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Abstract: Recent advances in polymer composites have led to new, multifunctional wound dressings
that can greatly improve healing processes, but assessing the moisture status of the underlying
wound site still requires frequent visual inspection. Moisture is a key mediator in tissue regeneration
and it has long been recognised that there is an opportunity for smart systems to provide quantitative
information such that dressing selection can be optimised and nursing time prioritised. Composite
technologies have a rich history in the development of moisture/humidity sensors but the challenges
presented within the clinical context have been considerable. This review aims to train a spotlight on
existing barriers and highlight how laser-induced graphene could lead to emerging material design
strategies that could allow clinically acceptable systems to emerge.

Keywords: wounds; community nursing; sensors; moisture; RFID; laser-induced graphene;
LIG; polymers

1. Introduction

The quantitative measurement of moisture level is a core requisite within the agri-food
sector and countless industrial processes, and it is little surprise that a wealth of strategies
have been employed to facilitate rapid, real-time monitoring. Moisture level also plays
a critical role within the healthcare sector and especially in wound management, but,
as yet the translation of those technologies that are routinely applied within industrial
processes have yet to make substantive headway at the front line of patient care. In
many cases, the composition of the sensing systems would be far from appropriate when
considering their application in clinical contexts, but there have been considerable advances
in composite technologies within the emerging wearable sector to suggest that this may
be beginning to change. Wound care has long been a recipient of major advances in
polymer technologies, with many of the current dressings being composed of multi-layer
multi-functional materials designed to protect the wound site, encourage healing and
minimise damage upon redressing [1–4]. The evolution of smart dressings has been
underway for some time, but it is only recently that manufacturers have started to explore
the development of dressings with diagnostic capabilities [5–10].

The key device requirements are for the low-cost manufacture of conductive elements
whose size, shape and mechanical flexibility will not impede the use of existing wound
dressings nor impact on the underlying healing processes. There is an extensive literature
base on the development of moisture/humidity sensors, but a detailed discussion of
the respective merits and limitations is beyond the scope of the present communication.
Rather, we posit the potential suitability of one subsection towards wound management:
laser-induced graphene (LIG) [11–14]. While graphene has long been promoted as a
wonder material for a multitude of sensing applications, the complexities of the processes
needed for both reproducible manufacture and integration within the intended sensor
have traditionally been problematic. The discovery of laser-induced graphene, however,
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has provided a step change in the development process as it allows direct scribing onto
inexpensive films through simply changing the design within an appropriate graphic
design application—much in the same way as an image is prepared for a conventional
desktop printer [11]. This stands in marked contrast to conventional fabrication processes
such as photolithography or screen printing, where even small changes incur significant
cost overheads associated with the re-tooling of masks. The ability to rapidly prototype
LIG-based sensors on a variety of substrates has undoubtedly increased interest in their use
as electrode substrates, but the material properties of the resulting 3D carbon framework
can also provide a number of advantages in terms of wound sensing applications. The
intrinsic conductivity, mechanical flexibility and rich interfacial chemistry yield a functional
material that could be ideally suited to the demands of moisture sensing within wound
dressings. The aim of this review has been to consider how developments in LIG-based
materials could be harnessed to address the challenges presented by such application and
to critically assess their appropriateness and potential impact.

2. Wound Care Context

An appreciation of the significance of moisture in wound management dates back to
antiquity, but the first scientific exploration is often attributed to Winter (1962) [15]. An
appropriate level of moisture in the wound has since been proven to be critical in triggering
re-epithelialisation and granulation processes, with wound hydration often considered
to be a key factor contributing towards normal wound healing [16]. It is important to
acknowledge, however, that excess hydration, especially when combined with a high level
of matrix metalloproteinases, can lead to wound maceration, which will disrupt the healing
process and can be common in chronic wounds [17]. In such conditions, the wound fluid
itself serves as a “wounding agent” and hence monitoring the hydration level of a wound
becomes critical. At present, this is done via visual inspection by the patient, caregiver or
nurse when the dressing is replaced, but it is possible that the periwound surfaces could be
exposed to the action of excess wound fluid/exudate for considerable periods before the
physical signs of strikethrough or saturation appear [17].

