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With omics data being generated at an unprecedented rate, genome-scale modelling has become pivotal
in its organisation and analysis. However, machine learning methods have been gaining ground in cases
where knowledge is insufficient to represent the mechanisms underlying such data or as a means for data
curation prior to attempting mechanistic modelling. We discuss the latest advances in genome-scale
modelling and the development of optimisation algorithms for network and error reduction, intracellular
constraining and applications to strain design. We further review applications of supervised and unsuper-
vised machine learning methods to omics datasets from microbial and mammalian cell systems and pre-
sent efforts to harness the potential of both modelling approaches through hybrid modelling.
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Fig. 1. Summary of genome-scale metabolic models for different organisms relevant to the production of recombinant proteins or valuable metabolic products.
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1. Introduction

Genome-scale metabolic models (GeMs) are a database for all
known information about an organism across multiple scales,
including most of its known genes, the enzymes encoded by those
genes and associated expression rules (gene-protein-reaction, GPR,
rules), transport reactions and participating metabolites. There
have been numerous GeMs published for a variety of organisms,

most of which can be found in the BiGG database (http://bigg.

ucsd.edu/). Relevant to the production of protein therapeutics are
the human [1-4], Pichia pastoris as described in Theron et al. [5],
Chinese hamster ovary (CHO) cells [6-9], murine cells [10,11] and
a plethora of GeMs for Escherichia coli [12], as summarised in Fig. 1.

Although GeMs provide valuable insight into biological net-
works, full integration of data across the genomic, transcriptomic,
proteomic and metabolomic scales is yet to be effectively realised.
Given the unprecedented rate of data generation, modelling efforts
have evolved by, for example, developing hybrid kinetic/stoichio-
metric formulations to overcome the weaknesses of any individual
approach whilst, at the same time, combining their strengths
through alleviating the burden of parameter estimation [13], or
including intracellular insight without loss of model tractability
[14,15]. The next logical step is the development of hybrid
approaches that take advantage of known techniques that harness
the information content of extensive datasets. Machine learning
(ML) is the scientific study of algorithms applied to complex data-
sets for pattern recognition, classification, and prediction. The con-
cept of automated learning was developed from the theory that
machines learn without being pre-programmed on assignments
of data patterns to classes. The iterative notion behind the learning
theory relies on the independent adaptation of the ML model when
presented to new data input. Such adaptation is based on the abil-
ity to recognise patterns in complex datasets to generate reliable,
reproducible results from previous computations.

Herein, we review the latest advances in GeM development and
application for process understanding and cell engineering and dis-
cuss efforts to hybridise FBA with dynamic kinetic models focusing
on recombinant protein producing systems. These include CHO
cells, which are the workhorse of industrial therapeutic glycopro-
tein production, but also microbial hosts such as Pichia pastoris
and Escherichia coli. We then present the case for using ML to deci-
pher the information carried in large omics datasets and review the
main techniques for doing so, including supervised and unsuper-
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vised ML methods, as well as necessary data pre-treatment tech-
niques prior to ML application. Given the limited number of
studies on industrial protein production systems, we review the
application of ML to omics more broadly, including microbial cell
systems for metabolite or recombinant protein production as well
as human disease models.

2. Advances in GeM development and application

Research involving GeMs has largely focused on (a) the devel-
opment of consensus models for commonly used organisms, (b)
the advancement of computational algorithms and (c) the develop-
ment of dynamic flux models. Recent key studies in these three
areas are summarised in Fig. 2. Efforts to develop GeMs have
yielded a new community-curated model of CHO cell metabolism
developed by Hefzi et al. [6]. Their work includes cell line-
specific models for CHO-S, CHO-K1 as well as the generic CHO
GeM model, iCHO1766, which contains most of the known CHO
genes, enzymes and metabolites. Calmels et al. have also developed
a GeM specific to the DG-44 cell line [7]. The iCHO1766 GeM was
recently expanded to include the secretory pathway in a study that
paves the way for ascertaining the burden of individual recombi-
nant protein molecules on metabolism and protein synthesis and
secretion [16].

A powerful tool for the analysis of GeMs and the calculation of
fluxes is Flux Balance Analysis (FBA). FBA is an optimisation tech-
nique aiming to predict the flux distribution in a metabolic net-
work. Cell metabolism can be represented by a stoichiometric
matrix, S, whose columns represent the reactions, j, and rows the
metabolites, i, of the metabolism. FBA assumes pseudo-steady
state of the metabolite concentrations; so, if x represents the
metabolite concentrations, DxDt ¼ 0 thus S � v ¼ 0, where v is a vector
of the fluxes of the reactions. However, in any biological system the
number of reactions is larger than the number of metabolites, so
the number of degrees of freedom is greater than 1. Additionally,
if we want to predict intracellular fluxes of a GeM using FBA we
need to define the upper and lower bounds of fluxes [17].

