: Mean speed over time for vehicles using different routing algorithms

Figure 5.4 shows that the base case quickly reaches a bottleneck, while both
our congestion avoidance model and one-shot routing utilize the capillary roads, in-
creasing mean speeds and throughput. The regular pattern of the stop-and-go traffic
is reflected in Figure 5.5, showing that most vehicles have a very regular mean veloc-
ity in the base case simulation, but about 31.9% lower than our rerouting algorithm,
as seen in Table 5.1. The mean speeds in the rerouting case decrease over time as
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the capillary network reaches capacity, and then sharply increase as the last of the
cars leave the network. Meanwhile, speeds in the base case remain low due to its low
throughput. Since the mean distance traveled by each vehicle only increases by about
10%, we achieve an overall reduction in travel time averaging 33.4%. The reduction
in CO2 emissions of about 18.5% is attributable to vehicles on the capillary roads
which are not subject to the stop and go traffic caused by the intersection. Most im-
portantly, using our model, all 3600 vehicles are able to traverse the road network in
4567 seconds, an increase in throughput of 37.9% over the base case, which required
7359 seconds for all vehicles. Our model actually compares very favorably to one-shot
routing in the main metrics discussed in the table.

Table 5.1: Comparison of rerouting and one shot algorithm to shortest path routing

Base Case Rerouting One Shot

Mean Time (s) 299.6(+33.4%) 224.5 216.5(−3.57%)

Mean Speed (m/s) 3.79(−31.9%) 5.57 5.79(+3.9%)

Mean Distance (m) 1137.1(−9.0%) 1250.1 1252.9(+0.2%)

CO2 (mg/s) 506.3(+18.5%) 427.3 405.2(+0.2%)

Completion time (s) 7359(+37.9%) 4567 4541(−0.6%)
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Figure 5.5: Speed over time comparing the three models

Figure 5.6 shows the same regularity in the base case as Figure 5.5, this time
with regard to travel time. While mean travel time is significantly reduced with our
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decentralized rerouting algorithm, the histogram shows a drawback to our current
model: travel time for a small number of vehicles increases noticeably compared to
the base case. We are currently evaluating the model in more scenarios to verify that
this is a consistent result, but no matter how infrequent, highly negative experiences
for a small group of drivers and passengers should be avoided. However, One-shot
routing shows an even greater disposition toward this behavior than our model.
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Figure 5.6: Travel time histogram

5.11 Conclusions

This chapter described a decentralized congestion avoidance strategy for con-
nected vehicles. By correlating traffic on the wireless network to congestion in the
transportation network, agents are able to make non-deterministic routing decisions
which reduce congestion. This is done merely based on the rate of communications
received by an agent, without the requirement to communicate its decisions to neigh-
boring vehicles. The performance of the strategy is investigated using bi-directionally
coupled vehicular and network simulators in a reduced scenario. We illustrated that
compared to ideal shortest path routing, the proposed approach is much more efficient
in increasing throughput and mean speed for the vehicles in the network, similar to
using one-shot routing which requires significantly more information about the trans-
portation network.

The current model offers a binary response to congestion: once the threshold
is exceeded, the vehicle potentially reroutes, then waits until congestion has dropped

44



below a limit before another reroute may be triggered. An alternative approach we
are pursuing is a proportionate response to congestion, where, instead of rerouting
upon exceeding the threshold, a chance of rerouting could be assigned depending
on the amount of perceived congestion, evaluated either over time or as a function
of distance. The higher the congestion, the more likely the vehicle is to choose to
reroute. Consequently, the vehicle is also able to evaluate its path options differently:
in highly congested areas, paths of higher cost should be more attractive than in low
congestion.
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Algorithm 2 Modified Yen’s K shortest path algorithm

1: procedure modifiedKSP(graph, source, sink,K, n). where n is the number of
nodes on the path, starting from the source, to be considered

