
Fog Computing

NUNO TIAGO MELO GONÇALVES
Outubro de 2019



 
 

 

Fog Computing 

 

 

Nuno Tiago Melo Gonçalves 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advisor: Carlos Ferreira 

  

 

 

Porto, 15th October 2019 



ii 
 

 

 

 

 

 

 

 

 



iii 
 

 

Abstract 

Everything that is not a computer, in the traditional sense, is being connected to the Internet. 

These devices are also referred to as the Internet of Things and they are pressuring the current 

network infrastructure. Not all devices are intensive data producers and part of them can be 

used beyond their original intent by sharing their computational resources. The combination of 

those two factors can be used either to perform insight over the data closer where is originated 

or extend into new services by making available computational resources, but not exclusively, 

at the edge of the network. Fog computing is a new computational paradigm that provides 

those devices a new form of cloud at a closer distance where IoT and other devices with 

connectivity capabilities can offload computation. 

In this dissertation, we have explored the fog computing paradigm, and also comparing with 

other paradigms, namely cloud, and edge computing. Then, we propose a novel architecture 

that can be used to form or be part of this new paradigm. The implementation was tested on 

two types of applications. The first application had the main objective of demonstrating the 

correctness of the implementation while the other application, had the goal of validating the 

characteristics of fog computing. 

Keywords: Fog Computing; Cloud Computing; Edge Computing; Offloading Computing 

  

 

 

 

 

 

 

 

 

 

 



iv 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



v 
 

 

Resumo 

Tudo o que não é um computador, no sentido tradicional, está sendo conectado à Internet. 

Esses dispositivos também são chamados de Internet das Coisas e estão pressionando a 

infraestrutura de rede atual. Nem todos os dispositivos são produtores intensivos de dados e 

parte deles pode ser usada além de sua intenção original, compartilhando seus recursos 

computacionais. A combinação desses dois fatores pode ser usada para realizar processamento 

dos dados mais próximos de onde são originados ou estender para a criação de novos serviços, 

disponibilizando recursos computacionais periféricos à rede. Fog computing é um novo 

paradigma computacional que fornece a esses dispositivos uma nova forma de nuvem a uma 

distância mais próxima, onde “Things” e outros dispositivos com recursos de conectividade 

possam delegar processamento. 

Nesta dissertação, exploramos fog computing e também comparamos com outros paradigmas, 

nomeadamente cloud e edge computing. Em seguida, propomos uma nova arquitetura que 

pode ser usada para formar ou fazer parte desse novo paradigma. A implementação foi testada 

em dois tipos de aplicativos. A primeira aplicação teve o objetivo principal de demonstrar a 

correção da implementação, enquanto a outra aplicação, teve como objetivo validar as 

características de fog computing. 

Palavras-chaves: Fog Computing; Cloud Computing; Edge Computing; Offloading Computing  

 

 

 

 

 

 

 

 

 

 



vi 
 

  



vii 
 

 

Table of Contents 

1 Introduction 1 

1.1 Background 1 

1.2 Problem 2 

1.3 Objective 2 

1.4 Analysis 3 

1.5 Methodology 3 

1.6 Document Structure 4 

2 State of Art 5 

2.1 A New Computing Paradigm 5 

2.2 Fog Computing 9 
2.2.1 Fog Definition 9 
2.2.2 Fog Computing Properties 10 
2.2.3 Fog Nodes 11 
2.2.4 Fog Models 11 
2.2.5 Cloud Computing 12 
2.2.6 Edge Computing 13 
2.2.7 Edge Computing vs Fog Computing vs Cloud Computing 13 

2.3 Fog Middlewares 16 
2.3.1 Cloudlets 16 
2.3.2 Mobile Edge Computing 18 
2.3.3 Micro Data Centres 19 
2.3.4 Nano Data Centers 20 
2.3.5 Delay Tolerant Networks 21 
2.3.6 Femto Clouds 22 
2.3.7 Fog middleware comparison 25 

2.4 Fog Computing Techniques 26 

2.5 Commercial Solutions 32 
2.5.1 Cisco I0x 32 
2.5.2 FogHorn 34 
2.5.3 Big Cloud Providers 35 

3 Solution Description 37 

3.1 Vision 37 
3.1.1 Positioning 39 
3.1.2 Stakeholders Description 39 
3.1.3 Product overview 40 
3.1.4 Value Analysis 41 



viii 
 

3.2 Requirements 42 
3.2.1 Domain Model 43 
3.2.2 Use Cases 47 
3.2.3 Web Platform Use Cases 47 
3.2.4 Scheduler Use Cases 50 
3.2.5 Runtime Use Cases 54 
3.2.6 Supplementary Specification 56 

3.3 Technologies 57 
3.3.1 Apache Cassandra 57 
3.3.2 RabbitMQ 65 
3.3.3 Protocol Buffers 69 

3.4 Design & Implementation 71 
3.4.1 Web Platform 71 
3.4.2 Scheduler 87 
3.4.3 Runtime 94 
3.4.4 Alternative Design & Implementations 97 

4 Results and Discussion 99 
4.1.1 TODO Application 99 
4.1.2 Motion Detection on Real-Time Video Streaming 112 

5 Conclusion 119 
5.1.1 Other Related Works 122 

Bibliography 124 

 

 



 
 

List of figures  

Figure 1 Fog-Cloud interplay  (Bonomi, et al., 2014) .................................................................... 7 

Figure 2 Paradigm shift ................................................................................................................. 9 

Figure 3 Architecture overview of the new computing model (Iorga, et al., 2018). .................. 10 

Figure 4 Cloudlet functionality interaction (Satyanarayanan, et al., 2009) ............................... 17 

Figure 5 MEC server platform overview (Patel, et al., 2014) ..................................................... 18 

Figure 6 Fog MDC Overview (Huh, 2015) ................................................................................... 19 

Figure 7 Modem Uptime per ISP (Valancius, et al., 2009) .......................................................... 20 

Figure 8 TCP/IP routing (Warthman, 2015) ................................................................................ 21 

Figure 9 DNT routing (Warthman, 2015). ................................................................................... 22 

Figure 10 Femtocloud architecture (Habak, et al., 2015). .......................................................... 23 

Figure 11 Femtocloud numerical results (Habak, et al., 2015). .................................................. 24 

Figure 12 Numerical results of energy consumption in Zhao’s paper (Zhao, et al., 2016). ....... 27 

Figure 13 SDN-Fog architecture overview (Liang, et al., 2017). ................................................. 28 

Figure 14 Aura numerical results (Hasan, et al., 2017)............................................................... 29 

Figure 15 Lyapunov based algorithm numerical results (Pu, et al., 2016). ................................ 30 

Figure 16 Cisco I0x application life-cycle state diagram (Cisco, 2016). ...................................... 33 

Figure 17 Maintenance Types (Hegde, 2018). ............................................................................ 35 

Figure 18 Product overview ........................................................................................................ 41 

Figure 19 Web platform domain model ..................................................................................... 43 

Figure 20 Example usage scenario .............................................................................................. 45 

Figure 21 Scheduler domain model ............................................................................................ 46 

Figure 22 Runtime domain model .............................................................................................. 46 

Figure 23 Web platform use cases.............................................................................................. 48 

Figure 24 Scheduler use cases .................................................................................................... 51 

Figure 25 Runtime use cases ...................................................................................................... 55 

Figure 26 Cassandra entities ....................................................................................................... 58 

Figure 27 RabbitMQ messaging overview .................................................................................. 66 

Figure 28 RabbitMQ RCP pattern ............................................................................................... 67 

Figure 29 Protocol buffers message definition ........................................................................... 70 

Figure 30 Logic view .................................................................................................................... 71 

Figure 31 Web platform class diagram ....................................................................................... 72 

Figure 32 Lambda Table .............................................................................................................. 74 

Figure 33 User Resource ............................................................................................................. 78 

Figure 34 Activation Resource .................................................................................................... 79 

Figure 35 Lambda resource ........................................................................................................ 80 

Figure 36 Form features.............................................................................................................. 82 

Figure 37 Platform console overview ......................................................................................... 83 

Figure 38 Platform project view ................................................................................................. 83 

Figure 39 Platform lambda general characteristics form ........................................................... 84 

Figure 40 Platform lambda function form .................................................................................. 84 



x 
 

Figure 41 Platform lambda network event ................................................................................. 85 

Figure 42 Execution flow ............................................................................................................. 85 

Figure 43 Deployment event log ................................................................................................. 86 

Figure 44 Logger lambda execution log ...................................................................................... 86 

Figure 45 Scheduler class diagram .............................................................................................. 87 

Figure 46 REST Deployment entity.............................................................................................. 88 

Figure 47 Lambda execution ....................................................................................................... 89 

Figure 48 HTTP client event trigger............................................................................................. 90 

Figure 49 ProtoBuf Command message definition ..................................................................... 91 

Figure 50 ProtoBuf deploy lambda message definition .............................................................. 92 

Figure 51 ProtoBuf Invocation and Event message definition.................................................... 93 

Figure 52 ProtoBuf event log message definition ....................................................................... 93 

Figure 53 Runtime start up communications ............................................................................. 94 

Figure 54 Runtime class diagram ................................................................................................ 95 

Figure 55 Lambda runtime API.................................................................................................... 97 

Figure 56 TODO REST API .......................................................................................................... 100 

Figure 57 Deployment scenario 1: local deployment test ........................................................ 101 

Figure 58 Deployment scenario 2: fog and cloud deployment test ......................................... 101 

Figure 59 Local deployment time spent.................................................................................... 103 

Figure 60 Local deployment throughput test ........................................................................... 104 

Figure 61 Local deployment lambda TODO app CPU usage ..................................................... 105 

Figure 62 Local deployment standalone app CPU usage .......................................................... 106 

Figure 63 Local deployment lambda TODO app memory usage .............................................. 106 

Figure 64 Local deployment standalone app memory usage ................................................... 107 

Figure 65 Fog-cloud deployment time spent ............................................................................ 108 

Figure 66 Fog-cloud deployment throughput test.................................................................... 108 

Figure 67 Fog-cloud deployment lambda TODO app CPU usage ............................................. 109 

Figure 68 Fog-cloud deployment standalone app CPU usage .................................................. 110 

Figure 69 Fog-cloud deployment lambda TODO app memory usage....................................... 110 

Figure 70 Fog-cloud deployment standalone app memory usage ........................................... 111 

Figure 71 Background subtraction ............................................................................................ 113 

Figure 72 Video application execution time ............................................................................. 114 

Figure 73 Cloud video analysis rate .......................................................................................... 116 

Figure 74 Fog video analysis rate .............................................................................................. 117 

 

 

 

 

 

 



xi 
 

 

List of Tables 

Table 1 Cloud and Fog computing key differences ..................................................................... 14 

Table 2 Fog and Edge key differences ........................................................................................ 15 

Table 3 Fog middleware’s resume .............................................................................................. 25 

Table 4 Workload & Scalability middleware’s criteria ................................................................ 26 

Table 5 Cloud providers and their IoT solutions. ........................................................................ 35 

Table 6 High level goals............................................................................................................... 40 

Table 7 Cassandra compaction strategies .................................................................................. 60 

Table 8 Weak vs strong consistency systems ............................................................................. 61 

Table 9 Cassandra consistency levels ......................................................................................... 62 

Table 10 Primary keys declarations ............................................................................................ 64 

Table 11 Partition key behavior .................................................................................................. 65 

Table 12 Variable integer encoding ............................................................................................ 69 

Table 13 Database tables ............................................................................................................ 76 

Table 14 Platform REST resources summary .............................................................................. 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

 

Acronyms and Symbols 

AI – Artificial Intelligence 

API – Application Program Interface 

CCTV – Closed-Circuit Television 

DC – Datacenter 

DNN – Deep Neural Network 

DNS – Domain Name System 

EAV– Entity Attribute Value 

FLOPS – Floating Point Operations per Second 

FPS – Frame per Second 

HTML – Hypertext Markup Language 

HTTP – Hypertext Transfer Protocol 

IoT – Internet of Things 

IoT – Internet of Things 

IP – Internet Protocol 

ISP – Internet Service Provider 

IT – Information Technology 

JSON – JavaScript Object Notation 

JVM – Java Virtual Machine 

LAN – Local Area Network 

LIFI – Light Fidelity 

LTE – Long Term Evolution 

MTM – Machine to Machine 

MTU – Maximum Transmission Unit 

NBI – North Bound Interface 

NoSQL – Not Only Structured Query Language 

OPEX – Operating expense, operating expenditure, operational expense, operational expenditure 

OS – Operative System 

P2P – Peer to Peer 

PCL – Programmable Logic Controller 

PDU – Protocol Data Unit 

QoE- Quality of Experience 

QoS – Quality of Service 

REST – Representational State Transfer 

RPC – Remote Procedure Call 

SIMD – Single Instruction Multiple Data 

SQL – Structured Query Language 

TCP – Transport Control Protocol 

VM – Virtual Machine 

WAN – Wide Area Network 

XML – Extensible Markup Language 

 

 



xiv 
 

 

 

 



 

1 
 

1 Introduction 

This chapter introduces the reader to the theme in discussion. We start to highlight some 

aspects that brought fog computing into existence. Then, we define the problem and with that, 

we defined the objectives for this work. We conclude with the analysis approach followed by 

the document structure. 

1.1 Background 

Technology have contributed for the civilization development in many areas. In communication, 

we have the power of information at distance of our fingerprint at anytime, anywhere, and that, 

was just a dream of mid 1990s (Satyanarayanan, et al., 2009). The volume of resources to 

empower this reality have increased accordingly. Among them, one resource is electricity. The 

consumption has increased since his commercialization, and there is no indication that will 

stabilize over the futures years (EnerData, 2018).  

Energy is needed to power residential homes, companies, data centers, cell towers, to charge 

the battery of millions of transportable devices, and so on. The IT area strives to design energy-

friendly solutions. Google, for example, increased the baseline temperature in 4 degrees over 

their data centers (Alphabet, 2018), another recently attempt was to use Artificial Intelligence 

to maximize cooling efficiency (Evans & Gao, 2016). 

Aside the ambient benefits of achieve greater energy efficiency, for the energy market 

perspective, refining it by 1% in fuel saving over 15 years can represent 58 billions of euros 

(Evans & Annunziata, 2012). The power of just 1% is pointed as achievable by having intelligent 

and advanced analytics. 



 

2 
 

In today’s world, we have powerful mathematical analytics tools, plus, the machinery, which is 

progressive being equipped with or more computational resources, creates a scenario where 

large quantities of data are being produced, ready to be digitality processed to create more 

complete mathematical models, pushing towards the Industry 4.0. 

This machinery, also known as IoT devices, in 2016 generated 280 Zettabytes (Cisco, 2016), and 

the trend is to increase, plus, is not just the data, is the number of connected devices as well. 

Moving alone all the data to perform analytics has become a challenge under the current cloud 

model. AWS from Amazon, already have extreme solutions such as trucks (snowmobile) 

equipped with trailers to move petabytes of data (Amazon, 2019). Amazon makes available this 

solution to help companies to move their data over to AWS cloud infrastructure due to the 

Internet bandwidth being insufficient to move data on time. 

Analytics is changing due to the massive data that cannot be transferred over the network, and 

extreme commercial solutions are not for every company, so, moving the analytics closer to 

data is the rational alternative (Enescu, 2014). This new model places the intelligence 

closer/over the nodes that once were only data producers, bringing the 3rd wave of a new 

computational model, where is prevalent machine to machine M2M communication over a 

highly decentralized architecture. 

1.2 Problem 

Devices are being equipped with more features offering computing, connectivity and storage. 

In numbers they are also rising. Most of them already require Internet access to perform several 

tasks, such as send us push notifications via a companion device app, or simply to report back 

to the manufacturer about its state. The volume of data generated is pressuring Wide Area 

Networks. The data push model has its costs: as latency for regular users, or real money for 

data-heavy enterprises. Another aspect is resource waste - most of those devices require 

electricity 24/7, staying idle most of the time. That waste can be converted to perform tasks 

that other networked devices are required to perform, such as running heavy algorithms. 

1.3 Objective 



3 
 

 

In theory, this work has the purpose of exposing fog computing, what are the reasons of its 

existence, which characteristics differentiate fog, edge and cloud computing and how this 

paradigm connects edge computing and cloud computing. 

Create a platform to study the fog paradigm properties, combining edge computing and cloud 

computing. In the platform that was developed, we have run a set of typical applications: i) 

motion detection over a video stream, and an ii) a generic REST application. Both test 

applications were executed at cloud and fog context and from the different scenarios, we 

conduct a resource consumption differential analysis. 

1.4 Analysis 

The resource consumption differential analysis was performed in terms of computational, 

network resources. The applications were deployed in both environments, fog, and cloud, 

where the REST application was also used to test the platform implementation and how it 

performs under benchmark tests. The video stream application besides the computational 

resource’s analysis, we also reasoning about the video stream application computational and 

monetary requirements to deploy such systems. 

1.5 Methodology 

The methodology can be separated into two phases: i) investigation and ii) development. During 

both phases, we had non-formal meetings with the dissertation advisors to show and 

questioning the progress that has been made since the last meeting. In the investigation phase, 

we have adopted the agile methodology, reviewing what was written and planning what will be 

done, in periods of two weeks long. 

In the development phase, we have adopted the waterfall methodology, where the 

requirements took extra attention to end this dissertation with a functional, ready to be tested 

and to be used. The waterfall was adopted by two reasons: i) complex solution, and ii) time 

constraint. The complexity and the impulse of adding and improving pre-defined features lead 

to the adoption of this model since we begin with a set of well-defined features and all our 

attention and afford was to complete and test those features. The code is versioned controlled 

and is available for public use as also the platform, that is under this link. 



 

4 
 

1.6 Document Structure  

This work is constituted by 5 chapters: i) introduction, ii) state of art, iii) solution description, iv) 

design and v) conclusion. Each chapter contains various section and subsections structured in 

hierarchal order. 

In introduction we present to the reader the overall problem and reasoning for pursuing fog 

computing. We then offer a detailed review of the most important concepts and state-of-the-

art technologies and solutions available. Such review is followed by putting forward our vision 

and main arquitectural characteristics of an implementation of the concept. Finally, we discuss 

the results that were obtained in two different scenarios and argue for a conclusion on the 

relative merits and shortcomings of fog computing technology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

 

 

2 State of Art 

In this chapter is where it is defined fog computing in their properties according to the literature, 

comparing it against existing computing models. Then describe proposed architectures to host 

applications on fog nodes and their proposed techniques on how these applications could 

behave to better serve their purpose. We conclude the chapter with commercial solutions that 

provides/employs this new computational model. 

2.1 A New Computing Paradigm 

Technology became one of the most important factors of development in our current society. 

It keeps improving over time, whether by devices that can communicate, such as smartphones 

or tablets computers; communication technologies such as 5G, long-term evolution LTE, low-

power wide area networks (LPWAN), LIFI; or new concepts and paradigms such as cloud and 

serverless computing.  

The rapid growth of connected devices is reinforced by the 2016 IHS report (IHS, 2016). It points 

out that in 2017 there will be 20.3 billion connected “Things” and the trend is to surpass more 

than 75 billion by the end of 2025. The number of connected devices by 2025 gives a share of 

9.27 per person. This is supported by two major factors, cheaper electronics (Flamm, 2018) and 

the increased value of data collection (Giacaglia, 2019). 

The evolution of lithography technology allowed more transistors per wafer, reducing the 

fabrication costs (Flamm, 2018), resulting in cheaper electronics. Another side effect is that the 



 

6 
 

computation power keeps doubling every eighteen months (Moore, 1965) and storage follows 

an exponential behavior (Klein, 2008). Cheaper and more capable devices are the driving force 

for the quick expansion of the connected devices (Enescu, 2014). In contrast, bandwidth does 

not reflect the same grow to accommodate the increasing number of connected devices’ needs. 

Wide area communication grows 50% in its capacity, every two years (Nielsen, 2018). 

On the data side, it is projected by 2021 that data centers will have 1.3 Zettabytes of stored 

information, 4.6-fold growth comparing to 2016, while capacity installed will reach 2.6 ZB. The 

devices will store more than 4.5 times what will be stored in the cloud, 5.9 ZB, and the IoT 

devices will be creating 847 ZB of data (Cisco, 2016). To gain a better sense of these magnitudes, 

if the reader has 1 Exabyte  of data and wishes to move to the cloud with an Internet connection 

of 10MB/s, the reader will have to wait 26 years. From the numbers above, comparing the total 

data center capacity with the sum of the total amount of data created/stored by devices and 

IoT devices, we will end with a deficit of 850 ZB. We can therefore conclude that the cloud model 

will not be enough to cope with the demand. 

In the automobile industry, we already have one company that understands the cloud model 

problem and already has deployed the solution. The automobile manufacturing Tesla is trying 

to solve autonomous driving and the current fleet is the solution. That is, they are using deep 

learning  (Kocić, et al., 2019) to build self-driving models, those models require large, diverse 

and real data samples. In order to collect samples, Tesla uses the fleet to obtain the raw data. 

Tesla Autopilot system has 8 cameras along with other sensors, but the car does not upstream 

all the data that is being generated, despite data that being required by the data scientists. An 

example gave by the Andrej Karpathy, senior director of AI at Tesla, in which he explains how 

they solve the problem of detecting bicycles attached to cars. Initially, when a bicycle is attached 

to a car, the model considers that there are two distinct objects, however, for the driving 

purpose, it must be considered as one moving part. So, they enquire the fleet to send images 

that contains that pattern, re-train the model by annotating the pattern as a single car and that 

particular problem is solved (Tesla, 2019). In other words, Tesla has millions of distributed 

datacenters where they offload computation from the “main datacenter” to each element on 

the fleet. The fleet generates real-time answers and upstreams the results. Karpathy also points 

out that cloud-centric model was not a feasible approach.  

Tesla’s computing model resembles fog computing. The general idea is to push the execution 

of the tasks closer to where the data is generated - it uses a technique called offloading. It 



7 
 

 

consists of the fact that the tasks are outsourced and the involved entities work in a tandem 

way to achieve the ultimate result of the application. It can occur in IoT nodes, sensors, edge 

devices, or fog nodes, depending on factors like application requirements, load balancing, 

energy management, latency, management and so on, which are evaluated to when what, 

where and how this technique can improve application end goals (Aazam, et al., 2018). 