Recent work on computational algorithms has focused on
reducing model size [18-20] while keeping the core biological
information intact as well as identifying missing links in the reac-
tion network and filling them in with reactions from databases
[21-23], such as the Kyoto Encyclopedia of Genes and Genomes
or MetaCyC [24]. Lastly, considerable effort is being put into the
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Fig. 2. Algorithms used to improve the network and efficiency of genome-scale metabolic models.
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development of computational techniques for the calculation of
appropriate bounds for intracellular reactions [25-30] and
exchange reactions [31].

GeMs have found application in the optimisation-based design
of genetic engineering strategies to alleviate the trade-off between
cell growth and desired product formation. Key algorithms for this
purpose [32-40] are summarised in Fig. 3. There are two distinct
fields of optimisation techniques applied to metabolic models for
this purpose: optimisation of the metabolic network or optimisa-
tion of the extracellular environment. The first is mainly composed
of Mixed-Integer Linear Programming (MILP) algorithms, which
identify reactions and therefore candidate genes for knockout,
upregulation or downregulation. These algorithms have been
applied to create engineered microbial strains as described in a
recent review by Hendry et al. [41]. For example, Suástegui et al.
applied the OptForce algorithm to increase shikimic acid produc-
tion in Saccharomyces serevisiae [42], and Tan et al. were able to
increase octanoic acid production in E. coli again with the use of
OptForce [43]. Another example is the use of an E. coli GeM [44]
to identify gene knock out strategies that improve glycan biosyn-
thesis [45]. Saitua et al. employed a dynamic GeM of P. pastoris
to predict system behaviour across batch and fed-batch cultivation
under glucose-limited aerobic conditions, followed by the design
of single knock-out genetic engineering strategies that can boost
volumetric protein productivity [46]. The CHO GeM has also been
used to identify burdensome host cell proteins for deletion to ease
pressure on downstream processing [16,47]. However, due to the
size and complexity of mammalian cell GeMs, this kind of algo-
rithms have not been widely applied to mammalian cell systems
yet.

The second category of optimisation applications is focused on
improving the media formulation and/or feeding strategy of the
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culture. CHO cells have been the subject of numerous such studies
due to their use for industrial antibody production. GeMs or smal-
ler scale models have supported researchers to improve the design
of culture media and feeds or develop more efficient CHO cell
strains with the help of experimental data and FBA. The CHO-K1
GeM has been used to compare catabolism in the presence of dif-
ferent feeds and to optimise feed formulation using FBA [48]. Sim-
ilarly, the CHO DG-44 GeM has been employed to predict cell
phenotype when grown in different culture media and propose
optimised formulations [7]. A reduced version of a CHO GeM was
used by Xing et al. [49] to adjust the concentrations of certain
amino acids in the culture media, by Junghans et al. [50] to propose
changes to media and feed that could improve bioprocess effi-
ciency and by Templeton et al. [51] to predict high producers based
on intracellular flux distribution. The CHO GeM [6] has been used
to study glucose and lactate metabolism using FBA coupled with
dynamic equations to simulate the consumption and secretion
rates of essential metabolites [52], and aid the design of new feed-
ing strategies by analysing intracellular fluxes [53]. This approach
has also been employed to model batch CHO cell culture conditions
[54] and to study metabolic shifts as a result of switching from
physiological temperature to mild hypothermic conditions [55].

Additionally, DFBA has been applied widely to microbial cell
systems primarily for the prediction of biomass growth and pro-
duction of metabolites. Topics of recent studies include the produc-
tion of shikimic acid in E. coli [56], the prediction of growth rate
and ethanol production in Saccharomyces cerevisiae [57] and the
overproduction of secretory proteins in Streptomyces lividans [58].
In the context of recombinant protein production, Torres et al.
applied a comprehensive GeM to chemostat cultures of P. pastoris
conducted under different oxygenation levels to reveal high-
order metabolic effects of different culture parameters on system



Fig. 3. Algorithms used in strain design for the overproduction of metabolites.
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performance [59]. An underpinning requirement for such applica-
tions is the availability of a high-fidelity GeM. To this end, a signif-
icant recent advancement was the refinement of P. pastoris GeM
specifically for growth on non-glucose substrates such as glycerol
and methanol, which are most relevant for recombinant protein
production [60]. There are several methodologies for coupling
FBA optimisation with kinetic equations to create a hybrid model
as summarised in Table 1.
3. Hybrid machine learning and constrained-based modelling
approaches

Machine learning algorithms have found application in both the
interpretation of high-dimensional metabolic data and the devel-
opment of tools for the description of cellular metabolism. More
specifically, unsupervised ML methods have been utilized for the
identification of key metabolic parameters that accommodate
model development, for the identification of sub-groups in the data
and for the reduction of data complexity prior to downstream
modelling applications. On the other hand, supervised algorithms
have been used to both replace alternative approaches (kinetic
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and stoichiometric models) for metabolic modelling but also to
synergistically work and improve the predictions of alternative
models.

