604 research outputs found

    Machine and deep learning meet genome-scale metabolic modeling

    Get PDF
    Omic data analysis is steadily growing as a driver of basic and applied molecular biology research. Core to the interpretation of complex and heterogeneous biological phenotypes are computational approaches in the fields of statistics and machine learning. In parallel, constraint-based metabolic modeling has established itself as the main tool to investigate large-scale relationships between genotype, phenotype, and environment. The development and application of these methodological frameworks have occurred independently for the most part, whereas the potential of their integration for biological, biomedical, and biotechnological research is less known. Here, we describe how machine learning and constraint-based modeling can be combined, reviewing recent works at the intersection of both domains and discussing the mathematical and practical aspects involved. We overlap systematic classifications from both frameworks, making them accessible to nonexperts. Finally, we delineate potential future scenarios, propose new joint theoretical frameworks, and suggest concrete points of investigation for this joint subfield. A multiview approach merging experimental and knowledge-driven omic data through machine learning methods can incorporate key mechanistic information in an otherwise biologically-agnostic learning process

    Modeling cancer metabolism on a genome scale

    Get PDF
    Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome‐scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network‐level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field

    Towards a comprehensive modeling framework for studying glucose repression in yeast

    Get PDF
    The yeast Saccharomyces cerevisiae is an important model organism for human health and for industry applications as a cell factory. For both purposes, it has been an important organism for studying glucose repression. Glucose sensing and signaling is a complex biological system, where the SNF1 pathway is the main pathway responsible for glucose repression. However, it is highly interconnected with the cAMP-PKA, Snf3-Rgt2 and TOR pathways. To handle the complexity, mathematical modeling has successfully aided in elucidating the structure, mechanism, and dynamics of the pathway. In this thesis, I aim to elucidate what the effect of the interconnection of glucose repression with sensory and metabolic pathways in yeast is, specifically, how crosstalk influences the signaling cascade; what the main effects of nutrient signaling on the metabolism are and how those are affected by intrinsic stress, such as damage accumulation. Here, I have addressed these questions by developing new frameworks for mathematical modeling. A vector based method for Boolean representation of complex signaling events is presented. The method reduces the amount of necessary nodes and eases the interpretation of the Boolean states by separating different events that could alter the activity of a protein. This method was used to study how crosstalk influences the signaling cascade.To be able to represent a diverse biological network using methods suitable for respective pathways, we also developed two hybrid models. The first is demonstrating a framework to connect signaling pathways with metabolic networks, enabling the study of long-term signaling effects on the metabolism. The second hybrid model is demonstrating a framework to connect models of signaling and metabolism to growth and damage accumulation, enabling the study of how the long-term signaling effects on the metabolism influence the lifespan. This thesis represents a step towards comprehensive models of glucose repression. In addition, the methods and frameworks in this thesis can be applied and extended to other signaling pathways

    Decoding Complexity in Metabolic Networks using Integrated Mechanistic and Machine Learning Approaches

    Get PDF
    How can we get living cells to do what we want? What do they actually ‘want’? What ‘rules’ do they observe? How can we better understand and manipulate them? Answers to fundamental research questions like these are critical to overcoming bottlenecks in metabolic engineering and optimizing heterologous pathways for synthetic biology applications. Unfortunately, biological systems are too complex to be completely described by physicochemical modeling alone. In this research, I developed and applied integrated mechanistic and data-driven frameworks to help uncover the mysteries of cellular regulation and control. These tools provide a computational framework for seeking answers to pertinent biological questions. Four major tasks were accomplished. First, I developed innovative tools for key areas in the genome-to-phenome mapping pipeline. An efficient gap filling algorithm (called BoostGAPFILL) that integrates mechanistic and machine learning techniques was developed for the refinement of genome-scale metabolic network reconstructions. Genome-scale metabolic network reconstructions are finding ever increasing applications in metabolic engineering for industrial, medical and environmental purposes. Second, I designed a thermodynamics-based framework (called REMEP) for mutant phenotype prediction (integrating metabolomics, fluxomics and thermodynamics data). These tools will go a long way in improving the fidelity of model predictions of microbial cell factories. Third, I designed a data-driven framework for characterizing and predicting the effectiveness of metabolic engineering strategies. This involved building a knowledgebase of historical microbial cell factory performance from published literature. Advanced machine learning concepts, such as ensemble learning and data augmentation, were employed in combination with standard mechanistic models to develop a predictive platform for important industrial biotechnology metrics such as yield, titer, and productivity. Fourth, my modeling tools and skills have been used for case studies on fungal lipid metabolism analyses, E. coli resource allocation balances, reconstruction of the genome-scale metabolic network for a non-model species, R. opacus, as well as the rapid prediction of bacterial heterotrophic fluxomics. In the long run, this integrated modeling approach will significantly shorten the “design-build-test-learn” cycle of metabolic engineering, as well as provide a platform for biological discovery

    Machine learning in bioprocess development: From promise to practice

    Get PDF
    Fostered by novel analytical techniques, digitalization and automation, modern bioprocess development provides high amounts of heterogeneous experimental data, containing valuable process information. In this context, data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces while exploiting experimental facilities most efficiently. The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development, especially in strain engineering and selection, bioprocess optimization, scale-up, monitoring and control of bioprocesses. For each topic, we will highlight successful application cases, current challenges and point out domains that can potentially benefit from technology transfer and further progress in the field of ML

    Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    Get PDF
    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales

    The era of big data: Genome-scale modelling meets machine learning

    Get PDF
    With omics data being generated at an unprecedented rate, genome-scale modelling has become pivotal in its organisation and analysis. However, machine learning methods have been gaining ground in cases where knowledge is insufficient to represent the mechanisms underlying such data or as a means for data curation prior to attempting mechanistic modelling. We discuss the latest advances in genome-scale modelling and the development of optimisation algorithms for network and error reduction, intracellular constraining and applications to strain design. We further review applications of supervised and unsupervised machine learning methods to omics datasets from microbial and mammalian cell systems and present efforts to harness the potential of both modelling approaches through hybrid modelling
    corecore