Fog Computing extends the Cloud Computing paradigm to the edge of the network. In (Bonomi, 

et al., 2011), the authors state that the pay-as-you-go Cloud model (client is charged based on 

usage) is here to stay, reinforcing the fact of the economics of scale (OPEX) Cloud oriented 

applications cannot be beaten due the strategic localization of the mega data centers. On the 

other hand, they emphasized the shift of the type of endpoints. Those that we use today 

(tablets, smart phones, laptops, etc.), to ones that will be used in future (smart grids, industrial 

automation, precision agriculture, etc.), named disruptive IoT. 

 

Figure 1 Fog-Cloud interplay  (Bonomi, et al., 2014) 



 

8 
 

To illustrate the characteristics of this paradigm, the authors have analyzed two use cases in 

terms of requirements: i) a smart traffic light system, and ii) a wind farm. From those cases, they 

have revealed that both the systems required low/predictable latency, consistency, fog-cloud 

interplay, multi-agencies orchestration, and geo-distribution. The conclusion led to the 

heterogeneity that the paradigm must have, being an architecture of a wide range of verticals 

rather than being a point solution for each vertical, thus, supporting operations that run 24x7 

every day of the year. 

Cooperation between fog and cloud in various uses cases is crucial, and the processed data, can 

be narrowed in space and time at the edge and wide at the cloud, Fig. 1. The authors mentioned 

the Smart Grid as an example to explain the scope of the data following different time scales 

and how those scales dictate the type of actions and the type of communication used within 

those scales. 

It is worth mentioning that they argued that the geo-distribution is as a new dimension of big 

data, not by the size or the rate of data generated by the individual sensor, but rather by the 

distributed nature of the sensors and actuators, were actions such as intelligent autonomous 

tasks must occur near where the data is generated.  

Edge nodes represents nodes that are at or closer from the data is generated and pushing the 

computation over the edge nodes imposes new challenges. For start, in what circumstances 

offloading tasks make sense, in (Aazam, et al., 2018) the authors to answer this question and 

proposed some criteria that the implementers can use to drive their decisions: 

1. Excessive computation or resource constraints; 

2. To meet latency requirements; 

3. Load balancing; 

4. Permanent or long-term storage; 

5. Data management and organization; 

6. Privacy and security; 

7. Accessibility. 

Further in the chain of challenges, comes where and how this computation is taking place. The 

literature is extensive and various middlewares were proposed. They were presented with 

different characteristics (nodes targets, scalability, distances) to accommodate different 

application characteristics. 



9 
 

 

2.2 Fog Computing 

The primary reason for this new concept is the volume of information that is generated from 

the connected devices (Bonomi, et al., 2014). Wide area communications, as already 

mentioned, grows “only” 50% in capacity every two years, consequently, not all of the data can 

be pushed to the cloud. 

 

 

Figure 2 Paradigm shift 

Fog computing is complementary to, and extension of, the traditional cloud base model. Thus, 

it represents a solution at the infrastructure layer to be able to deal with the amount of 

generated data. In Fig. 2, it is represented the shift of how the data flow will change (Enescu, 

2014). Today’s the data is stored and analyzed at the cloud, and then, action is synthesized, and 

the edge node is notified. In the fog computing paradigm, only smart metadata is stored at 

cloud, and the intelligence is kept at the edge node. 

2.2.1 Fog Definition 

OpenFog consortium created at 19 of November 2015 by the IoT leaders (ARM, Intel, Dell, Cisco, 

Microsoft, Edge Laboratory of Princeton University), define fog computing as follows: “A 

horizontal, system-level architecture that distributes computing, storage, control and 

networking functions closer to the users along a cloud-to-thing continuum.”  (OpenFog, 2017). 



 

10 
 

 

Figure 3 Architecture overview of the new computing model (Iorga, et al., 2018).  

We can conclude that fog computing is a layered model, Fig. 3, for enabling ubiquitous access 

to a shared continuum of scalable computing resources. The fog nodes are in between the edge 

devices and centralized cloud services and enable easy distributed deployment of latency-

aware applications and services. The nodes can be organized in clusters, either vertically to 

support isolation or horizontally to support federation (Iorga, et al., 2018). 

2.2.2 Fog Computing Properties 

In (Bonomi, et al., 2011), the author deduced the requirements that the new computational 

model has to have to accommodate the growth of the connected devices along connecting 

various industrial verticals. They have presented the following properties: 

• Contextual location awareness, and low latency; 

• Geographical distribution; 

• Heterogeneity (data from different forms and factors acquired by different network 

protocols); 

• Interoperability and federation; 

• Real-Time interactions; 

• Scalability and agility of federated, fog-node clusters (elastic computing, resource 

pooling, data-load changes, network conditions variations); 

• Predominance of wireless access; 

• Support for mobility. 



11 
 

 

In brief, we consider that contextual location awareness, by itself, is one very attractive 

property to implement autonomous and intelligence applications. A wide variety of 

actions/assurances depends on this fact, like smart packets routing, zero connectivity downtime, 

computation graph optimization, efficient M2M communication, etc.  

2.2.3 Fog Nodes 

The fog nodes are the core component of the fog computing architecture. Each node has 

location awareness of its geographically and logical location within the context of the cluster. 

The main attributes are the following (Iorga, et al., 2018): 

• Autonomous (autonomous or clustered in decision making); 

• Heterogenous (different form factors, adaptative to across different environments); 

• Hierarchical clustered; 

• Programable (stakeholders, network operators, domain experts, equipment providers, 

or end users). 

Fog nodes, as mentioned, can be physical components like routers, gateways, servers, edge 

devices, etc, or virtualized switches, virtual machines, cloudlets. Another aspect of fog node is 

that they provide some sort of API to the edge nodes to provide data management and 

communication services (Bonomi, et al., 2011). 

2.2.4 Fog Models 

The fog architectural service models are very similar that is offered by the cloud computing 

model. A model is the representation of how the client uses the infrastructure. Infrastructure 

as a service is when the client has their own machine under a virtualized environment controlled 

by the infrastructure owner (AWS EC2, Google Cloud Computing). When the client only wants 

to manage the data and the application leaving the rest to some cloud provider, it is referred 

as platform as a service (Heroku). Software as a service, as the name suggest, is the software 

that’s available via a third-party over the internet like Microsoft Office 365. The following 

service models can be implemented (Bonomi, et al., 2014): 

• Software as a Service; 

• Platform as a Service; 

• Infrastructure as a Service. 



 

12 
 

In (Aazam, et al., 2018), they outline a set of applications and their tasks/data exchanges 

scenarios between the different computing models which can suggest which architectural 

model to use: 

• IoTs, sensors, and devices offloading to fog: 

o Healthcare sensors offloading to fog;  

• IoT/devices offloading to edge nodes: 

o Smart home devices offloading to edge nodes; 

• Cloud offloading to fog: 

o CCTV video analysis; 

• Distributed offloading between fog and cloud: 

o Fog real-time drone control for forest-fire and historical data provided by the 

cloud;  

• Fog offloading to another fog and cloud to another cloud: 

o Load-balancing 

In conclusion, the fog nodes undertake most of data processing at remote sites, and only 

forward necessary information to the cloud. As a side effect, it saves network resources and 

improves real-time analytics. Scalability is another aspect of moving from a centric-cloud model 

to a fog-distributed model by reducing network management and monitoring on current 

centralized architecture networks (Liang, et al., 2017). 

2.2.5 Cloud Computing 

Cloud computing, the term is usually associated with hyper-scale datacenters. Each datacenter 

is strategic physical placed, crowded with homogenous computational resources (grid 

computing), efficient cooling systems and managed by IT infrastructure experts. From the user’s 

perspective, the cloud hosts our data (Google Drive), enables to connect to our friends 

(Facebook Messenger), allows see our emails (Outlook), and so on. 

In the developer’s perspective, a cloud is a place where applications are deployed. The 

environment is a highly virtualized environment at the hardware level, forming a pool of 

resources shared by their users, which translates to vertical and horizontal scalability at a 

distance of a click on some web management platform provided by the clod owner. The 



13 
 

 

developer pays for how much it uses, the designated pay-as-you-go model, and with this and 

with the scalability at his fingerprint he can provision resources according to the demand.  

This computing model offers computational power, data storage, and network solutions on-

demand, without having the developer to invest, setup and maintain their IT infrastructure, plus 

executing all other management disciplines like design and deploy disaster recovery plan(s), 

assuring the quality of service parameters QoS and so on (Srivastava & Khan, 2018). 

The services models rehearsed by this model are the same as fog computing service models 

with two more: i) service as a platform, ii) platform as a platform, iii) infrastructure as a service, 

iv) serverless computing or function as a service. The serverless computing is a cloud computing 

model where the computational resources and the execution of some logic is managed by the 

cloud owner, like so, the developers can avoid the burden of setting up and tuning autoscaling 

policies or systems, making it elastic scaling, some examples of big cloud providers are: i) AWS 

Lambda, ii) Azure Functions, iii) Google Cloud Functions. 

Wrapping up, cloud computing offers agility to the companies and developers to make their 

services online in a multitenant and secure environment with scalability and or elasticity to 

reach levels of scale appropriated by the application needs, and all of this, with the cost of how 

much it is used. 

2.2.6 Edge Computing 

Edge computing is the control and the management of a standalone end-point device 

individually or through a set software functions in the fog domain. For example, control of a 

printer, security camera, traffic light, robots, machines etc., with or without a control function. 

Edge computing devices and entities within the domain are standalone or interconnected 

through proprietary networks with custom security and little interoperability (Nebbiolo 

Technologies, 2018). 

2.2.7 Edge Computing vs Fog Computing vs Cloud Computing 

In Table 1, it is showed the differences between cloud and fog computing. Both have different 

purposes and address different use cases. However, we have outlined clear properties 

distinctions between them. 



 

14 
 

Table 1 Cloud and Fog computing key differences 

 Cloud Fog 

Architecture Centralized Distributed 

Abstraction Level High High 

Resource Optimization Easy Hard 

Resource Management  Easy Hard 

Hardware Homogenous Heterogenous 

Cooling Cost Higher Lower to Medium 

End User Distance  Higher Lower 

Latency Higher Lower to Medium 

Hardware Security Easy Hard 

Infrastructure Ownership Well-defined Undefined 

Hardware Provisioning Planned Undefined 

Business Model Pay-Per-Use; 

Monthly Subscription; 

Per computational resources 

Data Security Well-Secure Well-Secure 

Data Analysis Long-term Short-term 

Data Processing Far from source Close from the source 

Connectivity WAN (TCP/IP) Diversify (various protocols) 

Interoperability Web Services Interoperability; 

heterogenous between 

resources; 

Costumer Support Reliable Unknown 

Vendor Lock-In Yes No 

 

The Fog and Edge computing terms are normally used interchangeably. This is because, in terms 

of functionality, both have the same purpose: push intelligence closer where the data is 

generated. However, Edge computing term was initially presented of having the control and the 

management of a standalone end-point device individually or through a set software function. 

With time, the Edge computing definition has involved, and has been redefined to include some 

fog properties, like interoperability and local security. Today Edge computing domain is a sub-



15 
 

 

set of Fog computing domain (Nebbiolo Technologies, 2018). Table 2 reflects their key 

differences. 

Table 2 Fog and Edge key differences 

 Fog Edge 

Across Domains Yes No 

Cloud Extension Yes No 

Cloud awareness Yes No 

App Hosting Yes Limited 

Data Service at Edge Yes Yes 

Device & App Management Yes Yes 

Elastic Computing/ 

Resources Pooling  

Yes No 

Modular Hardware Yes No 

Virtualization Yes Unknown 

Real-Time Control and Hight 

Availability 

Yes No 

Security End-to-end encryption; 

Data protection session; 

Hardware Level; 

Partial solution; 

VPN; 

Firewall; 

IoT vertical awareness  Yes No 

IoT vertical integration Yes No 

Data Analytics Multiple devices Single device; 

Anomaly Detection  At edge Undefined  

PLC Controller Replacement Soft PCL stack in same 

hardware; 

Virtualizes and host soft 

stack; 

 

The conclusion is that edge computing is not fog computing. They are different things, being 

one a subset of the other. Edge computing runs specific applications in a fixed logical location 

and provides direct transmission services while fog runs applications in a multi-layer 

architecture and decouples and meshes the hardware and software functions. Besides 



 

16 
 

computation and networking, it also addresses storage, control and data-processing 

acceleration (Iorga, et al., 2018). 

2.3 Fog Middlewares 

IT users normally have one clear idea about cloud computing of being a set of inter-connected 

computers at a particular site owned by some big entity. The cloud owner provides facility 

security and management, resolves hardware failures, and uses virtualization to abstract 

hardware resources. All the points that are already answered by the cloud-model, however, for 

fog computing they remain blurred, various authors have proposed different answers to 

different problems. This section has the purpose to show to the reader the different execution 

contexts that this new paradigm can assume. 

2.3.1 Cloudlets 

The core concepts were presented in (Satyanarayanan, et al., 2009). This middleware offers 

computation and storage to mobile devices in a highly decentralized architecture and dispersed 

infrastructure. The arguments for this design resign primarily on the WAN latency and on the 

premise that that will not be improved over time due to the demand-offer deficit. 

The design can be viewed as a data center in a box, with a multi-core machine(s), gigabit 

connectivity and a high-bandwidth wireless LAN. They were idealized to be self-managed, 

serving few users at a time for an ideal deployment over the local business. Only soft state is 

preserved due the losses or destruction of the cloudlets. The distance between one determined 

cloudlet and the mobile user is ideally one-hop way through a high-speed wireless connection. 



17 
 

 

 

Figure 4 Cloudlet functionality interaction (Satyanarayanan, et al., 2009)  

Considering the cloudlet goals, the authors have developed the proof of concept based on the 

method: dynamic VM synthesis. It consists of machines running a GNU/Linux operating system 

with VirtualBox installed and a specially developed program, Kimberley. The program launches 

a baseVM and when is booted, it executes a “launch-script” at the guest OS. The result is a VM 

that the mobile device can use. The command “resume-script” launches the client application 

requested by the user. From this flow, Fig. 4, results on what they have called a launchVM. 

Kimberley at this point computes the differences between the baseVM and the launchVM at 

memory and disk-level to create an overlay VM. This overlay is kept on the client-side compress 

and encrypted. The overlay is used at the begin of the re-incident process so that the Kimberley 

can synthesize the launchVM. 

In conclusion, cloudlets have characteristics of targeting mobile nodes within one hop way, 

presenting medium to high scalability. The authors pointed that out this new architecture can 

lead to new types of applications which require lower latency, higher bandwidth, offline 

availability, and cost-effectiveness.  



 

18 
 

2.3.2 Mobile Edge Computing 

This middleware was proposed, in 2014, by the European Telecommunications Standard 

Institute. Mobile-edge Computing (MEC) provides IT and cloud-computing capabilities within 

the Radio Access Network (Patel, et al., 2014). The MEC is characterized by three types of 

components: i) mobiles/IoT devices, ii) edge cloud, and iii) public cloud.  

 

Figure 5 MEC server platform overview (Patel, et al., 2014) 

The edge cloud is deployed either at LTE macro base stations or at 3G Radio Network Controller. 

The edge cloud can host multiple MEC applications, Fig. 5. Applications can be developed with 

features available by the edge cloud architecture, such as active device location tracking or RAN-

aware content optimization. As a result, it improves quality-of-experience and user-satisfaction 

covering distances of one-hop way with high scalability properties. 



19 
 

 

2.3.3 Micro Data Centres  

This datacenter inherits many of the properties that traditional datacenter has, such as a cooling 

system, fire protection, and security, however on a small scale. They are presented as all-terrain 

data centers, highly portable, modular and containerized, having less than 4 servers per rack, 

for distances of one or two hops away from the origin (Huh, 2015). 

 

Figure 6 Fog MDC Overview (Huh, 2015) 

In this architecture each fog cloud has its fog-smart gateway, Fig. 6, it does smart routing 

by considering applications and nodes constrains. In terms of interaction, the fog has a 



 

20 
 

set of services that can be requested by the clients (sensors, IoT, cloud). The fog-cloud 

acts as a market, adjusting the price and resource allocation based on client historical 

usage. 

2.3.4 Nano Data Centers 

Nano data centers (NaDa or nDCs) were proposed to provide energy efficiency, service-

proximity and self-scalability over traditional data centers (Valancius, et al., 2009). The idea 

proposed by the authors consists of the creation of a P2P network (Bawa, et al., 2003), based 

on tiny servers located at the edge that offers storage and bandwidth. They suggest that the 

servers can be the ADSL gateways, the same device that connects our homes with the respective 

Internet Service Provider. The authors demonstrated that these gateways are 85% of the time 

on, Fig. 7, and in terms of energy per bit, streaming video from a Thomson Triple Play TG787v 

model comes at cost of 1𝑊/10𝑀𝑏𝑝𝑠 = 100 joules/Gb.  

 

 

Figure 7 Modem Uptime per ISP (Valancius, et al., 2009) 

The ISP in the NaDa assumes the role of a P2P tracker, which monitors the availability and 

content possession of the gateways. Also acts as a point of information, by matching content 

requests with content holders. The download is up to the gateway do execute. Another tracker 

responsibility is to keep gateways with the latest content, this process is idealized to take place 



21 
 

 

when network utilization is normally low. The last entity missing is the content provider. This 

has the role of pre-loading the gateways with content that later can be re-distributed. 

Theoretical energy bill cost indicates that NaDa can represent cuts of 62% when compared with 

traditional content delivery networks.   

2.3.5 Delay Tolerant Networks 

Delay/Disruption tolerant networks (DTN) are based on Mobile ad-hoc networks (Kurkowski, et 

al., 2005), in which the nodes, cooperatively form a network without infrastructure. They try to 

tackle long delays and communication interruptions prevalent in long distances 

communications. They enable connections end-to-end between devices, working on a stop-

carry and forward mode. The intermediate nodes hold the data until they find a suitable node 

in a destination path. 

 

Figure 8 TCP/IP routing (Warthman, 2015) 

In contrast, today’s Internet is based on packet-switching, Fig. 8. Packet are pieces of data 

independent from each other. That is, in terms of routing, each packet can take different paths 

from some source to one particular destination. Routers switch those packets until reaches its 

destination. Consequently, packets can arrive out-of-order, but the destination’s transport 

mechanism can reassemble them in the correct order. The usability of the Internet depends on 

the following properties (Warthman, 2015): 

• Continuous, Bidirectional End-To-End Path; 

• Short Round Trips; 

• Symmetric Date-Rates; 



 

22 
 

• Low Error Rates.  

On the other hand, DTNs were developed with the following network proprieties in mind: 

• Intermittent Connectivity; 

• Long or Variable Delay; 

• Asymmetric Data Rates; 

• High Error Rates.  

This protocol suite adds a new layer between the Application and Transport layer, named as 

Bundle. This new layer stores and forwards bundle fragments between lower layer protocol, 

Fig. 10. Other than TCP/IP protocol stacks are suitable to coexist.   

 

Figure 9 DNT routing (Warthman, 2015). 

In brief, the protocol was being developed by the NASA Advanced Exploration System team as 

an open international standard (Dunbar, 2018). International Space Station already received 

one implementation and other 6 NASA space missions are working with it. This middleware is 

not infrastructure, but rather a tool to resolve one particular problem: a reliable way to 

transport data from a source to a destination. 

2.3.6 Femto Clouds  

In (Habak, et al., 2015), the authors proposed this middleware to harvest computational or 

storage capabilities of surrounding mobile devices. They state that most of the mobile devices 



23 
 

 

are under-utilized and situations like passengers with mobile devices riding a public bus or 

students in a classroom or a group of people on a coffee shop can provide cloud services at the 

edge. Femtoclouds are characterized by having distances of zero hops with the goal of task 

offloading with low scalability. 

 

Figure 10 Femtocloud architecture (Habak, et al., 2015). 

The proposed architecture is characterized by having one control device and multiple mobile 

devices, Fig. 10. The general idea is that mobile owners have a pre-installed a piece of software 

that computes the available resources to share, thus, accepts tasks to execute. The control 

device receives schedules, collects and responds to tasks requests. The modules and their 

responsibilities are:  

• User Interface Module: 

o Resource sharing policies; 

o User sharing preferences; 

• Capability Estimation Module: 

o Computational Capabilities; 

• User Profiling Module: 

o Tracking user preferences and behavior; 

o Communicate generate profile with control device; 

• Execution Prediction Model: 



 

24 
 

o Task load execution across the cloud; 

•  Presence Time Prediction Module: 

o Collect environment data; 

o Generic user profile creation; 

o  Estimate user presence time; 

• Task assignment and scheduling Module: 

o Tasks assignment; 

• Local Connectivity Module: 

o Bandwidth estimation; 

• Discovery Model: 

o Femtocloud client service discovery. 

A scheduler, responsible for tasks assignment, was also defined in their work. Scheduling is 

characterized by being a NP-Complete problem, so a greedy approach was taken to tackle this 

issue. The scheduler is based on three ideas: 

1. Prioritize tasks with higher computation requirements per unit data transfer. 

2. Preferential device offloading according with their profile. 

3. Dispatch as many tasks as it possible until the results gathering heuristics emits an event. 

The authors conducted tests using Femtocloud architecture using 3 mobile devices and 1 tablet. 

The applications tested were: i) chess game; ii) video game; iii) object recognition in a video 

feed and iv) compute-intensive task.  They measure three metrics, Fig. 11: i) computational 

throughput, ii) resource utilization and iii) network utilization. 

 

Figure 11 Femtocloud numerical results (Habak, et al., 2015). 



25 
 

 

The conclusion was that computational throughput increases in the presence of time or the 

user rate arrival, however, there is saturation for large numbers due to network utilization, 

consequently limiting task assignment rate. 

2.3.7 Fog middleware comparison 

Wrapping up, we have explored a variety of middlewares. Each possesses different 

characteristics and targets different computational needs. 

Table 3 Fog middleware’s resume 

 Workloads Scalability Business Model Fog Infra-structure 

Ownership 

Cloudlets Heterogenous Medium Execution Time; Local Business; 

private households; 

ISP’s 

Mobile Edge 

Computing 

Heterogenous High Applications 

Hosting; 

MEC services 

subscription; 

Telcom Providers 

Micro 

Datacenters  

Heterogenous Medium Fog service 

Subscription 

Undefined 

Nano 

Datacenters 

Restrict Low; Video Content 

Providers, e.g. 

YouTube, Netflix; 

IPS’s & 

Private 

Householders 

Delay 

Tolerant 

Networks 

Restrict; low Not Defined; Undefined 

Femtocloud Restrict Low Task execution Regular Users 

 

Table 3 presents a summary from different perspectives. The criteria on categorization of 

workload and scalability is presented in Table 4. The workload assumes that the user is within 

fog-service.  