Prior to introducing the available dataset to the chosen ML con-
figuration, data arising from different omics techniques requires
pre-processing (Fig. 4) in order to increase model robustness and
avoid overfitting. Typically, data pre-treatment is performed in
three steps as described below. Whilst elaborating on data pre-
treatment is not within the scope of this review, we invite inter-
ested readers to further explore the articles suggested herein.
3.1. Data pre-treatment

3.1.1. Data splitting
As a first step, the dataset is sampled for the construction of (a)

the training set, i.e. the data used for model training, (b) the valida-
tion set, the data used for tuning hyperparameters and (c) the test
set, the set of data used to evaluate model’s predictive perfor-
mance. Random sampling (RS) is typically applied for data splitting
because it introduces low levels of bias and efficiently evaluates
model generalization. RS methods can sample the same data point



Table 1
Techniques and algorithms used for steady-state and dynamic MFA and FBA.

Type Advantages Disadvantages Description Ref.

Static Optimisation approach Simple implementation
Suitable for GeM models
Fast

Provides a simple, not very detailed
solution
Cannot predict metabolic shifts

Separates culture period into intervals of pseudo steady-
state and performs an FBA optimisation for each of them

[131]
[132]

Dynamic Optimisation
Approach

Detailed representation
of metabolism
Can describe metabolic
shifts

Accurate parameter estimation in
differential equations necessary
Need to avoid overfitting

Performs optimization over the whole period of interest
with the use of differential equations to describe biomass
and media concentrations

[132]
[133]
[54]

DMFA Calculates intracellular
fluxes

Requires extracellular metabolite
concentrations thus, cannot be used
in underdetermined systems

Uses a linear spline function to calculate intracellular fluxes [55]
Describes intracellular fluxes using linear changes of the
fluxes though time

[134]

Multi-objective optimisation Uses the duality theorem
to achieve optimality

Numerical challenges arising from
the DAE formulation

Uses logarithmic barrier functions on the constraints of the
primal and dual problem. Converts them to a DAE with the
dynamic balance equations for the substrates

[135]

Deals with LP
infeasibility that can be
caused during time
integration

Requires careful objective function
setting to achieve realistic solution

DFBA using lexicographic optimisation to deal
with the LP feasibility problem

[136]

Fig. 4. Data pre-processing steps for improving the performance and ensuring the robustness of machine learning algorithms.
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multiple times (RS with replacement) or only once (RS without
replacement). Bootstrapping and cross validation (CV) are the most
representative techniques of RS with and without replacement,
respectively. Detailed comparisons of the data sampling methods
can be found in Varoquaoux [61], Vabalas et al. [62], Kim [63],
and Xu & Goodcare [64]. It is important to note that data splitting
techniques such as CV, should not be used for the identification of
optimum data splitting strategies but for the evaluation of model
generalization. However, limitations arising from the underlying
biological principles can introduce biases in the handling and split-
ting of the dataset, as the ML algorithms perform poorly when
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extrapolating. Thus, the user needs to ensure that the training set
covers the space within which the validation and test sets lie.
Hyperparameters are parameters of the ML algorithm that are set
by the user in order to define the configuration of the model and
remain constant during model training. The validation set is essen-
tial for tuning the hyperparameters (i.e. number of hidden layers
and nodes) and should be separate to the training set. Grid or ran-
dom search algorithms examine different combinations of hyper-
parameters to identify the top-performing set in an exhaustive or
random manner, respectively. Whilst computationally intensive,
nested or double cross validation, where the training set deter-
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mined by the first CV is then further split to a new pair of training
and validation sub-sets by a nested CV algorithm, is necessary in
order to avoid overfitting of the estimated hyperparameters to
the training set.

3.1.2. Data transformation (standardize/normalize)
Prior to any further data pre-processing, raw data are typically

scaled in order to remove the bias towards the variables with the
highest values. For example, large-scale discrepancies between
the concentration of the targeted molecules are commonly
observed in omics data and, if not appropriately scaled, the down-
stream ML algorithm will form strong dependencies to the most
abundant targets. Whilst there is a plethora of available data trans-
formation techniques that can be applied to omics data [65,66]
(Table 2), z-score normalization (also known as standardization
or autoscaling) is the most widely used technique. Z-score normal-
ization aims to equalize the variance of measured molecules by
setting the mean of each variable equal to zero and the standard
deviation equal to one. An excellent comparison between different
transformation methods applied to metabolomics data prior to
multivariate analysis is presented in van den Berg et al. [67].
Another pre-treatment step often applied in omics datasets and
especially in single-cell RNA-seq data is the imputation for the esti-
mation of missing points [68-72].

3.1.3. Feature selection
Implementation of ML algorithms usually requires the handling

of large and high-dimensional datasets. Omics data typically
include a vast number of measured variables (in the scale of thou-
sands) that act as inputs for ML models, e.g. genes in RNA-seq or
microarrays. Herein, the terms features and labels will be used to
describe the inputs and outputs of ML models, respectively, follow-
ing the convention used by the ML community. Feature selection is
defined by the reduction of dataset dimensionality, meaning the
selection of only a subset of features that maintain or even improve
the accuracy of the model, as the importance of each feature
towards labels prediction varies significantly [73]. Feature selec-
tion is a pre-processing step only performed on the training set
to avoid information leaking from the test or validation sets to
model training. Implementation of feature selection is necessary
to avoid model overfitting and to ensure that the algorithm can
correctly identify the dependencies and correlations between fea-
tures and labels.

