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Abstract

Biology, from the ancient Greek, “study of life”, is the most fascinating yet complex of all sciences.

Its understanding is paramount in solving many current problems we face in our society, from curing

seriously debilitating diseases, to safely devising new drugs, to determining guidelines for disease pre-

vention. However, its complexity has so far hindered medical progress, and the objective impossibility

of perfectly replicating experiments has contributed to less robust results and many non-reproducible

claims. Lately, the advancement of computing technologies has led to the development of mathematical

and computational methods which could shed light on the mechanisms of life which are still obscure

to us to date. In particular, progress in Systems biology has opened the way to new techniques to

be employed to solve long-standing problems in more efficient and robust ways. One of the newly

designed methods, genome-scale metabolic models, can help simulate metabolic conditions and draw

links between the molecular transformations happening at a small-scale level and the systemic modi-

fications that organisms experience. In this work, we have explored the usefulness of such models and

investigated possible approaches in the form of case studies, with the adoption of machine learning

techniques. These techniques, which aim at discovering invisible patterns in the data the significance

of which could lead to fundamental discoveries or directions for future medical research, currently

represent the state-of-the-art approaches in countless of modern applications, and serve as the first

choice when trying to advance in cutting-edge research scenarios. Our work demonstrates that some

scope for these models exists, in particular in the field of precision medicine.
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Chapter 1

The quest for better health

In the new century, the healthcare system has been facing serious challenges. Higher standards of

quality of life, coupled with new discoveries in medicine, have increased the life expectancy in developed

countries and thus the ageing population, which has already put a burden on healthcare systems in

the entire world [3]. This, together with a chronic lack of staff [4, 5] and an increase in non-age-related

disease rates [6, 7] means that in the near future access to quality healthcare will become more and

more difficult. A possible answer to this has already been provided by the digitalisation of most

services and the widespread adoption of IT-based solutions, which aims to organise and streamline the

management of patients and staff’s data. However, an alternative which is slowly making its way, is

the adoption of precision medicine approaches.

Indeed, as a result of advancements in analytics and the increased availability and heterogeneity of

data, data-driven methodologies have been applied to improve disease management, cohort discovery

for clinical trials and early disease diagnosis, thus contributing to the development of personalised

healthcare [8]. Precision medicine is a branch of the medical studies which aims at developing therapies

and protocols that are tailored to the individual patients and may not be suitable for others. Precision

medicine is an attempt at a more effective and efficient approach and an answer to rare diseases, and it

is one of the most anticipated applications of big data in healthcare. It has recently received enormous

attention for its potential in expanding the scope of disease management and prevention, by carefully

monitoring the transition from non-diseased to diseased states, precisely identifying individuals at

risk for disease, and individualising patient care by considering genetic, environmental, and lifestyle

variability [9]. Precision medicine has been successfully applied for the selection of patient-specific

treatments in complex diseases, including cancer [10, 11]. Specifically, when developing personalised

therapies for cancer treatment, the mapping of molecular features for individual tumours and mutations

can contribute to improving the selection of companion diagnostics and drug therapies. Consequently,
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this can also provide a renewed understanding of how specific mutations arise, which in turn helps tailor

more effective strategies for halting disease progression [12, 13]. Here, we use the term Phenotypic

personalised medicine (PPM) to refer to an even more ambitious application that harnesses artificial

intelligence to improve patient-specific medicine for existing monotherapies (therapies focusing on the

use of one single drug or type of treatment) and combination therapies. PPM has aided in the design of

novel drug combinations and new dosing strategies, as well as the identification of prospective markers

and drug targets [14, 15]. Particularly, PPM has demonstrated potential in tailoring treatments for liver

disease and acute lymphoblastic leukaemia [16, 17]. This work builds around the concept of phenotypic

personalised medicine (later simply referred to as personalised medicine or precision medicine) and

quests after computational approaches that allow a deeper understanding of metabolism biology at

the individual level, with the aid of mathematical modelling and artificial intelligence. In particular,

we will focus on Systems Biology as a viable approach to precision medicine. We will also combine this

with data integration through machine learning models, in order to resolve many of the limitations of

systems biology-based approaches. The rest of the chapter contains sections describing each of these

aspects in detail, in the hope to provide the reader with the necessary background to understand the

work later presented.

1.1 Biomedical data

The objective of precision medicine could not be accomplished without biomedical data, particularly

patient-specific information. The high volume of this type of data is only destined to increase and the

major problem already consists in developing better analytical approaches to take advantage of this.

Biomedical data are usually classified as structured or unstructured data. Structured data are those

that have labels or database-like schemas. They are easily accessible via data management systems

that facilitate computational interpretation and analysis. Any information recorded as measurements

or signals is an example of structured clinical data. On the other hand, unstructured clinical data

contain information that is not easily accessible by computational data management systems in their

current form, meaning that they require ad-hoc computational methods to be processed and analysed.

Electronic health records (EHRs) usually include both structured data, such as patient demograph-

ics and clinical measurements of blood pressure, pulse and respiratory rate, and unstructured data,

such as diagnoses and medications [18, 19]. EHRs would also include biomedical imaging data, e.g.

computed tomography (CT), single-photon emission computed tomography (SPECT), or magnetic

resonance imaging (MRI), some of which also provide high-resolution images [20].

Even if images, audio, and video streams constitute a major source of biomedical information, the

largest source of unstructured information in the medical field is natural language text. This includes
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published biomedical literature in the form of journal articles, EHRs, social media and other web-

based sources, which are types of unstructured clinical textual data that can act as primary resources

for natural language processing (NLP) [21]. In the following paragraphs we will present examples of

structured and unstructured data that we used in our work, and whose presence can be found in the

other chapters of the thesis.

1.1.1 Structured data

The structured data that the reader will find in this work can be divided into two categories: clinical

data (demographics) and omics data. The following paragraph describes this second type of structured

data, fundamental in all of our work.

Omics data The first challenge researchers in bioinformatics had to face was the production of

DNA or RNA sequence reads (the so called primary genomic analysis). A second challenge consisted

in the targeting of raw sequenced data, i.e. outputs from next-generation sequencing, by examining the

alignment of these reads to a reference genome in order to locate gene mutations (secondary analyses).

Lately, however, tertiary analyses have emerged as the most unsolved problem in bioinformatics. They

regard pre-processed data (after the secondary analyses) and how heterogeneous, genomic regions

interact with each other [22, 23]. Nonetheless, all three of these stages in genomic data analysis were

necessary for scientists to develop the current approach that gives broader insights into the development

of diseases such as cancer.

With the rapid development of next-generation sequencing technologies (also known as high-

throughput sequencing techniques, a novel and faster DNA sequencing technology [24]), we are cur-

rently observing an unprecedented growth in data from various sources (consortium-based and large-

scale projects), accelerated by the decreased cost of sequencing [25, 26, 22]. This exponential growth

regards in particular what in biology is called omics, i.e. experimental profiles with large coverage

over multiple biological domains. The principal ‘-omic’ technologies focus on the detection of the fol-

lowing data in biological samples: the total gene content (for the field of genomics, i.e. the study of

the genome), the total mRNA transcribed from the genome (field of transcriptomics), all the express

proteins (i.e. the proteome), the complete lipid profile (for the field of lipidomics), all the compounds

participating in metabolic reactions (i.e. the metabolome), the complete set of heritable phenotypic

changes that do not modify DNA (field of epigenomics), and many more [27]. If the genome is all

the genetic information of an organism, the transcriptome is instead the reflection of the expression

level of the genes, and directly influences the frequency and quantity at which proteins are produced.

The transcriptome can be measured fundamentally in two ways: with microarrays, and with next-

generation sequencing technologies. While the former can be used to detect known sequences (and
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their absence) by using multiple genetic probes targeting a single gene sequence (analysis which is

carried out in parallel for multiple genes), the latter computationally reconstruct the original RNA

by sampling a large number of nucleotide sequences (fragments of the RNA to sequence), in order to

improve the sequencing accuracy. Study of the metabolome requires instead a combination of chro-

matographic techniques (to first separate the compounds) and mass spectrometry (for the detection of

the individual metabolites by measuring the mass-to-charge ratio of their ions, after ionisation). Mass

spectrometry is also used for protein detection in chemical samples.

Omics are becoming more and more important for the study of biological mechanisms and diseases,

and we have made extensive use of this type of data in this work (and in particular of transcrip-

tomic data). In each chapter, even though we did not analyse the original biospecimens directly, the

collection and analysis of the data are briefly reported. Our analyses, which start from these raw

measures, are explained in detail. In this work, we have focused on what we refer to as multi-omic

data, i.e. collections of omic datasets, linked with each other by the fact that they all describe the

same samples/patients/individuals. This approach is part of what goes under the name of multi-modal

approaches, in which for every sample in our data we have several modalities (or views; omics, in our

work) available. However, this strategy presents several challenges that will be described at the end

of this chapter and tackled in the rest of the thesis, such as the problem of data incompleteness, i.e.

some of the modalities are not present for some samples (and different modalities are missing from

different samples), for which many approaches have been proposed [28].

1.1.2 Unstructured data

Biomedical unstructured data can be of three main types: images, videos and text. Its collection

is expected to grow with the expansion of digitalised repositories compiling large volumes of data

[29, 22]. These complex, distributed and often dynamic sets of biomedical data, which are increasing in

availability, provide new opportunities for the development of personalised medicine and improvements

of patient care through the implementation of appropriate computational techniques. The following

paragraphs introduce the reader to these types of data.

Images In several biomedical fields, including radiology and oncology, the most commonly available

data type is images. During medical image analysis, experts examine a range of bioimaging modalities,

e.g. computed tomography scans, magnetic resonance imaging, and ultrasound imaging for diagnosis

and treatment. These data, due to practitioners’ subjective impressions and human error, are not as

reliable as other patient-specific information (e.g. clinical or omic data). Nevertheless, to date, they

remain the only window that clinicians have to examine patients’ health status in several biomedical

fields.

4



Positron emission tomography (PET), single-photon emission computed tomography, and func-

tional magnetic resonance imaging are examples of functional therapeutic images that have been used

to develop deep learning architectures (which will be introduced in Section 1.4) that supplement low-

spatial resolution images with useful data-driven information [30].

Radiomics is the field of bioimaging which focuses on the extraction of quantitative features from

images, in order to then use these features for diagnostic and prognostic purposes: cancer detection,

prediction of response to treatment, monitoring disease status, personalised medicine [31, 32, 33, 34].

The extraction is performed by means of computer algorithms, and aims at uncovering information

that the naked eye of the clinician cannot discover. Radiogenomics builds on top of radiomics in that it

is an emerging field in personalised medicine that aims to stratify patients, evaluate clinical outcomes,

and guide therapeutic strategies by combining medical images with genomic data [35].

Videos Biomedical videos are a type of unstructured data that share with images the characteristic of

being necessary for certain diagnoses to be made. Many diseases, involving paralysis [36], ambulatory

problems and in general affecting the dynamics and mobility of the human body can be ascertain only

through careful and thorough observation of the patient during short time intervals.

Modern development has recently brought to light powerful approaches with applications spanning

from the detection of abnormalities in the heart’s dynamics [37] to the analysis of cell morphology [38],

with further advancements likely to pave the way for more precise and faster diagnoses in the near

future.

Text NLP is a growing field in biomedical research used to automatically find and interpret mean-

ingful information in text. It is commonly applied in speech recognition and to extract information

from narratives, but it has also shown potential for applications in imaging datasets [39]. Specifically,

NLP can be used to automatically extract text-based information from imaging reports and convert it

to a structured format that is easier to process [40, 41].

1.2 Systems Biology

One of the most promising fields to advance the knowledge of biology and precision medicine methods

is systems biology, which takes an interdisciplinary approach to jointly analyse complex biological

systems by computational and mathematical means, and can establish mechanistic connections between

their components. Systems biology has its focus on analysing and understanding different factors

and reactions in living organisms by examining biological processes from a global perspective, in

5



order to observe connections at the level of the individual cell, organism, or community [42, 43].

Systems biology can thus be viewed as a collaborative, interdisciplinary venture to examine changes

in multiple systems simultaneously and under different conditions [44]. Ultimately, the aim is to

improve understanding of how an organism’s genetically inherited characteristics (genotype) affect its

externally observable characteristics (phenotype) under a given set of conditions. The need to develop

new mathematical approaches to model relations between the components of a system was recognised

due to the complexity of metabolism, where metabolites are often involved in numerous chemical

reactions [45, 46].

Among the tools available in systems biology, genome-scale metabolic models comprise mathemat-

ical reconstructions of biochemical reactions involving the exchange of metabolites within a cell, with

the aim of conveying the changing functional states of living cells. This is achieved through predicting

flux rates, i.e. the rates at which reactants are converted into products during metabolic reactions.

1.2.1 Genome-scale Metabolic Models

Although omics such as genomics and transcriptomics provide insights into the presence and expression

of genes, pattern discovery and comparison only between genes are insufficient to gather a compre-

hensive understanding of disease development, therefore there has been a recent focus on the study

of metabolism and metabolic networks. Studying alterations in metabolic pathways could explain the

dysfunctional growth of malignant cells in addition to understanding the molecular mechanisms un-

derpinning diseases [47, 43]. Within each cell, metabolism is the network of biochemical reactions that

determines function [48, 49], and one of the main biological components affecting cellular phenotype.

With recent advances in mathematical and computational methods, we are now able to reconstruct

all known pathways of these reactions as complete networks spanning the entirety of metabolic func-

tions in living organisms [48, 49, 50]. The computational reconstruction of entire metabolic reaction

networks has allowed to gain more knowledge about the interactions between genotype, environment,

and phenotype for several species [51, 52]. It is a hierarchical process, composed of four steps, with

the ultimate goal of elucidating the mechanistic relationship between the genotype and the phenotype

[49]. The first step of the reconstruction process consists in creating an automated draft of the model

starting from the annotated genome sequence of the organism of interest. The second step consists in

the manual curation of the draft, and involves a time-consuming systematic acquisition of information

(coupled with what already was included in the automated draft) about small molecules, proteins

and in general all the available (and relevant) biochemical and genetic information for the process of

interest. At the end of this step the model is chemically and thermodynamically self-consistent. The

third step is the conversion of the manually curated model into a mathematical format compatible

with the modern computational approaches. This entails obtaining a model which is a knowledge
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base that can be queried for integrated cellular functions. Finally, the so-obtained model is tested

for metabolic tasks. In particular, production of common/fundamental metabolites is simulated and

it is checked that the execution of important metabolic processes works as expected. The model’s

predictions are also tested by comparing them with experimentally measured data. The forth step is

the most laborious and it is a long-term improvement process for the model, whose aim is to align

as well as possible its predictions with the real data. For this exact reason, the last process appears

to be a cycle, as further modifications are due to the model every time the simulations results differ

significantly from the experimental measurements.

These reconstructions are known as genome-scale metabolic models (GSMMs), in which all the

known biochemical and genetic processes found in the genome are accounted for. Scope and content

of these models have evolved throughout the years and expanded to include more and more details

regarding the biochemical processes happening in the cell, to the point that now it is possible to trace

the effects of the most various genetic parameters on computed phenotypic states [49]. This means that

these models can be used to contextualise high-throughput data, assist biological system discovery,

and simulate the effects of genetic and environmental perturbations. Specifically, GSMMs have been

implemented to mathematically represent metabolic reaction networks and their relationships with

associated enzymes and genes. The stoichiometric relationship between metabolites and accompanying

chemical transformations is clearly captured in a GSMM, which can simulate metabolic processes and

the corresponding gene activities [53]. The modelling of genome-scale metabolic networks usually

relies on two assumptions based on the mass and charge conservation laws and the steady-state system

condition. These assumptions guarantee, respectively, that the total mass of produced substrates is

equal to the total mass of those consumed, and that the internal metabolite concentration is invariant

over time. Using these assumptions, the flow of metabolites in each reaction of the metabolic networks

(i.e. the reaction flux) can be estimated to gain a better understanding of both metabolic activity

and wider biological phenomena. The omic concerning the metabolic reaction fluxes (whether they

are simulated by metabolic modelling or experimentally measured) is named fluxomics, and aims to

capture the in-vivo activity of the compounds involved in the metabolic pathways [54].

GSMMs are sufficiently flexible to accommodate data corresponding to specific cell types, processes

or environments within the human body. In this case, we talk about constraint-based methods, which

are currently the most commonly used method to estimate the flow of metabolites through a metabolic

network and of which we have made extensive use in this work. Constraint-based modelling approaches

typically consists in applying a series of linear constraints to calculate the range of feasible metabolic

flux rates, depending upon the optimisation of one or many cellular objectives. These constraints,

deriving from additional information, e.g. context-, condition- or patient-specific (hence personalised)

experimental data, as well as various levels of omic and splice isoform information, help the model

fully describe the metabolic functionality of a cell and aim at garnering more accurate predictions of

phenotypes [55, 56] and identifying unknown phenomena in metabolism [57]. The more data types
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included in the models, the more information is available to trace molecular components across multiple

functional states and identify non-intuitive phenomena related to metabolism [58].

Transcriptional profiles are the most popular omic to build context-specific GSMM through two

main classes of methods: (i) switch-based methods, which use a gene expression threshold to turn

off reactions associated with lowly expressed genes [51]; and (ii) valve-based methods, which reduce

the activity of lowly (or highly) expressed genes by adjusting the upper and lower bounds for their

corresponding reactions [59]. For (ii), enzymatic activities can be used as constraints [60]. For example,

an approach could consists in integrating kinetic and proteomic data using the GECKO tool [61]. In

fact, since not all enzymes are active in each cell type or culture condition, context-specific or tissue-

specific metabolic models can be developed from cell-specific RNA-Seq data using model extraction

methods such as GIMME-like methods (e.g., GIMME, GIMMEp, and GIM3E), iMAT-like methods

(e.g., iMAT, INIT, and tINIT), and MBA-like methods (e.g., MBA, mCADRE, FASTCORE, and

rFASTCORMICS) [62], all of which belonging to (i). Throughout this work, we have used the second

approach exclusively to generate context-specific models.

The integration of transcriptional profiles into GSMM has allowed the development of novel methods

for multi-tissue modelling to study intercellular interactions. For example, Bordbar et al. designed an

advanced model to incorporate three human cell types: myocytes, adipocytes, and hepatocytes [63].

The established multi-tissue model was then used to investigate diabetes by integrating sequencing

data to define discrepancies in metabolic functions between obese and type II obese bypass patients.

Similarly, the MADRID pipeline was implemented to allow the construction of tissue-specific GSMMs

using both transcriptomic and proteomic data, as well as existing knowledge from drug databases

to identify potential therapeutic targets for various diseases [64]. Proteomic and metabolomic data

have also been integrated with GSMMs, but there are fewer approaches due to the lower number of

large-scale repositories required for model validation [65, 66].

Another important aspect and main reason why GSMMs were chosen for this work is that these

models are mechanistically and biologically interpretable, which has proved them to be suitable for the

interpretation of omics data and the generation of hypotheses that can be experimentally validated to

support and drive further research [67, 68, 69].

Examples of GSMMs that we used in this thesis are Recon2.2 [70] and iMM1415 [71]. Recon2.2

is a genome-scale metabolic model for the human organism and is an extension of model Recon2.1

[72]. This model was an attempt at reducing the shortcomings of Recon1, the first GSMM for the

human species [73]. Recon2.2 follows the legacy of Recon2.1 of improving genome-scale metabolic

modelling by providing a more comprehensive annotation of genes and metabolites and by correcting

the chemical reactions that, in the previous models, had been left unbalanced (in terms of mass as

well as in terms of charge). In doing so, the model was expanded to contain 7785 reactions (twice as
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many as in Recon1), 1675 genes and more than 5000 metabolites. The model was built by consensus,

i.e. by integrating the available human models into a single GSMM [70]. Recon2.2, however, is not

the last genome-scale metabolic model to have been developed for the human organism. Recon3D [74]

and Human1 [75] have been since introduced to further advance metabolic modelling for the human

species. However, even though these models do contain more information and detail than Recon2.2

(Recon3D almost doubles the number of reactions of Recon2.2 and contains functional annotations of

more than 3000 proteins, while Human1 adds improvements in reaction reversibility and stoichiometric

consistency to Recon3D), we have found it difficult, in practice, to use machine learning models and

certain computational techniques (such as flux variability analysis) with them, due to their extremely

high number of reactions. This would make most of the analyses presented in this thesis impractical

in terms of computational time required. For this reason, given that Recon2.2 presented a sufficient

level of biological detail for our work, we chose to use this model rather than the most updated ones.

iMM1415 is, instead, a GSMM for the mouse (Mus Musculus) organism, built starting from Recon1

[71]. The structure of the human GSMM was filtered so as to retain only the reactions associated to

homologous genes in the human and mouse organism, and the metabolic “skeleton” so obtained was

then integrated with the addition of reactions known to occur in mouse metabolism and necessary to

have a model capable of performing the most important metabolic tasks (production of biomass and

ATP, for instance). This process was iterated several times and the added reactions cross-checked with

the KEGG and Entrex Gene databases [76, 77] to make sure that the differences in metabolic functions

between the two organisms were properly represented, thus obtaining a final model comprising 3724

reactions and 1415 genes. Just like for the human GSMM, we chose this model because a more up-

to-date version (based on Recon3D, with a 7-fold increase in the number of reactions) would have

been computationally intractable for our analyses [78]. The next two paragraphs explain how we used

GSMMs (and these two models in particular) in the studies described in this work.

Flux Balance Analysis Flux balance analysis (FBA) is currently the most popular tool used to

estimate the flow of metabolites in metabolic networks and identify the range of feasible flux values

[79, 80]. FBA calculates the rate at which compounds are consumed or produced during metabolic

reactions, and is an approach extensively used in the study of GSMMs [81, 82], in particular in the

presence of constraints. The underlying idea is that constraints are imposed on the flow of metabolites

through the network by assigning a lower and upper bound to each reaction in the network, which

regulates the minimum and maximum amount of flux that would be allowed (valve-based approach).

This feature also allows for flux predictions based on various experimental conditions [83].

The way FBA works is the following: in general terms, FBA solves a linear optimisation problem

to find the value of the flux rates. Normally, however, due to the usually greater number of reactions

than metabolites the problem is underdetermined and infinite solutions can satisfy it, which is why

its resolution usually requires that one targets a subset of the reaction fluxes, whose rate has to be
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optimised or minimised. In particular, since identifying the true objective/target reaction(s) for a

cell remains a challenge, the maximisation of biomass is often considered a reasonable target for both

bacteria and cancer cell models, whereas it may not be the best choice in the presence of mammalian

cells [84, 85]. In fact, the true cellular objective might vary across cells in the same tissue, between

tissues, and even within the same cell throughout time.

The FBA framework adopts two principles. The first, being this method based on GSMMs, is that

the total sum of fluxes in the model has to be equal to zero (from which “Balance” in the name).

The second principle, stemming from the first, is that the entire system is considered at steady-

state [79]. This means that the concentration of metabolites in the model is considered constant,

which in turn assumes that the metabolic fluxes are temporally invariant (do not change over time)

and spatially homogeneous (if the model is composed of different compartments, each metabolite is

accounted for independently in each of them, as if there were multiple different metabolites) [49]. Even

though this hypothesis seems not applicable when trying to model the real world, the experience has

demonstrated that the simplification of the models in such terms is still capable of offering meaningful

insight in the functioning of biological systems. Moreover, one could say that this approach, which

considerably streamlines the usage of these models, finds validation in the common approximation

technique used in Physics which consists in analysing a system in such a small (infinitesimal) interval

that all the temporally dependent variables can be considered constant. In our case, the steady-state

principle means that we are observing the metabolic network in an extremely small time interval, in

which indeed the concentration of the metabolites can be considered constant. Finally, an even more

compelling reason why the steady-state assumption is important to make is that for most applications

of FBA the accurate measurement of metabolic fluxes is not possible, especially for complex organisms

such as the human one [86].

The general mathematical formulation of FBA is the following:

max c⊤v

subject to Sv = 0,

vlb ≤ v ≤ vub

(1.1)

where v represents the vector of metabolic fluxes, c is a constant vector of coefficients (usually

boolean, used to select which reactions to optimise), S is the stoichiometric matrix, i.e. a matrix

whose entries are the stoichiometric coefficients of the compounds produced and consumed by the

metabolic reactions (associated to the columns of the matrix), and vlb and vub are, respectively, the

lower and upper bounds of the metabolic reactions.

The first condition, Sv = 0, is the condition that imposes the steady-state, since the product of

the stoichiometric matrix with the fluxes vector results in the vector of the variations of the metabolite
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concentrations. By imposing that these variations are 0, we are binding the system to the solutions

for which the metabolites concentration does not change, i.e. only the steady-state ones. Clearly this

makes our problem easier, as the system becomes a linear one with constant coefficients. The second

condition, instead, follows the constraint-based modelling approach. By applying experimentally-

derived bounds to the reactions, we hope that the solutions we obtain from the model will be tailored

towards specific individuals (patient-specific), environmental conditions or tissues, in the case of cells

(tissue-specific). Moreover, this is often necessary to have biologically meaningful results.

In order to do so, we have to define a way to translate the activity at the gene level into activity at

the reaction level. In particular, each metabolic reaction is usually controlled by more than one gene,

in a specific combination named gene set. In a GSMM, the relation between gene sets and reactions

is expressed in the form of gene-reaction rules, i.e. formulae combining the genes in the gene sets with

the logical operators AND and OR. For example, if a reaction can be equally catalysed by two enzymes

(namely, the two enzymes are isozymes), this relation will be encoded through an OR operator between

the two corresponding genes. Conversely, an AND relation identifies enzymatic complexes where both

genes are necessary for the reaction to occur. Following METRADE [87], we change the reaction

bounds of the genome-scale metabolic model by assigning a gene expression value to each gene set,

which then affects the lower and upper bound of the corresponding reactions. Such expression value is

obtained by converting the logical operations into maximum/minimum rules, according to the following

map:

Θ(g1 ∧ g2 ∧ · · · ∧ gn) = min{θ(g1), θ(g2), . . . , θ(gn)}

Θ(g1 ∨ g2 ∨ · · · ∨ gn) = max{θ(g1), θ(g2), . . . , θ(gn)},
(1.2)

where θ(g) represents the expression level of gene g and Θ represents the effective expression level

of the gene set {g1, g2, . . . , gn}. This final value is then used to define the reaction bounds of the

model according to some formulae, which are dependent on the available data and task at issue. This

approach has been used extensively in this thesis.

As an example of the application of the above map, let us consider the following gene-reaction rule

for the hypothetical reaction r1:

r1 : ((g1 ∧ g2) ∨ g3) ∨ g4

By iteratively applying Equations 1.2 to the above formula, starting from the innermost brackets to

the outmost ones, we therefore obtain

r1 : max{max{min{ θ(g1), θ(g2)}, θ(g3)}, θ(g4)}

An apparently more complicated example is the following:

r2 : g1 ∧ (g2 ∨ g3 ∨ (g4 ∧ g5 ∧ g6)).

Here we have AND and OR relations between more than two genes, but the conversion of the formula
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follows the same rules, and we obtain

r2 : min{ θ(g1),max{ θ(g2), θ(g3),min{ θ(g4), θ(g5), θ(g6)} } },

The formulation in Equations 1.1, as we wrote, is in fact that of an optimisation problem, since we are

maximising (or, equivalently, minimising) the flux rates of one or more reactions. This is necessary

otherwise, as stated above, the solution of the linear system would be underdetermined, meaning

infinite solutions would be available, from which the need for the new “constraint”.

However, as previously explained, a clear choice of what reactions to optimise is not obvious in

all cases. Since a correct decision is usually essential for the functioning and efficacy of the model,

alternatives have been developed to remedy this.

To record changes in metabolism over time, several dynamic flux balance analysis (dFBA) tech-

niques have been designed to increase the accuracy of predictions [88]. Within their computational

frameworks, these approaches incorporate kinetic parameters and changes in the concentrations of

specific metabolites over time. Other methods modelling unique solutions that are more consistent

with observed metabolic states may consider conditional dependencies or thermodynamic uncertainties

within the metabolic network [89, 90, 91, 92].

Data mining and constraint-based modelling have also been combined in unsteady-state FBA

(uFBA) to estimate metabolic fluxes in dynamic conditions [93]. Principal Component Analysis (PCA)

and linear regression were integrated to define an FBA model starting from metabolomics data. Since

whole-metabolome measurements are generally difficult to obtain, uFBA includes an algorithm to es-

timate unmeasured metabolite concentration differences on the basis of measured ones. The obtained

constraint-based model can be used for traditional FBA, variations of it, or related analysis in dynamic

conditions.

Flux Variability Analysis (FVA) is an alternative FBA-derived approach which aims at investigating

the metabolic limits of a model, by maximising and minimising alternately all the fluxes, subject to

the optimisation of a group of reactions [94]. We used this approach in the case study described in

Chapter 4, as in that case it helped differentiate patient-specific models better than how FBA could.