 

26 
 

Table 4 Workload & Scalability middleware’s criteria 

Workload Scalability 

Does a client, with no time constrains, have 

the possibility of executing one plus one 

program; 

How stable is the infra-structure; 

Adding resources directly translates in better 

performance;  

 

2.4 Fog Computing Techniques  

In recent years, many techniques were proposed for task offloading. The authors try to answer 

the “how” question, envisioning different factors and application goals. The introduction of fog 

computing between edge and cloud adds one level of indirection. For developers using the 

cloud model, the questions on how to execute work are simplified, because, only one place can 

be addressed. The same goes for edge computing. The resource optimization is an important 

and difficult question to answer when fog computing comes available to public usage.  

In (Zhao, et al., 2016), they state that smartphones, due to having size restrictions, reduced 

computation and battery constraints, the execution of complex and latency-sensitive tasks, can 

be offloaded to a fog cloud. In this context, they have designed an energy consumption oriented 

offloading algorithm for fog computing.  

The algorithm computes the energy required to execute instructions in both environments: fog 

𝐹 and cloud 𝐶. The amount of energy serves as a threshold to forward the computation to the 

appropriate computing environment. In respect to fog, the energy is expressed as 𝐸𝑓(𝑃𝑡𝑟) =

 𝐸𝑓,1 +  𝐸𝑓,2, where 𝐸𝑓,1 is the idle energy consumption when a computation is taking place, and 

𝐸𝑓,2 is the energy consumption for the device transfer the input bits. For the cloud is 𝐸𝑐(𝑃𝑡𝑟) =

 𝐸𝑐,1 + 𝐸𝑐,2 +  𝐸𝑐,3, where 𝐸𝑐,1  is the amount of energy for transmitting data, 𝐸𝑐,2 is the idle 

energy consumption of the mobile device when the fog server transmits the input bits to the 

cloud, and 𝐸𝑐,3 is the idle energy consumption during the cloud server executes the instructions. 



27 
 

 

 

Figure 12 Numerical results of energy consumption in Zhao’s paper (Zhao, et al., 2016). 

The results of the scheme, Fig 12, in the left graphic, shows the number of instructions that is 

beneficial either to execute them in fog or the cloud. The results of using this algorithm show 

better energy efficiency when compared to the usage of fog or cloud computing alone. The right 

graph shows the energy consumption versus capacity coefficient with fog and cloud computing, 

where we can see the increase of 𝑆 does not impact fog computing. In other hand, the cloud 

increases linearly, reducing the execution time, impacting this way the energy consumption. 

In (Liang, et al., 2017), they have proposed a network architecture to integrate fog computing 

with a Software Defined Network (SDN). SDN networks abstract the routing knowledge from 

the physical network devices to a centralized programmable controller, consisting into 3 logic 

layers: i) control layer, ii) application layer and iii) infra-structure layer (Astuto, et al., 2014).  



 

28 
 

 

Figure 13 SDN-Fog architecture overview (Liang, et al., 2017). 

The integration between the fog and the SDN is made by a hybrid control model with two 

hierarchical control models, Fig. 13. The local controller is responsible to provide local services 

or forward the data to the SDN main controller. The offloading is based on application policies 

and requirements like: i) latency, ii) energy consumption, iii) overhead, and iv) wireless 

connectivity. In their work, they have implemented the proposed architecture in a lab 

environment, however, there was not any kind of evaluation. 

Fog data centers have fewer resources than traditional data centers, however, both can suffer 

from request saturation, even over-dimensioned datacenters that are designed to cope with 

high demand are not free from this issue (Luan, et al., 2015). In (Fricker, et al., 2016), they have 



29 
 

 

used load balancing technique to tackle request saturation based on a blocking rate offloading 

of tasks. An overloaded datacenter can forward to a neighborhood datacenter with the same 

probability of receiving the request, minimizing request rejection at an overloaded datacenter. 

They have demonstrated that the analytical model can improve up to 70% in rejected requests. 

Aura (Hasan, et al., 2017) is a highly localized IoT based on cloud computing paradigm that uses 

an incentive-based model for task offloading. The users can create an ad hoc cloud using IoT 

devices and other nearby computing devices. To create ad hoc clouds, the author proposed an 

incentive and contract mechanism to allow Aura to operate in an economically feasible manner. 

The contracting mechanism is based on a rating system, each Aura entity (controllers, IoT 

devices, Mobile Agents), have a rating point between 0 and 1, the lower the number, more 

reliable the node is considered. The rating system is based on node participation, more 

precisely, in the enhancement of Aura cloud with more computing power.  

 

Figure 14 Aura numerical results (Hasan, et al., 2017). 

To test this incentive-based architecture they executed a MapReduce Job with different sizes. 

Comparing the Aura and the traditional cloud (AWS EC2), they have demonstrated that Aura 

consumed 66% less energy when compared to the cloud counterpart, Fig. 14. Another test case 

was a mobile device tested against the Aura cloud with a different number of nodes (20, 40, 60, 

80, 100) executing the already mentioned MapReduce jobs. The overall improvement was up 

to 40%-time reduction. 

In (Pu, et al., 2016) they proposed a novel mobile task offloading framework named device-to-

device (D2D) Fogging. D2D has the goal of to be energy efficient at task execution and with that, 

the authors also proposed an algorithm based on Lyapunov optimization for the minimization 

of the time-average energy consumption for all the users, taking into account that the system 

that can be over-exploited from the users. To maintain long-time contributors to the D2D, the 



 

30 
 

network is based on incentive model and employs the tit-for-tat offloading mechanism. This is 

when a device that offloads tasks to another node, it will have a debt to these devices. With 

this, it has to pay by contributing with resources for the same device. Network operators control 

contributions and all evolving intelligence of the offloading in the fog.  

 

Figure 15 Lyapunov based algorithm numerical results (Pu, et al., 2016). 

This algorithm was evaluated against 3 other schemes, as illustrated in Fig 15, and they are the 

following: i) greedy, ii) reciprocal and iii) random. The greedy at the base stations, it makes one 

list of all task owner-works in sorted order, and then, picks those pairs greedily. The reciprocal 

scheme considers users that are task owner, and in the act of exchange tasks to another task 

owner picks those when the overall performance is increased. The random schema creates a 

list of tasks owners at the base station, in random order, and chooses users randomly.  

The analysis of this offloading scheme has shown savings on energy consumption of 25% with 

different user amount. Comparing the task frequency, the proposed scheme can save up to 

30%, 23% and 18% energy over random, greedy and reciprocal schemas. The algorithm also has 

a 20% performance gain on time-variant conditions.   

The decision making of when and where to offload resource-intensive tasks, without prior 

knowledge of the offloading system or a running profiler on the backend system imposes a 

major concern. In (Meurisch, et al., 2017), the authors look into this issue and proposed a way 

for the edge device to get awareness about unknown services. The methodology presented 

consist of offloading micro tasks to assess the network and backend capabilities. Then, with the 

results, the system estimates the cost and time completion for large offloading tasks. The 

analysis of this method has demonstrated that the system can achieve the accuracy up to 85% 

when to offloading larger tasks. The algorithm achieves 85% of accuracy with two micro-tasks 

in a range of few milliseconds. 



31 
 

 

In (Zhang, et al., 2016), the authors proposed an energy-efficient computation offloading (EECO) 

mechanisms for MEC in 5G heterogeneous networks. The mechanism takes into account the 

energy consumption that is spent during the transmission and at the execution phase. They 

state that during the data transmission, the energy consumption is influenced by the different 

states that the wireless channel can be and by the different task sizes. The users that share the 

same radio resource can also suffer severe interferences, consequently, transmission rates and 

energy efficiency are affected as well. They have formulated an optimization problem that tries 

to minimize energy consumption while preserving latency constraints. In their work, each task 

is assumed to be indivisible and when comes the offloading moment. The node computes the 

energy consumption either if the task was executed locally or remotely, then the node acts upon 

the best result. The result of their approach led to 18% of less energy required when compared 

with the no offloading schema.      

In (Craciunescu, et al., 2015), they have discussed the different implementations of e-health 

applications and the importance of fog computing to accommodate them in a reliable and useful 

way. They have primarily addressed the problem of latency between cloud and fog. In the 

experiment, an e-health laboratory, data was collected from various sensors, such as pulse rate 

and oxygen level, and then forwarded to the fog cloud. The fog is responsible for analyzing 

real-time life-dependent data, which can trigger different actions, like notify caregivers with 

localization of a fallen patient. The fog has also flog-cloud interplay for storage patient history 

and retrieves it when was needed as well. The testing results showed that for the same task 

when offloaded to the cloud, the latency, increases by 2s to 4s compared to the fog computing 

middleware approach. 

Another incentive-driven computation offloading model was proposed by (Liu, et al., 2017). 

They outline the importance of getting participants to join and let other participants consume 

their resources. Without it, the feasibility of the network could be compromised in terms of the 

existence itself. With this, they have analyzed two main issues: i) determine if the cloud server 

forwards or not the computation into the fog, and ii) how big is the reward to the surrogate fog 

node. They have answered to those questions by formulating a non-cooperative game theory 

between two entities: i) cloud service operator, and ii) edge server owners. The Stackelberg 

game has two steps: i) the cloud specifies a payment profile, and ii) the fog node answers with 

the amount of its computation for offloading based on the payment.  



 

32 
 

The equilibrium of the system was systematically evaluated, and they have demonstrated that 

that system can achieve the Nash equilibrium. At the Nash equilibrium, the cloud service 

operator maximizes its utility based on the optimal strategies of the edge server owner. $ach 

edge owner is able to maximize its utility by selecting the optimal strategy. Therefore, the 

optimal strategy is the equilibrium strategy for each edge server. 

In conclusion, fog computing still is in its infancy. The ownership of the fog Infrastructure in 

some works suggest the bottom-up model (Hasan, et al., 2017), where the fog nodes are owned 

by IoT users. In contrast to bottom-up is the bottom-down, in other words, the cloud providers 

which install computational resources at the edge (Zhang, et al., 2016). It is worth to point out 

that there is a convergence for incentive-based schemes, suggesting a third model where both 

models can coexist. The ownership problem was presented by the creator of this new 

computing model (Bonomi, et al., 2011), and it remains an unresolved one. In this undecided 

environment, the main focus is to abstract the ownership and focus on major technical 

challenges, like energy consumption schemes, addressing delay and latency constraints and 

computation needs in an application-fog-cloud symbiosis. 

2.5 Commercial Solutions 

The fog computing model is not being staved off by big companies. Many companies have 

already commercial solutions. Cisco leads at the hardware level, introducing fog capabilities on 

their network devices, while some other companies are focusing on the software side. We also 

have mentioned what big cloud providers have to offer, even if the current solutions have not 

been designed as a fog computing paradigm, yet it can be a serious component with the already 

existing IoT computing infrastructure. 

2.5.1 Cisco I0x 

Cisco Systems has launched a new platform for IoT and Fog Computing, namely The Cisco I0x. 

This technologic combines the new computing paradigm with the Cisco Network infrastructure. 

Equipment’s from four different lines have well-suited Fog features: i) Cisco 800 series industrial 

services routers; ii) Cisco industrial ethernet 4000 family switches; iii) Compute module for Cisco 

1000 series-connected grid routers; iv) Cisco IR510 WPAN industrial router. The devices are built 

with support for LXC and/or other types of virtualization (Virtual Machine, Docker) (Cisco, 2016). 



33 
 

 

Packaging I0x fog applications involves the creation of a package descriptor file which contains 

the resource needs and other metadata. This file is under the project directory, and then, a 

specialized client interface tool “ioxclient” is used to build the application artifacts under 

“artifacts.tar.gz”. Finally, the CLI tool wraps up the project folder and the resultant file is able to 

be deployed under I0x device. 

Deploy is made by the Cisco Fog Director. This is a rich web-based administration application 

that enables the users to monitor and collect statistics. This application also offers the 

possibilities of the user to install, remove, backup, debug and manage application life-cycle. Fig. 

16, illustrates the different states that application can be in. 

 

Figure 16 Cisco I0x application life-cycle state diagram (Cisco, 2016). 

Cisco I0x platform is not just for hosting applications at the edge, it also offers out of shelf 

services that the application developers can use: i) secure storage, ii) GPS, iii) motion detection, 

iii) ModBus, iv) DN3P and v) service discovery. The fog application can consume these services 

by a well-defined REST or WebSocket API. This homogenous way of service consumption is done 



 

34 
 

by the integration layer. This layer provides a message broker model to perform remote 

procedure calls RPC and publish-subscribe schemes between services and northbound interface 

NBI. NBI acts a getaway either from I0x applications to NBI nor services to NBI, translating the 

communication accordingly. The services are not only provided by the vendor but can also be 

developed by the community. 

 

Summing up, Cisco I0x offers an off-the-shelf platform and infrastructure to execute fog 

applications. The principal advantages of this technology are familiarity, in that the application 

developer implements and use existing tools such as Docker. 

2.5.2 FogHorn 

The full scenario of this solution consists of a machine learning model, or other AI model, that 

is trained at the cloud, and then is edgified and transferred to the FogHorn stack. The stack runs 

at edge node(s) and performs inference over streams of data. The insight generated at the site 

is pushed into the cloud and automatically updates the model without human scientist 

interference (Guilfoyle, 2018).  

 

The solution (Hughes, 2017) is at the software layer. The software is independent and cloud 

agnostic. The FogHorn’s VEL Complex Event Processor lives at edge node and the main 

functionalities are: i) data pre and post-processing, ii) closed-loop actions control; iii) pattern 

recognition, and iv) fog-cloud interplay. The tool that edgifies the AI or ML model is EdgeML. 

This tool is capable of reducing the resources needed in the edge node up to 80%, enabling 

devices with limited resources to host complex models. 

 

The reason that we have outlined this solution, resides on the fact of its capability of 

prescriptive maintenance capabilities (King, 2018), Fig. 17. This solution is already employed to 

optimize machines workloads, like production throughput, machinery lifetime, energy costs, 

etc. Reinforcing the idea introducing by (Evans & Annunziata, 2012), when they state that 

energy efficiency can only be achieved with intelligent machines and better data analytics. 

 



35 
 

 

 

Figure 17 Maintenance Types (Hegde, 2018). 

2.5.3 Big Cloud Providers 

The solution “Lambda@edge” from Amazon has the potential of improving user experience. 

They leverage their content delivery network to host and run the lambdas. The lambdas are not 

for generic use, but instead, they are aimed to control/serve and/or static content.  

In the IoT field, all major cloud player has an IoT solution(s), table 5. Bosh, AWS and Microsoft 

are very strong in terms of the number of the available solutions, others like Google Cloud 

Computing (GPC) and Alibaba Cloud offers a single and similar solution. 

Table 5 Cloud providers and their IoT solutions. 

 Microsoft IoT GPC/Alibaba AWS Bosh 

IoT Solutions Azure IoT 

Central; 

Azure IoT Edge; 

Azure IoT Hub; 

Azure Digital 

Twins; 

Azure Sphere; 

IoT Core; Amazon 

FreeRTOS 

IoT Greengrass; 

IoT Core; 

IoT Device 

Management; 

IoT Communication 

Suit; 

IoT Software 

Updates; 

IoT Analytics; 

IoT Hub; 

IoT Insights; 



 

36 
 

Azure Time 

Series Insight; 

Azure Maps; 

Event Grid;  

IoT Device 

Defender; 

IoT Things Graph; 

IoT Analytics; 

IoT SiteWise; 

IoT Events; 

IoT 1-click 

IoT Permission; 

IoT Remote 

Manager; 

IoT Rollouts; 

IoT Things; 

IoT Gateway 

Software;  

  

Payment 

Model 

Diversify 

(monthly, per-

per-use, per-

message, per-

node) 

Number of 

messages 

Diversify 

(monthly, per-

per-use, per-

message, per-

node) 

Monthly (each 

service) 

Maintenance 

Type 

Predictive Predictive Predictive Predictive 

 

We will not discuss each solution, per cloud provider for two reasons: market volatility and 

theoretical relevance.  Due to being generic and given its characteristics, we will cover in more 

detail Microsoft’s IoT Hub solution. 

 

 

 

 

 

 

 

 

 

 



37 
 

 

 

 

3 Solution Description  

This chapter is where the solution is described, from the design up to the implementation. It 

starts with the vision of the solution. Then is specified their functional requirements, followed 

by an in-depth technology study an concluding the implementation aspects of the proposed 

solutions. 

3.1 Vision 

We envision one solution able to integrate millions of on-premises devices with the existing 

cloud-infrastructure to assemble a network of devices capable of providing new services. The 

solution must represent what is considered a fog architecture, tying the cloud and the edge 

devices together. To support the new paradigm shift, it must produce comprehensive set of 

analytics to measure the benefits of the adoption. 

For this vision, we have adopted serverless architecture to incorporate third party nodes that 

host serverless applications also cloud be referred as lambda functions, and this last term is the 

last one that will be used in the solution description. The lambdas will support two types of 

events: 

1. HTTP Request Event 

2. CRON HTTP Response (HTTP client) 



 

38 
 

The solution must offer an easy and intuitive interface to the user perform lambda 

management, such as create, edit, list and delete. When creating a new lambda, it must be 

specified what type of event that triggers the lambda, also, it must be possible to choose in 

what environment (programing language) will be coded and their respective run-time 

dependencies.  

The client controls where the lambda is deployed. For that, a list of the registered nodes with 

valuable information is displayed. The client can select multiple nodes and control the number 

of instances that each node will host. This way, the platform has to manage the deployment to 

the specified nodes with the respective number of instances.  

The platform must be created with a fall back mechanism in case of unexpected nodes 

shutdowns. Tracking nodes and their lambdas status is the first step. Another move is to re-

deploy individually lambdas in case of abrupt termination. Finally, when a node restart, its 

previous state must be restored. 

In term of stats, the client must be able to see, in a form of logs, all deployment lifecycle and 

individual lambda execution lifecycle. Metrics must be reflective in those logs are: 

1. Memory Usage; 

2. CPU Usage; 

3. Bandwidth Usage; 

4. Execution Times; 

5. Event Trigger Request; 

6. Event Trigger Response;  

The platform must be built with reactive properties. Responsive so the client can obtain 

responses promptly. Resilient in face of failure. Elastic under different types of load and 

message-driven implying asynchronous technologies for the development. The code must be 

tested and documented.  



39 
 

 

3.1.1 Positioning 

3.1.1.1 Business Opportunity 

Empower clients with a tool capable of interplay with the cloud and edge devices. Refactoring 

cloud business model by introducing edge devices as first-class citizens. The change from cloud-

centric (centralized) to fog (decentralized), moves computation closer to the users with the 

potential of cultivating new user experiences and services. 

3.1.1.2 Problem Statement  

The cloud became the main vehicle to host all sort of computational needs, on top of that, its 

pay-per-use model makes it very attractive and irresistible to not to use it. Still, there are 

applications where the cloud model does not fit. Primarily, applications that latency has a major 

impact or applications that generate big quantities of row data are not contemplated by the 

current model. 

3.1.1.3 Alternatives and Competition 

In general way, all cloud providers, Cisco I0x (software and hardware) solutions mentioned 

before are part of the competition. AWS IoT Greengrass is the most direct competitor in terms 

of execution flow, not in functionality. AWS IoT Greengrass that lambdas can be deployed and 

executed on the device and communicate with other devices without cloud mediation (within 

LAN). 

3.1.2 Stakeholders Description 

The solution targets three different stakeholders. The public user is the stakeholder who wants 

to use the platform as a software as a service. This stakeholder does not provide any 

computational resource although, he wants to execute logic by using the existing infrastructure, 

accessing to the analytics and manage their logic units. He relies on the existing infrastructure 

to deploy services. 

The hybrid stakeholder has computational resources and makes it available on the platform for 

his uses and other users as well. He benefits from the analytics available in the platform, 

another aspect taking into account, is that he owns part of the infrastructure, so he has a higher 

level of confidence when running logic units in his nodes. He also is responsible for the node(s) 

maintenance. 



 

40 
 

The private stakeholder, like the hybrid one, he owns computational resources, however, it 

does not have intentions to share them, whether for legal or political reasons. He wants a 

private solution for private usage. Ultimately, he wants a replica of the existing solution without 

third parties accessing his resources. 

Table 6 High level goals 

High Level Goals Priority Problems and Concerns  Current Solutions 

Integrate multiple 

nodes from multiple 

users for 

multipurpose uses 

Hight Scalability; 

Security; 

Complexity; 

Incentive to make those nodes 

owners to remain in the network; 

Nodes Maintenance; 

None; 

Integrate edge node 

with cloud nodes 

Hight Simplicity; 

Resource optimization; 

All solutions 

analyzed; 

Comprehensive 

analytics 

Medium Aggregates query plan; All solutions 

analyzed; 

 

The table 6 summarizes the high-level goals for the different stakeholders where was identified 

the problems and concerns to be achieved by this new platform prioritize them according. The 

solutions also are identified by each goal. 

3.1.3 Product overview 

The product, Fig. 18, has three independent parts, each part offers a specific set of 

functionalities. This division addresses different user needs and resources. In the segment side, 

the product has two major segments, community and proprietary. 



41 
 

 

 

Figure 18 Product overview 

 

The Fig. 18 also has different colors (green and blue) for different infrastructure ownership, 

where we can see the hybrid user in green and their infrastructure part to represent 

computational resources as green as well, and the same goes for the private user with blue 

color. 

The community, where all resources are shared between platform users, and the proprietary 

where is owned by some person or group. The visibility of the elements (network, nodes, 

communication) is impacted by the segment that is in. 

3.1.4 Value Analysis 

The value analysis was based on the work (Koen, et al., 2001), where the author describes one 

front-end innovation process to formulate and reasoning about the product that we are 

proposing in this work using the new product development model (Dewulf, 2013). 

3.1.4.1 Opportunity Identification 

Fog computing is to offer compute, storage and network services between end devices and 

traditional cloud computing datacenters, typically, but not exclusively located at the edge of 

the network (Bonomi, et al., 2014), with this, and from what we have researched, the ownership 

of this infrastructure is not well-defined and the convergence to incentive-based schemes, 



 

42 
 

suggests that this fog infrastructure will be the convergence of the top-down and bottom-up 

ownership models. 