Feature selection methods pursue three possible objectives: (1)
the identification and retention of the features that are (not neces-
sarily linearly) strongly correlated with the labels and (2) the iden-
tification and exclusion of the features that are strongly correlated
with each other and (3) the identification of feature combinations
that improve model predictive capabilities. Feature selection,
results in the designation of a subset of features that account for
the maximum variance of the data or in a ranking list that reflects
the importance of each feature toward labels variance [74]. Conse-
quently, feature selection results in improved and faster model
performance and deeper understanding of dependencies within
the features and between the features and labels. Techniques for
feature selection usually include unsupervised algorithms where
the output is not known a priori. There are three popular classes
of feature selection techniques: filter, wrapper and embedded
methods [75,76]. In filter methods, different statistical and ranking
algorithms are applied to the available dataset to determine the
highest scoring features [77,78]. Wrapper methods include the
development and training of several model configurations using
different feature subsets [79]. Should the exclusion of the exam-
ined features not substantially decrease model performance, the
features can be excluded from model construction [80-83]. Finally,
the ML models that include a dimensionality-reduction step and
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can be used simultaneously for feature selection and label predic-
tion belong to the class of embedded algorithms. Ensembles that
combine different modelling algorithms have also been proposed
for feature selection [74]. More characteristics about these meth-
ods can be found in Table 2.

Although not typically included in any of the aforementioned
feature selection classes, algorithms such as principal component
analysis (PCA), hierarchical clustering, k-means clustering, k-
nearest neighbours (k-NN) classification and autoencoders (unsu-
pervised or self-supervised artificial neural networks) can con-
tribute to dimensionality reduction. However, the dimensionality
reduction techniques search for latent variables to explain the
noise in data, whilst feature selection methods search within the
available features of the input set. A further classification of dimen-
sionality reduction to linear/non-linear methods and univariate/-
multivariate methods is also common. Unlike linear methods (i.e.
least absolute shrinkage and selection operator – LASSO), algo-
rithms that account for non-linear dependencies between the fea-
tures and labels are more suitable when a non-linear predictor
model is used [84]. Multivariate analysis involves the simultaneous
evaluation of multiple variables for the better exploration of inter-
dependencies between the examined variables.

3.2. Unsupervised machine learning applications

Omics data typically include thousands of measured variables.
Unsupervised ML techniques have been widely used to process
multidimensional datasets and expedite data analysis in biological
and biomedical systems as summarised in Fig. 5. For example,
autoencoders have been used as an initialization step in ML frame-
works that classify breast cancer metabolomic data [13], while PCA
of proteomic data has been utilized for the identification of meta-
bolic engineering strategies for intensification of production in
bacterial cultures [14]. Undoubtedly, PCA is the most widely used
unsupervised tool for the interpretation of both experimental data
and computational results. An overview of available methods and
their application to cell systems is presented in Table 3.

3.2.1. Applications of PCA
PCA is a dimensionality reduction method that searches for arti-

ficial latent components (principal components) that maximize
data variance and are linear functions of the original variables.
PCA has been applied to statistically explain the variability of
metabolic fluxes and identify important metabolic pathways that
are related to cellular behaviour. Barrett et al. [85] combined a
transcriptional regulatory network with PCA to first identify the
active reactions of a metabolic network in a defined medium and
further reduce system dimensionality. A similar framework that
applies PCA to fluxomic data for analysing cellular behaviour has
been also presented by Gonzalez-Martinez et al. [86].

Whilst PCA is a powerful tool for dimensionality reduction and
simplification of data visualization, the resulting principal compo-
nents lack biologically relevant meaning. In order to overcome this
limitation, principal elementary mode analysis (PEMA) has been
proposed for the identification of important fluxes and metabolic
pathways in E. coli cells [87]. Part of PEMA is the implementation
of PCA on the elementary modes (EMs) of the metabolic model,
leading to the formation of principal components that represent
groups of EMs on the same metabolic pathway. Dynamic elemen-
tary mode analysis (dynEMA) has been proposed as an extension of
PEMA for non-steady state fluxes [88]. In a similar manner, von
Stosch et al. [89] proposed the principal EM (PEM) analysis as a
computationally efficient framework for the evaluation of the
EMs using a branch and bound technique that enables the reduc-
tion of EM combinations under examination. Bhadra et al. [90] pro-
posed a hybrid of PCA and stoichiometric flux analysis, termed



Table 2
Summary of major data splitting, data transformation and feature selection techniques. Notation: xij and xij are the raw and normalized values of variable i in observation j,
respectively. xi and ri are the mean and standard deviation of variable i in the available dataset, respectively. xi;min and xi;max are the minimum and maximum values of variable i
observed in the available dataset.