In general, however, when the assumption of maximum biomass is not appropriate, variations

of FBA can be applied to characterise the solution space without choosing any objective. FVA is

a borderline case, given that an objective function must be chosen anyway as further constraint to

the multiple optimisation problems. A powerful alternative would be random flux sampling, which

determines the feasible solution space for fluxes by approximating their distributions, while enabling

a comprehensive understanding of the interplay of pathways [95]. The main problem of this solution

is that, for big models, its computation of the flux distributions becomes prohibitive.
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Data and Models integration Integration of FBA, FVA or sampling techniques with images,

multi-omic and radiogenomic data, can potentially provide more biological knowledge for disease di-

agnosis and prognosis. Indeed, using GSMM-derived metabolic data in a multi-modal setting could be

leveraged to investigate the correlation between these different biomedical data types. This correlation

could also improve the predictive accuracy of high-risk patients and allow the implementation of more

accurate approaches in disease detection or survival analysis, for instance.

The integration of histopathological/radiological images, multi-omic data, and constraint-based

GSMM-derived data could potentially provide more comprehensive tissue-specific features and biomark-

ers for precise diagnosis and prognosis. So far, it has been shown that medical imaging, gene expression

profiling, GSMM, and computer-aided diagnosis can play a significant role in early diagnosis and prog-

nosis of several diseases and conditions, such as tumours or lesion detections [96, 97, 98, 99, 100], but

no study has been carried out on multi-omic and imaging data integration in a GSMM framework.

These data modalities could be investigated independently using advanced statistical models or they

could be integrated through multi-modal approaches in order to develop more accurate models and

potentially lead to interesting discoveries. However, despite the advancements in medical technologies,

the integration of these data types remains a challenging task, due especially to data heterogeneity

and high dimensionality.

When integrating multimodal data with GSMMs, the explainability and interpretability of the

model used will also need to be taken into consideration. Most highly advanced artificial intelligence

approaches are characterised by the lack of understanding of how they work, because of their com-

plex interconnected processes. Model interpretability, therefore, represents a considerable challenge,

especially when working with biomedical data, and becomes even more difficult with the integration

of heterogeneous data sources. Even though, as we will see in the rest of the thesis, one of the rea-

sons why the use of GSMMs has increased is that they can provide mechanistic information about

the metabolism of the patients, in order to make the entire multimodal framework transparent and

identify significant biological insights, robust and model-agnostic interpretation techniques may need

to be applied (especially with the most complex models), such as SHAP, LIME, or permutation-based

feature importance [101]. Considerable effort has been dedicated to tackling this issue, including the

Explainable AI (XAI) program launched by DARPA [102]. There are several ongoing projects that

aim to enhance the explainability of machine learning and deep learning models by proposing new

statistical approaches and visualising features in order to gain the trust of the public and physicians.

However, reliable multimodal approaches for interpretability and explainability in a general setting

are currently lacking. For this reason, when integrating GSMMs with multimodal machine learning

approaches, the models should be adapted to facilitate the identification of new biomarkers and the

biological interpretation of important features that can improve model reliability[103]. Multimodal

approaches will be presented more thoroughly in Section 1.5, and two case studies will be discussed in

Chapters 3-4.
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Growth prediction Choosing an objective function to optimise is difficult even when the task con-

sists in predicting growth. Microbes, for instance, are characterised by high variability in their growth

curves, which complicates the adoption of a GSMM-based approach. Growth variability in microbes

can be due to genetic factors, environmental conditions and external stress factors. For example,

bacterial populations have been found to replicate at different speed in different body sites [104] or

in presence of inflammation [105]. Other “hidden” factors, such as the presence of rotating magnetic

fields (and their frequency), were shown to influence growth dynamics and metabolic activity too [106].

To take into account this natural variability when predicting growth, [107] used a gaussian process.

They controlled for all the possible “confounding factors” that affect growth such as genetic mutations,

stress conditions and environmental perturbations explicitly by increasing the dimensionality of the

kernel of the process, and were able to test for differential growth rigorously thanks to the probabilistic

nature of the model. When using a GSMM, however, this approach would translate into integrating

these additional “constraints” into the metabolic network. For example, environmental changes (as in

the medium) are the simplest to take into account, since it is possible to force a minimal intake of a

compound by modifying the bounds of the consuming reactions. However, more difficult is to adopt

a proper definition of biomass, especially when it can change over time [108]. [109] have proposed

to model this problem by considering a linear combination of all possible compounds of interest as

biomass objective, with the coefficients being determined computationally. Finally, additional stress

conditions can be integrated into a GSMM by considering the active/inactive metabolic pathways that

such conditions would establish in the organism [110, 111]. However, even though some solutions have

been proposed, more powerful techniques will still need to be developed, since integration of variability

factors into predictive models can definitively make them more realistic but, on average, not necessarily

more accurate [112].

1.2.2 Kinetic modelling

Genome-scale metabolic models are not the only possible modelling approach for biological systems.

There is a much older alternative, called kinetic modelling, which instead focuses on the dynamics

of such systems. When using flux balance analysis with a GSMM, the fundamental assumption is

that the system is being studied at the steady state, which makes it very difficult to investigate time-

variant biological mechanisms such as genetic/metabolic regulations and accumulation of metabolic

intermediates [113]. Even variants of FBA such as dFBA cannot mitigate this problem, because

the concentration of metabolites (albeit only the internal ones) is still considered constant [88]. The

approach followed by kinetic modelling, instead, consists in using ordinary differential equations to

investigate the dynamics of the system, and capture all of its time-dependent and ever-changing features

(namely, the reaction kinetics). Unlike genome-scale metabolic models, this type of mathematical

modelling heavily relies on precise knowledge of mechanistic relations between the various biological
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entities in the system, and can describe instant changes at a very low-level. Kinetic modelling has

successfully been used for the design of yeast mutants for fatty alcohol overproduction [114], for the

analysis of dark fermentative hydrogen production [115], and to investigate molecular energy converters

[116], among the many, and can either be structured (taking into account metabolic pathways) or

unstructured (only used for microbial systems) [117]. Even though kinetic modelling can describe

how metabolic networks change and evolve with time, its usage for many modelling tasks has been

quite complicated. The use of ordinary differential equations instead of a linear system with constant

coefficients (the concentrations of the metabolites), in conjunction with the necessity of very deep

and precise knowledge of the mechanisms that govern biological systems has historically hindered the

adoption of these models for large-scale analyses. Indeed, in order to formulate dynamic mass balance

equations, a huge number of kinetic parameters are required, a number which grows exponentially

at the increase in size of the system. Given that the values of many of these parameters cannot be

measured directly, and that they can change with time, optimisation algorithms need to be used to

estimate them, but the search space may easily become too large to solve the mathematical problem

associated [49, 113]. For instance, a system with > 1000 variables and > 4000 parameters (size

not uncommon among genome-scale metabolic models) would take thousands of hours of CPU to be

solved, thus making kinetic modelling computationally intractable for moderate to large systems [118].

Finally, another complication comes from the fact that the values of kinetic constants can change

over time because of evolution, and different individuals of the same species could have distinct values

simply because of (epi)genetic differences [49]. Several solutions have been proposed recently: [119]

have devised a framework to develop a kinetic model of the metabolic network of an organism starting

from a GSMM, by simplifying the original model and using linlog kinetics to reduce the computational

burden, while [120] have instead discussed reduction techniques to obtain smaller, yet functional kinetic

models starting from bigger ones. It has also been suggested to use kinetic modelling in conjunction

with genome-scale metabolic models to investigate in more quantitative detail the results obtained

from the latter [113]. However, for all the above reasons, the adoption of kinetic modelling in the field

of system biology is not as widespread as the usage of GSMMs, on which instead the work in this

thesis is entirely based.

1.3 Machine Learning

Machine learning can be described as a subset of Artificial Intelligence comprising algorithms that can

improve their performance on a task through experience, given a certain processable input from which

they are able to learn and generalise. Beyond their potential, their widespread usage in bioinformatics

and computational biology is also due to the limited assumptions they require compared to other

statistical or computational approaches. This makes them essential in a number of tasks, ranging from

the understanding of RNA folding to estimating the impact of mutations on splicing, and from the
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exploration of gene expression profiles to reconstructing phylogenetic trees, and indeed we have used

them extensively throughout this work [121, 122, 123, 124]. In this section, we will investigate the

characteristics and issues of machine learning and describe some applications.

In recent years, machine learning has emerged as a key research tool for personalised medicine and

the inspection, interpretation, and exploitation of multi-omic data. Both personalised medicine and the

analysis of multi-omic data have benefited from it and are expected to further develop in the near future,

helping overcome longstanding issues in the field of medicine [125, 126]. In particular, there has been

an increase in the application of machine learning to extract more information from biological systems.

The reason is that unlike statistical models, which are designed to mathematically formalise relations

between variables for hypothesis testing and uncertainty estimation, machine learning techniques can

be used to make predictions and also transform the data into shapes that can highlight some of their

hidden characteristics, with the potential of learning not only from the input but also from the output

of their analysis [127, 128]. Relying on modern powerful computing architectures, machine learning

algorithms have become the go-to suite of methods in almost every field of data analysis. A number of

recent developments in the application of machine learning to biological problems can be found here

[129]. In the rest of this section we will describe some of the latest advances and introduce concepts

that have been used in the case studies which compose this work.

1.3.1 Data preprocessing

The first aspect to take into account when working with machine learning models, is the available

data. This is true for every experimental analysis: if the quality of data is not good enough, neither

will be the quality of the results or, as usually stated by machine learning practitioner, “garbage in,

garbage out”.

In order to prepare raw data for machine learning, there is a variable level of pre-processing steps

that each dataset is required to undergo. This includes data normalisation procedures, reduction of

noise or removal of biases, feature extraction (i.e. the generation of new, possibly more relevant fea-

tures, from the original feature set), and data labelling [130]. Among these, a more advanced technique

is the matrix factorisation (or matrix decomposition) of the data, which is a common measure for re-

ducing noise in datasets by breaking down/simplifying matrices into simpler constituents. A subclass

of this is non-negative matrix factorisation, that has been used successfully to identify microbial guilds

in metagenomic data for a microbial community [131].

When dealing with particularly high-dimensional datasets, it can also be helpful to perform feature

selection to reduce their complexity and potentially obtain better predictive performance. The rationale

behind this is that, in the presence of many variables in the dataset, relevant information for the
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task is more likely to be contained in more than one variable (which leads to redundancy), with the

vast majority of them containing little to no information. This is particularly true in biomedical

applications dealing with omic data, which are usually highly correlated and noisy. Variables (also

known as features) are defined as measurable properties of the observed process and are referred to as

the input of modern machine learning algorithms. The main focus of feature selection is to select a

subset of features that can effectively describe the data while reducing the effects of noise and removing

irrelevant variables, e.g. correlated variables that do not include extra information and simply result in

noise for the model. For instance, when two features are perfectly correlated, only one is necessary to

describe the data. Hence, by removing any dependent variables the dimensionality of the data can be

reduced significantly, which can improve model performance (at least in terms of computation time).

To identify and remove redundant features, a suitable feature selection method that measures the

relevance of each feature must be selected. This will depend on the problem under investigation and

the type of machine learning algorithm to be applied [132]. In particular, feature selection methods

can be divided into two groups: filter and wrapper methods.

Filter methods are feature selection techniques based on feature-ranking strategies. Specifically, a

relevant ranking criterion is used to rank the features and then a threshold is used to select a subset

of them. An example could be the ranking of the features based on their marginal association or

correlation with the outcome variable [133]. Filter methods have been successfully applied to ordinary

linear models with normal errors and generalised linear models [134, 135, 136]. Specifically, rank-based

feature selection methods have been widely used in systems biology for metabolic data and genome-

wide association studies [137]. Grissa et al. used a combination of rank-based methods to select the

best k−features and discover predictive biomarkers in metabolic data [138]. The presented approach

used feature selection methods from metabolomic data analysis based on the Pearson correlation

coefficient and mutual information to discard highly correlated variables. In Chapter 4 we have used

filter methods to remove redundant features from our data.

In wrapper methods, features are selected based on the performance of a predictive model [139].

Specifically, the selection criterion uses a search algorithm to find the set of features giving the highest

predictive performance. Since evaluating all the 2N subsets that can be selected from N features is

usually computationally very expensive, sequential search or evolutionary search algorithms such as

genetic algorithms (GAs) are usually applied [140]. While sequential search algorithms start with

an empty set and add (or remove) features until the defined criterion is satisfied, heuristic search

algorithms move between different feature subsets based on a predefined heuristic.

Finally, some models (such as Lasso [141]) conduct a feature selection step automatically, as part

of their learning process. We have focussed on some of them in Chapter 3.

Data preprocessing is fundamental in machine learning and has been applied in all the case studies
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presented in this work, albeit in different instances, and fashions.

1.3.2 Types of learning

Depending on the task and the available data, machine learning models may necessitate different

types of learning paradigms. This usually means that for different tasks and different datasets, certain

models are better than others, or cannot even be used. The following paragraphs describe what the

typical learning approaches are and how the training is structured.

Supervised learning Supervised learning is probably the most common learning paradigm for

machine learning models. It is called supervised because the available data to train and test the model

contain the variable that we want to predict (whether it be categorical or continuous). This means

that the model can “see”, during the training, what the correct prediction would be for each of the

samples it is training on, and that it is possible to define a performance metric that estimates how

accurate the model is in its predictions. Examples of models that can be trained in a supervised setting

are support vector machines, random forests and neural networks.

The training procedure follows this structure: the available data are split into two sets, named

training and test set. The former is used to train the model (and, depending on the model itself, to

choose its hyperparameters), which will learn the patterns present in the data, while the latter will

be used to obtain an unbiased estimate of the model’s performance on unseen data. We used the

supervised learning paradigm in Chapters 3-4.

Unsupervised learning Unsupervised learning is a learning paradigm in which the data, unlike in

the supervised setting, do not present a “ground truth” value, meaning that there is no exact, unique

way to estimate the performance of the model. In this case the machine learning practitioner has to

choose one or more heuristics to determine if the model is performing well or not. Usually this type

of learning is used when the purpose is not to make a specific prediction for an individual sample but

instead when we want to obtain insights from the data, generally in the form of patterns. An example

of an unsupervised learning task is clustering, and an example of unsupervised learning algorithm is

Principal Component Analysis.

In this case all the available data are used, since there is no way to determine a priori whether

the correct patterns have been detected (meaning that leaving some data out to check the model’s

conclusions would not be useful). For instance, in clustering tasks, it is not always possible to determine

the meaning of the newly found clusters, and more than one clustering solution might be possible,

meaning that, as stated above, heuristics should be adopted to determine if the results are satisfactory
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or not.

In the case studies presented, PCA was adopted in Chapter 2 to reduce the dimensionality of the

data, and in Chapter 4 for data exploration.

Semi-supervised learning Semi-supervised (or weak) learning is a learning paradigm in which

only a small portion of the available data is labelled. This means that semi-supervised learning can

be considered to be halfway between supervised and unsupervised learning. The models that can be

used in this settings can have very different architectures, we presented an approach in Chapter 2 for

dealing with known and unknown gene regulations.

Reinforcement learning Reinforcement learning is a learning paradigm with apparently limited

scope but very powerful. It is an optimisation technique based on the concept of feedback and agent-

environment interaction, with the task to solve being framed as follows: an agent (or more) interacts

with the environment in which it exists (which can be totally virtual or, in case of robots, even physical)

and is rewarded for its actions according to a policy function that aims at solving, in a finite sequence

of steps (or states) the original problem. Every time the agent commits to an action, the interaction

with the environment determines the reward which, in turn, influences the future actions of the agent.

This type of learning is used in many practical applications such as robotics, self-driving cars and video

games. The formulation of the reinforcement learning paradigm is so general that it is an approach

usually suitable for the most disparate tasks, and it is indeed studied in many other disciplines.

In this case, unlike the previous two methods, the use of data may not be even necessary, as all the

required information is already encoded in the agent-environment interaction mechanism.

1.3.3 Types of prediction tasks

Once the data have been preprocessed, the machine learning algorithm can be applied to solve the

task at issue. In particular, there are three general types of problems (excluding the more general

reinforcement learning paradigm) that the machine learning practitioner can attempt to solve: classi-

fication, regression and clustering. The following paragraphs aim at providing a brief introduction to

each of them.

Classification A classification problem is a task in which we are trying to assign a category (or class)

to an individual entity (sample). Common classification tasks in biomedicine can consist, for instance,

in determining if a patient is ill or not. Classification algorithms include support vector machines
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(SVMs), k-Nearest Neighbours (kNN), self-organizing maps, random forests, and locally weighted

learning. For example, an SVM model was proposed in [142] to classify genes as essential/non-essential,

given a training set of flux-coupled features. Together with kNN, it is an instance-based classification

algorithm, since it bases its prediction on instances seen during the training phase and stored in

memory. The case studies described in Chapters 2-4 are classification problems, with the latter using

an SVM as main prediction model.

Regression Regression is a learning technique that can be used to model and predict continuous

variables, as opposed to classification which instead is used to predict categorical ones. Indeed in

this type of problem, the input features are used to determine the numerical value which is the

objective of the prediction task. The most common regression model is linear regression, which assumes

a linear relationship between the input features and the value to predict. Similarly, multivariate

linear regression can be applied when the several dependent variables depend on multiple explanatory

variables [143]. In general, however, when dealing with multiple independent variables the model

becomes more prone to overfitting (i.e. to find spurious correlations/patterns in the data) and ad-hoc

approaches must be applied to deal with cases of data multi-collinearity (i.e. correlation among the

input variables) and data noise [144], such as feature selection. Regression techniques usually can be

easily interpreted, and they can provide insights into the relationships between the predicted value

and the input features. As a consequence, regression models have been used in the clinical setting

for medical diagnosis, process control, quality assurance, process optimisation, and quality control for

years [145]. The case study described in Chapter 3 is a regression problem.

Clustering The term clustering refers to a particular type of machine learning problem which con-

sists in grouping (or clustering, hence the name) the data in a way that samples in the same cluster are

more similar to each other than to samples in other clusters. It can be considered a type of classification

when no information regarding the classes (not even how many they are) is available. However, unlike

classification, this approach does not require labelled data, i.e. there is no need to have information

about which samples constitute which groups (in the presence of labelled data, this would indeed be

a classification task). Therefore, this type of problem is an unsupervised task in machine learning, as

opposed to supervised tasks such as classification and regression. The general approach to clustering

consists in using a mathematical function to identify a degree of similarity (or dissimilarity) between

the samples being clustered. Several algorithms can be applied to identify the clusters, such as k-

means, affinity propagation, and hierarchical clustering [146]. PCA is also an unsupervised technique

which has been widely used as a clustering technique within the context of metabolic modelling [147].

It is usually employed for dimensionality reduction or feature extraction, but was used to identify data

similarities from multidimensional biological datasets in [148] as well. In this case, one can simply

use PCA to compute a set of principal components representing the patterns encoding the highest
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variance in the dataset, and by analysing the variables correlating with the principal components, they

can try to identify hidden patterns and potentially cluster the samples. Hierarchical clustering, a type

of clustering which assumes the existence of a hierarchy among the clusters in the data, was applied on

metabolomics data to separate samples from different origins (such as wild-type or knockout mutant

samples) and to identify further relations within the data in [149]. As already mentioned, PCA was

used in Chapters 2-4, while hierarchical clustering was used in Chapter 3. Finally, clustering can also

be used for anomaly detection as in [150], in which the authors used it to discover hidden patterns and

outliers in the metabolic reaction fluxes.

1.3.4 Applications with biomedical data

Machine learning has been increasingly applied in bioinformatics problems and with biomedical data.

For example, classical machine learning techniques such as random forests and support vector ma-

chines have been adopted to predict cardiovascular events and diagnose acute coronary syndrome

[151, 152]. Multivariate logistic regression has been applied to measure the association between imag-

ing and genomic features from 48 patients with breast cancer [153]. Then, the subtypes that showed

a positional association with the image features identified in the first step were analysed, thus find-

ing that luminal B cancer (a subtype of breast cancer) is associated with a subset of MRI features.

Supervised and unsupervised NMF models have also been used to identify the features of microbial

communities and infer the ecological interaction networks of different gut communities, starting from

high-dimensional metagenomic samples [131]. NMF allowed to transform the complex microbial data

into a low-dimensional representation, thus simplifying the analysis by searching for temporal pat-

terns in the microbiome. Furthermore, it allowed to capture the differences between the microbial

compositions of two groups of communities, while retaining biological interpretability.

Still, when using gene expression data, some extra adaptations need to be made. Gene expression

is a stochastic process, meaning that in a collection of cells (a tissue, for example) the level of gene

expression varies in a probabilistic way, with its variability being influenced by regulatory factors, gene

state variables and by the state of the overall biological system [154, 155]. One possible explanation for

such variability is that it provides higher adaptability/plasticity and therefore can increase the fitness

of the cells, especially when exposed to fluctuating conditions [156, 157]. This characteristic can prove

very useful, for example, for cells of the immune system [154, 158] and for cancer cells, as it gives them

higher chances to survive and therefore replicate in a hostile environment [157, 158, 159, 160, 161, 162].

Genes with high expression variability have also been shown to be linked to various diseases, thus

drawing a link between this “flexibility” and the susceptibility to diseases and treatments among

different individuals [156, 163]. Due to these reasons, gene expression variability has started to be

studied in the hope that this will lead to a better understanding of gene regulation mechanisms

[154, 162, 164, 165, 166, 167].
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However, the source of variability in gene expression can also be technical (when it is measured),

and not only biological, in which case it should be estimated and corrected for [154, 155]. In such a

case, we usually talk about batch effect, which can be caused by the different times of the day the same

experiment is conducted at, by the choice of reagent lot (or, indeed, batch), or by other non-biological

factors. When using a machine learning model, however, this may be problematic, since it could affect

the model’s generalisation ability. For this reason, several approaches have been adopted to deal with

gene expression variability of technical origin, each affecting differently distinct groups of genes [168].

In [169], for example, it was noted that the use of gene modules (obtained from a gene co-expression

network analysis) can be more robust than raw gene expression when the machine learning model

is trained on a dataset and tested on another. However, when joining more datasets together, the

performance of raw gene expression can be superior. In [170], instead, a hierarchical Bayesian mixture

model was successfully used to simultaneously correct for the cell-type dependent technical variation

and the biological variation of single-cell RNA-seq data. In Chapter 4, when we used gene expression

samples from cancer tissues from three different datasets (which can only exacerbate the variability of

technical origin in the measured data), we instead used ComBat [171] and cross-validation to properly

“amalgamate” samples from different datasets in order to maximise the generalisation ability of our

machine learning models (we could not use gene modules in our GSMM and did not have single-cell

data).

1.4 Deep Learning

Deep learning is a subfield of machine learning which investigates the capabilities and usage of Artificial

Neural Networks (ANNs). The history of the field is long, with two periods of dormancy. The first use

of ANNs dates back to 1943, with the threshold logic unit (TLU) [172]. In 1957, the first perceptron

was created, while Widrow invented the Adaptive Linear Neuron (ADALINE) [173]. The perceptron

was an algorithm devised to classify an object into one of two classes (i.e. it was a binary classifier).

It calculated the class of the object by using a linear threshold function, and therefore had the limit

of being capable of learning only linearly separable patterns [174]. This entailed that such models had

very basic limitations in terms of what they could learn: for instance, the XOR issue (networks back

then could not approximate the simple XOR function) almost sanctioned the end of the entire field,

and considerably slowed down the research, even though other solutions had already been devised

in the same period, such as the MultiLayer Perceptron (MLP) [175]. Only in the last decade, with

the advancement of hardware technology and new ideas, the development and usage of increasingly

sophisticated neural networks has started to accelerate at unimaginable speed. This second generation

of neural networks, which includes MLPs, convolutional neural networks (CNNs) and long short-term

memory units for recurrent neural networks, learns mostly through the back-propagation mechanism.

Lately, many novel advanced types of deep neural network architectures have been defined: restricted
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Boltzmann machines, deep belief networks, autoencoders, and deep convolutional neural networks

[176, 177, 178].

Inspired by the human brain, neural networks are weighted graphs in which each input node is

connected to one or more output nodes via a hidden layer that allows the detection of non-linear

relationships between the input and output variable(s) [179]. Deep neural networks contain multiple

hidden layers comprising of many nodes, also called neurons, which enable them to represent functions

of increasing complexity and can generate extremely accurate predictions when correctly optimised

[180, 181]. The neurons/nodes are combined to produce an output (such as a neuron firing) at a

later layer, based on an activation function, which introduces a nonlinearity in the network (and

biologically simulates the rate of the neuron’s action potential). From a theoretical point of view, the

flexibility that these models are endowed with is such that they can approximate any arbitrary function

- provided that they contain a sufficient number of computational units (nodes/neurons) and network

layers (this remark results from the so-called universal approximation theorems) [182]. The layered

structure of ANNs allows these computational models to learn and represent data at different levels of

abstraction, aiming at reproducing the brain’s functionalities when processing complex information,

such as images, text and speech. One of the main advantages of these models is that there is virtually

no need for expert-curated input features, as they automatically learn appropriate representations of

the data. The MLP is a particular case of ANN, in which the layers are composed by perceptrons

(as nodes). However, in some if not all of these, unlike in the original perceptron formulation, the

threshold function is nonlinear. This small expedient, together with the use of more than one layer

in the network, is already sufficient to make the MLP a universal approximator, meaning that it can

potentially approximate any function (even non-linear ones).

Deep learning is a broad term that includes not only neural networks, but also hierarchical proba-

bilistic models and other different unsupervised and supervised feature learning algorithms. The recent

increase in interest in deep learning architectures is mostly due to their proven capacity to outperform

prior state-of-the-art techniques on several tasks, facilitated by technological advances in computing

power which have made deep neural networks faster and more accessible than ever.

1.4.1 Applications with biomedical data

Applications of deep learning approaches with biomedical data have been numerous and various: for

instance, tasks such as integrative clustering [183], drug response prediction [184], cancer survival pre-

diction [185], cancer subtyping [186] and psychiatric disease risk prediction [187] have been successfully

tackled with deep neural networks.

One of the most common and successful deep learning architectures is autoencoders: they are artifi-
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cial neural networks composed of two parts - an encoder and a decoder. The encoder tries to compress

the information onto a lower-dimensional space in order to retain only the relevant features of the data,

while the decoder controls this process indirectly. This is because the decoder has to reconstruct the

input data starting from their compressed representation, which is only possible when their important

information has been retained. The primary benefit of this architecture is that it can extract meaning-

ful characteristics and filter out irrelevant data throughout transmission, therefore it can be used as a

preprocessing technique [180]. Additionally, certain types of autoencoders are generative models, i.e.

they can be used to effectively reproduce the data distribution [188]. Autoencoders have been used

successfully mainly in classification settings [189, 190], whereas some studies have started to use them

for omics data integration [191]).

The most widely applied model for extracting information about targets (tumours, organs, or

tissues) from medical images is instead convolutional neural networks [192]. The human visual brain

has inspired the design of CNNs, with filters and layers that mimic the geometric properties that human

image recognition system possesses. Recently, CNNs have been fused with comprehensive attention

approaches to produce an attention-based CNN that improves performance and explainability during

biomedical image segmentation tasks [193, 194, 195]. CNN with transfer learning approaches (e.g.

RestNet-101, VGG16, and InceptionV3), have been also used to detect tumours from radiological and

histopathological images [196, 197, 198]. In these cases, identifying the size and location of the tumour

is crucial for developing any treatment plan, and the U-Net architecture has been effectively used to

segment tumours and extract the region of interest from biomedical images [199, 200, 201].

Several deep learning models have also been recently implemented in order to simulate biological

processes. DCell is a visible neural network (VNN) capable of simulating cellular growth by using prior

gene ontology knowledge to investigate genotype-phenotype associations [202]. During the training

phase, genes’ perturbations propagate through the network, giving rise to functional changes that

inform the phenotypic response predicted by the model. A similar phenotype prediction model has

been proposed by Guo et al. (DeepMetabolism), where an autoencoder-based neural network method

integrates unsupervised pre-training with supervised training to predict phenotypic outcomes [203].

The connections between the layers of the network were used to model the relation between gene

expression and phenotype, and were regulated using biological prior knowledge to reduce the risk of

overfitting and increase training speed. Finally, deep neural networks have also been merged with

differential search algorithms for gene deletion interventions in E.coli for the production of xylitol

[204]. Similarly, convolutional and recursive neural networks have been merged to train prokaryotic

models on ribosomal profiling data and binding site patterns for more precise annotations of open

reading frames and translation initiation sites [205]. Neural networks have been adopted in Chapters

3-4 of this thesis.
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1.5 Multimodal Machine Learning

Multimodal (or multi-view) machine learning is a branch of machine learning that combines multiple

facets (modalities/views) of the same entity in a single setting, in an attempt to offset their limitations

when used in isolation [206, 51]. In many fields, especially in biomedicine, the vast abundance of

available data could not be exploited previously due to computational limits, with the key problem

being how to extract desirable knowledge from large, complex and heterogeneous datasets. Manual

analysis of data is considered to be difficult, largely ineffective and inefficient even with the support

of statistical methods, therefore the challenge of managing and integrating large, multi-dimensional

datasets is still an open problem, and new analytical tools are required to utilise these data to their

full potential [207, 208]. A possible answer to this is the development of multimodal machine learning

approaches, which focus on trying to link several datasets describing the same samples, i.e. different

aspects of the same entity, for predictive purposes, with the expectation that these can provide more

complementary information and thus improve the performance on the task.

