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Abstract

The yeast Saccharomyces cerevisiae is an important model organism for human health [1,
2] and for industrial applications as a cell factory [2, 3]. For both purposes, it has been an
important organism for studying glucose repression. Glucose sensing and signaling is a
complex biological system, where the SNF1 pathway is the main pathway responsible for
glucose repression. However, it is highly interconnected with the cAMP-PKA, Snf3-Rgt2
and TOR pathways. To handle the complexity, mathematical modeling has successfully
aided in elucidating the structure, mechanism, and dynamics of the pathway [4]. In this
thesis, I aim to elucidate what the effect of the interconnection of glucose repression with
sensory and metabolic pathways in yeast is, and specifically, how crosstalk influences the
signaling cascade; what the main effects of nutrient signaling on the metabolism are and
how those are affected by intrinsic stress, such as damage accumulation. Here, I have
addressed these questions by developing new frameworks for mathematical modeling.

A vector based method for Boolean representation of complex signaling events is pre-
sented. The method reduces the amount of necessary nodes and eases the interpretation
of the Boolean states by separating different events that could alter the activity of a
protein. This method was used to study how crosstalk influences the signaling cascade.

To be able to represent a diverse biological networks using methods suitable for re-
spective pathways, we also developed two hybrid models. The first is demonstrating a
framework to connect signaling pathways with metabolic networks, enabling the study
of long-term signaling effects on the metabolism. The second hybrid model is demon-
strating a framework to connect models of signaling and metabolism to growth and
damage accumulation, enabling the study of how the long-term signaling effects on the
metabolism influence the lifespan. This thesis represents a step towards comprehensive
models of glucose repression. In addition, the methods and frameworks in this thesis can
be applied and extended to other signaling pathways.

Keywords: budding yeast, glucose repression, metabolism, signaling, mathematical
modelling.
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Abbreviations

AMPK AMP-activated kinase

ROS Reactive oxygen spices

GAM Growth associated maintenance

NGAM Non-growth associated maintenance

PTMs Post-translational modifications

HXT Hexose transporters

STRE Stress response element

PDS Post diauxic shift element

CSRE Carbon source-responsive elements

SNF1 Sucrose non-fermenting 1

ODE Ordinary Differential Equation

SAEM Stochastic approximation expectation maximization

MCMC Markov chain Monte Carlo

FBA Flux balance analysis

FRAP Fluorescence Recovery after Photobleaching

NLME Non-linear mixed effect

bBM Bipartite Boolean model

GEMs Genome-scale models

FVA Flux variability analysis

GECKO GEM with Enzymatic Constraints using Kinetic and Omics data

ec Enzyme constrained
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Chapter 1

Introduction

In presence of glucose, yeast uses fermentative metabolism, and represses genes for respi-
ration along with genes for utilization of alternative carbon sources and gluconeogenesis,
otherwise referred to as glucose repression. The SNF1 pathway is central in the control
of glucose repression, where Snf1 is the yeast homolog of the highly conserved human
AMP-activated kinase (AMPK). SNF1/AMPK acts as a global energy regulator to bal-
ance the anabolic and catabolic processes in the cell with glucose (de-)repression as its
main tool [5]. Understanding glucose repression is of large interest for the development
of biotechnological processes, where it is desirable to direct flux towards the product in
a variety of culturing conditions, as well as for the biological understanding of associated
diseases and conditions [5]. Dysregulation of SNF1/AMPK has been associated with
human diseases and conditions such as aging, obesity, diabetes, cardiovascular disease,
cancer and dementia [6]. Understanding the mechanism of the regulation and how the
pathway interacts with other sensory and metabolic pathways in yeast, can guide efforts
to help elevate or cure associated diseases and conditions.

In this thesis, I aim to elucidate the effect of the interconnection of the SNF1 path-
way with sensory and metabolic pathways in yeast, specifically, how crosstalk influences
the signaling cascade; what the main effects of nutrient signaling on the metabolism are
and how those are affected by intrinsic stress, such as damage accumulation. In this
thesis I have addressed these questions by developing and establishing new frameworks
for mathematical modelling. The ideas and work put forward in this thesis demonstrate
a step towards comprehensive models of glucose repression, enables improved predic-
tions for models commonly used in the design of cell factories and presents a framework
connecting the effect signaling imposes on metabolism to longevity traits and aging.

Chapter 2 and 3, introduce mathematical frameworks and biology, focusing on the
general structure and function of central carbon metabolism and glucose signaling path-
ways. The choice of mathematical framework is dependent on the question or context,
as the frameworks come with both advantages and disadvantages. Other considerations
include the frameworks’ ability to capture the biology, the scalability of the framework
and the availability of data. As data is a central component of mathematical modelling,
a short introduction of the type of data commonly used in these types of models is pre-
sented, together with the results from Paper III, as an example of how mathematical
regression models can be used to estimate kinetic parameters from time-lapse data.
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Chapter 4 focuses on the existing models of metabolism and glucose repression in-
cluding framework implementation. An exhaustive review of the mathematical models
on SNF1 signalling is presented, based on the review paper, along with the method
developed in Paper I. There are many metabolic models, therefore this chapter focuses
on the development of metabolic models, lifting up a few examples. The result of Pa-
per V and how it should be considered when simulating metabolic FBA models is also
discussed.
Multi-scale models combine processes acting on different scales, such as processes at

different time scales. Chapter 5 discusses two different goals of multi-scale models and
lifts a few examples of the historical development towards a multi-scale model of glucose
repression. Here, the model construction from Paper II and IV is presented.

It is my sincerest hope that the ideas put forward here in this thesis will be further
developed. Chapter 7 focuses on the lessons learnt from the included papers, summa-
rized in Chapter 6, and on ideas for possible developments, including my view of the
future of this field and the central question: How can we continue the road towards a
comprehensive model of glucose repression?
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Chapter 2

Yeast metabolism and glucose signaling
pathways

Life has been defined many times. In a recently published reflection in Molecular Biology
Reports, Gómez-Márquez defined life as ”a process that takes place in highly organized
organic structures and is characterized by being pre-programmed, interactive, adaptative
and evolutionary” [7]. The organized organic structure, i.e. the carbon chemistry that
makes up the metabolism, transforms the nutrients and energy from its environment to
enable the low entropy, necessary to maintain life. The cells’ ability to sense and signal,
builds up the ability to interact and adapt to, and with, the environment and systems
in the cell itself. It is the foundation for life to evolve into higher organisms. These two
features, metabolism and signaling, are at the core of our conceptual understanding of
life. Understanding how these features work by themselves, but also how they connect
and interact are central in our ability to understand life.

2.1 Central carbon metabolism

The metabolism transforms nutrients into energy (catabolism) and synthesizes building
blocks for new cells or other products (anabolism). As the substrate for one reaction is a
product generated by a previous reaction in a pathway, the reaction rates are dependent
as much on the substrate and product metabolite ratios as they are on the kinetic prop-
erties of the enzymes in the network. The metabolism needs to be tightly regulated to
avoid energy loss in futile cycles as well as to avoid depletion of important metabolites,
such as the energy storage molecule ATP, and the redox cofactors NADH and NADPH,
and therefore balance the rate of catabolism and biosynthesis.

The central carbon metabolism, in general, includes the pathways that enable aerobic
respiration and fermentation. These include glycolysis, pentose phosphate pathway, TCA
cycle, anaplerotic reactions, oxidative phophorylation and anaerobic excretion pathways
(Table 2.1). In our model (Paper II, IV and V) we also include galactose metabolism
(Figure 2.1), representing an alternative carbon source. In the upper glycolysis, glucose
is cleaved into three-carbon units, consuming two ATPs. In the lower glycolysis these
units get oxidized into pyruvate generating two ATP and one NADH each, resulting
in net two ATP and two NADH molecules per glucose. [9, p.469-483] In fermentation,
decarboxylation of pyruvate produces CO2, the NAD+ is regenerated trough a reduction
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Figure 2.1: The central carbon metabolism in Saccharomyces cerevisiae, include path-
ways allowing for aerobic respiration and fermentation. Figure adapted from
paper II [8].
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Table 2.1: Net reactions of the pathways in the central carbon metabolism participating
in the conversion of glucose into ATP.