Class Principle Advantages Disadvantages Methods

Data splitting
Random Sampling (RS) The training, validation and test sets are

randomly chosen from the population
Minimal levels of bias
introduced during sampling

When iteratively repeated
can be used for model
generalization evaluation

Do not account for data
distribution
Model might perform poorly
if requested to extrapolate
Not appropriate for small
sample sizes

Train/Test split
k-fold cross-
validation (CV)
Hold-out cross-
validation
Nested cross-
validation
Leave-one-out-cross-
validation (LOOCV)
Bootstrapping

Data Transformation
z-score normalization xij ¼ xij�xi

ri

Accounts for both the mean
and the variability of the
dataset

Assumes normal distribution
Could lead to over-
amplification of small
differences
Increases the impact of
measurement error

Pareto scaling xij ¼ xij�xi
ffiffiffiffi

ri
p Reduction of large values

effect on model training
Reduction of large variance in
the data

Range scaling xij ¼ xij�xi
xi;max�xi;min

Transformed features are
equally important

Outliers can undermine the
correct interpretation of data
variation

min-max normalization xij ¼ xij�xi;min

xi;max�xi;min
Most applicable when the
data does not follow a
normal distribution

Sensitive to outliers
Does not account for the data
dispersion

Mean centering xij ¼ xij � xi Mean of all features is zero
Can partially alleviate
multicollinearity

Does not scale the data
Usually applied in
combination with other
scaling methods

Log transformation xij ¼ log10ðxijÞ Can alleviate
heteroskedasticity and
impose normal distribution

Can be problematic when
values reach transformation
function boundaries

Feature Selection
Filter Features are selected based on their

performance in statistical algorithms
High efficiency
Independent of the
predictor

Do not interact with the
predictor
Results can be relatively poor

Correlation based
Feature Selection
(CFS)
Information Gain (IG)
minimum
Redundancy-
Maximum Relevance
(mRMR)
Hilbert Schmidt
Independence
Criterion Lasso (HSIC-
Lasso)

Wrapped Evaluation of feature subsets based on ML
model performance. They are composed of a
search and an evaluation algorithm

Results in feature subsets
with good performance

Computationally expensive
(greedy) as they require
multiple model simulations

Biased towards the examined
model

Exhaustive search and fast
evaluation necessary

Danger of overfitting

Optimization of evaluation
method may be necessary

Forward selection

Backwards
elimination

Exhaustive search

Embedded Feature selection is incorporated in model
training

Non-contributing features
are usually penalized

Less computationally
expensive than wrapped
methods

Robust to overfitting

Selection is biased towards
the model in use

Least absolute
shrinkage and
selection operator
(LASSO)

Support Vector
Machine (SVM)

SVM-Recursive
feature elimination
(SVM-RFE)

Random Forest (RF)
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Fig. 5. Timeline of unsupervised machine earning techniques and their application to constraint-based models.
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principal metabolic flux analysis (PMFA), that accounts for non-
steady state scenarios and can be expanded to the Sparse-PMFA
version of the method (components can have sparse loadings) in
order to capture the variance of genome-scale gene data. PMFA
successfully identified the active EMs of a P. pastorismetabolic net-
work and was found to outperform both PEMA and PCA in predict-
ing data variance.

Brunk et al. [91] applied PCA to time-course metabolomic data
to uncover metabolic fingerprints of strains and distinct metabolic
states, which the authors later utilized to further investigate strain
variation using GeM. Similarly, Bordbar et al. [92] proposed a
framework of unsteady-state FBA (uFBA) that incorporated PCA
of time-course metabolomic data for the identification of lin-
earized metabolic states that could be included in downstream
metabolic model construction. PCA has also been used as a pre-
processing dimensionality reduction step in genome-scale ML for
the prediction of metabolite concentrations based on enzymatic
expression levels [93]. In a study that combined bioprocess and
simulated data from GeM, PCA was applied to evaluate the effect
of various bioprocess parameters on cell growth and productivity
[94]. The authors also extracted the 40 first principal components
and used them as features for the downstream ML algorithm.
Occhipinti et al. [95] applied PCA to FBA results to identify path-
ways that when appropriately manipulated lead to rhamnolipids
(biosurfactant) overproduction in Pseudomonas aeruginosa. PCA,
in combination with pseudospectra and bagplots, has also been
applied for the interpretation of multi-omics metabolic models
that incorporate gene expression, metabolism and codon usage
[96].
3.2.2. Clustering
Clustering algorithms can be used for the identification of sub-

populations and groups of either cells, genes or metabolic path-
ways. Segrè et al. [97] developed the Prism algorithm, an unsuper-
vised hierarchical clustering method for the formation of gene
networks where the resulting clusters interact with each other in
a single way, trying to mimic the monochromatic buffering and
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aggravating interactions of genes. Hierarchical clustering has also
been applied to identify sub-populations in gut microbia based
on results from constraint-based GeMs [98]. Heatmaps of metabo-
lomic data in combination with fluxomic data have been utilized
for studying the rechannelling of metabolic fluxes under the sup-
plementation of palmitate in hearts of diabetic mice [99]. Yaneske
& Angione [100] developed personalised constraint-based meta-
bolic models of breast cancer patients by modifying the acceptable
boundaries of fluxes according to the relevant gene expression
levels from transcriptomic data [101] in an effort to identify corre-
lations between the fluxomic data and patient age. As a second
step, the authors used unsupervised learning to identify the fluxes
that explain most of the data variation, reduce dimensionality
(PCA) and create patient groupings (k-means clustering).