In general all integration strategies can be traced back to three types of approaches: early integra-

tion, intermediate integration, and late integration, and can be adopted to merge heterogeneous data

and develop predictive models. In early integration, the modalities are merged as a single data vector

before being fed to the model, whereas in intermediate integration they are all processed simultane-

ously, and the new features are then merged and fed to the subsequent predictive model. Finally, in

late integration, each modality is analysed independently first, and the results are then combined to

get the final consensus results [209]. Multimodal approaches could prove to be an effective strategy

when dealing with multi-omic datasets, as all types of omic data are interconnected. Data values may

be directly concatenated as single sample matrices into one large matrix, transformed into a common

intermediate format, or analysed separately with multiple models with different training sets for each

data type. These integrative approaches have been investigated in the case studies presented in this

work: in particular, Chapter 3 presents a case of early integration, while Chapter 4 investigates a late

integration approach.

The stage at which data integration is carried out must be carefully considered, as this may have

an impact on the transformation of data: for instance, the initial concatenation of all samples (early

integration) usually results in increased noise unless regularisation is performed (which we have ex-

tensively explored in Chapter 3). Therefore, it is often preferable to build a similarity matrix between

data types (intermediate integration) or analyse each data type separately (late integration) prior to

the application of machine learning techniques [210, 60].

Table 1.1 contains the most recent multimodal machine learning and deep learning approaches

with biomedical applications. For each study, several details are reported, including the purpose of

the investigation, the type of data used in the analysis, the disease being scrutinised, and the link
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to the source code (where available). In the following we will describe the application of multimodal

approaches to omics data and to fluxomics in particular. Multi-omics models and the use of GSMM-

generated data in machine learning models have been extensively investigated in this work, and various

case studies are reported as chapters in the rest of this thesis.

Table 1.1: Multimodal machine learning and deep learning approaches for biomedical

applications

Ref Year Prediction

task

Omic Disease Purpose of study Deep-

Learning

Source Code

[211] 2022 Regression T, G, C UCC Drug response No

[212] 2022 Classification T, C AD, PC Diagnostic classifica-

tion

No github.com/dmcb-

gist/MOMA

[213] 2022 Clustering G, T, E PC Cancer samples cluster No

[214] 2022 Classification G, T, C BC, KC Subgroup identifica-

tion

Yes github.com/Lifoof/MoGCN

[32] 2022 Classification I, C BC Cancer detection Yes github.com/bensteven2/HE breast recurrence

[215] 2022 Regression T, G GC Survival prediction Yes github.com/huyy96/ RDFS

[216] 2022 Classification T, P, M COV19 Patient outcome pre-

diction

No

[217] 2022 Regression T, M BC Subgroup identifica-

tion

No

[218] 2021 Classification T, M,

C

PC Biomarker discovery No github.com/kemplab/ML-

radiation

[219] 2021 Classification G, T PC Subgroup identifica-

tion

Yes github.com/NabaviLab/

GCN-on-Molecular-Subtype

[220] 2021 Classification T, E, C PC Subgroup identifica-

tion

Yes github.com/SomayahAlbaradei/

MetaCancer

[99] 2021 Classification G, R, C AD Subgroup identifica-

tion

Yes

[28] 2021 Classification T, R OPSCC Survival prediction Yes

[221] 2021 Classification G, R AD Subgroup identifica-

tion

Yes

[222] 2021 Classification T, G, E BC Drug repositioning,

target gene predic-

tion, cancer subtypes

prediction

Yes autogenome.com.cn/ Au-

toOmics/AutoOmics.html

[33] 2021 Regression T, G,

E, C, I

PC Survival prediction Yes github.com/luisvalesilva/ mul-

tisurv

[223] 2021 Regression T, G, E BLD Survival prediction Yes

[224] 2021 Classification G, T CLL,

ILD, PC

Cancer detection Yes github.com/duttaprat/ DeeP-

ROG

[225] 2021 Regression T, E,

G, P

PC Survival prediction Yes github.com/wangyuanhao/

DeFusion

Continued on next page
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Table 1.1 – Continued from previous page

Ref Year Prediction

task

Omic Disease Purpose of study Deep-

Learning

Source Code

[226] 2021 Classification,

regression

T, E, C PC DR, tumour classifica-

tion, survival predic-

tion

Yes github.com/zhangxiaoyu11

/OmiEmbed/

[227] 2021 Classification,

regression

G, T,

E, C

BC Subgroup identi-

fication, Survival

prediction

No

[34] 2021 Classification I, E, C,

T

SC Subgroup identifica-

tion

Yes sys-med.de/en/

[228] 2020 Classification R, I BT Brain metastasis detec-

tion

Yes

[229] 2020 Classification T, E AD, BT,

KC, BIC

Biomaker discovery,

Subgroup identifica-

tion

Yes github.com/txWang/

MOGONET

[230] 2019 Classification G, I AD Subgroup identifica-

tion

Yes

[231] 2019 Classification T, P, E,

C

BUC,

BLGG

Treatment outcome

prediction

Yes github.com/BeautyOfWeb

/Multiview-AutoEncoder

[232] 2019 Regression G, C GBM Survival prediction Yes github.com/DataX-

JieHao/PAGE-Net

[233] 2019 Regression T, R,

C, I

CC Survival prediction No

[185] 2019 Regression T, C, I PC Survival prediction Yes github.com/gevaertlab/ Multi-

modalPrognosis

[184] 2019 Classification G, T PC Drug response Yes github.com/hosseinshn/ MOLI

[234] 2019 Regression T, G, C BC Survival prediction Yes github.com/huangzhii/

SALMON/

[201] 2018 Segmentation T, R, I LC Tumour Detection,

Segmentation

Yes

[100] 2018 Regression T, E LC Subgroup identifica-

tion

Yes

[235] 2017 Regression T, P, C,

I

LC Pathways analysis,

Survival prediction

No

[236] 2016 Regression G, I LC Survival prediction No

The table contains the most recent studies that present multimodal machine learning applications on biomedical data. For each

study, the following details are reported: reference; year of publication; type of prediction task; data modalities used in the study

(C: Clinical; E: Epigenomics; G: Genomics; I: Imaging; M: Metabolomics; P: Proteomics; R: Radiomics; T: Transcriptomics);

disease investigated; the purpose/focus of the study; whether the study uses a deep learning approach; link to the source

code (where available). The abbreviations used to identify the disease types are listed below. AD: Alzheimer’s disease, BC:

breast cancer, BIC: breast invasive carcinoma, BLC: bladder cancer, BLGG: brain lower grade glioma, BUG: bladder urothelial

carcinoma, BT: brain tumour, CC: colorectal cancer, CITE-Seq: cellular indexing of transcriptomes and epitopes by sequencing,

CLL: chronic lymphocytic leukaemia, COV19: Covid-19, GC: gastric cancer, ILD: interstitial lung disease, KC: kidney cancer,

LC: Liver Cancer, OPSCC: oropharyngeal squamous cell carcinoma, OSC: ovarian serous cystadenocarcinoma, PC: prostate

cancer, SC: somatic comorbidity, UCC: Ulcerative colitis and Crohn.
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1.5.1 Multi-omic machine learning

With the technological advancements that have characterised omics data collection in recent years,

the availability of high-throughput biological data has rapidly increased. Specifically, multi-omic data,

including transcriptomics, proteomics, and metabolomics, are now easily accessible and of potential

use for diagnostic and prognostic prediction. Since each of these data types is inextricably linked with

the others in a coherent, mechanical way, it is of paramount importance that they can be combined in

order to achieve a better understanding of the entire biological system. The more data types included

in models, the more information is available to trace molecular components across multiple functional

states [58]. However, integration of biomedical data is challenging, which is why specific machine

learning models have been designed to achieve accurate predictions by integrating data obtained from

multiple modalities [237]. Each of the modalities in a multimodal system is expected to add value by

contributing information that is not present in any of the other modalities, and by highlighting possible

interplays between them, consequently improving the model’s accuracy. For instance, multimodal deep

learning has been used in structural and functional neuroimaging and with metabolic modelling, in

the attempt to provide a more comprehensive mechanistic understanding of the brain and its disorders

[238, 239].

Figure 1.1 provides an outline of how multimodal raw data can be used as input for prediction

purposes. First, multimodal raw data is collected (panel A); this can include clinical data, multi-omic

data, radiological, and histopathological images. Once the data have been collected, preprocessing

steps are applied to structure the data in a format suitable for machine learning applications (panel

B); this process could include dealing with missing values (either by removing them or using imputation

techniques), encoding text-based variables into numeric values, or normalising the data distributions.

Part of the preprocessing phase consists in selecting a subset of suitable features to use as final input

for the machine learning procedure, by retaining the meaningful ones and discarding the ones that

might add noise to the data, as already explained in Subsection 1.3.1. This process is called “feature

selection and engineering”, and is reported in the figure as a separate step for clarity (panel C). The

main goal of this phase is to select, manipulate, and transform the data into features that can be used

in the next stages. The last step of the pipeline includes the model training and evaluation phases

(panel D). Once one or more suitable machine learning models have been selected, a training-testing

procedure that estimates, given the input features, the performance of the models on a test dataset can

be used. It is fundamental that the procedure be robust and not include any statistical bias, whether

be it given by the datasets or by the procedure itself. In some cases, some additional parameters

(hyper-parameters) need to be estimated, which further complicates the training. A possible solution

to this is the use of k-fold nested cross-validation, which can be employed to identify the optimal

hyperparameters (inner loop) and evaluate the model performance (outer loop). During this process,

the dataset is randomly split into k folds, where k−1 folds are used to train the model and the left-out

28



fold is instead used to assess the performance of the model on unseen data (outer loop). This process

is repeated k times allowing each fold to be used as test set. The average performance over the k test

folds is then returned, together with other sample statistics. The optimal hyperparameters used to

train the model in the outer loop are identified in the inner loop, where the k − 1 training folds are

randomly split into subfolds (training and validation folds). Cross-validation is then applied to train

the model on the training folds and evaluate it on the validation fold using different combinations

of hyperparameters. The optimal hyperparameters are then used in the outer loop for training and

deploying the final predictive model. Values of k like 5, 8 or 10 are commonly used to partition the

dataset. At the end of this pipeline, the final best model (with optimal hyperparameters, assuming the

stability and consistency of the training process) can be used to perform the predictive task on any new

data sample. Cross-validation was used in all the case studies presented in this thesis (together with

the rest of the described pipeline), and nested cross-validation was in particular adopted in Chapter

4. It is important to remark that the structure of this pipeline is the same for uni-modal machine

learning tasks as well (the only differences would be the use of only one data source and the absence

of any integration step, not explicitly reported above as it is dependent on the model adopted and the

task).

Examples of machine learning applications with multi-omics data Machine learning-based

integration techniques for multi-omic data have been implemented to identify and investigate disease

states by condensing complementary information provided by the different omics, thus increasing the

effectiveness of disease analysis and diagnosis [240, 241, 242, 243, 211, 212, 213, 214, 244, 245, 215, 246,

217, 222, 223, 224, 225, 226, 227, 234]. Wang et al. proposed a deep learning pipeline (MOGONET)

that uses graph convolutional networks (GCN) to process similarity networks (DNA methylation,

miRNA, and mRNA) whose outcomes are then combined in a cross-omics discovery tensor and fed

to a view correlation discovery network [247]. This model can exploit the correlation among samples

and their multi-omic data, while allowing biological interpretation of the results. GCNs have also

been applied to extract local features from gene-gene and protein-protein interaction networks and

gene-coexpression networks, where node features were RNA-seq expression and copy number variation

data [219]. Global features from these networks were obtained by using a fully-connected network,

and then concatenated into a single layer with softmax activation function for classification purposes.

Convolutional variational autoencoders (CVAEs) have also been adopted to integrate miRNA, mRNA,

DNA methylation, and clinical pan-cancer data to extract features (later inputted into a deep neural

network) for predicting whether a tumour was primary or had metastasised [220]. The omics were

concatenated before being fed to the CVAE. A similar multi-view factorisation autoencoder was imple-

mented for feature learning and generation of patient representations, which allowed the construction

of patient similarity networks using miRNA, gene and protein expressions, and DNA methylation data

[231]. Domain knowledge was also injected into the model via feature interaction matrices.
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Figure 1.1: General machine learning pipeline for multimodal biomedical data applica-

tions. (A) Structured and unstructured raw data are collected and (B) preprocessed by removing

NAs/null values and applying normalisation techniques. (C) Feature selection is then performed to

extract the region of interest from images or to reduce the high dimensionality of multi-omic data.

(D) A multimodal machine learning architecture can be trained and validated using a nested cross-

validation approach. The inner loop is used for tuning the hyperparameters, while the outer loop is

used for model evaluation. The final model can be used for regression or classification purposes (e.g.

predicting patient-specific survival probability or classifying patients into risk groups). The predictions

made by the machine learning algorithms can be further analysed by clinicians and researchers with

computational techniques (e.g. using interpretability approaches) to inform therapeutic interventions

and contribute to the development of personalised medicine [1].

Examples of machine learning applications with multi-omics and imaging data Following

recent advances in computer-aided diagnosis [248], much progress has been made towards developing

more efficient forms of integration for multi-omic and imaging data. Specifically, the most recently

developed integration methods are based on the intuition that information about other omics can be

inferred from biomedical images [249]. In order to improve the predictive ability of image-based deep

learning models, new deep learning architectures for the integration of multi-omics, clinical, and im-

age data have been proposed [250]. For example, bioimaging data have been integrated with clinical

data and patient history of treatments to generate a comprehensive view of patient health in [251].

Complex tasks such as survival prediction have also been successfully addressed by integrating im-

ages and omic data [236]. In [233], the relationship between radiomic features and gene expression

data in colorectal cancer was investigated by using CT images to extract radiomic features from the

tumour area (i.e. intensity, shape, and texture). The extracted radiomic features were then inte-

grated with clinical, histopathological, and genomic data for survival prediction. Instead, the model
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PAGE-Net was proposed in [232] to integrate histopathological images, gene expression data, and

age of glioblastoma multiforme patients. Several multimodal neural network-based models have also

been implemented to predict patient survival using a combination of clinical data, mRNA expression

data, microRNA expression data, and histopathology whole slide images (WSIs), as in [185]. Clas-

sical machine learning approaches have too been used in a multimodal setting with multi-omics and

imaging data. For example, genomic, transcriptomic, proteomic, and histopathological features from

tumour samples have been integrated through a random forest model to identify molecular pathways

associated with histopathological patterns [235]. In [252], instead, a sparse linear regression approach

(Lasso) was applied to identify the highly correlated image features and metagenes (i.e. aggregated

patterns of co-expressed genes) for survival prediction, based on the assumption that the biological

processes associated with morphological changes can provide insights on the molecular mechanisms

of many cancers. Finally, in another study, an ensemble learning strategy based on Gaussian kernels

was proposed to classify healthy controls/Alzheimer’s patients by integrating MRI and PET images,

biomarkers in cerebrospinal fluid, and age information [253]. Linear discriminant analysis was used

separately on all omics for feature extraction, whereas ensemble models were used to discriminate

among the classes in a decision tree-like approach.

1.5.2 GSMMs and machine learning

As we have seen so far, machine learning is a useful tool that can be used to deconstruct biological

complexity and extract relevant outputs for clinical biomedicine when dealing with the high volume

and heterogeneity typical of modern multi-omic data. In particular, machine learning algorithms can

be leveraged to reduce the dimensionality of the data and elucidate cross-omics relationships. However,

this very often translates to models enjoying high computational predictive power at the expense of

interpretability. Although some steps have been taken towards the development of an interpretative

framework [254, 255], a definitive approach has not yet taken hold. The complementary characteristics

of GSMMs and machine learning and their common mathematical bases make them suitable to be

used in combination to solve this issue. As the features introduced by GSMMs are fully informative,

given that they provide biological information in terms of stoichiometry and genetic control of the

biochemical reactions, a combined approach can help to address the lack of interpretability associated

with machine learning models in biology.

In the context of this work, constraint-based modelling is ideally poised to bridge the gap be-

tween biological datasets and biologically-agnostic machine learning models, thus consolidating these

two computational frameworks in order to reveal novel insights relating to the biology of metabolism.

Together, machine learning algorithms and constraint-based models can improve omics-fuelled statis-

tical and machine learning analyses by supplementing the learning process with biological knowledge

and refining phenotypic predictions. Moreover, machine learning has proved to be able to improve
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metabolic models reconstructions [256].

Several studies have shown that supervised classification models can benefit from the integration

with information generated by metabolic models [257, 216, 258]. For example, Chien et al. recon-

structed the GSMMs of 21 Pseudomonas species living in the endosphere and in the rhizosphere,

and 12 media formulations were simulated to predict and classify bacterial ecological niches [259].

SVM, artificial neural networks, and non-negative matrix factorisation were cross-compared, and it

was found that SVM was the most effective model in capturing the ecological niche of these bacteria.

Importantly, metabolic features were more predictive than purely genomic features. The integration

of metabolic models and machine learning within a classification framework has also been shown to

correctly identify side-effects of inhibitory drugs [260]. Drug-specific actions were simulated by in-silico

gene deletions, which were propagated to metabolic reaction bounds via logical rules. Flux Variability

Analysis was then used to estimate the metabolic fluxes that were then fed to an SVM model showing

improved results when compared with traditional predictive models. Taking these results as a lesson,

in Chapter 4, we have used SVM with FVA-generated metabolic fluxes in a classification setting for

the prediction of liver cancer in children.

Elastic Net regression was applied to optimise a metabolic model of Pseudomonas putida with

the aim of maximising rhamnolipid production while Ajjolli et al., instead, built an artificial neural

network to estimate fluxes using enzyme concentrations for the upper part of the glycolytic pathway

as input [147, 261].

The relation between bacterial central metabolism and metabolism-affecting factors such as car-

bon sources, oxygen condition, and genetic background, was studied in [262] with the integration of

metabolic fluxes facilitated by three machine learning models (i.e. SVM, kNN, and decision tree).

Roy et al., instead, combined existing tools including Omics Mock Generator (OMG), Inventory of

Composable Elements, Experiment Data Depot, and the Automated Recommendation Tool (ART) to

store, visualise, and leverage multi-omic data to predict bioengineering outcomes [263]. The fluxes in

the OMG model were computed by using FBA with growth rate maximisation, and were then inte-

grated into the machine learning model to predict isoprenol production. With the integration of ART,

the proposed approach reported an increase in biofuel production of 23%.

Genetic and population-based algorithms have been successfully merged with metabolic modelling

to identify optimal strategies for metabolic engineering when taking into account multiple cellular

objectives simultaneously [264, 265], and non-trivial multiple gene knockouts affecting cell growth

[266, 267, 268]. Cavill et al., instead, showed how using GAs with metabolic data could improve

classification performance by over 9% whilst also halving computation time [269].

Agglomerative hierarchical clustering (AHC) and k-means clustering have been used on transcrip-

tomic data and fluxomic profiles in order to characterise the ageing process in CD4 T-cells [270].
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Principal Component Analysis, which is commonly used to reduce dimensionality in large datasets by

identifying a small number of dimensions (i.e. principal components) that can be used to perform a

change of basis on the data, has also been used numerous times for clustering. For example, Jalili et al.

used PCA and random forest to cluster the flux states characterising different cancer types and reveal

reactions containing the most relevant information [271]. In [272, 273], PCA was instead integrated

with k-means to combine GSMM-derived data and transcriptomics and elucidate key mechanisms used

by Cyanobacteria that could have not been detected using transcriptomics alone.

1.5.3 GSMMs and multimodal approaches

Original attempts at integrating genome-scale metabolic models and machine learning algorithms have

recently taken the lead especially in the stream of multimodal approaches that are now being used with

omic data. In the field of biomedicine, this has translated so far in the use of different omics, fluxomics

included, as different modalities (or views) to potentially highlight distinct biological mechanisms

that might go unnoticed when not using the metabolic information provided by GSMMs. Indeed,

integrating mathematical models or biological networks with additional data has been recognised as an

important tool for gaining novel insights from large amounts of biological data [274, 275], and has shown

performance improvements compared to omics-only settings [255, 261, 147, 270, 276, 272, 257, 268, 277].

We explored this approach in the thesis, and in particular in Chapters 3-4.

Figure 1.2 presents the general pipeline for the integration of multimodal imaging, omics and

GSMMs-generated data in a machine learning framework. Patient-specific multi-modal data are col-

lected and pre-processed to be represented in a suitable format for machine learning applications. Some

of the data modalities (e.g. transcriptomics and proteomics) can be also integrated into a GSMM to

generate patient-specific fluxomic data. Once the data have been preprocessed, all the three different

approaches (early, intermediate and late) can be applied for a multi-modal data integration through

machine learning models [240, 250]. Finally, the machine learning results can be further analysed

for therapy optimisation and to generate biological insights. Survival analysis, pathway analysis, or

explainability techniques are usually applied to identify relevant features highly affecting the target

variable [218, 278].

In [218], the metabolic fluxes of 915 TCGA cancer patients were generated using FBA and in-

tegrated with clinical, genomics, and transcriptomics data. The final dataset was fed to a gradient

boosting machine classifier to predict the radiation response in individual patient tumours. The inte-

gration of genome-scale metabolic modelling and machine learning approaches showed an improvement

in identifying new biomarkers and predicting tumour response to radiation. Lee et al. integrated im-

mune cell transcriptomes with the Recon3D human metabolic model using iMAT [216]. FVA was

performed to generate the metabolic fluxes, which were then integrated with plasma metabolites to
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Figure 1.2: Integrating multi-modal machine learning and GSMM. Patient-specific multi-

modal data (e.g. transcriptomics, proteomics, imaging, genomics, and clinical data) are collected and

pre-processed. Simultaneously, a patient-specific GSMM can be employed to generate fluxomic data.

The multi-modal pre-processed data and the fluxomic data can be used as input of a machine learning

model for patient-specific diagnosis and prognosis, using the three different integration approaches that

we have introduced at the beginning of this section: (i) early integration, where the preprocessed data

modalities are concatenated before being used as input of the machine learning model; (ii) intermediate

integration, where the individual modalities are first jointly transformed to reduce data dimensionality

or extract meaningful features (e.g. using cross-modality approaches), and then integrated to be

used as input of the machine learning model; (iii) late integration, where each data modality is used as

input of an individual machine learning model, and the results from each model are then combined and

further analysed (e.g. using ensemble approaches). The final model’s results can be further analysed

to generate biological insights and identify disease-related biomarkers through survival, pathway and

enrichment analysis, and explainability approaches.
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predict Covid-19 patient survival outcomes using random forest. The integration provided more ac-

curate results than using metabolic fluxes alone for classifying disease severity and predicting clinical

outcomes.

A multimodal deep learning approach that integrates gene expression profiles and metabolic models

to predict the cell growth rate in Saccharomyces cerevisiae was proposed by Culley et al. [255]. The

results indicated a noticeable improvement in performance after integrating fluxomic data from FBA,

compared to the exclusive use of gene expression. We have built on this and conducted additional work

described in Chapter 3, in which the generated flux rates were concatenated with the gene expression

profiles and two neural network models were compared with a range of regularised linear models.

Another application of machine learning for genome-scale metabolic models was the generation of

the context-specific metabolic profiles through the integration of gene expression measurements with

drug-specific small intestine epithelial cell metabolic models [279]. In this instance, gene expression

and flux measurements were used as features for a multi-label support vector machine to predict the

occurrence of gastrointestinal side effects and to cluster drugs in order to reveal similarities that go

beyond a chemical or pharmacological classification. Kim et al. [280] used instead recurrent neural

networks (for the transcriptomic data), Lasso regression (for the proteomic data) and FBA to generate

growth rate predictions for Escherichia coli, and obtain a weighted consensus result.

Sparse Lasso regularisation approaches have also been integrated with regression models to identify

growth-boosting and limiting characteristics for Synechococcus [272], to train multimodal artificial

neural networks using the metabolic modelling of Saccharomyces cerevisiae [281, 255, 282], and to

investigate phenotypic extreme currents (ECs) based on a combination of metabolic network features

and gene expression data [283].

Finally, GSMMs have also been integrated with Cox regression models to investigate cancer metabolism

and provide personalised survival predictions and cancer development outcomes [278], while ensemble

learning has been successfully applied to integrate clinical, gene expression, metabolic (from GSMMs),

and mutation data, as in [218]. In particular, each omic type was used to train a different decision

tree-based XGBoost model (base learner), whose predictions were then used by another decision-tree

based XGBoost model to identify the optimal base learner for each sample. The final prediction was

given by a linear combination of the predictions of the initial models.

Although results from integrating machine learning into biological models seem promising, there is

still much leeway for improvements in terms of refining phenotypic predictions, and while several models

have been proposed, integration remains challenging [60].With this in mind, we argue that GSMMs

can be used both as a foundation for the integration of multi-omic data originating from different

domains and as a source of interpretable features for machine learning algorithms. Cuperlovic [284]

summarised the main prerequisites essential for the successful implementation of machine learning as
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follows: the proper selection of learning attributes, construction of training and test sets, selection of the

appropriate learning algorithm(s), careful design of the learning approach and an accurate evaluation

of predictive performance. Consequently, it is important to consider how these key attributes can be

adhered to when considering the application of machine learning to GSMMs. In the biomedical setting,

understanding the biological phenomenon is almost always necessary. However, machine learning

algorithms suffer from a lack of biological interpretability in spite of their optimal predictive power.

It is important to note that this does not only depend on the data-driven models but extends to the

preprocessing of their inputs as well. This is critical to keep in mind, since Wolpert has demonstrated

that the performance of machine learning algorithms on a specific task depends heavily on the available

data (and therefore on the preprocessing as well) associated [285], which means that when they are

used with biomedical data, the preprocessing choices need to be made not only considering the final

predictive performance, but also potential interpretability issues. For this reason, we envisage the ideal

framework as one that can leverage the quantitative power of machine learning with the biological

interpretability provided by the mechanistic GSMMs. Overall, the success of biomedical research is

dependent on its capacity to deal with the sheer volume of multi-omic data currently generated. This

framework could aid in the elusive goal of creating personalised medicine and more resilient healthcare

systems, and it is also the focus of the work of this thesis.

1.6 Current issues

In the previous sections, we have introduced and described biomedical data, genome-scale metabolic

models, machine learning and multimodal integrative approaches. However, each of these aspects

presents significant challenges that need to be tackled in order to achieve success in the quest for

better healthcare systems. In the following paragraphs, we will present these challenges and possible

solutions, referring when possible to how we solved them in this work.

Biomedical data management The increasing numbers in structured and unstructured biomedical

data collected are paving the way to a future where medical treatments can be tailored to the individual

patient, thus streamlining current national healthcare systems and leading to a future of personalised

healthcare. The huge volume of data is contributing to increasing the understanding required to

extract knowledge from different sources and create the ‘golden triangle’ of treatment (i.e. the right

target, the right chemistry, and the right patient), with the overarching goal of advancing research

and continually improving the quality of patient care whilst reducing costs. However, in order to

exploit these high volumes of data in an AI-assisted healthcare, better computational infrastructures,

new data interpretation methods, and unique collaborative approaches are required, meaning that

several challenges need to be overcome [286]. For example, clinical data are available in heterogeneous
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formats but the wider computational infrastructure to generate, maintain, transfer, and analyse these

data securely (and correspondingly, to integrate clinical data with omics data) is lacking, also because

the cost of data generation is usually much lower than that of data analysis and storage. Another

challenge concerns the data transfer between different locations. Emailing data related to individual

patients or sharing information on a single cloud environment undoubtedly raises concerns about the

security and privacy of individuals both before and after the data transfer [287]. Several solutions have

been proposed to create better security systems that include encryption methods and de-identification

algorithms. For example, distributed processing can be implemented where multiple computers that

undertake different parts of the same task in different locations are connected via a communication

network under the control of a central server [288]. Another major development is the emergence of

federated learning, a type of decentralised modelling format where a shared global model is trained

within a central server while training and combining individual local models and keeping all the

sensitive data in local institutions close to where they originated [289]. Such a format holds great

promise for the healthcare sector where much of the data are highly fragmented and sensitive. However,

model aggregation methods within federated learning pipelines must still be carefully evaluated to

preserve robustness and privacy that may be compromised by biased local datasets, faulty clients, and

cyber attacks following local updates [290].

