3,765 research outputs found

    Garantia de privacidade na exploração de bases de dados distribuídas

    Get PDF
    Anonymisation is currently one of the biggest challenges when sharing sensitive personal information. Its importance depends largely on the application domain, but when dealing with health information, this becomes a more serious issue. A simpler approach to avoid this disclosure is to ensure that all data that can be associated directly with an individual is removed from the original dataset. However, some studies have shown that simple anonymisation procedures can sometimes be reverted using specific patients’ characteristics, namely when the anonymisation is based on hidden key attributes. In this work, we propose a secure architecture to share information from distributed databases without compromising the subjects’ privacy. The work was initially focused on identifying techniques to link information between multiple data sources, in order to revert the anonymization procedures. In a second phase, we developed the methodology to perform queries over distributed databases was proposed. The architecture was validated using a standard data schema that is widely adopted in observational research studies.A garantia da anonimização de dados é atualmente um dos maiores desafios quando existe a necessidade de partilhar informações pessoais de carácter sensível. Apesar de ser um problema transversal a muitos domínios de aplicação, este torna-se mais crítico quando a anonimização envolve dados clinicos. Nestes casos, a abordagem mais comum para evitar a divulgação de dados, que possam ser associados diretamente a um indivíduo, consiste na remoção de atributos identificadores. No entanto, segundo a literatura, esta abordagem não oferece uma garantia total de anonimato, que pode ser quebrada através de ataques específicos que permitem a reidentificação dos sujeitos. Neste trabalho, é proposta uma arquitetura que permite partilhar dados armazenados em repositórios distribuídos, de forma segura e sem comprometer a privacidade. Numa primeira fase deste trabalho, foi feita uma análise de técnicas que permitam reverter os procedimentos de anonimização. Na fase seguinte, foi proposta uma metodologia que permite realizar pesquisas em bases de dados distribuídas, sem que o anonimato seja quebrado. Esta arquitetura foi validada sobre um esquema de base de dados relacional que é amplamente utilizado em estudos clínicos observacionais.Mestrado em Ciberseguranç

    Location privacy policy management system

    Get PDF
    The advance in wireless communication and positioning systems has permitted development of a large variety of location-based services that, for example, can help people easily locate family members or find nearest gas station or restaurant. As location-based services become more and more popular, concerns are growing about the misuse of location information by malicious parties. In order to preserve location privacy, many efforts have been devoted to preventing service providers from determining users\u27 exact locations. Few works have sought to help users manage their privacy preferences; however management of privacy is an important issue in real applications. This work developed an easy-to-use location privacy management system. Specifically, it defines a succinct yet expressive location privacy policy constructs that can be easily understood by ordinary users. The system provides various policy management functions including policy composition, policy conflict detection, and policy recommendation. Policy composition allows users to insert and delete policies. Policy conflict detection will automatically check conflict among policies whenever there is any change. The policy recommendation system will generate recommended policies based on users\u27 basic requirements in order to reduce users\u27 burden. A system prototype has been implemented and evaluated in terms of both efficiency and effectiveness --Abstract, page iii

    Privacy in the Genomic Era

    Get PDF
    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward

    Trajectory Privacy Preservation and Lightweight Blockchain Techniques for Mobility-Centric IoT

    Get PDF
    Various research efforts have been undertaken to solve the problem of trajectory privacy preservation in the Internet of Things (IoT) of resource-constrained mobile devices. Most attempts at resolving the problem have focused on the centralized model of IoT, which either impose high delay or fail against a privacy-invading attack with long-term trajectory observation. These proposed solutions also fail to guarantee location privacy for trajectories with both geo-tagged and non-geo-tagged data, since they are designed for geo-tagged trajectories only. While a few blockchain-based techniques have been suggested for preserving trajectory privacy in decentralized model of IoT, they require large storage capacity on resource-constrained devices and can only provide conditional privacy when a set of authorities governs the blockchain. This dissertation addresses these challenges to develop efficient trajectory privacy-preservation and lightweight blockchain techniques for mobility-centric IoT. We develop a pruning-based technique by quantifying the relationship between trajectory privacy and delay for real-time geo-tagged queries. This technique yields higher trajectory privacy with a reduced delay than contemporary techniques while preventing a long-term observation attack. We extend our study with the consideration of the presence of non-geo-tagged data in a trajectory. We design an attack model to show the spatiotemporal correlation between the geo-tagged and non-geo-tagged data which undermines the privacy guarantee of existing techniques. In response, we propose a methodology that considers the spatial distribution of the data in trajectory privacy-preservation and improves existing solutions, in privacy and usability. With respect to blockchain, we design and implement one of the first blockchain storage management techniques utilizing the mobility of the devices. This technique reduces the required storage space of a blockchain and makes it lightweight for resource-constrained mobile devices. To address the trajectory privacy challenges in an authority-based blockchain under the short-range communication constraints of the devices, we introduce a silence-based one of the first technique to establish a balance between trajectory privacy and blockchain utility. The designed trajectory privacy- preservation techniques we established are light- weight and do not require an intermediary to guarantee trajectory privacy, thereby providing practical and efficient solution for different mobility-centric IoT, such as mobile crowdsensing and Internet of Vehicles