3.2.3. Other unsupervised techniques
Barsacchi et al. [102] developed a deep learning framework that

utilized variational autoencoders (VAEs) and GeMs in order to
extract biologically relevant features from transcriptomic data,
extending previous work on forming meaningful latent space from
gene expression levels [103]. Autoencoders have also been used as
part of DeepMetabolism, a deep learning framework that utilizes
GeMs to customize the connections between the layers of the
model [104], where genes are included in the input layer, proteins
in the first hidden layer and the phenotype in the second hidden
layer. Bayesian matrix factorization assuming Gaussian-Markov
random field properties has been applied for the identification of
latent pathways in fluxomic data harvested from augmented FBA
modelling of transcriptomic data [105]. The Multivariate Curve
Resolution – Alternating Least Squares (MCR-ALS) technique
[106] has also been proposed for the decomposition of fluxomic
data of a constraint-based model of P. pastoris [107].

3.3. Supervised ML applications

Supervised ML algorithms (summarised in Table 4) have largely
focused on inferring the relationship between multi-omics layers



Table 3
Unsupervised machine learning methods used in combination with constraint-based
models.

Unsupervised
ML method

Description Applications

PCA Dimensionality reduction

Data interpretability

Data simplification

Identification of variation
sources

Dimensionality reduction of
fluxomic data [85,86]

Can be applied to CBM re-
sults to identify central
fluxes and pathways
[85,86,95,96)

Identification of metabolism
active EMs [87–90]

Can be applied to experi-
mental or simulation data to
further inform downstream
CBMs or ML algorithms [91–
94]

Clustering Identification of sub-
populations

Clustering criteria, such as
centroid- or distribution-
based, vary depending on
the chosen algorithm

Hierarchical clustering for
the identification of
populations and the
development of population
specific CBMs [98,100]

Gene network reconstruc-
tion [97]

Heatmaps of metabolomics
data for studying metabolic
alterations [99]
k-means clustering to group
CBM results [100]

Autoencoders Unsupervised artificial
neural networks

Dimensionality reduction

Variational autoencoders
(VAEs) in combination with
CBMs to identify biologically
relevant features from
microarray data [102]

Autoencoders customized
based on GeM models [104]

Bayesian
factor
model

Dimensionality reduction

Identification of certain
latent variables that account
for data variation

Metabolic pathways analysis
from gene expression data
[105]

MCR-ALS Dimensionality reduction

Application of custom
constraints

Pathways identification
[106]
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such as the identification of essential genes from an array of fea-
tures extracted from complex biological data [108]. Yet it has
become clear that ML could also benefit from exploring different
omics layers of information generated from white-box mechanistic
models [109]. These include GeM and flux analyses, which repre-
sent biomolecular interactions involved in networks of biochemi-
cal reactions [17], thus contributing, in principle, albeit with
added complexity, to a fuller description of topological features
arising from gene expression [110]. An overview of key studies is
presented in Fig. 6.
3.3.1. Gene essentiality analysis
Plaimas et al. [111] applied support vector machines (SVM) to

an E. coli FBA network that incorporated both genomic and tran-
scriptomic data to identify essential metabolic reactions and there-
fore essential enzymes. Acencio and Lemke [112] pushed the
envelope further by training decision tree algorithms on several
features including network topology, cellular compartments, and
biological process information, such as cell cycle, metabolism, sig-
nal transduction, transcription, transport etc. Such a multi-faceted
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description not only aided the prediction of gene essentiality but
also the identification of biological determinants of phenotypes.
In addition, through the deconstruction of complex information
by the application of decision tree classifiers, the study was able
to identify cellular rules governing gene essentiality. In agreement
with other studies [114,115], the number of protein physical inter-
actions, as the principal tree root node, was deemed the most
important feature and therefore essential to algorithm
performance.

Szappanos et al. [116] applied FBA to characterize gene interac-
tion networks. In this case, a genetic algorithm was used to gener-
ate hypotheses that improved the prediction of gene interaction by
reconciliating empirical interaction data with model predictions.
Such a method is appealing, as it closes the gap between in silico
and in vitro work. Nevertheless, and similar to previous studies
[111], some of the predictions were compromised due to the
inability of the FBA to capture the majority of experimentally
determined genetic interactions, and the lack of regulation descrip-
tion at the gene expression and enzymatic reaction levels.

