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Abstract

Fostered by novel analytical techniques, digitalization and automation, modern

bioprocess development provides high amounts of heterogeneous experimental data,

containing valuable process information. In this context, data-driven methods like

machine learning (ML) approaches have a high potential to rationally explore large

design spaces while exploiting experimental facilities most efficiently. The aim of this

review is to demonstrate how ML methods have been applied so far in bioprocess

development, especially in strain engineering and selection, bioprocess optimization,

scale-up, monitoring and control of bioprocesses. For each topic, we will highlight

successful application cases, current challenges and point out domains that can

potentially benefit from technology transfer and further progress in the field of ML.
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Machine learning in biotechnology: State of the art

Over the past years, machine learning (ML) has become the most important discipline

of artificial intelligence (AI) in terms of practical application. ML deals with algorithms

and programs that learn to solve certain tasks based on data, where performance

increases with experience, i.e. available data [1]. More precisely, ML aims at finding

suitable, mostly empirical models to describe datasets, learning from labeled samples

or by identifying inherent patterns (see Box 1 for central paradigms). The vast spectrum

of ML methods [Box 3] is particularly useful when large amounts of data are available

and/or when datasets are too complex to be analyzed by sets of predefined rules (see

the explanation of expert systems in Box 1). Other applications of ML aim at finding

so-called surrogate models, in which ML models are used as approximations for

mechanistic models that are costly or hard to evaluate [2].

In previous years, life sciences have started looking into available ML methods and

researchers began to assess which of these methods are suitable to tackle current

challenges [3]. Thus, biology and biotechnology became influenced by recent advances

in ML. This is reflected by many reviews, for example ML in protein function prediction

[4], multi-omics data analysis [5], developmental biology [6], biological network analysis

[7], metabolic engineering [8] and biochemical engineering [9].

Generally, the biotechnological pipeline from target molecule to final product covers four

essential stages, which are (i) target identification and molecule design, (ii) biocatalyst

design, (iii) bioprocess development as well as (iv) industrial-scale production. The first

two stages are mainly addressed by molecular biotechnology and bioinformatics; in

recent years, both fields were heavily influenced by technological progress on the

experimental side (e.g., omics technologies) as well as increased computational power

[10]. The resulting availability of big data and compute resources enabled the rise of

ML, which nowadays is state-of-the-art. A notable, recent breakthrough of ML is

AlphaFold [11], a deep learning [Box 2] program that predicts the 3D structure of

proteins from sequence data. Since ML is abundant and diverse for the first two stages,

i.e., molecule prediction and biocatalyst design, a thorough review is out-of-scope for

this paper. The reader is instead referred to existing reviews, e.g., [7,12-15].

The third stage of the biotechnological production pipeline, bioprocess development,
focuses on increasing the production capacity for the target molecule by means of

strain selection, process optimization, and scale-up. During this stage, high-throughput

screening (HTS) experiments are typically performed to assess the performance of
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selected clones [16]. Furthermore, optimal cultivation parameters need to be identified

from a huge design space. However, traditional analytical methods will often not match

the rate of experimentation and thus, analysis subsequently becomes a bottleneck

[17,18]. To overcome this challenge, smart experimental design and accompanying

modeling or ML are needed to maximize information content of the designed

experiments.

Since biological and process parameters are correlated, iterative experimentation and

data evaluation is needed to feed back information and insights from screening to strain

design. This approach is reflected in the Design-Build-Test-Learn (DBTL) cycle [19],

which is sometimes only referring to synthetic biology, but can be also applied to the

stage of bioprocess development [20]. In the context of DBTL, the learning step can be

enhanced by ML, which can suggest smart designs for the next round of

experimentation [21].

The fourth and final stage of the biotechnological production pipeline is concerned with

reproducible and robust operation, for example by controlling raw materials [22] of

industrial-scale bioprocesses. Research at this stage is determining the long-term

stable and consistent operation of a production process, for example by process

intensification at large scale to increase manufacturing capacity [23]. Methods and

results at this stage are often proprietary and therefore scarcely available in public

literature [24]. In market and business analyses, necessary productivity ranges are

determined to meet bioprocess economics, a prerequisite for the fourth stage.

In the light of increased automation, data availability and exchange, data-driven

bioprocess development will accelerate the time-to-market of bioproducts [25].

Moreover, the large cash flow in the AI sector will boost the integration of novel

methods to the development pipeline [24]. In this review we will thus mainly discuss the

application of ML in bioprocess development, particularly in upstream processes. ML is

also advancing in downstream processing, where corresponding techniques are

developed for specific technologies such as chromatography [26-31], but also for

complex purification pipelines of specific products such as antibodies [32] or inclusion

bodies [33]. Since available literature is highly diverse and vast enough to be covered in

a separate review, ML for downstream processing is not discussed in detail here.

Where possible, ML trends in commercial bioprocesses, e.g. for Process Analytical
Technology (PAT), digital twins or model predictive control (MPC), are included.

Overall, four main topics are addressed:
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1. strain selection and engineering

2. bioprocess optimization

3. scale-up of bioprocesses

4. process monitoring and control.

For each area, we shed light on methodological milestones of the past years that push

ML forward. Furthermore, we discuss potentials and challenges for future usage and

improvement of ML tools. This leads to an overall discussion about ML as an enabling

technology for bioprocess development.

Choosing between numerous candidates: strain engineering and selection
One central step before bioprocess development takes place is the selection of a

biocatalyst or microorganism for production. State-of-the-art experimental methods for

high-throughput screening exist to identify potent biocatalysts, e.g. by quantitative

phenotyping of strain libraries [16,34,35]. The current bottleneck is thus automated data

processing and algorithm-driven decision making to select biocatalysts with the highest

potential for commercial production.

