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ABSTRACT OF THE DISSERTATION

TRAJECTORY PRIVACY PRESERVATION AND LIGHTWEIGHT

BLOCKCHAIN TECHNIQUES FOR MOBILITY-CENTRIC IOT

by

Abdur Rahman Bin Shahid

Florida International University, 2019

Miami, Florida

Professor Niki Pissinou, Major Professor

Various research efforts have been undertaken to solve the problem of trajectory pri-

vacy preservation in the Internet of Things (IoT) of resource-constrained mobile de-

vices. Most attempts at resolving the problem have focused on the centralized model

of IoT, which either impose high delay or fail against a privacy-invading attack with

long-term trajectory observation. These proposed solutions also fail to guarantee lo-

cation privacy for trajectories with both geo-tagged and non-geo-tagged data, since

they are designed for geo-tagged trajectories only. While a few blockchain-based

techniques have been suggested for preserving trajectory privacy in decentralized

model of IoT, they require large storage capacity on resource-constrained devices

and can only provide conditional privacy when a set of authorities governs the

blockchain. This dissertation addresses these challenges to develop efficient trajec-

tory privacy-preservation and lightweight blockchain techniques for mobility-centric

IoT.

We develop a pruning-based technique by quantifying the relationship between

trajectory privacy and delay for real-time geo-tagged queries. This technique yields

higher trajectory privacy with a reduced delay than contemporary techniques while

preventing a long-term observation attack. We extend our study with the consider-

ation of the presence of non-geo-tagged data in a trajectory. We design an attack

vii



model to show the spatiotemporal correlation between the geo-tagged and non-geo-

tagged data which undermines the privacy guarantee of existing techniques. In

response, we propose a methodology that considers the spatial distribution of the

data in trajectory privacy-preservation and improves existing solutions, in privacy

and usability.

With respect to blockchain, we design and implement one of the first blockchain

storage management techniques utilizing the mobility of the devices. This technique

reduces the required storage space of a blockchain and makes it lightweight for

resource-constrained mobile devices. To address the trajectory privacy challenges

in an authority-based blockchain under the short-range communication constraints

of the devices, we introduce a silence-based one of the first technique to establish a

balance between trajectory privacy and blockchain utility.

The designed trajectory privacy- preservation techniques we established are light-

weight and do not require an intermediary to guarantee trajectory privacy, thereby

providing practical and efficient solution for different mobility-centric IoT, such as

mobile crowdsensing and Internet of Vehicles.
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CHAPTER 1

INTRODUCTION

1.1 Background

Over the past few years, with the advancement of sensing technologies, wireless com-

munication, and embedded systems, we have observed a dramatic increase in the

research effort to turn physical objects into smart devices and enable them to talk to

each other through the internet; the network formed by these different smart devices

is termed as the Internet of Things (IoT) [AIM10]. From predictive maintenance in

industries, improving environment monitoring systems, reducing road fatalities by

enabling the vehicles to communicate with each other, minimizing errors in decision

making in military systems to better monitoring of health, IoT has a bevy of ap-

plications in nearly every industry. A variation of IoT is the mobility-centric IoT,

which unifies the sensing ability with mobility of the devices. The core component

of such mobility-centric IoT systems is the location information of the IoT devices:

users share their location information through their devices with a system to get a

variety of location-based services (LBSs). Formally, location-based services are “ser-

vices accessible with mobile devices through the mobile network and utilizing the

ability to make use of the location of the terminals”[VMG+01]. The location infor-

mation of the users, for example, has made location-based recommendation systems

a standard part of our daily life. Real-time navigation systems, intelligent vehicle

systems, crowdsensing, indoor navigation for blind people, and health monitoring

are just a very few examples of location-based services which are benefited from

the mobility aspect of IoT. From an economic perspective, mobility-centric IoT has

a tremendous impact on the overall GDP. It was predicted that the revenue from

location-based service would be as high as $39.43 billion in 2020 [IoT15]. Under-
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Figure 1.1: Real cases on trajectory privacy issues.

standing the enormous potential of such systems, efforts have been made to connect

an increasingly larger number of device to IoT system; according to statistics from

Statista, the number of smartphone devices would hit 2.87 billion by the year of

2020[Sta19].

Despite having enormous technological and economic benefits, embracing mobility-

centric IoT for location-based services (LBSs) is challenging. One problem is regard-

ing the privacy of the location information of LBS users. IoT systems usually rely

on centralized architecture (i.e., cloud server), with a main server responsible for

storing, processing, and analyzing all the data sent by the various IoT devices. By

gathering all the information from a user and by combining them with other in-

formation from a large number of sources, it is possible to reveal sensitive, private

information. This type of information is highly valuable, and a malicious system

authority may choose to profit by selling the information to third parties, but even

in cases where the central authority can be trusted, the sensitive data cannot be

assumed secured as centralized architectures are highly susceptible to a single point

of failure or external cyber-attacks. Security loopholes in the design of the system or

lack of understanding about a variety of threats can make the whole system vulner-

able. By exploiting these loopholes, malicious entities can compromise the system
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[MF17] or harvest users’ sensitive data [Gra18]. Another risk of revealing sensi-

tive spatiotemporal location information is that malicious entities (e.g., robbers)

can utilize that information to target potential victims (Figure 1.1). For example,

an interview of ex-buglers revealed that burglars use location-based social networks

to discover empty houses to burgle. In summary, an IoT system never be wholly

trusted and it is necessary to ensure the privacy of an IoT user’s data in such a

system by design.

1.2 Motivation

This dissertation is motivated by the trajectory privacy issues in IoT systems which

are built to provide different kinds of location-based services (LBSs). The research of

this dissertation focuses on three different types of LBSs: location query, heteroge-

neous data sharing platform (e.g. location-based social networks), and aggregation-

oriented mobile crowdsensing applications. We first consider an LBS where users

send their location information and request to a service provider from their IoT

devices (e.g., smartwatch, smartphones, and the on-board unit of vehicles) to get

location-centric information(e.g., nearby urgent care, and restaurants having at least

4-star reviews). We can formulate this request or query as follows.

Q = {U , lt, I} (1.1)

Here U is the identifier of a user, lt is the user’s location in terms of latitude and

longitude at time t, and I is the requested information. The service provider in-

telligently generates the best relevant results for U based on the previously shared

location data and other relevant contextual data. A service provider usually stores

all the contents from all of its users and generates a predictive model to find out the

best results for a particular request; the problem here is that, asides from providing
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“honest” results, the models can also be (mis)used to extract sensitive information

regarding the user’s health status, religious and political views, home and work

addresses, their frequently visited locations, and so on.

In addition to sending a request to the service provider, LBS users can also

share the location information through check-ins and different types of geo-tagged

content. One such example is the location-based social network (LBSN), where

users share their location-based experience with other users through location-tagged

media content, such as photos, videos, and texts. Formally, “Social Network Sites

that include location information into shared contents are called Location Based

Social Networks (LBSN).”[RH13]. Both check-ins and geo-tagged contents can be

considered as similar to an LBS query as both of them explicitly contain location

information of a user and carry the similar location privacy threats. The high

temporal correlation between geo-tagged and non-geo-tagged data can also be used

to infer a user’s location information.

Given the severity of the privacy issues that arise from the shared location in-

formation, we have recently observed a surge of research on location privacy 1.The

majority of this research has paid particular attention to solving the problem for in-

dependent location’s privacy preservation, but this focus is shifting towards devising

mechanisms to protect the privacy of spatiotemporally correlated locations. In this

dissertation, we focus on the problems with (1) ensuring the privacy of frequently

visited sensitive locations under spatiotemporal correlation against long-term ob-

servation-based attacks, and (2) preserving privacy against an attack based on a

combination of geo-tagged and non geo-tagged contents in spatiotemporal domain.

We define the notion of “long-term privacy” as follows. Let, T1, . . . Tn are n number

of different trajectories of a user. Each of these trajectories are made up with a set

1We use “Trajectory Privacy” and “Location Privacy” interchangeably.
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of sensitive (both frequent and infrequent) locations such that tilast < ti+1
last. Here,

tilast and ti+1
first are the times of last and first locations in Ti and Ti+1, respectively.

Then, the long-term privacy preservation refers to preserving privacy of Ti+1 in such

a way that it will not leak the privacy of any of the sensitive locations in T0, . . . Ti.

We observe that when it comes to the issue of preserving privacy against long-term

observation, existing approaches either leak privacy to maintain quality of services

(QoS) or impose high reduction in QoS, in terms of query drop or delay, to en-

sure the location privacy [GDSB16, LLL+17]. As such, finding the right balance

between the long-term privacy preservation and real-time quality of services is the

core problem that motivates the first aspect of this dissertation.

The second problem is mainly associated with LBS scenarios where users share

both geo-tagged and non-geo-tagged content. We confine our study to LBSN with

two kinds of content: checkins and photos. The location privacy issues with checkins

and photos have been studied independently for many years: devising machine

learning techniques for identifying a user’s location from both indoor and outdoor

photos is an active area of computer vision [LCTZ13, TPFF+15, WKP16]. The

opposite is also true: preserving visual location privacy against such identifying

techniques has also attracted significant attention [MDFFF17, OFS17]. Nonetheless,

the synergy between the privacy-invading techniques for check-ins and photos is not

addressed well in the literature. In particular, we study the location privacy issues

in a scenario, where a trajectory contains spatiotemporally correlated check-ins, geo-

tagged, and non-geo-tagged photos, and a malicious entity is unwilling to analyze

the contents of the photos of location inference. Formation of such a successful

attack model and its defense mechanism is another aspect of this dissertation.

One way of concealing the user is by forming a distributed peer-to-peer (P2P)

network without relying on a centralized entity. This idea has been studied at
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some extent, and several approaches have been proposed for location privacy pro-

tection [STP+14, NLZ+15, GPI16]. However, these approaches utilized the P2P

network in an off-the-shelf manner. In reality, tapping into distributed P2P net-

work is not straightforward as it comes up with a bevy of security, trust, and

data management issues. We argue that we first need to identify which distributed

IoT system can provide security, trust, auditability, and immutability by design.

Blockchain technology has emerged as a distributed P2P way of recording digital

interactions in a secure, transparent, and auditable way without relying on central-

ized authority[Nak08, Fra14]. Blockchain is essentially a public ledger of a sequence

of blocks that continually grows as newly created blocks are added to record the

up-to-date transactions. The meaning of transactions varies with the context of its

application. For instance, with cryptocurrencies, it is mainly the amount of currency

transacted by two entities in the network. In environment monitoring crowdsensing

applications, this could be the value of shared sensor reading. As distributed P2P

network is used, each node in the network holds a copy of the blockchain which

provides built-in integrity of information, and security of immutability by design,

making it very useful for P2P trustless networks composed of a massive number

of devices. By design, blockchain provides anonymity, as the nodes can join the

network with private and public keys. With these unique set of benefits, blockchain

has already gained significant attention from the IoT community to achieve privacy

through decentralization. From a broader perspective, integrating blockchain to IoT

systems is being considered. Today’s centralized architecture is incapable of han-

dling the fast-paced growth of IoT; the frequent change in the mobility-centric IoT

network due to node mobility, node failure, damage, energy depletion, or channel

fading only further exacerbate the problems of a centralized model. However, the

integration of blockchain with IoT is also not straightforward. Since the chain con-
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tinues to grow, IoT devices require more and more resources to manage it on their

local spaces. Similarly, scalability with constrained computing power and battery

also poses a challenge. To be precise, with the integration of blockchain, each node

needs to perform a large number of tasks at different stages of the blockchain with

their constrained computing power and battery life, and as the network grows this

problem becomes increasingly more challenging to address. Hence, we emphasize

that, before attempting to preserve privacy with a distributed P2P network using

blockchain, we must address its scalability problem for resource-constrained IoT

devices, which is another focus of this dissertation.

The majority of the works on blockchain-IoT integration is motivated by bit-

coin, the first successful application of blockchain. It is a public blockchain, where

the nodes join and leave the network with random public keys and there exists no

authority for tracking the nodes. Blockchain has since evolved from public to a per-

missioned version. The idea of a permissioned blockchain stemmed from the evidence

of misuse of freedom in public blockchains for illegal activities. For instance, almost

half of the bitcoin transactions are estimated to be related to illegal drug sales, ran-

somware, and other malicious activities[FKP19]. Organizations are more interested

in permissioned blockchain, which would assist them with the power of blockchain

as well as having better control over the entities that they interact with. In a such

blockchain, there exists an authority which controls who can join the network and

do what kind of operations. Hence, unlike public blockchains, trajectory privacy

preservation in a permissioned-blockchain is a more robust problem as the author-

ity retains the capability of tracking the nodes. The current privacy-preserving

solutions, proposed for the context of permissioned blockchain, can guarantee only

conditional privacy[LLC+18]. The problem of preserving trajectory privacy in a

permissioned blockchain is the final motivation of this dissertation.
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1.3 Research Problems

The overall goal of this dissertation is to devise efficient trajectory privacy preserva-

tion mechanisms for mobility-centric IoT systems. To achieve this goal, we aim to

understand the different attack models that can be utilized to compromise trajectory

privacy, the limitations of existing works against those attacks, and the approaches

to improve the existing works to mitigate the identified privacy leakages.

We first study the problem of personalizing trajectory privacy preservation with

reduced quality of services (QoS) loss against a long-term observation-based attack.

This problem involves modeling of a long-term observation attack and quantification

of its privacy leakage, and nullifying the attack with reduced loss of QoS. We extend

our study with the problem of understanding how a combination of spatiotem-

porally correlated geo-tagged and non-geo-tagged contents can affect the existing

trajectory privacy-preserving mechanisms (TPPMs) and how can we improve the

existing TPPMs to neutralize the effect. This problem involves the design of an

inference attack model from the two kinds of contents: quantification of the effect

of that inference model on existing TPPMs, and devising appropriate TPPM to

mitigate the effect.

The two above problems mainly focus on preserving trajectory privacy in a

centralized IoT system. Another drastic way of preserving privacy is the formation of

a P2P network of the IoT nodes such that the necessity of an intervening centralized

authority can be demolished. Recently, blockchain is being studied as a promising

way to decentralize IoT systems. In this dissertation, we explore the problem of

making blockchain lightweight for P2P networks of IoT nodes without relying on

powerful or expensive edge devices.

We then study the trajectory privacy preservation problem in the context of
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permissioned-blockchain, where a malicious authority is capable of tracking the IoT

nodes and the P2P interaction between the nodes constitute proofs regarding their

location information. The problem includes modeling of a different attacks that can

be exploited by the authority and measuring their impact on location privacy of the

IoT nodes.

1.4 Research Objectives

To answer the above mentioned research questions, this dissertation aims to achieve

the following four objectives: 1. measure the effect of long-term observation attack

on trajectory privacy preservation and determine the factors that can mitigate such

an attack in a personalized manner while maintaining the loss of quality of services

(QoS) within a constraint, 2. assess the impact of a combination of spatiotemporally

correlated geo-tagged and non-geo-tagged contents on trajectory privacy without

analyzing the contents of the non-geo-tagged contents and formulate and evaluate

a mechanism to mitigate the impact, 3. evaluate the relationship of spatiotemporal

mobility of the IoT nodes and spatial sharding with the size of blockchain to design a

lightweight blockchain framework, and 4. identify and measure the trajectory privacy

risks in a permissioned-blockchain and evaluate the influence of a privacy-preserving

mechanism on QoS while alleviating those risks.

1. Long-Term Privacy Preservation for Frequently Visited Locations

In a location-based service(LBS), a user queries a service provider by providing

his/her precise location information (Equation 1.1) to get a variety of services. As

the shared location information may reveal a user’s sensitive information, trajectory

privacy preservation mechanisms (TPPM) come into play to preserve privacy. A
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(a) (b)

Figure 1.2: Architectures for Trajectory Privacy Preserving Mechanism (TTPM):
(a) Trusted Third Party (TTP)-based architecture and (b) User-centric architecture.

TPPM works between the user and the service provider. It takes the query Q and

scrambles it in such a way that it would not leak privacy (at some degree) of the

user against a set of testable attacks. There are two types of TPPM architectures:

Trusted Third Party (TTP)-based and user-centric. In a TTP-based architecture,

the TPPM could be a cloud server or any other external entity. On the user-centric

architecture, the TPPM resides on the user’s device and does not depend on a TTP

in the runtime (Figure 1.2 depicts these two architectures).

At this time, a variety of TPPMs have been proposed, which can be classified into

the broad categories of pseudonym, cryptography, and obfuscation. The pseudonym

and cryptographic techniques have any of the following limitations: it relies on a

TTP-based architecture, its implementation is challenging for resource-constrained

IoT devices, and it requires changes in the already up and running LBS system to

facilitate privacy requirements. On the other hand, obfuscation techniques can be

built upon a user-centric architecture in a lightweight way, and they do not require

changes in an existing architecture of an LBS. These advantages make obfuscation

techniques highly practical for trajectory privacy preservation in LBS for resource-

constrained IoT devices. As such, this dissertation is focused on obfuscation tech-

niques, wherein a user’s original location is replaced by a set of locations which look

similar to a user’s real location based on some predefined privacy measures. Thus,
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using an obfuscation-based mechanism, the original query Q becomes,

Q′ = {ID,< l1, . . . lm >, I} (1.2)

Here, < l1, . . . lm > is the set of the locations which represents a user’s original

location. An objective of this dissertation is to design an obfuscation mechanism

to achieve the following properties: 1. personalization, 2. privacy preservation of

sensitive locations against long-term observation attacks, and 3. a quantifiable rela-

tionship between long-term privacy and quality of services (QoSs).

2. Location Inference Attack Based on Spatiotemporally Correlated Geo-

tagged and Non Geo-tagged Contents and Its Defense Mechanism

While our first objective is to study privacy issues with homogeneous data-centric

interaction between the users and LBS, i.e., check-ins or queries, we extend the work

with heterogeneous data-centric interaction. As mentioned earlier in motivation,

a heterogeneous data-centric interaction refers to a trajectory, shared by a user

with the LBS, which contains both of geo-tagged and non-geo-tagged contents. We

confine our study with two kinds of contents: query and photo. In our study, a

checkin in an LBS is similar to query as we do not consider the privacy issues with

the requested information (I in Equation 1.1). While queries are always geo-tagged,

a photo can either be geo-tagged or non-geo-tagged. In the case of non-geo-tagged

photos, the inference attack models are usually constructed based on a machine

learning model which analyzes the contents of photos to localize a user. However,

we study the problem from a different perspective. Let us consider a trajectory T

which contains queries, geo-tagged and non-geo-tagged photos as follows.

T =< (Q, t1), (Pgeo, t2), (Pnon−geo, t3), (Q, t4), (Pnon−geo, t5), . . . > (1.3)
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Here, the terms Q,Pnon−geo,Pgeo refer to a query, non-geo tagged photo, and geo-

tagged photo, respectively.

Our objective is to investigate the case of inferring location information without

analyzing the content of a photo using a machine learning model where there is a

high temporal correlation between two shared contents. The objective also includes

the construction of an efficient obfuscation approach to negate the inference in a

lightweight and practical way.

3. Spatiotemporal Blockchain Management for Resource-Constrained

IoT devices to Achieve Decentralized Privacy

Replacing a centralized LBS architecture with a decentralized peer-to-peer (P2P)

network of the IoT devices is a significant step towards achieving privacy preser-

vation in IoT. Questions of efficiency and practicality aside, blockchain is being

considered to design a fully decentralized IoT system with (some degree of) built-in

privacy. Inspired by the massive popularity of bitcoin, the first successful applica-

tion of blockchain, a large number of works in the intersection of blockchain and

IoT focused on how to implement “bitcoin”-like blockchain in the IoT. To preserve

trajectory privacy, the IoT nodes change their private-public key pairs frequently.

However, their assumption of having enough computation and storage capacity on

the IoT devices to manage a blockchain is mostly impractical. To make blockchain

computationally lightweight, some works focused on simplification of the mining

process so that power consumption is reduced. To deal with the constrained re-

source issue, the solution of managing blockchain using fixed infrastructures based

on high-end computing devices (i.e., gateways) has been explored significantly. How-

ever, for mobility-centric IoT, where the network is spread through a vast region

and the topology changes frequently, having a fixed infrastructure is uneconomic.
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In a nutshell, all these works either considered that the IoT devices are capable

enough to store the blockchain and to perform blockchain operations, or they em-

ploy high-end computing devices to manage the blockchain. While privacy can be

preserved, these works are impractical for mobility-centric IoT. What sets this work

apart is that our objective is to make blockchain lightweight so that the IoT devices

are able to store it without relying on external edge computing devices, with a focus

on the mobile crowdsensing applications. We study and measure the relationship of

spatiotemporal mobility of the users and spatial division of a blockchain into shards

with the storage capacity of the IoT devices to hold blockchain on their space.

4. Quantifying Location Privacy in Permissioned Blockchain-based de-

centralized IoT

We have now come to the point of studying trajectory privacy issues in a blockchain.

In a public blockchain, this is “easy”: there is no centralized authority of the

blockchain and the certificate authority (CA) is independent of the blockchain sys-

tem, and as a result the devices can change their public and private key pairs

frequently to achieve untraceability in the network, but this high level of privacy

comes at a price. In a public blockchain, it is difficult to track or find out malicious

entities, which creates a major challenge to law enforcement and government agen-

cies. While several tools have been developed for tracing transactions or entities,

organizations are more interested in having control over the identities of the enti-

ties in the blockchain, leading to the development of permissioned blockchain. In

such a blockchain, there exists at least one authority who controls who can join and

perform blockchain operations in the network, and that authority provides the IoT

users public and private key pairs in exchange for their real identity, which helps

them maintain their privacy from their peers in the network. However, it can only
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provide conditional privacy as the authority itself can trace the devices. Preserving

trajectory privacy against such the blockchain authority is quite challenging. We

study the trajectory privacy in a permissioned-blockchain where the IoT devices

form a P2P network using short-range communication technology (e.g., Bluetooth).

With such a short-range communication, a transaction between two devices gener-

ates proof-of-location (PoL) about each other in the spatiotemporal domain which

certifies the presence of the devices at a precise location at a particular time in the

network. In such a context, we show that there is an essential trade-off between tra-

jectory privacy and utilization of the system. The final objective of this dissertation

is to model the trajectory privacy leakages in the considered case of permissioned-

blockchain for IoT, devise a lightweight mechanism to mitigate the leakages, and

quantify the trade-off between privacy and QoS.

1.5 Research Contributions

To achieve the goals as mentioned above, we first design a delay aware long-term

trajectory privacy-preserving obfuscation technique for frequently visited locations

under spatiotemporal constraint for location-based services, then we devise a loca-

tion inference attack from a combination of spatiotemporally correlated checkins,

geo-tagged and non-geo-tagged photos and an obfuscation mechanism as its coun-

termeasure, and we introduce a lightweight, scalable blockchain framework based on

region division and mobility of the users for crowdsensing applications. Finally, we

propose a silence-based privacy-preserving obfuscation mechanism to achieve tra-

jectory privacy in a permissioned blockchain-based IoT. The critical points of our

contributions are as follows:
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1. Delay Aware Long Term Trajectory Privacy Preservation for Fre-

quently Visited Locations under Spatiotemporal Constraint for Location-

Based Services [SPI+18, SPI+19]

We start our research by studying the different location inference attacks based on

probability distribution of historical location data, travel time information between

locations using knowledge of a map, and short and long-term observation of privacy-

preserving queries.

We propose a trajectory privacy-preserving obfuscation approach, coined as

“KLAP”, to achieve personalization in the process of long-term privacy preservation

against the map and historical knowledge, and short and long-term observation-

based attacks. KLAP models a user’s preference for different locations based on the

historical data and can personalize privacy-preservation by utilizing such a model

for sporadic, frequent, and continuous LBS use cases. Specifically, KLAP generates

a secure Concealing Region (CR) to obfuscate the user’s original location and di-

rects that CR to the service provider. It selects a set of locations, similar to the

original location in terms of preference and certain spatiotemporal conditions, such

that a malicious service provider cannot distinguish the original location from the

set. The CR is computed as the convex hull of the set of locations, and the vertices

of the CR replaces the user’s location in an original query (Equation 1.2). While

it can protect privacy against a variety of spatiotemporal correlation-based attacks,

the key contribution of our work lies in the introduction of a CR pruning technique

that makes it possible to improve the delay between successive CR submissions with

a slight compromise of privacy for infrequent locations while maintaining long-term

privacy of frequently visited sensitive locations. We evaluate the proposed approach

with two real-world datasets, and the experimental results show that it can achieve

better efficiency and efficacy compared to existing state-of-the-art methods for the
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different cases considered in this work. Part of this work is published in [SPI+18],

and the extended version of the work is under submission in [SPI+19].

2. Location Inference Attack From A Trajectory of Spatiotemporally

Correlated Geo-Tagged and Non Geo-Tagged Contents and Its Counter-

measure [SPIM18]

Inferring location information from a variety of data has long been studied indepen-

dently: inferring location from geo-tagged contents and inferring location from non-

geo-tagged contents. Without loss of generality, we limit our discussion to queries

(which are always geo-tagged), and photos (geo-tagged and non-geo-tagged). Un-

like many other works, in this dissertation, we intend to create the link between

geo-tagged queries and photos and non-geo-tagged photos for location inference at-

tack without relying on machine learning model for the case when the contents have

a spatiotemporal correlation. Our work is based on the following hypothesis: the

probability of sharing different contents at different locations based on historical

data and the high temporal correlation between a set of geo-tagged contents (gener-

ated using an existing obfuscation approach) and non-geo-tagged contents allows to

infer a user’s location at a finer level without analyzing the non-geo-tagged photos.