2: A[0]← Dijkstra(graph, source, sink)
3: B ← []
4: for k ← 0, K do
5: for i← 0,min(n,A[k − 1]) do . modification
6: spurNode← A[k − 1].node(i)
7: rootPath← A[k − 1].nodes(0, i)
8: for all path p ∈ A do
9: if rootPath == p.nodes(0, i) then
10: remove p.edge(i, i+ 1) from graph
11: end if
12: end for
13: for all node rootPathNode ∈ rootPath except spurNode do
14: remove rootPathNode from graph
15: end for
16: spurPath← Dijkstra(graph, spurNode, sink)
17: totalPath← rootPath+ spurPath
18: append totalPath to B
19: restore edges to graph
20: restore nodes ∈ rootPath to graph
21: if B is empty then
22: break
23: end if
24: sort B
25: A[k]← B[0]
26: pop B
27: end for
28: end for
29: return A
30: end procedure
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Chapter 6

Modifications to congestion control
algorithm

6.1 Abstract

Vehicular ad-hoc networks, or VANETs, are mobile networks formed by mov-
ing vehicles. Along with autonomous vehicle technology they are poised to revolution-
ize transportation by improving safety and decreasing travel time. This paper builds
on a proposed decentralized congestion avoidance algorithm using only the rate of
messages exchanged between vehicles as an indicator of congestion in the transporta-
tion network in order to dynamically reroute vehicles and reduce traffic jams. The
algorithm only requires a high-level map of the road network and the rate of incoming
messages disseminated by other V2V applications such as forward collision warning
or intersection movement assist, and does not add any bandwidth of its own. Addi-
tionally, it can be employed by both autonomous and non-autonomous vehicles alike
to improve traffic throughput and decrease travel times. In this chapter we explore a
range of possible improvements to our congestion avoidance algorithm ranging from
filtering of incoming messages to several alterations in route choice determination and
decision making. All of these are evaluated using the SUMO traffic simulator and
OMNet++ network simulator.

6.2 Introduction

Congestion is a widespread problem in US traffic networks [54], escalating
from an estimated cost of $37.5 billion in 2004 [55] to $121 billion in 2015 [56]. While
building additional transportation infrastructure like highways, streets, subways, and
trains can alleviate congestion, it is a very costly solution. Intelligent use of the exist-
ing road infrastructure can decrease travel times, CO2 emissions, fuel consumption,
and driver frustration. This can be achieved, for example, by connecting vehicles
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using cheap short-range radios so that they share information about traffic status on
nearby roads.

Vehicular ad-hoc networks, or VANETs, are a type of mobile ad-hoc networks
specifically consisting of vehicles communicating with each other (vehicle-to-vehicle
or V2V) or roadside units (RSUs, vehicle-to-infrastructure or V2I) [57]. These net-
works enable the development of applications ranging from active safety like left turn
assist to improved traffic efficiency like the dissemination of traffic information and
smart route planning [58]. However, the high mobility of nodes in the network, and
therefore constantly changing topology, leads to challenges with regard to stability
and reliability of the connections [59]. As a consequence, roadside units are often
assumed as an integral part of these networks. However, RSUs may not be present
in smaller cities or emerging regions.

For this reason, we have decided to eschew V2I and focus on creating a univer-
sally useful V2V application. Furthermore, we draw inspiration from certain insects
that form interaction networks chiefly by counting physical encounters to achieve
complex tasks such as navigation and foraging for food, area coverage and decentral-
ized congestion avoidance. In analogous fashion, we explore the possibility that by
measuring the amount of network traffic in the VANET, either as created by other ap-
plications such as file sharing or active prediction [62], or by beacon messaging [63],
and using it to estimate the congestion in the transportation network, individual
vehicles make routing decisions in a completely decentralized manner. Using non-
deterministic route selection, we illustrate that it is possible to relieve congestion
and balance the traffic load without requiring any additional information exchange
between vehicles. In the decentralized approach we discuss in this paper the rate of
interaction, not the information itself, is the deciding factor. While the performance
of such a decentralized approach may not compare favorably with a centralized, cloud-
based solution like Google Maps or WAZE, we note that the approach could function
even in the absence of a data connection and we surmise that it may be able to re-
spond to changing conditions with less latency. The low bandwidth requirement of
our model and integration into other applications means that it can be realized using
the IEEE 802.11p Wireless Access for Vehicular Environment (WAVE) protocol using
Dedicated Short Range Communications (DSRC) [64].

The rest of the chapter is organized as follows: Section 6.2.1 describes the
inspiration for the work further, and reviews options for practical congestion mea-
surement in and traffic routing. Section 6.3 expands on adjacent literature presented
in the previous chapter. Section 6.4 evaluates the model using a reduced scenario,
while Section 6.5 discusses and evaluates improvements to the algorithm. Finally,
Section 6.6 summarizes the paper.