Recent advances in ML provide a number of techniques to foster biochemical

engineering of strains [8]. As a major challenge, the diversity of biocatalysts leads to a

broad range of possible tasks, for example design and selection of bacterial production

strains, predicting production in different cell-free systems or engineering mammalian

cell lines. The latter poses many additional challenges such as clonal variation [36], and

large-scale studies are needed to generate mechanistic understanding, which is so far

required for non-ML methods [37]. To maintain focus, we review strain selection here.

For insights into ML approaches for enzyme and biocatalyst engineering, the reader is

referred to [38,39].

In the past decades, stoichiometric as well as kinetic genome-scale models have been

used for both metabolic engineering and bioprocess development [40-42]. Besides

genetic design, such models can give insights into suitable carbon sources, media

design or bioreactor parameters [43]. For many years, quantitative predictions for

metabolic engineering have been made using constraint-based modeling (COBRA)
of genome-scale metabolic networks [44,45]. Methods of the COBRA toolbox like Flux

Balance Analysis (FBA) [46], Minimization of Metabolic Adjustment (MOMA) [47], or

Minimal Cut Sets (MCS) [48] generally aim to optimize fluxes in a biological network

(i.e. metabolism) to improve productivity by, e.g. reducing side product formation or

eliminating competing metabolic pathways. Resolving metabolic pathways and
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determining corresponding fluxes is experimentally demanding. Within the COBRA

toolbox, FBA is probably the most popular method to find steady-state flux solutions.

However, FBA is largely limited by understanding of the underlying network structure

[45].

In contrast, data-driven ML algorithms allow for analysis of large, complex (multi-)omics

datasets, which can be generated in high throughput [10,49]. Different applications of

ML for genome-scale models are emerging. On the one hand, ML is used to

complement the typical modeling pipeline for constraint-based models, namely in the

steps of gene annotation, gap filling and integration of multi-omics data [50]. On the

other hand, novel approaches of hybrid modeling have been proposed, as well as ML

methods that replace the mechanistic, genome-scale models completely. King et al.

applied literature mining [Box 3] to create a database of Escherichia coli strain variants

and their byproduct streams. They demonstrated how the database can be used to

validate different genome-scale models [51]. Oyetunde et al. [52] combined simulated

data from a genome-scale model with a manually curated dataset of bioprocess data

from different E. coli strains as input data to predict production metrics for various

products. As ML methods, they applied a combination of principal component analysis

(PCA) and ensemble learning [Box 2], a strategy where different ML algorithms are

combined to learn more efficiently (Figure 1A). The approach led to decent predictions

of production titers, rates and yields (TRY) under varying process and pathway

conditions, thus demonstrating the potential of integrating both large datasets and

mechanistic knowledge from the genome-scale model.

In a similar approach, Zhang et al. [53] first used a genome-scale model to identify

relevant genes for metabolic engineering of tryptophan production strains to then apply

ensemble learning on biosensor data generated with promoter libraries of the

suggested genes. In contrast to Oyetunde et al. [52] this model does not use the

genome-scale model predictions as training data, but only to identify genomic targets

for the promoter libraries. The developed ML models were used to predict combinations

of promoters and genes outside the training dataset, thus augmenting the

experimentally tested designs. Although this approach led to even further improved

variants, the authors observed a reduced performance of the algorithm regarding

extrapolation, which is a commonly known problem of ML approaches.

Finally, a recent preprint introduced Artificial Metabolic Networks (AMN) [54], a concept

where fluxes are predicted with a recurrent neural network (RNN) [Box 3]. Here, FBA

predictions are used to train the AMN, which can in turn replace the genome-scale
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model in the application phase. Since the AMN allows for backpropagation, it can be

used to predict uptake rates based on external concentrations. Further methods of

combining ML with genome-scale metabolic models, e.g. fluxomic analysis, have been

recently reviewed [50,55,56].

The mentioned study of Zhang et al. [53] made use of the recently developed

Automated Recommendation Tool for Synthetic biology [57]. The toolbox combines the

Scikit-learn framework [58] with a Bayesian statistics approach of ensemble models,

i.e. several models are trained for prediction and to provide uncertainty quantification.

Moreover, the toolbox is flexible w.r.t. experimental requirements such as with the DBTL

cycle, for which it can provide recommendations on strain design for the next iteration.

This tool is an interesting starting point to further apply ML for synthetic biology [57,59]

and should be expanded by the community.

Regarding kinetic models, detailed genome-scale models are often under-determined,

meaning that the large number of kinetic parameters cannot be estimated from

experimental data [60]. A remaining challenge thus is that these under-determined

mathematical systems allow a multitude of parameter combinations that can equally

well describe experimental measurements. However, many frameworks that determine

the spaces of possible parameters propose a number of models that inherently

contradict the experimentally observed physiology. To overcome this challenge, the

REKINDLE (REconstruction of KINetic models using Deep LEarning) framework was

recently suggested, in which Generative Adversarial Networks (GANs) [Box 3] are used

to obtain mechanistic, kinetic models with biologically feasible dynamics [61].

Guiding strain optimization, Sabzevari et al. [62] applied a multi-agent reinforcement

learning algorithm to both experimental data and data from a genome-scale kinetic

model to tune metabolic enzyme levels. The algorithm outperforms another ML

approach, namely Bayesian optimization on Gaussian processes (GPs) [Box 3], as well

as a random search approach. Moreover, the multi-agent reinforcement learning

approach allows for including parallelized experiments, which is important to make

efficient use of modern HTS.

Overall, most studies on strain engineering and selection so far only focus on model

host organisms and only few studies looked into transferability to other host systems

[63]. A promising tool in this context could be transfer learning [Box 2]; however, this

approach usually requires large amounts of data to train the initial model [9], which are

frequently not available. In the field of strain modeling, transfer learning is still
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underexplored. We thus identify predictions for non-model organisms as well as

providing comparable results for a variety of different strains as major bottlenecks. Most

likely, no single ML algorithm will solve this issue; instead, a suite of ML algorithms is

needed to cover such a complex task in the future.