Generation and processing of fluxomic data Genome-scale metabolic models are one of the

main frameworks striving to bridge the gap between genotype and phenotype by incorporating prior

biological knowledge into mechanistic models. Nevertheless, they require additional experimental mea-

surements to refine parameters within feasible limits and increase predictive performance [264]. When

developing computational techniques for biomedical purposes, achieving an accurate and robust pre-

diction is essential. However, to date, GSMMs and multi-omic integration studies have relied on the

generation of personalised constraint-based fluxomic data through FBA, which not always provides

a unique solution. Indeed, different solvers can produce slightly different results when solving lin-

ear problems using FBA, which might lead to serious issues when using the full flux distribution for

further analysis, or as a part of a prediction algorithm, when not taken into account. Moreover, in

metabolic modelling, choosing a suitable objective function remains elusive. In systems biology, it is

often assumed that cells optimise their metabolic networks to maximise their growth rate (biomass).

However, as we wrote in Section 1.2, the cellular objective might vary depending on the type of tis-

sue, the species, or even throughout time. As a result, optimisation techniques that consider multiple

objectives should be preferred, when computationally feasible. Furthermore, FBA may contain thermo-

dynamically infeasible loops in the network. Flux Variability Analysis can overcome these limitations

by providing a flux range (i.e. a range of activity for all reactions) that could better represent the

metabolic potential of the network [50, 53]. In particular, in the case studies presented in this thesis,

we have always adopted a variant of FBA to deal with these issues, and have used specifically FVA
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in the work presented in Chapter 4. Moreover, the large size and complexity of GSMMs makes it

difficult to analyse their output without losing sight of the big metabolic picture. A solution to this

could consists in the generation of a smaller metabolic network. For example, Erdrich et al. proposed

an algorithm that applies a pruning step that removes iteratively the reactions with the smallest flux

range until no further reactions can be deleted without eliminating “protected” parts of the network

[291]. This algorithm is thereby able to capture fundamental characteristics of the central metabolism

or other metabolic modules of interest and perform a fast, unbiased, and exact network reduction,

which consequently reduces the number of metabolic features, making further analyses more feasible.

In the case study described in Chapter 3 we used parsimonious FBA (pFBA) with a similar objective

of “simplifying” the metabolic network, simulating at the same time the evolutionary tendency of

optimising (i.e. reducing) enzyme usage with equal cell growth [292].

An accurate prediction is also the result of clean, experimentally valid data. In addition to consid-

ering the quality of data when generating replicates across different omics, a balance needs to be struck

between achieving sufficient statistical power and coverage of biological variability whilst reducing the

batch effect [293]. Moreover, combining omic datasets increases the risk of introducing redundancies

across different types of data, which must be resolved in order to prevent generalisation issues on

other data samples. This is particularly applicable in the case of fluxomic data, which are derived as

a direct result of other omics incorporated within metabolic models. To tackle this issue, in each of

the following chapters we have conducted different preprocessing steps depending on the data and the

task in question.

As a consequence, we can easily state that the development of new generative techniques or reg-

ularisation approaches specifically for flux outputs is necessary. Although all omics are, in theory,

directly interpretable from a biological perspective, their integration within machine learning tasks

remains limited by the interpretability of the results generated from the most complex techniques,

such as neural networks, which act as “interpretability bottleneck”. This calls for the development of

better, more interpretable models tailored to the analysis of multi-omic data and GSMM-generated

fluxomic data. Regarding GSMMs, the prospective research directions that could be followed include

the building and testing of new mathematical models that would, for instance, allow the prediction

of the behaviour of different types of cancer under diverse environmental conditions in a parametric

way. Further studies could also devise new ways to incorporate signalling and regulatory networks

(something that we attempted to do in Chapter 2), thus introducing additional information in relation

to factors that are not included in the human genome but still affect cellular functions.

Multi-omic data challenges The integration of different omic datasets reserves many challenges

which have been solved only partially to date. The most frequent obstacle when working with multi-

omic data is related to the cross-omics interactions and how these can be incorporated into a model.
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Other challenges can instead derive from the sample size, which might not be large enough to provide

statistical power [294, 295]. Moreover, to estimate and reduce the presence of potential confounders and

biases, cross-validation-like approaches need to be adopted, which increases the computational power

and time required in the model training phase [295]. Finally, different omics might have different sample

distributions, meaning that different normalisation and preprocessing techniques have to be considered

or even designed [296, 297, 298]. This has to be coupled with the high dimensionality of the data,

their sparsity, and the missingness of specific omic types for some samples in the dataset [299, 300].

The problem of the high-dimensionality of the data (known among machine learning practitioners as

the “curse of dimensionality”), when working with omics, is further exacerbated by the connections

between different omics, which may prevent a naive use of dimensionality reduction techniques. Some

approaches have been developed to overcome this issue and improve the models accuracy [301, 132],

and have been used accordingly in the work presented in the rest of this thesis.

The unavailability of the same number of data modalities for all the samples is even more common

in this field than in others because of production costs, privacy, ethics regulations and datasets sizes

[302]. For example, due to stochastic gene expression and technical noise, the missing value rate in

RNA-seq single-cell dataset can be usually observed at approximately 30% [303]. Proteomics datasets

also show similar issues, since missing values account for a substantial amount of experimentally-

acquired data. Statistical techniques such as k-nearest neighbour and mean value imputation are

usually applied to impute missing data, however, these techniques generate data from the known

statistical distribution of the provided samples and can only be utilised for the same data modality

[28]. Recently, deep learning methods such as generative adversarial networks and autoencoders have

been applied to handle missing data in imaging modalities, while transfer learning has been used to

impute missing gene expression data from DNA methylation [304]. An attempt to solve this issue

was made by Zhou et al. who adopted a three-stage deep neural network that integrated different

combinations of multimodal data (i.e. MRI, PET images, and single nucleotide polymorphism data)

while using the maximum number of training samples available for each omic combination [230]. A

similar problem was addressed in [228], where a clustering-like approach was applied directly in the

learned subspace to obtain compactness and separability of the different classes, for samples with MRI

and PET images. Finally, in order to maximise the number of available instances in raw omic and

neuroimaging data, an integrative method based on linear interpolation to fill the missing attributes

for each incomplete instance was proposed in [221]. An analogous approach based on an incomplete

multi-modality data fusion technique that utilises the consistency between modalities has also been

applied for multimodal brain image fusion [305]. Although the reported approaches have been shown

to handle incompleteness issues in multimodal machine learning, more research is required to identify

an effective and general approach to deal with missing modalities when integrating imaging, multi-

omics, and radiogenomics data. The problem of cross-omics interactions, instead, has been recently

addressed by integrating feed-forward neural networks and tensor factorisation decoders [241]. In our
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work, we have mainly used datasets with complete multimodal samples. When this was not possible,

as in the case study presented in Chapter 4, we imputed the missing data or directly removed the

missing modality depending on the extent of the problem.

Reproducibility When integrating multimodal data (including imaging data) and GSMMs, bench-

marking and reproducibility are other significant challenges. Many studies reported difficulties in

reproducing published AI biomedical results since these works failed to provide test data, sufficiently

documented methods, or source code [306, 307, 308]. Moreover, published code can sometimes lack

sufficient description or miss internal dependencies to reproduce the results [307], which might sig-

nificantly reduce the ability to validate and improve the study. In order to address this problem,

several guidelines and methodologies for scientific reproducibility and reporting have been proposed

in the biomedical research field. Particularly, the FAIR (findability, accessibility, interoperability, and

reusability) standard [309] is the principle endorsed by global organisations and could be leveraged

to address the reproducibility issues. Data sharing, code sharing, workflow sharing, and environment

sharing are approaches that could contribute to FAIR research. For example, researchers are encour-

aged to use public repositories such as GitHub, GitLab, and Bitbucket to enable FAIR sharing of code.

Besides, computational reproducibility can also be handled by applying container technology tools such

as Singularity or Docker (a container is a method to package an application and allow it to run together

with its data and code dependencies) [310]. Although the adoption of such technology for GSMMs is

not widespread yet, these approaches are promising for integrating more comprehensive bioinformatics

pipelines and developing multimodal architectures for GSMMs. All the case studies presented in this

thesis have indeed public repositories and code for full reproducibility and transparency, as reported

in Data and code availability.

1.7 Related work and final remarks

Part of this chapter has been published as a tutorial in Computational Systems Biology in Medicine

and Biotechnology, Springer [311]. I was personally responsible for the sections about multi-omic

data integration and machine learning (text, code and figures). A good majority of the content of

this chapter will be also part of a review published in the foreseeable future. As a joint first-author,

I prepared the written manuscript in collaboration with the co-authors. In particular, I wrote the

sections related to multi-omics integration, deep learning and multimodal machine learning. In the

context of this work, the original content has been re-organised and complemented with additional

sections and paragraphs to provide a more comprehensive introduction to the subject of the thesis.
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1.8 Aims of the thesis

In this chapter of the dissertation, a comprehensive literature review was provided, which lists the

main entities and actors in the field. The following chapters represent different case studies and will

take the reader through a journey of investigation of machine learning-based integrative approaches

for constraint-based metabolic modelling and omics data.

In particular, the main aim of this thesis is to explore how the integration of multi-omic data

through the application of machine learning techniques can greatly enrich the scope of traditional

constraint-based metabolic modelling.

We will show that:

� GSMM-generated metabolic fluxes contain information which is different than the information

present in gene expression data (Chapters 2-3-4)

� it is possible to successfully extract such information from GSMMs with machine learning ap-

proaches (Chapters 2-3-4)

� GSMM-generated metabolic fluxes can be combined (integrated) with gene expression data to

improve machine learning models’ predictions and results’ interpretability (Chapters 3-4)

� The quality of such integration depends heavily on the model used and the task to perform

(Chapter 3)

� In this scenario, simpler machine learning models can perform as well as more complex ones,

with the merit of being easier to interpret (Chapters 3-4)

� Different combinations of omics data influence models’ performance to different extents, depend-

ing on the samples’ clinical characteristics (Chapter 4)

All of these chapters have been published as separate papers and hope to provide the reader with

a coherent exploration of the possibilities that GSMMs promise in such a rich and complex field of

machine learning-led computational biology, with a particular focus on how these technologies can

pave the way to more standard approaches in personalised medicine.
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Chapter 2

Using GSMM-generated fluxes with

transfer learning for gene

regulatory network reconstruction

2.1 Introduction

The aim of this thesis is to investigate the use of constraint-based metabolic modelling in the context

of precision medicine, focusing in particular on machine learning techniques for the integration of

multi-omic data and their leverage. We should start this journey by asking:

� Do GSMM-generated metabolic fluxes contain different information than experimentally-measured

gene expression data?

� Is it possible to extract such information? Under what conditions?

� How can machine learning be leveraged to achieve this?

These questions are very general but essential to answer, since the rest of this work will depend on

them. In this chapter, we will try to answer them by looking at a case study, it being understood that

the results, even if our experimental framework is quite specific, will be valid in other settings as well.

This is true for the results of the other chapters too: we will demonstrate that, under certain conditions,

integration of genome-scale metabolic models and other omic data can take forward precision medicine

approaches and make their use more widespread.
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However, in this chapter, we will not discuss a precision medicine application in the classical way

that precision medicine is understood. Usually, when using the term “precision medicine”, one alludes

to approaches that provide tailored solutions to different patients. Due to the nature of the experiments

we will, instead, present an approach in which the “patients” are distinct genetic mutations of the same

individual. In the remaining chapters, we will show precision medicine examples in the commonly

accepted meaning.

The contributions of this chapter are the following: we demonstrate that GSMM-generated metabolic

fluxes contain different information than gene expression data, and introduce a machine learning frame-

work within which this information can be extracted and exploited. In the next chapters we will there-

fore use this newly acquired knowledge to investigate whether the information held by metabolic fluxes

can be employed in conjunction with the information present in gene expression data (as opposed to

being used by itself, as in this chapter) to improve the performance of machine learning models in a

precision medicine setting.

The case study presented is a gene regulatory network reconstruction task, in a transfer learning

scenario. The experiments presented were performed in collaboration with multiple co-authors. In

particular, I performed all the analyses relating to the generation of the metabolic features and the

analysis and interpretation of the results, as well as contributing to the data preprocessing of the

gene expression data and the metabolic fluxes. The co-authors downloaded the gene expression data,

conducted an initial preprocessing, and trained and tested the machine learning models (each of these

steps is described in detail in the chapter).

2.2 Background

Living organisms need, for their survival and replication, a gene regulatory system responsible for

their maintenance, development and response to changing environmental conditions. Gene regula-

tion is orchestrated by large sets of regulator molecules with specific targets, which collectively form

a gene regulatory network (GRN). The mapping of GRNs was recently propelled by the surge of

high-throughput data, that led to both the discovery of unknown biological interactions and a deeper

understanding of known structures [312, 313, 314], thus benefiting basic biology but also related dis-

ciplines, such as biomedicine and biotechnology [315]. Given its importance, the reconstruction of

the network of regulatory mechanisms existing in the human body is key to elucidating pathogenic

processes and identifying molecular drug targets.

Several computational methods for GRN reconstruction have been proposed in the literature, in-

cluding graphical Gaussian models [316], Bayesian networks [317], as well as approaches that consider

and exploit causality phenomena [318, 319] or knowledge derived from related organisms [320]. To pre-
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dict unknown relationships, GRNs have also been mathematically integrated with metabolic networks,

which mediate interactions between gene regulation and environmental cues [321].

Unlike other approaches, such as genome-wide association studies (GWAS), systems biology tech-

niques can provide mechanistic information to exploit in the reconstruction of GRNs [322]. In par-

ticular, genome-scale metabolic models (which we have introduced in Section 1.2) are well-suited for

integration with GRN networks, as they complement them [323, 324]. Indeed, as we have shown in

Chapter 1, GSMMs allow the capturing of long-range phenomena on the scale of cellular systems

thanks to the functional information they contain, which is encoded in their metabolic pathway and

reaction representations [325]. In silico metabolic information has been adopted in reconstructing

GRNs [315, 326], and to infer gene relationships by analysing the metabolic effect of simultaneous

gene KO [327, 268]. However, metabolic network modelling has not been used so far to inform GRN

inference methods in combination with transfer learning.

Following this line of research, in this chapter we investigate the potential of exploiting metabolic

information while reconstructing the human GRN, in an integrated transfer learning framework. In

particular, we reconstruct the human GRN by leveraging the knowledge about an additional model

organism [328], i.e., the mouse, and exploit both a set of known/verified regulations as well as a large

set of still unstudied gene regulations. The two considered organisms are linked by considering their

orthologous genes, i.e., genes inherited in both species from a common ancestor gene. Such genes are

integrated within a constraint-based model (the GSMM) that simulates their artificial knockout and

determines how this perturbation propagates over the corresponding metabolic network, thus creating

a precision medicine-like scenario in which the metabolic fluxes do not correspond to the metabolism

of different individuals, but to the metabolism of the same individual with different gene mutations.

This approach allows us to catch possible analogies between the two organisms in terms of their fluxes,

in both known and still unknown regulations.

Our experimental evaluation, described in detail in Section 2.4, empirically proves the effectiveness

of the proposed integrated approach. This approach resulted in increased accuracy of the reconstruction

and the generation of mechanistic insights coming from the analysis of the most important metabolic

features contributing to the GRN reconstruction, related to either the human or to the mouse organism.

With this chapter, we hope to show the reader the promising potential of GSMM-generated metabolic

fluxes in machine learning-based precision medicine applications. In the following chapters, we will

take a further step in complexity by investigating their use in conjunction with gene expression data

as well.
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2.3 Materials and Methods

In this section, we first describe how we built the dataset under analysis, from the collection of the gene

expression levels for both human and mouse genes to the construction of metabolic features. Then we

provide the methodological details of the proposed transfer learning approach. A graphical overview

of the proposed approach is shown in Figure 2.1.
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Figure 2.1: Transfer learning pipeline. Starting from the selected gene sets for the human and

mouse organisms (a), we compute metabolic fluxes from gene expression levels through genome-scale

metabolic modelling of gene knockouts (b) using TRFBA. Genes are then filtered to consider only the

subset of orthologous genes for human and mouse (c). For both organisms, we estimate the confidence

of existence on unlabelled (i.e. untested) interactions through a clustering-based procedure, and in this

way obtain a set of interaction confidence scores (d). Finally, we build multi-target training instances

and train a multi-target regression tree (e) to maximise the homogeneity both in the input and in the

output spaces, between gene regulations of both human and mouse. The values in the circles of the

regression tree represent the prediction (for the human and for the mouse organisms) provided to a

gene pair falling into a specific leaf of the regression tree.

45



2.3.1 Gene expression levels

We collected raw expression data from the Gene Expression Omnibus - GEO (https://www.ncbi.

nlm.nih.gov/geo/). We considered the platform GPL570 for the human organism and the platform

GPL1261 for the mouse organism. We took only control samples to reconstruct the gene regulatory

networks, without the potential influence of disease conditions. The complete list of the considered

GEO Accession Numbers can be found in an excel file at this link: Chapter 2 Supplementary Data.

Quantitatively, for the human organism, we collected 54, 675 probesets, described by 180 samples

(that correspond to features in our case): 17 for bone marrow, 37 for brain, 6 for breast, 4 for heart,

7 for liver, 45 for lung, 64 for skin. These samples were obtained by using Affymetrix GeneChip

Human Genome U133 Plus 2.0 arrays. As for the mouse organism, we collected 45, 101 probesets

described by 171 features, distributed as follows according to the organs: 14 for bone marrow, 8 for

brain, 10 for breast, 8 for heart, 124 for liver, 4 for lung, and 3 for skin. These samples were instead

obtained by using the Affymetrix GeneChip Mouse Genome 430 2.0 Array technology. To correct for

the batch effect, the raw samples were processed according to the workflow proposed in the DREAM5

(Dialogue on Reverse Engineering Assessment and Methods) challenge, which was the fifth annual

set of DREAM challenges, consisting in inferring the transcriptional regulatory network of E. coli,

S. Cerevisiae, S. aureus and of a simulated network by starting from anonymised gene expression

transcripts [329]. The preprocessing protocol, used to reduce noise and ensure robustness of the data,

consisted in microarray normalisation Robust Multichip Averaging (RMA) [330]. RMA is a three-step

process involving background adjustment, quantile normalisation and median polish. In particular,

background adjustment (or correction) is performed to remove local artifacts from the fluorescence

intensities. Quantile normalisation is then used so that measurements from different samples become

comparable, while the median polish (consisting in repeatedly subtracting an overall median from the

rows and columns of the data, arranged in a tabular format) is used to combine the probe intensities

across the samples. For each organism, considering one batch per organ, we performed RMA using

the Affymetrix Expression Console Software. Finally, in order to more easily interpret the fold change,

the data were log2-transformed. We then mapped the Affymetrix probeset IDs to gene symbols with

the use of the Affymetrix libraries (when multiple probesets mapped to the same gene their expression

values were aggregated through the arithmetic mean). The so-processed data consisted of 23035 genes

per 180 samples (human organism) and of 21681 genes per 171 samples (mouse organism).

2.3.2 Metabolic features

To construct the metabolic features, we first filtered out genes with no corresponding HGNC ID (MGI

ID for the mouse organism) [331]. We also removed all the genes for which we did not find any

regulatory information according to the RegNetwork database [332], which resulted in a total of 16272
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and 14067 genes for the human and mouse models, respectively. Finally, to obtain an expression fold

change for constraining the metabolic model, each gene expression value was normalised against its

median value across all the samples.

In order to include the regulatory information into the metabolic features explicitly, we used

TRFBA [324], which integrates a transcriptional regulatory network and the related organism genome-

scale metabolic model. We used Recon2.2 [70] and iMM1415 [71] as the human and mouse metabolic

models respectively. The solution selected by TRFBA lies in the feasible solution space defined by the

following constraints:

Sv = 0

vlb ≤ v ≤ vub∑
i∈Rj

vi ≤ Ej × C

sI ×
∑
r∈GT

Er − ET + U × wI,1 + U × wI,2 ≥ −INI∑
r∈GT

Er + U × wI,1 − U ≤ λI∑
r∈GT

Er − U × wI,2 + U ≥ λI+1,

(2.1)

where S is the stoichiometric matrix associated with the species’ organism’s metabolism, v is the vector

of metabolic flux rates, vlb and vub are the lower and upper bounds of the metabolic fluxes respectively,

Rj is the set of indices corresponding to the reactions which are associated with metabolic gene j, GT

is the set of indices of the regulatory genes of target gene T , Ei indicates the gene expression of gene

i, U is a very large number (in our experiments, it was set to the maximum observed expression level

multiplied by 5) and sI , INI , wI,1, wI,2, λI and λI+1 are parameters computed directly by the method

from the gene expression levels [324]. The hyperparameter C, used to convert the expression levels

of the genes to the upper bounds of the reactions, was set to 0.00014 as suggested by [333]. All the

other parameters of TRFBA and the boundary constraints for the metabolic models were left to the

default values. Therefore, TRFBA adds to the stoichiometric matrix of a GSMM further reactions

representing the transcriptomic regulations among the genes, which we exploited by computing the

single gene-knockouts and the resulting metabolic fluxes via FBA [49] for all the genes in the datasets.

This was performed for both organisms, obtaining a flux distribution for each knockout.

To account for the tolerance of the solver Gurobi, we then eliminated all the obtained fluxes whose

value was lower than 10−7 for all the samples, and applied PCA to reduce the dimensionality of the

flux distributions. In both cases we retained an explained variance >99%, obtaining 250- and 150-

dimensional features for the human and mouse samples, amounting to 1.7% and 0.92% of the original

features respectively (14705 and 16383). These steps were conducted using the COBRA toolbox [334]

in Matlab R2017b.
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2.3.3 Transfer learning for the reconstruction of the human GRN from

metabolic features

We here describe our transfer learning approach for the reconstruction of the human GRN, which also

exploits the information conveyed by the mouse organism. Our approach learns a model that is able to

predict a score in [0, 1], representing the degree of certainty about the existence of a given regulation

between two genes. The synergies among the two considered organisms are captured by resembling to

a multi-target prediction model, which aims at predicting the existence of a given regulation between

two genes in the two organisms simultaneously. Although predicting the existence of a given regulation

for the mouse organism is not of specific interest in this study, this strategy allows us to exploit possible

correlations between the organisms not only in the input space, but also in the output space [335].

Methodologically, we focused on orthologous genes, i.e. different genes of the human and mouse

organisms that originated from a single common ancestor gene. Each possible pair of orthologous genes

corresponds to a unit of analysis for the predictive task at hand, namely to a possible regulation activity

between the two genes. The descriptive attributes of a gene pair correspond to the concatenation

of principal component features calculated from flux rates obtained after the respective single-gene

knockouts. On the other hand, the value of each target attribute (i.e., the degree of certainty of the

existence of such regulation, in the human and in the mouse organisms, respectively) was set to 1.0 if the

corresponding gene regulation was experimentally validated according to the BioGRID database [336],

or estimated through a clustering-based solution [320] if such regulation has not yet been studied (i.e.,

it is an unlabelled example). This setting corresponds to the so-called Positive-Unlabelled setting, that

is a subclass of the semi-supervised setting as well as a different way to model a one-class classification

task [337]. We note that, for the descriptive attributes of each gene pair, one can in principle compute

a flux distribution after a double gene-knockout for the pair, rather than concatenating single-gene

knockout fluxes; however, this would require prohibitive computational resources for the dataset and

metabolic model at hand (several years of computational time), but it could be a viable approach for

smaller models.

Specifically, the known regulations were grouped into clusters, whose number was optimised via

a silhouette analysis [338]. The value of the target attributes for unlabelled pairs of genes was then

estimated according to the similarity with their closest cluster, computed on the descriptive attributes.

Formally, given the descriptive feature vectors xh ∈ Rp (for the human organism) and xm ∈ Rq (for

the mouse organism) for the same gene pair, we computed the value of the target variables th (for the

human organism) and tm (for the mouse organism) to use during the training of the predictive model,

as follows:

th(xh) = max
c∈Ch

simp(xh, cent(c))

tm(xm) = max
c∈Cm

simq(xm, cent(c)),
(2.2)
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where Ch and Cm are the sets of clusters identified for the human and mouse organisms, respectively;

cent(c) is the feature vector of the centroid of the cluster c; simk: Rk×Rk → [0, 1] is a vector similarity

function working on arbitrary k-dimensional vectors, based on the Euclidean distance after applying

a min-max normalisation (in the range [0, 1]) to all the descriptive features. Formally, simk(a, b) =

1 − 1/k ·
√∑k

i=1 (ai − bi)
2
. In this way, we exploited both the information on verified regulations

and the information conveyed by a large set of unlabelled examples, according to their similarity with

respect to labelled examples.

Finally, we built a predictive model in the form of a multi-target regression tree, by exploiting

the system CLUS [339], which is based on the predictive clustering framework. Predictive clustering

approaches appear adequate to solve the task at hand, since they have proven to be generally effective

in detecting different kinds of autocorrelation phenomena [340], including network autocorrelation

phenomena usually exhibited by data organised in network structures [341, 342].

The multi-target regression tree was built via a standard procedure for the top-down induction of

regression trees, where the tests of the internal nodes are greedily chosen by considering the reduction

of variance achieved by partitioning the examples according to this test. In our case, the model aims

to reduce the variance of both target attributes th and tm. More formally, for a given internal node of

the tree under construction, it aims to maximise the reduction of the average variance over the target

attributes due to the split, namely

V arX(th, tm)− (V arX′(th, tm) + V arX′′(th, tm)) , (2.3)

where X,X ′, X ′′ are the sets of examples in the parent, left child and right child nodes, respectively,

and V arZ(th, tm) = V arZ(th)+V arZ(tm)
2 is the average variance on the target attributes th and tm,

computed over the set of examples Z. As a result, we maximised the homogeneity of the defined

subsets of examples, that also depends on the correlations, both in the input and in the output spaces,

between gene regulations of both the human and the mouse organisms.

2.4 Results and Discussion

The final network under consideration consists of 512,576 possible interactions. Among them, 507,656

are unlabelled, while 4,920 are labelled/known interactions from BioGRID. Therefore, the proportion

of labelled:unlabelled interactions is ∼1:100.

We compare the results obtained by our framework based on metabolic features, hereafter referred

to as TRANSFER, with those achieved by two different settings:

� Expression Levels. We adopt the same workflow proposed in this paper, but directly using
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the expression level features instead of metabolic features. This setting allows us to evaluate

the actual contribution provided by the metabolic features, thus helping us understand whether

genome-scale metabolic models effectively augment machine learning models with additional

biological knowledge.

� NOTRANSFER. We only exploit features related to the genes of the human organism. This

setting allows us to evaluate the contribution provided by information conveyed by the mouse

organism as well as the effectiveness of the proposed transfer learning solution.

The experiments were performed through 10-fold cross-validation. In particular, each fold consisted

of 9/10 positive examples for training and 1/10 positive examples for testing, while all the unlabelled

examples were used for both training and testing purposes. Therefore, coherently with the semi-

supervised transductive setting [343, 344], at training time the methods knew the examples for which

they have to make a prediction, i.e., they may have already observed and exploited the value of

descriptive attributes, but not the actual value of the target attributes. We note that the confidence

scores estimated by our method are not adopted to define a ground truth for unlabelled examples, but

only as an intermediate step for the construction of the multi-target regression tree.

The results were evaluated in terms of recall@k (r@k), the area under the recall@k curve (AUR@K),

the area under the ROC curve (AUROC) and the area under the precision-recall curve (AUPR). We

note that, while r@k and AUR@K do not introduce any bias on the existence of a regulation activity on

unlabelled gene pairs, the computation of the AUROC and AUPR requires considering the unlabelled

examples as negative examples.
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Figure 2.2: Recall@k comparison in the different experimental settings. Recall@k measured

in the range [0, 1%] for the reconstruction of the human GRN, by considering different sets of features.

The NOTRANSFER approach does not exploit data of the mouse organism, while the TRANSFER

approach exploits also the mouse GRN knowledge.

In Figure 2.2 we show the measured recall@k in the range [0, 1%], that is the range of the top-1%

most reliable interactions returned by all the approaches considered. Our results show that the adoption
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of metabolic fluxes is beneficial, with respect to directly adopting the raw gene expression levels, both

when exploiting the knowledge coming from the mouse organism (TRANSFER) and when ignoring

such additional information (NOTRANSFER). Specifically, such an improvement amounts to 6.6% in

the case of NOTRANSFER and to 8.73% in the case of TRANSFER, when observing the recall@1%.

Moreover, it is noteworthy that, in the TRANSFER setting, we identify existing gene regulations

much earlier in the returned ranked list of interactions. Specifically, we identify 96% of the known

interactions of the testing set in the top-0.3% interactions returned in the case of the TRANSFER

setting, whereas we need to consider 0.8% of the list of the returned interactions to identify the same

amount of known interactions in the NOTRANSFER setting. This behaviour emphasises that the

knowledge coming from the mouse organism can fruitfully be exploited to improve the accuracy of the

reconstruction of the human GRN.