6.2.1 Background
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Measuring congestion Congestion, whether caused by extraordinary factors such
as accidents or as a manifestation of everyday traffic in urban areas, increase fuel
consumption, emissions, and travel times. Its identification and measurement can be
realized in a multitude of ways.

The simplest method is to define congestion as traffic that is moving at a
slower rate than permitted by the road [65]. Traffic intensity may also be measured
by carefully deployed surveillance systems such as traffic cameras [66], forming sensor
networks whose data can once again be analyzed by central servers. However, infras-
tructure such as this is costly to deploy and maintain, making it available only to the
busiest of intersections in major cities. VANETs reduce the need for expensive sensor
networks. Another method is to correlate the amount of congestion with the density
of vehicles in a certain area [67]. We will adopt a version of the latter approach:
by estimating the density of vehicles in the immediate vicinity using wireless net-
work traffic between vehicles, we compute a congestion parameter that is then used
as the basis of rerouting decisions by each vehicle. Ways this parameter can be de-
rived include control channel (CCH) messages assuming DSRC/WAVE, other beacon
messaging applications, or even applications which send information non-periodically.
Adaptive rate control of basic safety messages (BSM) in WAVE networks based on
channel load [80], for example, would reduce the amount of messages sent in congested
networks, but the channel load measurement in itself could be used to help derive a
useful indicator of congestion in the transportation network.

Routing In order to improve traffic flow and reduce travel times, route assignment
can be implemented in a variety of ways. A few appraoches which route cars as
they enter the network are listed below, however, none of them re-route the vehicle
as it travels. The simplest and most inefficient form of routing discussed here is to
find the shortest path from source to destination - shortest path routing. In a trans-
portation network topology, consisting of major roads connecting areas of varying
traffic demands, congestion is likely to occur using this approach. One-shot rout-
ing, by contrast, incrementally assigns vehicles to routes as they enter the network
according to current travel times. The resulting trips do not represent a stochastic
user-equilibrium, but drastically improve throughput and travel times in most net-
works over shortest path routing. We chose this method as a basis of comparison for
our model due to its simplicity, though it does require route and travel time infor-
mation for each vehicle in the network at the time of departure, while the vehicles in
our model only possess limited up-to-date information about their immediate vicinity.
Dynamic User Assignment (DUA) is an iterative process in which the simulation is
run and then a number of vehicles are chosen to be assigned alternative routes. This is
repeated for a number of steps and also does not guarantee an equilibrium state - and
can not be applied to live scenarios due to its iterative nature - but can be useful in
analyzing transportation networks. Stochastic User Equilibrium (SUE) Assignment
routes vehicles by determining a number of K shortest paths to the destination and

49



then weighing them according to a choice model, for example Logit, C-Logit, Probit,
or modified Lohse Logit [68]. Our model functions similarly, except vehicles begin
by computing the shortest path and only using the K shortest path algorithm and
Logit model upon encountering a congested area as measured using the congestion
parameter.

6.3 Related work

A study using beacon messaging by vehicles subject to accidents in order to re-
route other vehicles was conducted by [69]. [70] outlines a similar approach to ours in
which vehicles send beacons when approaching an intersection, asking for information
in routes of interest in order to evaluate congestion and make an informed routing
decision. CoTEC (Co-Operative Traffic congestion detECtion) is a traffic congestion
quantification model using traffic density acquired via beacon messaging and the
vehicle’s speed and processed via fuzzy logic to detect congestion [71]. Once a vehicle
detects congestion, it exchanges traffic estimation messages with nearby vehicles to
further estimate the extent and duration thereof. SOTIS (Self-Organizing Traffic
Information System) uses a decentralized V2V approach by disseminating periodic
data packets between vehicles, which is then used to analyze the traffic situation
by every individual agent [72]. The analysis is then re-distributed to surrounding
vehicles. StreetSmart Traffic has vehicles disseminate information about roads on
which they had to travel with slower speeds than anticipated [73]. These approaches
function well, but require the distribution of information between vehicles which is
specific to their application.