Raising and stabilizing titers, rates and yields (TRY): bioprocess optimization
During bioprocess development and optimization, lab-scale bioprocesses are used to

improve TRY by identifying optimal physico-chemical parameters for cultivation. In this

context, different ML techniques are used.

Aiming at the application of microorganisms and enzymes at extreme temperatures, Li

et al. [64] (Figure 1B) developed a support vector machine (SVM) [Box 3] regression

model to predict the optimal temperature for enzymatic activity, using optimal growth

temperature and amino acid sequence information as input features. Another common

ML approach for bioprocess optimization is GP regression. Use-cases include

optimization of pigment production in algae [65,66] and tuning of media composition for

protein production in Corynebacterium glutamicum [67].

Finally, Artificial Neural Networks (ANNs) [Box 3] are frequently applied for a range of

applications, e.g. optimizing media composition for wheat germ [68] or for pigment

production in cyanobacteria [69]. Other studies optimize fermentation parameters;

Pappu et al. [70], for example, investigated temperature, fermentation time, pH, kLa,

biomass and glycerol as influential parameters for xylitol production in the yeast

Debaryomyces nepalensis. Ebrahimpour et al. [71] optimized production of a

thermostable lipase in a Geobacillus strain with growth temperature, medium volume,

inoculum size, agitation rate, incubation period and initial pH as input variables. Finally,

some studies look into the complex interaction of media composition and fermentation

parameters, e.g. in bioethanol production with Saccharomyces cerevisiae [72] or growth

of cell lines for therapy [73].

Aiming at the transfer of knowledge between different bioprocesses, Rogers et al.

simulated dynamical behavior in biochemical processes for different organisms via

transfer learning, in this case by partially preserving layers between different ANNs [74].

Hutter and coworkers [75] combined GP regression with transfer learning, more

precisely embedding vectors [Box 3], a technique that is used in Natural Language
Processing to quantify similarity between words [76]. Both approaches show how

historic data can be used to predict dynamics for new products, which is beneficial for

bioprocess optimization.
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Video and image data, e.g., of cell morphology, is a rich source of information for

bioprocess analysis and control [77,78]. Here, microfluidic systems in combination with

life-cell imaging have been pioneering the image analysis methods, among others for

HTS of strains and to get improved understanding of cellular behavior at

bioprocess-relevant cultivation conditions [79,80]. Deep learning techniques [Box 2]

are well-suited to process such complex raw data from images in an automated fashion,

thus laying the foundation for microfluidic-assisted, high-throughput bioprocess

development [81,82]. Recent examples include prediction of growth and dynamics in

microfluidic single-cell cultivation [83,84] and microfluidic droplet reactors, where

multi-layer ANNs were used to predict performance of flow-focusing droplet generators

[85].

Other applications in process optimization include the use of microscopic image data for

spatio-temporal analysis of biofilms [86] and algae cultivation [87]. The latter requires

complex management of light conditions and growth patterns, e.g. to avoid mutual

shading during cultivation [88,89]. Here, Long et al. [87] used SVM regression to predict

light distribution patterns from microscopy images, which provide insight into the growth

behavior and could ultimately help to develop novel cultivation designs.

Finally, we see the advance of ML in automated flowsheet synthesis in chemical

engineering [90,91]. Although not yet demonstrated for bioprocesses, such techniques

have great potential to accelerate bioprocess development.

Challenges at the verge to commercial scale: bioprocess scale-up
Having selected strains and optimized process conditions at laboratory scale, a

bioprocess needs to be transferred to industrial production scale. The production scale

is typically subject to increased variability of materials and feed streams, more complex

hydrodynamics and decreased spatial homogeneity [92]. Physical scale-down

simulators, i.e., networks of purposefully heterogeneous laboratory devices, can be

used to select strains and optimize process conditions under industrially relevant

conditions [92,93]. Detailed measurements in industrial equipment are often intricate

and prohibitively expensive. Model-based scale-up and scale-down simulators can help

with closing this gap [93,94] and ensure industrial feasibility of the designed processes

[95]. These models can facilitate the transfer of scale-independent knowledge and

information, mostly related to the catalyst, while correcting the influence of

scale-dependent mechanisms, mostly related to transport phenomena. Certain

challenges arise when ML models, e.g., of cell metabolism, that have been trained at
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laboratory scale need to extrapolate beyond the experienced environmental conditions

when applied at production scale.

Scale-up modeling involves various interconnected relationships between bioreactor

design parameters, process parameters and hydrodynamic characteristics, which are

almost impossible to theoretically describe and computationally trace using mechanistic

models [96]. Scale-up has thus been studied with multivariate data analysis, where

methods such as PCA, SVM regression and PLS are overlapping with ML, e.g., [97,98].

Recent ML approaches such as RNNs [99] or decision trees [100] as well as hybrid

models [101] are starting to emerge for incorporation and transfer of information

between different scales.

In their study, Bayer et al. [101] investigated hybrid models (differential

equations/ANNs) for Design of Experiments (DoE) and intensified DoE (iDoE)
experiments with mammalian cells at different scales; more precisely, experiments were

run in shaker-scale, bolus fed-batch experiments as well as continuously fed 15L scale

bioreactors. The authors found that a hybrid model trained on shaker-scale DoE data

performed well on test data of the 15L reactor, especially for the iDoE data (Figure 1C).

Moreover, a second model was trained on 15L iDoE experiments, in which

intra-experiments variations are made. This model also performed reasonably well on

data from 15L static runs (without variation), indicating that the iDoE concept can be

generalized for modeling of mammalian cells. Compared to other studies, which often

retrain the whole model for different scales, thus requiring large amounts of data, the

results of Bayer et al. [101] are promising since they show the possibility of generalizing

scale-up models across scales, meaning that a model trained for small-scale is still

valid at large scale without retraining.