While the frequency of dressing changes will vary from one patient to another, Ousey
and colleagues (2013) conducted a detailed study of dressing management and found that
the majority of wound dressings are replaced twice weekly [18]. It must be noted, however,
that dressing changes do not simply occur when the signs of saturation are evident but that
they are often changed when it is not necessary, creating avoidable excess waste. Milne and
co-workers (2016) found that, in a study of 30 patients, some 45% of 588 dressings studied
were changed while the wounds were considered to be within an optimum moisture
range [19]. These values are comparable to those found by Ousey et al. (2013), where
55% of patient wound redressings were due to routine care changes. Ousey’s study also
found that, in fact, only around 15% of changes were due to the dressing being saturated,
with the other 30% of dressing changes due to maximum wear time being reached. As
dressing changes are often accompanied by pain for the patient, it is easy to appreciate
how the introduction of a sensing system to monitor wound moisture levels would be very
advantageous in preventing premature dressing changes and would ultimately improve
patient care.

It is easy to rationalise how minimising disruption at the wound–dressing interface
could reduce pain. There are also clear cost-saving opportunities in relation to staff time
associated with the dressing change, but it can also be anticipated that critical management
of the data from a wound moisture sensor could enable a more judicious choice of dressing
type to better meet the requirements of a given wound. Optimisation of the dressing type
could therefore speed up healing and, in doing so, lead to substantive savings. The inte-
gration of sensing technology here could dramatically improve nurse–patient interactions,
allowing more efficient prioritisation and visit scheduling.

The scale of the problem is evident when considering that, in the UK, of the 2.2 million
wounds being managed by the NHS, 1.45 million are treated by community/district
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nursing staff [20]. The treatment of chronic wounds is a particular issue where delays in
healing and the development of complications will inevitably lead to longer and more
intensive treatment and can lead to hospitalisation and the need for further specialist
intervention [21]. This can be problematic for those being treated in the community,
where access to clinical help can be difficult, especially under the continuing COVID-19
pandemic [22]. Connected health systems (mHealth) have long been heralded as a means
for enhancing community care but, while there have been tremendous advances in some
aspects of decentralised sensor technologies (i.e., vital signs [23,24]), there has been much
slower progress in the commercial realisation of networked wound diagnostics. In this
case, the underpinning community communication network is not the prime hurdle as
current estimates suggest that 96% of households in the UK have some form of internet
connection [25]. As the infrastructure for both rural and urban connectivity is clearly well
developed, the main impediment to connected wound moisture monitoring lies with the
sensors themselves. Attempts to develop a commercial wound sensor were pioneered by
Milne and colleagues through their WoundSense system [19], but the physical bulk and
need for manual interrogation are limiting factors in its adoption. A more recent prototype
by Mehmood attempted to address these issues through a wearable format offering wireless
reporting [26,27] but, again, miniaturisation of the device footprint and the economics of
the device manufacture are significant detractors.

3. Design Requirements and Sensing Methodologies

Given the frequency of dressing changes and the fact that the sensing component
would need to be replaced with each new dressing to prevent contamination, there is a need
for devices that are small, inexpensive and mechanically flexible. The latter is particularly
important to avoid the situation where the device itself aggravates the wound and impedes
the healing processes. It would be necessary to separate the sensing (disposable) component
and the electronics (monitoring) component, which would mirror the approach taken with
home glucose measurements, where the disposable test strip is the primary consumable
with a reusable meter. Various measurement methodologies have been employed and fall
within the electrical, optical and mass detection divisions. In this communication, however,
attention has been focused on the electrical and, in particular, those systems which are
adaptable to mass manufacturing processes. The latter will be crucial when considering the
journey from lab bench to commercial reality while acknowledging the fact that a wound
sensor integrated within a dressing could easily have a lifetime of less than a day [18]. This
aspect stands in marked contrast to domestic or industrial moisture/humidity sensing
applications, where sensors may be expected to last for months (or years). Electrical
systems have traditionally been dominated by resistance-, impedance- and capacitance-
based devices, though there is increasing interest in radio frequency identification (RFID)
systems based on inductive–capacitive coupling.