Glycolysis Glucose + 2Pi + 2ADP + 2NAD+ →
2 pyruvate + 2ATP + 2NADH + 2H+ + 2H2O

TCA cycle pyruvate + CoA+NAD+ →
acetylCoA+ CO2 +NADH +H+

acetylCoA+ 3NAD+ + FAD +ADP + Pi + 2H2O →
2CO2 + 3NADH + FADH2 +ATP + 2H+ + CoA

Anaplerotic reactions 2 acetylCoA+NAD+ + 2H2O →
succinate + 2CoASH +NADH + 2H+

Oxidative phophorylation NADH + 1/2O2 +H+ → H2O +NAD+

ADP + Pi +H+ → ATP +H2O
Anaerobic excretion pyruvate + 2H+ +NADH →

ethanol + CO2 +NAD+

of acetaldehyde to ethanol, maintaining the redox balance [9, p.483]. As no oxygen is
required, fermentation can be carried out both aerobically and anaerobically.

In aerobic respiration, pyruvate is decarboxylated to acetyl CoA and enters the TCA
cycle in the mitochondria. The citric acid cycle harvests electrons by oxidizing acetyl CoA
and stores them in the electron carrier molecules NADH and FADH2, in the process ATP
and CO2 are produced [9, p.515-529]. The TCA cycle is also a source of intermediates for
biosynthesis, thus intermediates need to be replenished by anaplerotic reactions. These
anaplerotic reactions are also important for growth on acetate in yeast. In oxidative
phosphorylation, electrons from FADH2 and NADH, move trough the electron transport
chain and facilitate a proton gradient across the mitochondrial inner membrane and
reduce oxygen to water in the mitochondrial matrix. The pH gradient powers a proton-
motive force that allows ATP synthesis. From the NADH generated in the mitochondria,
the electrons yield 2.5 ATP each while the ones generated in the cytoplasm only yields
1.5, depending on which path they take. The FADH2 yields 1.5 ATP molecules. This
sums up to 26 molecules of ATP per glucose [9, p. 573] together with the ATP generated
in the glycolysis and citric acid cycle, the total reaction yields about 30 ATP molecules
per glucose and can be compared to the 2 ATP per glucose generated by fermentation.

Glucose + 30ADP + 30Pi + 28H+ + 5O2 → 30ATP + 6CO2 + 34H2O

Although aerobic respiration is one of the most important pathways to produce ATP
in higher organisms, the electron transport chain is the main source of reactive oxygen
species (ROS) and oxidative stress in the cell, contributing to aging, damage and disease
[10, 11]. The glycolysis branches out into the pentose phosphate pathway which mitigates
oxidative stress and supplies the reducing carrier molecule NADPH as well as precursors
for nucleotides and aromatic amino acids. In addition to biosynthesis, ATP and redox
cofactors are also used to maintain the cell functions. The ATP demand for maintenance,
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the maintenance energy, is usually divided into, growth associated maintenance (GAM)
and non-growth associated maintenance (NGAM) [12].

Yeast maintenence energy
A Very Short Introduction

Probably the first expression of maintenance energy was formulated by Duclaux:
ds = Adx + mxdt, where s = substrate, A = energy substrate consumed ,
x = biomass and m = energy for maintenance [12]. Thus, the maintenance
energy was defined as the processes in a cell that are not directly coupled to
growth, for example, repair of cell damage, protein turnover, maintenance of
homeostasis in pH, osmotic pressure, energy etc. Using the Duclaux expression
ds/dt = (ds/dt)M + (ds/dt)G, substituted with growth rate, where Y is observed
growth yield and YG is the true growth yield,

ds/dt = −µx/Y

(ds/dt)M = −mx

(ds/dt)G = −µx/YG

results in:

1/Y = m/µ+ 1/YG.

By plotting the observed growth yield at varying growth rates, 1/Y against 1/µ,
the linear fit will have the slope m and the intercept of 1/YG. It is notewor-
thy that a linear regression model would work only when m is a constant and
that the extrapolation of 1/YG is only valid while the metabolic conditions of
the measurements holds true. As the maintenance constant varies greatly be-
tween the carbon source in limited continuous cultures it was postulated that the
maintenance energy has two terms, growth associated maintenance (GAM) and
non-growth associated maintenance (NGAM) [12]. From the postulation in the
1960’s until today, there is no consensus of what constitutes the GAM and NGAM
[12–15] and the terms continues to be defined by what it is not and quantified by
the discrepancy between the theoretical yield and the data.

2.2 Regulation of central carbon metabolism

How the flux is distributed and thus how the resources are utilized in the cell is determined
by many factors. The cell needs to not only be primed for the current situation but it
also needs to be prepared for sudden changes in the environment. To tackle this, the
cell exploits metabolites as reporters of the intracellular state and receptors are used
to sense the extracellular environment [16]. The cell responds using post-translational
modifications (PTMs) that either directly or trough a network modulate a plethora of
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Figure 2.2: Glucose is sensed by several pathways. The cAMP-PKA pathway (PKA)
is activated by glucose and regulates growth as well as inhibits stress sig-
naling while the SNF1 pathway is inhibited by glucose. When there is no
glucose available the SNF1 pathways become active and inhibits biosynthesis
and induces genes necessary for growth on alternative carbon sources. The
Snf3/Rgt2 pathway (RGT) is sensing extracellular glucose and regulating
what type of hexose transporters (HXT) are expressed.

cellular functions. For example, the activity of proteins, the localization or activity of
transcription-factors, chromatin structure or even targeting proteins for proteolysis. In
addition metabolites can also by themselves act as modulators and change activity of
proteins. The triunal role of these molecules as metabolites, reporters and modulators
builds up a fine tuned system, able to respond with different magnitude on different
time-scales and even carry memory of previous experiences.

2.2.1 Glucose sensing pathways

When specifically looking at the regulation of the cell in response to glucose availability,
we already have an immensely complicated system of several pathways working together
to sense and regulate the glucose response.

Snf3/Rgt2 pathway

Monosaccarids such as glucose enter the cell through transporters in the plasma mem-
brane where most operate trough facilitated diffusion [17]. When the amount of sugar
in the medium is scarce, the cell uses an active proton-sugar symporter system, coupling
glucose uptake to proton uptake [18]. Yeast has about 20 genes in the hexose transporter
(HXT) gene family. Snf3 senses low levels of extra-cellular sugar while Rgt2 senses high
levels [5]. The other genes in the family consist of Hxt1-17 and Gal2, where all but Hxt12
can transport glucose[18]. The transporters are generally divided into three categories
based on affinity for glucose (high, medium and low affinity transporters) and are dy-
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namically regulated by the Snf3/Rgt2 pathway to facilitate efficient glucose uptake. Snf3
and Rgt2 are transmembrane proteins; when sensing glucose, the membrane-attached ki-
nases Yck1 and 2 are activated, which are necessary for Mth1 and Std1 degradation.
Phosphorylation of Mth1 and Std1 leads to ubiquitination and proteosomal degradation.
In high glucose Mth1 is repressed by the SNF1 pathway to ensure glucose repression
of HXT genes while Std1 expression is being increased, priming the cell for expression
of high affinity HXT if glucose is being exhausted. When Mth1 and Std1 are being
degraded, PKA hyperphospphorylates Rgt1, a transcriptional repressor, inactivating it.
When glucose is depleated, Mth1 and Std1 interact with Rgt1, concealing the target site
for PKA. Rgt1 gets phosphorylated by Snf1 and triggers repression activity. [5]

cAMP-PKA pathway

In S. cerevisiae, PKA is a tetramer with two catalytic subunits (Tpk1, Tpk2 or Tpk3)
and two regulatory subunits (Bcy1) [19]. The binding of cAMP to the regulatory Bcy1,
triggers the release of the Bcy1 dimer and thus activates PKA. The kelch repeat proteins
Krh1 and Krh2 stimulate the association of catalytic and regulatory subunits resulting
in an increased amount of cAMP required for PKA activation [20]. The different Tpk
isoforms are in large functionally redundant but display different roles in PKA signalling
[19]. The cAMP-PKA pathway represses genes associated with stress and induces genes
associated with growth. By phosphorylating Rim15 protein kinase, it becomes inactive
and can not activate the transcription factors Msn2, Msn4 and Gis1 [21] that otherwise
induce genes with stress response element (STRE) and post diauxic shift element (PDS)
respectively. Phosphorylation of Rim15 can also be achieved through crosstalk with
the TOR pathway [22], and it has been shown that PKA crosstalks with the SNF1
pathway by inactivating the transcription factor Adr1 [23]. PKA targets include the
phosphodiesterases Pde1 and Pde2 which mediate a negative feedback mechanism on
PKA by degrading cAMP [24]. PKA also directly phosphorylates metabolic enzymes
such as trehalase [25], phosphofructokinase 2 [26], pyruvate kinase [27] and fructose-1,6-
bisphosphatase [28].
The cAMP-PKA pathway senses intracellular glucose through Ras proteins and extra-

cellular glucose through the G-protein coupled receptor Gpr1 that interacts with Gpa2
[29]. Ras1 and 2 are GTP-binding proteins that are activated by Cdc25, triggering the
exchange from GDP to GTP [30–32] while Ira1 and Ira2 trigger GTP hydrolysis [33, 34].
Extracellular glucose causes a Gpr1-mediated nucleotide exchange in Gpa2 from GDP to
GTP yielding its activation [35]. Gpa2 and Ras activity stimulate cAMP production via
adenylate cyclase [29, 36] however activation of adenylate cyclase also requires activity in
the upper metabolism [29] and is deactivated by crosstalk with the SNF1 pathway [37].