Overall, we consider ML to have great potential in the discovery of non-traditional

scale-up criteria, for example by correlating validated mechanistic models describing

bioprocess performance at laboratory and production scales. Beyond this application,

ML models can also be used as surrogate models for complex scale-up models, e.g. by

replacing costly simulations in computational fluid dynamics [102]. Though literature in

the field of ML learning for bioprocess scale-up is still scarce, we anticipate that

methods will be evolving quickly, potentially using the field of chemical engineering as a

blueprint, e.g., [103].

Monitoring and controlling bioprocesses: ML in Process Analytical Technology
(PAT)
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In the final phases of bioprocess development, the transition to commercial production

is targeted. Here, process monitoring and control are important steps, especially if the

desired product needs to meet complex (pharmaceutical) regulations by the Food and

Drug Administration (FDA) or European Medicines Agency (EMA) [104]. The need to

record process data in a structured way to prove consistency for regulatory approval

offers the opportunity to apply ML techniques. To support effective and efficient

monitoring of Critical Process Parameters (CPPs) in bio(pharmaceutical) processes,

the FDA introduced the PAT initiative [105]. Since controlling CPPs is pivotal to ensure

validated ranges of Critical Quality Attributes (CQAs) of the product, PAT aims to

establish regulatory approved monitoring capabilities for in-process controls, thus

ensuring sufficient quality of the final product while the bioprocess is running.

Soft sensors, which are of high interest in the PAT framework [106], use mathematical

models (software) to make real-time predictions of a system, similar to hardware

sensors [107]. Soft sensors can provide information about process variables that cannot

be measured reliably or at all by mapping their prediction to frequent online data [108];

the corresponding models have to be constantly updated to fit the online process data

best. Soft sensor models are structured in three different classes as well as any

combination thereof: mechanistic models, multivariate statistics and AI/ ML [109]. In the

context of this review, we focus on the latter; however, several general reviews on soft

sensors for bioprocessing exist [104,110,111]. Soft sensors are also important building

blocks for digital twins, which predictively describe the production process behavior

[112,113]. A key feature of digital twins is bi-directional data exchange between a

physical process and its model twin [114]. By analyzing the systems behavior in silico,

further experimentation is guided efficiently towards process validation and qualification

since the corresponding DBTL cycle iterations can be run faster [115,116].

Many ML-based approaches for soft sensors rely on ANNs [Box 3] or SVMs [Box 3]

[117] [Table 1]. Successful examples include ANN-based soft sensors for erythromycin

production [118] or biomass estimation in plant cell cultures [119] as well as the

description of L-lysine fermentation process data using a multi-output least squares

SVM regressor [Box 3] [120]. Recent advances in the field make use of deep learning

[Box 2] instead [121]. For example, Gopakumar et al. [122] demonstrated that their

deep soft sensor outperforms traditional SVM approaches for non-linear systems,

shown for crucial parameters in two fermentation processes (Streptokinase and

Penicillin). Interestingly, Yao et al. [123] developed a soft sensor that combines

unsupervised learning for feature extraction with a semisupervised classification
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approach. Finally, Mowbray et al. [124] incorporated uncertainty quantification and

non-linearities in their soft-sensors by using probabilistic ML methods such as Bayesian

neural networks [Box 3]. All three studies highlight the potential of transferring ML

technologies to the field of process monitoring to outperform conventional approaches.

However, similar to other applications, particularly in process scale-up, ML approaches

for soft sensors suffer from the problem of transferability. In particular, the training

dataset and the actual system variables have to share the same feature space [125],

making it hard to transfer models to new plants. Moreover, older plants are prone to

changing process conditions, which require adaptation in the models as well [126].

These challenges require novel techniques of transfer learning, which are currently at

the starting point of their application in bioprocessing [125]. We believe that adaptation

to new use-cases will be crucial for ML techniques to truly enhance process monitoring

in biotechnology.

As an example from chemical engineering, Li et al. [127] implemented fault detection for

a continuous stirred tank reactor and a plant-wide pulp mill by means of deep and

transfer learning. Using simulated instead of measured data to train an ML algorithm

inevitably leads to model-process mismatch since no mechanistic model can perfectly

describe the real process. To overcome this challenge and use simulated data to train

their convolutional neural network (CNN) [Box 3], the authors applied transfer learning

for domain adaptation, meaning that measured data from other processes is used as

well to increase prediction performance. Similar approaches could also enhance

process monitoring in biotechnology.

Towards controlling bioprocesses, ML can have a high impact regarding model

predictive control (MPC) [Box 3]. In principle, MPC is a methodology that uses three

components: a model to predict system outputs, an objective function as well as a

control law [128]. As an advantage, MPC can optimize performance of a system while

considering constraints [129]. Here, ML is particularly useful for complex non-linear

systems or systems for which little process understanding exists [130].

Nagy [131] used a detailed, mechanistic process model of a yeast fermentation,

including biomass, media concentration and oxygen, to generate training data for an

ANN. The ANN was then shown to efficiently replace the mechanistic model in MPC.

Masampally [132] implemented a cascade structure of GP regression submodels, which

can predict biomass concentration in a fed-batch reactor; the cascaded model was also

validated for process control in a closed-loop environment. Statistical process control
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(SPC) [Box 3] is well-established in various industries, working with control charts

which indicate whether a process is running in-specification or not. As an example for

application of ML, a long short-term memory network, which is a variation of RNNs, was

used to learn which raw data correlated to important control chart patterns [133].