Let us consider a trajectory T similar to Equation 1.3. To preserve the privacy of

the trajectory, let the user uses an obfuscation approach O which generates k − 1

number of fake locations and tags them with the real locations. The obfuscated

version of T is as follows,

T ′ =< (O(Q), t1), (O(Pgeo), t2), (Pnon−geo, t3), (O(Q), t4), (Pnon−geo, t5), . . . > (1.4)

We show that, if there is a high temporal correlation among the shared of content,

a traditional obfuscation approach can leak privacy of a user. We formulate and
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implement such an inference attack model on dummy based obfuscation approach

using two different factual datasets to validate the hypothesis. To nullify such infer-

ence, we also propose a randomized obfuscation approach which generates dummy

locations by considering the both of query and photo sharing probabilities for differ-

ent locations. Our contribution also includes a technique to visually represent the

privacy-preserving queries and photos in the case of location-based social network

(LBSN). The work is published in [SPIM18].

3. Spatiotemporal Blockchain Management for Resource-Constrained

IoT devices to Achieve Decentralized Privacy [SPSK19, SPN+19a]

Making blockchain lightweight for resource-constrained IoT devices has recently

garnered some attention, but the influence of the mobility of the devices in designing

blockchain is not explored yet. In this research, we focus on specific mobility-

related scenarios where a mobile node is not really required to have a “global” view

of a blockchain. Let us consider an environment monitoring mobile crowdsensing

application where aggregated data (e.g., temperature, humidity, and air quality)

from a small region at a particular time is more critical than an individual’s data.

The mobile nodes at a location may contact each other in a P2P way to collect each

other’s environmental sensor’s value for some time, then one node is selected to

send the aggregated information in a particular form (e.g. max, mean, average, and

median.). Since the nodes are mobile, the trust value computed for some nodes may

not be significant at a different location and time for an individual node, and the

environmental data varies from one region to another; thus, instead of having a single

network, region-based multiple smaller networks, as well as blockchains, are more

feasible. Furthermore, it is not practical to deploy powerful, expensive edge devices

over a large region to carry out the blockchain operations. This research aims to
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address the blockchain management problem by designing a lightweight blockchain

framework, coined as “Sensor-Chain”, for mobility-centric IoT without relying on

a fixed infrastructure of edge devices. We show that breaking down a traditional

global blockchain into smaller “local” blockchains in the spatial domain and limiting

their size through a temporal constraint will allow us to design scalable blockchain

for mobile IoT systems. Furthermore, the Sensor-Chain allows the mobile devices

to control their storage space on the run. The highlights of our contribution are as

follows: 1. The Sensor-Chain blockchain framework consumes little storage space on

the IoT sensor devices and is scalable with the increase in network size. We compare

the performance of sensor-chain with three (3) other schemes and the results on the

relationship of spatial and temporal constraints with the size of blockchain justify its

advantage for aggregation-based mobile crowdsensing applications. 2. The proposed

framework does not involve any fixed positioned powerful edge devices, which makes

it more flexible with a variety of mobility-based IoT applications. 3. Sensor-Chain

is independent of any particular ledger platform. Thus, it can be implemented with

any platform (e.g. Ethereum, hyperledger, and so on) for IoT. The work is accepted

for publication in [SPSK19]. A demonstration on the development of the framework

is accepted in [SPN+19a].

4. Quantifying Location Privacy in A Permissioned Blockchain [SPN+19b]

Unlike many other works on preserving trajectory privacy for mobility-centric IoT

using a public blockchain, we study the problem in the context of private or permis-

sioned blockchain for mobility-centric IoT. We consider a permissioned blockchain

which is governed by at least one authority: the authority provides the user with pri-

vate and public key pairs to achieve privacy from the peers in the network. However,

as the authority knows the real identity of each user, it is possible to map the users
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in the spatiotemporal domain, which leads to potential trajectory privacy invasion.

We study this problem in the context of two properties: there exists a spatiotem-

poral correlation between consecutive blockchain transactions, and there presents

a (either explicit or implicit) Proof-of-Location (PoL) protocol in the system such

that a node cannot fake its location in the network. In this work, a transaction is

considered as the atomic blockchain operation in the network. To understand the

time reachability based correlation, let the variable Ot
u represent the actual location

lu of a mobile IoT user u at time t. Given the user’s locations (li−1, li+1) at times

(ti−1, ti+1), the user’s probability to be at a location li at a discrete time ti is Priu(li).

This probability, Priu(li), can be computed using the time reachability correlation

as follows:

Priu(li) = Pr(Oi
u = li|Oi−1

u = li−1, O
i+1
u = li+1) (1.5)

Note that Priu(li) = 1 if li is reachable to and from li−1 and li+1 in time (ti+1− ti−1).

Otherwise, Priu(li) = 0. A PoL is a digital certificate which confirms the presence

of a user at a certain time and location. The Spatiotemporal correlation between

two blockchain operations is defined based on the time reachability relationship

between the locations exposed by the two transitions. We first show that existing

obfuscation approaches, designed to protect trajectory privacy in centralized IoT

systems, cannot be implemented in a plug and play way in permissioned-blockchain

under the presence of a PoL. This leads us to the realization that it is not possible to

achieve privacy while maintaining the utility of the system. In other words, there is

an important trade-off between location privacy and utilization of the system under

a PoL. We develop our solution based on the hypothesis that to protect the privacy

of a sensitive location, a mobile user must keep silent in the network. However,

remaining silent infinitely results in location privacy of 100% but a system utilization

of 0%. On the other hand, if the user uses the system at a nearby insensitive location
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for a short time, then using the time reachability based spatiotemporal correlation,

defined by Equation1.5, a malicious authority can reduce the number of potential

locations as a mobile user’s real location. Thus, we formulate our problem as a two-

objective optimization problem: one objective is to remain silent to minimize the

number of locations with Priu(li) = 1, and the other is to maximize the utility of the

system. To solve the problem, we propose BlockPriv, a silence based obfuscation

approach, which quantifies the relationship between privacy and utility to protect

sensitive locations’ privacy dynamically. We analyzed different security, privacy,

and utility aspects of BlockPriv, both theoretically and experimentally, with its

implementation. The work is accepted for publication in [SPN+19b].

1.6 Dissertation Outline

The outline of the rest of the dissertation is as follows: The review of the related

works is presented in chapter 2. The detail of our proposed delay-aware obfuscation

mechanism to preserve trajectory privacy against long-term observation-based at-

tacks is detailed in chapter 3. Chapter 4 presents our designed inference attack model

from a combination of spatiotemporally correlated geo-tagged and non-geo-tagged

contents and its countermeasure. Chapter 5 discusses the proposed lightweight

blockchain framework for mobile IoT devices. Chapter 6 covers our work on trajec-

tory privacy preservation in permissioned-blockchain. Finally, chapter 7 concludes

the dissertation with a discussion on the limitations of the proposed works and

different directions for our future works.
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CHAPTER 2

RELATED WORK

In this chapter, we delineate an overview of the contemporary works related to

this dissertation. We start with a presentation on the related works of trajectory

privacy preservation in location-based services (LBS) from the perspective of ho-

mogeneous interaction between a user and LBS. The discussion includes different

location inference models proposed in contemporary works and different classifica-

tions of the existing trajectory privacy preservation mechanisms (TPPM) according

to their characteristics. We then review the TPPMs on preserving trajectory pri-

vacy against inferences based on heterogeneous data. The review covers inferences

for checkins and (geo-tagged and non geo-tagged) photos, two of the most com-

mon means of interaction in LBS, more precisely in location-based social network

(LBSN). Another innovative and bold way of improving location privacy is the de-

centralization of the system through blockchain. This chapter covers a review of

the research on blockchain-based IoT systems, their achievements and limitations.

The review is largely focused on the management of blockchain in a lightweight

manner for resource-constrained devices; as such it portrays a classification of the

blockchain based on their reliance of the type of architecture. Finally, the chapter

reviews the research on preserving location privacy in blockchain, with a concentra-

tion on permissioned-version of it.
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2.1 Location Privacy Preservation in Location-Based Ser-

vice (LBS)

We first discuss the related works on location inference models which underline the

different threats associated with location information sharing. Then, we go trough

the different approaches that have proposed so far to preserve the location privacy

against adversarial inferences.

2.1.1 Location Inference Models

Identification and Understanding of the different threats that can damage the pri-

vacy of location information is an active research area for quite a while. These

threats include figuring out home and work places, sensitive information, and de-

anonymization of database. Majority of these works focus on the explicit location

information of the users (e.g. checkin, gps data). Krumm et al.[Kru07] analyzed

two-week GPS tracks from 172 known individuals to infer users’ home address.

Cheng et al. [CCLS11] analyzed 22 million checkins of 220,000 users from differ-

ent location-based social network, including Foursquare, UberTwitter, Gowalla, and

Gravitiy. The authors studied spatial and temporal aspects of the checkins, mobility

patterns, different factors (e.g. social status, geographic and economic constraints)

motivating the mobility, and frequently visited locations. Recently, an interesting

inference model based on visual technique is proposed by Liccardi et al. [LARC16].

Their results show that it is possible to infer workplace and home addresses at

high accuracy without using a complex algorithm. A machine-learning method for

determining the motivation behind check-ins has been developed by huguenin et

al.[HBM+18]. They analyzed a large dataset from Foursquare and results show
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that their proposed model can achieve accuracy as high as 63%. Drakonakis et

al.[DIIP19] improved the location inference models further by designing a heuristics

based on social and behavioral norms of users in twitter checkins. Their approach

achieved 92.5% and 55.6% accuracy in identifying user’s home and workplace ad-

dresses. Olteanu et al.[OHS+17] showed that even if individual’s location data is

protected, the co-location data with other users can be used to leak user’s privacy.

The study of location privacy leakage from non-geo-tagged data has gained wide

attention recently. To solve the problem of identifying locations from a non-geo-

tagged photo, the models are usually trained a machine learning model with a large

dataset of tagged photos[LBTC+15a, LBTC+15b, WKP16]. Using such a model,

given a photo, it is possible to detect the place where the photo is taken. For

instance, Google supports search by photo [goo], where a photo, without any geo-

tagged is given as an input, the search engine gives the name of the place where the

photo was taken. Similarly, location privacy leakage through linguistic analysis of

textual data (e.g. hashtags in tweets in twitter) has also gained significant attention

very recently [Zha19, RKH+19]. As an example, Rusert et al. [RKH+19] devel-

oped a spatiotemporal Naive Bayes classifier to find out location-related hashtags

in Twitter.

While all these inference models underline the location privacy issues in different

domains, a major problem is that, they are studied independently. The impact of

joining all these models to develop a more comprehensive inference model and its

impact is not studied yet.

23



2.1.2 Location Privacy-Preserving Approaches

Privacy-preserving approaches for geo-tagged data or simply location information,

can be categorized into two major classes: 1) trusted-third party(TTP) based cen-

tralized approaches, and 2) user-centric or decentralized approaches. In centralized

approaches, a TTP collects all the users’ data to provide privacy. In contrast, user-

centric approaches do not require middleware. Instead, it operates and stores the

required data on the user’s devices. In this dissertation, we focus on the following

categorization of the existing techniques: 1) pseudonym, 2) k-anonymity, and 3)

obfuscation.

Pseudonym is one of the earliest privacy-preserving approaches which replaces

the user’s real id with another one from a pool of ids[GPI15, YMH15, WYGG18,

WY19]. This pool of ids is managed either by a TTP [BSM16] or by the collaboration

of the users of the system. In a TTP based approach, a user (e.g., smart vehicle)

registers itself with the system by providing its real identification and gets a set

of pseudonyms in return [PSFK14]. Another variant is the mix-zone where certain

spatial regions are designated for pseudonym change (e.g., gas stations) [LLL+11,

BSM16]. For instance, in [BSM16], the vehicles are required to follow a certain

driving pattern and change their pseudonym in the mix-zone. These approaches

reduce the flexibility of the privacy-preservation approach as they are constrained

by the underlying infrastructure (e.g., structure of the road network). Also, an

attacker can perform statistical linkage attack by exploiting the knowledge on the

infrastructure to undermine the pseudonym changing approaches. In distributed

approach for pseudonym changing, the users collaborate with each other for sharing

their pseudonyms [GMS+13, PL15, YKH+16, ZLS+16, PLMW17, GMG18]. Such an

approach causes high computational and communication overhead in the devices.

Besides, the success of collaboration depends on the non-adversarial behavior of
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the collaborating users. Another limitation of pseudonym schemes is their limited

applicability. Many systems require the users the reveal their real identity to the

system. In such a case only conditional privacy is attainable.

Another popular approach is the k-anonymity in which user’s real location is

made indistinguishable with other k − 1 users’ real locations [GL08]. Several varia-

tions of k-anonymity have been proposed in literature, including l-diversity[MKGV07]

and personalized k-anonymity[GL08]. However, similar to pseudonym approach,

the success of these approaches either depends on an TTP or honest collaboration

of the users. The TTP, also known as anonymizer, can be an untrusted entity

who can undermine the privacy of its users. The TTP can also collude with other

malicious entities to achieve financial gain. In case of collaborative k-anonymity,

some users can be unconcerned about their privacy and can conduct location in-

jection attacks by faking their location to the service provider. To address these

problems, several solutions have been proposed in literature, including providing in-

centive [YFX13, ZTZ16, WLYD17] and cluster selection based on mobility pattern

similarity[ZLZ+18].

A major improvement of vanilla k-anonymity is the dummy approach in which

k − 1 number of dummy locations are directed with the real one to a service

provider without relaying on a TTP. However, majority of the existing methods gen-

erate the dummies at random [LJY08]. V-circle, V-grid [NZLL14], DLS, enhanced-

DLS [NLZ+14] methods improve this limitation by considering probability of submit-

ting queries from locations. These approaches further improved by MaxMinDistDS

[CS16] and k-DLCA [LHA+16] with the introduction of l-diversity over the set of se-

lected dummies. However, most of the existing methods consider only single queries;

thus, cannot protect privacy for frequent and continuous queries. Recently, Liu et

al. [LLL+17] propose a dummy generation algorithm based on spatiotemporal cor-
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relation of the locations. Specifically, they consider time reachability, direction sim-

ilarity, and in and out degree. However, this approach is computationally expensive

and it cannot protect privacy for frequently visited places.

Another alternative is the Spatial Obfuscation which replaces user’s real loca-

tion with a larger concealing region, CR [ACdVS11, LJY08, SJZ+17, GDSB16,

AHHH16]. Earlier methods concentrate only on minimum privacy area requirement

for a CR, [LJY08, ACdVS11] without considering any information related to users

and therefore, are highly vulnerable to attacks based on such information. A promis-

ing approach is the PROB framework [DBS10] which translates the locations into

features and allows users to assign sensitivity levels for each feature. It enlarges the

user’s region until sensitivity is reduced to a certain threshold. This framework eval-

uates the privacy level in terms of region area and thus some locations can be sorted

out using information of map or historical data. Another interesting method is the

n-CD framework [LSTL13], in which the user’s circular region of interest (ROI) is

divided into n equal sectors and each sector is covered with a concealing disk (CD).

It measures the privacy only using the area of the intersecting regions of all CDs.

Although a variation of n-CD method is proposed [LHA+16], none of them take

into account user’s individual information to evaluate the achievable privacy from

that region. Recently, Ghinita et al. [GDSB16] extended the PROBE framework for

continuous queries by considering user’s maximum velocity in free space to generate

CRs. In the case of successive queries, if it is not possible to submit a CR in current

time, they propose either to delay CR submission or submit a CR without contain-

ing the user’s current location but closer to the previous CR. However, both meth-

ods reduce the quality of services(QoS) with high delay or failure to satisfy user’s

query. A promising obfuscation method is proposed by Ağir et al.[AHHH16], which

uses Markov chain to generate the obfuscated region. However, with the reduction
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in the location precision, obfuscation mechanisms lower the quality of services as

well. In recent years, differential privacy[Dwo11] has gained ground in trajectory

privacy-preserving obfuscation approach design. Andreś et al.[ABCP13] proposed

Geo-Indistinguishability where statistical noise from Laplace distribution is added

to the actual location to obfuscate it and ensures that an noisy location has the

same probability to be generated from geographically close any two locations. Most

important difference between differential private mechanism and other approaches

is that it is an property of the mechanism not of the output. Differential privacy for

location privacy is further improved by taking into consideration the temporal cor-

relation between locations [XX15, CYXX17], and geographic and semantic features

of real location traces [BS16]. Yu et al.[YLP17] proposed an personalized differen-

tial privacy preserving mechanism by combining both geo-indistinguishability and

adversary’s expected location inference error.

If we look into the location privacy issues with non-geo-tagged data, there have

been proposed some solutions to deal with such privacy issues. Li et al.[LSL+19]

proposed HideMe plugin to intelligently hide a person’s photo before it is uploaded

to the social network. In the process, the authors considered temporal, spatial,

interpersonal and attributes of photo sharing and combine it with face matching

algorithm. The hiding or Perturbing portion of the image [HLB+15] is in fact one of

the most studied solution in privacy-preserving photo sharing. Moving forward, in

case of privacy leakage from textual data, some solutions have also been proposed to

patch the privacy leakage. Tagvisor[ZHR+18] proposed three obfuscation approaches

for protecting location privacy in case of hashtags: deletion or not publishing the

hashtags, replacement of the original hashtag with another one, and replacing the

location information with semantically broader category.
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2.2 Blockchain for Internet of Things (IoT)

Understanding the limitations of the centralized model of IoT, recent research has

shifted to develop decentralized architecture based on blockchain. The existing re-

search efforts can be categorized into devising approaches to integrate blockchain

into IoT using existing robust storage and computing resources [XZN+17, PWH+18,

XFW+18, WvB14]. The research approaches have focused on node authentication

and access control [NXN+07, ZN+15, Axo15, NXN+18, XCBC18, Nov18, OBS18,

XNC+19, XCBC19], scalable data provenance methods[SRK+17, TSL+19a, ASN+19],

trust management [MDB17, DGP17, YWN+18, AKKH18], information sharing frame-

work for network systems [ARNK19], different security vulnerabilities in blockchains

and their countermeasures [CPNX19, SSN+19, TSL+19b, SNKM19], and providing

decentralized privacy in IoT systems [RNKK18, AMM+18, CVPC19, DKJG17]. The

majority of these works have one thing in common: they either simply considered

that IoT devices are equipped with enough storage and computing resources to hold

and process blockchains, or utilized high end edge computing devices to manage the

blockchain. The assumptions of having enough resources is hard to get on with IoT

devices, making the applicability of the research works based on such assumptions

questionable. For instance, trust and authentication management for wireless sen-

sor networks using blockchain was proposed in [MDB17] without hinting how the

sensors will manage the blockchain on their own local space. Likewise, the Block-

VN architecture for distributed transport management system [SMP17], based on

a permissioned blockchain, considered that at least some portion of the vehicles

are capable of storing and processing an ever-growing blockchain. Another exam-

ple is the IoT-based Machine-to-Machine payment system, known as IOTA [Fou18].

IOTA uses proof-of-work consensus protocol, which makes the new block creation
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task both computationally expensive and time consuming. Thus, in IOTA the hard-

ware requirement is too high and it is hard to meet such requirement for IoT sensor

nodes.

Realizing the resource issues of the IoT devices, many research works proposed

to offload the blockchain onto edge computing devices. The SpeedyChain[KXN+18]

data sharing framework for intelligent vehicles suggested to use roadside infrastruc-

ture units (RSIs) to maintain blockchain. The RSIs are responsible for trust and

authentication management, and trusted vehicles, verified by the RSIs, can append

block to the blockchain. In a similar way, a Roadside Units (RSU) based blockchain

trust management for vehicular network was proposed in [YYL+18]. In this work,

each vehicle generates a rating for its neighboring vehicles and share the rating with

nearby RSU. With all the most recently received ratings, RSUs calculate the trust

value offsets of involved vehicles and gather these data into a block. In order to insert

the new block into the blockchain, the authors proposed a combination of proof-of-

work and proof-of-stake, improving each other. In contemporary works, Xiong et

al.[XZN+17, XFN+17] proposed to deploy multiple access mobile edge computing de-

vices to carryout the computationally expensive proof-of-work and introduced game

theoretic approach for edge computing resource management. In these works, the

sensors are considered as ordinary nodes, and the edge devices are responsible for the

blockchain operations. The “EdgeChain” framework [PWH+18] extended this idea

by introducing credit-based resource management system to control the edge server

resource consumption by an individual IoT device. In [Nov18], a smart contract-

based access mechanism was put forward with the aim of simplifying the process

of blockchain management and reducing the communication overhead between the

nodes. In this mechanism, the IoT devices are kept out of the blockchain as they

cannot hold a large blockchain. Rather, a special node called management hub is
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proposed to put as a link between IoT devices and blockchain. A blockchain frame-

work was proposed for smart homes[LMNZ18], where the information produced by

smart home devices are stored in the blockchain. In this architecture, the blockchain

is maintained in the gateways and is isolated from the devices. Similar to the other

works on blockchain based Internet of Vehicles, kang et al. [KXN+18] also con-

sidered RSUs as edge computing infrastructures for blockchain management. This

approach utilized a modified Delegated Proof-of-Stake (DPoS) consensus scheme

where instead of stake-based voting, reputation is used for miner selection.

It is evident that all these approaches tried to solve the storing and processing

heavyweight blockchain problems by employing more powerful computing devices

in the architecture. However, such structured deployment is hardly achievable, as

the network topology is prone to changes very frequently in many IoT scenarios.

One viable solution to make blockchain “manageable” for sensors without using

any edge or other devices is limiting the size of the blockchain. The “temporal

blockchain” [DOA16] proposed a solution based on such concept. It was proposed

to delete all the blocks older than a preset period (e.g. 30 days old). While this

approach can reduce the size of the blockchain, it still lacks in guaranteeing limited

storage capacity with the growth of the network in the long-run in IoT scenario.

Moreover, how to deal with the loss of information due to the deletion of blocks was

not addressed.

This study highlights that existing blockchain frameworks lack a clear under-

standing of the resource management issues for blockchain in IoT scenario. Lack of

such understanding makes the frameworks highly impractical for IoT. The research

on blockchain and IoT has a long way to go, and we emphasize that before taking

further steps, we must have an efficient approach to make blockchain lightweight

and scalable for IoT sensors.
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2.3 Location Privacy Preservation in Blockchain

The goal of the existing trajectory privacy-preserving mechanisms (TPPMs) is to

apply them to a node’s current location before revealing it to the central authority.

As an example, In case of pseudonym, before revealing the location, the mechanism

changes the id of a node to make it untraceable [YMH15]. These approaches de-

pend a trusted third party (TTP) to carry out the pseudonym changing steps. This

is similar to the mixing approach[BNM+14] used in blockchain to improve privacy

by changing the public key of a mobile node with a random public key such that

the probability of linking multiple transactions will be reduced. However, in a per-

missioned version blockchain where short-range communication between the mobile

devices form PoL for their whereabouts in spatiotemporal domain, such approach

will not work.

Perturbation mechanisms, such as geo- indistinguishability [ABCP13], add sta-

tistical noise to a node’s real location. Obviously, under a PoL, such mechanisms

have limited impact [MDS+18]. On the other hand, spatial obfuscation reduces the

precision of the actual location before releasing it to the authority. This is either

done by infusing more locations or replacing the actual location with a realistic larger

region. Similar to location perturbation, location obfuscation works only at a lim-

ited scale under the PoL. In a nutshell, the existing privacy preserving mechanisms,

designed for centralized IoT systems, cannot be applied directly in the problem that

we are trying to solve here.

In the scope of blockchain, the frequent change of public keys is the most ex-

plored solution to preserve the privacy[ZN+15, DSKJ17, SK17]. As an illustration,

Dorri et al. [DSKJ17] proposed Lightweight Scalable Blockchain (LSB) architec-

ture for smart-vehicle ecosystems. Here, each node uses a fresh unique public key
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while communicating with other nodes to prevent linking attacks. In blockchain

based centralized proof-of-location (PoL) generation, Brambilla et al.[BAZ16] also

proposed to change the public keys frequently to preserve node’s sensitive location

privacy while generating proof of locations. Michelin et al. [MDL+18] proposed

permissioned blockchain based SpeedyChain framework for vehicular network sce-

nario. Similar to most of the other works in this context, SpeedyChain considers

the fixed positioned roadside infrastructure units (RSIs) as the key to maintain the

blockchain. Different from bitcoin or ethereum like blockchains, here, for each ve-

hicle there exist exactly one block in the blockchain. In order to maintain privacy,

this framework proposes the timely changing the public key of each vehicle. How-

ever, these frameworks do not fit completely into the scenario, considered in this

paper, where the authority of the blockchain controls the private and public key

distributions to the mobile nodes in the system.

From the perspective of efficacy, it is found that changing the public keys is not

quite as bulletproof as expected[KKM14, BKP14]. The deanonymization of bitcoin

users have gained significant attention from both law enforcement and security and

privacy communities. As an unregulated market, it is estimated that almost half

of the bitcoin transactions are related to illegal activities (e.g. illegal drug sales,

ransomware)[FKP19]. Research efforts show that it is possible to map the public

keys of bitcoin users to their unique identities (e.g. Ip addresses) [KKM14, RDJK18].

Such as, Roulin et al. [RDJK18] proposed an deanonymizing algorithm by exploiting

only the input and output transactions of mixing services and identified a relation-

ship between the input and output addresses at a very high accuracy. Recently,

Dorri et al. [RDJK18] applied decision tree algorithms on smart home devices’ data

(e.g. smart things, nest smoke alarm) by utilizing off-chain information to classify

IoT devices for understanding user’s activity pattern. While the work is done in
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smart home scenarios, similar to inference and and deanonymization can be done

in the context of the mobility of the IoT devices. All these deanonymization works

highlight that simply changing the public keys frequently is not the ultimately so-

lution to provide privacy in the blockchain, even in the public version it.