3.3.2. Integration with extracellular conditions
The integration of flux analysis and ML has also shown promis-

ing results in the context of analysing environmental impact on
cell phenotype. Simple linear regression has been used to correctly
predict E. coli growth from FBA data [120]. Zampieri et al. [121]
applied supervised linear regression on gene expression profiling
to estimate lactate production in CHO cells. The study successfully
validated the hybrid modelling approach by comparing predicted
lactate production with experimentally measured yields in a
cross-validation setting. Other studies have investigated the exten-
sion of the hybrid approach to incorporate a wide description of
factors ranging from the genome to the extracellular environment.
For instance, Wu et al. [122] presented a web-based platform that
applied an ensemble of ML techniques including SVM, k-nearest
neighbours (k-NN), and decision tree, to literature data from nearly
100 13C-FMA studies on heterotrophic bacteria. The approach
enabled the prediction of fluxomes as a function of bacterial spe-
cies, substrate type, growth rate, oxygen conditions, and cultiva-
tion methods.

In 2017, Nandi et al. [123] extended the hybrid methodology
utilising SVM-based implementation for binary classification of
E. coli genes based on gene sequencing and expression, network
topology and flux-based features. By also accounting for environ-
mental factors, the model was able to capture the minimal set of
genes that are essential in any given environment. The model
was trained on 4094 metabolic reaction–gene pairs, out of which
384 were essential, 3120 were non-essential, and for around 590
reaction–gene pairs there was no phenotype information available.
In addition, the model predicted the essentiality of 317 genes pre-
viously unidentified by exhaustive genome-scale knockout experi-
ments. Such work further highlights that the appropriate choice of
features arising from the genome-phenotype configuration and
their correct description improves the performance of supervised
algorithms.

3.3.3. Incorporation of regulatory system features
The complexity of cellular phenotypes stems from global tran-

scription events and their perturbation due to changes in the extra-
cellular environment [124,125], resulting changes in enzyme
capacities as well as changes of enzyme activities through
metabolite-enzyme interactions [126], but also metabolic enzyme
regulation due to post-translational events such as enzyme phos-
phorylation [127]. Last but not least, a small subset of metabolic
reactions can occur spontaneously or are mediated by small mole-
cules [128]. This knowledge underlines how fundamentally inter-
twined the relationships between the different levels of omics



Table 4
Supervised machine learning methods and examples of their application to bioinformatics.

Supervised ML method Description Strength Weaknesses Application examples

Linear Regression Data Regression to its mean
value

Best Fit Line (Mean Pattern
of the dataset)

Gradient Descent

Least Square Function

Continuous Output

Normality Assumption

Linearity Assumption

Computationally
inexpensive

Weighed Sum
Prediction

Reduces complex
dataset to a singular
function

Less prone to overfitting

Reduces larger complex dataset
to a singular function

Assumption of Linearity
Relationship is seldom
applicable

Does not distinguish Outliers
which might bias regression

Prediction and Evolutionary info analysis
of protein structure [137]

Prediction and evolutionary information
analysis of protein solvent accessibility
[138]

Genetic Expression inference [139]

Genotype Prediction based on Single Nu-
cleotide Polymorphism [140]

Prediction of protein secondary structure
[141]

Logistic Regression Extension of Linear
Regression

Logistic line fitting

Probability modelling

Non-linearity acceptance

Probability-based
classification (rather
than final
classifications)

Fast Training

Extension to Multiclass
Classifications

Less prone to overfitting

Complex Multiplicative
weighted function

Complete Separation of classes

Unrepresentative for classes that
highly overlap

Cellular Phenotype classification based on
gene expression profile [142]

Gene Selection [143]

Disease Classification from microarray
data
[144]

Molecular Classification of Cancer [145]

Support Vector Machine Hyperplane Data
classification

Classes separation on
higher dimensionality

Kernel Transformation

Easy implementation to
well defined classified
categories

Effective in high
dimensional spaces

Non-linear input
acceptance

Not suitable for overlapping
classes

Can be prone to overfitting
when number of features
exceeds the number of samples

No probabilistic explanation for
classification

Classification on Gene functional
annotations from a combination of protein
sequence and structure data [146]

Cancer Classification from genetic expres-
sion [147]

Protein subcellular classification predic-
tion [148]

Structural Classification of proteins [149]
Naïve- Bayers Probabilistic Classification

Probabilistic Bayer’s
theorem

Conditional Independence
between variables

Most used for classification

Reduced risk of
overfitting on small
datasets

Probabilistic
classification

Fast training

Computationally
inexpensive

Scales linearly

Does not incorporate feature
interactions

Performance sensitive to skewed
data

Requires assumption that
variables are conditionally
independent

MicroRNA target prediction [150]

Prediction of Protein Interaction Sites
[151]

Prediction of Protein coupling specificity
[152]

Decision Tree Classifier
&
Forest Tree

Classification or Regression
modelling

Parameter based Data
splitting of variable with
highest information gain

Data entropy

Information Gain Theory

Gini Coefficient

Easy interpretation and
analysis

Valued on smaller
datasets

Multiclassification
applicability

White box model
highlighting
classification pattern

Easily assembled

Tendency to overfit
Lack of linear smoothness

Prediction of microorganism growth
temperatures and enzyme catalytic
optima [153]

Protein Structure Prediction from enzy-
matic turnovers [129]

Microbial Genome prediction [154]

MS cancer data classification [155]