In addition to MPC and SPC, recent approaches make use of reinforcement learning

[134-138]. Petsagkourakis et al. [134] applied a Policy Gradient algorithm [Box 3] to

update a control policy in a batch-to-batch learning approach using true plant data. A

surrogate model for the system was used in two simulated case studies to avoid a large

number of costly evaluations of the true system for training. In both case studies, the

approach outperformed nonlinear MPC, thus posing an interesting starting point for

further applications on real plants. In another study using reinforcement learning,

Treloar et al. [137] applied different variants of the Q-learning algorithm [Box 3] to

control microbial co-cultures via two different auxotrophic nutrients (Figure 1D). Using

data from a chemostat model, which was applied for 5 parallel reactors, the authors

showed that a control policy could be learned within a 24-hour experiment. For long

sample-and-hold intervals, the strategy outperformed a classic PI controller, thus giving

a promising outlook for future applications on industrial co-cultures.

While ML is starting to enhance classical process monitoring and control, further

applications such as predicting running production costs and attrition rates due to

changing resources are still lacking at this stage. Transfer of knowledge, however, can

save both time and costs and thus, de-risking can be achieved by reduced

trial-and-error approaches [24]. Nonetheless, availability of high-quality data from a

significant amount of bioprocess development campaigns is a major challenge since

sharing such valuable data in public is not likely to happen. Additionally, full process

data is often only available for production runs within specification since a predictably

failing run would mean high loss of resources. This results in an imbalance of datasets

available for ML [139,140]. Hence, knowledge transfer models seem realistic only as a

company-internal project because of very likely non-disclosure of corresponding,

valuable data.

Opportunities for ML in bioprocess development

ML approaches in bioprocess development show promising results, especially in the

areas of strain selection, bioprocess optimization and control. For the first two areas,

this is increasingly facilitated by the availability of high-quality data from a wide search

space of possible process parameters, easily acquired from established HTS. For
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bioprocess scale-up, applications and ML models that span various scales are scarce.

However, efficient models across scales would have a high impact, particularly by

ensuring that HTS data at small-scale are representative for industrial scale. Since the

understanding of parameter variation during scale-up is still limited, data-driven ML

methods are promising. To address these challenges in the future, transfer learning,

i.e., reusing data from other conditions, and increasing well-annotated data should be

focused on (see outstanding questions).

Information content of data significantly differs, from highly diverse and broad

information at small-scale strain selection to very specific process information at

commercial-scale process control. As a consequence, we are convinced that no

specific ML method can cover all areas, but rather emphasize the demand for an

umbrella of ML methods that can be flexibly combined for each bioprocess. This is also

reflected in Table 1, which shows that different areas of bioprocess development are

covered unequally and that application of ML methods selectively clusters in certain

areas. In particular, we found that ANNs are widely used across the bioprocess

development fields and that reinforcement learning is dominantly applied in process

control. The development of novel ML models in other fields, e.g. physics-informed

neural networks, which function as surrogate models for complex mechanistic process

models, are currently expanding the available toolbox. Especially in the context of

digital twins, which have the purpose to digitally mimic the real system, combining

different ML models with mechanistic models for other process modules is promising.

This, however, introduces more mathematical and computational challenges for

bioprocess modeling, which still need to be tackled.

Nowadays, the biotechnological pipeline is often rather linear, meaning that a funnel

exists from early-stage screening to process validation at larger scale, in which the

design space is narrowed down after each stage [35]. As a consequence, design

iterations are currently mostly taking place at individual stages such as narrowing down

the number of strains at small-scale. Here, ML methods help to balance exploration

(searching new parameter combinations) vs. exploitation (suggesting the best

parameters using the so-far available data) during iterative experimentation. Eventually,

they provide processed and abstracted information, enabling the user to make smarter

choices. Especially at commercial scale, decisions may result in significant cost and

resource demands, so that human responsibility and accountability are so far not

delegated to a decision-making algorithm.
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Ultimately, however, current developments lay the foundation for integrative ML

approaches covering more than one stage of the biotechnological pipeline. One

example are so-called algorithmic idea generators, i.e., AI algorithms that provide

suggestions for biologically and economically feasible bioproducts and robust

processes from scratch. This, however, requires efficient technology transfer to

bioprocess applications, availability of large, high-quality datasets, e.g., [141] and the

commitment to well-curated databases, including detailed metadata of successful as

well as failed bioprocess development experiments. Revisiting the DBTL concept, the

ideal approach would be an iterative cycle over the whole biotechnological pipeline,

meaning that feedback loops between all stages are established. Ultimately, the funnel

of the biotechnological pipeline would need to be replaced by early-stage iterations,

e.g., between process validation at large-scale and strain selection/bioprocess

optimization at small scale. To realize this vision, ML and AI algorithms ultimately need

to foster autonomous decision-making instead of replacing modules in the current linear

pipeline. Here, we see potential to significantly improve efficiency in bioprocess

development and even change the current mode of operation.

Concluding remarks and future prospects

In this paper, we reviewed the advent of ML for bioprocess development, where ML

methods are increasingly established as a standard in the data analysis toolbox.

However, we see potential to transition from individual tools to frameworks that cover

the whole process pipeline. At this point, committing to open-source methodology and

databases is required for fast progress [142], meaning that a change in mindset is

needed to make data and software publicly available. Indeed, this change is happening

while corresponding impacts are considered thoroughly [143-149]. These advances will

enable unleashing the variety of ML algorithms to better explore the rich amount of data

that remains fairly touched nowadays. We do think that a continuous transition towards

ML-driven bioprocess development is happening in our discipline. Exciting times lie

ahead, giving rise to a new generation of engineers and scientists who can make use of

the vast amount of collected yet unanalyzed data, thus generating new strategies for

bioprocess development. To both sides, machine learners and bioprocess engineers,

we want to express the need for collaboration, expanded networks and joint training to

elevate bioprocess development to a new level.
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Box 1 - Machine learning - Paradigms and general challenges

Artificial intelligence (AI) is a broad field of science with a constantly changing

definition [150]. One of the founders of the discipline, John McCarthy, defined it as “the

science and engineering of making intelligent machines”

(http://www-formal.stanford.edu/jmc/whatisai.pdf). In practice, machine learning (ML)

was the most important field of AI in recent years [151]. In contrast to expert systems,

which are knowledge-based systems that emulate human decision-making by rules of

reasoning [152], the focus of ML is to improve performance based on training data,

which can be later applied to test data.