Moving forward, our work is focused on a authority-based permissioned blockchain

where privacy is tougher to acheive by default. It is closely related to the work

proposed by Li et al.[LLC+18] for the context of vehicular network. Using their pro-

posed framework, it is possible to achieve only conditional privacy as the trace man-

ager can track anyone at anytime, if necessary. Similar to this, Yang et al.[YYL+18]

presented a blockchain-based decentralized trust management framework for vehi-

cles where each vehicle is registered with the system using its VIN number. Thus, it

is only possible to achieve conditional privacy in this framework. Likewise, Sharma

et al. [SC18] proposed a permissioned blockchain by incorporating traceability fea-

ture while maintaining privacy in Internet of Vehicle (IoV). However, they used a

server for vehicle registration which would store all vehicle id in encrypted scheme

and central authority can track any vehicle when needed.

To achieve complete location privacy, Yang et al. [YZL+19] proposed an obfus-

cation approach to protect location privacy in private blockchain for crowdsensing

applications. In this work, a worker submits an obfuscated region to the system

to protect exact location’s privacy. However, in case of P2P communication of the

nodes, such approach cannot be applied without the collaboration of the nodes. Jia

et al. [YYL+18] designed a blockchain-based incentive mechanism for crowdsensing

applications with a focus on preserving location privacy of the users. In their frame-

work, a confusion layer was proposed in which a user’s location is encoded in such a

way that it can be confused with k− 1 other users’ locations. While this could be a

solution to protect location privacy, it requires honest collaboration of other users.
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CHAPTER 3

PRIVACY PRESERVING MECHANISM FOR CONTINUOUS

LOCATION SHARING IN CENTRALIZED INTERNET OF THINGS

(IOT) SYSTEMS

The ubiquitous use of Location-Based Services (LBS) through smart devices pro-

duces massive amounts of location data. An attacker, with access to such data, can

reveal sensitive information about users. In this chapter, we study different location

inference attacks based on the probability distribution of historical location data,

travel time information between locations using knowledge of a map, and short and

long-term observation of privacy-preserving queries. We show that existing privacy-

preserving approaches are vulnerable to such attacks. In this context, we propose

a novel location privacy-preserving approach, called KLAP, based on three fun-

damental obfuscation requirements: minimum k-locations, l-diversity, and privacy

area preservation. KLAP models a user’s preference for different locations based

on the historical data available on the LBS and can attain personalized privacy-

preservation by utilizing such a model for sporadic, frequent, and continuous LBS

use cases. Specifically, KLAP generates a secure Concealing Region (CR) to obfus-

cate user’s location and directs that CR to the service provider. For the first time,

we propose a CR pruning technique to improve the delay between successive CR

submissions significantly. We evaluate KLAP with two real-world datasets, and ex-

perimental results show that it can achieve better privacy, reduced delay, lower com-

munication, and storage cost compared to existing state-of-the-art methods. The

highlights of our contribution are as follows: 1. An obfuscation approach, named as

KLAP, is proposed to protect location privacy against attacks based on the prob-

ability distribution, personal context, real-time traffic information, and short and

long-term observation of obfuscated trajectories. 2. A concealing region (CR) prun-
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ing technique is proposed which presents a significant improvement over delay-based

approaches with a negligible reduction in privacy. To the best of our knowledge, this

is the first technique to deal with the delay in privacy-preserving Location-Based

Services. 3. We carry out a rigorous experiment with two real-world datasets pro-

vided by Foursquare for two cities (NYC and Tokyo). Experimental results show

that KLAP can achieve better privacy, communication, and storage efficiency for

sporadic, frequent, and continuous queries compared to existing approaches.

This chapter is organized as follows. section 3.1 presents the background of

the problem that we are trying to solve in this chapter and section 3.2 discuss

the detail of the problem. Sections 3.4 and 3.5 present the detail of the proposed

privacy-preserving mechanism and its security analysis, respectively. The experi-

mental analysis is covered in section 3.6. Finally, the chapter is concluded in section

3.7.

3.1 Introduction

Location-Based Services (LBS) have become an integral part of our smart life. Ac-

cording to Statista, the number of LBS users in the U.S. is approximately 197

million, with expected growth to 242 million by 2018 [Sta17]. A typical example of

LBS use is point of interest (POI) search to obtain locations of restaurants, gas sta-

tions, movies, location-based coupons, and other consumer information. The query

process poses severe threats to user’s privacy which could lead to flooding users

with personalized innocent location-based advertisements to more severe exposure

such as revealing a user’s interests, home address, relationships and more. For ex-

ample, Liccardi et al. [LARC16] used a visual technique on Twitter data to show

that people’s most frequent and private locations, such as work and home, can be
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deduced using only a small sample of location points (1-day worth). This highlights

the vulnerability of location privacy in LBS, making this a highly critical issue.

Many approaches have been proposed in the literature to preserve users’ privacy

in LBS, including the class of user-centric approaches, which work on user’s devices

(e.g., smartphones, on-board unit (OBU) of smart vehicles, and smartwatches). One

popular user-centric privacy-preserving approach is the position dummy which di-

rects k−1 fake locations along with the original location to the LBS [HSI+16, LJY08].

Therefore, the maximum achievable privacy is 1
k
. However, the majority of the pro-

posed dummy based approaches focus on single queries and do not consider the his-

torical information related to users. Consequently, these approaches are vulnerable

to a variety of attacks derived from historical and spatiotemporal information. Re-

cently, a good number of works to generate dummy location using the notion of dif-

ferential privacy have been proposed, which aim to make the dummy generation pro-

cess ‘independent’ from the attacker’s knowledge[ABCP13, BCP14]. However, they

are still vulnerable to inferences based on historical data and spatiotemporal correla-

tion. Another category of user-centric approaches is the disclosure of locations with

reduced precision, called location obfuscation [LSTL13, XX15, SJZ+17, GDSB16].

The idea is to replace a user’s precise location information with a larger region, called

the concealing region (CR), with a compromise of Quality-of-Service (QoS). Unlike

many other approaches, obfuscation approaches can be implemented in a variety of

applications, including real-time navigation, POI search, and social network check-

ins[LARC16]. However, similar to other approaches, existing obfuscation techniques

also cannot guarantee strong privacy. In this chapter, we study the limitations of

existing obfuscation-based location-privacy preserving approaches and proposed an

obfuscation technique which is comparable with existing approaches regarding pri-

vacy preservation, delay management, and communication.
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Figure 3.1: Location inference attacks considered In this chapter: (a) Map, probability
distribution, and personal context linking attacks on single query, (b) region intersection
attack on multiple short-term queries, (c) Real-Time Traffic Information (RTTI) based
time-reachability, or maximum movement-boundary based attack, and (d) long-term ob-
fuscated location tracking attack.

3.2 Motivation and Problem Statement

In this chapter, we assume an adversary has access to the following information.

Information 1: user’s historical queries to a Location-Based Service. Information 2:

Knowledge of the map and Real-Time Traffic Information (RTTI) of the road net-

work. Using this information, we study the following problems of existing obfusca-

tion methods against such an adversary. First, many of the existing obfuscation

techniques generate CRs at random, without considering any prior related to the

user[LSTL13, SJZ+17]. Thus, from a given random CR0, an adversary with Infor-

mation 1 can exclude some locations (the dark regions in Figure 3.1(a)) for having

very low probability to be the user’s location and finds a smaller region, CR′0. Sec-

ond, majority of the methods focus on single query, and thus fail to provide privacy

for multiple queries. Let us consider again, a user submitted multiple queries with

different CRs in a short-period of time (Figure 3.1(b)). The time difference be-

tween the queries are small enough such that an adversary can guess with high
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confidence that the user’s location did not change significantly between T0 and T2.

Thus, it can compute the intersection of those CRs and find a smaller region(the

shaded region in the figure) containing user’s real location. Third, the assump-

tion of maximum velocity based free space movement[GDSB16] is unrealistic, as

user’s mobility is bounded by road networks and its condition in spatiotemporal

domain. In figure 3.1(c) a user issued two CRs, CR0 and CR1, at time T0 and

T1, using a maximum velocity based movement method [GDSB16]. However, using

information 2, an adversary can exclude some locations in CR0 from which it is not

possible to reach any location in CR1 in (T1 − T0) time interval. It can also ex-

clude some locations from CR1 to which it is not possible to reach from any location

in CR0. Fourth, they cannot guarantee privacy for frequently visited locations in

the long run. Let us consider four different obfuscated trajectories were published

in 〈T0,T1〉, 〈T10,T11〉, 〈T52,T53〉, and 〈T60,T61〉 timestamp (Figure 3.1(d)).Through

careful observation, the adversary can find that the CRs at T1,T11,T53, and T60

were generated for a single location. Thus, it can compute the intersection of those

CRs to get finer detail of that location. Motivated by these four limitations, in this

dissertation, we seek answer to the following question,

How can the personalized historical mobility information, information on the

privacy-sensitive locations, and a visit frequency of the locations will help to de-

sign an obfuscation mechanism to prevent against long-term observation attack with

improved quality-of-service (QoS)?

We hypothesize that, modeling of a user’s preference to different locations based

on his/her historical data, a classification of the locations based on his/her visit

frequencies, and a controlled relaxation of privacy requirements for infrequent lo-

cations will allow an obfuscation mechanism to mitigate in the process of privacy-

preservation against long-term observation attack with reduced QoS loss.
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Table 3.1: Table of Symbols

Symbol Description Symbol Description

OA User’s location at time TA Pi Location i’s popularity

Bui User u’s bias towards loca-
tion i

Sui user u’s preference for i

R radius of privacy generating
region(PGR)

α privacy area factor

δt Delay tolerance threshold λ privacy level deviation con-
trol factor

CR Concealing region W List of related locations to
construct CR

ECR privacy level of a CR type(i) type of location i

r radius of Region of Inter-
est(ROI)

C A CR’s vertices

3.3 Background

In this section, we first discuss some necessary concepts related to the work presented

In this chapter. Then, we present the proposed system model, including the attack

strategies of an attacker to undermine trajectory privacy. The important symbols

used in this chapter are listed in table 6.1.

3.3.1 Fundamental Concepts

1. User’s Preference, Sui : A user u’s preference Sui for a location i depends on

two factors: popularity of the location [NLZ+14], and user’s bias in favour of the

type of location i. We define preference Sui as follows,

Sui = Popularity, Pi × Bias, Bui (3.1)

Where, Pi =
#of queries from i

#of queries in the LBS
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Bui =
#of u’s queries from all the locations of type(i)

#of queries in the LBS

2. Accessible, Related, and Reachable Locations: A location i is acces-

sible if Pi > 0; otherwise it is inaccessible . An accessible location i, is related to

a user u, if, in terms of preference, it is considered to be close to the user’s locations

and is used to present user’s location in the CR. A location B is reachable from

location A if it is possible to reach B from A in (TB − TA + δt) time using a real

road network. Where, TA and TB are the timestamp of publishing locations A and

B, respectively. δt is a delay tolerant threshold which either could be set by the

user or the system. For example, δt = 1 minute means there could be maximum 1

minute delay between query generation and query submission.

3. Privacy Settings: In our approach, we use minimum required area, A,

of a concealing region, CR, as the primary parameter to generate a CR. How-

ever, this approach requires detail information of map, incurring high space and

computational complexity [GDSB16], and cannot always guarantee desired privacy

[LSTL13]. Thus, besides area, we incorporate two other privacy requirements: k

and l, to define minimum number of related locations and minimum diversity of the

selected related locations in the CR, respectively. We also realize that in the case of

continuous queries, it may not always possible to meet a hard privacy requirements.

Regarding this, we define two privacy settings:

Expected privacy, privE = 〈AE, kE, lE〉 and

minimum privacy, privmin = 〈Amin, kmin, lmin〉. Where, privE > privmin. The pro-

posed approach first selects privE to generate a CR. If it fails then it selects privmin.

4. Secure Concealing Region CR: A CR is a convex hull of a set of selected

related locations, W, such that it covers user’s real location. Given privacy settings,
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privE and privmin, a CR is said to be secured if

{Area(CR) ≥ AE ∧ |W| ≥ kE ∧ |type(W)| ≥ lE} or

{Area(CR) ≥ Amin ∧ |W| ≥ kmin ∧ |type(W)| ≥ lmin}
(3.2)

5. Privacy Generating Region(PGR), Settings of Privacy Parameters,

and Frequently Visited Places: To have a bound to generate a CR, a disk with

radius R, centered at user’s location O, is considered as Privacy Generating Region

(PGR) such that, the generated CR falls entirely inside of PGR. Here, the value ofR

is defined by KLAP and can be changed by the user. To set the minimum required

area A of CR, a user uses α as a factor of R such that, A = π(R
α

)2(1 ≤ α ≤ R). We

also assume that the users will identify their frequently visited places, e.g. home,

work, favorite coffee shop, and so on.

6. Delay in CR Submission: Let us consider a user moved to a new location

in (TB − TA) time and the minimum required time to submit a secure CR to the

LBS is T′B. If T′B > (TB − TA) + δt, then we call it delaying the CR submission.

3.3.2 Privacy Evaluation

We measure the privacy as the uncertainty in identifying real location for an adver-

sary [NLZ+14]. From a given CR with the list W of all the related locations, the

privacy level, ECR, is computed as follows,

ECR = −
∑
i

S i log2 S i; where, S i =
Sui∑
i Sui

;∀i ∈W (3.3)

3.3.3 Problem Formulation

Based on privacy level and delay, we formulate the problem of generating a secure

concealing region CR as follows according to the fact that, on the one hand, we
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Figure 3.2: Proposed system model

want to generate a CR with maximum privacy level, on the other hand, we want to

select the one with minimum delay to reach from previous CR.

maximize{privacy level ECR,
1

edelay
}

s.t. ECR ≥ λEBase; {λ ∈ R>0|λ ≤ 1}

delay ≤ δt; {δt ∈ R>0|δt > 0}

{α, k, l ∈ Z+|(1 ≤ α ≤ R) ∧ (k ≥ 2) ∧ (1 ≤ l < k)}

(3.4)

Here, EBase is the privacy level of a baseline CRBase and λ is a privacy level deviation

control factor. Certainly, we want to make the value of λ as close as 1. From the

experiment, it is observed that λ can be as large as 0.9. Note that, both λ and δt

are system controlled parameters. On the other hand, α, k, and l are related to the

user.

3.3.4 System Model

1. System Model

The general framework of a LBS system comprises a service provider and many

mobile users. We assume that the users are registered to the system with a unique

id, u. Our proposed framework, KLAP, resides in user’s device (Figure 3.2). To

find information about POIs of specific type ρ within a ROI with radius r, a user

submits a query as follows, Query0 = 〈u, 〈(x, y), r〉, ρ〉. Where, O = (x, y) denotes

the user’s original location in terms of latitude and longitude. Using the parameters
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for A, k, and l; the user generates a CR using KLAP algorithm. Then, the original

query Query0 is replaced by, Query′ = 〈uid,CR, r, ρ〉. Instead of Query0, Query
′ is

submitted to the LBS. Then, the LBS performs range query on the CR to find the

POIs of type ρ, and sends them to the user.

2. Adversary Model

We consider an adversary knows information on users’ historical queries. We also

assume that the adversary knows how KLAP works but does not know the privacy

parameters. Based on the available information, it can perform the following attacks

to infer the user’s location at a finer level.

a) Context linking attacks using knowledge of the map, popularity, and user’s

preference.

b) Region intersection attack on short-term multiple queries.

c) Real-Time Traffic Information (RTTI) based maximum movement boundary

attack.

d) Long-term obfuscated location tracking attack.

3.4 Proposed Delay-Aware Privacy Preserving Approach

In this section, we describe the computational details of concealing region (CR)

generation algorithm in KLAP. Based on the input, consists of privacy settings

privE and privmin, previously published CRA for a location OA at time TA, set

(
⋃

x CRx) of all CRs for frequently visited places, user’s current location OB at

current time TB, the process of CR generation in KLAP comprises the following

steps:
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Algorithm 1: KLAP algorithm

Data: Previous CRA at time TA, current time TB, user’s current location
OB, privE, privmin, R, set (

⋃
x CRx) of all CRs for frequently

visited places, δt, λ, user’s preference for all the locations S, m
Result: Final concealing region CR

1 if OB ∈ CRA then
2 Return CRA

3 if OB ∈ CRB //CRB ∈ (
⋃

xCRx) then
4 delayi ←delay between CRA and CRB using Equation 3.7
5 if (delayi > δt) ∧ CRA is not for frequent place then
6 CR−A ← Prune CRA by excluding the related locations with

delay(a ∈ CRA,CRB) > δt
7 delayi ←delay between CR−A, and CRB using Equation 3.7

8 wait delayi amount of time and Return CRB

9 Select all the locations with Su
i > 0 from the region

(PGR \ {CRA ∪ (
⋃

x CRx)}) in a list, Loc
10 if (|Loc| ≥ mk) ∧ (|type(Loc)| ≥ ml) then
11 A, k, l← AE, kE, lE

12 else
13 A, k, l← Amin, kmin, lmin

14 Compute the absolute difference of the locations with OB in terms of
preference and sort them.

15 Seed← {k random contiguous locations from sorted list which includes
OB}

16 〈CRBase,EBase〉 ← Generate-CR(OB)
17 List-of-CR ← ∅
18 for (i = 1; i < k; i++) do
19 〈CRi,ECRi

, delayi〉 ← Generate-CR(seeds(i))
20 if ECRi

≥ λEBase then
21 Put CRi into List-of-CR

22 CRf, delayf ←Select the CR with minimum delay
23 wait delayf amount of time and Return CRf

1
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Algorithm 2: Generate-CR

Data: seed, r,A, k, l,m,S,OB,CRA

Result: CR, ECR, delay.
1 Select all the locations with Su

i > 0 from the region
(PGRseed \ {CRA ∪ (

⋃
x CRx)}) in a list, Loc

2 Compute the absolute difference of the locations with seed in terms of
preference and sort them.

3 LCL← {first l-type locations from the sorted list} ∪{first mk locations
from the sorted list, including OB}.

4 SLCL← Sorted LCL based on the locations’ geographical distance with
OB, in ascending order.

5 W← first k-locations from SLCL including OB; then delete them from
SLCL.

6 while |type(W)| < l or Area(Convex Hull of W)< A do
7 W←W ∪ SLCL(1)
8 delete SLCL(1) from SLCL

9 CR← Convex Hull of W
10 delay ←delay between CRA, and CR using Equation 3.7
11 if (delay > δt) then
12 CR− ←Prune CR by excluding all the related locations with

delay(CRA, b ∈ CR) > δt
13 delay ←delay between CRA, and CR− using Equation 3.7
14 if (delay > δt) then
15 CR−A ← Prune CRA

16 delayi ←delay between CR−A, and CR− using Equation 3.7

17 CR← CR−

18 ECR ← compute privacy level of W according to Equation 3.3
19 return 〈CR, ECR, delay〉

2
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In CR Test: If user’s new location OB remains within CRA then use it as the new

CR (lines 1-2 of Algorithm 1).

Frequently Visited Place Check: If OB is in CRB, a previously published CR

for a frequently visited place, then use it as the final CR and skip steps 3, 4, 5, and

pruning of it in step 7. Moreover, if OA is a frequently visited place, then also skip

pruning CRA in step 7 (lines 3-9 of Algorithm 1).

Seed Selection: First select all the locations with Sui > 0 from the region (PGR \

{CRA ∪ (
⋃

x CRx)}). Recall that, PGR is actually a circle with radius R, centered

at OB. Then, for each location, compute the absolute difference with OB, in terms

of preference; and sort them based on that difference. From the sorted locations,

select a list of locations as seeds as follows: seeds = {k random contiguous locations

from the sorted list which includes OB} (lines 9-15 of Algorithm 1).

One can argue that, we can consider OB as the only seed to generate the CR.

However, it can leak user’s privacy in two ways. First, locations are static and

probabilities and preference do not change significantly over a long period of time.

Thus, an adversary can apply reverse engineering process on a CR to map for which

original location the vertices of that CR were generated and if there is only one such

location is found, it is the user’s original location. Second, as the CR was generated

based on a fixed PGR, the adversary can perform geometric operations to shrink

the CR.

Candidate Location Selection: For each seed, seedi, consider a PGRi, and select

all the locations from the region (PGRi \{CRA∪ (
⋃
x CRx)}). Again, compute their

difference in preference with OB; and sort them. From the sorted locations, select

a list of candidate locations with {first mk locations} ∪ { first ml type locations}.

Where, m ≥ 2. Afterwards, calculate the physical distance of candidate locations

from OB, sort them, and store in a list LS (lines 1-4 of Algorithm 2).
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CR Generation: From LS, select first k locations in a list W. Check if,{(|type(W)| ≥

l) ∧ (Area(convex hull of W) ≥ A)} (lines 5-9 of Algorithm 2). If not, select more

locations from LS in similar way in W. For consecutive queries, it may not always

possible to generate a CR with privE. Thus, first check if it is possible to generate

a CR with prevE; if not, select privmin (lines 10-13 in Algorithm 1).

Time Reachability based Delay Calculation: For the generated CRi, compute

the (possible) delay from Real-Time Traffic Information(RTTI) based time to reach

from CRA to CRi as follows:

RTTI(a ∈ CRA, b ∈ CRi) = minimum required time to move from a to b (3.5)

delay(a ∈ CRA,CRi) =


0, if(TB − TA) ≥ min(RTTI(a,∀b ∈ CRi))

(TB − TA)−min(RTTI(a,∀b ∈ CRi)), otherwise

(3.6)

X(m,n) = max

 min(delay(∀a ∈ CRA,CRi)),

min(delay(CRA,∀b ∈ CRi))

 (3.7)

Delay Management using CR Pruning: If delay > δt, one straightforward

solution could be postponing the CR submission for at least delay amount of time

or generate a CRi closer to CRA without containing OA[GDSB16]. However, this

approach incurs reduction in quality-of-service. Thus, to deal with delay, we propose

a CR pruning approach. To prune a CR, first identify the related locations causing

the delay and then exclude them from it’s list of related locations. If the new CR,

reduces the delay then use that as new CR. Figure 3.3 depicts an example for

CR pruning where WA and Wi are the lists of related locations of CRA and CRi,

respectively. In detail,

47



Figure 3.3: CR pruning example with δt = 1 minute: Each entry refers to the
delay(in min.) to reach from WA(m) to Wi(n). To reach from WA(2) to any
location in Wi minimum (TB − TA) + 2.3 minutes are required. On the other side,
to reach Wi(2) from any location in WA minimum (TB − TA) + 2.6 minutes are
required. Thus, we exclude both locations from Wi and WA, respectively, to get
pruned CRs.

a) First prune CRi and compute the delay. If it reduces the delay, then use the

pruned version as CR.

b) If the pruned CRi’s delay regarding CRA is still greater than δt, then, also

prune CRA. Afterwards, for each seed, store the following information: {CR−i ,

ECR−i
, delay}, where CR−i is the pruned version of CRi.

Note that, one can argue to compute the delay to reach all the locations in

(PGR \ {CRA ∪ (
⋃
x CRx)}) from CRA in advance, and select locations based on

minimization of delay. However, if the number of locations inside of (PGR\{CRA∪

(
⋃
x CRx)}) is large, it is not feasible to send large volume of requests in a short-

period of time to a map service in a user-centric approach.

Final CR selection: To solve the Multi-Objective Optimization problem of se-

lecting the final CR( equation 6.4), first select all the CRs based on the following

relation, ECRi
≥ λEOB

, where EOB
is the privacy level achieved from the CR with

OB as the seed. Then return the CR with minimum delay.

48



3.5 Scheme Analysis

In this section we analyze the security aspects of our proposed mechanism KLAP.

In particular, we discuss the impact of real-time traffic information based maxi-

mum movement boundary, long-term obfuscated location tracking, and probability

distribution and personal context linking attacks.

Definition 3.5.1 Given two CRs, CRA and CRB, submitted at TA and TB times-

tamps, with WA and WB as their corresponding set of related locations; a RTTI

based maximum movement boundary attack on continuous queries is successful if

W∗
A ∪W∗

B 6= ∅ (3.8)

W∗
A = {∃i ∈WA|RTTI(i, ∀j ∈WB) > (TB − TA)}

W∗
B = {∃j ∈WB|RTTI(∀i ∈WA, j) > (TB − TA)}

Theorem 3.5.2 RTTI based maximum movement boundary attack does not reveal

user information in KLAP.

Proof. In KLAP, using pruning and delay, CRB is submitted only when all of its

locations are reachable from CRA. Hence, W∗
B = ∅. On the contrary, if CRA

is not for a frequently visited place and W∗
A 6= ∅, then these locations must be

excluded in the CR pruning step. That is, W∗
A does not leak any significant location

information for CRA and CRB, and therefore, W∗
A = ∅. However, if CRA is for a

frequently visited place then certainly W∗
A = ∅ through delay. Thus, RTTI based

attacks on consecutive CRs does not reveal any location information in KLAP.

Definition 3.5.3 Given multiple CRs, 〈CR0, . . .CRn〉, submitted from a frequently

visited location O on different days, a long-term obfuscated location tracking attack
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is defined as,

CRx = CR0 ∩ . . . ∩ CRn (3.9)

such that, CRx = {∃CR ∈ {CR0, . . .CRn}|(CR 6= CRx) ∧ (O ∈ CRx)}.

Theorem 3.5.4 KLAP is resilient against long-term obfuscated location tracking

attack.

Proof. KLAP learns the frequently visited locations from user’s input and once a

CR is generated for such a location, it stores that CR for future queries and skip

the pruning step for it. Thus, CRx = CR0 = · · · = CRn

Definition 3.5.5 For a submitted CR with a list of related locations W, an approach

is resilient against probability distribution and personal context linking attacks if

Pr(wi ∈ W|O ∈ W) = Pr(wj ∈ W|O ∈ W) =
1

|W|
;∀i 6= j (3.10)

Theorem 3.5.6 An attacker cannot infer user’s location using probability distribu-

tion and personal context linking attacks.