A more comprehensive overview is reported in Figure 2.3, where we show boxplots representing

AUR@K, AUROC and AUPR measured over the 10 folds of the cross-validation. These show that the

predictive models trained via metabolic fluxes can better exploit the mouse gene regulation knowledge

leading to more stable predictive models (i.e., with a lower variance observed over different folds of

the 10-fold CV). Furthermore, the area under all the considered curves is higher and more stable when

adopting the metabolic fluxes in combination with the TRANSFER setting. Conversely, when adopt-

ing metabolic fluxes in the NOTRANSFER setting, we observe worse results with respect to directly

using expression levels. This phenomenon indicates that the metabolic fluxes of the human organism

alone are not able to describe the regulatory activities as well as expression levels, but the exploita-

tion of mouse and human metabolic fluxes in combination provides our framework with a significant

advantage, leading to the best overall results. This observation confirms that the proposed workflow,

which synergically exploits metabolic fluxes and the knowledge of the mouse GRN, provides significant

advantages in terms of the quality of the reconstruction of the human GRN, and demonstrates that

GSMM-generated data contain different information than gene expression data, which highlights how

promising their use is in the field.

To understand the contribution provided by human and mouse metabolic features in human GRN

reconstruction, we performed additional experiments in the TRANSFER and NOTRANSFER settings.

Specifically, we considered the approach proposed by [345], based on the evaluation of the (negative)

effect of noise. We purposely introduced noise in a given feature by randomly permuting its values

over the examples, evaluating the effect on the predictive performance of the tree: the greater the

performance degradation, measured through the relative increase of the predictive error, the higher

is the importance/contribution of the feature. We produced a descending ranking of the features for

each fold of the 10-fold cross-validation, and analysed the average ranks (an excel file containing such

computed ranks can be found at the link Chapter 2 Supplementary Data). In the rest of this thesis,

instead, the alternative approach of looking at the model’s weights was used to determine the feature

contribution/importance.
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Figure 2.3: Boxplots for the 10 folds of the human GRN reconstruction task. Each row

corresponds to a measure, i.e., AUR@K, AUROC, AUPR, respectively, measured in the range [0, 1%]

of the top-k ranked interactions. Each column corresponds to a learning setting, i.e., without and with

the exploitation of the mouse GRN knowledge, respectively.
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As shown in Figure 2.4(c), the metabolic features related to the mouse organism dominate the upper

half of the ranking and are therefore assigned a higher relevance than those related to the human, in

the setting TRANSFER. Conversely, when directly using gene expression levels, many features from

human retain a high relevance when combined with those from mouse. This finding further confirms the

advantage provided by the adoption of our transfer learning technique on GSMM-derived information,

and suggests that the regulatory mechanisms present in the mouse metabolism are relevant in the

human metabolism as well.
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Figure 2.4: Analysis of the metabolic features. (a) Enrichment p-values (corrected through the

Benjamini-Hochberg procedure for multiple hypothesis testing) for the pathways assigned to the 10%

most relevant metabolic features in the three experimental settings considered. (b) Mean flux weight

across pathways for the human metabolic features used in the setting NOTRANSFER. (c) Mean flux

weight across pathways for the human (blue) and mouse (red) metabolic features used in the setting

TRANSFER. (d) Euler-Venn diagram that summarises the overlap in terms of biological pathway

enrichment (pathways with associated corrected p-value ≤ 0.05) for the 10% most relevant metabolic

features in the three considered settings.

Further, a consistent number of metabolic features (295/800) present a relevance score equal to

zero, as opposed to the more gradual decline in gene expression feature relevance. This is in line with
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previous experimental results from another data integration task, where metabolic features displayed

a highly skewed relevance distribution compared to transcriptomic ones [255]. A possible explanation

is given by the structure of metabolic networks and by the method used to estimate its activity, which

is based on a linearly constrained MILP problem that generates collinearity and redundancy among

the features.

Consistently, the addition of mouse-related features impacts the importance of human-related fea-

tures to a varying degree depending on their type. When comparing the TRANSFER and NOTRANS-

FER settings, human metabolic features have indeed an average importance difference of 2.12±2.80,

whereas for human transcriptomic features such difference is 2.99±1.25. In other words, human gene

expression features that are considered poorly (or highly) relevant in the NOTRANSFER scenario have

on average a higher chance to be considered more (or less) relevant in the TRANSFER setting – and

by a larger extent – as compared to human metabolic features. However, the difference in importance

for the latter is highly variable and reaches the highest values. The addition of mouse-related features

therefore appears to drastically change the learned model when using metabolic features.

As a complementary approach to determine the importance of the input features, we inspected

the metabolic pathways associated with the most relevant reactions adopted in the construction of

the metabolic features with the means of a Flux Enrichment Analysis (FEA). Enrichment analysis is

a statistical testing technique that computes the probability that a set of fluxes/genes belongs to a

specific subsystem or pathway of the cell, i.e. that a class of fluxes/genes is over-represented in a large

set. The purpose of this is to understand whether the class is overly present in the pool “by chance”

or because of the existence of real biological mechanisms linked to it. In general, these tests make use

of the hypergeometric cumulative distribution:

F (x|M,K,N) =

x∑
i=0

(
K
i

)(
M−K
N−i

)(
M
N

) , (2.4)

where M is the total size of the population (genes or fluxes in our case), K is the size of the population

belonging to a certain subsystem/pathway/class, N is the size of the set we are considering for the

analysis, and x is the number of elements, among those N , which belong to the group of size K (i.e. the

number of elements which share a specific characteristic and are the subject of the analysis). Since F is

a cumulative distribution, it indicates the probability of finding up to x elements belonging to the same

group in the considered set. The associated p-value therefore indicates the probability of obtaining

such a result by chance alone. Here, we conducted the flux enrichment analysis using the MATLAB

Bioinformatics Toolbox on the subset of reactions which, for each organism in the two experimental

settings (TRANSFER and NOTRANSFER), had been given a weight above the 90th percentile. The

weight for the j-th reaction was computed as

θj =
∑
i

|lij × σ2
i × (rank1j + rank2j)|, (2.5)
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where lij is the linear coefficient of the j-th feature/reaction with respect to the i-th principal compo-

nent deriving from the PCA (adopted to generate the metabolic features), σ2
i is the variance explained

by the i-th principal component, while rank1j and rank2j are the rankings of the j-th feature, computed

using the approach proposed by [345], when considered in the first and second position, respectively,

in the gene pair. From these values, we computed the average flux weight for each metabolic pathway

as the average weight of its reactions. These weights can be considered a proxy of the relevance of the

input features to the model.

As shown in Figure 2.4(a)(d), the number of enriched pathways (associated p-value≤ 0.05, corrected

through the Benjamini-Hochberg procedure for multiple hypothesis testing) is higher for the metabolic

features of the mouse, while it is almost equal for the human ones. Indeed, reactions enriched in the

human features employed when building the model without the mouse features (NOTRANSFER-

Human) were all included in the pool of enriched reactions from the human features used in the

TRANSFER setting. In particular, in this setting, the enrichment also includes exchange/demand re-

actions (p-value > 0.05 for the NOTRANSFER-Human features), indicating that adding features from

a different organism increased the importance of the features associated with internal production/-

consumption reactions and extracellular/intracellular transport reactions. Conversely, mouse features

share all the transport pathways of the human ones, except for that relating to lysosomal transport,

and also encompass the pathways associated with the citric acid cycle, nucleotide metabolism, fatty

acid activation and the metabolism of leucine, isoleucine and valine (see Figure 2.4 (a)).

Overall, these results demonstrated the effectiveness of the proposed approach, which exploits

metabolic information coming from two organisms through our transfer learning method. Moreover,

the analysis of the contribution of the metabolic features emphasised the new information introduced

by the mouse features. We believe that our results pave the way towards the exploitation of knowledge

of multiple model organisms - across several omic layers - while reconstructing the GRN of a target

organism, but more importantly demonstrate that genome-scale metabolic models provide information

which is not present in (or easily extractable from) gene expression data, and that such information

can be leveraged by machine learning models to improve their performance. In particular, this may

be due to the fact that metabolic fluxes approximate the production (and therefore abundance) of

transcription factors better than gene expression directly, or to the fact that the metabolic network of

a GSMM enforces regulatory mechanisms among genes by constraining the values of metabolic fluxes

via the use of FBA (therefore reflecting regulatory activity exclusively on the reaction fluxes). In the

following chapters we will continue our investigation by trying to understand whether the integration

of GSMM-generated metabolic fluxes with gene expression data can be beneficial to machine learning

models more than the independent use of these two omics.
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2.5 Conclusion and future directions

In this chapter, we presented a novel method for the reconstruction of the human gene regulatory

network that fruitfully exploits the information conveyed by in silico-generated metabolic fluxes of

both mouse and human organisms. Specifically, we exploit a transfer learning method to capture

analogies between the metabolic responses in mouse and human upon simulated deletion of their

orthologous genes.Our aim was to demonstrate how GSMM-generated features could provide different

information from the more commonly used gene expression data, and that this information is more

easily interpretable than other types of structured or unstructured data.

Our results show that metabolic features, computed from gene expression levels and metabolic

modelling, improve the performance and the stability of the trained predictive models when exploited

in combination with our transfer learning approach. This emphasises that the underlying regulatory

patterns are better captured when (both known and possible) gene regulations are described through

metabolic features, computed through genome-scale metabolic model simulations, on both the human

and the mouse organisms. To the best of our knowledge, this is the first attempt to exploit metabolic

features and a transfer learning approach for the reconstruction of the human GRN, and our results

support the adoption of the developed method as a state-of-the-art tool for solving this task.

However, this study is not devoid of limitations. For example, the use of TRFBA requires some

regulatory knowledge for the computation of the metabolic fluxes. This means that, in the absence

of this information, reconstruction of the regulatory network with only the metabolic features may

be less effective. Moreover, this information should be complete enough: knowledge of around 50%

(for instance) of the regulatory network would generate worse fluxes than by simply using standard

FBA. Another limitation, linked again to the use of the genome-scale metabolic models, is the use of

single gene-knockouts. In this case study, we have characterised gene pairs with the concatenation of

their metabolic features obtained from single gene-knockouts. However, this has prevented us from

exploiting the combined effect that multiple gene mutations could have on the metabolism of the

organism, since we are considering these mutations separately (and then concatenating the resulting

metabolic profiles). Unfortunately, in this instance this problem has no solution, since the size of the

model and dataset could not allow for a higher computational workload. Finally, previous experiments

have demonstrated how the percentage of labelled samples used in a semi-supervised experiment can

influence, positively or negatively, the final performance of the machine learning model [346]. Since

this effect strongly depends on the task and dataset being used, in the future this further parameter

should be taken into account when possible. In our case, the ratio labelled/unlabelled examples proved

successful, but a different outcome could result with different data.

As future work in the field of GRN reconstruction, it would be interesting to design a multi-source

approach to capture possible dependencies among multiple organisms and to simultaneously recon-
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struct their GRNs, even when the knowledge about their orthologous genes is limited. In conjunction

with multi-omic integration strategies, this could lead to refined GRN reconstructions, thus expanding

the current knowledge on the biological mechanisms of metabolic regulation.

2.6 Related work, funding and final remarks

The work presented in this chapter has been published in Bioinformatics [347], and the analyses were

completed in collaboration with multiple co-authors, as described in the introduction to this chapter.

Part of this work was supported by the Ministry of Universities and Research through the project

“Big Data Analytics”, AIM 1852414-1(line 1), by the UKRI Research England’s THYME project, by a

Children’s Liver Disease Foundation Research Grant and by the Apulia Region through the “Research

for Innovation - REFIN” initiative (Grant n. 7EDD092A).
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Chapter 3

Concatenating transcriptomic and

fluxomic data for yeast growth rate

prediction

3.1 Introduction

In the previous chapter we have shown that GSMM-generated metabolic fluxes can reveal, within the

right framework, information which is different than the one present in gene expression data. The next

step would consist of determining whether this additional, distinct information can be combined with

the information held by gene expression data in order to improve machine learning models’ performance

(as opposed to using it by itself), with the pleasant “side effect” of having the opportunity to interpret

the results more easily in a mechanistic way. For this reason, the questions that we are trying to

answer in this chapter are the following:

� Can we combine GSMM-generated metabolic fluxes and gene expression data to exploit their

different information in order to improve our machine learning models?

� Can this “integration” be as simple as a concatenation?

� Which types of machine learning models are better suited for following this approach, if any?

As in the previous chapter, we will use a case study to answer the above questions, but unlike the

preceding pages, the case study we present here will be a precision medicine application in the classical
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way the term is intended, except for the fact that we will not deal with patients but with yeast strains.

The contributions of this chapter are the following: we show that under certain conditions the

integration of metabolic fluxes and gene expression data performs better than the use of these two

omics by themselves, and demonstrate that simple models such as linear ones can be a better practical

choice than more complex and flexible models in this setting. In this chapter we also show a case in

which the integration of these two data types is a simple concatenation, while in the next chapter we

will explore a more complex integrative approach.

The presented case study is a classic regression task, in which we are trying to predict yeast growth

rate. The entirety of the study was conducted by me. This means that I performed all the analyses

relating to the generation of the metabolic features, I devised, implemented, trained and tested the

models, and I conducted the analysis and interpretation of the results as well.

3.2 Background

Understanding and controlling cellular growth is fundamental in biotechnology for the development of

efficient cell factories [348, 349]. CRISPR/CAS-enabled genetic engineering gives the ability to modify

DNA with single-nucleotide precision in vivo [350, 351], making the engineering of strains that max-

imise a desired output possible for industrial purposes. Yet, the identification of such strains is still

a complex issue [352] which requires considerable amount of time and notable costs. In the past, the

problem of cellular growth prediction has mainly focused on mechanistic representations of biomolec-

ular processes. These, however, require detailed knowledge of uptake rates from the environment in

order to achieve accurate estimates. On the other hand, it is also possible to find correlations between

gene expression and cell growth using only data-driven machine learning methods. Previous research

focused on building linear predictive models for yeast growth [353], and more recently, machine learning

models both for E. coli and S. cerevisiae [354]. The metabolic activity of S. cerevisiae in combination

with machine learning techniques was only evaluated in recent times [255].

With the technological advances of the past two decades, we now have access to enormous amounts

of biological data, which in Section 1.1 we referred to as omics. Each of these omic types represents

a different facet of an organism and its functioning, which suggests the presence of shared patterns

and intertwined mechanisms among them. For this reason, the development of multi-modal learning

methods in a biological setting has been recently promoted [355]. Thanks to the flexibility of machine

learning approaches (especially deep learning), this subfield of research has been applied to several

tasks: transfer learning (framework within which we have operated in the previous chapter) [356],

integrative clustering [183] and drug response prediction (among the many) [184].
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However, as already highlighted in Section 1.6, these technologies are mainly used as black boxes

and, depending on their architecture, may not be able to produce new knowledge on the underlying

biological mechanisms. In many situations, the use of appropriate linear models for high-dimensional

data (and interpretability purposes) can hence be a preferable option. In this chapter, we continue

the investigation started in Chapter 2 to devise and compare multimodal regression methods that

utilise both transcriptomic data and strain-specific metabolic models to predict cellular growth of

Saccharomyces cerevisiae, one of the main eukaryotic platforms for bio-industrial production [357]. We

combine regularised statistical learning methods with flux balance analysis for omic data integration,

in a regression setting designed to exploit the different information present in the two different views

(the gene expression data and the metabolic fluxes). To this end, we use a compendium of 1,143

single gene knock-out yeast strain expression profiles to predict cell doubling rates. We leverage the

GSMMs at a steady state (given that gene expression maintains a steady state during the exponential

growth phase [358], predicting growth in such a simplified setting is reasonable) with a parsimonious

implementation of flux balance analysis to generate strain-specific reaction flux rates, which are then

added to the gene expression profiles as additional features (Figure 3.1).

We investigate a range of regularisation techniques, proposing expansions of previous frameworks

and empirically evaluating them on a common benchmark and show that, in this setting, group and

view-specific regularisations achieve higher performance than principal component regularisation, out-

performing multimodal neural networks. On the other hand, the latter obtains a larger performance

improvement when concatenating transcriptomic and fluxomic data. Overall, our results demonstrate

the competitiveness of multimodal regularised linear models compared to data-hungry neural network-

based methods in a multi-omic task using experimental and model-generated omic data. At the same

time, we highlight the lack of a clearly superior method for effective and transparent omic data integra-

tion through concatenation, further underlying the importance of a bespoke selection of both features

and machine learning models for each case study. In the next chapter we will take a final step towards

a more complex integrative approach, and investigate how different omics combinations can be more

appropriate for different individuals.

3.3 Materials and Methods

3.3.1 Dataset

We used a transcriptomic dataset generated in a previous study [2], which contains two-channel mi-

croarray profiles for 1,484 single-gene deletion strains of S. cerevisiae during early mid-log phase.

In the original study, each deletion strain consisted of four replicates: two biological ones from two

independent cultures, each profiled in technical replicates (each gene was represented twice in the
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Figure 3.1: Machine learning pipeline. Pipeline adopted in this study. From 1,143 S. cerevisiae

strains, the gene expression was used as a starting point [2]. A genome-scale metabolic model was

then used (panel 1) to generate strain-specific GSMM models. From these GSMMs, metabolic fluxes

were generated via parsimonious flux balance analysis (panel 2, see Subsection 3.3.2). The machine

learning methods were applied in two different settings: single-view and multi-view regression. In the

former case, transcriptomics and fluxomic data were used separately as input for regularised linear

models and artificial neural networks, while in the latter the two omics were concatenated to let the

two classes of methods leverage the different information of both sources (panel 3).

microarray, therefore 2 · 2 = 4 measurements for each mutant). The biological replicates were com-

pared against each other with the help of the R package limma [359] for quality control purposes: in

case a significant overlap in the expression was not found by a hypergeometric test when the genes

changing significantly in the mutant strain were more than seven, the hybridization was repeated. In

order to control for day-specific effects and monitor batch effects, over 400 wild-type cultures were

grown in parallel alongside the mutant strains. These were used to determine whether the effects

observed in the mutant strains were specific to the strains or not. Notably, hypergeometric tests were

used to determine whether a relevant overlap in the expression of the significantly changed genes in

the mutant strains was present between these and the wild-type ones grown on the same day. In

this case, if the number of such genes was more than seven, the hybridization was repeated. A com-

mon reference design with wild-type reference RNA was applied in dye-swap to control for the dye

bias as well. Finally, microarray data normalisation was performed using print-tip LOESS [360]. We

downloaded the data from the supplementary materials of a second study providing relative growth

rates compared to the wild type for 1,312 of the strains grown on the same days, expressed as log2 of

the doubling times ratio (the doubling times of the two biological replicates were averaged together)

[361]. The final (fold-change) gene expression dataset was composed of those strains for which the

flux balance analysis formulation described below provided feasible solutions (1,143 samples), and is

here denoted as TRSC. The distribution of the relative growth rates (in terms of log2 of the doubling
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Figure 3.2: Distribution of the relative growth rates for the strains considered. The relative

growth rate of each mutant strain was computed as the log2 of the ratio of the doubling times (mutant

vs wild type). For the biological replicates, these values were averaged together.

times ratio) can be found in Figure 3.2. Pre-processing was applied separately on the fluxomic data

(denoted as FLUX) and the gene expression profiles. For the fluxomic data, all the reaction fluxes

for which the value was < 10−7 for all the samples were discarded (negligible fluxes in all samples).

All data were standardised by subtracting the mean from each feature and dividing by the standard

deviation, which yielded better results following a preliminary exploration of normalisation techniques

(namely min-max normalisation, log normalisation, and normalisation in [-1, 1]). Finally, in addition

to these two datasets, a third one was built by joining (i.e. concatenating) the previous two (TRSC

+ FLUX). This was done so that the integration of transcriptomic data and fluxomic data could be

compared with the use of one of the two omics alone, in the hope to demonstrate the usefulness of

GSMM-generated data with machine learning models.

3.3.2 Genome-scale metabolic modelling

As genome-scale metabolic model for this investigation we utilised the iSce926 yeast GSMM, which

includes 926 genes, 3494 reactions and 2223 metabolites [362]. Among all the genes in the TRSC data,

a total of 908 (98%) were present in our transcriptomic dataset. Information on the simulated medium

is reported in Table 3.1.

Parsimonious flux balance analysis (pFBA).
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Table 3.1: Composition of the simulated medium

Medium component Exchange reaction name Exchange reaction ID

ammonium ammonium exchange r 1654

sulphate sulphate exchange r 2060

biotin biotin exchange r 1671

(R)-pantothenate (R)-pantothenate exchange r 1548

folic acid folic acid exchange r 1792

myo-inositol myo-inositol exchange r 1947

nicotinate nicotinate exchange r 1967

4-aminobenzoate 4-aminobenzoate exchange r 1604

pyridoxine pyridoxine exchange r 2028

H+ H+ exchange r 1832

riboflavin riboflavin exchange r 2038

thiamine(1+) thiamine(1+) exchange r 2067

sulphate sulphate exchange r 2060

potassium potassium exchange r 2020

phosphate phosphate exchange r 2005

sulphate sulphate exchange r 2060

sodium sodium exchange r 2049

L-alanine L-alanine exchange r 1873

L-arginine L-arginine exchange r 1879

L-asparagine L-asparagine exchange r 1880

L-aspartate L-aspartate exchange r 1881

L-cysteine L-cysteine exchange r 1883

L-glutamate L-glutamate exchange r 1889

L-glutamine L-glutamine exchange r 1891

glycine glycine exchange r 1810

L-histidine L-histidine exchange r 1893

L-isoleucine L-isoleucine exchange r 1897

L-leucine L-leucine exchange r 1899

L-lysine L-lysine exchange r 1900

L-methionine L-methionine exchange r 1902

L-phenylalanine L-phenylalanine exchange r 1903

L-proline L-proline exchange r 1904

L-serine L-serine exchange r 1906

L-threonine L-threonine exchange r 1911

L-tryptophan L-tryptophan exchange r 1912

L-tyrosine L-tyrosine exchange r 1913

L-valine L-valine exchange r 1914

oxygen oxygen exchange r 1992

adenine adenine exchange r 1639

uracil uracil exchange r 2090

List of nutrients allowed to be imported when performing flux balance analysis, to-

gether with their corresponding exchange reactions in the iSce926 metabolic model

[362]. These correspond to commonly used media [363, 364].
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We used a variation of FBA, namely parsimonious FBA (pFBA) to control the global metabolic

activity of the cell through an L1-regularisation for maximising our objective, at the same time making

the solution as sparse as possible. The complete optimisation problem with constraints is

min
v
∥v∥1

subject to c⊤v = gmax ,

Sv = 0 , vlb ≤ v ≤ vub .

(3.1)

where ∥v∥1 is the 1-norm (or L1-norm) of v, c is a one-hot encoding vector identifying the biomass

pseudo-reaction as the unique objective, and the reaction bounds are defined in the following way, as

in [255]:

vub ← vub Θγ

vlb ← vlb Θγ ,
(3.2)

where γ is a hyperparameter expressing the relevance of the gene expression in influencing the reaction

bounds. We set γ = 1 according to [255], as this value minimises the linear correlation between pre-

dicted biomass accumulation rates and experimentally-available relative doubling times over all strains.

As already explained in Section 1.2, these constraints are the mathematical representation of the sev-

eral genetic or environmental factors under which the cell has to operate, and give a context-specific

metabolic model that is consistent with experimental data, whereas Θ is a function representing the

gene expression level of the gene sets associated to the reactions (see Equations 1.2). Finally, gmax

is the maximal growth rate achievable under these conditions. To perform the optimisation of Equa-

tion 3.1, the COBRA toolbox 3.0 [334] was used with the PDCO solver. The solutions provided

steady-state flux levels v for each yeast strain and every reaction in the iSce926 GSMM, which collec-

tively constitute a fluxomic profile (whereas the full set of transcription levels of a sample represents

the transcriptomic profile of that sample). The rationale behind this is that it should be possible to

predict the growth of the strain by looking at its metabolism.

3.3.3 Regularised linear models for omic data

The models that we investigated belong to two different categories of machine learning techniques:

statistical learning algorithms and neural networks. From the former group, we decided to consider

only regularised linear models (RLMs) due to their inherent interpretability. The following multi-view

approaches on the original omic profiles were employed:

IPF-Lasso L1. Integrative Lasso with Penalty Factors [365] is a variation of Lasso [141] that

accounts for different modalities being used. Specifically, it uses penalty factors λm to weigh the L1
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penalty applied to the m-th modality. The objective to minimise is thus

n∑
i=1

(
yi −

M∑
m=1

pm∑
j=1

x
(m)
ij β

(m)
j

)2

+

M∑
m=1

λm∥β(m)∥1, (3.3)

where M is the number of modalities, pm the number of covariates of the m-th modality, β the

regression coefficients and n the total number of samples. The rationale behind this approach is that

each modality has, in general, a different proportion of relevant variables, hence each contribution is

weighted differently.

IPF-Lasso L2. We extended the originally proposed IPF-Lasso algorithm, replacing the L1 norm

with an L2 norm, which was not tested in the original paper.

pcLasso. Principal component Lasso is a variation of elastic net that biases the solution coefficient

vector towards the leading singular vectors of the feature matrix (or, in case of grouped features,

towards the leading singular vector of each matrix associated with a group) [366]. In other words, the

solution is pushed towards the most important/identified pattern to improve prediction accuracy. The

objective to minimise is

1

2

∥∥∥∥Y − P∑
p=1

Xpβp

∥∥∥∥2 + λ∥β∥1 +
θ

2

∑
k

βT
k (VkDd2

k1
−d2

kj
V T
k )βk, (3.4)

where k is a non-overlapping group (fluxomic or transcriptomic data in this study) whose columns

have rank mk, βk is the subvector of β corresponding to group k, Vk are the right singular vectors of

the columns of X corresponding to group k, and D is a diagonal matrix with entries d2k1
− d2kj

, which

are the singular values of the columns of X related to group k (the former associated with the leading

singular vector, the latter with j = 1, 2, . . . ,mk).

pc2Lasso. We also modified pcLasso and tested a new version, which shrinks the vector of coeffi-

cients towards the first and the second singular vectors associated with the two largest singular values.

In our implementation, the entries d2k1
− d2kj

are substituted with α1d
2
k1

+ α2d
2
k2
− 2d2kj

, where d2k2
is

the second-largest singular value, while α1 and α2 represent the quantity of variance explained by the

first and the second largest singular values respectively.

Group Lasso. Group Lasso is a variation of Lasso regression in which the model is forced to include

or disregard entire groups of variables defined by the user [367]. Notwithstanding the similarity with

IPF-Lasso, there are two main differences: first, the groups are defined by the user without necessarily

following a strict logic such as the one regarding the modalities; second, the algorithm makes a binary

choice for each group, i.e. whether to include it or disregard it. In biological applications, this strategy

can be justified based on the relationships among genes (e.g. whether they code the same protein,

or regulate the same genes). In this investigation, the groups were defined looking at the correlation

among the data in both views separately (TRSC and FLUX), while the number of groups was chosen
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to encourage a larger granularity. This was set to 50 groups for the fluxes, already fairly correlated,

and 500 for the transcriptomic data. We tested different values of these two parameters, but a greater

number of groups would lead to non-significant clusters, while a smaller number would lose information

about the potential aggregations. We conducted hierarchical clustering by using the R function hclust

with default parameters. When using both data sources, we used the same groups we had already

defined when using the sources separately. The minimisation problem we solved is

1

2

∥∥∥∥Y − J∑
j=1

Xjβj

∥∥∥∥2 + λ

J∑
j=1

∥βj∥Kj
, (3.5)

where ∥β∥Kj
= (β−1Kjβ)

1
2 , while Xj and Kj are respectively a design matrix identifying a group of

covariates and an associated kernel. We chose Kj as the identity matrix multiplied by the square root

of the size of the group, as suggested in the original paper, thus obtaining an L2 penalty.

Hybrid Group-IPF Lasso. We developed a hybrid method to take into account both the two

modalities and the possible relationships within each of them. To this end, we combined the L1 penalty

of IPF-Lasso and the L2 penalty of Group Lasso on the two different omic levels. We chose the same

groups chosen for the Group Lasso algorithm to make a fair comparison of the methods. The objective

to minimise is therefore

n∑
i=1

(
yi −

M∑
m=1

pm∑
j=1

x
(m)
ij β

(m)
j

)2

+

M∑
m=1

λm∥β(m)∥1 +

J∑
j=1

λj∥βj∥Kj
,

(3.6)

where λj = 1 for i = 1, 2, 3, ..., J to reduce the computational burden.

Artificial Neural Networks. As we already wrote in Section 1.4, ANNs are models capable of

approximating any function, provided they are endowed with enough layers and/or neurons. An ANN

is composed of an input layer, an output layer and one or more hidden layers in between. Each layer

is made up of neurons, which are linked to the neurons assembling the other layers of the network.