ML can be further divided into different subfields and central paradigms. A common

distinction is between supervised, unsupervised and reinforcement learning. The first

one is using labeled data during training, meaning that the data provides the expected

output. The goal is to learn functions that can describe relationships between input

and output variables [153]. In contrast, unsupervised learning uses unlabeled input

data; instead of providing labels in training, this branch of methods is focused on

identifying patterns that are inherent to data [154]. Finally, reinforcement learning [Box
2] uses a different approach. Here, an agent acts in an environment, where a policy is

learned to maximize the long-term reward [155]. In contrast to labeled data in

supervised learning, the input signals for the reward are often delayed and batch-wise

optimization is thus frequent [156].

To illustrate several common challenges and principles of ML, a regression task is

visualized in Figure Box 1. Regression is a typical supervised problem in which the

relation between an observed, dependent variable and an independent variable is

targeted. Essentially, a function (red) is learned that captures the trajectory (Figure
Box 1A). Different ML methods assume different functions, e.g., a linear function in

linear regression or a Normal distribution in Gaussian process regression [Box 3]. The

parameters of these functions are learned using labeled data (black dots), in this case

response measurements with known input signals. Uncertainty quantification can be

used to quantify how certain the estimation is (blue bands), depending on the input

signal (Figure Box 1A). The more data available, the lower the uncertainty in the

parameter estimation. However, if supervised learning is performed on small sets of

training data, overfitting is a common problem (Figure Box 1B). In this case, the

learned function is too specific for the training data and not able to sufficiently adapt

for test datasets. In contrast, a function might be too simple to describe complex
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datasets, which is called underfit. The challenge of generalization is addressed in the

field of transfer learning [Box 2], where common structures between models are

identified to reuse trained models and make efficient use of historic data for new

problems [157]. This field is particularly useful since it makes biotechnological

processes, which are often small-data problems, accessible to otherwise big-data ML

methods.

Overall, ML provides particularly useful methods when datasets are quite large or too

complex for human analysis. ML is also beneficial to predict the behavior of biological

systems for which domain knowledge is lacking. The current interest and investments

in the AI sector foster rapid progress in method development and industry is

acknowledging the growing asset of data [24], thus posing a demand for novel

technologies. With advances in deep learning, reinforcement learning and transfer

learning [158], enabled by higher computational power, improved storage and lower

costs [159], bioprocess development is currently at the verge of a new, data-driven

era. An overview about the most important methods for this review is given in Box 3.

Figure Box 1: Regression with uncertainty quantification (A) and the overfitting
problem (B). A: Typical ML task of fitting a model (red) to observed data (black dots)

for a response in dependency of the input signal. Uncertainty (blue bands) is lower

where more data is observed. B: The number of parameters in a non-linear model

indicates its complexity. If it is much smaller than the number of observations, the

model often fails to describe the training data (underfit model). If the number of

parameters is much bigger than the observations, the model will be unable to

generalize beyond the training set. The solution for the underfitting case is

straightforward: increase the complexity of the model (number of parameters). In case

of a neural network, this could for example mean an additional hidden layer or more

neurons per layer. The solution for the overfitting case is reducing the model
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parameters. However, if the number of inputs/features is high, it may be impossible to

do so and training is computational demanding.
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Box 2 - Machine learning - Overview of concepts

● Supervised / unsupervised learning: See Box 1

● Deep learning: This field of ML extracts high-level, often hierarchical, features

from raw input by learning how to represent them. Deep neural networks

comprise a multitude of layers with (often non-linear) activation functions,

whose composition is able to model non-linear dependencies [10,162,163].

Deep learning methods are suitable for complex input such as image data [8].

● Transfer learning: A model developed for a specific task is reused as the

starting point for a model on a second task. Initial efforts in developing a model

structure are not needed anymore for working on the second task. Therefore,

less training resources are needed. Key for transfer learning is to then control

and handle the corresponding uncertainty [157].

● Reinforcement Learning (RL): Trial-and-error approach in which an agent

acts in an environment choosing certain actions according to a policy that

needs to be learned [155]. There are two main approaches: value-based

methods and policy-based methods. Value-based approaches try to estimate

the value of all actions and states by a function to find the optimal policy; the

other type, policy-based algorithms, try to learn the optimal policy directly from

a policy space [164].

● Ensemble learning: Instead of using a single model to learn, several (different)

models are trained on the same dataset. Typically, their combined (or

averaged) predictions yield a higher accuracy compared to a single algorithm,

but at the cost of higher computing demand [165]. An example are random

forests, which are an ensemble of many decision trees (see Random forests in

Box 3).

Box 3 - Machine learning - Overview of methods and applications

Machine learning provides researchers with a huge set of methods for data analysis. In

the following we will shortly introduce the most important ones. The reader is referred to

several recent reviews, which give an overview and short description of ML methods in

the fields of biology and biotechnology [160,161]. For details on each method the

reader is referred to the included references.

Methods

● Artificial neural network (ANN): Network of nodes (neurons), which are

connected by edges. Weights on each connection of a neuron influence the
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output, which is calculated by the weighted inputs. Neurons are typically

structured into an input layer, an output layer and hidden layers in-between

[166].

● Recurrent neural network (RNN): RNNs can operate on ordered data like

time-series data or sentences, where the sequence of the individual data points

is important. Compared to feedforward neural networks, neurons can share

connections and parameters with the same or previous layers. Thereby,

information from prior inputs influences current inputs and outputs [167].

● Convolutional neural network (CNN): Type of neural networks that is often

applied in image processing. The name originates from the additional

convolutional layers, which have the purpose to abstract the input by applying

filter matrices on it. It is designed to automatically and adaptively learn spatial

hierarchies of features, e.g., shapes in hand-written text [168].