Proof. KLAP first defines user’s preference to a location based on popularity and

user’s bias to that location. Then, its seed and candidate locations selection algo-

rithm steps ensure that only the closely related locations, in terms of preference,

defines the CR. Thus, every location in W has the equal probability( 1
|W|) to be O.

3.6 Experimentation and Analysis

We evaluate the proposed KLAP framework with two real-world datasets provided

by Foursquare for NYC and Tokyo cities[YZZY15]. The important statistics of the

datasets are provided in table 3.2.

50



Table 3.2: Dataset Statistics

Dataset #Check-ins #Locations #Types #Users
NYC 227428 38333 400 1083
Tokyo 573703 61858 385 2293

(a) (b)

Figure 3.4: Locations in (a) NYC and (b) Tokyo datasets.

For each check-in we consider five information types: user id, location id, location

using GPS coordinates, location type, and time of check-ins. Figure 3.4 presents

the locations used in the two datasets. The parameters and their different values

used in the experiment are as follows: r = 1000 meter, k = {9, 17, 25, 50}, α =

{4, 10, 12}, l = {3, 5, 7},R = 1000 meter, δt = 1 minute, δ = 0.9,m = 2

In this chapter, we use the following baseline approaches for comparison:

1. Rand-CR: It Generates a random CR based on area A requirement.

2. k-DLCA: It covers user’s ROI with n-number of circles with equal radii such

that the intersection region of those circles construct a CR[LHA+16].

3. Cont-Dummy: Based on spatiotemporal correlation, this approach generates

dummies considering real-time traffic information[LLL+17].

4. NoCor-CR: This is a variation of our proposed obfuscation approach KLAP

without considering spatiotemporal correlation between the CRs.
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(a) NYC (b) Tokyo

Figure 3.5: Relationship between privacy area requirement A and k; and their
impact on privacy level ECR.

5. NoPrune-CR: This is another variation of KLAP without the pruning step.

That is, when a CR cannot be submitted in current time, it delays the process.

This approach generates a CR with privacy setting privE. This approach is

similar to PROBE under spatiotemporal constraints[GDSB16].

With different combinations of the parameters, we ran these approaches on 40

trajectories of different users from both datasets, each having ≈ 15 check-ins on

average, to generate different statistics. Without loss of generality, we use home

address of each user as the frequently visited place.

3.6.1 Privacy Level

We first evaluate the privacy level, ECR, achievable from a given CR; and the CR

depends on the three privacy parameters k, l, and A (by means of α). Obviously,

with the increase of k, ECR increases. While the parameter l ensures the required

level of diversity, we observe its little impact on the overall privacy level. Thus, we

are more interested in checking how the area requirement affects privacy in KLAP.
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(a) NYC (b) Tokyo

Figure 3.6: Comparison in terms of privacy level, ECR among different approaches. KLAP
settings: k = 9, l = 5, α = 10

In figure 3.5 we depicts the relationship between A(in terms of α), k, and ECR. Ev-

idently, with the privacy area requirement, KLAP can achieve higher privacy than

ideal privacy level with just k locations (− log2(
1
k
)). Thus, to achieve a high degree

of privacy, a user can set a higher value for A, leaving the values of k and l with

some default small numbers.

Comparison

The comparison among the mentioned approaches in terms of privacy level, ECR,

is shown in figure 3.6. k-DLCA shows the lowest value for ECR because it neither

considers user’s preference nor any privacy requirement and also, the generated CR

cannot guarantee a certain area of it. With Random-CR, it is possible to achieve

better privacy than k-DLCA and Cont-Dummy because it generates the CR ensur-

ing privacy area A. However, it does not consider the relationship between user and

locations. Although NoCor-CR improves this limitation, it cannot guarantee privacy

in continuous check-in cases. With the consideration of Spatio-temporal correlation

between successive check-ins, CR pruning approach, and (expected, minimum) pri-

vacy requirements, KLAP achieves the highest degree of privacy. More precisely, we
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(a) NYC (b) Tokyo

Figure 3.7: Impact of CR Pruning on delay management for (a) NYC and (b) Tokyo.

found only 4% and 7% check-ins in NYC and Tokyo, respectively, for which privacy

level of KLAP is less than NoCor-CR. This can also be improved by defining multi-

ple privacy settings between privE and privmin, and select the one closest to privE,

with an increase in computation cost. The oscillating nature of KLAP’s result is

effected either by regions’ location density or the CR pruning step. At regions,

where the density of locations is high, a generated CR may cover a large number of

related locations; yielding a high degree of privacy, even if k is small.

3.6.2 Impact of Pruning

Delay Management

We compare the amount of delay imposed by NoPrune-CR and KLAP in figure 3.7

to show the improvement achieved by KLAP with the pruning technique. In the

experiment we found that the delay in KLAP is always less than 1 minute. This

large improvement in KLAP is achieved with the concept of pruning and minimum

privacy, privmin settings.
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(a)NYC (b) Tokyo

Figure 3.8: (∆/ECR) based comparison among different methods for (a) NYC &
(b) Tokyo. Original-Q refers to the original query without any privacy-preservation.
For comparison purpose we use ECR = 1 for Original-Q.

Impact of Pruning on Privacy Level

In case of pruning previously published CRA, we observe a small reduction in privacy

level for CRA which is always ≤ 10% in both datasets.

3.6.3 Communication Cost

The communication cost, ∆, is computed using both of upstream, and downstream

cost[LSTL13] as ∆ = |C| + N . Where, |C| is the total number of vertices of the

CR and N is the number of POIs returned by the LBS. To measure ∆, we consider

one type of location to query. In figure 3.8, we present ∆/ECR to show the cost per

privacy level in different approaches. It is evident that to achieve 1 unit of privacy

level in KLAP; the cost is the lowest. On the other hand, Cont-Dummy yield the

highest amount of cost, indicating the advantage of obfuscation approaches over

dummy based approaches in terms of both privacy and communication efficiency.
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3.6.4 Storage Cost

In KLAP, storage cost is mainly influenced by 1) number of locations in the dataset,

2) CRs of frequently visited locations, and 3) previously published CR. Recall that,

our approach is a user-centric one. On each user’s device, for each location we

need to store {id, latitude, longitude, type, preference}. If we use flat-file to store

this information we would need no more than 200byte for each location. Thus,

it is required 8MB and 13MB for NYC and Tokyo, respectively, to store all the

locations’ information. Each CR comprises two information: its vertex list and the

ids of related locations inside of it. Even if a CR contains all the locations in city,

then it would take 1MB space for a simple file to store their ids. Therefore, if a

city has 1 million locations, then KLAP requires less than 250MB space to store

necessary information.

3.7 Discussion and Summary

In this chapter, we introduced an obfuscation mechanism for LBS, called KLAP.

Based on a user’s privacy settings, KLAP defines a concealing region (CR) to ob-

fuscate the user’s real location. Here, we made three significant contributions: first,

through the usages of location’s popularity and user’s preference, KLAP can achieve

strong privacy against personal context linking and probability distribution based

attacks; second, the utilization of real-time traffic information allows KLAP to be

practical in real-world scenarios and protect against maximum movement boundary-

based attack; and finally, with the proposed CR pruning technique, KLAP reduces

delay to a great extent compared to delay-based mechanism. Evaluation results of

privacy, communication, and storage costs, based on two real datasets, mark the

advantage of the proposed mechanism over existing approaches.
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CHAPTER 4

LOCATION INFERENCE ATTACKS ON GEO-TAGGED AND NON

GEO-TAGGED DATA AND THEIR COUNTERMEASURES

In this chapter, we study the privacy issues associated with the trajectories con-

taining both geo-tagged and non-geo-tagged data. Without loss of generality, we

limit our study to checkins and geo-tagged and non-geo-tagged photos. We propose

a probabilistic inference model by considering both checkin and photo probabili-

ties for each location. With Foursquare’s New York City and Tokyo datasets, we

first implement the inference model on three variations of dummy-based obfusca-

tion mechanisms, and show that a straightforward application of existing dummy

approaches can leak location privacy for trajectories containing both geo-tagged and

non geo-tagged data. To the best of our knowledge, this is the first work to inves-

tigate the impact of historical shared photos on location privacy. After observing

the negative impact of the inference attack, we also propose an improved version of

[NLZ+14] to negate such an inference. Our contribution also includes a visualization

technique to visual represent trajectory privacy-preserving checkins and photos in

location-based social networks (LBSN), another form of LBS.

The chapter is organized as follows. Sections 4.1 and 4.2 provide a formal in-

troduction to the problems. The necessary background information, fundamental

concepts, the proposed system and attack models are discussed in section 4.3. Fi-

nally, the proposed privacy-preserving mechanism is detailed in section 4.4. The

chapter is concluded in section 4.6.

4.1 Introduction

The advancement of location technology and smart devices is fading the gap be-

tween the physical world and online social network; making Location-Based Social
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Network (LBSN) a popular platform to enjoy different location-dependent services,

e.g., friend finder, point-of-interest(POI) search, check-in, and geo-tagged photo

sharing. There exist many LBSNs offering different services, such as Facebook,

Foursquare, and Google place. In Foursquare, more than 160 million check-ins and

5 million photos were recorded for New York City alone [fou]. While it prompts

technological and societal advantages, the vast collection of location information of

both check-ins and geo-tagged photos poses serious privacy concerns. Studies show

that it is possible to reveal a user’s home, workplace, lifestyle, health condition,

and political views. from the location information [DMHVB13, LARC16, TPI17].

For instance, Liccardi et al. [LARC16] proposed a visual technique based location

inference model, using twitter check-in data, to show that people’s most frequent

and private locations, such as work and home, can be deduced using only a small

sample of location points (1-day worth). To counter such an inference attack, several

Trajectory Privacy-Preserving Mechanisms (TPPMs) have been proposed, including

dummies-based obfuscation[LLL+17].

We identify that existing inference models, as well as TPPMs, mostly consider

only the location information. These TPPMs can guarantee strong privacy, only if

we limit inference to check-ins. However, besides check-in, photo sharing is another

prevalent form of interaction in LBSN and the impact of historical shared photos

on location privacy, specifically their distributions over locations, is not studied yet.

In this paper, we aim to show that, it is possible to design inference model to de-

duce location information in the spatiotemporal domain based on the distribution

of historical check-ins and photos. The novelty of our work is that we designed

an inference model which is oblivious to contents of the photo. We experimen-

tally show that, under specific spatiotemporal constraint, such an inference model

can be a useful tool to infer a user’s location at a higher resolution, even if its lo-
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Figure 4.1: Location inference motivation:(a) a user generates a set of locations
using an existing location-privacy preserving mechanism (TPPM) on a mobile device
(e.g., smartphone, smartwatch, and so on)to conceal her original location in a geo-
tagged photo and (b) submits them to an LBSN. (c) With access to the LBSN, an
adversary’s goal is to find a user’s original location from the location set without
processing the content of the photo.

cation information is “well” protected using an obfuscation approach. While our

analysis is concentrated on dummy-based obfuscation, it can be extended for differ-

ential privacy-based obfuscation, such as geo-indistinguishability[ABCP13], which

we intend to explore in our future work. The generic framework of the inference is

depicted in Figure 4.1. With our experimental results signifies our argument that,

for LBSs, where users interaction covers heterogeneous contents, TPPM should be

designed by considering the impact of all the type of data, not only the geo-tagged

content.

4.2 Motivation and Problem Statement

For a better understanding of how spatiotemporal analysis of the distribution of

historical photos influences location privacy, we illustrate a couple of examples in

Figure 4.2. We first discuss a more straightforward form of inference, so-called “0/1-

probability-based inference”, where an adversary checks whether a location has any

probability from where a photo can be shared. Let’s consider a user decided to
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share a check-in with a photo in LBSN. To protect privacy of current location O,

she shared O with k − 1 dummy locations using any of the dummy based methods

in [NLZ+14, NLZ+15, LLL+17, YLX+17](Figure 4.2(a)). An attacker knows that

the user is at any of the k locations, and a photo is also shared from that location.

Without considering the content of the photo, the attacker can look into the his-

torical data and can eliminate the dummies with zero (0) photo sharing probability

to infer more precise user’s location information. The definitions of check-in and

photo sharing probabilities are discussed in section 4.2. Using data, collected from

Foursquare through their public API, we apply this inference model on three differ-

ent algorithms, which generate dummies based on historical check-in distribution.

The details of the experiment are discussed in section 4.5. Figure 4.2(b) presents

results of the inference model for Random[NLZ+14] and Baseline [NLZ+15] Algo-

rithms. It is evident that overlooking the impact of photos makes these algorithms

highly vulnerable against the proposed inference model. Definitely, this inference

model can be further improved with the consideration of spatiotemporal correlation

between successive events (we use ‘event’ as the generic term for check-ins and pho-

tos). Let us consider two events, E0 (a photo without any geo information) and E1

(a check-in), generated at time T0 and T1, respectively. As both of the events are

independent of each other, one straightforward solution to protect location privacy

of E1, is to generate a set of dummies using check-in probability (Figure 4.2(c)).

However, (T1 − T0) might be small, indicating that a user’s position did not change

significantly between E0 and E1. In other words, if (T1 − T0) ≤ δ, then an adver-

sary can guess with high confidence that the user’s location remained the same and

thus can apply the discussed inference attack. Motivated by this example, we seek

the answer to the following problem: How can the incorporation of heterogeneous

contents’ information in the process of obfuscation allows a user to protect his/her
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Figure 4.2: (a) 0/1-probability based inference: User hides his location of geo-tagged
photo with 3 different dummy locations using a check-in probability-based(Pc) ex-
isting TPPM. Two of those locations have zero photo-sharing probability(Pρ)(x
marked), thus excluded by an adversary. (b) Example on real dataset: adversary’s
success rate σ(%) on Random[NLZ+14] and Baseline[NLZ+15] algorithms(using k
= 20) with 0/1-probability based inference, performed using a real dataset. (c) and
(d) Inference based on spatiotemporal correlation: Although dummy locations set
and photo are submitted in different time, as (T1 − T0) is small, an adversary can
guess with high confidence that both events were generated from the same location.
Thus, can exclude some dummies in a similar way.

trajectory privacy in the spatiotemporal domain?

We hypothesized that by considering the probabilities of content sharing at dif-

ferent locations based on their historical data and by utilizing delay and drop in the

process of obfuscation allow a user to protect his/her trajectory privacy.

That is, we argue that it is also required to consider photo-sharing probability

while generating the dummies (from our previous paragraph, it is E1) to protect

trajectory privacy. However, it is not always possible to find enough candidate

locations nearby (due to spatiotemporal and regions’ location density constraints)

with photo-sharing probability. In that case, delaying E1 can protect privacy, not

posting dummies instantly. Let us consider another example from Figure 4.1(d),

where E0 is a check-in, E1 is a photo, and E0’s privacy is protected using a set of

dummies S0, generated based on check-in sharing probability. If (T1−T0) ≤ δ, then
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Table 4.1: Table of Symbols

Symbol Description Symbol Description
O User’s real location k #of locations to hide O
L Set of all locations Pi checkin-photo sensitivity of

a location
Pc check-in probability δ permanence threshold
E Degree of privacy Pr Generic term for Pc and P
S Set of k locations including

O
m Candidate location selec-

tion parameter
σ #of dummies with zero

checkin-photo sensitivity
λ Degree of privacy selection

parameter

we argue that dropping the photo is the solution to protect privacy. However, if

(T1 − T0) > δ, then the temporal relationship between E0 and E1 does not reveal

a user’s location information, even if user’s location remained the same. Thus, the

user can safely post E1. Now, let’s consider another event E2 (a check-in) such

that (T2 − T1) ≤ δ. That is, the user’s location did not change between T0 and T2.

If we use S0 for E2, then it can leak privacy for E1 as S0 was generated based on

check-in sharing probability. Thus, we propose to select the closest location with

photo-sharing probability with a spatial error as a user’s location and generate

dummies based on that location.

4.3 Background

In this section, we describe first different fundamental concepts related to our work.

We then present the system model and attack strategies of the adversary.
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4.3.1 Fundamental Concepts

1. Event: A generic name for check-in, geo-tagged photo, and photo. An event

generated at time Tt is denoted by Et.

2. Check-in Probability, Pci If the number of historical check-ins, shared from

location i, is Ci, then Pci = Ci∑
j Cj

; ∀j ∈ L, Where L is the set of all locations.

3. Photo Sharing Probability, Pρi: If the number of historical shared photos

from location i is ρi, probability to share a photo from i is, Pρi = ρi∑
j ρj

; ∀j ∈ L

4. Checkin-photo Sensitivity, Pi: A location, loci, is said to be checkin-photo

sensitive, if Pci > 0 and Pρi > 0. Then, checkin-photo sensitivity of location Loci is,

Pi = Pci × Pρi . Thus, a location is checkin-photo sensitive, if Pi > 0.

5. Probability, Pr: A generic term for Pc and Pρ. If check-in probability is used

to generate dummies, then Pr = Pc. In case of checkin-photo sensitivity, Pr = P .

6. Timing Error: If posting of an event is delayed for certain amount of time,

then timing error occurs. It is define as, timing error = nde

n
.

7. Dropping Error: If an event (specifically, photo) is dropped without posting,

then dropping error occurs; and it is defined as, dropping error = ndr

n
.

8. Spatial Error: If instead of user’s original location, another location is consid-

ered as user’s ‘real’ location then we call such phenomena as spatial error, which is

defined as, spatial error = nsp

n
.

Here, n, nde, ndr, and nsp refer to total number of events, delayed events, dropped

events, and spatial errors; respectively.

4.3.2 System Model

Our proposed photo-check mechanism works on user’s device without relaying on

a third party. Figure 4.3 depicts the proposed system model. Based on the spa-
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Figure 4.3: Proposed system model: (a) Photo-check’s system model on user’s device
with 4 possible actions to preserve location privacy of an event, (b) visualization of
example privacy-preserved events in LBSN.

tiotemporal correlation between new and previously generated events,photo-check

selects the appropriate action from an array of 4 possible actions to preserve location

privacy. We assume that the check-in and photo-sharing probabilities are publicly

available. If an event contains dummies, user’s location is computed from the con-

vex hull of those dummies (Figure 4.3(b)). The detail of the proposed mechanism

is discussed in section 4.4.

4.3.3 Adversary Model

We consider an adversary with access to the historical check-in and photo distri-

butions. We assume that the adversary does not use any image content analysis

method to localize a user from a given photo. Instead, it considers only the proba-

bility distribution of historical check-in and shared photos to infer the user’s location.

We also assume that it has users’ approximate permanence information at different

locations. For example, Google search shows that people typically spend 15 min at

McDonald’s of 4217 Genesee St, Cheektowaga, NY 14225. Without loss of general-
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ity, we take the time difference between two consecutive events as the threshold (δ)

to determine whether a user remains at the same location.

4.4 Proposed Privacy Preserving Geo-Tagged and Non Geo-

Tagged Data Sharing Approach

Our proposed photo-check mechanism comprises two modules: privacy preservation

on an event before sending it to a LBSN and visualization of the privacy-preserved

event in LBSN.

Privacy Preservation: The main goal of photo-check is to maximize user’s pri-

vacy against an adversary while posting an event. To achieve this goal, photo-check

uses the the following 4 actions: post, delay, drop, and dummy generation.

The flowchart of the mechanism is presented in Figure 4.4. Using information of

previously posted event Eprv, user’s current event Ecur, user’s current location O,

and user’s privacy setting (number of required dummies, k) as input, photo-check

works in the following main steps:

1) Check whether Ecur contains location information(either a check-in or a geo-

tagged photo). If so, then go to step 2; otherwise go to step 5.

2) If O is not checkin-photo sensitive, then post Ecur with k− 1 dummies using Pc;

otherwise, go to step 3.

3) Check whether enough candidates (≥ mk) within the proximity of O such that

dist(O, x) ≤ R, where x is a candidate location and R is a distance control param-

eter (e.g. 1000 meter). If yes, then generate (k − 1) dummies using PO and post

Ecur. If not, go to step 4.

4) If the following condition (Eq.4.1) satisfies, delay Ecur; otherwise, generate dum-
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Figure 4.4: Photo-check flowchart. Here loc, ph, and ∆t refer to location, photo,
and (Tprev − Tcur) respectively.

mies using Pc and post Ecur with the dummies.

(((tcur − tprv) ≤ δ) ∧ (Eprv is photo)) ∨ (photo ∈ Ecur) (4.1)

The proposed dummy generation algorithm is discussed in the later part of this

paper.

5) If Eprv was a photo or dummies were not generated for it using Pc, then directly

post Ecur. Otherwise check check whether (tcur − tprv) ≤ δ. If yes, then drop Ecur.

Else, post Eprv and update current location with the closest location i with Pi > 0

such that dist(O, i) ≤ R.

Visualization in LBSN: After receiving the privacy-preserved Ecur, to visualize

it, the LBSN works as follows. First, check whether Ecur contains a set of dummies.

If so, then compute their convex hull and it’s centroid from the location set. The

closest location in the dummy set from the centroid is treated as the approximate

location of the user (Figure 4.3(b)). Otherwise, post Ecur as it is.
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4.4.1 Dummy Generation

In dummy generation, our main objective is to select a set S of k − 1 dummies

and O, which ensures highest degree of privacy, E . This goal can be achieved if we

select locations as dummies having least difference with O in terms of Pr, which will

maximize E . E of a set S is computed as follows,

Es = −
k−1∑
i=0

P ′ri log2 P
′
ri (4.2)

where, P ′ri = Pri∑k−1
i=0 Pri

is the normalized probability. Certainly, Es will be maximum,

if all the k locations’ probability are same, i.e. 1
k
. That is, optimum privacy,

Eopt = − log2(
1
k
). Es can be maximized to Eopt if we consider the whole map as the

search space for dummy generation. In that case, the dummies distance could be

far from each other. However, to visualize the user’s approximate location in LBSN

post, it is indeed not a feasible solution. Moreover, the spatiotemporal analysis

on consecutive events will also reveal that dummies cannot be far from each other.

Thus, we constrain the maximum allowable distance between a dummy and O with

a distance control parameter R. On the flip side, this constraint imposes another

problem: we may not find enough candidate locations as dummies which are closely

related to O, in terms of Pr. That is, it might not always be possible to achieve

optimal privacy. Therefore, our goal is to select a set of dummies as the final set Sf

whose Ef is close to Eopt. Formally,

maximize{degree of privacy, Es}

s.t. Es ≥ λ× Eopt
(4.3)

Indeed, we want to have λ as close as 1 and in our experiment we found its value

can be as large as 0.9. Now, we discuss our proposed randomized greedy dummy

generation algorithm. In the first step, it selects all the locations within R
2

distance

67



Algorithm 3: Dummy Generation Algorithm

Data: user’s real location O, set of all locations L, Pr of all locations in L,
k

Result: Final location set Sf and degree of privacy, Ef
1 Lselected ←− Select each location l from L such that,

(Prl > 0) ∧ (dist(O, l) ≤ R
2

)
2 Lsorted ←−Compute |Prl − Pro|,∀l ∈ Lselected; and sort them in ascending

order
3 C ←− Select mk random contiguous locations including as candidates from

Lsorted

4 i←− 0
5 Es ←− 0
6 Eopt ←− − log2(

1
k
)

7 while ((Es < λ× Eopt) ∧ (i < |C|)) do
8 c←− Ci
9 Lselected ←− Select each location l from L such that,

(Prl > 0) ∧ (dist(c, l) ≤ R
2

)
10 Lsorted ←−Compute |Prl − Prc|, ∀l ∈ Lselected; and sort them in

ascending order
11 S ←− O ∪ { First (k − 1) locations from Lsorted, excluding O}
12 Es ←− Compute degree of privacy of S using Equation 4.2
13 i←− i+ 1

14 Sf ←− S, Ef ←− Es

3

with Pr > 0, computes |Pr−Pro|, and sorts them in ascending order. Then, it selects

C = mk, (m ≥ 2), random contiguous locations from the sorted locations, which

includes O. This set, C, is used as candidate locations for dummy selection. For

each location c in C, again selects all the locations within R
2

distance with Pr > 0,

compute |Pr − Prc|, and sorts them in ascending order. From the sorted locations,

select a set S as {first k-1 locations ∪ O} and compute its degree of privacy using

eq.4.2. Once a set is found whose degree of privacy Ef satisfies (Ef ≥ λ×Eopt), then

it is selected as the final set of dummies. The overall process of dummy generation

using photo-check is presented in Algorithm 3.
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4.4.2 Privacy Analysis

Assume a user posted n events (E0, . . . En−1) in (T0 . . . Tn−1) time stamps. Out of

these, p events were dropped or delayed, q events were posted using dummies, and

w = n− (p+ q) events were posted directly. Then, the total privacy is,

total E =

p−1∑
i=0

Edrop/delayi +

q−1∑
i=0

Eposti +
w−1∑
i=0

Edummyi (4.4)

Here, E typei refers to the privacy achieved by applying the type of action on i-th

event. Now we analyze total privacy for different cases.