When the neurons are perceptrons (with or without a linear activation function), the ANN is called

MLP (see Section 1.4). When a neural network has more than one hidden layer it is defined as a Deep

Neural Network (DNN). For this study, numerous architectures were devised and studied, optimising

several hyperparameters (e.g. number of layers, learning rate, optimisation strategy) to choose the

best neural network architecture among the possible ones. We used a feed-forward neural network as a

regressor, defining its architecture via hyperparameter optimisation (the exact procedure is described

in Subsection 3.3.4). We also explored feature selection techniques prior to applying ANN models, but

we did not proceed further as we obtained a performance decrease in all cases, as also observed before

[255]. In the end, we used an ANN with two hidden layers (therefore with a total of four layers), whose

hyperparameters are described in the next section.
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Table 3.2: Hyperparameter spaces for the ANN explored during Grid/Random Search

Hyperparameter Hyperparameter search space

batch size {32, 64, 128}
epochs {400, 800, 1200, 1600, 2000, 2400}
learning rate {10−2, 10−3, 10−4, 10−5}
no. neurons of first hidden layer range depending on the input data

no. neurons of second hidden layer range depending on the input data

optimiser {ADAM,SGD,RPROP,ADADELTA}
dropout {0, 0.3, 0.6}
loss {L1,MSE, Smooth L1}

For not mentioned parameters, default values were used.

Multi-Modal Artificial Neural Networks. Multi-Modal artificial Neural Networks (MMNN)

are a particular type of ANNs devised for learning from different sources of information, in general

involving the use of an independent network for processing each modality and then a further network

for integrating the gathered information and producing an output. For this work, in order to ensure

a fair comparison between the RLMs and the neural networks, we trained the architecture devised in

[255], which inherently works in our scenario. This network is composed of two individual networks

(one for the fluxomic data and one for the transcriptomic data) whose outputs are then concatenated

and further processed by another network. Therefore, unlike the other models present in this chapter,

this one represents a case of late integration (see Section 1.5), since the two subnetworks are trained

independently before being combined together. The design of such network architecture can be seen

in Figure 3.1 (panel 3).

3.3.4 Training and testing pipeline

We split the dataset into a training set and a test set, with an 80:20 ratio. Then, we defined a

subset of the training set as the validation set, we trained only on the training set, and we optimised

the hyperparameters based on the performance of the models on the validation set. All methods

and models, when applicable, were optimised applying extensive grid-search over the hyperparameters

(see Table 3.2 for the hyperparameter search space of the neural networks). In case a grid-search

would be too computationally expensive we applied a consistent number of random-search iterations.

For the neural networks, the number of iterations exceeded 100. Finally, the best combination of

hyperparameters was used to train the final model to make predictions on the unseen test set.

The explored machine learning models were evaluated over several metrics: the mean squared error
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(MSE)

MSE =
1

n

n∑
i=1

(ŷi − yi)
2, (3.7)

where model predictions ŷi are compared with observed growth rates yi across all the n samples of the

test set; the mean absolute error (MAE)

MAE =
1

n

n∑
i=1

|ŷi − yi| ; (3.8)

the coefficient of determination (R2)

R2 = 1−
∑n

i=1(yi − ŷ)2∑n
i=1(yi − ȳ)2

, (3.9)

where ȳ = 1
n

∑n
i=1 yi. We also computed for each method the standard deviation of the error distri-

bution as a further metric:

σe =

√∑n
i=1(ei − ē)2

n− 1
, (3.10)

where ei is the difference between the prediction and the ground truth and ē = 1
n

∑n
i=1 ei.

For the neural network models, the computations of the metrics were repeated 10 times each to

ensure result consistency. Moreover, as a further robustness analysis, we conducted an RROC analysis

[368] with all the algorithms (Figure 3.3(c)). All of these results are reported in the next section.

3.3.5 Feature relevance analysis

We used enrichment analysis, which is a statistical testing technique that computes the probability

that a class of fluxes/genes is over-represented in a large set, to analyse and interpret our results (see

Equation 2.4). For the fluxes, we performed hypergeometric tests using the MATLAB function hygecdf,

and applied it to those fluxes to which the algorithms had attributed relevant weights (the threshold

was chosen so as to reduce the number of fluxes to an easily interpretable amount). For the genes, we

resorted to a different type of analysis since the lack of annotations for the transcriptomic data did

not lead to meaningful results. The findings of these analyses are presented in Subsection 3.4.3.

We also examined the final models by inspecting directly the weights attributed to the input

features, which represent the importance or contribution of the individual features to the model’s

performance. While this is straightforward with the RLMs, for the neural networks we developed a

specific method in order to quantify the relevance that each feature had to the final prediction. To

explain it, let us consider a neural network with a one-dimensional output and three hidden layers.

Each node has a weight and a bias term, meaning that we can describe each layer in matrix notation

with two matrices (W and B, the matrices of the weights and the biases respectively). If we indicate
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the input data as X and the output as o, then it is possible to describe it mathematically in the

following way:

o = f(f(f(f(XW1 + B1)W2 + B2)W3 + B3)W4 + Bo). (3.11)

where f is the non-linear activation function. Being almost all the activation functions currently used

in research monotonic (included the ones used in the networks present in this chapter), and in view

of the fact that only the relative importance of the features is of relevance for us, it is reasonable to

ignore the functions and consider only the following expression

o = (((XW1 + B1)W2 + B2)W3 + B3)W4 + Bo, (3.12)

from which, generalising, we can obtain that

o = X

I∏
i=1

Wi +

I−1∑
j=1

Bj

I∏
k=j+1

Wk. (3.13)

It is hence evident the fact that the weight determining the contribution of the input features to the

model’s output is just the product of the weights that each linked neuron possesses.

3.4 Results and Discussion

In this chapter, we aimed to determine whether GSMM-generated metabolic fluxes could be integrated

with gene expression data through concatenation, by using RMLs and neural networks (Figure 3.1).

As a case study, we focussed on predicting the growth rate of S. cerevisiae over a range of gene deletion

strains. We used genome-scale metabolic models to extract metabolic information of yeast mutants

in the exponential growth phase, employing transcriptomics information. We then evaluated how well

different RLMs perform on a test set of 343 strains, and how accurately they recapitulate the findings

already present in the literature.

3.4.1 Multi-omics prediction of cellular growth

We started from three state-of-the-art RLMs that were previously proposed for biological data analysis:

Integrative Lasso with Penalty Factors (IPF-Lasso) [365], Group Lasso [367] and Principal Component

Lasso (pcLasso) [366]. As described in Section 3.3, we then introduced Hybrid Group-IPF Lasso,

which accounts both for different omic domains and intra-domain biological modules. Moreover, we

considered the use of a modified regularisation term for IPF-Lasso and pcLasso (Section 3.3). Overall,

we therefore tested the following RLMs: (i) IPF-Lasso, both L1 and L2, (ii) pcLasso, (iii) pc2Lasso,

(iv) Group Lasso, (v) Hybrid Group-IPF Lasso. Together, they comprise different variants of group,

view-specific and principal component regularisation (Figure 3.1). As a benchmark, we used artificial
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Table 3.3: Best hyperparameter values

for the ANN on transcriptomic data

Hyperparameter Value

batch size 32

epochs 2400

learning rate 10−2

no. neurons of first hidden layer 3500

no. neurons of second hidden layer 4000

optimiser RPROP

dropout 0.6

loss Smooth L1

The number of neurons in the input layer (not a

hyperparameter) was 6170, equal to the number of

genes available in the dataset.

Table 3.4: Best hyperparameter values

for the ANN on fluxomic data

Hyperparameter Value

batch size 32

epochs 400

learning rate 10−5

no. neurons of first hidden layer 1200

no. neurons of second hidden layer 1800

optimiser SGD

dropout 0.6

loss Smooth L1

The number of neurons in the input layer (not a hy-

perparameter) was 459, obtained from the GSMM

after removing the fluxes which were always zero.

neural networks and multi-modal artificial neural networks to better understand the advantages and

drawbacks of using a less interpretable method with high predictive potential.

All the above methods (apart from the hybrid method) were tested over three datasets containing

different types of information: (i) only fluxomic data; (ii) only transcriptomic data; (iii) fluxomic

and transcriptomic data (in this case, the integration was accomplished through concatenation). This

helped us understand better the contribution of the GSMM-generated data in terms of predictive

performance and biological knowledge contributed to the models.

3.4.2 Comparison of multi-omics models of growth

Only the models with the best combination of hyperparameters were compared on the test set. In

particular, we have reported the hyperparameters which were selected as the best combinations for

the neural network models in Tables 3.3-3.4 (reproducibility for the other models is ensured by the

original R functions that defined them).

Figure 3.3 and Table 3.5 provide a detailed overview of the results. It can be noted that the

performance based only on reaction fluxes is considerably lower than the performance based on gene

expression, consistently with previous results [255]. This is likely to indicate that fluxes, when used

in isolation, have a smaller amount of relevant information for this task compared to transcriptomic

data, thus they were compared only in a multi-view setting. In the next chapter we will see how
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Table 3.5: Multi-view results across all dataset-algorithm combinations

Data Method MSE (×10−2) MAE (×10−2) R2 σe

Regularised Linear Models

TRSC + FLUX Group Lasso 0.680 6.32 0.78 0.214

IPF-Lasso L1 0.577 5.76 0.81 0.212

IPF-Lasso L2 0.551 5.61 0.82 0.215

Hybrid Group 0.570 5.75 0.81 0.213

pcLasso∗ 0.812 6.70 0.73 0.206

pc2Lasso∗ 0.702 6.29 0.77 0.209

TRSC Group Lasso 0.558 5.65 0.82 0.219

IPF-Lasso L1 0.577 5.76 0.81 0.212

IPF-Lasso L2 0.544 5.61 0.82 0.216

pcLasso 1.00 7.25 0.67 0.205

pc2Lasso 0.837 6.68 0.72 0.207

FLUX Group Lasso 1.74 9.70 0.43 0.206

IPF-Lasso L1 1.76 9.74 0.42 0.207

IPF-Lasso L2 1.76 9.75 0.42 0.207

pcLasso 1.73 9.74 0.43 0.191

pc2Lasso 1.72 9.72 0.43 0.191

Artificial Neural Networks

TRSC + FLUX MMNN 0.675 6.20 0.65 0.209

ANN 0.640 6.02 0.70 0.214

TRSC MNNN 8.48 6.98 0.72 0.182

ANN 0.679 6.18 0.64 0.212

FLUX MMNN 4.02 11.8 -0.33 0.176

ANN 1.70 9.23 0.13 0.205

Values in bold represent the scores of the methods proposed in this study. Asterisks indi-

cate a statistically significant improvement for methods using TRSC and FLUX data over

TRSC only, showing that some methods benefit more than others when fluxomic data are

added to transcriptomic data as predictive features. The methods highlighted are the ones

showing the best performance in each learning setting. The best performance is held by our

modified version of IPF-Lasso with L2 penalty, which outperforms the other algorithms over

almost all the comparison metrics.

different models and integration approaches can better exploit the metabolic information contained

in the fluxomic data and use it to discriminate between phenotypic states depending on the patients’

characteristics.

Amongst all the presented methods, only our proposed pc2Lasso managed to achieve an improve-

ment in the performance when using more than one view, together with the original pcLasso, the

MMNN and the ANN. Conversely, IPF-Lasso L1 fails to learn from the fluxes and the gene expression

jointly. Specifically, its error scores remain unchanged when moving from one view to two, and a

Wilcoxon signed-rank test run on the predicted and experimentally-measured growth rate distribu-

tions confirmed the overlap between their error distributions over the test set (p = 0.19). Moreover, a

further confirmation of this is given by the weights that IPF-Lasso L1 attributes to the fluxes, which

are all zeros.
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Figure 3.3: Analyses results. (a) Comparison of RLMs and MMNN across evaluation metrics and

learning settings. The bigger the polygon drawn by the learning setting, the worse the results for MSE,

MAE and σe, and the better for R2. The fluxomic data alone do not perform well for all the metrics

(except for σe). On the other hand, for some methods, combined learning with both transcriptomics

and fluxomic data leads to better performance. (b) Average weight attributed to each of the related

pathways according to the associated metabolic fluxes (left) and genes (right) for the regularised linear

models. For better visualisation, we reported even the non-statistically significant pathways, and

scaled the weights for each method separately. The statistically significant pathways are indicated by

p-values (only for the metabolic fluxes). (c) RROC curves for the tested methods in the integration

setting. Our IPF-Lasso and Group-IPF Lasso showed higher robustness than the other algorithms.

(d) Mean absolute Pearson correlation along the pathways in the fluxomic dataset. The coefficients

were computed by calculating the absolute values of the Pearson correlation between each metabolic

flux and the growth rate, and then averaging them within each pathway. (e) Ehrlich pathway for

the catabolism of phenylalanine. The reaction in red is amongst the ones selected by IPF-Lasso with

L2-norm as a penalty. The main metabolites are represented by bigger circles.
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Likewise, it is possible to gain some interesting insights by inspecting the weights (i.e. relative

importance) that IPF-Lasso L2 gives the fluxes and the transcriptomic data, albeit the method does

not show actual improvement. While the weights of the fluxes are all zeros, the weights of the genes are

significantly different from the weights the algorithm attributes when trained only on transcriptomics,

and an even smaller amount of them is selected. This could be interpreted as a particular indirect

form of regularisation that reaction fluxes apply over the gene expression with this algorithm, which

suggests that this multi-modal approach utilises profitably metabolic modelling to gain information

that cannot be acquired from the transcriptomics alone. In Chapter 4 we will see how different

models and integration techniques can still leverage the information provided by fluxomic data without

displaying this regularising effect.

In general, the best-performing methods in the integration case (TRSC + FLUX), which adopt

group and view-specific regularisation, do not display improved metrics over the TRSC case. On the

other hand, methods employing principal component regularisation clearly display such improvement

but remain with worse scores.

3.4.3 Interpretation of biological predictors

One of the purposes of adding a second view such as the metabolic fluxes was to improve the biological

understanding and thus the interpretability of the input features, and consequently of the predicted

output. The notion of interpretability we adopt here refers to the use of feature weights to establish

which pathways/genes are important for yeast growth among the input features. From this perspective,

we decided to look at the weights attributed to the metabolic fluxes by the algorithms and to conduct

an enrichment analysis over the two different data types as a way to gauge the individual importance

of the features.

Thanks to their transparent structure, RLMs can be interpreted immediately, as they directly assign

a weight to each input feature. Since a typical characteristic of Lasso is the inner feature selection due

to the fact that some input features are given zero as weight (which means that they are not used to

make any prediction), all the RLMs share a similar property. Our analysis on the relevance of certain

features takes thus into account solely the features that are not disregarded by the methods (i.e. with

a non-zero weight). Figure 3.3b illustrates the outcome for the most common pathways that were

found enriched for the RLMs. In the case of the genes, the pathways most present in the pool of the

selected genes were considered.

Looking exclusively at the metabolic fluxes that were given the highest weights by each method,

it is possible to cross-compare the algorithms. All the algorithms, except IPF-Lasso L1, Group Lasso

and our hybrid Group-IPF Lasso, selected phenylalanine-involving reactions. Furthermore, all the al-
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gorithms except Group Lasso selected tyrosine transaminase as a key reaction. It is widely known that

in yeast these two compounds take part in the Ehrlich Pathway, which is directly related to fermen-

tation. Moreover, different types of Lasso variations were capable of finding similar but not identical

reactions, since while the two pcLasso versions found only one of the two PS decarboxylases reactions

in the model, the two IPF-Lasso methods found the other one. Both these reactions have been found

to support growth in S. cerevisiae [369]. Finally, phosphatidyl-L-serine and phosphatidylethanolamine

were once again, like tyrosine transaminase, common to all but IPF-Lasso L1, Group Lasso and the

hybrid method. The former is essential for cell growth [370], while the latter, under certain conditions,

takes on crucial importance for yeast growth [371]. However, widespread differences were also found

in terms of weight distribution across regularisation approaches.

To statistically evaluate such heterogeneity, we conducted pathway enrichment analyses on RLM

weights, which indeed confirmed a varying use of biological information by individual regularisation

strategies. Due to the diverse nature of the two types of data, the analyses were performed in different

ways based on the dataset considered. In particular, we conducted a hypergeometric test to determine

whether, among the fluxes deemed more relevant by the models, there were any metabolic pathways

which were over-represented not by chance. In order to do this, we selected the most important

fluxes for the predictions, i.e. the ones which were given the highest absolute weights by the models,

and considered the associated pathways (as per the GSMM). Using Equation 2.4 and correcting for

multiple hypothesis testing with the Benjamini-Hochberg procedure, we detected the pathways whose

frequency, in the pool of relevant fluxes, was inexplicable by normal chance. As a result, in addition to

the importance of phenylalanine, tyrosine and tryptophan, the enrichment highlighted the relevance

of cysteine and methionine as previously known [372, 373], 2-oxocarboxylic acid and lysine when

considering IPF-Lasso and aminoacyl-tRNA synthesis, arginine, alanine aspartate and glutamate when

looking at the results from pcLasso and pc2Lasso (other results are reported in Table 3.6). Finally,

we compared the fluxes and the related genes, i.e. the genes associated with the enzymes that catalyse

each reaction selected by the algorithms, to evaluate whether there was a correspondence between

them. Specifically, the genes associated with the reactions with the largest weights were considered

and compared with the genes selected directly by the same method. The results showed that the genes

associated with the selected reactions were not significantly present in the set of genes selected directly.

This further strengthens our hypothesis that fluxes and genes carry qualitatively different information,

potentially increasing the accuracy of multimodal methods compared to single-view ones.

In this chapter, we proposed and tested multimodal approaches with the intention of integrating

information from metabolic models and experimentally obtained gene expression data. We showed

that the metabolic information represented by model-derived flux rates is relevant for interpreting

the predictions from machine learning models, and to better understand the interplay among genes,

metabolism and growth in yeast. More specifically, we found that multi-omics data integration through

principal component regularisation leads to predictive improvements in this setting, while other forms
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Table 3.6: Flux Enrichment Analyses for the regularised linear models

Pathway IPF-Lasso L1 IPF-Lasso L2 pc2Lasso Group Lasso

Phenylalanine, tyrosine and tryptophan biosyn-

thesis

1.33 · 10−5 1.52 · 10−4 9.30 · 10−3 1.79 · 10−12

Phenylalanine metabolism 1.79 · 10−2 8.21 · 10−8 9.30 · 10−3

Tyrosine metabolism 4.71 · 10−2 1.52 · 10−4 9.30 · 10−3 2.74 · 10−2

Biosynthesis of amino acids 9.68 · 10−4 1.62 · 10−7

Biosynthesis of antibiotics 3.90 · 10−3 1.62 · 10−7

Biosynthesis of secondary metabolites 3.90 · 10−3 1.58 · 10−4

Cysteine and methionine metabolism 1.44 · 10−2

Aminoacyl-t RNA biosynthesis 9.30 · 10−3

2-Oxocarboxylic acid metabolism 1.45 · 10−2

Lysine biosynthesis 1.45 · 10−2

For each method we display the p-value associated to the pathway found (when present). As it can be noticed,

phenylalanine- and tyrosine-related pathways are common to almost all the methods. All the p-values are below the

defined threshold of 0.05. The results for pcLasso and the hybrid Group-IPF Lasso are not shown since the only en-

riched pathway for the former was the Aminoacyl-t RNA biosynthesis, with a p-value of 1.50 · 10−2, while the latter was

enriched only in Valine, leucine and isoleucine biosynthesis with a p-value of 2.06 · 10−2.

of regularisation appear less effective in such task. While the metabolic fluxes were calculated through

pFBA, it must be noted that alternative methods could potentially be used to compute flux rates,

which may further improve predictive results. This is the case of Chapter 4, in which we use Flux

Variability Analysis to compute the metabolic fluxes [94], but also of Chapter 2, where we adopted

TRFBA to inject regulatory knowledge into our GSMM [324].

We found that regularised linear models can be a better choice than neural networks (even after

extensive fine-tuning of the hyperparameters), as they have comparable performance (RLMs perform

slightly better than neural networks, but with no statistically significant difference at significance

threshold = 0.05) but require much shorter training times and allow for an immediate and natural

interpretation of their result (unlike ANNs, which are black boxes that require more complex inter-

pretation strategies often based on unintuitive assumptions). This suggests that powerful methods

such as neural networks cannot be regarded as off-the-shelf methods to which to resort for any task

indiscriminately, and other simpler methods should also be considered. As a further confirmation for

this, we will show in the next chapter how more classical machine learning algorithms can perform at

least as well as some deep learning models.
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3.5 Conclusion and future directions

In this chapter, we investigated the potential of existing and novel multimodal regularised linear models

in predicting Saccharomyces cerevisiae growth using experimental and metabolic model-derived multi-

omic data. Our experiments included state-of-the-art regularisation methods such as group-based,

view-specific and principal component regularisations. These were applied to a combination of genome-

wide gene expression data and model-generated metabolic flux rates. We found that, in this setting,

linear interpretable methods such as variations of Lasso can be preferable to artificial neural networks

even on a relatively large dataset as, being the performance equivalent, they are much faster to train

and much easier to interpret.

There are several limitations to this study which should be addressed. First, when optimising the

neural networks, we conducted a random search over eight hyperparameters for over 100 iterations.

This meant that we trained (and tested on the validation dataset) over 100 different models. This

approach, necessary in this case given the high complexity of the models, is very prone to a type

of overfitting called “optimisation bias”, which could have caused the training pipeline to produce

suboptimal, underperforming models. Indeed, by repeatedly testing on the validation dataset and

comparing so many models, we would have risked to overfit it, thus hampering the models’ ability

to generalise on unseen, new data. Another issue consists of the impossibility of running additional

statistical analyses on some biological terms of the genes selected by the models (which instead we did

for the reactions). This was due to lack of annotations, which forced us to limit our enrichment analyses

to the pathways deriving from the metabolic fluxes only, and to adopt less mathematically robust

analyses for the genes. We also observed that some accurate state-of-the-art regularisation methods

conceived for data integration fail in achieving accuracy improvements in our multi-omics setting, and

that they inconsistently point to different sets of relevant biological variables. These findings highlight

the need for new, more powerful solutions that can exploit the cross-modal information, in addition

to the information held in the individual modalities. In the next chapter, we will go on to present

a more advanced integrative pipeline which does not use raw feature concatenation to leverage the

information contained in the different omics.

3.6 Related work, funding and final remarks

The work presented in this chapter has been published in Bioinformatics [282], and the paper was

written in collaboration with multiple co-authors. As described in the introduction to this chapter, I

performed all the analyses relating to the generation of the metabolic features, I devised, implemented,

trained and tested the models, and I conducted the analysis and interpretation of the results as well.
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Chapter 4

Integrating transcriptomic and

fluxomic data with a late

integration strategy for liver cancer

diagnosis

4.1 Introduction

In the last chapter, we continued on our journey by investigating whether the novel information

contained in genome-scale metabolic fluxes could be used in conjunction with gene expression data

in a precision medicine setting, and we discovered that this depends heavily on the type of machine

learning model used. In this final chapter, we conclude our quest by trying to answer these last few

questions:

� How else can we exploit the information present in GSSM-generated fluxes together with the

information held by gene expression data? Is it possible to obtain better integration results

without sacrificing interpretability?

� When we have more than two omics, how do different omics combinations interplay with the data

samples? For predictive purposes, are there situations where certain combinations are better than

others?
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As in the previous chapters, we will use a case study to examine them, but this time, unlike

in the last instance, the presented task will finally be a precision medicine application with human

data samples (and not single-celled organisms). The contributions of this chapter are the following: we

show that more complex integrative approaches for GSMM-generated metabolic fluxes, gene expression

data and clinical data are possible, and demonstrate that different combinations of omics allow for the

detection of different genes, reactions and metabolic pathways associated to the model’s prediction.

Finally, we also show that certain omics combinations are more suitable for prediction than others,

depending on the patients’ clinical characteristics.

The presented case study is a typical binary classification task, in which we are trying to predict

whether a patient has cancer or not starting from their metabolic fluxes, gene expression data and

clinical features. The entirety of the study was conducted by me. This means that I performed all the

analyses relating to the generation of the metabolic features, I designed, implemented and tested the

entire machine learning pipeline, and I conducted the analysis and interpretation of the results as well.

4.2 Background

Hepatoblastoma is the most frequent epithelial liver tumour in infancy and childhood, with over 90%

of cases diagnosed earlier than 4 years of age. This tumour is characterised by a high recurrence rate

and metastatic aggressiveness, especially below this threshold age [374], which makes it paramount

to be able to obtain an accurate prediction early on in the onset of the disease. Additionally, its

incidence is increasing in several developed countries. The recent development of molecular methods

allowed extending the general subtype classification of primary childhood liver cancers, including hepa-

toblastoma [375, 376], whose heterogeneity complicates the diagnosis of the disease. Moreover, clinical

studies suggest that biomolecular mechanisms are associated with diverse prognostic outcomes and

chemotherapy responses. Very recently, a few studies have started to explore the biological variability

underlying hepatoblastoma, focusing on genomic biomarkers [377]. Likewise, machine learning has

been adopted in the study of hepatoblastoma with encouraging results [378, 379, 380]. However, the

role of metabolic rewiring – which is one of the main hallmarks of tumour cells [381] - has not been

studied so far in hepatoblastoma. As a result, there is a general lack of robust biomarkers for this

disease [382].

Following the path delineated by the previous case studies, in this chapter we investigate how

different omics (and their combinations), interplaying with the patient’s characteristics, affect the

accuracy of a machine learning-based diagnosis by using a systems biology framework (already adopted

with success in cancer research [383, 384, 385]) in conjunction with machine learning. Even though

transcriptomics cannot be easily outperformed by other omic data [386], we have shown in the previous
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chapters that GSMM-generated metabolic fluxes do contain different information that could be used

to improve models’ predictions. We also examine metabolic markers for hepatoblastoma in the hope

that this will guide future research in the field. In particular, we study how experimentally measured

gene expression plays a role in diagnosing hepatoblastoma when paired with both synthetic in silico

metabolic data and clinical data such as gender and age of the patient.

Starting from a set of transcriptomic profiles, we use genome-scale metabolic modelling to estimate

the associated metabolic activity across pathways in a precision medicine fashion. We then use support

vector machines [387] as a predictor to identify hidden patterns that discriminate between phenotypic

groups, and compare the performance of the different omics and their combinations, achieved by

integrating the omics via Partial Least Squares Discriminant Analysis (PLSDA), in four alternative

scenarios. For each scenario, we examine and present potential biomarkers, validating them against

the existing literature. We report how specific omics combinations can be beneficial to the diagnosis

of hepatoblastoma in different patients, and that the predictive power of each combination varies with

their age, gender and clinical status.

4.3 Materials and Methods

4.3.1 Data gathering and homogenisation

We gathered relevant transcriptomic data from liver samples of children diagnosed with hepatoblastoma

and for control subjects within the same age range sets [377, 388]. We selected three datasets whose

gene expression profiles and clinical information have been retrieved from the Gene Expression Omnibus

portal (www.ncbi.nlm.nih.gov/gds) under the accession numbers GSE75271, GSE131329 and

from the BioStudies ArrayExpress portal (https://www.ebi.ac.uk/biostudies/arrayexpress)

under the accession code E-MEXP-1851. The selection of these datasets considered the experimental

platform utilised and, given the need for numerous samples to train a machine learning model, we

prioritised the platform with the most abundant publicly-available data, which was in our case the

Affymetrix microarray (Affymetrix Human Genome U133 Plus 2.0, Affymetrix Human Gene 1.0 ST

and Affymetrix HG-U133A 2.0 GeneChipTM respectively). The gathered data comprise a total of 151

subjects including 128 hepatoblastoma patients and 23 controls (see Figure 4.1B). The average age is

2.6 years and there are 84 and 67 male and female subjects, respectively. The transcriptomic profiles

cover 12,712 genes.

The pre-processing of data is fundamental to their meaningful analysis, free of technical biases

[389, 390, 391]. In addition, their joint analysis required ensuring uniformity and batch effect removal,

which we performed through ComBat [171]. ComBat is an empirical bayes-based pipeline which
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consists of a gene-wise standardisation (via a gene-wise least squares regression) of the data followed

by the estimation of the additive and multiplicative batch effect parameters through empirical priors

(meaning that the priors are directly estimated from unbiased, i.e. standardised, data, and not assumed

before the observation). Once the parameters have been estimated, the data can be corrected by

dividing for the multiplicative batch parameter and subtracting by the additive one. Figure 4.2A

shows the effect of homogenisation across the three datasets. Apart from removing the batch effect,

we also cleaned the clinical data to guarantee consistency of labels and values across the three datasets.

In particular, the age was rescaled so that it would represent, in each of the three datasets, the age of the

patient in months, while for the gender and clinical status information common labels were chosen to

make the patients immediately comparable across the datasets. Due to heterogeneous clinical formats,

however, some information remained sparse, such as race, tumour stage and clinical course (Figure

4.1B), and could not be used. For this reason, the analysis of clinical data within the machine learning

models adopted was limited to age, gender and clinical status information.