2.2.2 Glucose repression

The transcription factor Mig1 mediates glucose repression by interacting with Cyc8/Ssn6
and Tup1 to repress transcription of genes involved in metabolism for alternative carbon
sources, gluconeogenesis, respiration and peroxisome biogenesis, in high glucose condi-
tions [38–40]. In low/no glucose conditions SNF1 is active and phosphorylates Mig1 on
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at least four sites [41, 42], relieving the repression. SNF1 also activate the transcription
factors Cat8, Sip4 and Adr1. Cat8 and Sip4 induce expression of genes regulated by car-
bon source-responsive elements (CSRE) [19] and Adr1 induces genes involved in the use
of alternative carbon sources as well as peroxisome biogenesis and fatty acid utilization
[19]. Active SNF1 can also directly phosphorylate and inhibit Acc1 [43].

The SNF1 gene was identified in 1977 as CAT1 [44], CCR1 [45] and in 1981 as sucrose
non-fermenting 1 (SNF1 ) [46] by the mutant version’s inability to grow on alternative
carbon sources. SNF1 is a heterotrimeric complex consisting of the catalytic α subunit
(Snf1), the regulatory β subunit (Gal83, Sip1 or Sip2) and the γ subunit (Snf4) [47–
49]. Snf1 contains an autoinhibitory domain that inhibits phosphorylation of the Thr210
residue needed for kinase activity. Interaction with Snf4, relieves the autoinhibition
and allows for activation of the complex. Binding of ADP to Snf4 protects Snf1 from
being dephosphorylated, however ATP competes with ADP for binding [50, 51]. The
β subunits are partially redundant, as only the triple mutant sip1∆sip2∆gal83∆ strain
show a snf1∆ phenotype [52]. The β subunit interacts with both the α and γ subunits
and confers the localization pattern upon glucose starvation [53], where the Sip1 isoform
is associated with the vacuolar membrane, Sip2 is located in the cytoplasm, and Gal83
accumulates in the nucleus [53, 54]. The subcellular localization is important for SNF1
response to alkaline stress, however, in glucose depletion all isoforms can phosphorylate
Mig1, though they cannot completely complement each other [52, 54].

The SNF1 complex is activated trough phosphorylation of Thr210 on Snf1 by the
constitutively active kinases Sak1, Tos3 or Elm1 [55, 56]. Dephosphorylation is mediated
through Glc7 that targets Snf1 through Reg1 [57, 58].
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Chapter 3

Frameworks for mathematical modelling
of the cell

To handle the complexity of a biological system, mathematical modelling has proven to
be an excellent tool [59–63]. Mathematical modelling itself consists of various techniques
and when constructing a model, there are many considerations to make before choosing
or developing a specific framework. The right approach is always depending on the
context and the question i.e reason the model was created. A few of the most important
considerations are:

• What abstractions and assumptions are reasonable to make?

• What level of explanation is needed?

• What type of data is available?

• What is the timescale or time dependence of the system?

• What type of predictions are expected?

The answer to these questions determines what model properties are necessary but
also limitations of what is possible. In this thesis, important model properties that
will be discussed are quantitative or qualitative, linear or non-linear, static or dynamic
mechanistic or non-mechanistic. It is also good to have in mind that depending on which

Framework Properties

ODE Quantitative
Linear OR Nonlinear

Dynamic
FBA Quantitative

Linear
Static

Boolean Qualitative
Linear

Dynamic

Table 3.1: Different frameworks and their key properties
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framework that are used, the implication of the model properties are different. For
example, what is a disadvantage in one framework could be an advantage in a different
framework.

3.1 Ordinary differential equations

Ordinary Differential Equation (ODE) based models are dynamic, implicit models, de-
scribing the rate of change. In systems biology this framework is most often used in
kinetic modelling [64], where a set of non-linear ODEs are used to describe the state
derivatives of the model states, x, usually corresponding to an amount or concentration
of interest, such as a metabolite, protein or cell mass. The states, x, are described by
the model parameters, θ, and the model input, u.

dx

dt
= f(x, θ, u) (3.1)

The function, f , is describing the kinetic rate expressions of the chemical reactions affect-
ing the state quantities. These are usually formulated based on the law of mass action,
Michaelis-Menten kinetics, and Hill kinetics, and naturally, require knowledge on the
kinetic constants, as well as time-series data on states.
Experimental kinetic values are available for some reactions, however, they are of-

ten measured in vitro, and even if kinetic properties of some proteins have been re-
measured in an in vivo-like environment [65], these are usually limited to the central
carbon metabolism and the availability of measurements still emprise a problem.
Time-series data of states, like phosphorylation dynamics and protein concentrations,

are often done by immunoassays, which are limited by the availability and specificity of
antibodies, or omics approaches. In both approaches isoforms of complexes and single
proteins can be impossible to distinguish between and experiments are usually done in
triplicates which is not sufficient for precise parameter estimations [66]. Hence, many
parameters are formulated as fractions or measured indirectly, with low specificity, and
with a low time frequency.
All types of data are associated with measurement noise in addition to the method

specific considerations which propagate to the estimated values, typically computed using
Monte Carlo sampling approaches [64]. The uncertainty in both, the measured and
estimated parameters, impedes the development of large kinetic models [64, 66, 67] as
the uncertainty scales with model size.

3.1.1 Mixed effect regression models

ODEs are also often encountered in regression models, especially when generating pa-
rameter values for kinetic models. Mixed-effect models are a class of statistical regression
models that incorporate both fixed effects and random effects [68] in data based on re-
peated measurements of multilevel and/or longitudinal data. To decide what are fixed
effects and what are random effects for a biological system is both a technical issue and
a bit of a philosophical question, where fixed effects are properties of the population
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and random effects are parameters that are associated to the individual belonging to the
population[68].

The purpose of mixed effect regression models is to describe a response variable as
a function of covariates while taking into account correlation among observations in
the same group [69], meaning that there are two types of variability, the inter-subject
variability and the intra-subject variability. The population parameters are assumed to
follow a distribution where the fixed effect captures the overall behavior of a population.
Individual subjects can be described using the fixed effect with a deviation coming from
random effects, which are described by the inter-subject variability, η. Measurement
errors affect all measurements and are described by ϵ. In biology, normal or log normal
distributions are commonly assumed [70, 71]. For example, consider a growth model, as-
suming that the parameter for doubling time, T , are independent and normal distributed
with a variance of α2, the individual, i, can be described as a linear combination of fixed
effects, population parameters and random effects.

Ti = Tpop + ηi, (3.2)

where Ti ∼ N (Tpop, α
2) and ηi ∼ N (0, α2). The error between the predicted values

and the measured values are assumed to be normally distributed, with a variance of σ2,
centered around 0, giving:

yij = f(X0i, tj , Ti) + ϵij = X0i ∗ 2tj/Ti + ϵij , (3.3)

where, ϵi ∼ N (0, σ2) . For a general expression using the probability distributions,
Ψpop, is a vector of the n population parameters and Ω is the n× n variance-covariance
matrix:

yij ∼ N (f(tij ,Ψi), σ
2) (3.4)

Ψi ∼ N (Ψpop, Ω) (3.5)

y is the complete set of observations and Ψ is the complete set of individual param-
eters. The parameter can be estimated by using either maximum likelihood estimation
or Bayesian inference.