The core of the rerouting algorithm discussed herein has been laid out in
Chapter 5. It is expanded upon in Section 6.5 of this chapter, and alter fundamental
aspects of the model to measure their impact on overall performance.

6.4 Experiments

The proposed congestion avoidance approach was evaluated using the reduced
traffic scenario shown in Figure 5.2. A east/west main road is divided by an inter-
section with traffic lights and surrounded by capillary roads which may be used by
vehicles to avoid the congestion created by the intersection. While the main roads are
two lanes wide, the capillary roads are one-way streets. To the north of the main road,
the one-way streets run east to west, and vice versa to the south, to avoid left turns
which could increase the variance encountered in the experiment. Using SUMO’s
randomTrips.py script, 3600 trips were created with a period of 1/sec. Important
to note is that if a vehicle cannot be inserted on an edge due to heavy traffic, it
waits until insertion is possible, in effect extending the road segment as far as needed.
Potential starting edges include the west- and east-most edges as well as the edges
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to the south and north of the intersection. Trips have been generated to be 10 times
more likely to start on the east or west edges, and all trips terminate on one of those
two edges. This creates heavy congestion which will lead to a traffic jam on both
sides of the intersection. The traffic light favors east/west traffic with a 31 second
long green period, while the north/south road is green for 6 seconds, and the length
of the yellow light period is 4 seconds.

We compare our model with a base case in which all vehicles simply take
the shortest route to their destination (see Section 6.2.1) without any adjustments
during the trip. In the case of the reduced scenario, using shortest path routing, the
vehicles only use the main east/west road and avoid the capillary roads around the
intersection, while our model and its modifications will utilize the capillary roads to
reduce congestion.

Vehicles are equipped with a 20mW short-range radio and communicate using
WAVE with an empty frame body field. The payload may instead by used for other
applications. Even though beacon periods of down to 0.1 seconds are supported
by modern DSRC technology, beacon messaging with a period of 3 seconds is used.
Vehicles retain each message for 3 seconds –same as the beacon period- and trigger
a reroute when the message memory exceeds 20 messages (TC = 20), unless noted
otherwise. TR = 10 was chosen for the reset threshold.

An example of the utilization of the capillary roads for a single experiment us-
ing the rerouting algorithm we propose is illustrated in Figure 5.3. Uneven utilization
indicates that the algorithm’s parameter may be tuned even more aggressively, as the
majority of vehicles still use the main road. This is a result of the use of the Lohse
Logit model, which always weighs the shortest path as the most desirable, which may
not be the case in heavily congested scenarios.

Figure 5.4 presents the history of the mean travel speed for the vehicle vehicles
under two routing algorithms (base case - shortest route, and congestion triggered
rerouting propposed here). It shows that the base case quickly reaches a bottleneck,
while both our congestion avoidance model utilizes the capillary roads, increasing
mean speeds and throughput. The mean speeds in the rerouting case decrease over
time as the capillary network reaches capacity, and then sharply increase as the last
of the vehicles leave the network. The regular pattern of the stop-and-go traffic is
reflected in Figure 5.5, showing that most vehicles have a rather constant mean veloc-
ity (3.79m/s) in the base case simulation, but about 31.9% lower than our rerouting
algorithm (5.57m/s). These and other performance statistics are summarized in Ta-
ble 6.1. Meanwhile, speeds in the base case remain low, resulting in low throughput
Since the mean distance traveled by each vehicle only increases by about 10%, we
achieve an overall reduction in travel time averaging 33.4%. The reduction in CO2

emissions of about 18.5% is attributable to vehicles on the capillary roads which are
not subject to the stop and go traffic caused by the intersection.

Figure 5.6 shows the same regularity in the base case as Figure 5.5, this time
with regard to travel time. While mean travel time is significantly reduced with our
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decentralized rerouting algorithm, the histogram shows a drawback to our current
model: travel time for a small number of vehicles increases noticeably compared to the
base case. We are currently evaluating the model in more scenarios to verify that this
is a consistent result, but no matter how infrequent, highly negative experiences for a
small group of drivers and passengers should be avoided. Generally, the modifications
to the algorithm which will be discussed further down tend to increase the standard
deviation of all metrics as a trade off of decreasing mean travel times.