    Contributions to the privacy provisioning for federated identity management platforms

    Get PDF
    Identity information, personal data and user’s profiles are key assets for organizations and companies by becoming the use of identity management (IdM) infrastructures a prerequisite for most companies, since IdM systems allow them to perform their business transactions by sharing information and customizing services for several purposes in more efficient and effective ways. Due to the importance of the identity management paradigm, a lot of work has been done so far resulting in a set of standards and specifications. According to them, under the umbrella of the IdM paradigm a person’s digital identity can be shared, linked and reused across different domains by allowing users simple session management, etc. In this way, users’ information is widely collected and distributed to offer new added value services and to enhance availability. Whereas these new services have a positive impact on users’ life, they also bring privacy problems. To manage users’ personal data, while protecting their privacy, IdM systems are the ideal target where to deploy privacy solutions, since they handle users’ attribute exchange. Nevertheless, current IdM models and specifications do not sufficiently address comprehensive privacy mechanisms or guidelines, which enable users to better control over the use, divulging and revocation of their online identities. These are essential aspects, specially in sensitive environments where incorrect and unsecured management of user’s data may lead to attacks, privacy breaches, identity misuse or frauds. Nowadays there are several approaches to IdM that have benefits and shortcomings, from the privacy perspective. In this thesis, the main goal is contributing to the privacy provisioning for federated identity management platforms. And for this purpose, we propose a generic architecture that extends current federation IdM systems. We have mainly focused our contributions on health care environments, given their particularly sensitive nature. The two main pillars of the proposed architecture, are the introduction of a selective privacy-enhanced user profile management model and flexibility in revocation consent by incorporating an event-based hybrid IdM approach, which enables to replace time constraints and explicit revocation by activating and deactivating authorization rights according to events. The combination of both models enables to deal with both online and offline scenarios, as well as to empower the user role, by letting her to bring together identity information from different sources. Regarding user’s consent revocation, we propose an implicit revocation consent mechanism based on events, that empowers a new concept, the sleepyhead credentials, which is issued only once and would be used any time. Moreover, we integrate this concept in IdM systems supporting a delegation protocol and we contribute with the definition of mathematical model to determine event arrivals to the IdM system and how they are managed to the corresponding entities, as well as its integration with the most widely deployed specification, i.e., Security Assertion Markup Language (SAML). In regard to user profile management, we define a privacy-awareness user profile management model to provide efficient selective information disclosure. With this contribution a service provider would be able to accesses the specific personal information without being able to inspect any other details and keeping user control of her data by controlling who can access. The structure that we consider for the user profile storage is based on extensions of Merkle trees allowing for hash combining that would minimize the need of individual verification of elements along a path. An algorithm for sorting the tree as we envision frequently accessed attributes to be closer to the root (minimizing the access’ time) is also provided. Formal validation of the above mentioned ideas has been carried out through simulations and the development of prototypes. Besides, dissemination activities were performed in projects, journals and conferences.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: María Celeste Campo Vázquez.- Secretario: María Francisca Hinarejos Campos.- Vocal: Óscar Esparza Martí

    Privacy-enhancing Aggregation of Internet of Things Data via Sensors Grouping

    Full text link
    Big data collection practices using Internet of Things (IoT) pervasive technologies are often privacy-intrusive and result in surveillance, profiling, and discriminatory actions over citizens that in turn undermine the participation of citizens to the development of sustainable smart cities. Nevertheless, real-time data analytics and aggregate information from IoT devices open up tremendous opportunities for managing smart city infrastructures. The privacy-enhancing aggregation of distributed sensor data, such as residential energy consumption or traffic information, is the research focus of this paper. Citizens have the option to choose their privacy level by reducing the quality of the shared data at a cost of a lower accuracy in data analytics services. A baseline scenario is considered in which IoT sensor data are shared directly with an untrustworthy central aggregator. A grouping mechanism is introduced that improves privacy by sharing data aggregated first at a group level compared as opposed to sharing data directly to the central aggregator. Group-level aggregation obfuscates sensor data of individuals, in a similar fashion as differential privacy and homomorphic encryption schemes, thus inference of privacy-sensitive information from single sensors becomes computationally harder compared to the baseline scenario. The proposed system is evaluated using real-world data from two smart city pilot projects. Privacy under grouping increases, while preserving the accuracy of the baseline scenario. Intra-group influences of privacy by one group member on the other ones are measured and fairness on privacy is found to be maximized between group members with similar privacy choices. Several grouping strategies are compared. Grouping by proximity of privacy choices provides the highest privacy gains. The implications of the strategy on the design of incentives mechanisms are discussed
    • …
    corecore