Using the maximum likelihood approach with a stochastic approximation expecta-
tion maximization (SAEM) algorithm [72], the unknown parameters are denoted θ, and
θ = (Ψpop, vec(Ω), σ). The algorithm is designed to find estimates of θ which maximizes
the likelihood of the data points yij giving the likelihood function as follows: L(θ;y). If
measurements are independent, the likelihood is calculated as the product of the indi-
vidual likelihoods and written in terms of the joint probability distributions.

L(θ;y) =
N∏
i=1

p(y|θ) (3.6)

Non-linear regression functions can not be analytically solved, the SAEM algorithm
iterativly converges to the maximum likelihood [72]. The algorithm starts by generating
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individual parameters based on the probability distributions of Ψ given the data y, and
the population parameters from either the previous iteration or a starting guess. SAEM
has implemented a Markov chain Monte Carlo (MCMC) procedure to generate individual
parameters, since there are no analytical expression for this. The population parameters
i.e the fixed effects are updated to the average of the individual parameters and are
used in the next step as population parameters. When the values have converged, the
algorithm uses the average over all the individual parameters generated in this phase of
the approximation, to update the new population parameters.[72]

3.2 Flux balance analysis and constraint-based modelling

Flux balance analysis (FBA), was developed in the mid 1990s in the context of modelling
metabolic networks and utilizes linear optimization to get around the need of kinetic
parameters that an ODE system is limited by. The emergence of the genomics, proteomics
and metabolomics fields generated an overflow of information with few tools to generate
knowledge. FBA is often referred to as a top-down approach where, instead of starting
with detailed information about the biological functions and mechanisms of a system and
simulate a model to understand the exact characteristics of it, the idea was to start with
the possible solution space of the system and successively narrow the range of possible
solution based on physio-chemical constraints [73] generated by data from the new fields.
The dynamic mass balance of integrated metabolic networks is formulated based on

that the change of a metabolite over time equals the difference in the production and
consumption rates.

d[Mn]

dt
=

∑
vprod −

∑
vcons (3.7)

If S is a stoichiometric matrix describing the relationship between the metabolites, repre-
sented by rows, the vector of states, can be described as the product of the stoichiometric
and the reaction rates, including exchange reactions [73].

r1 r2 · · · ri

S =


−1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
0 −2 · · · 1


m1

m2

...
mn

d[M]

dt
= Sv (3.8)

In steady state, Sv = 0, and the null space can be reduced using both physio-chemical
constraints and condition specific knowledge on the system. However, the system is
usually underdetermined, n < i and can not be algebraically solved. By defining an
objective, linear programming can be used to calculate the optimal solution based on
the objective, subject to the defined constraints, which have proven to be surprisingly
accurate during a number of conditions.
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3.3 Logic and Boolean models

Boolean models are qualitative, discrete, scaleable and dynamic models where kinetic
parameters are not needed to infer dynamics. Generally, Boolean models were introduced
in systems biology in 1969 by Kauffman [74], and have since then been a standard
for modelling gene regulatory networks. They have also been used to model signaling
networks[75–77] and specifically for glucose repression [4]. The model consists of n states
or nodes.

p = {p1, p2, . . . , pn} (3.9)

The nodes, or Boolean variables are constricted to a binary state, {0, 1}, but variations
exists where a range are allowed {0, 1, ...,maxk}. As follows, the state space is defined
as:

S =
∏

i=1,...,n

{0, 1, . . . ,maxk} (3.10)

The state of a component can be altered by a Boolean function that define the inter-
actions that switches the state of a variable, p = {p1, p2, ..., pn}. Each pi, has a rule
Bi The states are either updated synchronous, where all nodes are updated every time
unit, or asynchronous, where in most cases, a node is chosen at random(or with a given
probability) to be updated for each time unit [78]. In the synchronous case, the model is
deterministic, but the time dimension of the model does not take into account that re-
action dynamics through different pathways may be different and that the level of detail
in each pathway is directly translated to time. If a pathway is well studied and has more
interactions, the steady state takes longer to reach than for the pathway where either
there is a lack of knowledge or simplifications have to be made to represent the interac-
tions in a Boolean fashion. As stochastic behavior is characteristic for chemical reactions
and biochemistry is no exception, the asynchronous approach is better at capturing that
behaviour. However, the asynchronous approach leads to complicated state-transition
graphs and gives the model a non-deterministic property, which can complicate the anal-
ysis. The complexity of the result and the resulting properties have to be weighted
against the relevance of catching stochastic behaviours in the model.

Many biological interactions cannot be represented in a Boolean fashion and abstrac-
tions have to be made. Different approaches have been used, for example activity is
achieved if at least one activator and no inhibitor is present. Another approach is to use
the (weighted) sum of positive and negative regulatory contributions.

3.4 Data generation for mathematical modelling

One of the determinants of which modelling framework to work with is data availability.
There are three types of data dominating the integration in mathematical modelling: 1)
omics, 2) immunoblotting, and 3) fluorescence microscopy data.

The use of omics datasets such as transcriptomics, proteomics, metabolomics, flux-
omics, etc. is a common way to validate models (as done in Paper II), reduce the
solution space in constraint-based modelling frameworks and to determine parameters in

15



the construction of dynamic models. There are no doubts of how powerful these methods
are and how large the impact has been on the diverse fields in biology and particularly in
mathematical modelling. However, there are some pitfalls for omics studies that might
impact our confidence in the data and affect how it should be handled. In omics studies,
when looking at sample size and statistical power, the false discovery rate scales with
the entities measured [79]. A microarray study looking at 461 miRNAs needed about 19
samples per condition to achieve a statistical power of 0.8 at a 1.5 fold change [80], while
an RNA-seq study of 10,000 transcripts with 10 counts minimum would need 35 samples
per condition for the same statistical power [81]. The effect size relates to statistical
power and sample size, so that when the sample size is low we can only expect to capture
large effects. It should also be noted that all type of omics data do not have straight
forward ways to calculate appropriate sample size and a small sample size also gives rise
to false negatives [79, 82].
Yeast proteome studies are typically conducted in two to five replicates [83–85]. A meta

study of 21 proteome studies in yeast [86] concluded that the variance in data sets are
highest in low abundant (≤ 866 molecules per cell) and high abundant (≥14,923 molecules
per cell) proteins, where the median coefficient of variance was 94.8% respectively 80.9%
for the respective category. The lowest median coefficient of variance was 60.2% (2786-
3586 molecules per cell) [86]. Many commonly used methods for absolute quantification
of protein abundance yield high experimental errors, spanning over orders of magnitude,
when measuring proteins of known concentration [87–89]. Therefore, when validating a
model or when using omics data in the construction, it is important to be aware of these
numbers especially when using the data for quantitative modelling.
Another commonly used type of data in mathematical modelling is immunoblotting

data (also called Western blot). This is a low throughput technique that measure pop-
ulation averages, that can be quantitative or qualitative [90] and is highly dependent
on the availability of antibodies. By developing antibodies for phosphorylated epitopes
one can follow dynamics of phosphorylation (as done in Paper I). Some proteins also
display a migration shift when phosphorylated and can therefore be followed even if the
antibody with affinity to the phophorylated epitope is not available [91].
Fluorescence microscopy data is mostly used to validate models or to determine param-

eters in the construction of dynamic models. Fluorescence Recovery after Photobleaching
(FRAP) is a common technique to study protein movement and diffusion, compartmen-
talization and connections between intracellular compartments, speed of protein exchange
between compartments, binding characteristics between proteins, or immobilization of
proteins binding to larger structures [92]. In FRAP, the fluorochrome is irreversibly
bleached in a small area by a high intensity illumination. The diffusion of surrounding
non-bleached fluorescent molecules into the bleached area leads to recovery of fluores-
cence. This can be used to evaluate kinetic properties like the half life τ1/2 which is per
definition the speed to recovery of half the plateau intensity I∞. The fraction of the
molecules that are able to diffuse is called a mobile fraction. Mf and the fraction unable
to participate is called the immobile fraction If [92]. This method was used in Paper
III to evaluate the speed of protein exchange between the cytosol and the nucleus for
SNF1 in 2% glycerol and 0.05% glucose, when SNF1 is active, as well as in 2% glucose,
when SNF1 is not active. There as distinct kinetic behaviour for all conditions where
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SNF1 followed the dynamic of a single exponential recovery, indicating that all SNF1
proteins that exchange between the cytosol and the nucleus display the same kinetic be-
havior, consistent with previous studies where only the Snf1-Gal83 isoform locates to the
nucleus [53]. The data from the FRAP experiment were fitted with a non-linear mixed
effect (NLME) regression model and the correlation matrix show a negative correlation
between the mobile fraction and the half life, indicating a negative feedback.
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Chapter 4

Modelling of metabolism and signaling

Mathematical models of both signal transduction and metabolism have been widely used
to study the biology of the respective pathways. In mathematical modelling, one has to
explicitly formulate relationships between species and states which both highlights lack
of knowledge and simultaneously help to form knowledge from information.