3.1.4.2 Opportunity Analysis 

Several factors add the need for offering computational resources under closer to the end 

devices. We identified the following ones: i) increasing number of smart devices, ii) latency 

between edge and cloud nodes, iii) data moving costs, iv) faster data insight, v) computational 

resources placement, vi) ownership. We already covered those factors, and those make an 

opportunity to build a new product that addresses those issues. 

3.1.4.3 Idea Genesis 

The idea is simple, offering computation, storage, and network services between end devices 

and traditional cloud computing datacenters by creating one solution that allows the creation 

of applications that can use the resources in the best possible way. The application 

development under this solution must be based on a familiar and existence flow for the 

developer, like this, the learning curve for the usage and development under this solution be 

minimal. On the resources side, the solution must provide a simplified process for aggregating 

resources, favor even non-technical people that want to be their devices harvest by third-party 

applications.  

3.1.4.4 Idea Selection 

Function as a service model was the selected architectural service model. This model is familiar 

to the developers, plus, this model enforces the pattern of single responsibility principle. We 

also added selective deployment to this service model, allowing the developer to deploy each 

developed function/lambda on the preferred physical node.  

3.1.4.5 Concept and Technologic Development 

The idea is to create the building blocks using open source technologies and make the product 

public available for fomenting other developers to use and contribute to constituting a 

community.   

3.2 Requirements 



43 
 

 

This section is more technical and is where is explained the functionality of the solution 

envisioned. This section count with the description of the domain model followed by the uses 

cases of each platform system ending with the supplementary specification. 

3.2.1 Domain Model 

The web platform is an interface that allows clients to create lambdas functions. Each lambda 

is executed when an event occurs. Events like the file system, network, sensor and timing events 

are used to start one lambda execution. The client defines the amount of memory, storage and 

CPU that the individual lambda will consume. The client codifies the handlers to those events.   

 

Figure 19 Web platform domain model 

The client also decides the programing language that each lambda use, and for it, it can add 

dependencies. The previous paragraphs describes the domain model, Fig. 19, which is 

incorporate the main entities involved on the business of the web platform. 

The platform to increase client productivity uses the popular dependencies managers available 

for each supported environment to search and only accept dependencies that are available on 

public repositories.  

To help the client focus on the business logic rather on the implementation of individual 

lambdas, all pre-created lambdas are available to be used when a new one is being created. The 



 

44 
 

client can choose what lambda(s) will run before and after in 2 different ways: sequential and 

parallel.  

The parallel execution can be configured to run a set of lambdas before and/or after according 

to the target lambda. The semantics is that this lambda event has a side effect and wants that 

other lambdas to be aware of the execution of this event. The client can choose one of the 

following execution strategies: i) fire and forget, ii) wait for the first, and iii) wait for all. The 

number of lambdas indicated in after or before is restricted by the total number of lambdas 

that the client has previously created. The platform transforms the specified lambdas into a set 

of that will run before and after. The parallel lambdas never interfere in the success or failure 

of the overall lambda execution, in other words, this lambda must always be executed. 

The execution strategy of fire and forget reflects a set of lambdas that are launched, and the 

main lambda execution continues without waiting for their results of the launched lambdas. 

The wait for the first is when a client defined a set of one or more lambdas and the first result 

between the two or more, resumes the execution of this lambdas. The wait for all, as the name 

implies, waits for all results and only then, the execution is resumed. 

The sequential, the semantics it that this lambda needs something from another lambda, and 

the nature of the dependency can be strong enough to this lambda never be called or to result 

in failure even if this lambda succeeded in doing their work. The order depends if it is after of 

before this lambda. The client can define the following execution strategies: i) continue even if 

the lambda fails, and ii) halt the execution. One important aspect is if the lambda halts is 

execution, the after parallel lambdas are never executed. The client only can be specified one 

lambda to run after and/or before. 

The arguments are equally managed for the sequential and parallel part, the client can specify 

that he wants to inject the event as lambda argument and/or inject the result of the lambda 

into the next lambda execution. 



45 
 

 

 

Figure 20 Example usage scenario 

Consider the scenario of sensor that periodically sends events and the client wants to check if 

the operational values conform with their sensor profile, Fig. 20. The client creates the lambda 

with the logic of validating sensor profiles against the actual sensor operational readings. The 

client has already created one lambda that retrieves sensor profiles, so we can specify that this 

lambda is dependent of the result of the sensor profiler retrieval lambda, adjust the execution 

behavior and obtain the inputs necessary to run the logic. Meanwhile, other lambda updates 

some model to posterior logic and a record keeper persists the event. 

The lambdas are within a domain. The domain has a set of lambdas and each lambda can 

contain those lambdas. The client deploys a domain as a whole and each lambda can run in a 

node(s), the client has the best knowledge to arrange the pairs lambda-node. The node has 

resources and implements a set of environments and can host multiple instances of the same 

lambda. The domain is designed by its name and description. The domain name is unique across 

the platform.  

The provider contains a set of nodes, and the platform allows the registration/management of 

the nodes. The provider and the client both are platform users. A user is an entity that the 

system can identify unequivocally with some relevant information.  



 

46 
 

Lambdas run at different nodes, a separate entity is responsible to mediate the deployment 

and the execution of those lambdas, Fig. 21. One deployment can contain multiples lambdas, 

the representation of the set of actions that one deploys may need is represented as a graph. 

The graph is constituted by lambdas (nodes in graph theory) and their properties as edges. The 

scheduler executes those graphs as tasks and each task as a stats reporter that emits useful 

information. 

 

Figure 21 Scheduler domain model 

When a consumer sends an event to be processed, this system uses the same graph to call the 

lambda, who is responsible to process and responds to the event. A lambda execution is a flow 

of information that is potential process by multiple lambdas, due to the ability to express 

complex flows within a simple call, the scheduler must remain reliable in each task execution. 

 

 

Figure 22 Runtime domain model 

The part that resides on-premises is the actual worker, Fig. 22. The worker performs all the 

actions needed to deploy and keep running the lambdas functions. The deployment process is 

associate with each lambda and is state is reported back to the web platform. 



47 
 

 

3.2.2 Use Cases  

Were identified four different systems. I) Web-Platform; ii) Scheduler; iii) Runtime; and iv) 

Lambda. The Web-Platform is an interface that captures the needs of the client actor. It 

provides the functionality to allow the client to express and orchestrate their computational 

needs. In other hand, it also interfaces the resources that providers have. The Scheduler as the 

name implies, it schedules the task(s) to run on the provider’s nodes. The Runtime is the part 

that is responsible for providing a common setup to all lambdas that are destiny to run on that 

particular node. Lastly, the Lambda is where the client’s work is executed. 

In term of actors, were captured seven of them. The Web-Platform interacts with three 

different actors, i) user, ii) provider and iii) client. The system Scheduler interacts with the 

deployer and consumer. The Runtime interacts with time, provider and with deployer actors. 

Finally, the Lambda only interacts with the consumer. 

The user represents either a person who can be a provider or a client. The client represents the 

entity who wants to use and distribute computation using the web platform has a medium to 

achieve that. The provider is the entity who wants their computational resources to be used by 

the clients. The deployer is the entity in charge of deploying a given project.  The consumer 

represents everybody who needs the result(s) from a given lambda. The time was also 

mentioned since the nodes have multiples lambdas deployed and their execution is monitored 

and reported to, later on, meaningful information can be displayed to the client.  

3.2.3 Web Platform Use Cases 

In the Web-Platform were identified nineteen different use cases, Fig. 23. Is in this platform 

that the two main actors will interact, client and provider. It identifies them by letting register 

into the platform. Both have different roles, and each has a set of available actions. 



 

48 
 

 

Figure 23 Web platform use cases 

To the client was twelve different use cases, in counterpart, the provider has three and both 

have the reaming four. It is reasonable that the client at this stage has more use case because 

we are focusing on the engineering part of the fog architecture. 

3.2.3.1 Create Lambda Use Case: 

Primary Actor(s):  

• Client 

Stakeholders and Interests: 



49 
 

 

• Client: Wants a fast, easy and secure way to code services; 

• Consumer: Wants a familiar form to call the service exposed by the client’s lambda; 

Preconditions: 

• Client is identified and authenticated; 

• At least one provider node registered; 

Success Guarantee: 

• Lambda is saved in the system; 

Main success scenario: 

1. Client start the process of lambda creation; 

2. The platform requests lambda information (lambda name, lambda functionality, 

number of instances; environment, resources, node(s) to target deploy; event trigger; 

list of lambdas to run before and after in parallel way; lambda to run sequential 

before and after, lambda arguments; list of dependencies, lambda code); 

3. The client inserts all information and submits; 

4. The platform validates and informs the success of the operation; 

Extensions: 

• a*. at any time, platform fails: 

• b*. at any time, client loses connectivity: 

1. Store all data introduced by the client and inform the client about the 

respective issue; 

• 3a. The platform detects that the data (or any subset of data) entered must be unique 

and already exists in the system: 

1.  The platform warns the client; 

2. The platform allows client changes and re-submission can be done; 

• 3b. The platform detects invalid or missing fields: 

1. The platform indicates missing or wrong fields; 

2. The client changes and re-submits; 

Special Requirements: 

• Client must able to create lambdas on a wide range of screen sizes; 



 

50 
 

• Textual fields that indicate other system entities like lambdas, dependencies must 

have auto-complete functionality; 

• Node(s) form must indicate information beyond the node name, like where is the 

node geographically placed; 

• Different trigger event fields must appear to the client depending on the selected 

trigger; 

• Lambda code form field must have syntax highlight, syntax checker and auto-

indentation; 

Frequency of Occurrence:  

• Regular 

3.2.4 Scheduler Use Cases 

The most relevant part, yet invisible, is the system Scheduler, Fig. 24. When a client wants to 

deploy their project, several use cases must be triggered by the deployer actor. One is the 

construction of the deployment graph. It gathers all the necessary information of each lambda 

that one project may have, builds the deployment graph and dispatch tasks across the 

provider’s Runtime nodes. The other use that is triggered at the deployment stage is the 

construction of the execution graph. 



51 
 

 

 

Figure 24 Scheduler use cases 

Besides building the two main graphs, it also exports one interface to call one given lambda. It 

is one of the consumer interfaces available to trigger one graph execution for a given matched 

lambda. When the consumer triggers one graph, a second use case is included, execution status. 

Information about the execution is recorded for then be displayed in the Web-Platform.  

3.2.4.1 Deploy Project Use Case: 

 

Principal Actor: 

• Deployer; 

Stakeholders and Interests: 

• Client: Deploy lambdas into production; Follow deploy events; Check state of the 

deployment process;  

• Provider: Maximize computational resource usage; 



 

52 
 

• Deployer: Fault-tolerant, idempotent process to deploy client’s lambdas; 

• Consumer: Enable consumer with new service(s); 

Preconditions: 

• Project with one or more lambdas; 

Success Guaranteed: 

• Project deployment state is updated; 

• Project lambdas are ready for execution; 

Main success scenario: 

1. Deployer actor starts the deployment process; 

2. The system request which project is to deploy; 

3. The deployer indicate the project; 

4. The system computes and stores the deployment graph and execution graph; 

5. The system sends the lambda to target node; 

6. The system waits for the confirmation; 

7.  Steps 5 and 6 are repeated until all lambdas are confirmed; 

8. The system marks stores the process and informs the actor the result of the 

operation; 

Extensions: 

• a*. At any time, system fails: 

1. The client is informed; 

2. The client restarts the process; 

• 4a. The system is not able to communicate with target node: 

1. The system registers this fact; 

2. The system resumes the deployment process, until main flow step 7 is 

finished; 

3. Categorize affected lambdas; 

4. Stores the process result and informs the user the result of the operation; 

• 6a. The system not receive confirmation from the target node: 

1. The system applies a retry policy; 

▪ 1a. Retry policy succeeds and confirmation is received; 

1. The deployment process is resumed; 



53 
 

 

▪ 1b. Retry policy fails; 

1. The system registers this fact; 

2. Continues with the remaining lambdas (until step 7, main 

flow); 

3. System verify lambda liveness with indirect observations; 

• 3a. Indirect observations indicates that lambda is 

deployed: 

1. The system saves the process and inform the 

result back to the actor; 

• 3b. Indirect observations reveal no sign that lambda 

was deployed. 

1. Affected lambdas are categorized; 

2. Stores the process and responds back to the 

actor; 

Special Requirements: 

• Have one or more deployment requests running in multiple scheduler systems do not 

have affect in the intended result. In other words, the lambdas are deployed with 

exactly number of instances defined by the client. 

• Pluggable retries policies can be inserted at steps 6a1 and 6a1b3 in the extensions flow. 

Frequency of Occurrence:  

• Regular 

 

3.2.4.2 Execute Lambda Use Case: 

 

Principal Actor: 

• Consumer; 

Stakeholder and Interests: 

• Consumer: Call services(s); 

• Client: Offer service(s); 

Preconditions: 



 

54 
 

• Project in deployment state; 

Main Flow: 

1. The consumer invoke lambda; 

2. The system identifies the lambda and the project belonging to; 

3. The system verifies project deployment state; 

4. The system runs the execution graph; 

5. The system collects the results of graph execution and forwards it to the consumer. 

Extension Flow: 

• a*. At any time, system fails: 

1. The consumer is informed with the possibility of trying again; 

• 2a. The system does not recognized lambda: 

1. The system registers the fact and responds back informing the consumer; 

• 3a. Lambda exists but project is not in the correct state: 

1. The systems notify the owner; 

2. The system informs the result of the operation back to the consumer; 

• 4b. During graph execution is detected that some lambda host cannot be contacted: 

1. The system executes partial deployment policy: 

▪ 1a: Partial deployment policy succeeds: 

1. Graph execution is resume to normal execution; 

▪ 1b: Partial deployment policy fails: 

1. The system halts the graph execution and informs the 

consumer;  

Special Requirements: 

• Building execution graph does not have time impact in the overall execution; 

Frequency of Occurrence:  

• Often 

3.2.5 Runtime Use Cases 

The Runtime, Fig. 25, allows the deployer to fulfill his purpose of deploying a given lambda 

belong to a specific project. The use case of launch the Sandbox also is used by the actor 



55 
 

 

deployer and it allocates the resources and launches the sandbox contained the client’s lambda. 

Another aspect is the actor provider has the use case of launch the runtime. The Runtime 

automatically tries to register into Web-Platform and obtain dynamic configuration such as bus 

connection parameters. 

 

Figure 25 Runtime use cases 

The time actor as the important use case, it queries and records resource consumption of the 

Runtime itself, as well as the deployed lambdas. The records are published to later be 

displayed into the Web-Platform.  

3.2.5.1 Launch Lambda Sandbox Use Case: 

Principal Actor: 

• Deployer; 

Stakeholders and Interests: 

• Deployer: 

Main Flow: 

1. The deployer starts the process; 



 

56 
 

2. The system applies sandbox requirements; 

3.  The system installs sandbox dependencies; 

4. The system starts the sandbox and replies the result of the operation; 

Extension Flow: 

• a*. At any time, system fails: 

1. Is up to deployer to try again; 

• 1a. The system detects that particular lambda sandbox is already running: 

1. The system response is as if the sandbox was started as fresh; 

• 3a. The system could not install dependencies: 

1. The system halts the execution and informs the actor; 

Special Requirements: 

• Node failures does not have to involve a new deployment; 

Frequency of Occurrence:  

• Regular 

The Lambda system has two use cases, bottom box in Fig. 25. The execute lambda use case, 

runs a concrete lambda for the consumer actor. The associated report execution status use case 

is meant to record statistics of the execution associated and as previous reports use cases, it 

publishes the data to be viewed by the client. 

3.2.6 Supplementary Specification 

The supplementary specification was defined following the FRUPS+ model. Below are the 

principal points that were identified according to the model and each has a description of how 

they are related to the proposed solution.  

3.2.6.1 Design Constrains 

The runtime will run a wide-range number of devices. To have minimal runtimes sized binaries, 

the logic implemented must be easy, compact and not complex to be easily replicated across 

multiple programing languages, different software stacks, and hardware architectures.  

3.2.6.2 Supportability 

The lambda runs on a concept of a sandbox, according to the underline operative system (if 

any), different types of isolation (Linux control groups, Docker, virtual machine, LXC, etc.) can 



57 
 

 

or not be used. It’s reasonable to offer the possibility of the client download the runtime that 

reflects the system that the client is targeting to. 

3.2.6.3 Functionality  

The security is also a major point to address, providers with bad intentions could compromise 

a significant part of the system, especially those who can leak sensible information by 

performing Man-in-the-Middle attack. The solution must include end-to-end solutions to have 

some mitigation to the attacks mentioned.   

3.3 Technologies 

The technologies that will be discussed, in great detail, makes part of building blocks of the 

implemented solution. We also use other tools that will not be discussed because they don’t 

add anything in terms of the overall understanding of the platform, for instance, for the web 

platform the front-end was implemented in AngularJs, the back end was written in Rust 

programing language with Actix, a message-based framework model. The Scheduler, due to the 

single-thread-event-based programming model, Node.js was the appropriate solution. The 

runtime was written in Node.js for the reason mentioned before but also for having a wide 

range of pre-compiled binary for other architectures like ARM (arm64, arm6, arm7, etc.), 

PowerPC, etc, thus, is an easy language to build prototypes and experiment new ideas. 

3.3.1 Apache Cassandra 

Apache Cassandra (Apache Cassandra, 2019) is an open-source database that provides 

distributed persistent storage, designed to run on commodity servers for managing structured 

data with no point of failure.  It is a NoSQL database, that under this type of databases, it 

belongs to a column-oriented family. In terms of the CAP theorem (Gilbert & Lynch, 2012), this 

database guarantees availability and partition tolerance. High availability by replicating data 

across nodes. Partition Tolerance since every node can act as a node coordinator to perform a 

read/save operation. Those are the main features to achieve availability and partition-tolerance 

properties. 



 

58 
 

 

Figure 26 Cassandra entities 

The data model has constituted by three entities, Fig. 26, and they are the following: i) keyspace; 

ii) table; and iii) row. The keyspace resembles on what is the database concept on SQL databases, 

a structure identified by a given non pre-existence name, that may have zero or more tables, 

however, it is a namespace and it defines on how the data is replicated. Table entity represents 

a set of rows, identified by name within the keyspace. Lastly, the row, which is constituted by 

the row key and their set of strong typed, fixed-size columns. 

It is at the keyspace creation that we achieve fault tolerance. It is defined as the replication 

factor in the replication strategy option. The replication factor of 1, means that the datacenter 

only has one copy of each row. A replication factor of 1, follows the logic, of no row, can be 

retrieved if the node where the data is located is down.  A replication factor of 3, means that 

the datacenter has 3 copies on 3 different nodes.  

It is available two different replication strategies: i) simple strategy; and ii) network strategy. 

Simple strategy only allows us to define the replicate factor for a given cluster. The replication 

is done clockwise (token ring, concept explained later) without taking into account the typology 

of the cluster. This strategy is recommended to one datacenter, otherwise, the other strategy 

must be used.  



59 
 

 

Network strategy defines the number of replicas per datacenters, adequate for business 

expansion. The keyspace strategy can be altered after its creation, giving some freedom to the 

developer. 

Cassandra uses Gossip, a peer to peer protocol, in which the nodes share information about 

their state and their neighborhoods. The nodes communicate every second and quickly gain 

knowledge about their peers and which state there are. Thus, with a helper of a failure detector, 

Cassandra can avoid routing client requests to unreachable nodes. Snitches are another concept 

that helps nodes to determine the network topology and it is useful to routing nodes requests, 

replicas placement (grouped by machines) and determine which datacenters and racks that 

nodes belong to.  

So far, we have addressed the generic overview of this distributed database, now we can 

explain how the data is partitioned. Cassandra has the concept of a cluster: a set of nodes which 

map to a single token ring. This token ring has a range of a signed long in any JVM (no 

exceptions). When two nodes are booted together, let’s assume that one node is assigned the 

range of [2−63. .0[  and the other have the subsequent range.  

Now that the nodes have a range, it is used the consistence hashing technique to determine 

where data can be written or read. Every table requires one partition key, is that key that 

Cassandra uses to apply the one hash function of one of those three implementations: i) 

“Murmur3Partitioner”; ii) “RandomPartitioner” and iii) “ByteOrderPartitioner”. The key hash 

function produces one finite integer, token value, between the token range. The node 

responsible for the range that includes the hash value will handle the data request. With those 

two concepts, token value and token ring, we can describe how this database partition 

store/read the data. Let’s assume the case of Cassandra executing one write with a replicate 

factor of two. When the request arrives at one node (node coordinator), it applies the hash 

function, obtains the token value, at this point, it is known which node will host the data and 

the node stores it. Now enters the replication factor. In this case, is an RF of 2, so, the next node 

(clockwise) responsible for the next range of the respective token ring, will also store the data.  

Partitioners have the responsibility of distributing data across nodes, each node must be set 

with the same partitioner because they do not produce the same hash values for the same 

primary key. “Murmur3Partitioner” is the default and not uses a cryptographic function to 

generate one hash, resulting in 3-5x times improvement when compared to the 



 

60 
 

“RadomPartitioner” which uses the MD5 hash function to obtain the token value. The 

“ByteOrderedPartitioner” keeps an ordered distribution of data lexically by key bytes.  

The actual data that is persisted in the disk, Cassandra takes a novel approach to increase its 

read/write latency performance and avoid collisions in middle air. For instances, when two 

clients override the same row and both send this update to the node, which update is right? 

Cassandra to avoid this problem, it uses “Write-Before-Read” instead of “Read-Before-Write”. 

The storage engine groups inserts and updates together, and at intervals, it sequentially write 

the data in the disk in append-only mode, becoming part of an immutable piece of data, where 

resides all data. Returning the row, the sequential seek, will find the last row that was inserted.  

This technique is leverage by the usage of one special data structure namely Log-structured 

merge-tree (LSM tree). This data structure like other trees it maintains a key-value pair and 

allows multiple levels of the same data-structure. Typically, the level 𝑙 ∶ 𝑙 ∈ ℕ is merged into 

the level 𝑙 − 1 ∶ 𝑙 ∈ ℕ after a given threshold. The process of merging levels it is given the name 

of compaction. In Cassandra, each key is the token value and the value represent one row. There 

is multiple SStables (each LSM tree level) per table and is the place when compaction occurs. 

The SStables are immutable, insertions and updates are processed as there was upserts and 

also deletions, marking deletions as thumbstones. During the node lifetime, one partition key 

can have multiple version of the row with different timestamped versions. When compaction 

is triggered the node creates one new SSTables with the merged data. The node performance 

is guaranteed even if it is in the compaction process. Cassandra offers several strategies to 

merge SSTables, table 7. 