6.5 Modifications

Table 6.1: Modification statistics
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Mean Time (s) 299.6 224.52 243.14 223.41 211.16 406.30 214.13
Mean Speed (m/s) 3.79 5.57 5.14 6.58 7.21 3.85 5.86
Mean Distance (m) 1137.1 1250.1 1248.20 1463.02 1519.67 1563.83 1254.48
Mean Emissions (mg/s) 506.3 427.3 452.92 456.18 435.41 690.1 405.75

Table 6.2: Modification standard deviations
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Mean Time (s) 170.60 143.39 158.26 219.54 204.32 353.45 164.86
Mean Speed (m/s) 5.31 5.86 5.72 5.69 5.65 5.10 5.94
Mean Distance (m) 360.11 329.28 328.21 272.95 228.43 271.48 332.15
Mean Emissions (mg/s) 255.40 208.16 227.42 261.21 236.99 400.058 223.43

6.5.1 Randomization

Our algorithm thus far assumes periodic communications to derive the con-
gestion parameter. This assumption is made to simplify and lower the amount of
variables in the model. In order to test the algorithm under non-periodic circum-
stances, we modified the period for sending messages to be random with a normal
distribution using a standard deviation of 1 second, while the mean remained at 3
seconds. Introducing this change without additional modifications leads to an in-
crease in mean travel times of about 8.3%, but still offers an improvement of 23.2%
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compared not using the congestion avoidance algorithm at all. The corresponding
metrics are summarized in tables 6.1 and 6.2. Given the binary nature of the base
algorithm - reroute above the threshold, do nothing below - a small reduction in the
threshold TC for this modification should most likely result in similar performance to
the basic rerouting algorithm.

6.5.2 Threshold

For most of the experiments, the threshold at which a car decides to reroute
was set to receiving 20 beacons from different vehicles within a 3 second period.
Tables 6.3 and 6.4 summarize the performance metrics when adjusting the rerouting
threshold. Lowering the threshold leads to vehicles potentially rerouting under less
congested conditions, which leads to negative individual experiences. Halving TC

from 20 to 10 led to minute improvements in the major metrics, with the expected
increase in standard deviations. However halving the threshold again resulted in mean
speeds even slower than that of the initial, high threshold, and worse performance,
indicating that there exists an optimal setting somewhere around TC = 10 for this
specific scenario.

Table 6.3: Statistics summary for various rerouting thresholds

TC = 20 TC = 10 TC = 5

Mean Time (s) 224.52 214.13 230.94
Mean Speed (m/s) 5.57 5.86 5.41
Mean Distance (m) 1250.1 1254.48 1248.66
Mean Emissions (mg/s) 427.3 405.746 435.41

Table 6.4: Statistics summary for various rerouting threshold standard deviations

TC = 20 TC = 10 TC = 5

Mean Time (s) 143.39 150.061 144.14
Mean Speed (m/s) 5.86 5.33 5.85
Mean Distance (m) 329.28 270.81 328.28
Mean Emissions (mg/s) 208.16 223.18 208.27

6.5.3 Eliminating the shortest path

When a vehicle decides to reroute, it uses the modified Yen’s Algorithm to find
a set of short paths that quickly diverge from the shortest path, which the vehicle
is currently using, but still includes said shortest path. Therefore, a vehicle which
makes the decision to reroute may yet choose to remain on its current path, which is
actually the most likely option using the Modified Lohse Logit model. Eliminating
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the shortest, current path as a viable option when deciding to reroute should, in
theory, serve to increase the traffic on the congested stretch of road to a number of
vehicles at or below the threshold. In the reduced traffic scenario we analyzed, the
improvement in mean travel time when introducing this variation is minimal: even
though mean speeds increase noticeably, a corresponding rise in mean travel distances
negates any improvements in travel time while increasing emissions. See tables 6.1
and 6.2, column ”No shortest”.

6.5.4 Chance-based rerouting

To achieve a gradual, probabilistic response to congestion that parallels the
insect inspiration [60], we implemented a simple chance-based rerouting trigger: the
congestion threshold is lowered from 20 to 5, in order to still prevent rerouting in
very light traffic. But for every message received above the threshold of 5 messages
every 3 seconds, there is a 1% chance that the vehicle decides to reroute. As the
density of messages increases with the density of vehicles, the chance of a vehicle
deciding to reroute in a given time frame also increases. A single vehicle’s probability
to reroute will reach about 82% at a congestion parameter of κ = 20, the previously
used threshold at which the rerouting is triggered.