4.1 Modelling signaling

Signal transduction systems are usually modeled using ODEs [93] or logical models such
as Boolean and specifically for glucose repression (Table 4.1) both Boolean and dynamic
models have aided our understanding of the dynamics and topology of the SNF1 signalling
pathway. Reliable quantitative models of signal transduction are hard to construct, and
require extensive knowledge, not only due to the scale and uncertainty in parameters
of quantitative models, but also due to the complexity added by crosstalk with other
signal transduction pathways. Often experimental data is condensed to a smaller model
or a simpler formulation, generating knowledge that can be used to construct a more
comprehensive consensus model and iteratively our knowledge of the pathway and the
models of the pathway improves.

The presence of feedback loops in regulatory systems are common. Negative feedback
loops can act as a mitigating factor after initial response even when the external signal is
present, a transient response or it can give rise to oscillatory behaviour. Positive feedback
loops can amplify a signal but also result in a bi-stable system where a weak signal gives
a transient response and a strong signal gives a sustained activation [94].

4.1.1 Boolean models of signal transduction

Boolean models of glucose signal transduction have been used to evaluate our knowledge
on the topology of the SNF1 pathway and the role of crosstalk with other signaling
pathways [95–97]. It has been evident that there is a lack of understanding of the
topology, in particular when it comes to the activation of the SNF1 pathway [96], and
that the crosstalk between different signaling pathways play an important role [95, 97].
Christensens et al. highlighted the shortcomings of Boolean models, as some complex
interactions are hard to represent in a Boolean fashion [95].
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Table 4.1: Frameworks of mechanistic models including the SNF1 pathway in chronolog-
ical order and their main contribution.

Framework Description
Boolean,
Christensen
et al. 2009 [95]

Literature based, containing 77 components, of which 22 are
proteins, covering the SNF1 pathway, the Snf3/Rgt2 pathway
along with glucose, galactose and maltose metabolism. Evalu-
ated by steady-state analysis of deletion mutants compared to
expression data. Contributed with knowledge on the complex-
ity of, as well as the crosstalk between, pathways. Highlighted
the lack of understanding of glucose regulatory network and
the limitations of Boolean formalism in signaling transduction
networks.

ODE,
Kuttykrishnan
et al. 2010 [98]

Mechanistic ODE model, containing 24 components, of which
12 are proteins, where 81 parameters were calculated from
measurements and 10 parameters estimated. Covering the
SNF1 pathway and the Snf3/Rgt2 pathway. Evaluated by
steady-state and dynamic analysis of the Hxt1-4 mRNA lev-
els. Contributed with highlighting the importance of Mth1
and Mig2 in HXT regulation and suggested novel interactions.

ODE,
Garćıa-Salcedo
et al. 2014 [99]

24 mechanistic ODE models, containing 7 components in dif-
ferent network structures, of which 6 are proteins, covering
the SNF1 pathway. Evaluated by χ2 and Akaike information
criterion (AIC) after comparing model outcome with data on
localization and phosphorylation. Contributed with better un-
derstanding of Snf1 and Mig1 regulation.

NLME,
Almquist
et al. 2015 [100]

Single-cell model containing 2 components, covering Mig1 nu-
clear accumulation upon glucose addition. Contributed with
estimations of the parameters as well as insight in the cell-to-
cell variability and possible mechanisms explaining the dynam-
ics of Mig1 re-entering the nucleus after an up shift and the
co-regulation with the process regulating Mig1 nuclear exit.

Boolean,
Lubitz
et al. 2015 [96]

Literature based, containing 52 components, of which 44 are
proteins, covering the SNF1 pathway. Evaluated by steady-
state analysis of different input compared to known outcomes
for specific components. Contributed with identifying knowl-
edge gaps and forming hypothetical reactions to fill the gaps.

NLME,
Welkenhuysen
et al. 2017 [101]

Single-cell model containing 8 components and 18 parameters,
covering Mig1 localisation. Contributed with suggesting a link
between glycolytic flux and Mig1 dephophorylation and the
Mig1 localization as a source of cell-to-cell variability.
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Boolean,
Welkenhuysen
et al. 2019 [97]
(Paper I)

Literature based, containing 80 components, of which 63 are
proteins, covering the SNF1 pathway, the Snf3/Rgt2 path-
way and the cAMP-PKA pathway. Evaluated by steady-
state localization under different conditions and phosphoryla-
tion status of key components. Contributed with a new type
of Boolean formalism to easier describe complex interactions,
identifying knowledge gaps and forming hypothetical reactions
to fill the gaps and knowledge on the importance of crosstalk
for pathway function and robustness.

NLME,
Person
et al. 2020 [102]

Single-cell model containing 5 components, covering Mig1 glu-
cose repression. Contributed with the possible mechanism for
SUC2 expression dynamics where the recovery upon long term
starvation is likely due to energy recovery.

ODE,
Jalihal
et al. 2021 [103]

Mechanistic ODE model, containing 30 components, where
128 parameters estimated. Covering the SNF1 pathway, the
cAMP-PKA pathway and the TOR pathway. Evaluated by
time-series data as well as perturbation analysis. Contributed
with a consensus dynamic model of nutrient signaling high-
lighting the challenges in parameter estimation for large sys-
tems.

NLME,
Persson
et al. 2021 [104]

Single-cell model containing 4 components, covering Mig1
localisation. Contributed with developing a framework to
improve parameter estimations in state-space mixed-effects
stochastic dynamic single-cell models and suggested that the
heterogeneity in Mig1 localisation is due to hexokinase activ-
ity.

NLME,
Österberg
et al. 2022
(Paper III)

Single-cell regression model containing 1 component, cover-
ing SNF1 localization dynamics. Contributed with estimates
of kinetic parameters and indication of additional regulation
mechanism of SNF1.

ODE,
Montano-Gutierrez
et al. 2021 [105]

Small mechanistic model covering the Snf3/Rgt2 and SNF1
pathways, showing that a push-pull system is a plausible mech-
anism for regulation of HXT.
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To tackle the challenge of representing complex interactions, a rxncon-based approach
of bipartite Boolean modelling (bBM) has been developed and implemented for the HOG
pathway[106]. In addition, the model in Paper I tackled this challenge by a new vector-
based Boolean formalism. In a vector-based Boolean models each of its N components
is represented by a p-dimensional vector of binary states pi ∈ {0, 1}k, i = 1..N , that
represents chosen properties. The state of each component i is altered based on all other
states by Boolean rules or functions B : (p1,p2, ..,pN ) → pi. This approach has also
been implemented in hybrid (Paper II) and multi-scale model(Paper IV), representing
the signal transduction layer [8, 107].

