63,234 research outputs found

    Near-stasis in the long-term diversification of Mesozoic tetrapods

    Get PDF
    How did evolution generate the extraordinary diversity of vertebrates on land? Zero species are known prior to ~380 million years ago, and more than 30,000 are present today. An expansionist model suggests this was achieved by large and unbounded increases, leading to substantially greater diversity in the present than at any time in the geological past. This model contrasts starkly with empirical support for constrained diversification in marine animals, suggesting different macroevolutionary processes on land and in the sea. We quantify patterns of vertebrate standing diversity on land during the Mesozoic–early Paleogene interval, applying sample-standardization to a global fossil dataset containing 27,260 occurrences of 4,898 non-marine tetrapod species. Our results show a highly stable pattern of Mesozoic tetrapod diversity at regional and local levels, underpinned by a weakly positive, but near-zero, long-term net diversification rate over 190 million years. Species diversity of non-flying terrestrial tetrapods less than doubled over this interval, despite the origins of exceptionally diverse extant groups within mammals, squamates, amphibians, and dinosaurs. Therefore, although speciose groups of modern tetrapods have Mesozoic origins, rates of Mesozoic diversification inferred from the fossil record are slow compared to those inferred from molecular phylogenies. If high speciation rates did occur in the Mesozoic, then they seem to have been balanced by extinctions among older clades. An apparent 4-fold expansion of species richness after the Cretaceous/Paleogene (K/Pg) boundary deserves further examination in light of potential taxonomic biases, but is consistent with the hypothesis that global environmental disturbances such as mass extinction events can rapidly adjust limits to diversity by restructuring ecosystems, and suggests that the gradualistic evolutionary diversification of tetrapods was punctuated by brief but dramatic episodes of radiation.27 page(s

    A new rhynchocephalian from the late jurassic of Germany with a dentition that is unique amongst tetrapods.

    Get PDF
    Rhynchocephalians, the sister group of squamates (lizards and snakes), are only represented by the single genus Sphenodon today. This taxon is often considered to represent a very conservative lineage. However, rhynchocephalians were common during the late Triassic to latest Jurassic periods, but rapidly declined afterwards, which is generally attributed to their supposedly adaptive inferiority to squamates and/or Mesozoic mammals, which radiated at that time. New finds of Mesozoic rhynchocephalians can thus provide important new information on the evolutionary history of the group. A new fossil relative of Sphenodon from the latest Jurassic of southern Germany, Oenosaurus muehlheimensis gen. et sp. nov., presents a dentition that is unique amongst tetrapods. The dentition of this taxon consists of massive, continuously growing tooth plates, probably indicating a crushing dentition, thus representing a previously unknown trophic adaptation in rhynchocephalians. The evolution of the extraordinary dentition of Oenosaurus from the already highly specialized Zahnanlage generally present in derived rhynchocephalians demonstrates an unexpected evolutionary plasticity of these animals. Together with other lines of evidence, this seriously casts doubts on the assumption that rhynchocephalians are a conservative and adaptively inferior lineage. Furthermore, the new taxon underlines the high morphological and ecological diversity of rhynchocephalians in the latest Jurassic of Europe, just before the decline of this lineage on this continent. Thus, selection pressure by radiating squamates or Mesozoic mammals alone might not be sufficient to explain the demise of the clade in the Late Mesozoic, and climate change in the course of the fragmentation of the supercontinent of Pangaea might have played a major role

    The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: A petrologic perspective

    Get PDF
    This paper presents a review of available petrological, geochonological and geochemical data for late Mesozoic to Recent igneous rocks in the South China Sea (SCS) and adjacent regions and a discussion of their petrogeneses and tectonic implications. The integration of these data with available geophysical and other geologic information led to the following tectono-magmatic model for the evolution of the SCS region. The geochemical characteristics of late Mesozoic granitic rocks in the Pearl River Mouth Basin (PRMB), micro-blocks in the SCS, the offshore continental shelf and Dalat zone in southern Vietnam, and the Schwaner Mountains in West Kalimantan, Borneo indicate that these are mainly I-type granites plus a small amount of S-type granites in the PRMB. These granitoids were formed in a continental arc tectonic setting, consistent with the ideas proposed by Holloway (1982) and Taylor and Hayes (1980, 1983), that there existed an Andean-type volcanic arc during later Mesozoic era in the SCS region. The geochonological and geochemical characteristics of the volcanics indicate an early period of bimodal volcanism (60-43. Ma or 32. Ma) at the northern margin of the SCS, followed by a period of relatively passive style volcanism during Cenozoic seafloor spreading (37 or 30-16. Ma) within the SCS, and post-spreading volcanism (tholeiitic series at 17-8. Ma, followed by alkali series from 8. Ma to present) in the entire SCS region. The geodynamic setting of the earlier volcanics was an extensional regime, which resulted from the collision between India and Eurasian plates since the earliest Cenozoic, and that of the post-spreading volcanics may be related to mantle plume magmatism in Hainan Island. In addition, the nascent Hainan plume may have played a significant role in the extension along the northern margin and seafloor spreading in the SCS. © 2014 Elsevier Ltd

