6,870 research outputs found

    Inkjet printed paper based frequency selective surfaces and skin mounted RFID tags: the interrelation between silver nanoparticle ink, paper substrate and low temperature sintering technique

    Get PDF
    Inkjet printing of functional frequency selective surfaces (FSS) and radio frequency identification (RFID) tags on commercial paper substrates using silver nanoparticle inks sintered using low temperature thermal, plasma and photonic techniques is reported. Printed and sintered FSS devices demonstrate performances which achieve wireless communication requirements having a forward transmission scattering parameter, S21, depth greater than ?20 dB at 13 GHz. Printed and plasma sintered RFID tags on transfer paper, which are capable of being mounted on skin, improved read distances compared to previously reported single layer transfer RFID tags fabricated by conventional thermal sintering

    The systematic development of Direct Write (DW) technology for the fabrication of printed antennas for the aerospace and defence industry

    Get PDF
    Low profile, conformal antennas have considerable advantages for Aerospace and Military platforms where conventional antenna system add weight and drag. Direct Write (DW) technology has been earmarked as a potential method for fabricating low profile antennas directly onto structural components. This thesis determines the key design rules and requirements for DW fabrication of planar antennas. From this, three key areas were investigated: the characterisation of DW ink materials for functionality and durability in harsh environments, localised processing of DW inks and the optimisation of DW conductive ink material properties for antenna fabrication. This study mainly focused on established DW technologies such as micro-nozzle and inkjet printing due to their ability to print on conformal surfaces. From initial characterisation studies it was found that silver based micro-nozzle PTF inks had greater adhesion then silver nano-particle inkjet inks but had lower conductivity (2% bulk conductivity of silver as opposed to 8% bulk conductivity). At higher curing temperatures (>300°C) inkjet inks were able to achieve conductivities of 33% bulk conductivity of silver. However, these temperatures were not suitable for processing on temperature sensitive surfaces such as carbon fibre. Durability tests showed that silver PTF inks were able to withstand standard aerospace environments apart from Skydrol immersion. It was found that DW inks should achieve a minimum conductivity of 30% bulk silver to reduce antenna and transmission line losses. Using a localised electroplating process (known as brush plating) it was shown that a copper layer could be deposited onto silver inkjet inks and thermoplastic PTF inks with a copper layer exhibiting a bulk conductivity of 66% bulk copper and 57% bulk copper respectively. This was an improvement on previous electroless plating techniques which reported bulk copper conductivities of 50% whilst also enabling DW inks to be plated without the need for a chemical bath. One of the limitations of many DW ink materials is they require curing or sintering before they become functional. Conventional heat treatment is performed using an oven which is not suitable when processing DW materials onto large structural component. Previous literature has investigated laser curing as means of overcoming this problem. However, lasers are monochromatic and can therefore be inefficient when curing materials that have absorption bands that differ from the laser wavelength. To investigate this, a laser diode system was compared to a broadband spot curing system. In the curing trials it was found that silver inks could be cured with much lower energy density (by a factor of 10) using the broadband white light source. Spectroscopy also revealed that broadband curing could be more advantageous when curing DW dielectric ink materials as these inks absorb at multiple wavelengths but have low heat conductivity. Themodynamical modelling of the curing process with the broadband heat source was also performed. Using this model it was shown that the parameters required to cure the ink with the broadband heat source only caused heat penetration by a few hundred micro-metres into the top surface of the substrate at very short exposure times (~1s). This suggested that this curing method could be used to process the DW inks on temperature sensitive materials without causing any significant damage. Using a combination of the developments made in this thesis the RF properties of the DW inks were measured after broadband curing and copper plating. It was found that the copper plated DW ink tracks gave an equivalent transmission line loss to a copper etched line. To test this further a number of GPS patch antennas were fabricated out of the DW ink materials. Again the copper plated antenna gave similar properties to the copper etched antenna. To demonstrate the printing capabilities of the micro-nozzle system a mock wireless telecommunications antenna was fabricated on to a GRP UAV wing. In this demonstrator a dielectric and conductive antenna pattern was fabricated on to the leading edge of the wing component using a combination of convection curing and laser curing (using an 808nm diode laser)

    Wafer-Level Parylene Packaging With Integrated RF Electronics for Wireless Retinal Prostheses