A brief inspection of commercial moisture/humidity sensors reveals that few would be
acceptable for use in a wound management context as a consequence of their physical bulk
and the inflexibility of the sensor. Two examples of low-cost moisture probes typically used
in precision agriculture applications are highlighted in Figure 1. The sensing components
are deposited as a patterned thin film but on rigid substrates. This is purely to comply with
the demands of the agricultural applications—where perpendicular insertion into the soil
surface is required.

Transferring the electrodes onto soft substrates that can be unobtrusively positioned
within a dressing is clearly a critical step and, as such, there is a need for the sensing
component to be immobilised onto thin flexible films. Devices from two distinct sensing
directions, wearables and disposables, however, have led to material advances that could
help meet the requirements of wound sensors. Some of these are highlighted in Table 1 and
typically fall within the polymeric (PET, PI, PDMS) and cellulosic paper domains.
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Figure 1. Planar soil moisture sensors based on resistance (A) and capacitance (B) measurement
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Table 1. Moisture sensing strategies based on interdigitated sensors deposited on thin flexible films.

Material Method Substrate Ref

SWCNT/PVA R Fiber [28]
PEDOT:PSS I Rayon/PET [29]

Cu wire/PE/PI C/LC Fiber [30]
Ag R PDMS [31]

α-In2Se3 nanosheet R/I PET [32]
Ag nanowire/graphene oxide R PDMS [33]

PVA/graphene flowers C/R/I PET [34]
Carbon nanocoil/nanotube R Paper [35]

Graphene oxide/ZnO R Paper [36]
Reduced graphene oxide R PI [37]

MWCNT ink C Paper [38]
Cellulose acetate butyrate C PET [39]

Cellulose–Ag LC Paper [40]
Ti/Au C PI/PET [41]
Ti/Au R PI/PET [42]

LIG–cellulose R Paper [43]
LIG–cellulose R Paper [44]

LIG/graphene oxide C PI/PET [45]
Abbreviations: C = capacitance; I = impedance; R = resistance; LC = inductive–capacitive coupling;
SWCNT = single-walled carbon nanotube; PVA = polyvinyl alcohol; PE = polyester; PEDOT:PSS = poly(3,4-
ethylenedioxythiophene):polystyrene sulfonate; LIG = laser-induced graphene; PDMS = polydimethoxysiloxane;
PI = polyimide; PET = polyethylene terephthalate.

A common design approach is to deposit a pair of interdigitated electrodes on the target
substrate through either printing silver (screen or inkjet), evaporation of Ti/Au layers [41,42]
or through the laser scribing of carbon tracks directly within the material [43–45], as indicated
in Figure 2A. In some instances, the base substrate can facilitate ionic conduction between
the electrodes upon interaction/adsorption of water and may be sufficient to enable the
acquisition of a quantifiable signal and is common in the case of those employing cellu-
losic fibres [41–44]. The more common approach relies upon the deposition of a second,
moisture-sensitive layer via drop casting, spraying, etc. [33,35,36,45]. A pertinent example
is the work by Lan and colleagues (2020), where lasered graphene electrodes coated with
graphene oxide were employed to facilitate measurement of stomatal moisture dynamics
on leaves [45].