Case 1 (None of the events contains location information): In this case no privacy

is leaked for each event. That is, total E =∞

Case 2 (All the events contain location information): If location information of

all the events are concealed with dummies using the proposed dummy generation

algorithm, then, total E =
∑n−1

i=0 E
dummy
i

Case 3 (Some of the events contain dummy locations and others either dropped,

delayed, or directly posted): Let us consider three events E0, E1, and E2; where E0

contains dummy locations, E1 was dropped, and E2 was posted directly. E0’s degree

of privacy Edummy0 can be calculated using Eq.4.2. For E1 and E2, Edrop1 ≥ Edummy0

and Epost2 ≥ Edummy0 , respectively. Thus, total E ≥
∑n−1

i=0 E
dummy
i . By considering all

the 3 cases the bound for total privacy,

n−1∑
i=0

Edummyi ≤ total E ≤ ∞ (4.5)

4.5 Experimental Evaluation

In this section, we present the detail of the experiment. We use a PC with Intel Core

i7 CPU(2.5 GHz), 8GB RAM, and Microsoft Windows 10-64bit operating system
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Figure 4.5: Impact of 0/1-probability based inference on DLS and baseline algo-
rithms at locations with different check-in probability (k = 20). Here, (a) and (b)
are the locations with the highest and lowest check-in probability, respectively.

to carry out the experiment. To get location information, we use Foursquare NYC

dataset [YZZY15] which contains 38, 333 unique locations. For each location, we

collect check-in and shared photo count using Foursquare developer API. In total,

these counts are 162.72 and 4.94 millions, respectively.

For comparison, we consider four different dummy generation approaches: Ran-

dom, Optimal, DLS[NLZ+14], and Baseline[NLZ+15]. We use the following param-

eters and their values in the experiment: k = [8, 12, 16, 20], δ = [5, 20] minutes,

m = 2, λ = [1, 0.9, 0.8], and R = 1000 meter. We use 100 users’ data to generate

different statistics. Using these parameters, we generate the statistics for privacy

analysis and computation cost in two ways: we run each approach on all the events

1) generated by each user and 2) generated from each location, and compute the

corresponding mean.
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4.5.1 Privacy Analysis

Impact of 0/1- probability based inference model on existing TPPMs

We apply the 0/1 probability based inference model(discussed in section 4.1) on

DLS and Baseline approach, and observe a monotonic relationship with location’s

check-in probability, Pc. For better understanding, we sort the locations based on

Pc in ascending order and for the first 5000 locations(Figure 4.5(a)), the inference

rate(σ) is least successful(Figure 4.5(c)). However, with the decrease in Pc(Figure

4.5(b)), σ increases(Figure 4.5(d)). Specifically, for DLS and baseline, Spearman’s

rank-order correlations[McD09] are −0.521 and −0.6, respectively (for last 5000

locations). These results show that existing mechanisms cannot be used for all type

of locations to protect location privacy for both check-in and photo sharing in LBSN.

Degree of Privacy

Now, we analyze the degree of privacy E which measures the uncertainty of an

attacker to infer user’s real location from a given set S. The comparison of all

the approaches in terms of degree of privacy is presented in Figure 4.6 and 4.7.

From the above discussion, it is understandable that at locations with high Pc,

DLS may sometimes achieve privacy close to our proposed approach. However, it’s

distribution(Figure 4.6) show that this number is quite small. The comparison plots

(Figure 4.7), in terms of different k and users, further justify the superiority of our

approach.

Timing, Dropping, and Spatial Errors

We found that the total timing,dropping, and spatial errors are ≈ 5% and 17% for

δ = [5, 20], respectively.
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Figure 4.6: Distribution of degree of privacy E for all the locations with k = 20.

Figure 4.7: Degree of privacy (ε) comparison: (a) for different k’s and (b) for 100
users with k = 20.

72



Table 4.2: Average Computation Cost(in second) for Different k

Approaches k = 8 k = 12 k = 16 k = 20
Baseline 0.0015 0.0018 0.0017 0.0016

DLS 0.0491 0.0537 0.0535 0.0523
Proposed 0.0015 0.0020 0.0024 0.0029

4.5.2 computation cost

The comparison in terms of computation cost among different approaches in shown

in table 4.2. As all the approaches have the sorting step, we focus on the number

of steps required to generate the dummies. In this context, baseline’s computation

cost is O(1). The randomized greedy algorithm in proposed approach requires at

most mk steps, yielding O(mk) computation cost. However, the major reduction in

computation cost in the proposed approach, compared to DLS, is achieved mainly

with the introduction of the relation between gained (Es) and optimal privacy(Eopt)

in the algorithm(line 7 in algorithm 3).

4.6 Discussion and Summary

In this chapter we show that, similar to check-ins, the spatial distribution of histor-

ical shared photos can influence user’s privacy in LBSN. Based on this observation,

we design a probabilistic location inference model for both check-in and photos, and

apply it on different existing dummy-based approaches. While this model exposes

the vulnerability of existing approaches, it also shows that it is possible to infer

user’s location without analyzing the photo itself. To solve this problem, we pro-

pose a novel privacy-preserving mechanism, called photo-check, to preserve location

privacy while sharing check-in and photos in LBSN. By analyzing spatiotemporal

correlation between consecutive events(generic term for check-in and photo), photo-
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check decides whether to delay, post, drop, or insert dummies to an event. In case

of dummy generation, we propose a randomized greedy approach which is com-

putationally less expensive than state-of-the-art approach and practical for LBSN

scenarios. We believe the findings presented in this work will lead to further research

on this issue.

74



CHAPTER 5

SPATIOTEMPORAL BLOCKCHAIN MANAGEMENT FOR

RESOURCE-CONSTRAINED IOT DEVICES TO ACHIEVE

DECENTRALIZED PRIVACY

Formation of a peer-to-peer (P2P) network of the IoT devices such that an IoT user

can query and get the required information from its peers, rather than a centralized

entity, is a promising approach for achieving trajectory privacy from any centralized

entity. Recently, blockchain has gained significant attention as a solution to design a

P2P network of mobile IoT devices in a way that is designed to be secure, transpar-

ent, highly resistant to outages, auditable, and efficient. However, before realizing

the promise of blockchain, there are significant challenges to address. One funda-

mental challenge is the scale issue around data collection, storage, and analytics as

IoT sensor devices possess limited computational power and storage capabilities. In

particular, since the chain is always growing, IoT devices require more and more

resources. Thus, an oversized chain poses storage and scalability problems.

With this in mind, the goal of this chapter is to present the design and imple-

mentation of a lightweight, scalable blockchain framework for mobility-centric IoT

systems. We focus on certain mobility mobility-centric applications, such as mo-

bile crowdsensing, where an IoT device is not required to have a global view of the

whole network. This framework, coined as “Sensor-Chain”, promises a new gen-

eration of lightweight blockchain management, a significant reduction in resource

consumption, and at the same time capable of retaining critical information about

the IoT systems of mobile devices. We compare the performance of proof-of-concept

implementation of sensor-chain with 3 other schemes, and the results justify its effi-

cacy. Also, the proposed framework does not involve any fixed positioned powerful

edge devices, which makes it more flexible with a variety of mobility-based IoT
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applications. We further verify Sensor-Chain by implementing it on top of Babble

hashgraph blockchain.

The chapter is organized as follows. Section 5.1 introduces the problem and

section 5.2 provides the problem statement and our hypothesis. The required back-

ground information is discussed in section 5.3. The proposed Sensor-Chain is pre-

sented in section 5.4. The evaluation results on its proof-of-concept implementation

is presented in 5.5. Finally, section 5.7 concludes the chapter. Last but not least,

important symbols used in this chapter are described in table 5.1.

5.1 Introduction

Blockchain is a distributed P2P way of recording digital interactions in a way that

it provides built-in integrity of information, and security of immutability by design,

making it very useful to ensure trust, security, and transparency in P2P trustless

networks of huge number of devices[Nak08, Fra14]. Although blockchain is consid-

ered as the key to redesign IoT systems, they cannot be directly integrated into

IoT systems. Since the chain is always growing, IoT nodes require more and more

resources in order to manage it on their local spaces. Similarly, scalability with

constrained computing power and battery also poses a challenge. With an integra-

tion of blockchain, each node needs to perform large amount of tasks at different

stages of the blockchain with their constrained computing power and battery life.

The growth of the network further aggravates the problem. These two issues are

rooted to the problem of managing the number of transactions required to be stored

and processed by a single IoT node at any time instance, as transactions are the

main building blocks of a blockchain. For better understanding of the problem, let

us consider a conventional blockchain for a P2P network of n number of nodes. At
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any time instance, there could be at most n(n−1)
2

number of transactions in the the

network. If we express the size of a blockchain (BC) as the number of transactions

stored it, then it is quite understandable that, over time, the IoT devices will run

out of storage space to store all the transactions.

Understandably, in some applications, the transactions may happen at a longer

interval (e.g. 30 minutes). Also, at every timestamp the number of transactions can

be less than n(n−1)
2

. Despite that, it is not going to change the fact that, existing

blockchains are not feasible for resource-constrained IoT sensor devices in the long-

run. To manage blockchain in a mobility-centric IoT system, many research works

proposed to deploy more powerful edge devices and offload the blockchain on such

edge devices[XZN+17, MDL+18, PWH+18, KAG18]. These devices are costly and

are deployed in a predefined structured way. Such a fixed structure of the static edge

devices is hard to be acceptable for several reasons. First, the devices are costly

and their deployment over a large region will result into very high cost. Second,

in some scenarios, such as in military applications, such fixed structure cannot

be attained. Third, we also argue that the management of blockchain using fixed

positioned edge devices naturally makes the system more vulnerable, as compromise

of few edge devices will affect a large portion of the IoT nodes in the IoT network.

Hence, we need a lightweight, scalable blockchain framework without relying on a

fixed infrastructure of external edge computing devices. Another promising way

of making blockchain lightweight is to delete “historical” blocks from the chain

[DOA16]. However, such an approach still consumes large storage space and cannot

retain any information of the deleted portion of the chain.
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5.2 Motivation and Problem Statement

In this work, we focus on certain mobility-related scenarios where a mobile node

is not really required to have a “global” view of a blockchain. Let us consider

an environment monitoring mobile crowdsensing application where aggregated data

(e.g. temperature, humidity, air quality, and so on) from a small region at a certain

time is more important than individual’s data. In such a scenario, the mobile

nodes at a location may contact each other in a P2P way to collect each other’s

1 dimensional (1-d) environmental sensor’s value for some time. Then, one node

is selected to send the aggregated information in a certain form (e.g. max, mean,

average, median, etc.). As the nodes are mobile, the trust value computed for some

nodes may not be important at a different location and time for a certain node. Also,

the environmental data varies from one region to another; thus instead of having a

single network, region based multiple smaller networks, as well as blockchains, are

more feasible. Motivated by such a scenario, in this dissertation, we seek answer to

the following question: how can the spatiotemporal mobility of the IoT users allow

to make blockchain lightweight for IoT devices?

We hypothesize that breaking down a traditional blockchain into smaller “local”

blockchains based on spatial subdivision of a region, imposing a temporal constraint

on their lifecycle, and mobility-based blockchain deletion from storage will allow a

blockchain to be lightweight, and scalable for resource-constrained IoT devices.

5.3 Background

In this section, we provide a formal definition of the size of blockchain, a description

to the system model, and important assumption made in the work.
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Table 5.1: Table of Symbols

Symbol Description
TX Abbreviation of transaction
BC Abbreviation of blockchain
C Voronoi diagram or set of Voronoi cells
Ci i-th Voronoi cell or simply cell
n Total number of sensor nodes
m Number of sensors in a single cell
Gt
i Local network in i-th cell at time t

V t
i Set of vertices of local network Gt

i

Et
i Set of edges between the nodes in V t

i

S A sensor node
Bt
i Local blockchain generated by Gt

i

Tchain Temporal constraint for blockchain
Tblock Block generation time constraint

5.3.1 Size of a blockchain

If we take a look at the different elements of a block, we observe that it contains

some elements which take constant storage space (the elements of block header

and transaction counter). Since each transaction size can be within a limit, its

their number which is the only dominating variable in a block. Thus, a size of a

blockchain, size(BC), can be expressed as a function of number of transactions, TX,

as follows.

size(BC) = TX1 + . . .+ TXt

= number of TX× size of a TX

= O(number of TX)

(5.1)

Here, TXt is used as an abbreviation of transaction happened at t-th timestamp.

At any time instance, there could at most n(n−1)
2

transactions in network of n nodes.

Thus, if the lifespan of a blockchain is T ,

size(BC) = O
(
T × n(n− 1)

2

)
(5.2)
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This defines the upper bound of the required storage space on a IoT device to

hold an entire blockchain in total T time.

5.3.2 System Model and Important Assumptions

The proposed system model has two major entities: 1. a region, divided into a set

of smaller cells, and 2. a set of sensor nodes. Some of the sensors are static and

others are mobile. The mobile nodes are moving over the region based on Ran-

dom Waypoint Mobility model[HV07]. Each sensor node is capable of performing

lightweight aggregate operations, such as e.g. max, mean, min, weighted average

[PPJP12] and so on. Furthermore, the proposed system does not require any addi-

tional resources. We assume that the distribution of the sensed data within a cell

is approximately same. The proposed blockchain can be either a public blockchain

or a permissioned-blockchain. If it is public blockchain, there is no authority in the

blockchain and nodes can join and leave the network with random cryptographic

key pairs. In such a blockchain, we assume that the nodes are using a lightweight

consensus algorithm, such as Proof-of-Stake (PoS). Our work is also applicable in

permissioned-blockchain where an authority assigns each IoT Node a private key

and a private key and to join a network a node needs to reveal its identity to all

the other nodes in the network. In order to achieve conditional privacy from the

peers, an IoT node can anytime request the authority for new key pairs. In such a

case, we assume that the nodes are using a Byzantine Fault tolerant algorithm for

reaching consensus in the network. Devising mechanisms for Key management and

authentication are beyond the scope of this work.
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5.4 Proposed Sensor-Chain Framework

This section presents the Sensor-Chain framework. We first discuss 3 different frame-

works: Conventional and our proposed improved temporal, and spatial blockchains.

We analyze their strength and limitations to highlight the motivation behind the

design of Sensor-Chain framework.

5.4.1 Naive Approach: Conventional Blockchain

In the conventional blockchain frameworks [XZN+17, MDB17] a blockchain is man-

aged by all the nodes in the network and continues to grow with the lifespan of the

network. Thus, with a T = ∞ lifespan, according to our discussion on the size of

blockchain, the size of a conventional blockchain becomes,

size(conventional) =
∞∑
t=1

n(n− 1)

2
(5.3)

Obviously, this blockchain will impose a high storage requirement which cannot

be met by sensor nodes. To improve this, we then design an improved version of

temporal blockchain[DOA16] in the context of mobile IoT.

5.4.2 Our First Approach: Improved Temporal Blockchain

In the original temporal blockchain[DOA16], it was proposed to keep a portion

of the blockchain after certain time period. However, we propose to replace the

blockchain with an aggregated version of it after certain a time period. In detail,

in the preprocessing step of our scheme, we consider a specific time at the “genesis

time”, and a time period is set as the temporal constraint for blockchain deletion.

For example, if 00:00 in 24-hour format is taken as the genesis time and the temporal

constraint is 2 hours, then the deletion operation will take place at 02:00, 04:00,
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06:00, . . . of each day. This genesis time information and temporal constraint are

preset onto the IoT devices. Another way to set this information is to have smart

contract on the blockchain. We leave this for our future research. Every time the

lifetime of the blockchain meets the temporal constraints, through the consensus

mechanism,a node will be selected as an aggregator node which performs aggregation

over the whole blockchain and creates an aggregated block. This block includes the

ID of the aggregator node. This block is then broadcasted over the network by the

aggregator. This aggregation could be anything lightweight for IoT sensor devices

to perform (e.g. min, max, mean, weight average [PPJP12]).

Upon receiving this block, the nodes in the network replaces the whole existing

blockchain with this block on their local storage. That is, it will considered as the

genesis block of a new blockchain. Even though as a consequence the newly restarted

blockchain’s size becomes relatively small, we still need to look into the size of the

blockchain between two consecutive restarts so as to ensure that it is withing the

storage space capacity of the IoT sensor node. If the temporal constraint is Tchain,

then in the the worst case scenario, the maximum size of the blockchain can be,

size(improved-temporal) =

t=Tchain∑
t=1

n(n− 1)

2
(5.4)

Clearly this scheme outperforms the conventional blockchain schemes. However,

with higher Tchain and a large number of nodes in a network, the nodes still need to

hold a large blockchain, making it quite impractical for IoT devices. Thus, despite

the fact that a temporal blockchain can reduce the size of a chain, the size of a

chain must be further improved when dealing with IoT nodes. This is done using

the following spatial blockchain technique.
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Figure 5.1: Proposed blockchain-based IoT architecture: A region is transformed
into a Voronoi diagram where Ci is the i-th Voronoi cell and the graph inside of it
is a local network Gi. ‘•’s and‘−’s represent nodes and edges between the nodes,
respectively. Bi refers to the local blockchain in cell Ci.

5.4.3 Our Second Approach: Spatial Blockchain

In our spatial blockchain framework, a global blockchain is broken down into smaller

disjoint local blockchains with the aim of reducing the number of transactions per-

formed by a node at any given time than in conventional blockchain frameworks.

To achieve this objective, we translate a region into a Voronoi diagram[AIRX08].

Voronoi diagram C, is a partitioning of a plane into non-overlapping smaller convex

regions, called Voronoi cells C.

Based on this partitioning of the plane, we define two different structures: local

networks and local blockchains (figure 5.1 depicts these structures). A local network

refers to the graph Gt
i = (V t

i , E
t
i ) formed by the nodes in the cell Ci ∈ C at time

t. Here, V t
i and Et

i are the set of the nodes and the edges between them. Any two

local networks of two different cells at the same time are disjoint. That is,

V t
i ∩ V t

j = Ø, Et
i ∩ Et

j = Ø (5.5)

A local blockchain Bi, is the blockchain managed by the nodes in cell Ci and Bt
i is
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the snapshot of Bi at time t. Any two local blockchains from two different cells have

the following property: a block of a local blockchain in a cell is neither a parent nor

a child of a block of another local blockchain in another cell at any time instance.

That is,

(∃bxi ∈ Bi|bxi is a parent of a block in Bj)∪

(∃byj ∈ Bj|byj is a parent of a block in Bi) = Ø; ∀t
(5.6)

The two properties imply that a sensor node in Gi works only on local blockchain Bi.

Hence, it needs to store only the copy of Bi at any given time as long as it remains in

Gi. While this definitely improves the storage issue than in conventional blockchain,

this scheme further enhance its efficacy by considering mobility of the nodes. In case

of mobility, if a node moves from cell Ci to Cj, at first it deletes the copy of local

blockchain Bi from its memory and then, after joining Gj, it downloads the copy of

Bj from its peers. Thus, a node is required to store only one local blockchain at any

time instance, which significantly reduces the required space to store a blockchain.

We quantify the storage requirement of this scheme as follows. Let us consider that

at any time instance, there could be at most m number of nodes in a cell, where

m < n and the time difference between the creation of genesis block and current

time is ≈ ∞. Let us also assume that a mobile node’s permanence in a cell is at

most Tper. At the first glance, it seems size(spatial) =
∑t=Tper

t=1
m(m−1)

2
. However,

consider the worst case scenario where there exists at least one node in a particular

cell Ci all the time (if some nodes are static or the cell is never empty). That is, the

local blockchain continues to expand forever. In that case,

size(spatial) =
t=∞∑
t=1

m(m− 1)

2
; m < n (5.7)

From the analysis of temporal and spatial blockchains, it is not clear which one

offers the best solution. For static nodes, the temporal blockchain with a small
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temporal constraint could be the better solution in the long run. On the other

hand, in mobile environment, the spatial blockchain will be the winner. To address

the limitations of both approaches, we propose Sensor-Chain approach.

Figure 5.2: Illustrated Sensor-Chain:-Ti+1: A mobile node moves from cell C2 to C1.
First, it deletes the copy of local blockchain B2 from its memory and then downloads
B1 from its peers in Gi+1

1 . Ti+2: local blockchain B3 does not exist anymore as C3

is empty. Ti+3: as temporal constraint is met, (a) aggregator node from each local
network is selected. The selected nodes compute aggregation over their respective
local blockchains and generate aggregated blocks. (b) using the aggregated blocks
as the genesis, the local blockchains are regenerated.

5.4.4 Our Best Approach: Sensor-Chain

Sensor-Chain is a fusion of both temporal and spatial blockchain approaches. Similar

to spatial blockchain, in this framework, a complete region is first divided into a

number of Voronoi cells. Using those cells, the nodes in a cell form a local network
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and maintain a local blockchain. All the local networks and local blockchains follow

the properties defined for spatial blockchain. Among different information, each

nodes holds the following tuple: {current cell id Ccur, copy of the local blockchain

Bt
cur}. In order to manage the size of a blockchain, this framework has two important

constraints: temporal constraint Tchain and block creation time constraint Tblock.

The storage management of blockchain is done in two ways: spatiotemporal and

mobility-based.

Spatiotemporal-based blockchain management is detailed in algorithm 4. In this

framework, the block creation and insertion are done at a fixed time interval (lines

1-6), a similar approach of bitcoin. At first, in each local network Gt
i a Miner is

selected through consensus. Then the Miner gathers all the recent transactions

and creates NewBlock. Upon verification, the new block is inserted into Bt
i . The

temporal constraint is used to reset the local blockchains at a fixed time interval.

Every time the temporal constraint is met (line 8), an Aggregator node is selected

from each local network. This Aggregator node computes aggregation of its local

blockchain, creates an AggregatedBlock, and broadcasts it over its local network

(lines 9-13). Upon receiving the AggregatedBlock, the nodes in the local network

first delete their copy of the existing local blockchain (line 14) and then regenerate

the local blockchain using the aggregated block as the genesis block (line 15).

Algorithm 5 presents the mobility-based blockchain management. Every time a

node moves from one cell Ccur to another Cnew cell (line 1), it deletes the copy of the

local blockchain Bcur of previous cell from its memory. Then it joins the The work

flow of Sensor-Chain is illustrated in figure 5.2.
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Algorithm 4: Spatiotemporal Blockchain Management

Input : Current time Tt, set of all local networks G at Tt, set of all local
blockchains Bt, genesis time Tgen, temporal constraint Tchain,
block creation time constraint Tblock

Output: Updated local blockchains Bt

1 if (Tgen − Tt)%Tblock == 0 then
2 for each Gt

i ∈ Gt do
3 Miner ← Select-Miner(V t

i )
4 NewBlock ← Create-Block(Miner)
5 Insert-Block(Bt

i , NewBlock)

6 end

7 end
8 if (Tgen − Tt)%Tchain == 0 then
9 for each Gt

i ∈ Gt do
10 Aggregator ← Select-Aggregator(V t

i )
11 AggregatedBlock ← Compute-Aggregation(Bt

i , Aggregator)
12 Broadcast(AggregatedBlock)
13 for each node v ∈ V t

i do
14 Delete(Bt

i) from local storage
15 Bt

i ← Re-generate(Bt
i , AggregatedBlock)

16 end

17 end

18 end

Algorithm 5: Mobility-Based Blockchain Management

Input : Voronoi diagram C, sensor node S
Output: Updated node S

1 if S.Ccur 6= Cnew cell then
2 Delete(Bcur) from local storage
3 S.Ccur ← Cnew cell

4 Join(Gt
cur)

5 Download(Bt
cur) from peers in V t

cur

6 end

4
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5.4.5 Analysis

We argue that, with such spatiotemporal and mobility-based blockchain manage-

ment, Sensor-Chain provides the best solution. To prove its validity, we now analyze

the space requirement to store a blockchain in this scheme. Referring to the discus-

sion on spatial blockchain, with the space partitioning, the size of a local blockchain

in Sensor-Chain can be at most,

size(Sensor-Chain) =
t=∞∑
t=1

m(m− 1)

2
(5.8)

However, as the temporal constraint Tchain is applied to all the local blockchains,

according to the discussion on temporal blockchain, the size of a local blockchain

can be further reduced as follows,

size(Sensor-Chain) =

t=Tchain∑
t=1

m(m− 1)

2
(5.9)

This analysis gives us the required storage space in Sensor-Chain. Next, we analyze

the scheme case by case and draw comparison with our proposed improved temporal

and spatial blockchain frameworks.

Case 1: In the first case, all the nodes are assumed as static. Also, the parti-

tioning of the region is such that all the nodes reside in a single cell. In such a case,

m = n.

size(Sensor-Chain) = size(improved-temporal) =

t=Tchain∑
t=1

n(n− 1)

2
< size(spatial)

(5.10)

Where size(spatial) =
∑t=∞

t=1
n(n−1)

2
.

Case 2: All the nodes are moving in such a way that each local blockchain

becomes empty (more correctly, it doesn’t exist anymore) every time before the
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temporal constraint is satisfied. This case is depicted in figure 5.2(Ti+2) where cell

C3 is empty so that B3 does not exist anymore. In such a case,

size(Sensor-Chain) = size(spatial) =

t<Tchain∑
t=1

m(m− 1)

2

< size(improved-temporal) (5.11)

Where m < n and size(improved-temporal) =
∑t=Tchain

t=1
n(n−1)

2
.

All other cases: In all other cases,

(size(Sensor-Chain) < size(spatial))

&(size(Sensor-Chain) < size(improved-temporal)) (5.12)

5.5 Proof-of-Concept Evaluation

This section presents the experimental results. To carry out the experiment we use

synthetic data. The parameters and their different values used in the experiment

are presented in table 5.2. We implemented all the four (conventional, improved-

temporal, spatial, and Sensor-Chain) approaches. We ran the simulation for 6 hours

and generated statistics for all the approaches. Specifically, we compared the ap-

proaches in terms of number transactions needed to be stored on a single IoT sensor

device, as it defines the size of a blockchain. The evaluation is done from three differ-

ent points of view: 1. duration of the simulation, 2. number of cells, and 3. number

of sensors to analyze the benefit of Sensor-Chain in the long-run and scalability.

The detail of the evaluation results are discussed below.