● Bayesian neural network (BNN): Instead of identifying a single optimal set of

parameters to define a neural network, BNNs determine probability distributions

for each parameter, thus representing an infinite number of models that can

describe the data [169]. This approach allows to quantify the uncertainty in

parameters of a neural network [124].

● Autoencoder: Autoencoders have the purpose of mapping high-dimensional

inputs to a new feature representation (encoding) in a way that the input can be

(approximately) reconstructed from the representation [170]. Although

variational autoencoders (VAE) share basic architectural features with

autoencoders, their purpose and mathematical formulation differ significantly.

VAEs use a variational Bayesian model formulation and are applied as

generative models, comparable to the application of GANs [171].

● Random forests: This technique is an ensemble learning method for

classification and regression from many decision trees. The latter are

classifying data by continuously splitting it according to certain features [8] that

by Thereby, limited prediction power of an individual tree is overcome by the

joint prediction from a forest of such trees [172].

● Support vector machines: Algorithm that learns by example to assign labels

to objects by separating those into two groups. Separation of groups is

achieved by a hyperplane that maximizes its distance to the majority of all
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elements in the respective groups [173,174]. If applied in regression, the

technique is referred to as support vector regression (SVR).

● Gaussian processes (GP): Are defined as probability distributions over

random functions that approximate sets of data points. The name originates

from the fact that a subset of the random variables in a GP can always be

described by a multivariate Gaussian distribution. GPs are often applied to

learn (multi-dimensional) functional relationships from iteratively generated data

[175]. Associated uncertainty of predictions can guide iterative experimental

design towards experimental conditions with possible high reward.

● Generative adversarial networks (GANs): Generative modeling is an

unsupervised learning task that involves automatically discovering and learning

the regularities or patterns in input data. It is done such that the model can be

used to generate or output new examples that plausibly could have been drawn

from the original dataset [176].

● Embedding vectors: Concept taken from Natural Language Processing (NLP),

where it is often referred to as word embedding. The goal in the context of NLP

is to quantify similarity of words, e.g., semantic similarity. The method uses

vector spaces, thus assigning real numbers to each feature [177]. Modern word

embeddings in NLP are based on learning weights of neural networks [178].

● Policy gradient algorithms: A policy-based reinforcement learning technique

that relies on optimizing parametrized policies with respect to the expected

return (long-term cumulative reward) using gradient descent [164].

● Q-learning algorithm: A model-free, value-based reinforcement learning

algorithm. The Q value refers to the expected reward of playing an action at a

certain state following a specific policy [179].

Applications

● Statistical process control (SPC): Method of controlling any process based

on monitoring temporal evolution of statistics derived from measurements that

were demonstrated to be representative for process performance. Based on

historical data, specification limits are determined which indicate whether the

process runs in-spec or action must be taken, depending on different patterns

observed in the control charts.
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● Model predictive control (MPC): A control concept to predict the future

behavior of the controlled system by online assessment of current data. MPC

computes an optimal control input while ensuring satisfaction of given system

constraints [180]. In contrast to SPC, which is evaluating (validated) limits of

summary statistics derived from the process, MPC is using predictive models to

forecast the temporal evolution.

● (Text) data mining: This ML-powered technology uses natural language

processing to examine large volumes of documents for extraction and

structuring of contained information. Use cases are, e.g., to discover new

information that helps answer research questions [181,182].
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Figure 1: Overview of key studies of ML Approaches within bioprocessing
application for the four fields

(A-left) Machine learning pipeline: Ensemble learning using stacked regressors

(A-right) Prediction of production metrics on the example of titer. R2: coefficient of
22



determination. Solid lines are shown on the diagonal that represent where all the points

would lie for perfect prediction. Colored dots represent different products, ranging from

fatty acids to amino acids. Reprinted from [52] with permission.

(B-left) Schematic overview of building a machine learning model to predict optimal

growth temperature (OGT) for cells. (B-right) Performance of the final support vector

regression (SVR) model trained on dipeptide data. The correlation between predicted

optimal growth temperatures and those present in the original annotated dataset was

evaluated. RMSE: root-mean-square error. Colors indicate the density of the points.

Reprinted from [64] with permission. Copyright 2019 American Chemical Society.

(C-left) Design space of the intensified Design of Experiments (iDoE) performed on the

15 L scale. Critical process parameter transitions for iDoE are displayed as additional

planes (z-axis). The individual iDoE bioprocesses are represented by different colors

and symbols. (C-right) Prediction of large-scale critical process parameters in an iDoE

with a hybrid model trained on data from shaker-scale experiments. The model

estimations for the viable cell concentration (VCC, green lines) and product titer (blue

lines) are indicated along with the respective confidence interval (shaded area). The

analytical measurements are given for the VCC (green squares) and the product titer

(blue triangles). Reprinted from [101] with permission.

(D-left) Machine learning pipeline using reinforcement learning [Box 2] for the control of

bioprocess co-cultures in a simulated chemostat. The agent adds nutrient sources C1

and C2 to control the co-culture composition. (D-right) Co-culture population in a

chemostat. During the exploration phase, in which the agent learns the policy, the

population levels (N1; N2) vary and random actions are taken; as the exploration rate

decreases (shift towards exploitation), they move to the target values (green lines).

Reprinted from [137] with permission.
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Table 1 - Application of machine learning algorithms during bioprocess
development

ML algorithm Stage

Strain selection Bioprocess
optimization

Scale-up Process control

ANN [68-73,85,183-
190]

[101,191] [118-120,122,131,
137,192,193]

RNN [54] [99] [133,134,194]

CNN [52,195] [84]

Unsupervised Feature
Representation (e.g., autoencoders)

[122,123]

Trees / Random forests [52] [196,197] [100] [198]

SVM / SVR [52] [64,87] [97] [108,120,199]

Gaussian Processes [65-67,75] [132]

GANs / Variational Autoencoders [61] [83]

Graph-based neural networks [91]

Transfer Learning [200] [74,75,201] [127]

Reinforcement Learning [62] [91,202] [134-138,203]

Ensemble learning [52,53,57,204,205
]

[206-208] [209,210]

Text data mining [51,211] [212,213]
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Highlights

● Bioprocess development requires identification of robust design spaces for

specific bioproducts and involves efficient strain selection, bioprocess

optimization, scale-up and optimal control strategies for robust industrial

production.