The detection mechanism will vary depending on the methodology being adopted
(resistance, capacitance, etc.) and the material configuration, but the core requirement
in each case will be the incorporation of a hygroscopic material that can interact with
the moisture within the wound. As such, they rely on the water vapour undergoing
chemical adsorption (chemisorption), physical adsorption (physisorption) and capillary
condensation processes [46,47]. At low relative humidity (RH), chemisorption of the water
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occurs to the electrode material itself or the composite component (cellulose fibres, graphene
oxide particles, etc.), as indicated in Figure 2B. Proton hopping via a hydronium ion (H3O+)
serves as the main charge carrier, with conductivity increasing as subsequent layers of water
are physisorbed. As the number of physisorbed layers of water increases, the interfacial
layer becomes more liquid-like (capillary condensation), with conductivity greatly eased
via the Grotthuss pathway (H2O + H3O+ ⇔ H3O+ + H2O) [46]. The adsorption of moisture
can also markedly change the dielectric properties of the sensing layer, with the resulting
change in capacitance facilitating another detection option.
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A second resistive approach can also be exploited where the analytical signal is
influenced by physical changes in the moisture-sensitive layer. In this case, penetration of
moisture within a film (PVA) or fibre (polyamide) laced with a conductive element (typically
carbon nanotubes) leads to swelling of the former (Figure 2C) [28,48]. Conduction in such
cases is typically though electron tunnelling between adjacent nanotubes and thus the
swelling induces the displacement of the nanotubes, with the consequent increase in
distance between the latter leading to an increase in resistance, which can be correlated to
the moisture level.

As indicated in Table 1, a large variety of moisture-sensitive materials have been
employed, but their application to wound monitoring contexts necessitates consideration
of the wider design issues. A multilayer approach would be needed in which the sensing
component is protected from direct contact with the wound surface and a secondary
layer would be required to manage the release of exudate. A triple-layer “bandage”
approach has been described by Tessarolo et al. (2021) in what is one of the few direct
attempts to investigate moisture sensors within a wound environment [29]. In this case,
the impedimetric sensor (PEDOT:PSS) was sandwiched between two passive gauze layers
(wound contact; excess exudate capture). The sensor itself was printed on an “active” gauze
layer, which served to manage the response to moisture. Critically, the team demonstrated



J. Compos. Sci. 2022, 6, 176 6 of 12

that the distribution of the moisture across and within the active gauze layer differed
depending on the composition (cotton, rayon or polyethylene terephthalate (PET)). As such,
it could be envisaged that individual sensors could be optimised for particular wounds
through judicious selection of the supporting textile substrate.

4. Laser-Induced Graphene (LIG)

The accessibility of LIG has increased dramatically in recent years through the increas-
ing availability of consumer-orientated laser engravers—some costing less than GBP 100.
Such systems can be used to pattern graphitic/graphene tracks on a range of substrates
(polymers, wood, food, textiles) under ambient conditions, and, while they provide a
simple means of rapid prototyping, the underpinning methodology is scalable and could
be readily adapted for volume production either on a batch basis or through roll-to-roll
processing [49–51].

The laser-induced photothermal conversion of the film results in a micro-nanoporous
foam, as indicated in the electron micrographs detailed in Figure 3. The localised heat
leads to degradation of the polymer (polyimide or cellulosic materials), resulting in the
release of gas. This initially causes the polymer film to foam, with the subsequent cooling
yielding raised carbonised structures. There is considerable morphological heterogeneity
and this tends to be highly dependent on the laser configuration. The electron micrographs
in Figure 3 detail the LIG features arising from two different laser settings: 7.5 W and
12.5 W [52]. It is clear that the resulting LIG structures possess a huge surface area, which
is particularly suited to sensors employing a capacitive methodology [53–57].

J. Compos. Sci. 2022, 6, x FOR PEER REVIEW 6 of 12 
 

 

As indicated in Table 1, a large variety of moisture-sensitive materials have been em-
ployed, but their application to wound monitoring contexts necessitates consideration of 
the wider design issues. A multilayer approach would be needed in which the sensing 
component is protected from direct contact with the wound surface and a secondary layer 
would be required to manage the release of exudate. A triple-layer “bandage” approach 
has been described by Tessarolo et al. (2021) in what is one of the few direct attempts to 
investigate moisture sensors within a wound environment [29]. In this case, the impedi-
metric sensor (PEDOT:PSS) was sandwiched between two passive gauze layers (wound 
contact; excess exudate capture). The sensor itself was printed on an “active” gauze layer, 
which served to manage the response to moisture. Critically, the team demonstrated that 
the distribution of the moisture across and within the active gauze layer differed depend-
ing on the composition (cotton, rayon or polyethylene terephthalate (PET)). As such, it 
could be envisaged that individual sensors could be optimised for particular wounds 
through judicious selection of the supporting textile substrate. 