Table 7 Cassandra compaction strategies 

Name Strengths Weakness 

SizeTieredCompationStrategy  Write-Intensive Workloads Low compaction 

frequency 

LeveledCompactionStrategy  Read-Intensive Workloads Higher disk I/O usage 

TimeWindowCompactionStrategy Time-Series Workloads Requires row with TTL.  

 

The SSTables are immutable structures, so, when a read request arrives at the node, it is not 

created a new structure containing a single row. Another structure residing in-memory is used, 



61 
 

 

which is denominated by the name of Memtable. Exists one per table and the structure holds 

the writes up to a certain configurated level. Surpassed that level, it is created a partitioned 

index, mapping tokens to locations on disk and the data is flushed.  

From the mention entities involved on Cassandra node write, it is missing the commit log. The 

commit log is shared across all tables, register all write requests and flushes the correspondent 

data from a given table when the correspondent SSTable is created. 

In counterpart, when a read arrives, Cassandra have to search, at least, in two-node structures, 

Memtable and SSTable. The search results are then combining, and the read request is fulfilled. 

The following steps are performed: 

1. Verify MemTable; 

2. Verify row cache (LRU cache); 

3. Verify bloom filter; 

4. Verify partition key cache; 

5. Locate the data on the disk using compression offset map; 

a. If partition key is found; 

b. Or consults partition summary: 

i. Access to the partition index; 

c. Obtain compress offset map; 

6. Fetches the data from the SSTable on the disk. 

Three important aspects were explained, how the database distributes data and what are the 

steps involved in read and writes. From the CAP, Cassandra cannot be a consistency database, 

it was not designed and implemented for that either. In contrast of ACID transactions, 

Cassandra follows Available Soft-state Eventually-consistence paradigm, BASE for short.  

However, it offers strategies to tune consistency.  

When a system sacrifice consistency for availability, a great part of the design is to mitigate the 

part that was taken away, in terms of CAP. Best effort consistency can be decomposed into two 

segments, weakly and stronger, table 8.  

Table 8 Weak vs strong consistency systems 

Consistence Pros Cons 

Weakly Lower latency; Propense to byzantine failures; 



 

62 
 

Higher throughput; 

Minimal resources usage; 

Faster client response times; 

Stronger Truthful client responses; 

Data correctness; 

    

Higher latency; 

Bandwidth usage; 

Higher pressure on coordinator 

node; 

 

Cassandra offers several of tunable consistency options either for read and write operations. 

The Quorum is calculated and rounded down to an integer number. The mathematical 

expression: 𝑄 = (
∑ 𝑟𝑓𝑑

1

2
) + 1. Where 𝑑 is the number of datacenters, and 𝑟𝑓 is the replicator 

factor. The resulting number represents the number of nodes that will be contacted. In table 9, 

shows the example of 3 datacenters with 3 replication factors in each. Applying the formula 

𝑄 =
3+3+3

2
+ 1 = 5.5, rounding down giving the total of 5. 

Table 9 Cassandra consistency levels 

Level Read Write 

ALL 9 

EACH_QUORUM 6 (2 nodes per DC) 

QUORUM 5 (Any DC) 

LOCAL_QUORUM 2 (Local DC) 

ONE 1 (Any DC) 

TWO 2 (Any DC) 

THREE 3 (Any DC) 

LOCAL_ONE 1 (Local DC) 

ANY N/A 1 (Any DC) 

SERIAL 5 (Any DC) N/A 

LOCAL_SERIAL 2 (Local DC) N/A 

 

Consider the example of table 9, in a write request, all the available nodes that owns the row 

will receive the write request, regardless that consistency level specified. In a write context, the 



63 
 

 

consistency levels indicates the number of acknowledges that coordinator has to receive from 

the replicas nodes in order to mark the request as successfully. 

If the write request was set with a consistency level of LOCAL_ONE and 2 of 3 nodes (local DC) 

where down, the write still succeed, however, the other 2 nodes not received the write request. 

Cassandra has three built-in mechanisms to deal with this issue: 

• Hinted Handoff; 

• Read Repair; 

• Anti-Entropy Node Repair; 

Hinted handoff is an automatic process that is used when the coordinator node could not 

receive the acknowledge for a write request, even the replica node is down or unresponsive. 

The coordinator stores the read in one special system table. This table holds the data, during a 

finite configurable time window on the behalf of the replica. When the node comes online and 

the coordinator detects it, the data is replayed. 

The read repair is the process of comparing the data that comes from the replicas. When a read 

request is being served. If the data is not the same, Cassandra acts as a consistency level of ALL, 

requests the row to the reaming replica nodes, compares the rows and the most recent version 

is sent to the replicas that differ from the more up to date version. 

Anti-entropy is a manual process, it makes part of a maintenance plan that the developer must 

have contemplate when this database is used. Even with the 2 mechanisms mentioned above, 

data inconsistency can still exist.  Cassandra in this mechanism compares all data between all 

replica nodes. Each replica builds the Merkle Tree per table and then compares the trees 

between replicas (bubble sorting logic). Cassandra anti-entropy method also can be executed 

using different strategies: i) full repair; ii) incremental repair. Different behaviors: i) sequential 

repair; ii) parallel repair; and on specific sites: i) local; ii) datacenter; and iii) cluster. 

In the read request flow, Cassandra coordinator have three possible request that can make to 

one replica node: 

• Direct Read Request; 

• Digest Request; 

• Read Repair request; 



 

64 
 

The direct read is the act of asking to one replica node for the respective row. The digest request 

is the subsequent requests that are made by the coordinator to remaining replica nodes, the 

total of replicas is set by the discussed consistency level. The replica node confirms that the 

data from the response of the direct request is up to date, and then all remaining nodes also 

receive a digest request. If the last step results in non-consistency state, a read repair is started 

at the background. 

Wrapping up consistency topic. Cassandra is able to execute lightweight transactions with 

linearizable consistence. It is implemented under Paxos protocol (Lamport, 1998) with a 

quorum-based algorithm. We can think of compare and set behavior without a master database 

or two-phase commit. When used, it not affects other normal read or writes, but cannot have 

multiple lightweight transactions at the same time, which must be used where is extremely 

needed. 

To sum up, strong consistency can be achieved if the following condition is met: 𝑅 + 𝑊 > 𝑁, 

and eventual consistency with: 𝑅 + 𝑊 ≤ 𝑁, where 𝑅 is the number of consistency level for 

read, 𝑊the number of consistency level for writes and 𝑁 number of replicas. For example, if 

we write a row with consistency level on ONE, the read must be THREE if we want strong 

consistency, this if the replication factor is 3 (3 + 1 > 3). 

3.3.1.1 Creating Tables 

Consistence hashing have one great advantage in how data is partitioned, however when 

modeling the business domain to fit into a NoSQL Cassandra database, the design of the 

partition key for each table becomes a challenge. First, Cassandra denies executing low 

performant queries, second, we want the data distributed equally across the nodes and third 

we want to minimize the number of partition reads. 

The partition key is defined when the table is created. The scheme to create a table is very 

similar to the SQL databases. In Cassandra we can define the partition key in three different 

ways: i) primary key, ii) compound key, and iii) composite key.  

Table 10 Primary keys declarations 

create table t(a int, primary key(a)); primary key 

create table t(a int, int b, primary key(a,b)); compound key 

create table t(a int, int b, int c, primary key((a,b),c)); composite key 



65 
 

 

 

To finalize, we will discuss the last row of table 10. The primary key is a composite key, where 

the partition key is “a” and “b” and the flowing are the cluster columns, in this case, “c”. 

Consider “a” and “b” and “c” of assuming the bits of the representation of the decimal number 

of [0..7] in binary. This configuration allows having 2^3 different rows in 4 different partitions, 

table 11. 

Table 11 Partition key behavior 

A B C Partition 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 2 

1 0 1 2 

1 1 0 3 

1 1 1 3 

 

We quickly can conclude if the “a” and “b” both are “0”, and only change “c” in a range of 

[0. .1000], all the rows created in this scenario will be stored at single place. The read per 

partition will be extremely fast, however, the data is not distributed evenly across the cluster, 

even if the cluster has an astronomic number of nodes. The technical term of this is a hotspot 

when no variation exists within the partition key, the data will be placed at one site. Cassandra 

offers a persistence with no point of failure, but the developer has to be wise when modeling 

the data. 

3.3.2 RabbitMQ  

RabbitMQ (RabbitMQ, 2019) is an open-source message broken platform. It implements the 

advanced message queuing protocol (AMQP). Its plugin extension design allows to use several 

other protocols: 



 

66 
 

• Simple Text Oriented Messaging Protocol; 

• Message Queuing Telemetry Transport; 

 

Figure 27 RabbitMQ messaging overview 

RabbitMQ is used to deliver messages to consumers. Messages sent by publishers through 

exchanges, Fig. 27. The consumer is the entity that has one associated queue and the queue 

has one binding with a particular exchange. The publisher sends messages via exchanges. In 

other words, when the publisher wants to deliver one message, it delivers it to a middleman 

who knows how to route that message. When a message arrives, the middleman looks at the 

message meta-data and checks the address. If the address is a valid routable address, it delivers 

into the recipient’s queue. 

Messages are routed and it is done in the exchange. The type of routing dictates how to 

messages are delivered to the queues. Exists different types of exchanges with different routing 

properties: 

• Direct Exchange; 

• Fanout Exchange; 

• Topic Exchange; 

• Headers Exchange;  

A message that arrives in an exchange, declared as direct, goes directly to the queue(s) whose 

binding key exactly matches the routing key of that message. The fanout exchange copies and 

route a received message to all queues that are bound to it. Topic exchange, similar to direct 

exchange, with the difference that the routing key can have wild cards. Messages are routed to 

one or many queues based on a matching between a message routing and this pattern. Headers 



67 
 

 

exchange, as a topic exchange, with the difference of routing messages based on the message 

headers instead of routing key. 

Messages have two parts, the message that the producer sent and meta-data. There are no 

constraints on the actual message, is up to the producer and the consumer to agree in a 

common format.  

In a multi-format ambient, the respective format used can be indicated in the message meta-

data, more specifically, in the content-type property. Another related field is the content-

encoding, which is identified what compression algorithm was used to compress the message. 

This is special relevant to reduce messages sizes. Both fields do not have meaning for the 

RabbitMQ, the actions that those fields can represent is up to consumers implementations to 

interpret. 

 

Figure 28 RabbitMQ RCP pattern 

RabbitMQ can also be used to implement a remote procedure call system, Fig. 28. The meta-

data has two particular fields for this purpose, correlation-id, and reply-to respectively. The 

design follows the flow: Publisher creates a queue and binds it to a well-known exchange, then, 

it publishes the message with the field’s correlation-id and reply-to (name of the created queue) 

defined. The consumer processes the message and replies into the queue specified in the reply-

to field. The response message arrives at publisher by the consumer publishing the message 

into the well-known exchange and used the value of the reply-to as routing key. The field 

correlation-id helps the publisher to correlate requests with responses to further process. 

RabbitMQ quickly enables developers to build distributed applications using it as a 

communication bus. Since the bus can connect multiple applications, geographically distributed 



 

68 
 

via multiple links as a consequence of network failure, node failures, logic errors may 

compromise the reliability of the system.  

Messages sent via unreliable links is a reason alone to the need of having a mechanism to 

reactive handling failures. RabbitMQ offers to patterns consumer acknowledgment and 

publisher patterns. 

When the consumer application creates one queue, it can be defined with automatic or manual 

acknowledgment. As the name implies, automatic acknowledgment, a message is considered 

successfully delivered immediately after it is sent. If the consumer’s TCP connection closes or 

another consumer-related error occurs, the message will be permanently lost.  

Manual acknowledgment, the consumer confirms the delivery tag. A delivery tag is an integer 

number from a RabbitMQ counter scoped per channel and associated with a message. Three 

methods are available to acknowledge messages: 

• Basic Ack; 

• Basic Nack; 

• Basic Reject; 

The basic ack replies to the RabbitMQ that the message associated with this delivery tag was 

been delivered and can be discarded. Basic nack and basic reject are used to indicate if the 

message will be re-queued or discarded. The difference between nack and reject is that nack 

can reject multiple messages at once. The semantic of basic nack is to re-queue all 

unacknowledged messages deliveries up to this delivery tag. 

The last aspect of this pattern is the number of messages that are pushed to the consumer in 

an unacknowledged state. This number can be configured by channel or consumer. 

Publisher confirms pattern is about the confirmation that the published message was indeed 

received by the broker. In similarity to the previous pattern discussed, the broker will use the 

same consumer methods to inform the state of delivery. Remember that a publisher sends 

messages to exchanges. The exchanges are object managed by the RabbitMQ itself. So, the 

question that arises is: how can we have security that the message was received by the final 



69 
 

 

recipients? When we publish a message, a mandatory field can be set. When this field is set, 

the exchange will return the message to the publisher, if no route exists. Those patterns, when 

used together can guarantee at-least-once semantic.  

This section resumes in how RabbitMQ works. Other features are available such as 

authentication and authorization, TLS support, cluster and federation support.   

3.3.3 Protocol Buffers 

Protocol buffers (Google, 2019) is an open software tool that developers can use to serialize 

structured data. The developer defines data structures (messages) in the proto definition file. 

The protocol compiler named protoc, take those definition files and generate stubs to the 

desired target language(s). The protocol buffers offer back and forward compatibility and 

efficient binary format. It was developed by Google to be simpler and faster than XML, currently, 

it is used for nearly all inter-machine communication at Google. 

This technology uses the latter technique to binary encoding. This encoding process uses the 

top bit in each byte to indicate whether or not there are more bytes coming. The remaining 7 

bites of each byte are used to encode the actual number. This technique is denominated by 

variable-length integer (Varint) encoding and follows under the premise of numbers are not 

uniformly distributed and the usage of smaller numbers are predominant in computing, so 

bandwidth can be saved since smaller numbers will need fewer bytes to be encoded. 

Table 12 Variable integer encoding 

Decimal Binary Varint 

300 1001 01100 1010 1100 0000 0010 

1 0000 0001 0000 0001 

 

Numbers between 0 and 127 only take one byte to be encoded, while between 128 up to 16383 

only two bytes are required to encode the numbers in that range. The steps to decode the 

decimal 300 are the following: 

1. Remove the most significant digit for each byte; 

➔ 010 1100 000 0010 

2. Reserve the groups of 7 bits; 



 

70 
 

➔ 000 0010 010 1100 

3. Concatenate the number; 

➔ 1001 01100 

Varint can be concatenated, since it is always clear when a number ends, and another begins. 

The use of this process allows serialization in any order with, plus back and forward 

compatibility. 

In proto definition file, Fig. 29, the developer can specify the version, currently there are two 

available syntaxes: i) proto2; and ii) proto3, and both are compatible with each other. Besides 

the syntax version, the file may have zero or messages, each can have zero or more fields. Fields 

are key-value pairs and a respective data type. 

 

Figure 29 Protocol buffers message definition 

One file can have multiple messages and nested messages are also allowed. The field data type 

can hold all data types that we already are familiar with, such as floats, doubles, strings, byte 

array, etc. Other messages can be used as data type as well, and more complex constructions 

like HashMap and enumerations are also available as a valid data type field declaration. If the 

field is declared as the query field showed in Fig. 29, it is considered as a singular field, default 

value for syntax proto3, and means that the message can have at the most one field value. In 

opposition to the singular is the repeated keyword, zero or more with order preserved. Either 

singular or repeated is specified before of the data type definition. 

The field number is required and is used for serialization and deserialization purpose. The field 

number is a positive integer 𝑛 ∶ ∈ [1. . 229]  \ [1900. .1999] and each field has a unique number.  

Summing up the theoretical part, this protocol offers interoperability across a wide range of 

programing languages with strong type accessors.  The number of official programming 



71 
 

 

languages currently that are official supported is 6, however, the great adoption by the 

community resulted in 39 other programing languages having protocol buffers support. 

3.4 Design & Implementation 

We start to design the web platform. The class diagrams were the first artifact to be produced. 

Then we have modeled the entity relation model, defined what queries that we want to be able 

to answers and translate into Cassandra data model. The last step was the REST definition 

interface.  

 

Figure 30 Logic view 

The Fig. 30, overviews the architectural view and how the different components interacts 

between them. The Fig. 30, also has some notes to help the reader to identify the actor that call 

the which interfaces within each component. We will discuss in depth in the following sections. 

3.4.1 Web Platform 

In the class diagram presented in Fig. 31, we show all entities and each entity is represented 

with the respective attributes, and some also have relevant operations, either per instance or 

class. The data type that we want to point out is the universally unique identifier (UUID) for 

node designation. The UUID v3 is a namespace name-based, and the specification allows us to 

use URL’s, fully qualified domain names, object identifiers, and X.500 distinguished names. This 

UUID is used to always generate the same UUID hash for the same node across registrations.  



 

72 
 

 

Figure 31 Web platform class diagram 

The user has two types of tickets: i) account activation and ii) account recover.  The user that 

does not have a valid account activation ticket does not have access to the deployment process. 

The users account can be in the possible following states: i) activated, ii) pending activation, or 

iii) expired. The activation process is a standard flow: the user registers on the platform, the 

platform sends a notification with an opaque token, and the user send it back. The token can 

be sent by various communication channels, email and/or phone respectively. For the account 

recovery, the same flow is used, and the possible states are: i) requested, ii) recovered and iii) 

expired. 

The deploy entity is created by the user for a given project. The deployment process is 

characterized by the different states that it can be. The states are: i) in deployment, ii) partially 

deployed, iii) deployed, and iv) failed. In deployment state, is the normal activity of the on-going 



73 
 

 

lambda remote node setup, installation, and launch. The partially deployed state means that 

the process was concluded, however not all project lambdas/lambda instances were deployed, 

nevertheless, the project viewed as a one, it can work normally. The “normal” word refers that 

the execution graph for all lambdas don’t have any direct dependency we can say that exists at 

least one lambda instance to work with. The deployed state, as the name indicates, all went 

right, and the project is running as intended. The failed state indicates that there is not even 

one lambda deployed in the system because a set of lambdas impacted in the normal execution 

flow. 

3.4.1.1 Data Modeling 

We start to model the user entity, the mapping is almost one-to-one in terms of attributes and 

data types. The only remaining answer is what field to be used as the primary key and the 

replication factor. We want a unique value that identifies a user in the system and the possible 

fields were, the email and the phone number field. We took the email since telecom operators 

recycle phone numbers. Defining the email as primary key, the only query that we want to 

execute is: give me the user who has this email. The replication factor for this table is 3 per DC, 

this means that we can have one node down with consistency level of LOCAL_QUORUM.  

The ticket table assembles the two different, account activation and account recovery, entities 

with the discriminator of “of_type”. The primary key is the token, and for obtaining the user, it 

also was added, a column that will contain the primary key of the user table. From this table we 

want to know if the given token exists, and if exists, who is the user. The replicator factor is 2 

per DC. 

When the user uses the platform, the top structure that sees is a list of projects and a careful 

primary key must be designed since its permutation have a direct impact on the query 

performance. We want to be able to answer: i) give all projects from a given user, ii) give me 

the project given the user and the project name, iii) how many projects a given user has, and iv) 

does the project exists from a given user. The order is irrelevant, but we want the answers per 

Cassandra node. For this, we have used a compound primary key, where the partition key is the 

primary key of the user table, and the cluster column is the project name, therefore, the user 

and the user projects will be in the same cluster node. We also want that the system only has 

one project name across users, the primary key of the project table as we have defined, only 

guarantees that we do not have the same project name per user. If we change the primary key 



 

74 
 

to be the project name, the projects will be distributed across the cluster and we not be able to 

answer: what are the projects by user, even if we brute force by retrieving all project and filter 

by user ownership, multiple round trips between the cluster nodes and the contact point to 

only get all the projects, considering a cluster with 100 nodes, the probability of all be contacted 

is almost 1, consequently the Cassandra cluster could collapse.  To address to the unique project 

name across the system, another table was created to just answer the question: exist any 

project with this name.  

 

Figure 32 Lambda Table 

The primary key of the lambda table, Fig. 32, have the same performance concerns as the 

project table primary key. First of all to answer: i) what are the lambda(s) from a given project  

that belongs to some user, ii) how many lambda(s) does a given project have per user, iii) give 

me one lambda that have some id and belongs to some user and to the this project name. Now, 

we have another strategy to form the primary key, Cassandra allows to split the partition key 

into parts, this is named composite primary key. We want a single round trip per project 

lambda(s) that belongs to someone. The lambda(s) will not be stored at the same node as the 

project and user table, but the lambdas will be stored at one single node. The reason for figure 

31, besides being the lambda table definition is also to show the different data type that 



75 
 

 

Cassandra allows. For instances, the lambdas that run in parallel (on_before) is as defined as a 

set data type, and from the set theory, a set is a collection of non-repeated elements. More 

complex data types are also allowed, such as Maps, inet addresses, and user-defined types. The 

dependencies of the lambdas were integrated into the lambda table, each element in the set is 

a string where the dependency name is concatenated with the version, for example, amqp@2.0. 

The event triggers are a point of variation, although we only have represented two of them, we 

need a flexible and easy way to integrate new types of event triggers with different properties. 

Where considered the possible options to tackle this variation: i) create a table with all known 

columns (aka single table heritance), ii) create a table for each event type and iii) use a single 

table using entity-attribute-value modeling. The downside of the first approach is sparse 

columns followed by a possible alter table command to accommodate new attributes. The 

second option is an easy way at the cost of a table creation per event, with one master table 

containing pointers for all available event tables. To answer the questions: give me all available 

events, the number of the database queries that needed to be executed is 𝑞 = 1 + 𝐸, where 𝐸  

is the total number of event tables and the 1, is to get all event tables from the master table, 

plus two round trips between client and the contact point. We used the EAB model, a single 

table, this allows adding different events with different attributes on a single table 

discriminated by the entity (event). The primary key is a compound key with the partition key 

being the event type, a numeric value, and the cluster columns of attribute and value.  

 The node table also is a mapping one-to-one and the complex types have their own table. The 

answer that we need from this table is: give me all nodes from a particular country. The 

compound key is constituted by country code being the partition key and the name is the 

correspondent cluster columns, with irrelevant retrieval ordering. This theorical allows equal 

node names across different country codes. 