    Late Triassic (Rhaetian) conodonts and ichthyoliths from Chile

    Get PDF
    The Late Triassic of the back arc Domeyko Basin, Chile is characterized by the onset of marine sedimentation that persisted throughout the rest of the Mesozoic. Carbonate bulk samples from the Punta del Viento Limestone Formation have yielded a numerically small, but apparently widespread, conodont fauna including Epigondolella mosheri, Epigondolella englandi and Neogondolella steinbergensis. These specimens indicate a Rhaetian (Epigondolella mosheri conodont Biozone roughly equivalent to the Paracochloceras amoenum ammonoid Biozone) age for this unit. Their recovery represents the first record of conodonts from Chile, and also indicates a considerable potential for use in correlating sequence stratigraphic events within the Mesozoic Marginal Sea in Colombia, Peru and Chile

    Accretionary Tectonics of the North American Cordillera

    Get PDF
    Continental geology stands on the threshold of a change that is likely to be as fundamental as plate-tectonic theory was for marine geology. Ongoing seismic-reflection investigations into the deep crustal structure of North America are verifying that orogenic zones are underlain by low-angle faults of regional extent (Brown et al 1981). The growing body of regional field relations is likewise delineating numerous orogenic sutures that bound discrete crustal fragments. Paleomagnetic and paleobiogeographic studies are revealing major latitudinal shifts and rotations within and between suture-bounded fragments, particularly within the North American Cordillera. Such interdisciplinary studies are leading to a consensus that the Cordillera has been built by progressive tectonic addition of crustal fragments along the continent edge in Mesozoic and early Cenozoic time. Such crustal growth is referred to as accretionary tectonics. In this paper, we review some of the important concepts in accretionary tectonics, discuss the nature of the materials accreted between central Alaska and southern California in Jurassic and Cretaceous time, and consider the general relations between Cordilleran accretion and the movement of lithospheric plates. The concept of continents growing by peripheral accretion through geologic time has long been a topic of great interest. With the advent of plate tectonics a number of different mechanisms for crustal accretion have arisen, along with mechanisms for crustal attrition. Accretion mechanisms include the growth of imbricated sedimentary prisms along inner-trench walls, slicing off of submarine topographic irregularities within subducting plates, and collision of continents and volcanic arcs by ocean-basin closure. Tectonic attrition mechanisms include rifting, transform faulting, and strike-slip or underthrust removal of inner-trench wall materials coincident with or in place of accretionary prism growth. Growth of intraorogenic ocean basins by seafloor spreading is an additional important mechanism for creating accretionary materials as well as displacing crustal fragments. An important implication of plate kinematic theory is the likelihood for accretionary and attritionary mechanics to operate in series both in time and space along continental margins. Since attrition by nature leaves little material evidence of having operated, one of the major problems confronting Cordilleran geologists lies in the recognition of such attrition within the ancient record, particularly when interspersed with accretionary events. The spectrum of accretion and attrition mechanisms viewed at cm yr^-1 plate-transport rates over time scales of 100 m.y. leads one to suspect a highly mobile history for continental-margin orogens. The serial arrangement of subducting, transform, and rifting links along the modern Cordillera plate-juncture system and both serial and parallel arrangements in the western Pacific systems show the complex interplay of such mechanisms through space. Similar arrangements overprinted through time are suggested by the rock assemblages and structural patterns within the Cordillera, which presently resemble a collage of crustal fragments (Davis et al 1978). Recognition of the structural state of this collage geologic field mapping and geophysical investigations will bring about a new level of understanding in the growth of continental crust, and the reading of stratigraphic records within the fragments and future palinspastic restorations will lead to a new level of understanding in paleogeography and Earth history. The first problem to be considered is the recognition of native North American crust from exotic fragments that have been accreted to its edge

    Influence of pre-Andean history over Andean foreland deformation: structural styles in the MalargĂŒe fold-and-thrust belt at 35ÂșS, Andes of Argentina

    Get PDF
    We present the first complete balanced cross-section of the Argentinean Andes at 35ÂșS. Based on an extensive field survey and limited sub-surface information, we constructed a structural model in which both the tectonic inversion of Mesozoic normal faults and the formation of Cenozoic Andean thrusts play a role in the deformation. We obtained a shortening of 26.2 km, equivalent to 22% of the initial length. This value is lower than previous estimates obtained from partial cross-sections using non-inversion structural models. Comparison of our results with a geophysical model of the crust indicates that: (i) crustal thickness was not constant across the orogen before Andean shortening, but a thick (~45 km) crustal block was interpreted? in the west as a remnant of a Late Paleozoic orogeny, and a thinner sector (~32 km) was located in the east as a result of Mesozoic stretching; and (ii) the structural model presented in this work is more consistent with the regional shortening and crustal thickness trends than models which do not take into account tectonic inversion.Fil: Mescua, Jose Francisco. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; ArgentinaFil: Giambiagi, Laura Beatriz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; ArgentinaFil: Tassara Oddo, Andres Humberto. Universidad de ConcepciĂłn; ChileFil: Gimenez, Mario Ernesto. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, FĂ­sicas y Naturales. Instituto GeofĂ­sico SismolĂłgico Volponi; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Ramos, Victor Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentin

    Paleomagnetic Study of Mesozoic Continental Sediments Along the Northern Tien Shan (China) and Heterogeneous Strain in Central Asia

    Get PDF
    A paleomagnetic study of rocks from the northern foot of the Tien Shan and the southern border of the Dzungar Basin, east of Urumqi (44.2°N, 86.0°E), spanning ages from middle Jurassic to early Tertiary was carried out to constrain the tectonic evolution in central Asia since Mesozoic time. Five middle Jurassic sites reveal a remagnetized direction close to the present Earth field in geographic coordinates: D = 6.6°, I = 72.6° (α_(95) = 7.4°). Thirteen out of 17 upper Jurassic and lower Cretaceous sites yield a characteristic direction (stratigraphic coordinates) of D = 12.7°, I = 48.6° (α_(95) = 5.5°). Nine of 16 upper Cretaceous and lower Tertiary sites provide a characteristic direction of D = 12.5°, I = 51.3° (α_(95) = 6.9°). The latter two directions pass fold and reversal tests. The pole positions are close to each other and to the Besse and Courtillot [1989, 1990] Eurasian apparent polar wander path, for ages ranging from 130 to 70 Ma. However, the difference in paleolatitudes amounts to about 5.9° ± 3.7°, which could indicate significant continental shortening in the Altai Mountains and perhaps further north, subsequent to India-Asia collision. The pole positions from the Dzungar Basin are close to those found for the Tarim [Li et al., 1988a], leading to an insignificant paleolatitude difference (3.0° ± 6.9°), but showing a larger difference in declination (8.6° ± 8.7°). These paleomagnetic results are compatible with a model of heterogeneous deformation in the western part of the collision zone between India and Siberia. A significant shortening in the Altai, a slight counterclockwise rotation of the Dzungar block, the westward-increasing shortening in the Tien Shan with attendant clockwise rotation of the Tarim block are all consistent with this model, in which Tibet, the Tien Shan and the Altai undergo differential strain along strike in a relay fashion, with the total India-Siberia convergence remaining approximately constant

    Exhuming the Meso-Cenozoic Kyrgyz Tianshan and Siberian Altai-Sayan : a review based on low-temperature thermochronology

    Get PDF
    Thermochronological datasets for the Kyrgyz Tianshan and Siberian Altai-Sayan within Central Asia reveal a punctuated exhumation history during the Meso-Cenozoic. In this paper, the datasets for both regions are collectively reviewed in order to speculate on the links between the Meso-Cenozoic exhumation of the continental Eurasian interior and the prevailing tectonic processes at the plate margins. Whereas most of the thermochronological data across both regions document late Jurassic-Cretaceous regional basement cooling, older landscape relics and dissecting fault zones throughout both regions preserve Triassic and Cenozoic events of rapid cooling, respectively. Triassic cooling is thought to reflect the Qiangtang-Eurasia collision and/or rifting/subsidence in the West Siberian basin. Alternatively, this cooling signal could be related with the terminal terrane-amalgamation of the Central Asian Orogenic Belt. For the Kygyz Tianshan, late Jurassic-Cretaceous regional exhumation and Cenozoic fault reactivations can be linked with specific tectonic events during the closure of the Palaeo-Tethys and Neo-Tethys Oceans, respectively. The effect of the progressive consumption of these oceans and the associated collisions of Cimmeria and India with Eurasia probably only had a minor effect on the exhumation of the Siberian Altai-Sayan. More likely, tectonic forces from the east (present-day coordinates) as a result of the building and collapse of the Mongol-Okhotsk orogen and rifting in the Baikal region shaped the current Siberian Altai-Sayan topography. Although many of these hypothesised links need to be tested further, they allow a first-order insight into the dynamic response and the stress propagation pathways from the Eurasian margin into the continental interior

    Egg shape changes at the theropod–bird transition, and a morphometric study of amniote eggs

    Get PDF
    The eggs of amniotes exhibit a remarkable variety of shapes, from spherical to elongate and from symmetrical to asymmetrical. We examine eggshell geometry in a diverse sample of fossil and living amniotes using geometric morphometrics and linear measurements. Our goal is to quantify patterns of morphospace occupation and shape variation in the eggs of recent through to Mesozoic birds (neornithe plus non-neornithe avialans), as well as in eggs attributed to non-avialan theropods. In most amniotes, eggs show signiïŹcant deviation from sphericity, but departure from symmetry around the equatorial axis is mostly conïŹned to theropods and birds. Mesozoic bird eggs differ signiïŹcantly from extant bird eggs, but extinct Cenozoic bird eggs do not. This suggests that the range of egg shapes in extant birds had already been attained in the Cenozoic. We conclude with a discussion of possible biological factors imparting variation to egg shapes during their formation in the oviduct
    • 

    corecore