4. Laser-Induced Graphene (LIG) 
The accessibility of LIG has increased dramatically in recent years through the in-

creasing availability of consumer-orientated laser engravers—some costing less than GBP 
100. Such systems can be used to pattern graphitic/graphene tracks on a range of sub-
strates (polymers, wood, food, textiles) under ambient conditions, and, while they provide 
a simple means of rapid prototyping, the underpinning methodology is scalable and could 
be readily adapted for volume production either on a batch basis or through roll-to-roll 
processing [49–51].  

The laser-induced photothermal conversion of the film results in a micro-nanoporous 
foam, as indicated in the electron micrographs detailed in Figure 3. The localised heat 
leads to degradation of the polymer (polyimide or cellulosic materials), resulting in the 
release of gas. This initially causes the polymer film to foam, with the subsequent cooling 
yielding raised carbonised structures. There is considerable morphological heterogeneity 
and this tends to be highly dependent on the laser configuration. The electron micro-
graphs in Figure 3 detail the LIG features arising from two different laser settings: 7.5 W 
and 12.5 W [52]. It is clear that the resulting LIG structures possess a huge surface area, 
which is particularly suited to sensors employing a capacitive methodology [53–57].  

 
Figure 3. Scanning electron micrograph images of lasered polyimide tracks produced at a power of 
7.5 W (A–C) and 12.5 W (D–F). Reproduced with permission [52]. 
Figure 3. Scanning electron micrograph images of lasered polyimide tracks produced at a power of
7.5 W (A–C) and 12.5 W (D–F). Reproduced with permission [52].

The mechanical flexibility of the LIG-based sensors is widely touted as a major feature
and, while this would certainly be advantageous when attempting translation to wound
management, there are several important caveats to reconcile. It is necessary to note that
simple bending of the film will lead to changes in resistance—a feature that has led to
its use in strain sensing [13,58,59], but which can be considered a limitation in chemical
sensing—especially in regard to those systems relying on resistive methodologies, where
subtle changes in shape could lead to ambiguous responses.
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In the case of the leaf-based measurements, it could be anticipated that the sensor
would be applied to a flat portion of a leaf, but this option may not be available (or appro-
priate) in the context of wound management, where the position and morphology of the
wound can be extremely variable. A prospective sensor placed on the leg (anterior aspect
of the tibia) will experience markedly different forces upon movement than a similar sensor
placed on the plantar aspect of the foot, which will endure pressure and shear. It could be
envisaged that the borders of the foot, in particular, will experience pressure from footwear
and shear from movement within a shoe/sock. While LIG scribed directly onto a substrate
can undergo bending motion, stretching is much more problematic—with physical exten-
sion leading to fragmentation and circuit breaks. There have been attempts to address
such limitations with serpentine designs or the transfer of the LIG from conventional PI to
elastomeric substrates such as silicone or polyurethane [60–62]. It is important to note that
the actual size of the sensing component itself can be very small (in the order of millimetres)
and it could be envisaged that, when placed within a dressing, this component could
remain relatively unperturbed by motion in the underlying skin—it is the track connections
to the external monitoring device that are liable to be affected. If these could be removed,
then the issue of flexibility/stretchability may be redundant.