4.1.2 ODE models of signal transduction

When constructing a kinetic model of signal transduction the typical procedure is to 1)
decide on the topology of the network, 2) derive kinetics rate expressions, 3) construct
ODE equations, 4) define initial conditions 5) perform parameter estimation based on
quantitative data and 6) simulate the model [93, 108]. As highlighted by the Boolean
models, the topology is missing key components and crosstalk reactions are important
for the proper functioning of signal transduction. Garćıa-Salcedo et al. approached
the uncertainty of the topology by constructing 24 models with different topology and
evaluated them by the χ2 and (AIC) [99]. However, considering the importance of
crosstalk to understand glucose repression, and hence the importance of inclusion of other
signal transduction pathways, it is evident that the parameter estimation empires the
key problem for comprehensive models of glucose repression using the ODE framework.
In Kuttykrishnan’s model the parameters were mined from literature and only a few
needed estimation [98]. The result was a model with high predictive power that could
predict novel behaviour in dynamics. When Jalihal et al. constructed a consensus model
of nutrient singling all 128 parameters were estimated and after fixing 49 parameters,
additional 18.000 parameter sets were found, also fitting the data used for estimation
[103]. Out of 15 prediction experiments only four of these were predicted by all parameter
sets, while three were predicted by fewer than half of the sets.
NLME models have been used to model single-cell dynamics both producing mecha-

nistic knowledge elucidating the topology and regulatory relationships and to estimate
specific parameters aiding in the quest for curated parameters, enabling kinetic models
with high predictive power (Paper III) [100–102, 104]. In Paper III, NLME was used
to determine the kinetic characteristics of SNF1 nuclear-cytoplasmic shuttling at different
glucose concentrations. A strong negative correlation between the kinetic constant for
the recovery and the mobile fraction which indicates a negative feedback loop regulating
SNF1 activity.

4.2 Modelling metabolism

The metabolic network was originally modeled using kinetic ODE-based models and some
of our key findings on the dynamics of glycolysis originate from these types of models
[64]. Whilst it is still an active field, FBA and constraint-based modelling approaches are

22



Table 4.2: A few examples of the available metabolic models and applications in yeast.

Model Reference Type Description

Yeast1 Herrg̊ard et al.[110] GEM First genome-scale metabolic consen-
sus model of S.cerevisiae.

Yeast8 Lu et al. [111] GEM Latest consensus model with a
biomass equation containing cofac-
tors and metal ions.

iAN50 Nilsson and Nielsen
[112]

CORE First yeast implementation of an ec-
Model. The method enabled predic-
tion of the Crabtree effect.

ecYeast7 Sánchez et al. [113] GEM First enzyme-constrained (ec) GEM
in yeast. The method GECKO was
developed that integrates kinetic in-
formation and proteomic data to
GEMs.

— Covert et al. [114] TOY First transcriptional regulatory con-
straind model.

pcYeast Elsemman et al. [115] GEM Added reactions for protein produc-
tion metabolism, maintenance and
dilution. Extension of enzyme-
constrained models.

dominating metabolic modelling. Genome-scale models (GEMs) are popular where the
most recent applications are in metabolic flux predictions, culture condition optimization,
cell factory design and multi-yeast comparative analysis [109] but for some applications
core models are more appropriate.

4.2.1 Modelling metabolism with FBA

FBA and constraint-based modelling was driven by the rise of the omics era where
the systematic collection of large-scale datasets not only enabled the construction of
large biochemical networks but instigated the need for them [73, 116, 117]. Besides
to enable the large size of the biochemical networks, constraint-based modelling also
popularized a new way of thinking in regards to mathematical models. Instead of fighting
the identifiability problem of ODEs the approach minimizes the need for parameters
and instead focuses on exploring the solution space. In yeast, key efforts to constrain
the solution space consist of transcriptional regulatory constraints, thermodynamical
constraints, and protein constraints.

The first transcriptional regulatory constraint FBA was done 2001 by Covert et al.
[114] and was implemented on a toy model of metabolism and a regulatory network.
Covert used thermodynamical constraints, implemented by setting the rate of known
thermodynamically unfavorable reactions to zero, and capacity constraint by setting the
upper bound to a maximum uptake rate for transporters. The transcriptional regula-
tory constraints were implemented by building a Boolean model of the gene regulatory
network. Metabolites are sensed by the flux that creates or imports the metabolite,
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meaning if the flux is larger than zero the metabolite is present. If a gene is affected by
the Boolean regulation and turned off, the upper bound for the fluxes associated with
that gene is set to zero. This was implemented in E. coli [118] and in S. cerevisiae [119].
The yeast model consists of the 750 metabolic genes where 82 intra- and extracellular
metabolites act on 55 nutrient-regulated transcription factors [119].

The basis for protein constraints is that the cell has a finite amount of proteins due
to a limitation in cell size and space [120]. Several approaches have been applied to
constrain metabolic models based on protein limitations where one example is total
mass of proteins. This approach was first used in yeast on a core model [112] and later
implemented in the tool GEM with Enzymatic Constraints using Kinetic and Omics data
(GECKO) and applied to the yeast7 GEM. Here, the enzyme usage, E, and kcat value
are introduced and the stoichiometric reaction is written:

A+
1

kcat
E → B (4.1)

This extends the stoichiometry matrix to also contain the kcat for the reactions and the
rate vector to also contain enzyme usages [113]. The model is then constrained either by
experimental data on specific enzyme abundances or by the total enzyme abundance.

Recently, protein constraints have been implemented by also adding 1) a protein dilu-
tion reaction, where the dilution is equal to the growth rate, 2) degradation of proteins
that generate free amino acids, 3) ribosome capacity constraints, 4) proteome mainte-
nance constraints and 5) cytoplasmic, mitochondrion and membrane volume/area con-
straints [115]. This implementation contain features that would be expected from a
hybrid model, only using one framework. While this allows for the simulation of quasi-
steady states, the dynamic component of the interactions between the metabolism and
protein production machinery is lost.

In essence, applying these constraints introduces parameters to the model and thus also
introduces uncertainty to the model; however, one only needs to introduce parameters
that we have prior knowledge on, and there is still no need for parameter estimation of
unknown parameters.

Linear optimization and the objective function

Linear optimization is used to identify optimal solutions after applying constraints. The
objective function used for optimization has been formulated based on different biological
assumptions, but there is not much literature evaluating the performance of the com-
monly used objectives in different contexts [55, 121, 122]. The effect of the objective on
the prediction power of intracellular fluxes is context-dependent [121, 122] and depending
on the structure of the solution space; multiple states can fulfill the objective, leading
to multiple alternate optima [123]. One method to explore the range of optimal solu-
tions is flux variability analysis, (FVA). By fixing the values for the optimal solution, the
minimal and maximal fluxes can be calculated for each reaction in the network [124]. A
common strategy is to use the parsimonious FBA rationale and minimize gene-associated
reaction fluxes [125] supported by a similar approach where the maximization of ATP
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yield per flux unit showed a high prediction power of intracellular fluxes during nutrient-
rich conditions [121]. In Paper V the effect of the objective function is systematically
evaluated for the prediction of replicative ageing using a multi-scale model developed in
Paper IV. The objective function is often motivated by evolutionary arguments but has
not previously been evaluated against properties such as reproduction or ageing. In the
study, single and sequential optimizations were tested for nutrient-rich conditions where
maximal growth was found to be the only objective that by itself could generate a com-
bination of wildtype growth rates and replicative lifespans. When allowing a deviation
from optimal solutions when optimising for the sequential objective or the regulation
step in the multi-scale model, more objectives could reach a wildtype phenotype. In line
with previous research [121] the parsimonius solution improved prediction of lifespans for
all sequential objectives where maximal growth was used as the first objective.
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Chapter 5

Multi-scale modelling

Glucose repression has hitherto mostly been studied from two distinctive perspectives,
the signalling perspective and the metabolic perspective. From the signalling perspective
important questions have been: How does the cell sense glucose starvation? How is the
signal transduced? How is the activated SNF1 specifically recognised as a glucose signal
when SNF1 also is activated by other stress signals? The aim has been to gain mechanistic
insight, not only for purely biological insight, but also in order to elucidate the connection
between glucose regulation and human diseases and conditions such as cancer and ageing.
The metabolic perspective has focused on the main question: How do components of the
glucose repression pathway affect the metabolism? [126] Besides gaining knowledge on
biological stress response, the focus of the metabolic perspective has been on how stress
adaptation affects yeast in the industrial setting where yeast’s role as a cell factory has
had a huge impact on human health, world economy and culture. [127]