Gene Selection for Cancer identification
[156]

Human protein function prediction [157]

Prediction of Protein interaction [158]
k-NN Classification and

Regression modelling

Clustering classification

Simple to implement

Learn non-linear
boundary

Inefficiency on training larger
datasets

Expensive computational cost

Gene selection for sample classification
based on gene expression data [159]

Classification for Cancer diagnosis [160]
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Table 4 (continued)

Supervised ML method Description Strength Weaknesses Application examples

Instance-based learning, i.e.
lazy learning

Parameter selection on
Kernel basis

Higher dimensions for
clustering

Robust to noise in input
data

K value evaluation based on
mixed heuristics

Unclear

Prediction of Metabolic pathways dynam-
ics [161]

Fig. 6. Timeline of efforts to integrate supervised machine learning with flux balance analysis. (See above-mentioned references for further information.)
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information and data are. Recently, Zelezniak et al. [93] mapped
these regulatory patterns through the combination of ML with
metabolic control analysis enabling quantitative prediction of
entire cell metabolomes. First, flux analysis highlighted the impor-
tance of largely overlooked mechanisms in metabolic regulation.
Second, ML captured the inherently complex multifactorial rela-
tionships at protein level. As a result, the study successfully quan-
tified the role of enzyme abundance changes in metabolic
regulation. Interestingly, all kinase deletions triggered global enzy-
matic expression changes. In fact, the detected variation at pro-
teomic level led to wide metabolic control shifts between
different sets of enzymes. While in earlier studies supervised algo-
rithms were trained on a limited scope of sometimes overlooked
omics features, Zelezniak et al. demonstrated that the incorpora-
tion of additional omics information yields robust classifications.

Since the incorporation of proteomics has been proved essen-
tial, Heckmann et al. [129] applied such a hybrid approach to elu-
cidate structural, biochemical and network properties that
underline enzymatic kinetics. The study integrated an ensemble
methodology, including random forest and neural network algo-
rithms, to predict catalytic turnover in E. coli from enzymatic bio-
chemistry, protein structure and FBA computations. In a similar
fashion, Amin et al. [130] applied a decision tree algorithm on
enzymatic promiscuity data to predict hundreds of reactions and
metabolites that may exist in E. coli but may not have been
accounted for in databases.
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4. Summary and outlook

GeMs are indispensable for organising and analysing omics
datasets for a variety of cell systems. The development of GeMs
for industrially-relevant organisms routinely used for the produc-
tion of high-value chemicals or recombinant protein therapeutics
together with the advancement of optimisation algorithms is
enabling the design of improved cell factories and production pro-
cesses. This is achieved by detecting cellular and process bottle-
necks and genetic engineering strategies for overcoming them,
better understanding cellular physiology and identifying alterna-
tive pathways to desired phenotypes. Although generic models of
model organisms are a more accurate representation of cellular
mechanisms, there is also tremendous value in methodologies that
support tailoring GeMs to specific cell lines as well as reducing
their size to serve a specific application. This is evident by the fact
that the scale and complexity of, for example, CHO cell GeMs has so
far limited the application of optimisation algorithms commonly
used for strain design in microbial systems like E. coli or P. pastoris.
Apart from the associated computational challenges, the genetic
engineering strategies returned by optimisation algorithms are
also often too complex to implement experimentally. In this
regard, the introduction of thermodynamic constraints can
decrease the solution space. However, the lack of Gibbs free energy
data for a large number of metabolic reactions has so far hampered
the applicability of such model reduction algorithms to mam-
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malian cell systems. An additional drawback is the fact that most
algorithms are used to solve a steady state model whereas the
actual process is inherently dynamic.

Biological knowledge does not, however, advance as quickly as
the current data generation rate. Although mechanistic approaches
such as stoichiometric models have long been used for understand-
ing cell phenotype and data integration, they cannot yet capture
the full information content of available omics datasets due to lack
of underpinning understanding necessary for model formulation.
This has led to the emergence of ML methodologies, which have
found application in identifying features of gene essentiality for
guiding cell engineering. Another promising development is the
creation of hybrid ML/FBA formulations for dynamicising GeMs,
while maintaining a lower parameter estimation burden compared
to hybrid kinetic/FBA approaches. However, although studies have
successfully investigated the incorporation of multiple features
across omics layers, they seem to heavily rely on public domain
information for data curation, which may involve error and bias.
Another caveat is the danger of overfitting ML models, which can
significantly limit applicability and robustness.

Without a doubt, the ever-increasing capacity for high-
throughput experimentation and sample analysis renders hybrid
ML/FBA modelling a promising tool for harnessing the information
content of multi-omics datasets and GeMs. Within the bioprocess-
ing industry, this could support cell line classification, and process
screening, leading to accelerated host selection and process devel-
opment, respectively. Despite the aforementioned limitations, the
studies reviewed herein showcase the advantages of hybrid
methodologies in terms of the systematic representation of
feature-vector relationship and decision boundaries, when com-
pared to individual modelling approaches, be they stochastic,
deterministic or data-driven.
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