5. Radio Frequency Identification (RFID)

The introduction of radio frequency identification (RFID) technology—such as that
used on packaging/security labels—partly addresses this issue, allowing the sensor to
be read wirelessly without the need for the controlling circuitry to be located next to the
wound [63–65]. The latter is often neglected in the literature, where the focus is often
on the bioanalytical responses for the sensing component rather than the electronics and
power source that must accompany it. On one level, RFID systems could be considered
to be relatively simple in terms of composition and placement (at least relative to wired
sensors) but there are substantial design and material challenges that need to be addressed
in order to facilitate the retrieval of real-time wound data. The conceptual system would be
composed of a tag (comprising an integrated circuit and antenna), which is placed within
the wound dressing, with the information held within the tag read wirelessly by a reader
(mounted or handheld). The basic approach is highlighted in Figure 4 and it is clear that,
while the controlling chip may be tiny, the key component, from a clinical perspective, will
be the design of the antenna as it will dictate the overall dimensions.
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In contrast to the wired sensing systems, the RFID chips can take their power di-
rectly from the reader device. In its simplest iteration, the reader transmits an appropriate
electromagnetic wave that is received by the tag antenna, which subsequently converts
it to dc power and activates the chip [66]. The chip transmits the stored data as a mod-
ulated (encoded) signal using the antenna, which is then received and decoded by the
reader to obtain the information from the tag. While such devices are common to mod-
ern business—enhancing logistics and tracking—it is easy to envisage how this could be
adapted to clinical environs and patient care, where the information is a unique patient
identifier [67,68]. While their adoption could be considered as a more robust form of
barcoding or QR coding, careful manipulation of the tag components and antenna design
can open up possibilities for the tag to go beyond simple data storage, and there has been
considerable interest in their adaptation to the measurement of temperature and moisture,
which would clearly have direct application to wound management [64,65,69–71].

The removal of ancillary electronics and power cells greatly reduces the dimensions
and cost of the individual devices. The integrated circuit within the chip is the principal
cost element and, for passive systems, can be of the order of several euro cents, which,
even with a high frequency of dressing change, could be economically acceptable given
the potential savings in nursing time. Nevertheless, there has been extensive interest in
the development of chipless tags [72–74]. The latter can offer much simpler (and scalable)
fabrication processes, which can significantly reduce costs. However, such systems have
lower data storage capabilities but, critically, their sensing capabilities are still available
despite the loss of the IC chip component. The nature of the antenna materials that comprise
the antenna can be adapted such that their properties change in response to environmental
stimuli (i.e., change in dielectric constant as a consequence of moisture adsorption) and
thereby alter the resonant frequency of the tag [63,71]. It is here that LIG again has been
found to have considerable impact through being able to rapidly prototype antenna designs,
and it is perhaps little surprise that the next generation of chipless RFID tags with sensing
capabilities are LIG-based [53].

The RFID tag can be read at a distance of up to several metres without the need for
line of sight, which is critical given that the tag can be buried within the various layers of
dressing. A common misconception is that the tag must be manually scanned by a person
yielding a reader, but precision agriculture has demonstrated the capability of interrogating
RFID tags at a distance and transmitting the data (via LoRaWAN) to the cloud [75]. It could
be envisaged that a reader could be positioned on a bed for autonomous processing for
those who are immobile or capable of being positioned within a room where the patient is
liable to spend a significant period of time. The main cost is attributed to the reader, but this
would be re-usable/transferrable from patient to patient and again would mirror current
approaches to 24–48 hr vital signs monitoring, where the device uses replaceable electrodes
but the sensing unit is returned to the clinical practice once complete. The pursuit of RFID
humidity technology is clearly a promising pathway, with a concerted move away from the
bulk of hardwired systems to the much more patient-acceptable wireless format [29,30].

6. Conclusions

The management of chronic wounds can require daily care, which can place consid-
erable demands on community care nursing provision. This can be especially problem-
atic given the increasing complexities borne by the COVID-19 pandemic and where it is
widely recognised that there have been substantial reductions in nurses working within
the community. There is a place for technology to assist in the prioritisation of visits and it
could be envisaged that a simple monitor to periodically monitor strikethrough in mod-
erately/highly exuding wounds could significantly improve management and provide
more consistency in care. The technology is clearly available, as witnessed by the ever-
expanding analytics base used in modern industry and, as hopefully indicated herein, the
translation of the technology to community wound care is not unrealistic. The advances in
laser graphene methods for fast tracking the development of sensors and the emergence
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of chipless tags that can be read wirelessly should be capable of impacting daily wound
management practices.
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