To reduce the complexity, we have created two resource tables, standard resources table, and 

resources table respectively. The user can choose multiple nodes to deploy a single lambda, the 

creation lambda form will display the row of the standard resources table (e.g. 1 CPU, 2 

CPU, !20MB RAM, etc.),  in background the form queries the platform if the resource(s) that 

user has chosen are available from the selected nodes, this is done by querying the resource 

table.  



 

76 
 

The environments have a similar approach. We have one table, execution environment table, 

that have the compound primary key: name (e.g. NodeJS, Python, Java, etc) and version (e.g 

10.0.2). The execution environment table is from the client selects the desired environment to 

code the lambda logic and this table is populated from the inverse execution environment table. 

The inverse execution environment table is populated when the provider registers a node and 

have the fields: name, version, and nodes (set). This design lets us know what are the nodes 

that implement one specific environment, this makes form validation easier, the downside is 

the extra logic in the platform to keep those tables in sync. 

The node status table is one of the tables that retrieving rows in temporal order matters. This 

table has a compound primary key where the node name is the name of the node and the 

cluster column is the timestamp. The clustering order is descendent, we want the older rows 

first. 

The deploy table is almost a one-to-one mapping, where the compound key is the primary key 

of the user table and the project name of the project table. The deploy will be in the same node 

where the user and project is. We can answer give me all deployment(s) that particular user 

has. For the last, the life cycle table resulted in three equal tables with different primary keys 

arrangements to answer different questions. A lambda execution can be seen as a Linux process, 

where every process has a thread group id, every spawned thread belongs to that thread group, 

in other words, when the lambda is executed, every lambda(s) involved must have the same id, 

in our case a “taskId”. The life cycle table must answer to three questions: give me all executions 

that particular lambda had in descent chronologic order, ii) give me all processes in descent 

chronologic order, and iii) give all deployment life cycles per project in descent chronologic 

order. The last is obvious, we want to show to the client what has occurred in a deployment 

cycle, for example, what pid was attributed to the lambda, or what was the output of the 

dependency manager, etc. The other two are complementary yet different, with this we have a 

drill down and drill up per taskId. The client can see the logs from a specific lambda, focus on a 

particular execution and drill up to see all process, and another way around is also possible. 

Table 13 Database tables 

Table Primary Key Replication 

Factor 

User Email 3 



77 
 

 

Ticket Token 2 

Project (User_PK,Name) 3 

Project_User (Project_Name) 2 

Lambda ((User_PK,Project_Name), ID) 3 

Available_Events (entity, attribute, value) 2 

Events (Lambda_ID, attribute, value, type) 2 

Node (Country_Code, Name) 3 

Resources (Type, ID) 3 

Standart_Resources (Type, ID) 2 

Execution_Environments  (Name, Version) 3 

Inverse_Execution_Enviroments (ID) 3 

Node_Status (Name, Created_At) 2 

Deploy (User_PK, Project_Name) 3 

Execution_Event ( (Project_Name, Task_ID), Created_At, ID) 2 

Execution_Lambda_Event ( (Project_Name, Lambda_ID), Created_At, 

Task_ID, ID) 

2 

Deployment_Event ((Project_Name), Created_At, Task_Id, Id) 3 

 

3.4.1.2 Platform REST API 

Concluded the class diagram and the respective persistence part was time to design the client’s 

interface. To not turn this part repetitive, we decided to show only three resources and at the 

end one summary table with all resources available. The illustrated cases cover all 

implementation aspects that were considered at the designing phase. 

The user resource, Fig. 33, have three methods implemented: i) GET, ii) PUT, and iii) POST. 

Following the REST architecture and the semantic associated with their respective methods, the 

GET request, in this case, retrieves the user entity. In the GET request, for all resources, is 

obtained its entity-tag (RFC7232) in the header’s HTTP response section. The entity-header field 

can be used for caching purposes or for optimistic concurrency control (our case). 

In our interface, all PUT HTTP commands, require the indication of the entity tag value in the 

form of conditional requests. This design is an extra step to avoid mid-air collisions (Nielsen & 

LaLiberte, 1999). 



 

78 
 

 

Figure 33 User Resource 

We have used the OAuth 2.0 Authorization Framework (RFC6749) to authenticate the user 

agent, using the JWT Bearer scheme (RFC7523). All clients and providers resources are covered 

by this authentication, even for HTML resource pages (AngularJS application is partitioned into 

components that the user-agent requests in the background to the server).  

In term of responses, all resources can respond with internal server error or service unavailable. 

Internal server error is a logic error (uncaught exception, etc.) or a syntax error, this kind of 

error are not frequent, nevertheless, it can occur. The service unavailable means that the 

platform is working but some third-party system is unavailable, and the platform cannot 

complete the request. 



79 
 

 

 

Figure 34 Activation Resource 

The activation resources, Fig. 34, have two methods, GET and POST. The first method is to 

activate one account given one token. The account activation token is received either by email 

or via a mobile notification. The token can be requested using the POST method to the same 

resource indicating the respective notification channel. 

The last resource, that will be mentioned, Fig. 35, is one resource that requires pagination. 

Pagination is the act of retrieve incremental parts of a set. The set in our case resides in 

Cassandra. The driver that is available for Rust does not include pagination, yet the Cassandra 

binary protocol (Hobbs, 2019) has this feature, is up to the driver implementors to make it 

available to the users (developers).  



 

80 
 

 

Figure 35 Lambda resource 

Not having pagination was not an option, so we have implemented the pagination within the 

driver (internal state), but also, pagination for stateless connections, using Base64 encoding and 

decoding technique for safe binary communication (Gonçalves, 2019). We have done the pull 

request back to the Cassandra Rust repository and the changes were accepted by the repository 

maintainer. Some important resources needed this feature, like paginate lambda processes, 

nodes and so on. 

Table 14 Platform REST resources summary 

Resources ULRs Methods 

/user GET, POST, PUT 

/activation GET, POST 

/auth POST (login), DELETE (logout) 

/forget POST (password recovery) 

/reset POST (password redefinition) 

/projects GET, POST 

/projects/{project} GET, PUT, DELETE 

/project/{project}/executions GET (logging) 



81 
 

 

/project/{project}/deployment GET (logging) 

/project/{project}/ executions/{lambda} GET (logging) 

/projects/{project}/lambdas GET, POST 

/projects/{project}/lambdas/{lambda} GET, POST, DELETE 

/nodes GET 

/nodes/{node} GET, PUT, DELETE 

/nodes/{node}/status GET 

/deploys GET, POST 

/deploys/{deploy} GET, POST, DELETE 

/environments GET 

/resources GET 

/dependencies GET 

/probe/projects/{project} GET 

/probe/users GET 

/protocol GET 

/bus GET 

 

The table 14, shows all available resources that are exported. The Swagger documentation was 

generated from the Visual Paradigm REST diagrams and was integrated into the web platform. 

The two last two resources make part of the provider’s nodes interaction, and their purpose 

will be further explained. 

3.4.1.3 Platform Graphical Interface 

The forms have a set of indicators to make easier its utilization. In Fig. 36 is represented all 

features that the forms across the platform have. One form normally has one or more fields. 

The fields can be designed to accept valid datatypes, valid formats and valid lengths, these 

front-end validations do not discard the correspondent back-end validations.  

In the platform, each different validation has their correspondent error message. The user if 

introduce the name with white spaces, we want to express the error in the more specific way, 

instead of just saying, invalid name or another generic message. 



 

82 
 

We want a unique email across the platform, for this, two validations were placed. One is when 

the client submits the form, another is when the client focusses out the email field. When the 

email field losses focus, an asynchronous validator will probe if the email already exists, Fig. 35. 

If the probing process detects a violation, the form will display the correct error response. This 

technique is also used when the client is creating a new project, more precisely, validating the 

project name field. 

 

Figure 36 Form features 

To reduce back-end work, all form submit buttons are disabled by default. The button is enabled 

only if the form is valid, this does not mean that is correct but represents a valid back-end 

request. Another small feature is configurable themes. We let the user choose between the 

dark and white theme.  



83 
 

 

 

Figure 37 Platform console overview 

In Fig. 37, we can see all the projects that one user has. This example is using a paginator limit 

of two elements and the user can navigate by using the pagination button(s). In start wizard 

box, the user can create a new project. The dialogue windows contain the form with the 

respective fields associated with a project. When a user clicks on the project, the view is 

something like Fig. 38. The account is on the navigation menu and is only shows up if the user 

clicks on the top right corner. 

 

Figure 38 Platform project view 

Now we will create a “logger lambda”, and all steps associated, figures 38-42. The page has four 

forms that work together to send valid requests to the server. The first is the general 

characteristics form, Fig 39, and as we can see, three important fields are defined at this stage: 

i) the environment, ii) the node, and iii) event trigger. The environment selection has a side 

effect on the code editor syntax validation, Fig. 39.  



 

84 
 

 

Figure 39 Platform lambda general characteristics form 

The client also has the possibility of defining the function arguments as a string data type, and 

the dependencies that this lambda needs. In this case, the “morgan” dependency, which is a 

logging library, is just to exemplify the process of creating a new lambda. The API that is 

exported and injected with the name “context” as lambda argument, already have a logger 

built-in. The API will be discussed at the runtime section.  

 

Figure 40 Platform lambda function form 



85 
 

 

The logger lambda is triggered by a networking event and the correspondent form is in Fig 41. 

The path can also have parameters to later be extracted, for example “/log/:name”, when a 

client calls the lambda with the path “/log/warning”, a map data-structure “name->warning” is 

injected in the lambda arguments. 

 

Figure 41 Platform lambda network event 

One important aspect is to define the execution flow. Exist the form that manipulates the graph 

visualization, Fig 42. The logger lambda is the target lambda and the authorization lambda that 

is executed in parallel without interfering in the target execution as previously explained.  

 

Figure 42 Execution flow 

Created the logger lambda, is time to deploy it into the fog node. On the project page, the client 

can consult the state of the deployment, Fig. 43. In this case, as we can see, it is a re-incident 

deployment because the logger lambda log states the lambda already have been running.  



 

86 
 

 

Figure 43 Deployment event log 

Deployed the lambda, it is time to see the execution status. In figure 44 is the lambda 

correspondent executing logging. We can see that it starts with our logging entry defined in the 

lambda logic. This page also has 3 additional graphs to monitor in real-time the CPU, RAM, and 

bandwidth usage form each lambda. 

 

Figure 44 Logger lambda execution log 

To conclude, we have shown the principal client uses cases and how the implementation was 

conducted. The development has the objective of offering a convenient way for the user 

interacting with the platform. 



87 
 

 

3.4.2 Scheduler 

The plugin-based design, Fig. 45, was adopted to handle failures. The failures are associated 

with unrouted messages. The default implementation follows the extension flow of the execute 

a lambda use case. 

 

Figure 45 Scheduler class diagram 

3.4.2.1 Scheduler HTTP interface 

The scheduler exports a REST interface to process project deployment-related requests, Fig. 45. 

The authorization is taken into account the JWT claims, in other words, no user without the 

respective permission can trigger a deployment. 

The deploy entity handles with 3 different commands, Fig. 46, and they are the following: POST, 

PUT, and DELETE. When a client requests a new project deployment in the platform, the 

platform sends a POST command with the respective payload to one of the available schedulers. 

When a client wants to remove a project, a delete command is executed, at last, to upgrade 

individual lambda(s), a PUT command with a list of lambdas that the client wants to be upgraded.  



 

88 
 

 

Figure 46 REST Deployment entity 

The scheduler has the capacity to coordinate lambda executions, for that, the scheduler has a 

generic HTTP component that accepts all consumer requests. The component has the capacity 

to handle four HTTP methods: GET, POST, PUT, DELETE.  

When a consumer HTTP requests arrive at the generic HTTP component, Fig. 47, the request is 

wrapped into a Request instance and is passed into the scheduler component. The scheduler 

component finds the correspondent project, filters the lambdas that are associated with the 

consumer HTTP method. The result from the filter operation is all lambdas that were defined 

as server network event and the HTTP method is equal from the consumer HTTP method. Next, 

another filter is applied to reduce the set to a single lambda that matches with consumer HTTP 

request path. 



89 
 

 

 

Figure 47 Lambda execution  

The scheduler component when finds the target lambda, executes its correspondent graph. For 

each lambda on the graph is created one Invocation instance that is serialized using the protocol 

buffers component and is sent to the respective worker node via a bus. The bus integrates all 

lambdas in the system and each invocation follows an RCP RabbitMQ pattern as discussed 

earlier. 

3.4.2.2 Networking 

Any scheduler can coordinate any lambda execution from any project. The first answer is how 

the consumer calls the right lambda and how the scheduler finds the right lambda graph. Note 

that we do not have any constraint in the path on the lambda server HTTP event, but we do in 

the project name, the project name must be a valid ASCII string. The project name is used to 

create a subdomain. The platform is under a domain, and the projects, when a deploy is made, 

a new subdomain is created in the DNS table. Consider the project “whereami”, when the 

deployment is requested, the scheduler will create a new CNAME DNS entry, so if the platform 

is in the domain “density.io” the consumer can call the logger lambda as “whereami.density.io”. 

This is an easy form of pin down the project, besides each project can host its own SSL certificate, 

protecting the client and the server communication. 

3.4.2.3 Bus addresses Setup 

The bus integrates all the lambdas, for that, each project has an exchange with the name of the 

project. All project lambdas are under these exchange with the respective queue-routingKey 

binding pairs. The scheduler to send a message to a specific lambda, it needs to know the 



 

90 
 

project name (exchange) and the lambda id and version (queue name). For example, to call the 

whereami logger lambda, the scheduler makes a call like: “publish(‘wheremai’, ‘id.version’, …)”. 

When exists more than one consumer for the same queue is applied round-robin delivery 

strategy. When a lambda starts running, the runtime passes as process arguments the required 

information to establish bus communication and to create and consume from a specific queue. 

The scheduler when publishes the message defines an expiration for each message sent and if 

any error occurs, the failure plugin will handle the error in the best possible way. 

 

Figure 48 HTTP client event trigger 

When a lambda is of type HTTP client, the runtime is responsible to trigger that event respecting 

the defined CRON expression. In figure 48, the lambda will be triggered every minute with the 

response of the request to the particular domain. Another well-known queue will receive the 

response of the lambda invocation response to further execute its execution graph. 

The deployment is also done via the bus, in this, the runtimes when starts a UUID v3 MAC 

address is obtained and the binding is created. The biding (queue->nodeName) is under the 

deploy exchange. In the whereami example, if the client wanted 4 logger lambda instances in 2 

different nodes, the scheduler will sort the nodes by name, apply modulus by 2 (two possible 

nodes) and call something like this 4 times: “publish(‘deploy’, ‘nodeName’, …)”. 



91 
 

 

The logging events have a well-known exchange, all scheduler instances consume from the 

same logging queue and persist those events into the database. This queue is created as durable, 

which means, if there is not consumer, the bus will retain the message until one consumer 

become available to process the message(s). 

3.4.2.4 Protocol Buffers messages definition 

The binary protocol was defined in 10 different messages using the protocol buffers definition 

and it is used to publish messages into the bus. The messages can be subdivided into 3 groups: 

i) deployment, ii) execution and iii) logging. 

 

Figure 49 ProtoBuf Command message definition 

The command message, Fig 49, is constituted by two fields and it is used on the deploy exchange. 

This first field is to define the command type and the command field can be one of deploy or 

remove lambda messages. 



 

92 
 

 

Figure 50 ProtoBuf deploy lambda message definition 

The “RemoveLambda” message has two fields: i) task id and ii) FQDN lambda name. The 

“DeployLambda”, Fig. 50, have all needed information to create/upgrade the sandbox 

containing the respective lambda. 



93 
 

 

 

Figure 51 ProtoBuf Invocation and Event message definition 

Fig. 51, have all involved messages definitions in one lambda invocation. The point that we want 

to point out, is the events field. This field is used to chain different responses into one lambda 

execution flow.  

 

Figure 52 ProtoBuf event log message definition 

On single event log message can contain several messages, Fig. 52. Another important field is 

the created field. The created at field represents the Unix timestamp to keep the logs in 

temporal order even if they were received and stored out of order. The “fqdn name” already 

mentioned but never clarified, it is a URI scheme defined as: 

“fog://country_code.node_name.project_name.lambda_id.lambda_version.instance_number” 



 

94 
 

At this point, the scheme only serves to physical localize a particular lambda instance within the 

network. Later on, can be used to provide new ways to invoke some lambda at a determined 

geographic place. 

3.4.3 Runtime 

The provider when starts the fog node, the node needs access to the bus. The connection string 

and the respective credentials are issued by the web platform. After successful authentication, 

Fig. 53, the node request to the platform to update the information about itself, this is because 

the provider could install a new environment or use another isolator, or new resources are 

available or just node upgrades or some failure. Another request that node does, is to update 

the protocol buffers file for the supported environments and the respective lambda API files, 

explained later on. 

 

Figure 53 Runtime start up communications 

Consider that the node had a power failure, and after a while, the node comes back online and 

the runtime starts again, in this scenario, the runtime will recover the previous state. Recover 

the state means that wall the lambdas that were running before the power failure will be 

restored.  This is done by the runtime maintaining local storage with the information about the 

system. 

The deployment messages are delivered via the bus and the respective listener will call the right 

runtime service method. In the case of deploying a new lambda, the runtime service 



95 
 

 

(launchSandox method) requests the isolator and then one sandbox is created for the 

respective lambda. The errors and other relevant information under sandbox creation process 

are sent via the bus to further processing. If the lambda even trigger is of type HTTP client, the 

runtime service will register the CRON job for that particular lambda and when fired, the 

sandbox will handle the time event by calling the lambda logic and sent the response via the 

bus to further graph execution by some scheduler. 

When the client wants to remove/upgrade the lambda, the runtime service will call the graceful 

shutdown method, the lambda will be disconnected from the bus, and if the internal requests 

counter is 0, then the lambda will exit normally, otherwise the lambda will keep process the on-

going invocation messages.  

The runtime service at the start, it requests to cron service to fire a timed event to collect stats 

from the runtime itself and the deployed/run lambdas. The frequency is adjusted by the 

provider and can also be disabled, this is to reflect the device constrains. 

 

Figure 54 Runtime class diagram 

The isolators implemented launch each sandbox on its process. The difference between the 

default isolator plugin and the control groups plugin is that the spawned process respects or 

not the resource usage limits defined by the client (Gonçalves, 2018). Both plugins deploy the 



 

96 
 

lambda under a well-defined directory structure under some directory specified by the provider. 

For example, a specific lambda can be found under the directory:  

“file:///provider_defined_dir/project_name/lambda_id/lambda_version”. 

The isolator creates the following files and folders under the lambda directory: i) dependencies 

folder, ii) lambda file, iii) protocol buffers file, iv) entry file and v) the lambda API file. The first 

will contain all runtime dependencies, client defined dependencies plus system dependencies, 

that the lambda needs during its execution. The lambda file is the one that contains the logic 

written by the client. The protocol buffers file is the file that is generated from the messages 

definitions by the protocol compiler targeting a specific runtime environment(s). Some 

variation is expected into the defined protocol, affecting this way the generated files which can 

lead to redistributing the resulting protoc files to all fog nodes. The protocol buffers tool 

guarantees back compatibility yet make it the most up to date is a reasonable aspect to take 

into consideration, with this, resides the need at start, Fig 53, to update, if needed (conditional 

request), all protocol files from each different supported environment. 

The next file is the entry point. This file has the logic of establish bus connection, using the 

connection string from the process argument, register the invocation listener, insatiate the 

lambda API class per invocation and publish stats to the bus.   

The lambda API file is one file that is responsible to call the lambda logic. The file injects as 

function argument the context object, Fig 40. The context object has a set of helpful methods 

to unpack the invocation message, Fig. 55. 



97 
 

 

 

Figure 55 Lambda runtime API 

We conclude the design and the implementation section. We have discussed all important 

designs and their implementations. In brief, the client creates logic execution units with the 

help of the web platform, the platform and the scheduler process the deployment and the 

consumer can start making requests. The request triggers one lambda graph execution, which 

can lead to the execution of innumerous logic units at different nodes. 

3.4.4 Alternative Design & Implementations 

In the state of art chapter, in the research part of answering the “where” question, various 

designs were discussed, and all are possible architecture alternatives to implement this 

paradigm. We have identified the following plausible alternative designs/models that are 

related to our solution: i) platform as a service and ii) infrastructure as a service. 

The hardware virtualization could be done by using Apache Mesos, where is a platform for 

sharing commodity clusters in a fine-grained manner (Hindman, et al., 2011). To have 

infrastructure as a service, we must be capable of launching virtual machines under the cluster, 

for that, we could use Vagrant (HashiCorp, 2019). Vagrant uses a declarative syntax to build and 

launch portable virtual environments and supports a wide range of virtualization technologies 

like Docker, kernel-based virtual machines, VirtualBox, Hyper-V, and AWS, etc. Platform as a 

service could be implemented using Apache Marathon (Apache Marathon, 2019), where is 

exported a REST API to the developers can send their bundled application. 



 

98 
 

Both solutions require hardware virtualization, consequently all fog nodes must have 

reasonable computational resources to handle virtualization technology, this fact makes 

smartphones disqualified to be a fog node due to the complexity of installing and set up this 

kind of systems, at this time, we do not know any kind of solution on Android platforms or other 

mobile platforms that make this possible, while we offer customizable isolation, low size 

runtime binaries with easy installation steps, even for Android mobile phones. The solution 

allows us to make our smartphone into our personal webserver if we need to. 

Another disadvantage is that the developers must deploy their applications at one or more 

specific pre-defined physical places, this is, they must select and deploy their application over 

an available place, making the offloading from the fog to the cloud and vice-versa more rigid 

and less flexible when compared to our proposed solution, since we can select multiple nodes 

per lambda, and those nodes can be fog and/or cloud nodes. One advantage of the alternatives 

is the flexibility of deploying other types of applications, that work with different network 

protocols.  

To conclude, our solution allows easy integration of computational power into the network. The 

function as a service empowers fog-cloud interplay in a fine-grained manner, offering to the 

developer a powerful tool with a familiar protocol (HTTP) to design and create new types of 

applications. The alternatives not allowed this seamless fog-cloud interplay, pushing this 

responsibility at the design phase of the application with strong constrains in the future 

development of the overall application. 

 

 

 

 

 

 

 

 



99 
 

 

 

4 Results and Discussion 

This section has the procedures that we have conducted during the test stages. The developed 

platform has designed to handle with a wide range of applications however, we reduce the 

application surface into a REST application and a movement detector over a real-time stream 

of video. 