Recently, both the signalling and the metabolic perspectives have highlighted the im-
portance of integrating knowledge from the opposite perspective to improve the model
predictions and increase the mechanistic insight [127]. However, as demonstrated in the
earlier chapters, there are good reasons for using different modelling approaches and
integrating knowledge from the respective perspective, presents a technical challenge.
Models of signalling focus mainly on changes and dynamics while metabolic models re-
quire at least a quasi-steady state. Multi-scale and hybrid models aim to integrate both
perspectives in the mathematical models of glucose repression. When joining the two
perspectives of glucose repression there are three modules that need to be accounted
for: 1) signal transduction network, 2) the transcriptional regulatory network and 3) the
metabolism. The first steps towards a multi-scale model of yeast and glucose repres-
sion was the development of a transcriptional regulatory constrained FBA (Table 4.2)
which accounted for the second and third module. This represents a steady state model
that allows the use of such information from the signalling models in the context of the
metabolic models. Additional developments on the integration of transcriptional regula-
tory constraints in FBA include valve methods instead of the Boolean on/off and have
recently been reviewed [128]. In large, the methods include penalties, non-linear inferred
expression scores or normalized expression levels based on experimental data. This ap-
proach is limited to studying steady states, however, by solving the modules iteratively,
the metabolic state can also feed back to the transcription layer. This allows for some
feedback and dynamics, following the methodology of Covert et al. [114]. However, if
the formulations are not Boolean, a threshold must be decided for when a metabolite is
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considered present. As metabolite concentrations are not predicted using FBA and sig-
nalling cascades are typically metabolite-oriented, strong assumptions need to be made
in order to connect the two. In contrast to the steady state metabolic focus, there is
a model focusing on dynamics that manage to integrate all three modules, however not
implemented for signalling related to glucose repression. This model implemented a de-
tailed module of the osmotic shock phosphorelay and of the signalling cascade, together
with a gene expression module and a reduced module of the glycolysis [129]. However,
the formulation using only ODEs still limits the scaleability of the network and limits
the usefulness from the metabolic perspective. In addition, the connections are in one
direction. This assumes that the module is in steady state before it affects the following
module and only allows for the effect of signaling on the metabolism and does not allow
feedback signals.
The next step towards multi-scale models of yeast glucose repression was built on the

development of enzyme-constrained models (Table 4.2) that could be coupled with het-
erogeneous networks [130]. To create a model of glucose repression connecting all three
modules, a Boolean model of nutrient signalling pathways related to glucose repres-
sion was integrated with a core model of metabolism trough a gene regulatory network
in Paper II [8]. The signal transduction module was modeled using a vector-based
Boolean methodology presented in Chapter 3 and Paper I and included the cAMP-
PKA pathway, the TOR pathway and the SNF1 pathway. The output of the Boolean
module consists of transcription factor activity and PTMs. The advantage of using a
vector-based Boolean methodology is to be able to construct a large dynamic network,
fairly easy, and still capture complex regulatory relationships and crosstalks. Another
key advantage of using the Boolean formulation is the short computational time, which
is beneficial for multi-scale models which are typically large and where the dominating
strategy is to iteratively solve modules.
Choosing to represent the metabolism trough an enzyme-constrained model, formu-

lated on the form: A+ 1
kcat

E → B, gives the possibilities to implement regulation based
on PTMs. The PTMs typically change the kcat of an enzyme while the transcriptional
regulatory constraints can be used to alter the enzyme concentrations, E. In Paper
II a flexible pipeline has been implemented for integrating condition specific kcat-values
based on PTMs as outputed from the Boolean module. However, as literature-curated
values on PTM specific kcats rendered the ecFBA unsolvable, that approach was dropped
in the context of Paper II and further discussed in Chapter 7. Nonetheless, the kcat
values could be directly modified based on the output of the Boolean model, but to
get from transcription factor activity to enzyme constraints, a transcriptional regulatory
network/gene regulatory module is needed.
Transcriptional regulatory networks can be represented as bipartite graph, but inferring

the connections is an under determined problem and inferring the right relationship still
imposes a challenge. In the IDREAM approach, a probabilistic method [131] to infer
these connections is implemented based on the YEASTRACT database [132] while the
CoRegFlux algorithm uses statistical inference and experimental data to establish the
network structure, relationships and effect size [133]. In Paper II, a more naive Boolean
approach is used for simplicity. The active transcription factors have either a negative
or a positive regulatory contribution to a set of genes that show binding evidence in the
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YEASTRACT database [132]. If the sum of regulatory contributions is positive, the gene
is up-regulated whilst if it is negative the gene is down regulated. The magnitude of the
regulation is implemented as a fraction of the enzyme variability, set either on the upper
or lower bounds of the enzyme concentration, E, that is set globally.

The resulting multi-scale model of glucose repression was based on the predictions
of enzyme abundance compared to a purely enzyme-constrained model. In addition to
significantly improving the protein abundance predictions, the effect of the regulatory
constraints was evaluated both for respiratory metabolism and for mixed metabolism
in wildtype cells and when components of the regulatory pathways were perturbed [8].
This adds to the aims of the metabolic perspective, particularly in the context of flux
control theory. Flux control theory is commonly used for rational design in the develop-
ment of cell factories [134]. In the implemented framework, the addition of regulatory
constraints generates futile flux cycles and changes the flux control distribution. The
flux distribution after the additional constraints represents a more realistic metabolic
landscape compared to the optimal solution using only enzymatic constraints. In this
multi-scale model of glucose repression, the glucose uptake rate was the only metabolite
that fed back information to the Boolean model and with the course on/off threshold,
the model contributes very little to the aims of the signalling perspective.

The model developed in Paper II [8] has been extended to also include a Boolean
network of ROS signaling, and an ODE model of damage accumulation and growth
(Paper IV), enabling the study of glucose repression on long term phenotypes such as
aging. While still using a the limited feedback signal from the metabolism to the signal
transduction module, the additions to the model in Paper IV can connect the aims of
the metabolic perspective with the aims of the signalling perspective and elucidate how
regulation of metabolism affect the replicative aging phenotype.

Yeast aging
A Very Short Introduction

There are two definitions used for ageing in yeast [135, 136]:

• Chronological ageing: the absolute time a non-dividing cell can survive

• Replicative ageing: the number of daughter cells a mother can produce

In replicative aging, loss of proteostasis is recognised as one of the hallmarks
[137], and is linked to the accumulation of damaged proteins over time and cell
divisions [138]. The main time-dependent source of damage is oxidative stress
[139] and some have argued that it is the lone cause of ageing and the plethora of
age-correlated phenotypes [140, 141]. The age-dependent accumulation of dam-
age is mainly driven by the retention mechanism of the mother that causes an
asymmetric distribution of damage after division [138].

The ODE module describe growth and the accumulation of damage. The growth rate is
directly retrieved from the metabolic module and the damage is represented as a fraction
of intact and damaged proteins, dependent on the oxidative stress in the metabolic
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module, a non-metabolic damage formation and the damage repair. The ODE module
feeds back to the metabolic module by constraining the enzyme pool based on the intact
protein fraction, and through the NGAM, so that the ATP cost for maintenance scales
with protein damage.
The model could only reproduce replicative lifespans and growth rates of the wildtype

cells when regulatory constraints were applied. The distinct metabolic phases yeast
undergoes during replicative lifespan, characterised by a switch from fermentation to
mixed metabolism, followed by a switch to respiration [142, 143], could be mechanistically
explained by the model and showed dynamics tightly associate with the NGAM.
Evolutionary properties are often used to motivate objectives for the FBAs but the

objective functions have not been evaluated on evolutionary traits such as the replicative
lifespan. The multi-scale model developed in Paper VI enables studies of phenotypes
emerging at long time scales and serves as an excellent platform to evaluate how different
objectives perform in this context, as done in Paper V.
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Chapter 6

Summary of papers

Paper I In paper I, we investigated the role of crosstalk in glucose-sensing pathways. We
developed a vector format rule-based Boolean logic model to capture the complexity
of the cAMP-PKA, Snf1, and the Snf3-Rgt2 signaling pathways. I contributed to
the model validation by confirming phosphorylation status by western blot. Using
gap filling, we highlighted the lack of knowledge on phosphatases. By systemati-
cally perturbating the system and analyzing the component states, we found that
some crosstalk contribute to robustness while others play an important role for the
functioning of the system.

Paper II In paper II, we look at the effect of signaling on the metabolism. We created a
hybrid model, combining an enzyme-constrained flux balance model of the central
carbon metabolism and a Boolean model of the SNF1, TOR and PKA pathways.
We used the strategy as in paper I, to capture the complexity of the pathways,
and constrained the metabolic model using the output. To investigate the effects,
we compared the metabolic model with the hybrid model in the ability to predict
protein concentrations and we were able to replicate key regulatory effects of the
flux distributions when transitioning from fermentation to respiration.