● Beyond multivariate data analysis, deep learning, reinforcement learning and

other novel ML techniques start to complement and replace traditional data

analysis approaches to accelerate screening, optimization and control

procedures.

● Transfer learning is emerging as a means to leverage the potential of historic

data to guide novel production processes.

● No single algorithmic solution will be suitable for all aspects of bioprocess

development. Instead, a flexible combination of various techniques is required to

enhance the whole development pipeline.

● Fast impact is expected in autonomous strain selection and the optimization of

bioprocess parameters. The application of ML for scale-up has a high impact but

needs further development.

Outstanding questions

● In the current biotechnological pipeline, strain selection and optimization of

physico-chemical parameters is often performed sequentially. These stages are,

however, highly interdependent. Can ML induce a shift in the conventional, linear

pipeline towards an integrative, circular approach, including feedback

mechanisms between the two stages?

● Can proof-of-concept ML studies that have been conducted for well-established

bioprocesses be transferred to (non-model) production hosts and bioprocesses?

● To realize the above-mentioned goals, thorough data collection and annotation

with metadata, corresponding data formats and databases, interfaces for

automation and other technical requirements need to be established. How can

we realize and motivate this change? Are the FAIR data principles [214] sufficient

and how can this transition be implemented in the mindset of bioprocess

engineers and data scientists?
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● Publishing and using negative results as training data can be game-changing for

improved ML models in bioprocessing. How can we motivate and reward

publication of negative results?

● Which data is more suitable for different ML models: sparse and highly

informative data that is expensive to acquire (e.g. infrequent mass spectrometry

data) vs. big amounts of data that are less informative but can be retrieved more

cheaply (e.g. online spectroscopy)?

● Uncertainty quantification of ML results and interpretability of ML procedures are

important for assessing model quality and revealing biological meaning/ drawing

meaningful conclusions. How can we foster the integration of uncertainty

quantification in biotechnology to increase our process understanding?

Glossary

Backpropagation: In the context of artificial neural networks, backpropagation refers to

a method that allows to calculate the gradient of the loss function, which is used for

training the network, i.e. identifying its weights using data [170].

Bayesian statistics: Field of statistics covering methods with a Bayesian interpretation

of probability, which according to Bayes theorem includes prior beliefs in an event.

Methods cover, among others, Bayesian inference of parameters, statistical modeling,

Bayesian optimization (for sequential design) and Bayesian networks.

Bioprocess development: Bioprocess development aims for the identification of a

robust design space for the production of a specific bioproduct with desired yield and

purity. It requires experiments and data analysis to understand the interaction of

parameters within the specific bioprocess.

Constraint-based modeling (COBRA): Subfield of systems biology that takes into

account the underlying physical, enzymatic, and topological constraints of a phenotype

in a metabolic network [215]. Methods include Flux Balance Analysis (FBA) [46],

Minimization of Metabolic Adjustment (MOMA) [47], or Minimal Cut Sets (MCS) [48].

Critical process parameters (CPP): Parameters of a (bio-)pharmaceutical production

process that have been shown to affect the critical quality attributes of the final product.

The parameter values have to be monitored and to be kept in proven ranges to not

affect the corresponding critical quality attributes in a negative way.

26



Critical quality attributes (CQA): Attributes of a (bio-)pharmaceutical product that

determine its quality and for which certain value ranges have to be met in order to

release the product.

Design-Build-Test-Learn (DBTL) cycle: A loop used recursively to obtain a design

that satisfies the desired specifications. In bioengineering, the DBTL cycle makes use of

synthetic biology to engineer biomanufacturing solutions for industrial application.

(Intensified) Design of Experiments (iDoE / DoE): In Design of Experiments, the goal

is to create an empirical model that describes how a process responds to changes in

influential factors. It is often performed in two stages: 1. screening for identification of

influential factors and 2. prediction of response surfaces to identify optimal operation

conditions [216]. Intensified DoE is an adaptation in which several set points for

influential factors are tested as intra-experiment variations, thus reducing the overall

number of experiments [217].

Digital twins: Digital twins are detailed, virtual representations of production systems,

where feedback between model and physical systems is characteristic [218].

Applications include real-time monitoring of manufacturing processes and fault

detection [116].

Flux Balance Analysis (FBA): A mathematical method to solve stoichiometric

metabolic networks for steady state flux solutions. Applications include identification of

targets for metabolic engineering and media design.

Hybrid modeling: Combines data-driven models with mechanistic, a priori knowledge

into one superior model structure.

Linear regression: A linear approach for modeling the relationship between a response

and one or more explanatory variables.

Natural Language Processing: Field of AI that is concerned with automatically

analyzing and representing human language; as such it is closely related to computer

science and linguistics [219]. Applications include speech recognition, machine

translation and synthesis of language [220].

Non-linear regression: A form of regression analysis in which observational data are

modeled by a function which is a nonlinear combination of the model parameters and

depends on one or more independent variables.
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Process analytical technology: System for designing, analyzing and controlling

(pharmaceutical) manufacturing processes through measurements of critical quality and

performance attributes (https://www.fda.gov/media/71012/download).

Surrogate modeling: Surrogate models are approximations that are used when the

desired output of a system is expensive or hard to simulate [2]. An example are

physics-informed neural networks (PINNs) that can for example be used to replace

costly simulations in computational fluid dynamics [102].
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