The test of the REST API application scenario resides on the fact that this architectural style is 

predominant in the industry, with this, we can prove the functionality provided by the platform, 

while the second application, is an application that benefits from the paradigm shift due the 

operational cost for large-scale deployments. 

4.1.1 TODO Application 

4.1.1.1 Objective 

We prepared this test with the goal of measuring the throughput of the lambda(s), plus to 

follow the CPU, memory and bandwidth usage across multiple deployment scenarios, more 

specifically, how those metrics behave when comparing the platform against a standalone web 

application in a local environment and on a standalone web application in a cloud environment 

with different number of workers. 

4.1.1.2 Environment & Configuration 

It was set up two applications under two different deployment scenarios. One application was 

developed under the platform using NodeJS as the environment. The other application, is a 



 

100 
 

standalone application, also constructed in NodeJS, with the same framework (Express) that 

was build the scheduler. Both applications export an interface to manage TODO’s, Fig. 56. There 

are two different actions, one is to retrieve all entities while the other is to persist a new one, 

in both cases, the representation is in JSON. The entities are stored in the filesystem as clear 

text in a CSV format. 

 

Figure 56 TODO REST API 

The first deployment test scenario is a local deployment, where all applications are hosted in 

the same machine, Fig 56. In the second test deployment scenario, the standalone application 

was placed at the cloud while the platform stack was deployed at the fog. The fog is 2-hops way 

from the “local-node” machine. 

The test consists of 6K concurrent HTTP GET requests, where only one TODO entity is retrieved. 

For each deployment scenario, the benchmark was executed with a different number of 

workers. In the first round is used one instance of each application, the second, 3 instances of 

each and finally, the third with 6 instances of each. To get multiple instances on the standalone 

application a load balancer was deployed in front of the workers, in the platform stack, the load 

balancing is already built-in feature.  

Only one entity is retrieved because we are focused on the throughput of the two applications, 

and the size of the payload must remain as little as possible to fit in a single PDU, avoiding IP 

fragmentation. The HTTP uses the TCP/IP stack, the TCP protocol adds 20 bytes and the IP adds 

another 20 bytes while the ethernet uses 14 bytes, summing up, 54 bytes are used just for those 

protocols, assuming the worst scenario of an MTU of 512bytes it leaves of 458 bytes for the 

HTTP protocol. 



101 
 

 

 

 

Figure 57 Deployment scenario 1: local deployment test 

In terms of node specs, the node “:local-test-node” and the “:fog-test-node” has 16GB of RAM 

and an 8th generation Intel Core i5 that has 6 physical cores with a base clock of 2.8GHz and a 

maximum of 4Ghz. The “cloud-test-node” is hosted by the Google Cloud Platform in Iowa, USA 

datacenter, and is a custom instance with one dedicated virtual CPU and 4GB of RAM, the CPU 

is an Intel Xeon with a clock of 2.30GHz. 

 

Figure 58 Deployment scenario 2: fog and cloud deployment test 



 

102 
 

The tool used in both deployments to launch concurrent requests was the Apache JMeter. We 

have defined 12 threads to launch the already specified number of requests for each round with 

a ramp-up of 0s. The JMeter HTTP client also was set to have a 2s timeout and 2 listeners were 

added: i) assertion result and an ii) view result tree. 

The application developed in the platform can be translated by the creation of one project, with 

two lambdas: i) create-todo, and ii) list-todo. The create-todo lambda has the logic of insert 

entries into the file, while the list-todo lambda retries those entries from the file. The runtime 

did not apply any kind of process isolation, in this test, the lambdas could use the resources that 

they need without supervision. 

4.1.1.3 Results & Discussion 

None of the tests had failed requests, with this, each round transferred a total number of 

1668000 bytes, being 426000 bytes correspondent of the body content (71 bytes per request) 

and the remaining is respective to the HTTP protocol (207 bytes per request). This numbers also 

say that each response from the lambda and the standalone application have the same body 

and the same headers, with a final PDU size of 332 bytes. 

Not having HTTP request failures for the lambda TODO app, also means that the underline 

development is working correctly because when a socket is open between JMeter and the 

lambda scheduler, the socket remains open until a 2 seconds JMeter client timeout (it was 

considered as an error) or response is given. The developed platform uses high-level APIs to 

respond to the clients and it is not possible to shuffle responses with different sockets. The only 

possible response is the correct one, plus, we have added the assertion result listener to 

validate the content of the response. 



103 
 

 

 

Figure 59 Local deployment time spent 

The standalone application in a local deployment is almost 19x faster than the lambda, Fig 59. 

The variation of the number of workers is irrelevant for the standalone application, while for 

the lambda the increasing number of workers had the inverse effect.  

The fact of the lambda app being slower was expected since the communication between the 

JMeter and the application is a direct connection via one socket, in counterpart, the lambda 

TODO app receives the request via the bus and publishes the response into it, and finally, the 

respective scheduler forwards the response back to the client.  

The guarantee of the at-least-once message increases latency in the bus, in other words, each 

request takes a mean of 53ms (one worker test scenario), 51ms is spent on the bus, while the 

standalone TODO app only has a mean of 4ms per request.  

26.8

30.4

34.9

1.7 1.5 1.6

0

5

10

15

20

25

30

35

40

One Worker Three Workers Six Workers

se
co

n
d

s
Total Time

Lambda Standalone



 

104 
 

 

Figure 60 Local deployment throughput test 

When we increase the number of workers of the TODO lambda app the throughput decreases. 

This occurs by the fact of each message publish requires 2 acknowledgments, one is for the 

exchange to the publisher, and another is for the exchange to the consumer, plus, each queue 

in the RabbitMQ is managed by one erlang thread, which under stress the amount of traffic 

affects overall throughput. 

The CPU and memory usage represented in the following figures, for three workers and six 

workers is the mean of the respective CPU/Memory usage of the workers for each round. The 

CPU usage benefits from having more workers, the number of non-voluntary context process 

switching decrease 3x when used three workers and 18x when using 6 workers when compared 

with the one worker solution. 

223.2 192.2 172.8

3523.6

3897.6
3707.6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

One Worker Three Workers Six Workers

re
q

u
es

t/
s

Throughput 

Lambda Standalone



105 
 

 

 

Figure 61 Local deployment lambda TODO app CPU usage 

The standalone uses all CPU power, Fig. 62, to deliver the responses when only in worker is 

being used. With more workers the CPU no longer hits its peak and observes fewer number of 

non-voluntary process context switches.  

The memory numbers illustrated is the resident set size RSS, which is the memory that the 

process in the RAM. It includes all stack and heap process memory and also the memory of 

shared libraries as long as the pages from those libraries are actually in the memory. 

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

C
P

U
 %

CPU

One Worker Three Workers Six Workers



 

106 
 

 

Figure 62 Local deployment standalone app CPU usage 

A NodeJS process in an idle state consumes a mean of 40MB of memory RAM. The number of 

workers decreases the number of memory RAM used relatively, however, when using 3 workers 

and 4 6 workers we have to multiply by 40MB by 3 and 6 respectively.        

 

Figure 63 Local deployment lambda TODO app memory usage 

0

10

20

30

40

50

60

70

80

90

100

1 2 3

C
P

U
 %

CPU

One Worker Three Workers Six Workers

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Memory

One Worker Three Workers Six Workers



107 
 

 

The standalone application shares similar memory usage when compared with the lambda 

TODO app across the different number of workers. The TODO retrieval entity is not particular 

memory intensive and this is reflected in the memory used by both deployment scenarios on 

different tests.  

 

Figure 64 Local deployment standalone app memory usage 

The standalone application was closer 4x slower completing the 6K HTTP request tests against 

the fog lambda deployment, but the more impressive metric is that it was 84x slower when 

compared with the local deployment. The lambda TODO app on the fog deployment added a 

mean of 12s of latency when comparing to the local deployment.  

 

0

10000

20000

30000

40000

50000

60000

1 2 3

Memory

One Worker Three Workers Six Workers



 

108 
 

 

Figure 65 Fog-cloud deployment time spent 

The fog-cloud served a mean of 172 requests per second while the standalone had served 44 

requests per second, another perspective is that the lambda had served more 128 requests per 

second. The number of workers has no impact on the standalone while the lambda had a small 

increase when moving to tree workers, however, it decreased when six workers were added. 

 

Figure 66 Fog-cloud deployment throughput test 

34.3 33.9 36.2

138.039
133.505 133.455

0

20

40

60

80

100

120

140

160

One Worker Three Workers Six Workers

se
co

n
d

s

Total Time

Lambda Standalone

174.46 176.55
165.55

43.4 44.94 44.96

0

20

40

60

80

100

120

140

160

180

200

One Worker Three Workers Six Workers

re
q

u
es

ts
/s

Throughput 

Lambda Standalone



109 
 

 

With more workers, more requests are distributed, and the mean of the CPU usage decreases. 

Compared with the local deployment the mean difference is 1% when one worker is used, 4% 

when three workers and 1% for six workers. 

 

Figure 67 Fog-cloud deployment lambda TODO app CPU usage 

One significant difference is in CPU usage between the local deployment and cloud deployment 

for the standalone application, Fig 68. The mean difference for one worker is 56%, 35% for three 

workers and 21% when six works, for the CPU usage.  

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

C
P

U
 %

CPU

One Worker Three Workers Six Workers



 

110 
 

 

Figure 68 Fog-cloud deployment standalone app CPU usage 

The memory has 1.5MB of deviation between the local deployment and the fog deployment for 

the lambda TODO app, across the different number of workers. This number also shows that 

memory it behaves similarly in both deployment scenarios. 

 

Figure 69 Fog-cloud deployment lambda TODO app memory usage 

0

2

4

6

8

10

12

14

16

1 6

11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

C
P

U

CPU

One Worker Three Workers Six Workers

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738

Memory

One Worker Three Workers Six Workers



111 
 

 

The standalone application in the cloud the memory usage for three and six workers followed 

the mean of an idle NodeJS process, 40MB, and consume less 4MB on average with their 

respective in the local deployment. One worker stays with a mean of 42MB, less 6MB when 

compared with the local deployment. 

 

Figure 70 Fog-cloud deployment standalone app memory usage 

The tests executed reinforce one important aspect that was being discussed on this entire work: 

the WAN latency. Focusing only on the standalone application and the latency between the two 

deployment scenarios, on one hand we have one response within a mean of 3ms and on 

another hand, we have one response with a mean of 266ms. If we consider the 3ms pure 

process execution since we are in the local deployment scenario, we have 263ms that are lost 

in the wire. 

One web application will always be deployed in some datacenter infrastructure of some 

company or cloud provider, and in this particular case, it is 84x more important the physical 

deployment than the resource that the host machine has. The figures of the CPU usage in the 

different scenarios (local and cloud), illustrate perfectly the previous statement. The CPU on 

the cloud barely have used during the test.  

Response times in the order of 266ms or even 2.5s is reasonable in today’s web applications 

(Littledata, 2019), however for other applications such as autonomous driving (sensors), virtual 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 6

11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

Memory

One Worker Three Workers Six Workers



 

112 
 

reality, video analytics (autonomous driving with 30FPS), tele-surgery where latency is expected 

to be 10ms, 15-7ms, 50ms and 150ms respectively (Lema, et al., 2017). 

The tests show that the longest lambda TODO app request is 151ms over with a maximum mean 

of 72ms per request. These numbers are from the same scenario which is: fog deployment with 

6 workers. Considering always the worst case, the developed platform is not well suited for 

ultra-latency applications, although we experience responses within 4ms. Achieving constant 

4s responses in two-hops away application was what we have tried without succeeded after 

results from those tests. We have changed how the RPC is made in two different forms, using 

one queue per response and use the same queue for receiving all response, on the message 

itself we have changed from durable to transient messages, on the connection side, using 

dedicated channels from receiving and publish. Note that the property of at-least-one message 

was always preserved during the modifications, worse than high latency is no response at all, 

and yet, none of the mentioned approaches change the latency experienced in the bus, which 

for ultra-latency application we can conclude that with current technology, RabbitMQ, cannot 

be used with that purpose. 

The platform is still a value vehicle to deploy REST applications using all kinds of devices to serve 

the requests. We have demonstrated that the developed architecture can reliably respond to 

the clients with a moderate latency requirement. The list TODO lambda sandbox uses 2.4MB of 

the disk, with an average of 40MB of memory RAM usage per process. 

4.1.2 Motion Detection on Real-Time Video Streaming 

4.1.2.1 Objective 

The application has the functionality of detecting movement over a stream of video, intending 

to demonstrate the lag between download, processing and trigger an action, when motion is 

detected in fog and cloud deployment scenarios. The application can be seen as a starting block 

for a greater image processing pipeline, for example, in a traffic monitorization context, once 

movement is detected, one video segment is sent to a heavy, cloud hosted, DNN model for 

object detection succeeded by a car crash classifier. The IHS in 2015 states that in 2015 we had 

1 camera installed for every 29 persons on this planet, and the Microsoft researchers state that 

video analytics is the killing app of this new paradigm model (Ananthanarayanan, et al., 2017). 



113 
 

 

4.1.2.2 Environment & Configuration 

To detect motion in the video, it was used the background subtraction technique, Fig. 71, where 

is used a static background image and from this background is subtracted the current frame, 

leaving with changes of the current scene. This technique is used with stationary cameras and 

is widely used for video surveillance, traffic monitoring, etc. We have used OpenCV (OpenCV, 

2019), a library for computer vision, the results are illustrated in Fig. 70, where we applied the 

subtraction (frame in the bottom left), plus a contour recognition.  The contours are obtained 

using the mask and applied, just for visualization, to the original frame (green boxes). In the top 

right of the picture we have two numbers, the first is the number of the frame that is being 

displayed, and the number below is the number of objects that are being recognized. The 

program that analyses the video stream outputs the median of the number of objects 

recognized in every 30 frames or 1s. 

 

Figure 71 Background subtraction 

The video was recorded with 3minutes (m) with one human motion starting at 1m and 20s up 

to 1m 35s. The video was recorded with a resolution of 720p at 30 frames per second. The video 

was sliced into small clips of 10s each with 12MB in size, MP4 encoded, making 18 clips in total. 

The clips then where moved to a mobile phone and they were served via an HTTP server. The 

video consumers were placed at fog and cloud where the metrics were collected. 



 

114 
 

The server in mobile phone exports a single URL that in every ten seconds makes available the 

next clip, with this, it was like the phone was capturing the video and created the encoded clip 

for every 10s. This scenario allows that the video analyzers process the video at their own pace, 

otherwise, in a multiple producer scenario, the server could be overloaded with data slowing 

down the process. The consumer defines an HTTP header that identifies itself, so the server in 

the mobile device keeps track of the last downloaded video by that particular consumer. The 

cloud and fog nodes are the same that were used in the previous test application. The mobile 

phone used a wireless connection to connect to the ISP router and is 2-hops away from the fog 

server. The platform hosted all code involved in this application, including in the smartphone 

since we have NodeJS pre-compiled for ARM processors. To program that is deployed in the 

cloud and on the fog makes a clear distinction of two components involved in the video analytics 

application: i) download the video; ii) processing the video and iii) program logic. The video 

processing only starts when the video clip is downloaded from the mobile phone. 

4.1.2.3 Results & Discussion 

Analyzing 18 clips of encoded videos with 10s each, took 4.7m on the fog, 1.7x faster than the 

cloud, where the same test took 7.9m. In the fog scenario, the network expresses 10.8% of the 

total execution time and the rest is to video analysis, in counterpart, the cloud takes 37.5% and 

63.3% for network and video analysis respectively. 

 

Figure 72 Video application execution time 

30.579

179.141

252.174

296.346

0.483

0.245

0

50

100

150

200

250

300

350

400

450

500

Fog Cloud

se
co

n
d

s

Total Time

Video Download Video Processing Program Logic



115 
 

 

  

The link of the mobile server has an Internet upload speed of 11MB/s, the total bytes 

downloaded by the two applications was 216289807bytes, where the fog has downloaded on 

average of 7MB/s and the cloud at 1.2MB/s. The cloud deployment takes an average of 10s, 

with an amplitude of 1s, to just download one clip of 10s. Another perspective on the current 

scenario, is that the clip, which is already encoded to save bandwidth, with a 10s lag between 

his recording and to be ready to be downloaded, the cloud adds another 10s, which if the video 

was processed instantaneous, the trigger to answer to the eventual moving detection, at worst 

scenario (movement in the last second), occurred 20s later, while the fog could trigger the same 

action in 11.7s.  

The video is not processed instantaneous, the background subtraction takes time, and this time 

constrains the rate of processed clips. In this discussion, since we do not have the same CPU in 

the fog and the cloud scenario, but we know how much time it took to video processing under 

both deployment scenarios, we have considered the time that was taken on the cloud 

environment. The reason behind this consideration resides on the fact of the fog CPU is targeted 

to end consumers in contrast to the cloud, that has a Xeon, a CPU aimed for server’s workloads, 

with energy efficiency in mind. The number in the further discussion is always the worst-case 

scenarios, this is, the maximum time to download the video on each deployment scenario and 

the maximum time that took to process the video, considering only the cloud server times due 

to the reason mentioned before. 

The 18 clips that were processed to detect motion, each clip under the CPU takes an average of 

16.5s, with the fastest time of 16s and slowest of 19.2s. Considering the cloud deployment 

scenario that in the worst case, a 20 lag in transit (record and download), plus a 19.2s in video 

processing, results in 39.2s of total lag, moreover, in sequential execution, in each clip analysis, 

the process accumulates 2 clips, in transit accumulates 1 clip and by the time that completes 

one cycle, 3 clips are already ready to be downloaded, and when downloads the next and start 

to process the clip, the total lag could be of 50s. 



 

116 
 

 

Figure 73 Cloud video analysis rate 

To keep the application with the shortest lag, 3 workers would be needed, Fig .72. Figure 72 

was removed from the first special case of 𝑡0 where no video is available, and the worker(s) 

would be put in the waiting list until 𝑡1. With the current cloud deployment, after 10m, the 

application had processed 20 of a total of 60 clips accumulating 40 clips or with a time lag of 

6.6m. 

0

10

20

30

40

50

60

70

60 160 260 360 460 560

n
u

m
b

er
 o

f 
cl

ip
s

seconds

Cloud Video Analysis Rate

Expected Value 1 Worker 2 Workers



117 
 

 

 

Figure 74 Fog video analysis rate 

The fog deployment with one worker in 10m accumulates 33 clips or 5.5m of time lag, 1.1m less 

than the cloud deployment. However, to keep with the shortest lag, it also requires 3 workers 

or 2 if the CPU processes each video within a 17.5s window. Take the time to within 17.5s is 

reasonable to get there, plus of the 18 CPU records, only two are greater than 17s, since we are 

taking always the worst case, we estimate 3 workers to the fog deployment, this to point out, 

for the cloud, reducing two 2 workers, will need a video processing within 10s, which only with 

advanced code optimization, such using CPU SIMD instructions or GPU or even dedicated 

hardware, to get this number lower than 10s.  

In terms of bandwidth for cloud scenario, serving one clip over the current link is in his best 

possible case because 1s is equivalent of 1.2MB and the real upload speed was 1.2MB/s. In the 

scenario of 10 cameras and if the bandwidth was equality divided between the cameras, we 

could send 3 frames per second, each clip would add a lag of 100s.  

According to (IBM, 2019), for video analytics we need a frame rate of 12fps, Bosh (Bosh, 2016) 

suggest 15fps, so dropping frames to only send 3 per second is mentioned as non-practical, 

although, everything dependents under the business context. The best ratio under the current 

link is to use 2 cameras, recording at 15fps. On top of all resource constraints, we have the cost 

per byte.  

0

10

20

30

40

50

60

70

60 160 260 360 460 560

n
u

m
b

er
 o

f 
cl

ip
s

seconds

Fog Video Analysis Rate

Expected Value 1 Worker 2 Workers



 

118 
 

Geographically distributed cameras are usually arranged into clusters and each cluster uses 

some sort of mobile or wired connection to stream the data (Ananthanarayanan, et al., 2017) 

to some datacenter. Taking our application and considering that the smartphone use the 4G for 

downstream the 3m of video or 216MB, according to the average cost of 12.77€ in moving 1GB, 

using mobile connection (Cable, 2019), we will have the cost of 2.8€, if we streamed 24 hours 

we would have a total cost of 1323€. 

Before concluding, in terms of relevance of the developed platform in this application, and for 

this paradigm shift, is on the deployment simplification, workers management and monitoring 

during the execution of the various trials and the final test that were performed. The real value 

comes in the form of cost reduction in video analytics, reducing bandwidth and consequently 

processing video faster and actions can be synthetized faster improving the overall system. Due 

time constrains, we do not design an application that would integrate the two environments, 

fog and cloud, where clips could be forward to the cloud when its capacity reach some limit or 

vice-versa, however, our point is that the developed platform merges the two environments to 

implementing this interactions due the node location awareness and an unified management 

and control. 

To conclude, this application captures the requirements for large-scale video analysis. The 

bandwidth is the one variable that we cannot change in the same sense that we easily process 

the video on more powerful CPU, or developed more optimized code to reduce processing time, 

the same options are not available for the WAN, the current infrastructure is not even prepared 

to move a huge amount of data. The latency of the current application could be easily improved 

by instead of waiting to conclude the download of each 10s clips, we could instead feed data 

while downloading it. The fog has a promising role in this type of application, moving processing 

closer to the data sources can reduce dramatically the operation costs, saving computational 

resources, lift some pressure over the WAN and consequently be more energy friendly. 

 

 

 

 

 



119 
 

 

 

 

 

5 Conclusion 

At this moment, the cloud model dominates, either for the fact of being the fastest growing 

industry (Costello, 2019) or for taking about 94% of workloads and compute instances by the 

year 2021 (Cisco, 2016). This model is here to stay as Bonomi states, and for this reason, is that 

fog computing appears as an extension of and not a replacement of the cloud model. 

The rising of machinery that is becoming equipped with almost free computational resources, 

enable them to be connected to the WAN, over a wide variety range of things that affect directly 

our daily lives, such connected mattress, toasters, fridges, cooking machines, and others 

affecting indirectly. Mikko Hypponen, CRO at F-Secure, states that will be a day that will be 

cheaper buying devices with connectivity capabilities than the traditional ones, arguing that the 

value of data pushes to industry to this practice of equipping devices with connectivity 

capabilities, plus, those devices will not even need our Internet connection to transfer data back 

to the vendor cloud, using the 5G technology for that (Hypponen, 2017) 

In overall perspective, 22 years ago, when IBM supercomputer Deep Blue won the chess game 

over the Kasparov, the supercomputer had a computing power of 11GFLOPS, the smartphone 

that we have used to stream the video has the computing power of 40.8GFLOPS, in other words, 

a 2019, 150€ phone could beat 3 “Kasparovs” at same time, and on top of that, it runs on battery. 