This change to the algorithm to a gradual response to the perceived congestion
experienced by vehicles shows an improvement in mean travel time of about 5.9%,
and is the most beneficial single improvement upon the original algorithm discussed
herein. However, the modification also increases standard deviations markedly, which
indicates an increased risk of heavily negative singular experiences for some vehicles.
See 6.1 and 6.2, column ”Chance”.

6.5.5 Modifying route selection

Once a vehicle decides to reroute and finds a set of suitable routes, they are
weighed using the Modified Lohse Logit model, which assigns weights to the paths
irrespective of the congestion the vehicle finds itself in. In other words, a slightly
longer path has the same attractiveness in light and heavy congestion. However,
during heavy congestion, longer paths should be weighted more highly than shorter
ones, as they may be less congested, and less vehicles may choose them as alternatives.
To test this, we modified the Lohse Logit model’s dispersion parameter as follows:

β =
5

κ
∗ 12

1 + exp(0.7− 0.015Cmin,ij)
(6.1)

which diminishes the difference between the β of paths of different costs as the
congestion parameter κ increases, lessening the impact of cost on route selection which
should in turn promote the selection of longer paths as perceived congestion increases.
The congestion threshold TC was also lowered from 20 to 5, where the response is
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equal to the unmodified dispersion parameter. The results show an increase in mean
travel times, even compared to only using shortest path routing and no congestion
avoidance - the base case.

6.5.6 Message domain filtering

Thus far the content of the messages received by vehicles in this model has
been treated as irrelevant, ensuring flexibility, privacy, and adaptability. However,
messages used for certain applications may include information relevant to the con-
gestion avoidance algorithm, such as position and direction of travel of other vehicles.
This additional information may be used to filter out incoming messages sent from
vehicles which do not have an immediate impact on the congestion experienced by
the receiving vehicle, such as those originating from vehicles traveling in the opposite
direction or on adjacent streets. To test this hypothesis we included the rough direc-
tion an agent is traveling in as a byte in the payload of the WAVE beacon. Upon the
receipt of a message, those that lie outside of a 90◦ cone of the agent’s current direc-
tion of travel are then discarded. Experiments show a slight improvement when using
domain filtering without the increase in standard deviations exhibited by several of
the previously mentioned strategies as seen in Table 6.1 and Table 6.2.

In addition to testing the domain filtering in the outlined scenario, in which
traffic flow is relatively equal in both main directions, we modified the scenario to
send 5 times as much traffic in one direction compared to the other, allowing us to
analyze the impact of the filtering method on light traffic when exposed to heavy
network traffic that has no bearing on the actual transportation network congestion
experienced by the vehicles as they are originating from a large number of vehicles
traveling in the opposite direction (heavy traffic). The results in Tables 6.5 and 6.6
show that under these circumstances, the unmodified rerouting algorithm actually
performs slightly better than the message domain filtering modification, which per-
formed better in the scenario with equal traffic flow in both directions. The rerouting
trigger threshold TC is reduced by half from 20 to 10 due to the assumption that, on
average, half of all messages will be filtered results in a barely measurable increase in
performance.

Table 6.5: Message filtering in uneven scenario

Base Case Rerouting Filtering Filtering w/ TC = 10

Mean Time (s) 376.97 285.57 291.21 290.20

Mean Speed (m/s) 4.01 5.38 5.27 5.29

Mean Distance (m) 1511.69 1535.5 1531.47 1534.57

Mean Emissions (mg/s) 667.43 563.124 569.67 568.84
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Table 6.6: Message filtering standard deviations in uneven scenario