Figure 5.3(a) shows the result of the simulation for Sensor-Chain. In every hour,

the curve moves upward. As Tchain = 1 hour, the size of the blockchain becomes 1

(with the aggregated block) at the end of each hour. It is also clear that in Sensor-

Chain, using the temporal constraint, it is possible to keep the size of the blockchain
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Table 5.2: Parameters used in the Experiment
Parameter Values
Area of the region 5000m× 5000m
Number of Voronoi cells 50, 100, 150, 200, 1000
Number of sensor nodes 1000, 3000, 5000, 7000
Speed of the nodes [0, 50] km/h
Temporal constraint Tchain 1 hour
Block creation time constraint Tblock 10 minute

(a) (b)

(c) (d)

Figure 5.3: Evaluation results: (a) Sensor-Chain, (b) conventional, (c) improved-
temporal, and (d) spatial blockchains (experiment Settings: number of cells = 50,
number of sensors = 1000).
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(a) (b)

Figure 5.4: Comparison between Sensor-Chain and spatial approaches in terms of
number of (a) cells and (b) sensors.

within a limit. Figure 5.3(b) shows the comparison between Sensor-Chain and

conventional approaches. From nearly the beginning of the simulation, the required

storage space in Sensor-Chain is far less than in conventional approach. Next, we

evaluate how Sensor-Chain, with the fusion of spatiotemporal and mobility-based

blockchain management, outperforms the improved temporal and spatial schemes.

For both of the improved temporal and Sensor-Chain, we used the same temporal

constraint. Although the improved temporal blockchain shows a trend similar to

Sensor-Chain, its required storage space is much higher than Sensor-Chain. Figure

5.3(d) shows more interesting results on the comparison with spatial blockchain. In

the 1st hour, both spatial and Sensor-Chain approaches go toe-to-toe. However, just

after the 1st hour (as Tchain = 1 hour), the local blockchains in Sensor-Chain restore

to genesis block, while spatial blockchain continues to grow over the time.

Then, we analyze the impact of number of cells and sensors on the size of the

blockchain. As only spatial and Sensor-Chain use cell-based partitioning, here we

analyze their comparison. Figure 5.4(a) presents the comparison result in terms
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of number of cells. It is understandable that with the increase in the number of

cells, the size of a local blockchain decreases. Furthermore, it seems that when this

number is relatively high (e.g. 1000 in the figure), both approaches require similar

storage capacity. However, it is the number of sensors that makes the difference in

such a particular case. With the increase in the number of sensors, the required

storage space increases rapidly in spatial approach than in Sensor-Chain. Figure

5.4(b) shows the results for 1000 cells with different number of sensors.

5.6 Implementation Detail of Sensor-Chain

While the theoretical analysis and simulation results highlight the efficiency and

efficacy of Sensor-Chain, we are developing the platform for P2P networks of mo-

bile devices. In this section we present the detail of the implementation steps of

Sensor-Chain. The development is being carried out with Go programming lan-

guage, an open source programming language. For P2P communication, we use

go-libp2p-pubsub library [why19], an open source golang implementation of pub-

sub system with flooding and gossiping variants. Figure 5.5 presents the key com-

ponents of the Sensor-Chain platform. Figures 5.6 5.7, 5.8, and 5.9 illustrate the

class, architecture, sequence, and use case diagrams of the platform.

Figure 5.5: Key components of Sensor-Chain platform.
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NodeManager	(package:	engine)

- clusterCount: int

- nodesPerCluster: int

- initialPort: int

+ Clusters: []Cluster (struct)

- tsxInterval: int

- txsLoad: float

- moveInterval: int

- minInt: int

- maxInt: int

- inputRangeMean: float

+ void RunNodeManager()

- void setupNetworkTopology(engineSlice,
[]*Engine)
- void setupPeerLists(engineSlice []*Engine)

- map[string]string
getCurrentPeerlist(engineSlice []*Engine)
- map[string]string
getCurrentPeerlist(engineSlice []*Engine)

- void startListening(engineSlice []*Engine)

- void setClusterSeed(newSeed int64)

- int64 getClusterSeed()

- void resetClusterConsensus()

- void printMemUsage()

- void shutdownEngines(engineSlice
[]*Engine)
- void runTerminalInterface()

- void transactionTicker(auto *bool)

- void movementTicker(auto *bool)

PubSub	(package:	engine)

- libp2pPubSub: struct

+ void Broadcast(msg string)

+ (peer.ID, string) Receive()

- *host.Host createPeer(moniker string, port
int)

- void initializePubSub(h host.Host)

- (host.Host, error) createHost(port int)

- string getLocalHostAddress(h host.Host)

- (*psub.PubSub, error) applyPubSub(h
host.Host)

- void connectHostToPeer(h host.Host,
connectToAddress string)

Engine	(package:	engine)

+ NodeStore: *store.Store

+ BasicHost: *host.Host

+ PubSub: *libp2pPubSub

+ Moniker: string 

+ MonikerNumber: int 

+ PortNumber: int

+ Address: string

+ ClusterID: int

+ PeerList: *TimedPeerList (struct)

- createEngine(...) *Engine

- void startListening(startTime time.Time, runConsensus bool)

- broadcastTransaction(to peer.ID, timestamp string, str
string)

- void broadcastBlockchain(blockchain []block.Block)

- void handleMessage(str string)

- void updatePeerList(peerList map[string]string)

- void shutdownEngine()

Block	(package:	block)

+ Generation: int

+ Index: int

+ Timestamp: string

+ Hash: string

+ Hash: string

+ PrevHash: string

+ RootHash: []byte

+ Wallet: map[string]int

+ Validator: string

+ Seed: int64

+ TransactionList:
[]TransactionContent

+ *Block CreateBlock(...)

+ *Block CreateBlockWithList(...)

+ *Block CreateGenesisBlock(...)

+ bool IsBlockValid(newBlock,
oldBlock *Block)

+ string CalculateHash(block *Block)

- string mapToString(wallet
map[string]int)

Consensus	(package:	engine)

+ Engine: *Engine

+ TBlock: int

+ TChain: int

+ Temporal: bool

+ BlockThreshold: int

+ BlockLimit: int

- random: *mrand.Rand

- random: *mrand.Rand

- tsxQueue: []message.TransactionPayload

- tsxBuffer: []block.TransactionContent

- selectedValidator: peer.ID

- queueMutex: *sync.Mutex

- blockchainMutex:  *sync.Mutex

- running: bool

- void runConsensus(startTime time.Time)

- void stopConsensus()

- void enqueueTransaction(payload
message.TransactionPayload)

- message.TransactionPayload
dequeueTransaction()

- void receiveUpdatedChain(payload
message.BlockchainPayload)

- []block.Block aggregateChain(blockChain
[]block.Block)

- []float64 decodeTxsToFloat(txsList []string)

- float64 weightedMovingAverage(txsList
[]float64)

Store	(package:	store)

+ Blockchain: *[]block.Block

+ LiveWallet: map[string]int

+ *Store CreateStore()

Contains

1

1

Has

1

Has

n

1

1

n

1

1

1
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Figure 5.6: Class diagram of Sensor-Chain.
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Figure 5.7: Architecture diagram of Sensor-Chain.
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Figure 5.8: Sequence diagram of Sensor-Chain.
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Manages a Node and its
communication

Stores linked list of blocks
(blockchain)

Partition the nodes into separate clusters
(spatial constraint)

Initializes Consensus
mechanism

Selects block validators,
and updates blockchain

 Consensus

Block

Store
Engine 

(Core of Node)
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Platform-MIoT
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Figure 5.9: Use case diagram of Sensor-Chain.
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5.6.1 Key Components

Node

The Node struct has two fields: Blockchain and LiveWallet. The Blockchain

field is a pointer to the current blockchain that a Node is holding in its memory.

The LiveWallet is a map object containing the new transactions happened in the

Blockchain by the nodes which are not included in the Blockchain yet.

type Node struct {

Blockchain *[]block.Block

LiveWallet map[string]int

}

func CreateNode() *Node {

var newNode Node

newNode.Blockchain = &[]block.Block{}

newNode.LiveWallet = make(map[string]int)

*newNode.Blockchain = append(*newNode.Blockchain,

*block.CreateGenesisBlock(0, nil, "", nil, "", 0))↪→

return &newNode

}

Transaction Content

TransactionContent implements the Content interface provided by merkletree and

represents the content stored in the tree. There are three functions to facilitate differ-

ent operations related to transactions: CalculateHash(), Equals(), and String().

Specifically, CalculateHash() hashes the values of a TransactionContent, Equals()

tests for equality of two contents, and String() returns a string representation of

the content.

type TransactionContent struct {

From string

To string

Timestamp string

Transaction string
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}

func (t TransactionContent) CalculateHash() ([]byte, error) {

h := sha256.New()

if _, err := h.Write([]byte(fmt.Sprintf("%s%s%s%s", t.From, t.To,

t.Timestamp, t.Transaction))); err != nil {↪→

return nil, err

}

return h.Sum(nil), nil

}

func (t TransactionContent) Equals(other merkletree.Content) (bool, error)

{↪→

return t.From == other.(TransactionContent).From && t.To ==

other.(TransactionContent).To &&↪→

t.Timestamp == other.(TransactionContent).Timestamp &&

t.Transaction ==

other.(TransactionContent).Transaction, nil

↪→

↪→

}

func (t TransactionContent) String() string {

return fmt.Sprintf("From: %s, To: %s, Timestamp: %s, Transaction:

%s", t.From, t.To, t.Timestamp, t.Transaction)↪→

}

Block

A blockchain is defined by Block struct type. The Block contains BlockHeader

and TransactionContent. BlockHeader holds the Block struct contents which

are hashed for blockchain integrity. Among different variables, the BlockHeader

contains RootHash Merkle tree root hash which is composed of the concatenated

hashes of all transactions in block.

type Block struct {

Header BlockHeader

TransactionList []TransactionContent

}

type BlockHeader struct {

Generation int

Index int
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Timestamp string

Hash string

PrevHash string

RootHash []byte

Wallet map[string]int

Validator string

}

The CreateBlock() function is used to create a new block using the previous

block hash, and appends one payload.

func CreateBlock(oldBlock *Block, from string, to string, timestamp

string, transaction string, wallet map[string]int, validator peer.ID,

seed int64) *Block {

↪→

↪→

var newBlock Block

var contentList []merkletree.Content

for _, c := range oldBlock.TransactionList {

contentList = append(contentList, c)

}

contentList = append(contentList, TransactionContent{From: from,

To: to, Timestamp: timestamp, Transaction: transaction})↪→

tree, err := merkletree.NewTree(contentList)

if err != nil {

log.Fatal(err)

}

validRootHash, err := tree.VerifyTree()

if err != nil {

log.Fatal(err)

}

if !validRootHash {

err := tree.RebuildTree()

if err != nil {

log.Fatal(err)

}

validRootHash, err = tree.VerifyTree()

if err != nil {

log.Fatal(err)

}

if !validRootHash {

log.Fatalln(" Failed to build correct merkle

tree.")↪→

}

}

var tsxContentList []TransactionContent
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for _, c := range contentList {

tsxContentList = append(tsxContentList,

c.(TransactionContent))↪→

}

newBlock.TransactionList = tsxContentList

newBlock.Header = BlockHeader{

Generation: oldBlock.Header.Generation,

Index: oldBlock.Header.Index + 1,

Timestamp: time.Now().Format(time.RFC1123),

Hash: "",

PrevHash: oldBlock.Header.Hash,

RootHash: tree.MerkleRoot(),

Wallet: wallet,

Validator: validator.Pretty(),

Seed: seed,

}

newBlock.Header.Hash = CalculateHash(&newBlock)

return &newBlock

}

A node uses the IsBlockValid function to make sure block is valid by checking

index, and comparing the hash of the previous block. The hashing of the contect of

the Block struct is performed using SHA256.

func IsBlockValid(newBlock, oldBlock *Block) bool {

if oldBlock.Header.Index+1 != newBlock.Header.Index {

return false

}

if oldBlock.Header.Hash != newBlock.Header.PrevHash {

return false

}

if CalculateHash(newBlock) != newBlock.Header.Hash {

return false

}

var contentList []merkletree.Content

for _, c := range newBlock.TransactionList {

contentList = append(contentList, c)

}

tree, err := merkletree.NewTree(contentList)

if err != nil {

log.Fatal(err)
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}

validRootHash, err := tree.VerifyTree()

if err != nil {

log.Fatal(err)

}

if !validRootHash {

err := tree.RebuildTree()

if err != nil {

log.Fatal(err)

}

validRootHash, err = tree.VerifyTree()

if err != nil {

log.Fatal(err)

}

if !validRootHash {

log.Fatalln(" Failed to build correct merkle tree

.")↪→

}

}

if fmt.Sprintf("%x", newBlock.Header.RootHash) !=

fmt.Sprintf("%x", tree.MerkleRoot()) {↪→

return false

}

return true

}

func CalculateHash(block *Block) string {

record := strconv.Itoa(block.Header.Index) +

block.Header.Timestamp + fmt.Sprintf("%x",

block.Header.RootHash) +

↪→

↪→

block.Header.PrevHash + MapToString(block.Header.Wallet)

h := sha256.New()

h.Write([]byte(record))

hashed := h.Sum(nil)

return hex.EncodeToString(hashed)

}

Consensus

Consensus is the struct which handles the consensus mechanism of the platform. It

defines the TBlock, the time for blockchain creation in seconds, TChain, the time

for blockchain aggregation in seconds, and BlockThreshold, minimum number of
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blocks needed before aggregation. This also implements a transactionQueue, a

transaction pool to holds the new transactions in the network. In the current version,

a randomized mechanism is implemented as a consensus using RunConsensus()

function. The ReceiveUpdatedChain() accepts broadcasted blockchains, validates

them, and checks if they were sent by the validator. The NewConsensus() function

creates a new consensus which manages the consensus mechanism. The nodes run

the function RunConsensus() to run a consensus.

type Consensus struct {

Engine *Engine

TBlock int

TChain int

BlockThreshold int

random *mrand.Rand

transactionQueue []message.TransactionPayload

electedValidator peer.ID

queueMutex *sync.Mutex

blockchainMutex *sync.Mutex

running bool

}

func NewConsensus(engine *Engine, tBlock int, tChain int, blockThreshold

int) *Consensus {↪→

consensus := &Consensus{

Engine: engine,

TBlock: tBlock,

TChain: tChain,

BlockThreshold: blockThreshold,

random: mrand.New(mrand.NewSource(0)),

transactionQueue: []message.TransactionPayload{},

electedValidator: "",

queueMutex: &sync.Mutex{},

blockchainMutex: &sync.Mutex{},

running: false,

}

return consensus

}
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func (c *Consensus) RunConsensus() {

c.running = true

c.blockchainMutex.Lock()

blockchain := c.Engine.HostNode.Blockchain

lastBlock := (*blockchain)[len(*blockchain)-1]

c.blockchainMutex.Unlock()

lastBlockTime, err := time.Parse(time.RFC1123,

lastBlock.Header.Timestamp)↪→

if err != nil {

log.Fatal(err)}

nextTBlockTime := lastBlockTime.Add(time.Second *

time.Duration(c.TBlock))↪→

nextTChainTime := lastBlockTime.Add(time.Second *

time.Duration(c.TChain))↪→

c.random.Seed(lastBlock.Header.Seed)

go func() {

for c.running {

if (time.Now().After(nextTBlockTime) ||

time.Now().Equal(nextTBlockTime)) &&

len(c.transactionQueue) > 0 {

↪→

↪→

buffer := []block.TransactionContent{}

c.electedValidator = ""

c.queueMutex.Lock()

for len(c.transactionQueue) > 0 {

t := c.dequeueTransaction()

if _, found := c.Engine.

HostNode.LiveWallet

[t.From.Pretty()];

found {

c.Engine.HostNode.

LiveWallet

[t.From.Pretty()]++

} else {

c.Engine.HostNode.LiveWallet

[t.From.Pretty()] = 1

}

buffer = append(buffer,

block.TransactionContent↪→

{From: t.From.Pretty(), To:

t.To.Pretty(), Timestamp:

t.Timestamp, Transaction:

t.Transaction})

↪→

↪→

↪→
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}

c.queueMutex.Unlock()

candidates := []string{}

for key := range c.Engine.

PeerList.Peers {

candidates = append(candidates,

key)↪→

}

sort.Strings(candidates)

validator := candidates[c.random.Intn

(len(candidates))]

pid, err := peer.IDB58Decode(validator)

if err != nil {

log.Fatal(err)

}

c.electedValidator = pid

c.blockchainMutex.Lock()

lastBlock =

(*blockchain)[len(*blockchain)-1]↪→

c.blockchainMutex.Unlock()

lastBlockTime, err =

time.Parse(time.RFC1123,

lastBlock.Header.Timestamp)

↪→

↪→

if err != nil {

log.Fatal(err)

}

if nextTBlockTime.Before

(lastBlockTime.Add(

time.Second * time.Duration

(c.TBlock))) {

c.random.Seed

(lastBlock.Header.Seed)

nextTBlockTime = lastBlockTime

}

if nextTChainTime.Before

(lastBlockTime.Add(time.Second *

time.Duration(c.TChain))) {

nextTChainTime = lastBlockTime

}
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go func() {

c.blockchainMutex.Lock()

if c.electedValidator ==

(*c.Engine.BasicHost).ID() {↪→

candidateBlock :=block.

CreateBlockWithList

(&lastBlock, buffer,

c.Engine.HostNode.

LiveWallet, (*c.Engine.

BasicHost).ID(),

time.Now().↪→

UTC().UnixNano())

currentChain := c.Engine.

HostNode.Blockchain

if (time.Now()

.After(nextTChainTime) ||

time.Now().↪→

Equal(nextTChainTime)) &&

len(*currentChain) >=

c.BlockThreshold↪→

&& len(lastBlock.

TransactionList) > 1 {

if c.electedValidator ==

(*c.Engine.BasicHost).ID() {↪→

aggregatedChain :=

c.aggregateChain(append(*currentChain,

*candidateBlock))

↪→

↪→

if aggregatedChain != nil {

c.Engine.broadcastBlockchain

(aggregatedChain)

}

}

nextTChainTime =

nextTChainTime.Add(time.Second *

time.Duration(c.TChain))

↪→

↪→

} else {

if block.IsBlockValid(candidateBlock,

&lastBlock) {↪→

c.Engine.broadcastBlockchain(

append(*currentChain, *candidateBlock))

} else {

if c.Engine.Verbose {
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fmt.Println("Block Creation: Block

validation failed!")↪→

}

}

}

}

c.blockchainMutex.Unlock()

}()

nextTBlockTime =

nextTBlockTime.Add(time.Second *

time.Duration(c.TBlock))

↪→

↪→

}

time.Sleep(time.Second)

}

}()

}

func (c *Consensus) ReceiveUpdatedChain(payload message.BlockchainPayload)

{↪→

c.blockchainMutex.Lock()

currentChain := c.Engine.HostNode.Blockchain

updatedChain := payload.Blockchain

if ((len(updatedChain) > len(*currentChain) &&

updatedChain[0].Header.Generation ==

(*currentChain)[0].Header.Generation) ||

↪→

↪→

updatedChain[0].Header.Generation >

(*currentChain)[0].Header.Generation) &&↪→

updatedChain[len(updatedChain)-1].Header.Validator ==

c.electedValidator.Pretty() {↪→

if len(updatedChain) == 1 ||

block.IsBlockValid(&updatedChain[len(updatedChain)-1],

&updatedChain[len(updatedChain)-2]) {

↪→

↪→

*c.Engine.HostNode.Blockchain = updatedChain

currentChain = c.Engine.HostNode.Blockchain

lastBlock := (*currentChain)[len(*currentChain)-1]

c.Engine.HostNode.LiveWallet = make(map[string]int)

for key, value := range lastBlock.Header.Wallet {

c.Engine.HostNode.LiveWallet[key] = value

}

bytes, err :=

json.MarshalIndent(*c.Engine.HostNode.Blockchain,

"", " ")

↪→

↪→

if err != nil {
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log.Fatal(err)

}

if c.Engine.Verbose {

fmt.Printf("\x1b[32m%s\x1b[0m\n",

string(bytes))↪→

}

} else {

if c.Engine.Verbose {

fmt.Println("ReceiveUpdatedChain: Block

validation failed!")↪→

}

}

}

c.blockchainMutex.Unlock()

}

Chain Aggregation

The aggregateChain() functions takes a blockchain as input and returns an aggre-

gated block which is the genesis block of a new blockchain. The aggregation is per-

formed using weightedMovingAverage() functions which implements the weighted

moving average of the sensing data, stored in the blockchain.

func (c *Consensus) aggregateChain(blockChain []block.Block) []block.Block

{↪→

tempList := blockChain[len(blockChain)-1].TransactionList

newBlockChain := []block.Block{}

if len(tempList) > 1 {

txsList := []string{}

for _, c := range tempList {

txsList = append(txsList, c.Transaction)

}

aggregate :=

weightedMovingAverage(decodeTxsToFloat(txsList))↪→

newGenesisBlock := block.CreateGenesisBlock(

blockChain[0].Header.Generation+1,

&blockChain[len(blockChain)-1],↪→
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strconv.FormatFloat(aggregate, 'f', 6, 64),

blockChain[len(blockChain)-1].Header.Wallet,↪→

(*c.Engine.BasicHost).ID(),

time.Now().UTC().UnixNano())↪→

newBlockChain = append(newBlockChain, *newGenesisBlock)

if c.Engine.Verbose {

fmt.Println("Blockchain aggregated.")

}

} else {

newBlockChain = nil

}

return newBlockChain

}

func weightedMovingAverage(txsList []float64) float64 {

alpha := 0.1

wAvg := 0.0

if len(txsList) == 1 {

return txsList[0]

}

for i := range txsList {

wAvg = (1.0-alpha)*wAvg + alpha*float64(txsList[i])

}

return wAvg

}

Engine

Engine manages the host node and its communication over the network. It con-

tains a PeerList, which is a TimedPeerList struct type that stores a node’s peer

list alongside its update time. It assigns the current clusterID, Moniker, and ad-

dress to a node. The function CreateEngine() creates a new Engine thereby run-

ning a new node. The Engine handles the transaction listening, transaction and

blockchain broadcasting, and peer list updating through the startListening(),
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broadcastTransaction(), broadcastBlockchain(), and updatePeerList() func-

tions, respectively.

type Engine struct {

HostNode *node.Node

BasicHost *host.Host

PubSub *libp2pPubSub

Moniker string

Address string

ClusterID int

PeerList *TimedPeerList

NodeConsensus *Consensus

Verbose bool

shutdown bool

}

type TimedPeerList struct {

Timestamp time.Time

Peers map[string]string

}

func CreateEngine(moniker string, clusterID int, listenPort int) *Engine {

pubsub := new(libp2pPubSub)

host := pubsub.createPeer(moniker, listenPort)

pubsub.initializePubSub(*host)

engine := Engine{

HostNode: node.CreateNode(),

BasicHost: host,

PubSub: pubsub,

Moniker: moniker,

Address: getLocalHostAddress(*host),

ClusterID: clusterID,

PeerList: &TimedPeerList{time.Now(),

make(map[string]string)},↪→

NodeConsensus: nil,

Verbose: false,

shutdown: false,

}

engine.NodeConsensus = NewConsensus(&engine, tBlock, tChain,

blockThreshold)↪→

return &engine

}
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func (e *Engine) startListening() {

e.NodeConsensus.RunConsensus()

for !e.shutdown {

sender, message := e.PubSub.Receive()

if e.Verbose {

fmt.Println("\nIncoming broadcast...")

data := &msg.Message{}

if err := json.Unmarshal([]byte(message), &data);

err != nil {↪→

log.Fatal(err)

}

fmt.Printf("Node %s sent Message of type: '%s'\n",

sender.Pretty(), data.Type)↪→

if data.Type == msg.TransactionType {

fmt.Println(message)

}

}

e.handleMessage(message)

}

e.NodeConsensus.StopConsensus()

err := (*e.BasicHost).Close()

if err != nil {

log.Println(err)

}

}

func (e *Engine) broadcastTransaction(to peer.ID, timestamp string, str

string) {↪→

from := (*e.BasicHost).ID()

rawData, err := json.Marshal(msg.TransactionPayload{From: from,

To: to, Timestamp: timestamp, Transaction: str})↪→

if err != nil {

log.Fatal(err)

}
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message := msg.Message{Type: msg.TransactionType, RawPayload:

rawData}↪→

bytes, err := json.Marshal(message)

if err != nil {

log.Println(err)

}

e.PubSub.Broadcast(string(bytes))

}

func (e *Engine) broadcastBlockchain(blockchain []block.Block) {

rawData, err := json.Marshal(msg.BlockchainPayload{Blockchain:

blockchain})↪→

if err != nil {

log.Fatal(err)

}

message := msg.Message{Type: msg.BlockchainType, RawPayload:

rawData}↪→

bytes, err := json.Marshal(message)

if err != nil {

log.Println(err)

}

e.PubSub.Broadcast(string(bytes))

}

func (e *Engine) updatePeerList(peerList map[string]string) {

e.PeerList.Timestamp = time.Now()

e.PeerList.Peers = peerList

for key := range e.PeerList.Peers {

if _, found := e.HostNode.LiveWallet[key]; !found {

e.HostNode.LiveWallet[key] = 0

}

}

}
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5.6.2 Running the Demonstration

To run the demonstration, we created a RunNodeManager() function which initial-

izes the node creation and management process. In this function, to simulate the

different regions, nodes are created as cluster and each cluster is considered as a dif-

ferent spatial region. The function defines the both number of clusters and number

of nodes per cluster. Each cluster is created from struct Cluster with an unique

ID. The function setupNetworkTopology() sets up a random and sparse network

topology. Finally, the function main() runs the platform.

var (

clusterCount = 4

nodesPerCluster = 5

initialPort = 10000

clusters = make([]Cluster, clusterCount)

txInterval = 5000

txPerMinute = (txInterval / 1000) * 60

txLoad = 0.2

maxInt = 1000

minInt = 0

inputRangeMean = (float64(maxInt-minInt) / 2.0) + float64(minInt)

)

type Cluster struct {

clusterID int

engines []*Engine

}

func RunNodeManager() {

counter := 0

for i := range clusters {

clusters[i] = Cluster{clusterID: i, engines: []*Engine{}}

clusters[i].engines = make([]*Engine, nodesPerCluster)

}

for _, cluster := range clusters {

engines := cluster.engines

defer shutdownEngines(engines)

for i := range engines {

engines[i] = CreateEngine(fmt.Sprintf("node %d",

counter), cluster.clusterID,

initialPort+counter)

↪→

↪→

counter++

}
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setupNetworkTopology(engines)

setupPeerLists(engines)

startListening(engines)

}

runTerminalInterface()

}

func setupNetworkTopology(engineSlice []*Engine) {

mrand.Seed(time.Now().UTC().UnixNano())

if len(engineSlice) > 1 {

edges := "Graph Topology: {"

for i := range engineSlice {

var n = i

for n == i || (len(engineSlice) > 2 &&

len((*engineSlice[i].BasicHost).Network().↪→

ConnsToPeer((*engineSlice[n].BasicHost).ID())) != 0) {

n = mrand.Intn(len(engineSlice))

}

connectHostToPeer(*engineSlice[i].BasicHost,

getLocalHostAddress(*engineSlice[n].BasicHost))↪→

edges += fmt.Sprintf("(%d, %d), ", i, n)

}

edges = strings.TrimSuffix(edges, ", ")

edges += "}"

fmt.Println(edges)

}

time.Sleep(time.Second * 2)

}

func main() {

engine.RunNodeManager()

}

Figures 5.10 to 5.14 present some screenshots of the demonstration. In the

demonstration, the following commands are implemented: SwitchCluster, Send,

SwitchNode, AutoSend, ManualSend, ShowActivity, PrintBlockchain, Shutdown.