Paper III In paper III we wanted to further characterize the SNF1 pathway in response
to different carbon sources. We looked at a common read out for the activity of
SNF1, the Mig1 localization and the dynamic behavior of the SNF1 complex during
steady state. I contributed to the analysis of the SNF1 complex using FRAP and
used non-linear mixed effect modelling to capture the cell-to-cell variability and the
population behavior.

Paper IV In paper IV we studied the dynamics of the metabolism and signaling network
in relation to aging phenotypes, such as replicative lifespan and growth rate. We
further built on the models we developed in paper I and II by expanding the hybrid
model with ROS signaling and ROS production and connecting it to a growth model
using an ordinary differential equation approach. In the growth model we include
damage formation, damage repair and growth. We found that we could reproduce
an age-dependent shift in metabolism to respiration in nutrient rich conditions as
well as identify non-growth-related maintenance (NGAM) as a possible factor in
this transition.
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Paper V In paper V, we used the model developed in paper IV and systematically eval-
uated the effect on aging phenotypes of different objective functions in the FBA
module. The core successful objective is maximum growth. Having a second objec-
tive, either to maximize the NGAM or to use the parsimonious solution, increases
the variability in parameters that could reach wildtype behavior. This enabled
either upregulated ROS removal or an increased respiratory metabolism in con-
junction with a slower growth rate.

Review paper In the review paper, we address the progress of the bottom-up mathe-
matical models of SNF1 signaling and cover the advantages and disadvantages of
the available mathematical modelling frameworks for SNF1 models. This includes
Boolean, dynamic kinetic, single-cell models. Based on the existing models, we
provide a perspective on how to move forward with a consensus dynamic mecha-
nistic model of the entire SNF1 pathway that can provide novel insights into the
dynamics of nutrient signalling.
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Chapter 7

Conclusions and future perspectives

The aims of mathematical models portraying the signaling system of glucose repression
focus on unanswered questions on the mechanism. This knowledge is important for us
to be able to connect the dysfunction of the signalling system with human diseases and
conditions such as cancer and aging. The aims of the mathematical models portraying
the metabolism are focused on how glucose repression and glucose starvation affect the
metabolism. In this thesis, the aim was to elucidate the factors that interconnect glucose
repression with sensory and metabolic pathways in yeast. This is an important piece
of the puzzle to enable studies of glucose repression from both the signalling and the
metabolic perspective.

In Paper I we developed a framework for Boolean modelling and addressed questions
regarding crosstalk between nutrient sensory pathways. The method proved successful
and we gained insight to the robustness of the signaling cascade. This was built on in
Paper II where a vector-based Boolean model of signalling was created and further ex-
tended with a module of gene regulation and a module of the central carbon metabolism.
The multi-scale model predicts how signalling affects metabolism and provides further
insight on how the interconnectivity affects the robustness of the metabolism. The model
from Paper II was further extended in Paper IV to include damage accumulation and
growth. By investigating the adaptation to intrinsic stress, we elucidated traits of the
age-dependent metabolic shift and the long-term effect of regulation on the metabolism.

In addition, we demonstrated that using our framework, we could improve predictions
of metabolic FBA models (Paper II) and evaluate the impact of objective functions
on longevity traits (Paper V), contributing to constraint-based modelling outside the
scope of glucose repression.

The model from Paper IV works fairly well in elucidating the effects of regulation on
metabolism and has potential to serve as a basis for exploring effects of a dysregulated
glucose repression pathway on aging. To work as an efficient tool to study the effect
of glucose repression the future development of the model would go in two directions
depending on the focus of the studies, the metabolic direction or the signalling direction.
However, there are improvements that would benefit both perspectives. Firstly, for sim-
plicity, the gene regulatory network was implemented in a naive fashion. Instead, there
are more sophisticated methods that predict the relationship between transcription fac-
tor and gene, and the magnitude of the regulation [133]. Secondly, the implementation
of soft constraints using a penalty function could enable the implementation of PTMs.
Applying constraints based on experimentally determined values and logical assumptions
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leads to an unfeasible model. We could consider the confidence in the values and assump-
tions to create a penalty function that allows the model to break constraints, but to a
cost, depending on how certain we are in the knowledge behind the constraint.

7.1 Mechanism of glucose repression and the link to
human diseases and aging

To gain more mechanistic insight to the dynamics and topology of glucose repression,
and the effect on longevity and health, the signaling module would benefit from being
represented in a more fine-grained way. There are frameworks for extending Boolean
models to be more quantitative [144, 145], and to have a more time-interpretive dynamics
using Boolean delay equations [146]; however, Jalihals large scale kinetic model [103]
would be a more ideal base for testing hypotheses on the signalling network. Modelling
the signal transduction network in a kinetic model would allow the feedback to be more
fine-grained both in terms of magnitude and time. However, it does not address the
assumption that a sub-module is in steady state before the output is relayed to the next
module. If the changes in the environment are sufficiently small and slow, the kinetic
effects on the metabolism are negligible. However, if they are not, kinetic effects in the
metabolism and the signal transduction are happening at the same timescale and the
assumption that the signalling system is in steady state before affecting the metabolism
is not holding. When the extracellular environment changes, we violate the steady state
assumption of the FBA and metabolites can accumulate or be consumed, which is often
what is detected by the signalling system. In the case of SNF1, this is believed to be
the accumulation of ADP [50]. The change in the metabolites would be interesting to
relay to the signalling module and could possibly be identified in the ecFBA framework
by fixing the upper and lower bounds for the enzyme usage based on the first condition
and then solve the model using the new extracellular environment. The subtracted flux
distributions or the subtracted minimal and maximal flux for each reaction, could give
an indication of which metabolites accumulate and which are depleted and could be used
as candidates for unknown metabolic regulations that has been hypothesised in models
of the signalling pathways [4, 101, 104]. To simulate how the system relaxes at steady
state, a progressive constraint model could be implemented in the growth model, that is
dependent on the level of activation in the model of glucose repression.
For development in this direction there are two major issues: the computational de-

mand and the parameter estimation. As demonstrated by Jalihal et al. the parameter
space is large [103] and not only is parameter estimation difficult but also computation-
ally demanding [147]. However, improvements in solvers and algorithms for parameter
estimation move into a promising direction [148–150].

7.2 Glucose repression and the effect on metabolism

To get a better picture of how glucose repression affect metabolism, the metabolic model
should be expanded to genome scale. Two recently published models, the pcYeast [115]
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and the ecYeast8 [111] serve as good bases for the metabolic modules. The ecYeast
model is the enzyme-constrained version of the latest yeast consensus model and could
be directly implemented. The pcYeast model is based on Yeast 7.6. using the following
constraints: 1) mass balance constraints, 2) biomass composition (excluding protein), 3)
enzyme capacity constraints, 4) ribosome capacity constraints, 5) compartment -specific
proteome constraints, and 6) cytosolic volume constraints. In this implementation the
enzyme level is determined by its synthesis rate, where regulatory constraints could
be applied. The pcYeast model has more constraints implemented than the ecYeast
model. This means both that the pcYeast incorporates more of our knowledge on yeast
metabolism and physiology but as mentioned in Chapter 4 and 3 the uncertainty and
noise in both estimated and measured values scales with size. By implementing further
constraints, one also introduces more uncertainty. If the constraints do not contribute
to the explanatory power in the model, the uncertainty introduced could also push the
solution further away from the biologically relevant solution and decrease the prediction
power. However, if implementing soft constraints the concern can be lessened.

As demonstrated in Paper V, the objective function plays a large role. It would be
interesting to further explore the solution space of genome-scale versions of both the
model from Paper II and Paper IV.

Within my thesis, I demonstrated that even with a coarse representation of systems
we benefit from comprehensive hybrid models. The notion of explicitly formulate rela-
tionships in a formal language such as mathematics, highlights our lack of knowledge
and enables conversion from information to knowledge. This thesis represents a step on
the road towards a comprehensive model of glucose repression. Ahead on the road, there
are still challenges. However, computational and statistical developments to ease pa-
rameter estimation and reduce the computational demand, as well as community-driven
data generation, will take us down the road. It will allow us to harness the ability of
mathematical models to handle the complexity of biological systems and elucidate how
the features of metabolism and sensory pathways work by themselves, but also how they
connect and interact. It is the foundation for life to evolve into higher organisms and it
is central to our ability to understand life.
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