4.3.2 Patient-specific metabolic modelling of hepatoblastoma

To obtain metabolic information tailored to patient-specific metabolism, we adopted a GSMM ap-

proach. The base requirement is a mathematical representation of all the known biochemical reactions

and transmembrane transporters present in an organism. Previous work has been done with GSMM

to mechanistically characterise various human disorders, including liver diseases [392] and a range of

cancer types [268, 393, 394, 395]. As we have already seen, GSMMs can be integrated with omics

data to obtain context-specific models, representing the metabolic status across various conditions or

tissues [264, 396]. Notably, tissue- and cell-specific metabolic models have been successfully used to

identify, and successively validate, specific drug targets that inhibit cancer proliferation but do not

affect normal cell proliferation [397, 398]. Through the mathematical representation of metabolic net-

works, GSMM can provide mechanistic insights regarding how hepatoblastoma works, with both the

biochemical detail and completeness to interpret large molecular datasets.

Transcriptomics data integration In our experiments, the human metabolic reconstruction Re-

con2.2 [70] was used in order to estimate the metabolic activity associated with transcriptional cues in

tumour and control liver. Following a precision medicine approach, we derived a different metabolic

model for each patient [87, 56]. In doing so, we mapped the gene expression levels of the patients onto

the metabolic network, thus determining the metabolic conditions from which to infer the reactions

activity for each individual. Specifically, this process uses gene-reaction relationships encoded within

Recon2.2 and generates sample-specific constraints that describe the maximal and minimal activity
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Figure 4.1: Experimental pipeline and clinical data analysis. A. Multi-omics and machine learn-

ing pipeline adopted in this chapter. Starting from liver gene expression profiles for hepatoblastoma

patients and control subjects, we computed the variability of metabolic fluxes via FVA. For each of the

combinations of transcriptomic, metabolic, and clinical data, we then performed a random stratified

sampling to obtain a hold-out test set and an outer training set for machine learning model evaluation.

Starting from this training set, we conducted a 5-fold cross-validation across hyperparameter values,

and then evaluated the best model on the hold-out test set. Within each round of cross-validation, we

also performed feature standardisation and cleaning and omics integration when necessary, in order

to avoid any data leakage (brown box). We repeated the entire procedure 200 times to ensure the

robustness of the results and re-ran the entire pipeline with a randomised dataset, whose phenotypes

had been randomly permuted, so as to verify that the learned models correctly identified biologically

meaningful patterns. B. Clinical data for the combined dataset used in the study. Race, tumour

stage and clinical course had widespread missing entries, due to the original datasets having different

information available, and thus were removed from most analyses.
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that can be sustained by a given transcriptional state:

vub ← vub [1 + γ|log Θ|]sign(Θ−1)

vlb ← vlb [1 + γ|log Θ|]sign(Θ−1)
(4.1)

where vub and vlb represent the upper and lower bounds of the metabolic fluxes respectively, while

Θ represents the gene expression level of the gene sets present in the genome-scale metabolic model,

and γ = 2 (see Equations 1.2). The intuition behind this formulation is the following: in order to

prevent the flux balance algorithm being influenced by extremely high values in the gene expression,

thus generating unrealistic flux distributions, we adopted a logarithmic mapping to curb down the

most extreme measurements in our transcriptomic data. The use of a logarithmic mapping is also

consistent with the dynamics of the protein translation rate, which is almost linearly correlated to

mRNA abundance for relatively small values but quickly becomes approximately constant as the

abundance becomes high [399, 400]. γ is a multiplicative factor representing the reliability of Θ as an

indicator of the activity level of the associated reaction. Finally, the sign function has the purpose

of taking into account the magnitude of Θ in the multiplication: if Θ is small, the reaction bounds

are divided by the quantity in the square brackets, otherwise they are multiplied by it (thus correctly

influencing the activity of the reaction).

Furthermore, we imposed additional experimental constraints (see Table 4.1) directly onto the

genome-scale metabolic model, which are orthogonal to those given by gene expression. To this end,

we performed a literature search on liver metabolism, collecting experimentally supported bounds to

metabolic exchanges in the liver. In particular, we followed previous work on hepatocyte modelling

[392], correcting for the modelling convention according to which exchange reactions that assume

uptakes are represented by negative lower bounds. These secretion and uptake rates were taken from

previous measurements [401], which investigated the changes in intracellular pathway fluxes of primary

rat hepatocytes in response to low-insulin preconditioning and amino acid supplementation. Among

the involved reactions, we set uptake bounds for glucose, glutamate and glutamine.

We performed these steps for all the 151 samples in our dataset, in parallel, thus obtaining 151

context-specific metabolic models, each associated with a specific individual.

Flux variability analysis To quantify the genome-scale metabolic state associated with collected

transcriptomic profiles, we adopted flux variability analysis, which provides complete maximal (and

minimal) cell metabolic capabilities across the biochemical network [94]. FVA operates by sequential

maximisation and minimisation of each reaction activity to explore the boundaries of the feasible

flux space. This algorithm yields a profile of maximal and minimal reaction rates (fluxes) for every

biochemical reaction in Recon2.2, which collectively constitute a fluxomic profile. However, unlike the

transcript levels, these metabolic fluxes do not belong to a single metabolic state, rather they represent

the metabolic capabilities and limits of the individual’s metabolic network, because the reactions are
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Table 4.1: Experimental values used to constrain the model

Reaction Reaction Lower Bound

D-Glucose exchange 2.025

L-histidine exchange −0.04425

L-Isoleucine exchange −0.0585

L-Leucine exchange −0.0825

L-Lysine exchange −0.2325

L-Methionine exchange −0.12

L-phenylalanine exchange −0.202774

L-Threonine exchange −0.12

L-Tryptophan exchange −0.0075

L-Valine exchange −0.04125

H2O exchange 25.3228

O2 exchange −28.05

CO2 exchange 21.7219

L-alanine exchange −0.02325

L-asparagine exchange −0.00135

L-glutamine exchange −2.325

L-Tyrosine exchange −0.05775

L-cysteine exchange −0.0555

L-Arginine exchange −0.2175

Glycine exchange −0.2625

L-Proline exchange 0.02925

L-serine exchange −0.1425

L-Aspartate exchange 0.00825

L-Glutamate exchange 0.15

Ammonia exchange −0.165

Sulphate exchange 0.16121

Proton exchange −0.42825

Glycerol exchange −6.675

Ornithine exchange 0.125

Acetoacetate exchange 0.1275

(R)-3-Hydroxybutanoate transport via H+ symport 0.05775

L-Lactate exchange −0.063

Urea exchange 3.375

The values were corrected by changing their sign, according to the convention by

which lower bounds for exchange reactions are negative when the reaction admits up-

takes.
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maximised and minimised in turn. The reason why we computed a fluxomic profile for each individual

is, like in the previous chapter, that we assume it should be possible to distinguish between healthy

and cancer cells by looking at their metabolism. The optimisation problem was the following:

max (min) vi

subject to c⊤v = fmax,

Sv = 0,

vlb ≤ v ≤ vub, for i = 1, 2, . . . , n,

(4.2)

where S is the stoichiometric matrix that defines the chemical reactions present in the metabolic model,

c is a vector for characterising the objective function f (the biomass in our case) starting from v, fmax

is the maximum value of f , and vlb,vub are the lower and upper bounds, respectively, of the metabolic

reactions, as per Eq 4.1.

As an alternative to FVA, we also used, as in Chapter 3, pFBA [292], following recent advances

on objective functions in mammalian metabolic modelling [85]. This approach, however, involves

the adoption of specific cellular objectives that in this case did not provide sufficiently diversified

metabolic profiles across all samples, which prompted us to employ FVA as it provides more unbiased

estimates of metabolic variation across individuals. This could be explained by the fact that cancer cells

present complex behaviour which may not be easily modelled with a single optimisation objective [402].

Exploratory results with this FBA variant (in which we used as objective function the maximisation of

the biomass, to simulate the uncontrolled growth of cancer cells) are reported in the following sections

together with the results for the FVA-generated metabolic fluxes.

The COBRA Toolbox [334] was used with the Gurobi solver to compute the metabolic fluxes in

MATLAB R2021b.

4.3.3 Biomarker identification framework

The study was divided into two parts: we first analysed the metabolism of the patients with re-

spect to the possible stratifications in the population, and then applied machine learning techniques

to determine possible biomarkers and how different omics could affect the precision of diagnosis of

hepatoblastoma. We decided to follow this two-fold approach (flux-based metabolic analysis first and

machine learning-led knowledge discovery after) as this is the most promising for the delivery of robust

biomarker insights. Conversely, enrichment by itself does not guarantee predictive power nor does it

help prioritise candidate biomarkers for future studies [403].

Flux enrichment analysis To determine whether the over-represented pathways associated with

the resulting metabolic reactions in the pool were overly present “by chance” or because there exist
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some real biological mechanisms linked to the reactions, we decided to run a Flux Enrichment Analysis,

which is a statistical testing technique that tests for the statistical relevance of biological pathways

associated with a pool of reactions (see Equation 2.4 for a mathematical definition).

Before applying FEA, we removed all the reactions which had an absolute flux lower than 1e-7,

considering them non-active, to account for the tolerance of the FVA solver. All the other reactions

were instead included in the analysis. FEA was conducted on all the samples, in a stratified and

non-stratified way, by using hypergeometric tests, and the Benjamini-Hochberg correction was used to

take into account the multiple hypothesis testing scenario. We set 0.05 as a threshold for the p-value

to determine whether the presence of an over-represented pathway was statistically significant or not.

Whenever specific covariate information was not available for a sample, we discarded the sample for

that stratification and conducted the analysis on the remaining data.

We followed this approach because we were interested in assessing whether different groups of

individuals (healthy/ill, male/female, etc ...) showed changes in metabolic activity highly concentrated

in specific pathways. The different cohorts were based on the available covariates and were organised

as follows: tumour – control; male – female; older – younger than 4.5 years; older – younger than 3

years; alive – dead. The choice regarding the thresholds for the age was driven by the need for a deeper

granularity in the analysis within the range [3, 4.5], which is considered to be critical to the diagnosis

of the disease [374].

Machine learning-led biomarker discovery Support vector machines are machine learning mod-

els that can be trained to distinguish samples belonging to different groups, such as patients and control

individuals [387]. Here, we trained and applied SVM models to identify predictive variables that best

discriminate between phenotypic groups (tumour and control). Once identified, these variables could

thus be regarded as biomarkers. The objective function for the training of our SVMs was the following:

min
w,b

1

2
w⊤w + λ

∑
i

max
(

0, 1− yi(w
⊤xi + b)

)
, (4.3)

where λ is a regularisation hyperparameter to optimise, w and b, respectively, weights and bias of

the model, and (xi, yi) the pair (features, class) of the i-th sample. In addition to SVMs, we also

tested another machine learning algorithm, Random Forest (RF) [404], and a Neural Network (NN),

a deep learning approach that usually achieves state-of-the-art performance in many modern artificial

intelligence tasks (we used a similar architecture to the ANN from Chapter 3, but with only one layer).

The performance of the three models was compared and we found out that the SVM model performed

better than the other models or equally well in all the studied scenarios. Further information can be

found in the next section. In the rest of the chapter, however, we decided to focus on the results of the

SVMs only also because the SVM algorithm is computationally inexpensive if compared, for instance,

with the NNs, and therefore of more practical use for real applications.
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We adopted PLSDA as integrative approach in order to mitigate the problems deriving from the

high dimensionality of the data combined with the small number of samples. In particular, the omics

(transcriptomic and fluxomic) were projected onto two-dimensional spaces (one dimension per pheno-

typic trait; each omic was projected onto an independent space) in the explored integrative settings,

explained below.

Our general training-evaluation pipeline, as reported in Figure 4.1A, was the following: starting

from the complete sample set (151 samples), we performed a random stratified sampling of 10 samples

(5 patients and 5 controls) to put aside as a test set. The remaining samples were used as training

data for an SVM model with a linear kernel, which we then employed to predict the phenotypic group

for the 10 hold-out samples. This train-test process was repeated on random data partitions 200 times

in order to ensure the robustness of the results, given such a small test set. This was done in two

ways: by looking at the performance distribution of our models (described by 200 points), and by

summing the weight each feature was given in each of the 200 runs. This is equivalent to computing

the average weight per feature, as we have considered the weights not in absolute terms, but in relation

to each other (a feature is more important than another if it has higher absolute weight). The exact

number of iterations was a result of a trial-and-error procedure, through which we determined that

a lower number of repetitions would increase the standard deviation of the performance distributions

(thus making our results less robust), while a higher number would simply increase the duration of

the experiments, with negligible gains in terms of results robustness. Given the over-representation of

tumour samples (see Figure 4.1B), at each iteration we employed random under-sampling of tumour

samples and over-sampling of control samples in order to obtain 30 samples for both groups (60 samples

in total). We did this after the generation of the hold-out test sets, to avoid any data leakage that could

affect the robustness of our pipeline. In other words, we randomly sampled, in a stratified fashion,

30+30 samples out of the 141 samples which did not belong to the test set. During the model building

stage, we also performed feature standardisation and hyperparameter optimisation of λ through grid

search. This, together with the under- and over-sampling of the 60 samples described above, was

conducted within a 5-fold cross-validation framework on the remaining 141 samples, thus controlling

for overfitting. The optimisation procedure for λ was selected for its robustness, but alternative

approaches are possible. For instance, several meta-heuristics have been developed recently based

on animal group behaviour and particle dynamics [405, 406]. Such algorithms have previously been

applied in combination with metabolic modelling [265], and it has been shown that they can be

beneficial when optimising hyperparameters of SVM [407]. In this work, however, we opted for a more

standard procedure that was applicable to all the investigated machine learning models.

Moreover, we performed feature selection by removing all the constant variables and the ones which

were identical to others (in the case of fluxomic data, for instance, reactions in a pathway with a locally

linear topology could share the same value at all times). The feature selection procedure was itself

performed within the cross-validation framework, in order to avert any overly optimistic performance
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evaluation of the SVM models during the hyperparameter optimisation.

We conducted these experiments in 6 different scenarios, with the aim of investigating how different

combinations of omic data would influence the predictive power of the SVM models and their sensitivity

to different biological entities (genes, fluxes, pathways): (i) use of transcriptomic data only; (ii) use

of fluxomic data only; (iii) use of transcriptomic and clinical data (age, gender); (iv) use of fluxomic

and clinical data; (v) use of transcriptomic and fluxomic data; (vi) use of transcriptomic, fluxomic

and clinical data. To the above scenarios, we added also a final setting in which we trained the SVM

models only with the clinical data, in order to eradicate any possible bias caused by the collection of

the data (sampling bias).

To verify that the learned models correctly identified biologically meaningful patterns, we tested

(through the same evaluation process) SVM models built starting from a permuted version of the

dataset [408]. Specifically, we performed an additional 200 test iterations while randomly reassigning

phenotypic labels to each sample prior to conducting the cross-validation, as previously suggested

[409]. We did this for each of the 6+1 scenarios described above for completeness of the analysis.

Since we wanted to investigate how the discriminative power and sensitivity to biological mecha-

nisms would change with different omics integrations, we decided to analyse the weights assigned by

the SVMs to each variable during training, with the rationale that a higher weight in absolute value

corresponds to a higher relevance. For the integrative experiments, the weights were computed by pro-

jecting the weights attributed to the latent dimensions back onto the original feature space. Moreover,

in order to have a broader picture of the main metabolic pathways detected in the four integrative

scenarios, we conducted FEA in each of them. For each scenario, we selected only the fluxes whose

weight was in the 99.5th percentile. 0.05 was set as the threshold value for significance.

All the analyses were conducted in python, and the SVM, RF, NN and PLSDA algorithms were

implemented with the library scikit-learn [410].

4.4 Results and Discussion

The scope of this study was to investigate how different omics and their combinations may contribute

to a computer-aided diagnosis of hepatoblastoma both in terms of accuracy and understanding of the

biological mechanisms underlying the disease. In this framework, we focused on the use of individuals’

transcriptomes and model-generated fluxomic profiles in order to capture the metabolic alterations

associated with the disease, in a precision medicine fashion. These omics readouts were integrated and

used to build predictive models through the machine learning pipeline displayed in Figure 4.1A.
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4.4.1 Genome-scale model characterisation of hepatoblastoma metabolism

Following a condition-specific modelling approach, we estimated the metabolic activity differences as-

sociated with varying transcriptional patterns across individuals. A genome-scale stoichiometric model

of human metabolism was used as a platform for gene expression profiles obtained from three indepen-

dent cohorts of individuals. As a result, we obtained maximal and minimal rates achievable through

each biochemical reaction present in the model under the given transcriptional states. Figure 4.2B

shows a principal component analysis of transcriptomic and fluxomic (maximal fluxes only) profiles.

In both cases, hepatoblastoma patients and healthy controls display an almost linear separation. From

a machine learning standpoint, this suggested that patient phenotypic classification could be achieved

with high accuracy even with a limited number of samples. Indeed, being PCA a linear transformation,

the fact that the transformed data were linearly separable entailed that the original data were linearly

separable as well, which considerably simplified the solution of the task as simpler models could be

used. On the other hand, PCA revealed no obvious global relationship between subject age and multi-

omics variation. An alternative graphical representation of Figure 4.2B, in which age is replaced by

gender, can be found in Figure 4.3 instead.

The metabolic flux variation can be decomposed into metabolic capabilities across the pathways

in the tumour and control groups described above, illustrated in Figure 4.2C. From the figure, gen-

erated from the maximal fluxes, it is possible to observe a widespread reduced activity in several

pathways associated with hepatoblastoma, such as in the central metabolism, nucleotide salvage and

interconversion. However, up-regulation was found in glutathione and CoA metabolism.

We then used FEA to obtain a picture of the most relevant metabolic pathways for groups of

individuals defined based on their health status, sex, age, and clinical course. When doing so, FEA

showed several statistically significant differences among the chosen cohorts (alive - dead, younger -

older than 3 years, younger - older than 4.5 years, male-female, tumour - control). FEA computed

over the maximal reaction fluxes generated by FVA returned several statistically significant differences.

When considering the forward reaction direction, all the enrichments had in common many relevant

pathways, since the reaction rates were generally higher, which meant many more active reactions

in the metabolism (Figure 4.2D). The generally enriched pathways were the ones associated with

extracellular transport and nucleotide interconversion (as in the cases above), ubiquinone synthesis

and keratan and cholesterol metabolism. The only exception to this was the alive-dead contrast, which

did not present the reactions associated with the keratan sulphate synthesis. In all three cases, no

significant differences were found across age groups (older – younger than 4.5 years and older – younger

than 3 years), which probably indicates that within this age range there are no specific metabolic

changes. When considering the backward direction of reversible reactions, all the enrichments had in

common the reactions associated with extracellular transport and nucleotide interconversion as the

most relevant, while the citric acid cycle and the nuclear transport reactions were not critical for the
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tumour-control comparison, unlike the other stratifications. Moreover, the two age stratifications and

the alive-dead contrast showed as important reactions the ones related to the metabolism of valine,

leucine and isoleucine. The FEA conducted on the pFBA-generated metabolic fluxes displayed as

statistically relevant for all the stratifications the reactions associated with nucleotide interconversion

and glutamate metabolism. Furthermore, extracellular transport reactions were the most relevant,

again for all the stratifications. All the enrichments but the one associated with the tumour–control

stratification showed the importance of the reactions composing the citric acid cycle as well. Given

that there was very little differentiation between the enrichments for the pFBA fluxes compared to the

FVA-generated ones, as already stated, we decided to focus on the FVA-generated fluxes in the rest of

the analysis.

4.4.2 Biochemical marker identification

The analyses above could identify changes in metabolic activity associated with a range of subject

sub-cohorts. To understand which changes can be more strictly linked to carcinogenesis, we adopted

machine learning techniques. Since the maximal fluxes presented more diversified metabolic profiles,

we decided to focus only on them for the rest of the study. Figure 4.12A shows the classification results

obtained for all the 6+1 omics combinations studied, including gene expression, metabolic fluxes, and

clinical information. On average, SVM models achieved a mean accuracy and MCC of around 0.9,

with the exception of models trained only on clinical data. In contrast, SVM models obtained from

permuted versions of the dataset on average proved no better than a random model for all the omics

integrations, with a mean accuracy close to 0.6 and a mean MCC around 0.1, and with a standard

deviation much larger than the one of the models trained on the original dataset. This indicates

that the original models captured meaningful patterns underlying the clinical state of the subjects, as

expected. Since in this study we adopted, in addition to the SVM models, other two machine and

deep learning models, namely Random Forests and Neural Networks, we compared their performances

for each omics combination by using Wilcoxon signed-rank test. This statistical test was used to

determine whether the accuracies and MCCs of the models belonged to an identical distribution or

not. In particular, only the RF models presented performance distributions that were determined as

different from the SVMs’ ones, and exclusively when the models were trained with transcriptomic data

only. In this case, the RF models performed slightly worse than the SVM models (see Figures 4.4-

4.5).

As it can be seen from Figures 4.4-4.5, the performance of the different models does not change

significantly between omics combinations: this is likely due to the apparent linear separability of the

data which can be deduced from Figure 4.2B. However, as we will see in the next Subsection, different

omics combinations can actually affect diagnostical performance on different groups of people, based

on their clinical characteristics (namely, age, gender and health status). In order to gain some insights
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Figure 4.2: GSMM characterisation of hepatoblastoma metabolism. A. Principal component

visualisation of the three transcriptomic datasets considered. Upon batch correction through Com-

Bat, the datasets correctly overlap, indicating that confounding experiment-specific variation has been

reduced. B. Principal component visualisation of the aggregated cohort in terms of transcriptomic

and fluxomic state, displaying the main phenotypic groups. The two groups appear circumscribed to

well-defined areas of the principal component space for both omics across subjects, indicating that they

describe distinct characteristics in the two groups. In contrast, no clear trend can be observed in terms

of subject age, here represented by the circle size. An alternative representation of these graphs is given

in Figure 4.3. C. Average flux in each pathway across patients and controls, obtained through FVA.

Pathways associated with glutathione and CoA metabolism were found up-regulated, while the ones

linked to nucleotide salvage, D-alanine metabolism, and central metabolism were down-regulated. D.

Flux enrichment analysis over the pathways in the genome-scale metabolic reconstruction for the flux

rates from the FVA (maximal fluxes). Pathways with * and yellow contour are statistically significantly

enriched in at least one stratification. In particular, extracellular transport, nucleotide interconver-

sion, ubiquinone synthesis and keratan and cholesterol metabolism are the pathways enriched in all

the stratifications. No significant difference was detected between the two age-based stratification en-

richments. 91
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Figure 4.3: Principal component visualisation of the aggregated cohort in terms of tran-

scriptomic and fluxomic state, displaying the main phenotypic groups. The two groups

appear circumscribed to well-defined areas of the principal component space for both omics across

subjects, indicating that they describe distinct characteristics in the two groups. In contrast, no clear

trend can be observed in terms of subject gender, here represented by the circle size (small circles=male,

big circles=female).
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Figure 4.4: Classification accuracy for Support Vector Machine, Random Forest and Neural

Network models. The three model types performed comparably well (in general, no statistically

significant difference could be detected) in all omics combinations.
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Figure 4.5: Matthew correlation coefficient for Support Vector Machine, Random Forest

and Neural Network models. The three model types perform comparably well (in general, no

statistically significant difference could be detected) in all omics combinations.

regarding potential biomarkers for hepatoblastoma, we analysed the weights w from Eq 4.3 given to

the input features by the SVM models as a proxy for feature importance. Unlike in the previous

chapter, we did not notice any regularisation-like phenomenon caused by the integration of fluxomic

with transcriptomic data (see Figures 4.6-4.8). However, the integration did redistribute the weights

across the features in a way which varied depending on the omics used.

Figures 4.12D-E show the total weight (i.e. relative importance) each gene and reaction were

given across the 200 iterations conducted. To facilitate comparison between the scenarios, the weights

were quantile-normalised. The plot reveals that the most critical genes and reactions for subject

classification vary depending on the data sources employed. In particular, the integrations highlighted

as more relevant genes EPCAM, FRRS1L and ZBED8, whereas the base scenario with the SVMs

trained only with gene expression had determined as more important the genes TMPRSS15, NPVF and

HHLA2 (not relevant in the integrative experiments). It is interesting to note that none of these genes

is associated with the reactions deemed relevant by the SVM models. EPCAM is a gene classified as

tumour antigen in the database UniProt [411] while FRRS1L, more specifically, concerns the regulation

of the glutamate receptor signalling pathway. The role of glutamate metabolism in hepatocytes is well-

known and established [412]. Gene ZBED8 is instead a gene for which not much information has been

collected yet, which suggests it might be involved in the metabolism of hepatoblastoma in an indirect

way. Among the genes which were instead detected solely in the single-omic scenarios, TMPRSS15

is responsible for the activation of pancreatic proteolytic proenzymes, while NPVF is a neuropeptide

and HHLA2 participates in the proliferation of T cells and regulation of cytokine production in lieu,

which have a prominent role in inhibiting (but sometimes even stimulating) growth of cancer cells

[413, 414]. Among these, EPCAM, TMPRSS15 and HHLA2 can be found in blood samples [415],

as also reported in The Human Protein Atlas database (https://www.proteinatlas.org) [416], whereas

EPCAM and HHLA2 can be also found in urine samples [417, 418].

When considering which reactions were deemed important by the SVM models, the results high-
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Figure 4.6: Total weight distributions for metabolic reaction fluxes computed via FVA in

the four different experimental settings. The shape of the distribution does not change in the

various scenarios.
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Figure 4.7: Total weight distributions for metabolic pathways. The weights were computed

starting from the weights given to the reactions associated to each pathway by the SVMs trained

with reaction fluxes generated via FVA. It is easy to notice that the shape of the distribution has not

changed in the various settings.
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settings. The shape of the distribution does not significantly change in the various scenarios.
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lighted that reactions DASCBR (dehydroascorbate reductase, which participates in glutamate and

ascorbate metabolism), RNMK (ribosylnicotinamide kinase, which is involved in the metabolism

of nicotinamide adenine dinucleotide, a potential target for treating cancer [419]), AASAD3m (L-

aminoadipate-semialdehyde dehydrogenase, which participates in the production of lysine, whose acety-

lation is responsible for cancer development [420, 421, 422]) and EX lys L(e) (lysine exchange) were

present in all the experimental scenarios.

When exploiting only the information contained in fluxomic data, the following reactions were

identified as useful for the diagnosis of hepatoblastoma: LNS14DM (lanosterol 14-alpha-demethylase,

which has shown to be able to decrease the proliferation of cancer cells [423]), G6PDA (glucosamine-

6-phosphate deaminase), NAHCO3 HCLt (bicarbonate transport, that may be used in a diagnostic

setting [424] but controversially in therapy [425, 426]), THYMDtm (thymidine transport) and MI1PP

(myo-inositol 1-phosphatase, regulating myo-inositol which can be used in cancer treatment [427]).

Finally, the reactions that were useful for the prediction only in the integrative settings were

CLCFTRte (CFTR chloride transport), FAOXC220200x and FAOXC180x (beta-oxidation of long-

chain fatty acid). An alternative graphical representation of these plots, which allows for easier com-

parison between integrative scenarios, is provided in Figures 4.9-4.10.

When using FEA, we noticed that the enriched pathways were more stable across the four settings

than the genes. In particular, we found that Vitamin B6 metabolism and Cholesterol metabolism were

observed only when gene expression data were integrated with fluxomic data (regardless of the presence

of clinical data in the integration), while the Pentose phosphate pathway was enriched only in the

single-omic setting and when transcriptomics was integrated with fluxomics (but not in the presence

of clinical data). Triacylglycerol synthesis was instead absent only when integrating the metabolic

fluxes with clinical data, as opposed to Inositol phosphate metabolism, Amino sugar metabolism,

Glutathione metabolism, Citric acid cycle, Glycerophospholipid metabolism, Lysine metabolism, NAD

metabolism and Oxidative phosphorylation, which were found to be enriched in all scenarios. Overall,

the integration of transcriptomic data with fluxomic data contributes to a greater number of enriched

pathways. These results are summarised in Figure 4.12B, and others showing the models’ weights

distributions are presented in Figures 4.6-4.8. In order to test for the robustness of our biomarker

identification pipeline, we also considered the median of the weight distribution for each feature, instead

of the total weight. This led to similar results to the ones presented above (in this scenario, taking the

sum of the weights is qualitatively equivalent to taking the mean, since all the weights would need to

be divided by 200 iterations, thus leaving their relative “importance ranking” unchanged), with the

following differences being found.

Among the reactions that the models considered important for the prediction, AASAD3m was not

present in the single-omic scenario, while RNMK was not relevant when the metabolic fluxes were
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(b) Gene expression and fluxomic data
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(c) Gene expression and clinical data
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Figure 4.9: Total weight bar plots for the weights attributed to the genes in the four

integrative scenarios. The bar plots display only the genes with weight in the 99.5th percentile.