Table 5.3 lists the description of the commands.
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Table 5.3: Table of Commands

Command Description
SwitchCluster Shows a different Cluster
Send Sends transaction with manual input to transaction

value and receiver
AutoSend Automatic transaction creation
ManualSend Resets transaction sending to Send from AutoSend

ShowActivity Visualizes the activities in the network
PrintBlockchain Prints the content of a blockchain
Shutdown Shutdowns the demonstration

Network Initialization

The Unix command go run src/main/sensor-chain.go creates the nodes and

clusters (in Figure 5.10, it creates 4 clusters, each with 5 nodes). In each cluster,

the connections between the nodes are set in random.

Genesis Block in a Newly Created Blockchain

Figure 5.11 depicts the content of a genesis block of a newly created blockchain for

cluster 0. The field Generation is 0, as no aggregation has been done yet in the

network. Similarly, the wallet and TransactionList are both empty.

Broadcasts and transactions in Blockchain

By using the ShowActivity command, figure 5.12 displays the detail of the new

transactions happened in a network. On the other hand, the figure 5.13 shows the

committed transactions in a block.
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Figure 5.10: Network initialization in the demonstration.

Figure 5.11: Genesis block in a newly created blockchain.
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Figure 5.12: Transaction broadcasting in the demonstration.

Genesis Block After Aggregation

Figure 5.14 shows the content of the genesis blockchain after an aggregation. The

field Generation is set 2, meaning there two aggregation happened on a blockchain

so far. The Wallet contains the number of transactions made by the different

nodes in a cluster. In this version of genesis block, The Transaction field in

TransactionList is not empty. Rather, it contains the weighted average value

of the blockchain.

5.7 Discussion and Summary

In this chapter, we proposed “Sensor-Chain”, a lightweight scalable blockchain

framework for resource-constrained IoT sensor devices. In this framework, a con-

ventional blockchain is made lightweight in three steps. First, a global blockchain

is divided into smaller disjoint local blockchains in spatial domain such that the
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Figure 5.13: Transactions recorded in a blockchain.
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Figure 5.14: Genesis block after aggregation.

required storage space to hold a local blockchain for an IoT device is always smaller

than that in conventional blockchain. Second, a temporal constraint is imposed on

the life span of the local blockchains to limit their size in temporal domain. Finally,

a sensor node is required to keep at most one local blockchain in its memory at

any time instance. We analyzed and tested Sensor-Chain in terms of both long-run

performance and scalability; and compared with other approaches. Experimental

results show that it consumes far little storage space than other approaches.
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CHAPTER 6

QUANTIFYING TRAJECTORY PRIVACY IN

BLOCKCHAIN-BASED INTERNET OF THINGS (IOT)

In this chapter, we study the trajectory privacy issue in a permissioned blockchain.

In such a blockchain, the authority of the system has control over the identities of

its users. Such information can allow an authority to map identities with their spa-

tiotemporal data, undermining the location privacy of a mobile user. We study the

problem under three conditions. First, the authority holds the public and private key

distribution task in the system. Second, there exists a spatiotemporal correlation

between consecutive location-based transactions. Third, users communicate with

each other through short-range communication technologies such that it constitutes

a proof of location (PoL) on their actual locations. We show that, in a permissioned

blockchain with an authority and a presence of a PoL, existing approaches cannot be

applied using a plug-and-play approach to protect location privacy. In this context,

we propose BlockPriv, an obfuscation technique that quantifies the relationship be-

tween privacy and utility in order to dynamically protect the location privacy in

the permissioned blockchain. The chapter is organized as follows. Sections 6.1 and

6.2 introduce the problem statement and hypothesis. The system model and attack

strategies are discussed in 6.3. The BlockPriv approach is detailed in section 6.4

and its several important security, privacy, and utility aspects are analyzed in sec-

tion 6.5. Experimental evaluation with real-world data of the proposed approach is

covered in section 6.6.

6.1 Introduction

To date, two main categories of blockchain have been studied in a variety of IoT

applications: public and permissioned. In the public version, the blockchain has
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no authority; a node can join and leave the network at any point with random

pseudonyms and can also change its public keys at any time instance (e.g., for every

transaction). This approach was first proposed by Nakamoto [Nak08], the creator of

blockchain and later widely adapted for almost all kinds of applications, including

smart home and vehicular network[ZN+15, DSKJ17, SK17]. It is considered that,

the certificate authority (CA) and the public blockchain are independent of each

other. Thus, the frequent pseudonym scheme makes the IoT nodes untraceable and

provides high privacy. In fact, in order to undermine trajectory privacy of a target

node, other nodes need to either collude with a large number of nodes over a large

region or track the target node physical, which is really hard to do, if not impossible,

in mobile environment.

However, in a permissioned blockchain, such a high level of privacy is not easily

attainable, as the authority of the blockchain controls the blockchain network with a

variety of access controls spanning from control over joining the network to perform

consensus mechanisms. Amazon’s Quantum Ledger Database (QLDB)[ama], J.P.

Morgan’s Quorum blockchain [Mor19], and Microsoft’s Azure blockchain [Azu] are

just a few examples of industry standard permissioned blockchains. Similar to many

other fields, permissioned blockchain is also being studied in the IoT of mobile de-

vices. The authority of the blockchain holds the public and privacy key distribution

task in the system which gives it an upper hand of tracking the the mobile devices.

The problem can be exacerbated if the communication between the nodes are based

on short-range communication. Such communication can be used to localize a target

node in spatiotemporal domain by generating proof-of-location (PoL) [ABMZ18] on

the node’s locations. In this context, We first discuss the limitations of existing

location privacy-preserving mechanisms under a PoL in the context of permissioned

blockchain. Then, we present an effective trajectory privacy-preserving approach,
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coined as BlockPriv and quantify the trade-off between privacy and utility theoret-

ically and empirically using two factual datasets.

6.2 Motivation and Problem Statement

In this work, we study the location privacy issue in the context of permissioned

blockchain, where: 1. the authority of the blockchain holds the public and privacy

key distribution task in the system, 2. a transaction can be considered as a proof of

location (PoL) for a user’s temporal whereabouts, and 3. there is a spatiotemporal

correlation between the locations. For better understanding, we draw motivation of

a permissioned blockchain from CreditCoin, a privacy-preserving blockchain frame-

work for the Vehicular Ad Hoc Network (VANET) [LLC+18]. In this framework, the

vehicles are required to be registered with the authority. This authority is respon-

sible for generating and providing the vehicles with cryptographic keys, and keep

track of the relationship between the vehicles and the provided keys. A set of trace

managers at different locations also aids the authority in tracking malicious vehi-

cles/users. In this framework, only road-side units (RSUs) and authorized vehicles

are responsible for managing the blockchain. This framework is built around the

short-range communication technology-based P2P network of the vehicles. Here,

the vehicles make transactions with their peers such that each transaction is signed

by each of the peer vehicles by their public keys. As these transactions are made

through a short-range communication technology (e.g., Wi-Fi, Bluetooth), they can

be treated as a proof-of-location (PoL) for the vehicles’ whereabouts in the spa-

tiotemporal domain. In some frameworks, such as the one proposed in [ABMZ18],

the proof of location is explicitly defined in the design. Based on the transaction in-

formation, the vehicles generate a rating about each other and forward them to the
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nearest RSU. The RSUs then compute the overall rating of each vehicle and append

the new rating into the blockchain. Similar motivation can also be drawn from the

work presented in [YYL+18]. Obviously, these frameworks can be integrated into

many other mobility-centric IoT scenarios, such as mobile crowdsensing. The RSUs

and smart vehicles can be replaced with Wi-Fi access points and low powered mobile

devices (e.g., smart phones and smart watches), respectively. In terms of location

privacy, these frameworks only guarantee conditional privacy to IoT users. That is,

the devices can enjoy privacy from their peers by using the public keys provided by

the authority. However, as the authority holds the mapping between real identity

and the public keys, the privacy of sensitive locations from a malicious authority

cannot be preserved using only a key changing mechanism. A malicious authority

can perform a spatiotemporal analysis of the disclosed locations of a user and can

reveal sensitive information. Against this backdrop, we seek answer to the following

problem: How can a user’s privacy preference for different locations and spatiotem-

poral mobility information over a map will help an obfuscation approach to prevent

a malicious blockchain authority from revealing trajectory of sensitive locations?

We hypothesize that a combination of spatiotemporal silence with spatial ob-

fuscation approach will allow to protect trajectory privacy of mobile users from a

malicious authority under PoL.

6.3 Background

In this section, we present the details of the system model and the behavior and

attack strategies of the malicious entities in the system. We then formulate the

problem and state the goals we set out to achieve in the design of its solution.
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Table 6.1: Table of Symbols
Symbol Description
MU Mobile user or mobile node
Nx Privacy parameter for a location lx
P(lh) Privacy level achieved for location lh
PrtMU(l) MU ’s probability of being at location l at time t
ls A sensitive location
S Set of all sensitive locations of a MU
U(l) Loss of utility for location l
Tr A trajectory
n Total number of sensitive locations in a Tr
δt Time difference
La Set of all locations reachable to/from location la
Φ(a, b) Required time to reach from location la to lb
|X| Size/number of elements in a set X
α % of location types selected as sensitive
r Privacy region radius

Figure 6.1: System model of permissioned-blockchain where BC and BA refer to
blockchain and blockchain authority, respectively. The BA also acts as certificate
authority and trace manager. The mobile IoT nodes are connected with each other
in a P2P network using a short-range communication technology. They make trans-
actions with each other and send information on the transactions (e.g., rating about
other mobile nodes at a specific location and time) to the nearest blockchain node.
Here, each grid refers to a specific location.
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6.3.1 Blockchain System Model

We consider a permissioned blockchain, where its authority also acts as the cer-

tificate authority to provide the public and private key pairs to the mobile nodes.

The mobile nodes are registered with the system and communicate with each other

using the preassigned key pairs. Communication between the nodes takes place us-

ing a short-rage communication technology. The nodes can request the authority

for new key pairs at any point of time. The blockchain is managed by preassigned

mobile edge computing devices (e.g., RSU, Wi-Fi access points, and so on), dis-

tributed over a large region. These devices constitute the blockchain nodes and are

connected with each other in a P2P network over the internet. The transactions

among the IoT nodes are broadcasted to the blockchain nodes in the blockchain

network. The blockchain nodes aggregate and insert the new transactions into the

blockchain through a consensus mechanism (e.g. practical byzantine fault tolerance,

proof-of-stake) in a timely fashion (e.g. every 30 minutes). We consider a blockchain

architecture similar to the one presented in CreditCoin [LLC+18] without consider-

ing the rewarding phase. We assume that the mobile nodes have internet capability

to compute the time to reach one location from another with the help of a traffic

information provider in real time, e.g., Google Maps. We also assume that the in-

formation between the traffic information service provider and a node is anonymous

and the provider is independent from the blockchain authority.

6.3.2 Attack Model

Malicious Entities

In the system, we consider the authority of the blockchain as the malicious entity.

It follows the honest-but-curious adversary model in the system. That is, it tries
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to predict a target node’s sensitive spatiotemporal information without violating

any protocol of the system or dismantling the way blockchain works. Furthermore,

it is not going to hack into the device of a target node. We also consider that,

in order to compute the time reachability information, the authority also uses a

traffic information service provider. From this point on, we refer the authority as

an attacker. It is important to note that some of the mobile nodes can be malicious.

However, as we mentioned earlier in the system model, the mobile nodes can change

their public keys at any point of time; the malicious mobile nodes cannot track a

target node from their transactions without colluding with the authority. This is a

fundamental privacy feature of blockchains. Thus, we focus on the attack strategies

of the blockchain authority.

Attacker’s Goal and Strategies

The goal of an attacker is to understand a mobile node’s presence at different lo-

cations in the temporal domain. In order to do so, it utilizes the time-reachability-

based spatiotemporal correlation between a node’s disclosed locations in the blockchain

as its fundamental strategy. Let the random variable Ot
MU represents the actual lo-

cation of a mobile node MU at time t. Given a node’s locations li, lj at time ta, tb

respectively, the node’s probability of being at a location lh at a discrete time tq

(ta < tq < tb) is

PrqMU(lh) = Pr(Oq
MU = lh|Oa

MU = li, O
b
MU = lj) (6.1)
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The attacker computes PrqMU(lh) using the time reachability correlation as follows.

PrqMU(lh) =


1 If lh is reachable to and from li

and lj in (tb − ta) time

0 Otherwise

(6.2)

Obviously, it is possible to have multiple locations with PrqMU(lh) = 1. Thus, the

ultimate goal of the attacker is to minimize the number of such locations. That is,

minimize

(∑
PrqMU(lh)

)
(6.3)

This forms the core of an attacker’s strategy. Based on this, we consider mainly

the following attacks that can be exploited by the attacker to infer a target node’s

location information.

(1) Collusion with malicious mobile nodes : Malicious nodes collude with the

authority and provide it with the location information of a target node for profit.

(2) Map matching attack : The authority employs the map information to un-

derstand spatially reachable and unreachable location information. A spatially un-

reachable location refers to a location that cannot be reached at any time using a

map service (e.g., the middle of a lake). Thus, Pr∞MU(l) = 0.

(3) Time-reachability-based path reconstruction attack : In order to reconstruct

the actual path between two revealed locations, the authority can use the time

reachability information to construct the valid paths that can be traveled between

the two locations within a time limit.

We also analyze the impact of transaction dropping attack on location privacy.

Note that, the scope of this work encompasses the analysis of location privacy invad-

ing attacks from a user’s point of view and thus different blockchain related attacks,

such as DDoS, Sybil, 51% attack, and eclipse attack are not covered here.
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6.3.3 Problem Formulation and Design Goals

It is clear that there is an important trade-off between location privacy and utiliza-

tion of the system. The problem lies with the short-range communication technology-

based transactions between the mobile nodes that form proof of locations (PoL) for

the nodes. Thus, in order to protect a sensitive location’s privacy, a mobile node

must remain silent in the network: that is, it must not make any transaction in

the network. This leads to the question of how long in both spatial and temporal

domains a node must remain silent to protect a sensitive location’s privacy. Remain-

ing silent infinitely results in a location privacy of 100%, but a system utilization of

0%. In other words, an indefinite silence will incur a 100% loss of utility. Hence,

the goal of this work is to formulate, design, implement, and evaluate a location

privacy-preserving mechanism, called BlockPriv, for mobile nodes in the context of

permissioned blockchain by solving the following problem:

minimize {P−1(ls),U(ls)} (6.4)

Here, P(ls) and U(ls) refer to the achieved privacy for sensitive location ls and the

loss of utility due to privacy preservation for ls, respectively.

To summarize, in the design of the BlockPriv mechanism, we intend to achieve

the following goals: 1. achieve privacy without collaborating with any other entity

in the system, and 2. achieve a quantifiable balance between privacy and utility.

6.4 The BlockPriv Approach

For the sake of clarity and to maintain coherence with the blockchain concept, we

first discuss the public key changing technique adapted in BlockPriv. In our scheme,

we adapt the temporal public key changing concept proposed by Michelin et al.
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[MDS+18]. Here, at a fixed time interval tkey, a mobile node will change its public

key in order to nullify the possibility of spatiotemporal linkage attack from malicious

nodes. Note that, in our problem, public key changing can only provide privacy to

a mobile node against its peers, not against the authority that distributes the keys.

Also, this scheme is vulnerable against colluding attack between the authority and

malicious mobile nodes, which is one of the focus of our work.

At this point, we present the formal definition of location privacy and utility

from the perspective of a mobile node. The definition of privacy can be derived

from the formulation of the attacker’s objective, defined by equation 6.3, as follows.

P(ls) = maximize

(∑
PrqMU(lh)

)
(6.5)

Let us consider: a node’s last revealed location in the blockchain is li at time ta, and

it was at a sensitive location lsh at time tq. It should reveal its location, also known

as making a transaction, at an insensitive location lj at time tb (ta < tq < tb) if and

only if

P(lsh) =

(∑
PrqMU(lsh)

)
≥ Nh (6.6)

To explain, a node should reveal its location lj at time tb in the network to the

authority when there exists at least Nq number of locations, including lsh, which are

both reachable from and to li and lj in (δt = tb− ta) time. Here, Nh is a user defined

privacy parameter for location lsh. This formulation is applicable only for a single

sensitive location. It is also possible that, after lsh, the node was also at another

sensitive location lsp at time tr (ta < tq < tr < tb) such that, after δt = tb − ta

time, P(lsh) ≥ Nh, but P(lsp)
)
< Np. In such a case, the node should not make any

transaction at location lj at time tb. Formally, if there are m number of sensitive

locations visited by a node between time ta and tb, then it will make a transaction
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with its peers at an insensitive location at time tb in the network if and only if

P(lsi ) =

(∑
PrqiMU(lsi )

)
≥ Ni; ∀i = 1, . . .m (6.7)

Note that, from ta to tb, the node was continuously silent in the network. We call it

single or 1 round silence to maintain privacy of the m number of sensitive locations.

If a trajectory Tr contains n number of sensitive locations, then the average privacy

of each sensitive location in that trajectory is defined as

P(Tr) =
1

n

∑
i

P(lsi ), i = 1, . . . n (6.8)

From the formulation of privacy, we can also define the loss of utility due to the

application of privacy preservation. Let us consider: at i-th round silence, the node

opted not to make any transaction at P(lsh) number of locations. In our definitions,

this number is the loss of utility of BlockPriv. If a node maintained k rounds of

silence to preserve privacy of a trajectory Tr with n number of sensitive locations,

then the average loss of utility for each sensitive location is

U(Tr) =
1

n

i=k∑
i=1

Ui (6.9)

This allows us to reconstruct the multi-objective optimization problem, presented

in equation 6.4, as a single objective optimization problem as follows:

minimize U(Tr)

s.t. P(lsi ) ≥ Ni;∀lsi ∈ Tr
(6.10)

Now we present in detail the mechanism of BlockPriv to solve this problem.

In this mechanism, the mobile nodes are responsible for labeling their sensitive

locations and assigning level of privacy to each of them. The nodes utilize radius r

to specify the level of privacy for a sensitive location as N = πr2. Let us consider:

a node MU made a transaction in the network at time ta at location li. Then, it
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Figure 6.2: Illustrated BlockPriv: The curve refers to a mobile node (MU)’s actual
path between l0, l1, and l2 locations at times t0, t1, and t2, respectively. The location
l1 is privacy sensitive for the MU . Thus, it remained silent at location l1. It will
make a blockchain transaction at l2 at time t2 only when the number of locations
reachable from both l0 and l2 in t2 − t0 time, meets the privacy requirement for l1.

moved to a privacy sensitive location lsh at time tq and did not make any transactions.

Then, after every ∆t time at location lj, different from both li and lsh, it checks the

number of locations that are reachable to and from li and lj. Let current time

and location be tb and lj, respectively. The node first computes the set of all the

locations Li that are reachable from li in δt = tb − ta time. Next, it computes the

set of all the locations Lj from which location lj is reachable. Then, L = Li ∩ Lj

forms the set of all locations from which both li and lj is reachable in δt time. In

other words, each of the location in L creates a valid 1-hop route from li to lj in δt

time. That is, based on the time reachability information, the node can move from

li to any location ll ∈ L and then move to lj in δt time. Thus,

L = {∀l|(Φ(li, l) + Φ(l, lj)) ≤ δt} (6.11)

Here, Φ(a, b) refers to the time to get from location a to b. The size of L defines the

privacy level achieved for sensitive location lsh in δt time. That is, P(lsh) = |L|. The
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node will make a transaction at time tj at location tb only when |L| ≥ Nh. If there

is a total m number of sensitive locations visited by the node in δt time, according

to equation 6.7, it will make a transaction at time tj and location lb if and only if

|L| ≥ Ni; ∀i = 1, . . .m (6.12)

It is understandable that, in the case when all the sensitive locations have the

same level of privacy, comparing L with the level of privacy of the latest sensitive

location is enough to check whether the condition in equation 6.7 is valid. However,

for sensitive locations with different levels of privacy, the MU is required to check

whether all the previous sensitive locations’ levels of privacy are met before making

any transaction.

For a single sensitive location ls, the maximum loss of utility Umax(ls) is bounded

by the value of its privacy parameter N . The higher the value of N , the higher the

Umax(ls). More specifically, Umax(ls) ≤ L. Certainly, from equation 6.10, we do not

want any “extra” loss in utility of the blockchain. Let ta is the last time when a

node’s location was revealed in the blockchain. After that, at every ∆t (∆t ∈ Z≥0)

time, it computes L and checks whether it meets the privacy requirement of a set

of sensitive locations. That is, after checking L at time (ta + x×∆t), it will check

L at time (ta + (x + 1) ×∆t). Here, x ∈ Z≥0. Let, t′, where (ta + x ×∆t) < t′ <

(ta+(x+1)×∆t), is the time when L ' N . Then, computing L at (ta+(x+1)×∆t)

time will certainly impose some extra loss of utilities. Thus, Umax(ls) ≤ N + U ′.

Here, U ′ refers to the set of insensitive locations at which the MU opted not to

make any transaction between time t′ and (ta + (x + 1) × ∆t). With the higher

value of ∆t, the value of U ′ will be higher. Thus, ∆t should remain as small as

possible. However, for resource-constrained mobile nodes, a very small ∆t means

very frequent computation of the time reachability, which affects the energy of the
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Algorithm 6: BlockPriv

Input: Current location lcur, current time tcur, last revealed location in the
blockchain lprev and time tprev, list of sensitive locations S, list of
level of privacy for the sensitive locations N , previous time of key
change tkeyprev, key expiration time tkey

Output: Decision on making transactions.
1 if (tcur − tkeyprev) ≥ tkey then
2 Request new key pair from the authority.
3 tkeyprev = tcur

4 if lcur is a sensitive location then
5 Append lcur to S and do not make any transaction.

6 else
7 δt← tcur − tprev
8 Lprev ← select all the locations that are reachable from lprev in δt time
9 Lcur ← select all the locations from which lcur is reachable in δt time

10 L ← Lprev ∩ Lcur

11 for (i = 1; i ≤ |S|; i+ +) do
12 if |L| ≥ N (lsi ∈ S) then
13 Delete lsi from S

14 if S 6= ∅ then
15 Do not make any transactions in the network.

16 else
17 Free to make transactions.

5

device. Thus, the compromise between the capability of the device and loss of utility

is an issue that needs to be examined: we leave it for our future work. The detail

of BlockPriv is presented in Algorithm 6.

6.5 Scheme Analysis

In this section, we present an analysis of the important privacy, utility, and security

aspects of BlockPriv.
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6.5.1 Privacy Analysis

Privacy Bound

Lemma 6.5.1 If there are multiple numbers of sensitive locations between two re-

vealed insensitive locations, then each of the sensitive locations achieves a privacy

level of (maxN ).

Proof. Let us suppose that a mobile node MU has visited m number of sensitive

locations between lprev and lcur in δt = (tcur − tprev) time. According to equation

6.12, it will make a transaction at location lcur and time tcur only when all of the

sensitive locations’ privacy requirements are met. That is, a new transaction will

take place only when the length of the set L ≥ (maxN = max{N1, . . .Nm}). Thus,

even if a sensitive location’s privacy requirement is much lower than (maxN ), the

achieved privacy for i-th sensitive location lsi in the set is P(lsi ) = |L| ≥ (maxN ).

Obfuscating Paths

Lemma 6.5.2 If there are any sensitive locations between two revealed insensitive

locations li and lj, then, at a minimum, there are (maxN ) number of 1-hop obfus-

cating paths between the two revealed locations.

Proof. Equation 6.11 implies that each location in the set L is reachable to and from

lpriv and lcur in δt time. Thus, from the point of reachability, each i-th location in

L forms a 1-hop path between lpriv and lcur in δt time.