Base Case Rerouting Filtering Filtering w/ TC = 10

Mean Time (s) 150.06 111.47 111.32 112.05

Mean Speed (m/s) 5.33 5.82 5.80 5.81

Mean Distance (m) 270.81 266.31 267.46 268.16

Mean Emissions (mg/s) 223.17 182.81 183.223 183.89

Figure 6.1: Heatmap of uneven scenario without filtering

Figure 6.2: Heatmap of uneven scenario with filtering
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When dissecting the different approaches (filtering using TC = 10 has been
omitted due to a lack of variance between it and the standard TC = 20) by direc-
tion, we note that the heavy traffic’s mean speed is highly regular in the base case,
illustrated in Figure 6.3. This is to be expected from steady stop-and-go traffic at an
intersection. Using rerouting and extending it with message filtering increases mean
speeds and also variance due to the increased route choices available. Interestingly,
the light, unobstructed traffic that we hypothesized would be adversely affected by
the messages originating from the heavy traffic in the opposite direction does not show
nearly as much variance between approaches (Figures 6.4) as the lack of congestion
results in consistently high mean speeds and the reduced scenario’s compact nature
does not allow for highly substandard route choices. The corresponding figures for
travel time, Figures 6.5 and 6.6, show a reversal of the mean speed distributions,
which reinforces the notion that the length of the chosen route in the reduced sce-
nario has less of an impact as the amount of traffic it is experiencing. Given the
lack of performance increase using filtering over the basic rerouting algorithm in this
specific scenario, the violation of privacy by probing messages for information which
may be used to filter them does not outweigh the loss of privacy thereby created.
Figures 6.2 showcases the increase in route diversity using domain filtering compared
to the standard algorithm in Figure 6.1.

6.6 Conclusions

This chapter described a decentralized congestion avoidance strategy for con-
nected vehicles. By correlating traffic on the wireless network to congestion in the
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transportation network, individual vehicles are able to make non-deterministic routing
decisions to reduce congestion. This is done passively, based on the rate of commu-
nications received by an agent, without any dissemination of aggregated information
to neighboring vehicles. The performance of the strategy is investigated using bi-
directionally coupled vehicular and network simulators in a reduced traffic scenario.
We illustrated that compared to ideal shortest path routing, the proposed approach
is decreases mean travel times in the network. Several promising modifications to the
algorithm are also discussed and evaluated: while reducing the network congestion
threshold at which rerouting occurs does not necessarily improve performance, modi-
fying the route choices by eliminating the current path as an option or implementing
a chance-based rerouting trigger so that likelihood of rerouting increases with network
congestion improves overall performance at the expense of consistency and an increase
in standard deviations. Using additional information to filter unnecessary messages
is also evaluated positively, with the drawback that it violates the privacy afforded by
the basic model. We also attempted to modify the attractiveness of alternate paths
in relation to the amount of network congestion, however, no significant performance
improvements were obtained in the test scenario.
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Chapter 7

Conclusions

7.1 An ant-inspired model for multi-agent interac-

tion networks without stigmergy

Chapters 2 and 4 outlined a non-deterministic multi-agent simulation model
inspired by insect foraging behaviors, especially those of ants. Agents in the model
rely on direct physical interactions with other agents and their environment to make
decisions and do not rely on other mechanics such as pheromone trails. Collective
emergent behaviors were tailored to favor congestion avoidance while still forming
interaction chains to efficiently return food to the colony and preserve agent mobility.
The effectiveness of the model is illustrated both in open and enclosed environments
and under varying food source availability and placement. We have used the multi-
agent interaction network to show that

• it is possible to create emergent, decentralized behaviors between simple agents
using only minimal information - the rate of encounters between agents - without
relying on infrastructure like pheromone trails or other modes of communication.

• using a small set of additional information, such as the location of the nest and
a previously encountered food source, we can achieve additional behaviors such
as targeted food retrieval with interaction chains.

• by using the encounter rate between agents we created a non-deterministic
collision avoidance scheme using probabilistic estimation of congestion sectors
over a range of encounters.

• the quorum sensing mechanism used by ants for nest site selection can be
adapted to function as a decentralized congestion avoidance mechanism.
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Future work

The multi-agent network built in Unity is self-contained and fully functional at
this point. The values of several variables however have been determined experimen-
tally. A thorough exploration of the variable space may be beneficial to gain a more
intimate understanding of the interplay between variables, though the sheer number
of experiments required to achieve sensible averages of metrics given the deep pool
of variables and their possible combinations has made this a time-prohibitive effort
thus far. Additionally, we have not explored the response of the network to changing
environments, for example food sources which appear a certain time in the simula-
tion has already elapsed. After some refactoring the application is able to be sped
up considerably at the expense of immediate visual feedback and given a sufficiently
powerful CPU. Several comments have been received indicating that it may be useful
to implement pheromone trails as a way to provide a contrast to the model, however
the main motivation of this work is to eschew stigmergy in favor of decentralized,
direct interactions between agents.