98



0.0

0.5

1.0

1.5

LN
S1

4D
M

G
6P

DA
N

AH
C

O
3_

H
C

Lt
DA

SC
BR

PI
PL

C
TH

YM
D

tm
M

I1
PP

R
N

M
K

AA
SA

D
3m

EX
_l

ys
_L

(e
)

AD
N

tm
PD

E1
C

LC
FT

R
te

C
AA

TP
S

R
PI

FA
O

XC
22

02
00

x
FA

C
O

AL
18

13
FA

O
XC

18
0x

G
AL

t4

To
ta

l w
ei

gh
t

(a) Only fluxomic data

0

5

10

15

20

DA
SC

BR
C

LC
FT

R
te

EX
_l

ys
_L

(e
)

AA
SA

D
3m

PI
PL

C
FA

O
XC

22
02

00
x

FA
O

XC
18

0x
R

N
M

K
r0

19
3

r0
59

4
M

I1
PP

FA
O

XC
22

51
83

6x
r1

49
2

G
6P

DA
PP

M
D

C
M

PD
A

G
LU

C
YS

C
YO

O
m

3
AC

C
O

AC
m

To
ta

l w
ei

gh
t

(b) Fluxomic and gene expression data

0

10

20

30

C
LC

FT
R

te
DA

SC
BR

EX
_l

ys
_L

(e
)

AA
SA

D
3m

FA
O

XC
22

02
00

x
FA

O
XC

22
51

83
6x

FA
O

XC
18

0x
PP

M
R

N
M

K
r0

31
0

r0
19

3
r0

59
4

AC
C

O
AC

m
PI

PL
C

H
PY

R
R

y
M

I1
45

PP
M

I1
PP

FA
O

XC
22

52
05

3x
D

C
M

PD
A

To
ta

l w
ei

gh
t

(c) Fluxomic and clinical data
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(d) Fluxomic, gene expression and clinical data

Figure 4.10: Total weight bar plots for the weights attributed to the metabolic reactions in

the four integrative scenarios. The bar plots display only the reactions with weight in the 99.5th

percentile.
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(b) Fluxomic and gene expression data
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(c) Fluxomic and clinical data
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(d) Fluxomic, gene expression and clinical data

Figure 4.11: Total weight bar plots for the weights attributed to the metabolic pathways

in the four integrative scenarios. The bar plots display only the pathways with weight in the

90th percentile. The most relevant pathways are consistent across the four settings, however, the

integrations reveal the importance of peroxisomal transport, not shown in the single-omic scenario.

100



integrated with the genes. FAOXC2251836x replaced FAOXC180x in the integrative settings, while

ADNtm was found to be significant only in the metabolic fluxes without any other omic.

Regarding the genes and pathways, the results were identical to the ones reported above, whereas for

the weight-informed FEA the following results were found: NAD metabolism, Amino sugar metabolism,

Glutathione metabolism, Citric acid cycle, Lysine metabolism, Oxidative phosphorylation were en-

riched in all four scenarios; Glycerophospholipid metabolism was observed only in the integrative

settings, unlike Triacylglycerol synthesis which was present only in the single-omic scenario. Finally,

Inositol phosphate metabolism was enriched in all four settings except when integrating metabolic

fluxes and clinical data.

4.4.3 Relation between clinical data and diagnosis accuracy

We then asked if the constructed SVM models could be used to gain insights that can more accurately

diagnose hepatoblastoma in a precision medicine fashion. We therefore analysed more in depth the

trained models, in order to find directly applicable heuristics for guiding their use. In particular,

we looked at how age, gender and health status could affect the predictive performance of different

combinations of omics.

In Figure 4.12C, the accuracy distribution of the SVM models for different omics combinations is

reported. It can be noticed that, across all omics combinations, female patients (in purple) tend to

obtain a more accurate diagnosis (with the worst performance, in the case of a healthy subject, being

above 94%, achieved by using only transcriptomic and clinical data) on average. On the other hand, in

presence of a male, ill patient, the only use of transcriptomics will provide the best diagnostic perfor-

mance. Similarly, the figure shows the desired property of our training and evaluation pipeline, namely

the ability to discriminate with higher accuracy patients suffering from the tumour (in red). Notably,

when a patient has hepatoblastoma, the best predictive performance is achieved by integrating both

transcriptomic and fluxomic data. Conversely, in the case of healthy control subjects, transcriptomic

and fluxomic data separately represent the best two options for a correct computer-aided diagnosis.

In both stratifications, as expected, the use of merely clinical data corresponds instead to trying to

guess the phenotype of the individual, since there is no relation between age, gender and health status.

This simple analysis allowed us to double-check that there were no spurious associations in the data

due to their collection. Even though the information regarding clinical status cannot be exploited in

a diagnostic setting, it is always possible to make use of other clinical information such as age and

gender when choosing which omics combination to adopt for the diagnosis.

In particular, we investigated the performance of the SVM models with a more fine-grained detail

to find less visible patterns in the performance distribution. Interestingly, we found that patients of
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Figure 4.12: Results of multi-omic integration. A. Classification accuracy (top) and Matthews

Correlation Coefficient (bottom) for SVM models that recognise tumour and control samples. Blue and

orange bars respectively represent the performance of SVM models built using the original datasets and

the same datasets with random sample labelling to phenotypic groups. The results with the original

labels significantly outperform those with permuted labels, which approximate the performance of a

random classifier. This proves further that our models are capable of learning from transcriptomic

and fluxomic data the most relevant features which can be then used for biological interpretation. B.

Statistically significantly enriched pathways from flux enrichment analysis across the four experimental

settings. A black entry means that the pathway is significantly enriched in the cohort. When combining

fluxomic and transcriptomic data the enrichment returned more statistically significant pathways than

in the other settings. C. Distribution of the accuracy of the SVM models trained, according to clinical

data. Different groups of individuals can find beneficial a machine learning-aided diagnosis with

different omics combinations. For female patients (in purple), all omics combinations tend to obtain

a more accurate diagnosis. Moreover, if the patient has hepatoblastoma (in red), the best predictive

performance can be achieved by integrating both transcriptomic and fluxomic data, while in the case of

healthy control subjects, these two omics must be used separately to obtain a more accurate computer-

aided diagnosis. Means are represented by vertical lines. D-E. Total weight attributed to reactions

(D) and genes (E) in the four integrative scenarios. The weight distributions were first quantile-

transformed so that they could be comparable, and the weights were then normalised in [0, 1]. An

alternative representation of graphs D-E is shown in Figures 4.9-4.10.
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age = 0.7 were much less likely to receive a correct diagnosis than patients of different ages (p-value ¡

0.001), while for patients of age = 7 the integrations of omics performed better than the use of single

omics in general (p-value = 0.057). Finally, as a further addition to Figure 4.12C, we found that omics

integrations achieved overall better accuracy than single omics (p-value = 0.057) when the patient was

female and had hepatoblastoma.

In general, both the characteristics of the dataset and biological factors might contribute to the

above patterns. The highest accuracy observed for hepatoblastoma patients could be due to their

over-representation in the dataset, which grants a more complete distribution for this class of subjects.

Similarly, the omics integration might result more effective for the patients for this reason. In contrast,

the higher discriminatory power found for the female patients cannot be explained in this way, given

that no clear connection was seen between gender and health status (Figure 4.3). Besides, differences

between genders in terms of omics accuracy could be underlain by specificities in developmental pro-

gramming of growth and metabolism, which present sex differences not only in normal development

but also in disease [428], and are linked to specific risk factors in childhood cancers [429]. Thus, crit-

ical aspects of metabolic rewiring in female subjects could be better captured by the GSMMs here

developed, leading to better accuracy.

4.5 Conclusions and future directions

In this chapter, we started from the results obtained in the previous two chapters to design and

implement an interpretable multi-omic integrative pipeline. We investigated molecular biomarkers

and metabolic mechanisms in a precision medicine fashion, in order to shed light on the onset of

hepatoblastoma, potentially helping diagnose more accurately this disease in young patients. An

aspect of this involved also the investigation of the sensitivity that such a method could have with

respect to the characteristics of such patients, namely age, gender and the observed phenotypic trait.

Moreover, we examined how different combinations of data can interplay with these and highlight

different aspects of the metabolism of the patient. In particular, important genes as revealed by the

integrations, are linked to cancer metabolism and hallmarks. Starting from gene expression profiles, we

generated metabolic fluxes representing the metabolic state of the patients and, with the addition of

clinical data, integrated all this information within a machine learning pipeline to determine whether

an integrative approach could lead to an improvement in the diagnostic performance of our models.

We investigated genes, reactions and metabolic pathways by resorting to a feature importance ap-

proach in quest of potential biomarkers to guide future research in hepatoblastoma. We demonstrated

that different omics combinations can achieve optimal predictive performance for different patients

according to the patients’ clinical data, even though the individual omics used can have a signifi-
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cantly skewed performance distribution [386], and that machine learning models can be endowed with

different sensitivity to distinct biological entities based on the omics combinations they are trained

on. Finally, we extracted novel mechanistic biomarkers whose study could be relevant in the research

regarding the mechanisms underlying hepatoblastoma.

Overall, the results presented in this chapter suggest that using systems biology approaches in con-

junction with machine learning methods can provide valuable insights into the biological mechanisms

of rare cancer conditions, for which omics data and biological knowledge are not as widely available as

for the most commonly studied diseases (such as breast or lung cancer).

One of the limitations of our study is the practical impossibility, with current technology, to directly

measure metabolic fluxes in human patients [86]. Here (and in the previous chapters), we mitigated

this by adopting genome-scale metabolic models, but these require some experimentally measured in-

formation such as transcriptomic data. Another potential limitation of our approach is the challenging

direct applicability in some cases. Specifically, we have determined when to use which combination of

omics, but this information is exploitable only in a limited number of cases, such as when the conditions

determining the omics combination to use are based on clinical information such as gender or age (and,

within this, only when we are within certain ranges). Yet, this work can serve as a guide for further

research in hepatoblastoma, and the biomarkers found could potentially lead to the development of

new diagnostic or therapeutic tools. Our approach has the advantage of elucidating how molecular

entities (and their importance in the development of the disease) can be related to hepatoblastoma,

with a granularity that is based on the patient’s clinical information.

In the future, new studies could focus on improving the omics integrative approaches, as well as

investigating other omics data in this setting, such as proteomics. For larger datasets, alternative

optimisation methods based on heuristics could be investigated and adopted to improve the speed and

quality of the training phase for the studied machine learning models [405, 406].

4.6 Related work, funding and final remarks

The work presented in this chapter has been published in Computers in Biology and Medicine [430],

and the paper was written in collaboration with multiple co-authors. As described in the introduction

to this chapter, I performed all the analyses relating to the generation of the metabolic features, I

designed, implemented and tested the entire machine learning pipeline, and I conducted the analysis

and interpretation of the results as well.

This work was supported by a Research Award from the Children’s Liver Disease Foundation, grant

number SG/2019/06/03, and a Network Development Award from The Alan Turing Institute, grant
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We would like to thank Dr Jane Hartley, Consultant Paediatric Hepatologist at the Birmingham

Women’s and Children’s NHS Foundation Trust, for inspiring discussions and advice regarding this

work.
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Chapter 5

An interesting future direction

In this work, we have discussed how machine learning methods can be leveraged to exploit the mech-

anistic information contained in genome-scale metabolic models by integrating them with multi-omic

data in a precision medicine scenario. We have shown how different approaches are possible (and

sometimes necessary) depending on the data and the task at issue, and that there is still leeway for

improvement and new developments, which hints at a promising future for precision medicine.

In this short chapter, we speculate about what future developments the field could take, and

present a novel framework which aims at taking advantage of GSMMs even further. In particular,

so far topological information from these networks has been rarely used compared to more common

analytical approaches such as FBA [431, 432], albeit it has shown promising results [433]. With

the underlying hypothesis that metabolic topological information can complement the mechanistic

biological information directly present in GSMMs [434], we propose a framework whose aim is to

combine these two aspects of GSMMs in an end-to-end fashion, and offer a possible pipeline for

hypothesis evaluation and experiment design.

In the following sections we will describe each step of the pipeline, that is graphically represented in

Figure 5.1. To fix the ideas, we will take as an example a classification task in which we have to deter-

mine whether the patient has Alzheimer’s Disease or not, it being understood that the computational

framework we propose here can be adopted for any task that can involve the use of GSMMs in the

way we have presented so far. In order to be as comprehensive as possible, and lacking experimental

results, we will limit ourselves to describing the potential approaches that could be taken to exploit

this aspect of GSMMs, and to listing the challenges that are more likely to occur.
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Figure 5.1: General framework for the investigation of topological features in genome-scale

metabolic models. Starting from transcriptomic data,a context-specific GSMM is chosen and used

to generate the metabolic fluxes, upon conversion of the model and application of consistent metabolic

constraints. From the metabolic fluxes, metabolic graphs are generated and the alignment between

them and transcriptomic data is computed to test for the suitability of the graph implementation.

Topological features can then be analysed in two ways: directly, through the extraction from the graphs

and their use as input in classical machine learning models; or indirectly, by using the graphs as input to

Graph Neural Networks instead. In the latter case, training of the network can potentially be simplified

with network pretraining, graph sparsification or by exploiting knowledge of graph diffusion dynamics.

Model training is conducted within a cross-validation framework, such as nested cross-validation, to

guarantee robustness. Finally, results are biologically interpreted with the use of techniques such as

SHAP or PermFIT.
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5.1 Data and Model preparation

Data preprocessing, as presented in Subsection 1.3.1, is fundamental in every machine learning task.

When aggregating data from different sources, extra care will need to be taken to reduce the batch

effect (as we did in Chapter 4) and other discrepancies in the data. Of equal importance is the choice

of the model(s). Even though, in principle, the GSMMs used in the previous chapters or mentioned

in Subsection 1.2.1 can be adopted, for a complex task such as the modelling of Alzheimer’s Disease

a more precise brain-specific model (such as the one from [435]) could be used. However, using a

cell-specific model is not assurance of adherence to results, since metabolic constraints, as explained

in Subsection 1.2.1, can greatly influence the metabolic outcome of a simulation. For this reason,

when adopting such models, it will be paramount to make sure that such metabolic parameters are in

agreement with the true experimental values measured for the species under study, which implies that

these will need to be adapted in case their values are known only for other species. Same care needs to

be taken when applying constraints that are exclusively in accordance with certain phenotypic traits

(diseased/healthy states), as the metabolic fluxes generated, in case of wrong parameters, will not be

coherent with the metabolic picture of that particular phenotypic state.

5.2 Fluxomic data generation

Ideally, the pipeline could be used with any variation of FBA or sampling technique. If using FVA,

one could also consider making the GSMM irreversible, i.e. converting it into a format in which the

reversible reactions are uncoupled and replaced by two reactions with opposite direction, as this could

help distinguish and elucidate better the contribution of the reversible reaction in both directions.

5.3 Metabolic graphs generation

After obtaining the metabolic fluxes, the next step in our proposed pipeline consists of generating

metabolic graphs. Our suggestion would be to adopt the Mass Flow Graph (MFG) paradigm from

[436], and create one MFG for each patient starting from the metabolic profile computed with the

patient-specific metabolic models. An MFG is a graph whose nodes are the reactions of the metabolic

network and whose edges represent the flow of metabolites produced by one reaction and consumed

by the other (normalised by the total consumption flow of each metabolite). In particular, the weight

between reaction A and reaction B (considering directionality) is computed as the probability that

any randomly chosen metabolite is produced by A and consumed by B. We suggest to adopt this

data structure because it allows to include reaction directionality, which is essential for a coherent and
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complete understanding of metabolism [436]. Before feeding these graphs to a Graph Neural Network

model, however, we recommend to filter the data upstream and remove all the edges whose weight is

lower than 10−4, in order to eliminate all the edges that represent weak interactions between reaction

pairs. This should mitigate overfitting and help the model differentiate the graphs more easily. As a

further possibility, one could also choose to enrich these graphs by explicitly adding the outward and

inward flux for each reaction as node features.

MFGs are not the only possible graph representation for GSMM-generated metabolic fluxes. An

alternative representation could be obtained, for instance, by using the Continuous k-Nearest Neighbor

(CkNN) algorithm [437], which has shown to generate graphs that can improve classification perfor-

mance of Graph Convolutional Networks, compared to other algorithms or tabular feature matrices

[438]. CkNN is a neighbourhood method, i.e. a method that generates edges between samples (in this

case, reactions), based on their distance in the sample space (meaning that it uses the raw features).

In particular, CkNN considers two samples to be neighbours only if their distance (determined by a

predefined similarity measure) is smaller than the geometric mean between the distances of the two

samples with their farthest k-th neighbours, with k being a hyperparameter chosen by the user. In fact,

CkNN generates an edge between two samples depending not only on their relative distance/similarity,

but also on the density of the sample region to which they belong, in order to account for the different

scales of proximity that there can be between samples.

5.4 Graph-feature alignment

Even though the choice of MFGs is well motivated from the point of view of biological interpretability,

another alternative representation such as the geometric one provided by CkNN could be equally

relevant. A possible way to understand which representation is better in a scenario with GNNs, is to

consider the alignment between the generated graph and the raw features (in our suggested framework,

the metabolic fluxes obtained from the GSMM), as this has proven to be a good indicator of predictive

performance with GCNs [439]. Even though CkNN-generated graphs have demonstrated to increase the

performance of these models [438], GNNs have not been tried on MFGs yet, therefore the measurement

of alignment could help choose the most promising approach. Moreover, the measure of alignment

defined in [439] could be used to make other interesting comparisons, such as the one between the gene

expression data and the flux-based graphs, which could potentially inform the process of generation of

the metabolic fluxes and thus guide the researcher towards the FBA variant and parameter values that

lead to the highest degree of alignment between the transcriptomic data and the metabolic graphs.
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5.5 Analysis of topological features

After the conversion of the metabolic fluxes into MFGs (or CkNN-generated geometric graphs) the

next step in the pipeline would be to analyse the topological features of the metabolic networks. This

can be done in two ways: either directly (by using them as input in classical machine learning models),

or indirectly (with a GNN).

5.5.1 Direct analysis of topological features

A possible way to analyse the topological features of GSMM-derived metabolic networks consists of

first deriving these features directly and then using machine learning models to extract as much pre-

dictive information as possible. This can be done, for example, with HCGA, which computes a great

variety of topological features and then uses proven methods to analyse the resulting tabular data

matrix [440]. HCGA (Highly Comparative Graph Analysis) is an open-source python library that

automatically extracts thousands of topological features from graphs (spectral properties, centrality

measures, communities, etc ...) that can later be used in supervised settings while retaining inter-

pretability of the generated features. Given that too many features could lead to overfitting (because

of the emergence of spurious patterns, especially in small datasets), the library allows the user to select

what type of features to extract depending on the computation time required for each and on the level

of statistical complexity, and to choose whether to compute the features on the entire graph or on

its largest connected component only. The choice of which features to compute in this case is purely

technical, i.e. dependent on the available hardware and time.

Alternatively, the topological features used by Machicao et al. could be generated [441]. They tested

two groups of features in a classification scenario, using traditional machine learning algorithms: the

first group consisted in the top 5 principal components of the available gene expression dataset; the

second one instead was composed by classical topological measures such as average degree and average

hierarchical degree, average geodesic path length and assortativity, computed on a graph derived from

a genome-scale metabolic network. Unlike the work presented in this thesis, however, the authors did

not use FBA approaches, instead they first defined and computed a Reaction Activity Score (RAS),

which determined the level of activity of each reaction, and then built a weighted matrix based on these

levels and the metabolites shared between the reactions. For reaction r and sample s, the RAS was

computed starting from the available gene expression data according to the two following formulae:

RAS∧
r,s = min(Eg,s | g ∈ Gr)

RAS∨
r,s =

∑
g∈Ir

Eg,s,
(5.1)
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where Eg,s is the expression level of gene g in sample s, Gr is the set of genes necessary for reaction

r to occur, and Ir is the set of genes encoding the isozymes of r. These equations are very similar to

Equations 1.2, with the difference being that in this case the RAS is the activity level of the reaction

and does not influence its bounds directly, and that in case of isozymes we sum the gene expression

instead of taking the maximum value across the gene set. This alternative approach is interesting

and could be investigated in parallel with FBA-generated fluxes, but does not take into account the

total flow of metabolites that originates from the first principle of “balance” on which FBA is built.

However, for robustness purposes it could be interesting to compare how reactions distributions change

between the two methods.

The use of a machine learning model with the extracted features could then be employed as a way

to demonstrate the importance of the topology of these networks, since if the performance of the model

is good this entails that the topological features contain relevant information. The choice of the model

is dependent on the type of features extracted, on their amount compared to the number of available

graphs, and on the task to perform, as in any machine learning task.

5.5.2 Indirect analysis of topological features through GNN

To determine the importance of the topological features in genome-scale metabolic networks, it is also

possible to extract and investigate them indirectly, by means of a Graph Neural Network. This involves

using graphs directly as input, and exploiting the topological features indirectly through a model. In

our fictional example, which is a classification task to determine patients’ health status (presence of

Alzheimer’s Disease or not), the machine learning task to solve would be a classification at the graph

level, as opposed to classification at the node level (where one would classify the single nodes of the

graphs, which in the proposed approach are the reactions) or at the edge level (usually consisting in

predicting whether two nodes are linked or not).

A GNN is a neural network that preserves graph symmetries (permutation invariances) [442]. Zhou

et al. have described the general design pipeline of GNNs in [443]. The first step is usually the gener-

ation of the graphs (the MFGs, in our suggested pipeline). A subsequent step is the characterisation

of these graphs, which, in the case of MFGs, is straightforward given that MFGs are directed and

homogeneous graphs (whereas the CkNN algorithm generates undirected graphs). The structure of

GNNs, being them neural networks, can be defined in terms of modules/components, each depending

on the type and characteristics of the graphs to use. In particular, there are three types of modules:

(i) propagation modules; (ii) sampling modules; (iii) pooling modules. (i) are modules that define how

the information is aggregated across the entire graph starting from the individual nodes. There are

several types of propagation modules, among which the most common are the spectral ones and the

attentional ones, both being convolutional approaches [443]. The former operate with the spectral
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representation of the graph, which is a graph invariant, while the latter uses an attention mechanism

when aggregating the node features across the graph. However, when using spectral convolutions,

several problems arise. In particular, they are computationally expensive, especially when dealing

with large graphs, as it may be in our field. Moreover, when used on unseen graphs that have a

significantly different structure (and therefore eigenvalues) from the training ones, they do not scale

very well in terms of learned filters [444]. On the contrary, attention-fuelled graph neural networks

can be successfully used on large, noisy graphs (like MFGs generated from GSSM metabolic fluxes),

because the function used to weigh the aggregated node features is learned directly from the data and

not explicitly defined before training, which enables the model to better direct the flow of information

from the various regions of the graph to the node being updated [443]. (ii) are modules useful when

the graphs are large and present many nodes heavily connected with each other, which is normally not

the case for metabolic networks, given that reactions usually involve few metabolites each. However,

reducing the size of the network via node/edge sampling can still be useful in that it speeds up the

computation of the model and even allows for certain bigger, more complete networks to be used,

which otherwise would be impossible because of the long computational time required. Finally, (iii)

are modules necessary for the aggregation of the node features at the graph level [444]. An example

of pooling aggregation operator is SAGPool, which is an attention-based approach [445]. Once all

these modules have been assembled, the GNN is ready for training. However, in general GNNs do not

take explicitly into account the characteristics of the global topology of the network, and in certain

circumstances cannot even learn them [446]. For this reason, Wang et al. designed BiFusion, a graph

neural network tailored for the use with bipartite graphs (as genome-scale metabolic networks are),

which alternatively could be used for the analysis directly on the metabolic network[447].

Given that the training of complex neural networks is always difficult to conduct successfully, several

approaches have been developed, based either on the modification of the general training procedure or

on transformations of the input graphs. In particular, spectral sparsification of graphs as proposed in

[448] has been shown to robustly improve classification performance in GNNs, the reason being that

the preserved Laplacian quadratic form is strongly associated to graph partitioning and community

detection [438]. An approach consisting in explicitly considering the way information flows through the

graph during aggregation was instead proposed in [449]. They integrated the graph diffusion dynamics

into a GNN by replacing the graph stochastic matrix with the diffusion stochastic matrix in the model

formulation. In both cases, the classification accuracy of the GNN saw an improvement. Finally, a

third approach that could be adopted consists of using both node-level and graph-level pretraining

together (in this order), and then training and fine-tuning the neural network with some linear models

on top of the graph representation layers in an end-to-end fashion [450]. This way, the GNN can

learn local and global representations at the same time, thus improving significantly its classification

performance.
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5.6 Model validation and interpretation

As already described in Subsection 1.5.1, to obtain a robust and unbiased performance estimation of

the model, a cross-validation framework needs to be used. In particular, if one wants to select and

optimise a model architecture from the ones suggested in the previous section, nested cross-validation

is the recommended procedure to adopt [451]. This variant of cross-validation has been used with

success to accurately evaluate and compare models’ performance, whether they be GNNs or more

classical machine learning models [441, 452].

Finally, in order to understand how relevant the topological features of metabolic networks are and

foster further investigation into their role and significance, interpretability approaches such as SHAP

[453] or PermFIT [454] could be adopted.
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Chapter 6

Conclusion

In this dissertation, we have tried to provide a peek into the fast-moving research field of Systems

biology, focusing in particular on genome-scale metabolic models and their applications in the area

of precision medicine. In Chapter 1, we have tried to lay the foundation for the rest of the thesis,

and introduced the data and models typically used in the field. We have also highlighted the possible

problems of this research area, in particular in the interplay between the data and the machine learning

models in a multimodal scenario. Even though this treatise can be considered anything but complete,

we are confident that it should provide a good introduction to the methodological approaches we have

examined in the subsequent chapters.

Starting from Chapter 2, we have investigated the application of GSMM-generated data, i.e.

metabolic flux rates, in various machine learning scenarios. In this chapter we have shown how in

silico-generated metabolic data contain different information than transcriptomic data, and that this

information can be leveraged by machine learning models to outperform models which use transcrip-

tomic data, when trying to predict gene regulatory associations. In particular, this was the case only

when using the metabolic data within the proposed transfer learning scenario, which suggested that

successfully extracting and exploiting this information is possible only under certain conditions/within

specific frameworks.

Indeed this was confirmed in Chapter 3, when trying to predict growth rate for yeast Saccharomyces

cerevisiae strains. In this chapter, we continued the investigation started in the previous one, by

trying to understand whether the integration of fluxomic and gene expression data could improve

models’ performance. In particular, we compared several regularised linear models and neural network

architectures in a regression setting, reaching the remarkable conclusion that the former can perform

comparably well as the latter in these biological scenarios. However, we noticed how the goodness of
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the outcome depends on the model adopted for the prediction, which is coherent with previous results

[455].

In Chapter 4 we continued our research journey by investigating a more complex integrative ap-

proach in a classification setting. Instead of simply concatenating the omics, here we used Partial

Least Squares Discriminant Analysis to account for the high dimensionality of the data and the small

dataset size. What we found was that different omics combinations perform differently on patients

of distinct clinical characteristics, meaning that a physician could, by simply looking at the patient’s

clinical data, decide which type of analysis to perform in order to maximise the probability of a correct

diagnosis. The late integration strategy adopted in this case study proved effective, however other

late integration strategies should be explored in the future, in order to probe the boundaries of this

approach.

Finally, in Chapter 5 we speculated about a future research direction that could enrich the usage

of GSMMs in machine learning applications for precision medicine. In this chapter we suggested a

pipeline to exploit the topological information which is built into genome-scale metabolic models. We

advocated for Graph Neural Networks as the go-to model architecture to adopt in order to utilise this

type of information, and envisage that even though this direction has not been explored yet in this

form, approaches taking advantage of metabolic topological information will advance to the forefront

of the field.

Genome-scale metabolic models, with their inherent mechanistic transparency, are the ideal tool

to develop a healthcare system tailored to the patients, but cannot be used by themselves because of

the limited predictive power of the generated metabolic data. In conjunction with machine learning

techniques, however, and integrated with other omics, their scope can be expanded, and as we have

tried to convey in this work, this innovative approach is likely to keep its promise of better health.
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bining mechanistic and machine learning models for predictive engineering and optimization of

tryptophan metabolism. Nature communications. 2020;11(1):1-13.

[278] Occhipinti A, Angione C. A Computational Model of Cancer Metabolism for Personalised

Medicine. In: Building Bridges in Medical Science 2021. Cambridge Medical Journal; 2021.

.

[279] Ben Guebila M, Thiele I. Predicting gastrointestinal drug effects using contextualized metabolic

models. PLoS computational biology. 2019;15(6):e1007100.

[280] Kim M, Rai N, Zorraquino V, Tagkopoulos I. Multi-omics integration accurately predicts cellular

state in unexplored conditions for Escherichia coli. Nature Communications. 2016;7:13090.
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