    Get PDF
    This paper presents an embedded chip integration technology that incorporates silicon housings and flexible Parylene-based microelectromechanical systems (MEMS) devices. Accelerated-lifetime soak testing is performed in saline at elevated temperatures to study the packaging performance of Parylene C thin films. Experimental results show that the silicon chip under test is well protected by Parylene, and the lifetime of Parylenecoated metal at body temperature (37°C) is more than 60 years, indicating that Parylene C is an excellent structural and packaging material for biomedical applications. To demonstrate the proposed packaging technology, a flexible MEMS radio-frequency (RF) coil has been integrated with an RF identification (RFID) circuit die. The coil has an inductance of 16 μH with two layers of metal completely encapsulated in Parylene C, which is microfabricated using a Parylene–metal–Parylene thin-film technology. The chip is a commercially available read-only RFID chip with a typical operating frequency of 125 kHz. The functionality of the embedded chip has been tested using an RFID reader module in both air and saline, demonstrating successful power and data transmission through the MEMS coil

    Smart system and mobile interface for healthcare: stress and diabetes

    Get PDF
    In this thesis, a system with multi-channel measurement capabilities was designed and implemented, associated with the monitoring of stress levels, through a proposed algorithm that correlates heart rate, respiratory rate, and galvanic skin response. Experimental validation tests were carried out, as well as experiments with patients suffering from diabetes. To this end, measurements were made not only of stress-related parameters, but also of parameters such as blood glucose levels and blood pressure levels, seeking to extract correlations between stress and diabetes status. In addition, body temperature was another parameter acquired, in order to assess its importance and relation to stress and diabetes. The proposed multichannel system also features RFID technology for authentication purposes, as well as Wi-Fi access for internet connection and storage of the acquired data in a database structured for that purpose, thus enabling remote access. To allow the assessment of stress levels and diabetes progress, a mobile application was also developed, which also allows the visualisation of the analysed data.In this thesis, a system with multi-channel measurement capabilities was designed and implemented, associated with the monitoring of stress levels, through a proposed algorithm that correlates heart rate, respiratory rate, and galvanic skin response. Experimental validation tests were carried out, as well as experiments with patients suffering from diabetes. To this end, measurements were made not only of stress-related parameters, but also of parameters such as blood glucose levels and blood pressure levels, seeking to extract correlations between stress and diabetes status. In addition, body temperature was another parameter acquired, in order to assess its importance and relation to stress and diabetes. The proposed multichannel system also features RFID technology for authentication purposes, as well as Wi-Fi access for internet connection and storage of the acquired data in a database structured for that purpose, thus enabling remote access. To allow the assessment of stress levels and diabetes progress, a mobile application was also developed, which also allows the visualisation of the analysed data

    A novel miniaturized biosensor for monitoring atlantic salmon swimming activity and respiratory frequency

    Get PDF
    Good fish welfare is one of the prerequisites for sustainable aquaculture. Knowing how fish respond to the production conditions would allow us to better understand their biology and to further optimize production. The new miniaturized biosensor AEFishBIT was successfully used to monitor individual physical activity and respiratory frequency of two Mediterranean farmed fish species (gilthead sea bream and European sea bass). In this study, we aimed to test the use of AEFishBIT to monitor the performance of Atlantic salmon under experimental conditions. An adapted tagging procedure for salmon was developed and used to record salmon responses to handling and changing light conditions. AEFishBIT data showed a stabilization of swimming activity 8 h after handling and tagging with changes in activity or activity and respiratory quotient after changes in light intensity regimes. The results of this study supported the use of AEFishBIT to generate new behavior insights in Atlantic salmon culture.publishedVersio

    Developing Wound Moisture Sensors: Opportunities and Challenges for Laser-Induced Graphene-Based Materials

    Get PDF
    Recent advances in polymer composites have led to new, multifunctional wound dressings that can greatly improve healing processes, but assessing the moisture status of the underlying wound site still requires frequent visual inspection. Moisture is a key mediator in tissue regeneration and it has long been recognised that there is an opportunity for smart systems to provide quantitative information such that dressing selection can be optimised and nursing time prioritised. Composite technologies have a rich history in the development of moisture/humidity sensors but the challenges presented within the clinical context have been considerable. This review aims to train a spotlight on existing barriers and highlight how laser-induced graphene could lead to emerging material design strategies that could allow clinically acceptable systems to emerge
    • …
    corecore