7.2 Decentralized traffic rerouting using minimal-

ist communications

The second half of the thesis examines a decentralized congestion avoidance
strategy for connected vehicles. Several of its features are adapted from the ant-
inspired multi-agent network:

• Direct interactions between agents are replaced by short-range beacon messages
sent between vehicles and used to infer and estimate the congestion a vehicle is
experiencing in the transportation network.

• The quorum sensing mechanism, used by the ant-like agents to trigger addi-
tional congestion avoidance behaviors, is used to trigger the congestion avoid-
ance scheme for vehicles.

• The ant-like agents make heading decisions at each time step, which is unreal-
istic for vehicles traveling in a graph-like environment. Furthermore, limiting
the number of reroutes positively impacts the experience of drivers in non-
autonomous vehicles. Instead, once a reroute is triggered, the vehicle adjust its
”heading” by examining a number of short paths which quickly diverge from
the current area.

• Paths are chosen non-deterministically after having been assigned a chance of
selection based on their cost. This mirrors how ants evaluate their heading
choices using the von Mises distribution.
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• Agents still only rely on a small amount of information: encounter rates and a
map of its surroundings.

The model is analyzed using bi-directionally coupled vehicle and network sim-
ulators and found to improve mean travel times by over 25%, performing similarly to
one shot routing but requiring far less information and no centralized infrastructure.
Several modifications to the model are subsequently evaluated:

• Randomizing the beacon period to more closely equal real-life network condi-
tions leads to small, acceptable losses in performance.

• Varying the encounter density threshold at which the congestion avoidance be-
havior triggers does impact performance, though not so drastically as to out-
weigh the algorithm’s benefits over shortest path routing.

• Eliminating the shortest path as a possible rerouting decision promises minimal
performance improvements at the cost of consistency.

• Assigning a set chance to trigger a reroute after each message beyond a low
threshold greatly improves performance. A higher density of vehicles leads to
more messages, and a higher chance of an individual vehicle choosing to reroute
within a given time frame, naturally scaling the congestion response to the
amount of congestion present in the transportation network.

• Evaluating paths differently depending on the amount of congestion present has
only lead to performance losses given the method used.

• Filtering messages sent by vehicles which may not actively impact the congestion
experienced by the recipient based on message contents may minimally improve
performance at the cost of privacy.

Based on the performance of the model, we can conclude the following:

• Wireless network traffic can be used to indicate congestion in a transportation
network of connected vehicles. The beaconing scheme used herein was simple in
order to reduce overall complexity, but has been shown to be robust to varying
messaging rates. Other indicators such as channel load can also be substituted
for the method used in our model.

• Efficient congestion avoidance can be achieved

– without the need for centralized infrastructure or roadside units.

– with only limited information supplied by other vehicles in the immediate
vicinity.

– without the need to disseminate private and/or identifying information.
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– without competing for bandwidth with other V2V and V2I applications.

This makes our model an attractive alternative in environments where cellular
service or infrastructure is not available such as smaller towns, disaster zones, or
simply as a backup solution. Additionally, users can remain anonymous as the model
simply relies on the time at which a message is received and not its contents, and
does not add any bandwidth of its own.

Future work

The congestion avoidance algorithm presented herein has mainly been evalu-
ated in the reduced scenario described in Figure 5.2, providing a small, self-contained
approach to tuning and evaluating the algorithm. Given the computer hardware
available for the project, we were able to achieve a ratio of 1.4:1 to 3:1 real-time to
simulation-time ratio. Most experiments analyzed herein had a simulation time of
about 1.5 to 3 hours. Consequently, parameters and experiments needed to be chosen
carefully to gather a compelling data set. Evaluating the model in real-life networks
such as TAPAS Cologne [81] and LuST (Luxembourg SUMO Traffic [82]) were ini-
tially planned and several tests conducted, however the excessive real-time runtime
per experiment, often one to three days, proved to be prohibitive for gathering a sta-
tistically significant sample size given the many inherently non-deterministic aspects
of the model. As a compromise the model was also tested in a 40x40 grid network
consisting of two-way road segments 400m in length. In this instance, creating a
traffic flow that created sufficient congestion given the many route choices available
proved to be problematic.
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