The development of computing power of those devices also increases, with that, fog computing 



 

120 
 

embraces the heterogeneity of hardware, meshing the network with different and all kind of 

nodes to offer ubiquitous computing to those nodes who need it.  

Fog computing projects that the nodes aggregation can be horizontal or vertical and the 

combination of both has the potential of creating silos of resources for each vertical that is 

serving, and smart getaways (Aazam & Huh, 2014) can connect those silos, especially in 

information exchange, to create powerful insights. This vision is very appealing, but multiple 

bridges have to be built. 

The academia is still researching the “where” and “how” questions, the “what” applications 

suitable are the easiest part to answer. The “where” questions, in our view, is the most difficult 

part, since involves physically devices and their ownership, consequently, the maintenance and 

security of those nodes by the owner part. In counterpart, if the big data centers have more 

demand than capacity, as the natural market reaction would be to increase the cloud prices, 

this increase on price can fuel the placement of these edge data centers. Another incentive 

could be the awareness of different business models that can originate from the owner of those 

edge data centers and lead entrepreneurs to invest in this computing model infrastructure. We 

have seen that the academia points a variety of sites like a local business, train stations, public 

transportation, telecom antennas, active network infrastructure and so on. The one that has a 

formal project and active development is the MEC from ETSI, with 28 publications covering a 

wide variety of topics from technical requirements to defining MAC APIs and with an ongoing 

proof of concept project, already available in Hackathons. 

The “how” is the subsequent questions to be made, this new intermediary layer offers a new 

pool of computational resources, and as the word resource means, it must be used cost-

effective. The academia studied several novel schemes to use those resources, moreover, how 

to merge those with the existing cloud infrastructure. Some of the reviewed works also propose 

ways to create stable resource pools, which they are mentioned as incentive-based schemes. 

The SDN is mentioned in the real world as one real architectural candidate, we are stating this 

because we have South-Korea example. The implementation of 5G network for economic 

reasons led to the telecom operators to share underline physically infrastructure by using the 

SDN architecture. We saw it as a form of fog computing for the telecommunication vertical, 

where we have horizontality since they are multiple antennas and verticality, when as they own 

the antennas. 



121 
 

 

The SDN offers security by architectural design, however other papers reviewed in this work, 

security was not approached, and we have a recent example like Mirai malware, where the 

targets were only IoT devices, affecting 120K devices by using the common default passwords. 

The Mirai in 2016 targeted the second-largest DNS provider with a DDoS attack, making 

inaccessible websites like GitHub, Twitter, and other high-profile websites (Williams, 2016). This 

malware illustrates the “what” applications that can benefit from increasing of the connected 

devices, although not with the best intentions, and also show the network and data potential 

since this botnet has generated 1TB/s attack.  

This unintended use of the connected devices does not affect the primary functionality of the 

respective device, but this offloaded task used some of the available computing power and 

some portion of the bandwidth to conduct the attack, meanwhile probing other potential 

vulnerable devices to be added to the botnet. 

We have proposed an alternative to democratize device filiation, administrated in a single point. 

The platform enables an unbounded number of devices that can be part of the network, and 

users can deploy logic units on those nodes. We do not propose any business model, focusing 

on the technical part of the building the essential blocks to have a functional infrastructure. 

Nevertheless, we envision the creation of a market, where developers build pre-sets lambdas 

with some functionality and client buy those units, for example, someone creates a lambda (a 

lambda in our platform is a set of lambda(s)) for image classification, while other developer 

creates a lambda that efficiently stores images, and the client have some use case that receives 

images and wants to classify and store them, so, the client can buy those units and integrate 

into the pipeline at lambda creation. In an extreme case, with a little platform refractor, the 

client could only move the logic units without knowing anything about programing, 

representing only the business logic. The market perspective is part of the future work that will 

be studied. 

In terms of the technical aspects and correlating with the fog computing properties, the 

platform can integrate geographically distributed devices with addressable lambda hosting 

bypassing technical connection difficulties for non-internet exposed devices via one bus where 

messages and commands can be exchanged. For those nodes that are Internet exposed, the 

communication is or can be done without the bus, and consumers can use this extra-calling 

mechanism when available. For simplicity and time constraints, we only support HTTP protocol, 



 

122 
 

however, how the platform is currently built, it lets internet-exposed devices with no isolation, 

to use any available port and within the lambda, the client can support any other protocol that 

we need. The client can follow real-time metrics like CPU and Memory, requests per second, 

and easily scaling horizontally each logic unit. The platform runtime is smart enough to only 

build one sandbox per lambda-node pair and not for instance-node pair, this way if the client 

increases their instances over the same lambda-node pair, the runtime only spawns another 

process using the same sandbox, making elastic computing fast and little overhead. 

The technologies used to develop the essential platform blocks offer a great degree of 

scalability, both database, and the bus offer were built for distributed deployments in mind. 

The behavior of data distribution, even that was thoughtfully designed, deserves a study if the 

data is evenly distributed, plus, if the current queries that are being done perform well 

meanwhile the platform grows. In the bus, the results from the TODO application have shown 

that latency that this technology brings, either we do research another alternative or 

implement one, either way, this is a study that needs to done in conjunction if latencies greater 

than 100ms form our potential users has a substantial impact on their operations.  

The application tested served to make the point of having task offloading to the fog and to the 

cloud, the TODO app also has the purpose to benchmark the throughput of the current 

developed platform. The video application has the purpose to show a detailed view of the 

difficulties face for video analytics deployment making a comparison of the offloading video 

detection for the fog and cloud provider. 

Summing up, the idea of the need of offloading tasks closer to the users, to offers immersive 

and new experiences like gaming on-demand and VR is emerging (Bilal & Erbad, 2017), other 

verticals also can take advantages to make smart and intelligent actions at or closer of edge 

nodes. Data-intensive (consumers side) and video streaming are the two main applications type 

that cloud models do not fit due to WAN constraints leaving the space for the emerging of this 

new computing model. 

5.1.1 Other Related Works 

This dissertation work has resulted in open source contributions on two different projects: i) 

Rust Cassandra Driver and ii) Google’s Firebase Java Admin. The first was already mentioned, 

we have implemented pagination for stateless and non-state applications. In this contribution 



123 
 

 

we have contributed with the implementation and with unit testing for the pagination feature, 

but also with code style uniformization across the project using the “Rust fmt” tool. 

The second contribution was in Google’s Firebase Java admin (Gonçalves, 2019). This library 

offered by Google is to administrate programmatically Firebase services using Java programing 

language, such as Android mobile notifications, real-time databases, ML Kit and so on. We 

introduced one API simplification over the Messaging product (related to Android & iOS mobile 

notifications). The scenario of sending messages in batch mode was already provided by the 

library, in other words, the concept of sending the same message for multiples targets (devices) 

was already implemented in the class “MulticastMessage”, however the developer (the one 

who use the library) to use this feature will pass an object of the “List” data type. The “List” data 

type in Java allows repeated elements, so when the developer passes a list he is saying, in the 

code alone, that may have targets that can receive the same notification because the data type 

allows it. Our improvement was to change the argument data type from the “List” data type to 

“Collection” data type, with this, the developer can have the targets in a “Set” data type, and 

the data type, by itself, express clearly the developer intention. The proposal was accepted and 

already has two minor releases with that improvement. This contribution appeared when we 

are building one Android runtime for the solution presented in this work. 

 

 

 

 

 

 

 

 

 

 



 

124 
 

 

 

Bibliography 

Aazam, M. & Huh, E.-N., 2014. Fog Computing and Smart Gateway Based Communication for 

Cloud of Things. [Online]  

Available at: https://doi.org/10.1109/ficloud.2014.83 

[Accessed 12 10 2019]. 

Aazam, M., Zeadally, S. & Harras, K. A., 2018. Offloading in fog computing for IoT: Review, 

enabling technologies, and research opportunities. Future Generation Computer Systems, , 

87(), pp. 278-289. 

Alphabet, 2018. Efficiency: How we do it – Data Centers – Google. [Online]  

Available at: https://www.google.com/about/datacenters/efficiency/internal/ 

[Accessed 11 1 2019]. 

Amazon, 2019. AWS Snowball. [Online]  

Available at: https://aws.amazon.com/snowball/ 

[Accessed 2019]. 

Amazon, 2019. AWS Snowmobile. [Online]  

Available at: https://aws.amazon.com/snowmobile/ 

[Accessed 2019]. 

Ananthanarayanan, G. et al., 2017. Real-time Video Analytics – the killer app for edge 

computing. [Online]  

Available at: https://www.microsoft.com/en-us/research/wp-

content/uploads/2017/06/CO_COMSI-2017-03-0045.R1_Ananthanarayanan.pdf 



125 
 

 

Anon., . Developer Guide – Protocol Buffers – Google Code. [Online]  

Available at: https://code.google.com/apis/protocolbuffers/docs/overview.html 

[Accessed 11 10 2019]. 

Apache Cassandra, 2019. Apache Cassandra. [Online]  

Available at: http://cassandra.apache.org 

Apache Marathon, 2019. Marathon. [Online]  

Available at: https://mesosphere.github.io/marathon/ 

Astuto, B. N. et al., 2014. A Survey of Software-Defined Networking: Past, Present, and Future 

of Programmable Networks. Communications Surveys and Tutorials, Volume 16, pp. 1617-

1634. 

Bawa, M. et al., 2003. Peer-to-peer research at Stanford. Sigmod Record, , 32(3), pp. 23-28. 

Bilal, K. & Erbad, A., 2017. Edge computing for interactive media and video streaming. [Online]  

Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7946410 

[Accessed 4 10 2019]. 

Bonomi, F., Milito, R., Natarajan, P. & Zhu, J., 2014. Fog Computing: A Platform for Internet of 

Things and Analytics. Big Data and Internet of Things: A Roadmap for Smart Environments, pp. 

169-186. 

Bonomi, F., Milito, R., Zhu, J. & Addepalli, S., 2011. Fog computing and its role in the internet 

of things. p. 13–16. 

Bosh, 2016. Which camera settings influence Video Analytics performance and why?. [Online]  

Available at: 

http://resource.boschsecurity.us/documents/TN_VCA_camera_settin_WhitePaper_enUS_240

87849739.pdf 

[Accessed 2019]. 

Cable, 2019. Worldwide mobile data pricing: The cost of 1GB of mobile data in 230 countries. 

[Online]  

Available at: https://www.cable.co.uk/mobiles/worldwide-data-pricing/ 

Cisco, 2016. Cisco Global Cloud Index: Forecast and Methodology, 2016–2021, San Jose: Cisco. 

Cisco, 2016. Platform Support Matrix. [Online]  

Available at: https://developer.cisco.com/docs/iox/#!platform-support-matrix/platform-

support-matrix 

[Accessed 24 1 2019]. 

Costello, K., 2019. Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17.5 Percent in 

2019. [Online]  



 

126 
 

Available at: https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-

forecasts-worldwide-public-cloud-revenue-to-g 

Craciunescu, R. et al., 2015. Implementation of fog computing for reliable e-health 

applications. IEEE, p. 459–463. 

Culjak, I. et al., 2012. A brief introduction to OpenCV. [Online]  

Available at: https://ieeexplore.ieee.org/document/6240859 

[Accessed 11 10 2019]. 

Dewulf, K., 2013. Sustainable Product Innovation: The Importance of the Front- End Stage in 

the Innovation Process. [Online]  

Available at: https://intechopen.com/books/advances-in-industrial-design-

engineering/sustainable-product-innovation-the-importance-of-the-front-end-stage-in-the-

innovation-process 

[Accessed 13 10 2019]. 

Dunbar, B., 2018. Disruption Tolerant Networking. [Online]  

Available at: https://www.nasa.gov/content/dtn 

[Accessed 2019]. 

EnerData, 2018. Global Energy Trends, France: EnerData. 

Enescu, M., 2014. From Cloud to Fog Computing and IoT. Chicago, LinuxCon + CloudOpen. 

Evans, P. C. & Annunziata, M., 2012. Industrial Internet: Pushing the Boundaries of Minds and 

Machines, s.l.: Imagination at Work. 

Evans, R. & Gao, J., 2016. DeepMind AI Reduces Google Data Centre Cooling Bill by 40%. 

[Online]  

Available at: https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-

bill-40/ 

[Accessed 11 1 2019]. 

Farrell, K. F. a. S., 2008. DTN: an architectural retrospective. IEEE Journal on Selected Areas in 

Communications, Volume 26, pp. 828-836. 

Flamm, K., 2018. Measuring Moore’s Law: Evidence from Price, Cost, and Quality Indexes. 

National Bureau of Economic Research, , (), p. . 

Fricker, C., Guillemin, F., Robert, P. & Thompson, G., 2016. Analysis of an Offloading Scheme 

for Data Centers in the Framework of Fog Computing. ACM Trans. Model, p. 16. 

Giacaglia, G., 2019. [Online]  

Available at: https://hackernoon.com/data-is-the-new-oil-1227197762b2 

[Accessed 2019]. 



127 
 

 

Gilbert, S. & Lynch, N. A., 2012. Perspectives on the CAP Theorem. [Online]  

Available at: https://dspace.mit.edu/openaccess-disseminate/1721.1/79112 

[Accessed 11 9 2019]. 

Gonçalves, N., 2018. Linux Namespaces. [Online]  

Available at: https://github.com/NunuM/linux_namespaces_tutorial 

[Accessed 2018]. 

Gonçalves, N., 2019. Code clarity on MulticastMessage class. [Online]  

Available at: https://github.com/firebase/firebase-admin-java/issues/280 

Gonçalves, N., 2019. Pager for stateless executions. [Online]  

Available at: https://github.com/AlexPikalov/cdrs/pull/258 

[Accessed 2019]. 

Google, 2019. Protocol Buffers. [Online]  

Available at: https://developers.google.com/protocol-buffers 

Guilfoyle, M., 2018. Growing Role of Edge Intelligence in IoT, Dedham, Massachusetts: ARC. 

Habak, K., Ammar, M. H., Harras, K. A. & Zegura, E. W., 2015. Femto Clouds: Leveraging Mobile 

Devices to Provide Cloud Service at the Edge. [Online]  

Available at: http://cc.gatech.edu/~khabak3/papers/femtocloud-cloud'15.pdf 

[Accessed 17 2 2019]. 

Hasan, R., Hossain, M. M. & Khan, R., 2017. Aura: An incentive-driven ad-hoc IoT cloud 

framework for proximal mobile computation offloading. Future Generation Computer 

Systems, , 86(), pp. 821-835. 

HashiCorp, 2019. Vagrant. [Online]  

Available at: https://www.vagrantup.com 

Hashimoto, M., . Vagrant 1.6. [Online]  

Available at: https://www.hashicorp.com/blog/vagrant-1-6.html 

[Accessed 12 10 2019]. 

Hegde, Z., 2018. Predictive Maintenance – What you need to know. [Online]  

Available at: https://www.iot-now.com/2018/05/02/81526-predictive-maintenance-need-

know/ 

[Accessed 2019]. 

Hindman, B. et al., 2011. Mesos: A Platform for Fine-Grained Resource Sharing in the Data 

Center. USENIX. 

Hobbs, T., 2019. CQL BINARY PROTOCOL v4. [Online]  

Available at: https://github.com/apache/cassandra/blob/trunk/doc/native_protocol_v4.spec 

[Accessed 2019]. 



 

128 
 

Hughes, I., 2017. FogHorn gets funding boost and injects machine learning deep in IIoT 

devices, s.l.: 451 Research. 

Huh, M. A. a. E., 2015. Dynamic resource provisioning through Fog micro datacenter. IEEE, pp. 

115-110. 

Hypponen, M., 2017. Mikko Hypponen (F-Secure) on Internet of Insecure Things | TNW 

Conference 2017. [Online]  

Available at: https://www.youtube.com/watch?v=aP6aUQjERBs&t=63s 

IBM, 2019. Camera frame rate, resolution, and video format requirements. [Online]  

Available at: 

https://www.ibm.com/support/knowledgecenter/en/SS88XH_1.6.1/iva/install_planning_vide

o_source_requirements.html 

IHS, 2016. Internet of things (iot) connected devices installed base world- wide from 2015 to 

2025. s.l.:s.n. 

Iorga, M. et al., 2018. Fog Computing Conceptual Model: Recommendations of the National 

Institute of Standards and Technology. National Institute of Standards and Technology, 

Volume 500. 

King, D., 2018. FogHorn. [Online]  

Available at: https://blog.foghorn.io/david-king-on-the-future-of-iiot-edge-intelligence 

[Accessed 2019]. 

Klein, D., 2008. History of Digital Storage, s.l.: Micron Technology, Inc.. 

Kocić, J., Jovičić,  . & Drndarević, V., 2019. An End-to-End Deep Neural Network for 

Autonomous Driving Designed for Embedded Automotive Platforms. Sensors (Bazel). 

Koen, P. et al., 2001. Providing Clarity and A Common Language to the “Fuzzy Front End”. 

Research-Technology Management, 44(2), pp. 46-55. 

Kurkowski, S. H., Camp, T. & Colagrosso, M., 2005. MANET simulation studies: the incredibles. 

Mobile Computing and Communications Review, , 9(4), pp. 50-61. 

L. Velmurugan, G. R. a. M. J. S., 2017. Google Glass Based GPS Navigation Using Smartwatch. 

IEEE International Conference on Computational Intelligence and Computing Research, pp. 1-5. 

Lamport, L., 1998. The Part-Time Parliament. ACM Transactions on Computer Systems, 16(2), 

pp. 133-169. 

Lema, M. et al., 2017. Business Case and Technology Analysis for 5G Low Latency Applications. 

IEEE Access. 

Liang, K., Zhao, L., Chu, X. & Chen, H.-H., 2017. An Integrated Architecture for Software 

Defined and Virtualized Radio Access Networks with Fog Computing. IEEE Network, pp. 80-87. 



129 
 

 

Littledata, 2019. What is the average time before full desktop page load?. [Online]  

Available at: https://www.littledata.io/average/time-before-full-desktop-page-load 

[Accessed 2019]. 

Liu, Y. et al., 2017. Incentive mechanism for computation offloading using edge computing: A 

Stackelberg game approach. IEEE, p. 399–409. 

Luan, T. H. et al., 2015. Fog Computing: Focusing on Mobile Users at the Edge. ArXiv preprint. 

Meurisch, C. et al., 2017. Decision Support for Computational Offloading by Probing Unknown 

Services. ICCCN , pp. 1-9. 

Moore, G. E., 1965. Cramming more components onto integrated circuits. Electronics, Volume 

38. 

Nebbiolo Technologies, 2018. Fog vs Edge Computing. [Online]  

Available at: https://www.nebbiolo.tech/wp-content/uploads/whitepaper-fog-vs-edge.pdf 

[Accessed 05 2019]. 

Nielsen, H. & LaLiberte, D., 1999. Detecting the Lost Update Problem Using Unreserved 

Checkout. [Online]  

Available at: https://www.w3.org/1999/04/Editing/ 

Nielsen, J., 2018. Nielsen's Law of Internet Bandwidth. [Online]  

Available at: https://www.nngroup.com/articles/law-of-bandwidth/ 

[Accessed 22 1 2019]. 

OpenCV, 2019. OpenCV. [Online]  

Available at: https://opencv.org 

OpenFog, 2017. OpenFog Reference Architecture for Fog Computing, s.l.: OpenFog 

Consortium. 

Patel, M. et al., 2014. Mobile Edge Computing Introductory Technical White Paper. p. 36. 

Pu, L., Chen, X., Xu, J. & Fu, X., 2016. D2D Fogging: An Energy-Efficient and Incentive-Aware 

Task Offloading Framework via Network-assisted D2D Collaboration. IEEE Journal on Selected 

Areas in Communications, , 34(12), pp. 3887-3901. 

RabbitMQ, 2019. Messaging that just works — RabbitMQ. [Online]  

Available at: https://www.rabbitmq.com 

Roach, J., 2018. Under the sea, Microsoft tests a datacenter that’s quick to deploy, could 

provide internet connectivity for years. [Online]  

Available at: https://news.microsoft.com/features/under-the-sea-microsoft-tests-a-

datacenter-thats-quick-to-deploy-could-provide-internet-connectivity-for-years/ 

[Accessed 11 1 2019]. 



 

130 
 

Satyanarayanan, M., Bahl, P., Caceres, R. & Davies, N., 2009. The Case for VM-Based Cloudlets 

in Mobile Computing. IEEE Pervasive Computing, Volume 8, pp. 14-23. 

Satyanarayanan, M., Bahl, P., Caceres, R. & Davies, N., 2009. The Case for VM-Based Cloudlets 

in Mobile Computing. IEEE, pp. 4-8. 

Srivastava, P. & Khan, R., 2018. A Review Paper on Cloud Computing. International Journal of 

Advanced Research in Computer Science and Software Engineering, Volume 8. 

Tesla, 2019. Annual Shareholder Meeting. [Online]  

Available at: https://www.tesla.com/pt_PT/shareholdermeeting 

[Accessed 2019]. 

Valancius, V. et al., 2009. Greening the Internet with Nano Data Centers. ACM, pp. 37-48. 

Warthman, F., 2015. Delay- and Disruption-Tolerant Networks. [Online]  

Available at: http://ipnsig.org/wp-content/uploads/2015/09/DTN_Tutorial_v3.2.pdf 

[Accessed 2019]. 

Williams, C., 2016. Today the web was broken by countless hacked devices – your 60-second 

summary. [Online]  

Available at: https://www.theregister.co.uk/2016/10/21/dyn_dns_ddos_explained/ 

Winans, M., 2017. 10 Key Marketing Trends for 2017, s.l.: IBM Marketing Cloud. 

Zhang, K. et al., 2016. Energy-efficient offloading for mobile edge computing in 5g 

heterogeneous networks. IEEE, p. 5896–5907. 

Zhao, X., Zhao, L. & Liang, K., 2016. An Energy Consumption Oriented Offloading Algorithm for 

Fog Computing. [Online]  

Available at: https://link.springer.com/chapter/10.1007/978-3-319-60717-7_29 

[Accessed 17 2 2019].  



 

131 
 

 