As a result, each path formed by each sensitive location lsi ∈ L is obfuscated

with (|L| − 1) number of different other paths in δt time.
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6.5.2 Utility Analysis

Loss of Utility Bound.

Lemma 6.5.3 If there are multiple numbers of sensitive locations between two re-

vealed insensitive locations, then the maximum loss of utility Umax(ls) in BlockPriv

to preserve privacy of a sensitive location ls is proportional to (maxN ).

Proof. Lemma 6.5.1 states that whatever the expected level of privacy assigned to

a specific sensitive location, the achieved privacy is bounded by the location with

highest level of privacy maxN . Thus, the maximum loss of utility for every sensitive

location ls between the two revealed insensitive locations is Umax(ls) ≤ (maxN )+U ′.

6.5.3 Security Analysis

We analyze the efficacy of BlockPriv against different location privacy invading

strategies by a malicious authority of the blockchain system list in subsection 6.3.2.

We also briefly discuss the interesting impact of transaction dropping attack on

location privacy.

Collusion Attack.

Definition 6.5.4 A collusion with malicious mobile nodes is successful if the au-

thority of the blockchain can find a new set of locations L∗ about a MU ’s sensitive

location lsi such that

|L ∩ L ∗ | < Ni. (6.13)

Lemma 6.5.5 A combination of time reachability information and collusion with

other malicious nodes will not leak privacy of a target mobile node.
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Proof. In BlockPriv, a mobile node remains silent in the spatial and temporal do-

mains in order to preserve privacy against an untrusted authority of the blockchain.

Thus, even if the authority colludes with some mobile nodes, it will not be able

to construct a new set L∗ beyond L that would satisfy equation 6.13. In other

words, its understanding about a targeted node’s whereabouts will not be made any

finer than L by colluding with other nodes. In fact, collusion with mobile nodes

to track a target node is a costly approach. The target node changes its public

keys frequently and to keep tracking it, the authority needs to update the colluding

nodes at the same rate. The only way a colluding attack will be successful is if

a malicious node physically tracks a target node. However, our work concentrates

on providing security against software-based privacy invading techniques, not on

physical observations.

Map Matching Attack.

Definition 6.5.6 For a sensitive location ls, a map matching attack is considered to

be successful if a attacker can find a set of locations L∗ from L such that, (L∗ ⊂ L∗),

(|L ∗ | > 0), and Pr∞MU(li) = 0; ∀li ∈ L∗.

Lemma 6.5.7 BlockPriv is resilient against map matching attack.

Proof. The mobile node calculates the time reachability information using a real-

time map service provider and thus each location l, selected to form L, is spatially

reachable. That is, L = {∀l ∈ L|Pr∞MU(l) = 1}. Thus, L∗ = ∅.

Time Reachability-Based Path Reconstruction Attack.

Definition 6.5.8 A time reachability-based path reconstruction attack on BlockPriv

is said to be successful if, for a sensitive location ls, the authority can find fewer than

N number of paths between two revealed locations for a mobile node.
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Lemma 6.5.9 BlockPriv is resilient against time reachability-based path reconstruc-

tion attack.

Proof. According to equation 6.11, every location li ∈ L, including every sensitive

location, is reachable from previously revealed location lprev to lcur in δt time. Thus,

according to lemma 6.5.2, there are at least maxN number of 1-hop obfuscating

paths from lprev to lcur for li.

We can now generalize the analysis for multi-hop paths. Let the actual path be:

lprev → ls1 → ls2 → lcur and the temporal sequence of this path be: tprev → t1 → t2 →

tcur. Hence, δt = Φ(lprev, l
s
1) + Φ(ls1, l

s
2) + Φ(ls2, lcur). Assume that, using BlockPriv,

we got L, where {ls1, ls2} ∈ L. For the sake of argument, let us consider, for every

location l ∈ L′ (L′ = L \ {ls1, ls2}), there exists no multi-hop path. In such a case,

if somehow it is known that the node visited multiple locations between lprev and

lcur, then the attacker can exclude all the single hop paths and is able to reconstruct

the actual path: lprev → ls1 → ls2 → lcur. However, in BlockPriv, the node remains

silent in the network, such that every location in L exhibits similar probability of

being the node’s whereabouts under the time reachability condition. Also, such

a special case can occur only when Pr∞MU(l) = 0; ∀l ∈ L′. This case falls into

the category of a map matching attack and lemma 6.5.7 proves that BlockPriv is

resilient against such an attack. Hence, time reachability information cannot help a

malicious authority to reconstruct the actual path.

Transaction Dropping Attack.

In this attack, a mobile node MUi attempts to drop the transactions between itself

and another node MUj for a specific intention (e.g. preventing the other node from

gaining reward out of ill intention or to protect its instance location privacy). There

are two cases to consider here. First, MUj passes the transaction information to
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(a) New York City (NYC) (b) Tokyo (TKY)

Figure 6.3: Locations in (a) New York City (NYC) and (b) Tokyo (TKY) datasets.
Green markers symbolize the locations. The red colors represent the high density
regions.

the nearest blockchain node and thus MUi’s location information is revealed. In

such a case, MUi’s attempt to protect location privacy will failed. Second, if MUj

also drop the transaction, then both the nodes’ location information will remain

undisclosed in the blockchain.

6.6 Experimental Evaluation

Table 6.2: Dataset Statistics

Dataset #Transactions* #Locations #Types #Nodes*
NYC 227428 38333 400 1083
TKY 573703 61858 385 2293

*Originally called “Checkins” and “Users”. In this context, we renamed the

variables “Transactions” and “Nodes”, respectively.

In this section, we describe the details regarding the experimental evaluation of

BlockPriv. To properly understand the efficiency and efficacy of our approach, we

implemented two cases: locations with 1. similar privacy parameter and 2. different

privacy parameters. These two versions will be referred to as sim-BlockPriv and

diff-BlockPriv, respectively.
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Table 6.3: Simulation Setup Parameters

Parameter Value(s)
r {500, 1000, 1500, 2000} meters
γ {5,10,15,20}
v 30 miles per hour
α {2, 4, 6, 8, 10}
n 100

6.6.1 Experimental Settings

Dataset Description

In this work, we consider the case of making frequent transactions in the network.

Hence, we selected Foursquare’s New York City (NYC) and Tokyo (TKY) datasets

[YZZY15] to test the approach with factual data. These datasets contain the check-

in information of nodes, in terms of location and time. The number of transactions,

locations, location types, and nodes of the datasets are presented in Table 6.2 and

a visualization of the locations in the datasets are depicted in Figure 6.3.

Simulation Setup

The datasets do not contain any mark on the privacy sensitive locations of the

mobile nodes. Thus, we mark α% of the location types as sensitive locations for

all the nodes. The different values of the parameters, including privacy level for

a sensitive location r, used in the experiment, are shown in Table 6.3. For each

combination of the parameters, we ran the simulation on both datasets for n number

of nodes. As there is a correlation between the number of transactions and the

impact of privacy on utility, we selected 100 nodes with the highest number of

transactions. We justify this claim through comparing the result with 100 nodes with

least number of transactions. Next, since the datasets do not contain continuous
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Table 6.4: Pearson’s Correlation Values

Dataset Statistics U-P U-S

NYC
Minimum 0.75 0.44
Average 0.94 0.92

Maximum 1.00 0.99

TKY
Minimum 0.75 0.74
Average 0.95 0.95

Maximum 1.00 0.99
U-P: Loss of Utility vs. privacy level

U-S: Loss of Utility vs. sensitive location types

location information, we set a speed (v) for each node to simulate its reachability-

based mobility. By nature of mobility, there are cases when a node cannot reach a

new location, lnew, from a previous location, lprev in a certain time, in the dataset

with speed v. In these cases, we continue adding a small value to v (e.g. v/5)

until it can reach lnew. In diff-BlockPriv, the difference in the privacy level for

different sensitive locations is set by drawing a random number from the range

{r − (r × γ%), r + (r × γ%)}.

6.6.2 Experiment Results

In the experiment, we examine the loss of utility of sim-BlockPriv and diff-BlockPriv.

In particular, we examine the following two relationships, fundamental to the design

of a privacy-preserving mechanism: 1. loss of utility versus privacy level, and 2. loss

of utility versus number of sensitive locations.

Utility versus Privacy Level

We first examine the relationship between the loss of utility and privacy (in term of

radius r in meters). For example, Figures 6.4(a-d) visually show this relationship
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(a) NYC (α = 2%) (b) NYC (α = 10%)

(c) TKY (α = 2%) (d) TKY (α = 10%)

Figure 6.4: Average loss of utilities versus privacy level in sim-BlockPriv and diff-
BlockPriv.
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Figure 6.5: Distribution of loss of utilities in sim-BlockPriv, regarding different
privacy levels.

for both sim-BlockPriv and diff-BlockPriv when there are a few number of sensitive

locations(α = 2%) and a significant number of sensitive locations(α = 10%). Each

data point in a figure refers to the average of the 100 users of a specific city. From

these figures, we can make several important occlusions. First, we can draw a

clear comparison between sim-BlockPriv and diff-BlockPriv, regarding the impact

of privacy level r on the loss of utilities. From the city level view, for the same value

of r, sim-BlockPriv imposes less utility loss than diff-BlockPriv due to the privacy

level randomness associated in diff-BlockPriv.

Second, there is an almost linear correlation between the loss of utility and

privacy level, regardless of the number of sensitive location types (α) in the dataset.

We observe a similar upward trend of loss of utility against the increase in the

privacy level for α = 2% and α = 10% in both of the datasets. The distribution of

loss of utility in Figure 6.6.2 further improves the resolution of this linearity. If we

look into the exact numeral values, presented in Table 6.4, the average Pearson’s

correlation values [BCHC09] are 0.94 and 0.95 for the NYC and TKY datasets,

respectively. Such linear correlation and lower loss of utility give sim-BlockPriv an
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(a) NYC (r = 500 meter) (b) NYC (r = 2000 meter)

(c) TKY (r = 500 meter) (d) TKY (r = 2000 meter)

Figure 6.6: Average loss of utility versus number of sensitive location types (α) in
sim-BlockPriv and diff-BlockPriv.

upper hand in designing a user-centric privacy scale, which we intend to explore in

our extension of this work.

Utility versus Number of Sensitive Location Types

We then analyze the correlation between loss of utility and number of sensitive

location types (α). While the analysis of the relationship between utility and privacy

level show that the sim-BlockPriv charges less utility loss than diff-BlockPriv, the

correlation between utility and number of sensitive location types further signifies
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(a) (b)

Figure 6.7: sim-BlockPriv: comparison between the distribution of loss of utility for
different numbers of sensitive location types (α) for r =(a) 500 meter, and (b) 2000
meter.

the superiority of sim-BlockPriv. Figures 6.6(a-d) present the average loss of utility

for different values of α. We found that, regardless of the value of privacy level r,

there is a linear correlation between utility and α. For the same value of r, the

higher the value of the α, the higher the loss of utility. However, the increase of loss

of utility is slightly sharper in diff-BlockPriv than in sim-BlockPriv. This sharpness

is due to the effect of both the increase in the number of sensitive location types

and the randomness in the privacy level. As we already know that sim-BlockPriv is

better than diff-BlockPriv, we only present the distribution of loss of utility in sim-

BlockPriv in Figure 6.7. For the same reason, we skipped the depiction of impact

of different γ in diff-BlockPriv. Similar to the average values in Figure 6.6, the

distributions of the loss of utility exhibit a linear correlation. More accurately, the

average correlation is 0.92 and 0.95 in the NYC and TKY datasets, respectively.

As we mentioned earlier, such a linear correlation can play important role to make

BlockPriv usable for privacy-preserving applications.
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User Level Correlation Analysis

Figure 6.6.2 depicts the correlation values for loss of utility versus privacy level (U-

P) and loss of utility versus number of sensitive location types (U-S) for 100 users;

Table 6.4 presents different statistics (min, average, and max) on these values. It is

observed that in the NYC dataset, 75% of the nodes have 0.9 correlation for both

U-P and U-S. In the case of the TKY dataset, these numbers are 82% and 84%,

respectively. Note that, these statistics are generated by considering the 100 nodes

with the greatest number of transactions in the datasets. We found that, when the

number of transaction is fewer, the loss of utility is significantly less. For instance, in

both datasets, the 100 nodes with fewest number of transactions achieved minimum

30% less loss of utility than the 100 nodes with highest number of transactions.

6.7 Conclusion

In this chapter, we introduce a user-centric obfuscation technique called BlockPriv,

to preserve location privacy in permissioned blockchain-based IoT systems. We con-

sider that a user cannot falsify its location and an untrusted authority can correlate

locations by considering spatiotemporal constraints to predict unrevealed sensitive

locations of a user. We quantify the relationship between the notion of privacy and

utility of the system in BlockPriv. We analyze two variations of BlockPriv, sim-

BlockPriv and diff-BlockPriv, where the first has the same privacy level for all the

sensitive locations, and the second has a different privacy level for different sensitive

locations. We show that there is a linear correlation between loss of utility and

privacy level in sim-BlockPriv. Such linearity can be exploited to define a usable

privacy scale.
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Figure 6.8: sim-BlockPriv: correlation values (Corr. value) of loss of utility versus
privacy level (U-P) and loss of utility versus number of sensitive location types (U-S)
for 100 users in NYC and TKY datasets.
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CHAPTER 7

LIMITATIONS, FUTURE WORK, AND CONCLUSION

In this dissertation, we study the trajectory privacy preservation issue in both

centralized and blockchain-based P2P decentralized network for location-based ser-

vices (LBSs). In chapter 3, we propose a delay-aware long-term privacy preserva-

tion technique for frequently visited locations in query-based LBS. We then design

a trajectory inference attack model by considering the spatiotemporal correlation of

checkins, photos, and geo-tagged photos, test it on dummy-based obfuscation mech-

anisms and present its countermeasure in chapter 4. Afterward, in chapter 5, we

introduce a framework for making blockchain lightweight for resource-constrained

IoT devices towards achieving trajectory privacy in aggregation-based IoT systems,

for instance, mobile crowdsensing applications. In chapter 6, we introduce a privacy-

preserving obfuscation mechanism to protect against location inference attacks in

permissioned-blockchain. In this chapter, we discuss the limitations of each of these

works, future directions, and concluding remarks.

7.1 Limitations

7.1.1 Delay-Aware Long-Term Privacy Preservation for Fre-

quently Visited Locations

We design a delay-aware long-term privacy-preserving obfuscation technique, coined

as “KLAP” for frequently visited locations. KLAP considers a user’s historical

information and real-time traffic information (RTTI) over the road network such

that an attacker cannot distinguish the locations in a concealing region (CR) from

the real location using a variety of inference attacks including probabilistic and
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movement boundary-based inferences. It also includes a CR pruning technique such

that with a small compromise in privacy for infrequent sensitive locations, it is

possible to ensure the privacy of frequently visited sensitive locations against long-

term observation-based attack. However, there are several limitations to this work.

First, it can incur high computation cost for computing the CR. Second, the spatial

and temporal transition probabilities between locations are not considered for which

an attacker with a model (e.g., Markov chain) based on such information can leak

location privacy in the proposed scheme. Third, KLAP would leak privacy in case

of group mobility. If an attacker gains information regarding group mobility, it can

correlate the CRs of different users and compromise their privacy. For instance, in

figure 3.1(b), if three different users generated the CRs in a short period, then an

attacker can perform region intersection attack to get all of their location information

at higher precision.

7.1.2 Location Inference Attacks on Geo-Tagged and Non

geo-Tagged data and Their Countermeasures

We propose a location inference attack model to study the impact of a combi-

nation of spatiotemporally correlated geo-tagged and non-geo-tagged contents on

existing trajectory obfuscation mechanisms. We design the model in the context of

location-based social networks (LBSN) for checkins and photo-sharing and apply it

on dummy-based obfuscation approach. In fact, to the best of our knowledge, this

is the first work to investigate the impact of historical shared photos on location

privacy. Our experiment with factual data reveals a negative impact of the attack

model. To negate such a negative impact, we also propose an improved lightweight

probabilistic countermeasure. Our contribution also includes a visualization ap-
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proach to visualize privacy-preserving checkins and photo in LBSN. This work can

be further improved by addressing the following limitations. Similar to our work on

KLAP, the proposed approach does not consider the spatial and temporal transition

probabilities between locations for both geo-tagged and non-geo-tagged data. Also,

the proposed approach is only tested with historical data on checkins and photos.

It can be improved further by considering different other types of information in

LBSN, including, hashtags, tips, and video. Also, neither the attack model nor its

countermeasure considers the group mobility of the users, which can be exploited

by an attacker.

7.1.3 Spatiotemporal Blockchain Management for Resource-

Constrained IoT devices to Achieve Decentralized Pri-

vacy

We introduce an innovative approach, coined as “Sensor-Chain”, to make blockchain

lightweight and privacy-friendly for sensor-based mobile IoT systems. We show

that, by considering the spatial, temporal, and mobility information, it is possible

to reduce the size of a blockchain while retaining important information about the

system. The proposed approach ensures transaction privacy in a distributed and

lightweight manner for the IoT sensor devices by adapting local differential privacy-

preserving mechanism. We further demonstrate the efficiency and efficacy of Sensor-

Chain by developing its prototype. The demonstration is still in its early stage, and

it is not tested yet on IoT devices. Besides this, the proposed approach has several

other drawbacks. The spatial subdivision of the plane in the proposed approach is

static, which reduces the broad scope of the proposed approach. In addition to this,
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the local differential privacy-preserving mechanism opens the door to distributed

denial-of-service (DDoS) attack in the network. The malicious or compromised

devices can collude and deploy DDoS attack on targeted devices by making a large

number of transactions. Hence, the targeted devices will eventually run out of

their privacy budget and the colluding devices, with their low privacy budget, can

monopolize the network for some time. Another significant drawback is the lack of

an approach to establish communication between the independent blockchains. As

such, Sensor-Chain is not applicable in applications where different clusters of IoT

nodes required inter-cluster communication.

7.1.4 Quantifying Location Privacy in Permissioned Blockchain-

Based Internet of Things (IoT)

We propose a study of the privacy concerns with the location information in the

scope of permissioned blockchain. The uniqueness of our study lies in consider-

ation of short-term communication-based peer-to-peer location-based transactions

for which an IoT node cannot falsify about its location. In this context, we de-

sign a location inference attack model and show that existing approaches, such as

k-anonymity, dummies, or geo-indistinguishability, cannot be applied directly to

preserve location information under such an attack model. We further propose a

solution, an obfuscation mechanism based on the spatiotemporal mobility of the

nodes, to nullify the attack model. The proposed approach is resilient against dif-

ferent types of attacks, including collusion, map matching, time reachability-based

path reconstruction, and transaction attacks. However, it has several security lim-

itations. It is susceptible against off-chain information-based attack. An attacker

can combine off-chain information (e.g., information about the hours of operation of
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a business) with the map matching attack to devise a better inference model. It is

vulnerable against probabilistic inference attack from on-chain information. Here,

an attacker can personalize the mobility of the node from the information available

on the chain using machine learning algorithms and can able to improve the path

reconstruction attack.

7.2 Future Work

Besides addressing the limitations mentioned above, we propose the following signif-

icant directions that can improve the current state-of-the-art and provide a better

perspective of the future of trajectory privacy preservation techniques.

7.2.1 Secure and Privacy Preserving Inter- Blockchain Com-

munication Scheme for IoT

In this dissertation, the research focuses on intra-blockchain communication. A

significant direction to move forward with this dissertation is with the theory and

development of efficient schemes for the different aspects of communication amongst

multiple blockchains for mobility-centric IoT. The different research issues with

interoperability among multiple blockchains have attracted some attention lately

[FBS19, JDX18, ZJ18, BCD+14]. However, mobility-centric IoT is characterized

by the communication latency, mobility, low resources, and short-range connectiv-

ity of the devices for which existing interoperability approaches for inter-blockchain

communication cannot be applied directly in mobility-centric IoT applications. The

goal of this research direction is to devise and implement efficient interoperability

approaches for inter-blockchain communications. This research includes productive
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asset searching across multiple blockchains, data interpretation, ensuring atomicity,

and identifying and mitigating trajectory privacy and security issues in the process

of interoperability.

Interoperability Method for Cross-Blockchain Data Search

The first step towards cross-blockchain communication is to ensure efficient data

search under uncertainty. The efficacy and efficiency of a data search approach

depend on its adaptability to different storage capabilities of the nodes, nodes un-

availability, and link failure. In a blockchain, the IoT devices with shorter storage

capacities would run out of storage space and cannot hold new blocks. One straight-

forward solution is to delete the old blocks from the storage [DOA16]. This raises

the question of how to search an old block at a later time in the same network. One

approach to address this problem is to flood the entire network [GHG+13], which

is costly in terms of communication efficiency and latency. A better alternative is

the LeapChain[RS18], which reduces the block traversal cost without compromising

data integrity. It proposed to include one additional backlink such that it is possible

to jump over many blocks without looking to the intermediate blocks. It assumes

that there exists a prover device in the network which is capable of holding the

whole blockchain. In a mobile scenario, such an assumption is weak as the prover

devices can leave a network for many reasons, including becoming out of range, or

due to power failure. All the prover devices can be out of a network where an intra-

blockchain search would fail, and for which it is required to explore inter-blockchain

data searching mechanisms. Existing approaches for cross-chain data searching, such

as SideChain [BCD+14] or interoperable blockchain [JDX18], will also not work due

to the mobility of the devices and uncertainty in the communication for which it is

needed to address the problems with delay and drop in the communication.
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Blockchain Switchover Under Uncertainty

To deal with the delay, one possible solution could be the blockchain switchover.

Suppose, a node is trying to search specific data which can be found in multiple

blockchains. However, it does not know with which blockchain to communicate.

In such a case, querying the blockchain with higher throughput can yield better

search performance [HLP18]. A throughput-based ranking of different blockchains

[FBS19] can be helpful to design effective and efficient switchover technique. While

blockchain switchover may also help with the search request drop, it cannot deal

with the situation when there exists no blockchain to provide the desired data. Thus,

it is necessary to integrate spatiotemporal constraints in the design of the switchover

technique.

Security Issues in Inter-Blockchain Communication

The last and final step towards the design of inter-blockchain communication is to

identify, quantify, and mitigate several security issues in inter-blockchain communi-

cations of mobility-centric IoTs. One crucial issue is the DDoS attack where an entire

cluster of nodes acts maliciously and deploys DDoS attack on targeted blockchains.

The malicious group does not use the security holes of a mobility-centric IoT but

instead launches attacks on its availability. The impact of such group-based DDoS

attack is far more severe than the DDoS attack performed on individuals as the vol-

ume of traffic generated by a malicious group can instantly paralyze the blockchains

of victim mobility-centric IoTs. It is required to understand the nature of the DDoS

attacks, which can be used for proactive detection and mitigation of the attack.
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7.2.2 Developing Privacy-Preserving and Secure Scheme for

Merging Multiple mobility-centric IoT Blockchains

Another untouched but very important issue to make blockchain a reality for the IoT

is the enablement of real-time merging of multiple mobility-centric IoT blockchains

into one. Consider multiple clusters of devices, each having its own blockchain with

different consensus and lightweight mechanisms. At some point in time, for some

reasons the clusters decide to merge into one. In such a scenario, the task is to merge

the different blockchains into one in a secure and privacy-preserving way such that

integrity of the individual blockchain remains intact. The task includes, reaching

a consensus in the process of merging the blockchains, preventing data loss while

merging with limited resource (e.g. limited storage capacity of the devices), and

maintaining security and privacy in the process of merge.

Consensus on Consensus

Another untouched but crucial issue to make blockchain a reality for the IoT is the

enablement of the real-time merging of multiple mobility-centric IoT blockchains

into one. Consider multiple clusters of devices, each having its blockchain with

different consensus and lightweight mechanisms. At some point in time, for some

reasons, the clusters decide to merge into one. In such a scenario, the task is to merge

the different blockchains into one in a secure and privacy-preserving way such that

integrity of the individual blockchain remains intact. The task includes reaching

a consensus in the process of merging the blockchains, preventing data loss while

merging with a limited resource (e.g., the limited storage capacity of the devices),

and maintaining security and privacy in the process of the merge.
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Efficient Approach for Merging

Merging multiple blockchains into one is constrained by many factors. The first

factor is the ordering of the merged blockchain and how to achieve it. In a blockchain,

the blocks are linked with each other in a timely fashion using their hashes. If we

want to maintain the time sequence, then the security by hashes would be violated,

and a new hash would be required to generate. For large blockchains, such an

approach can incur high delay and communication cost. Thus, thorough research

is needed to device an efficient merging approach. Another vital factor associated

with merging is the limited resource of the devices. Merging of multiple blockchains

can yield an extensive blockchain which may not be within the storage capacity of

a device. Thus, a merging approach must be made practical to deal with such a

factor. There are much severe security and privacy factors that must be taken into

account while designing merging an approach. For instance, colluding groups can

utilize their majority benefit to take over the merged blockchain. Also, the merging

can cause inter-blockchain privacy tension as the private data from one blockchain

can be leaked due to the merging.

7.2.3 Distributed Spatiotemporal Federated Learning using

Blockchain and Smart Contract

Traditional machine learning approaches require a centralized entity to collect data

from all the users and learn a model from it. Such an approach leaks an individual’s

privacy, incurs high communication cost, and is susceptible to a variety of security

vulnerabilities, including a single point of failure. Federate learning[KMY+16] was

proposed to improve these problems by allowing to train a high-quality centralized

model while training data remains distributed over the users. In this approach,

154



a preliminary model is shared by the centralized entity with each user; each user

updates the model based on his/her local data, and send it back to the centralized

entity. While federated learning promises better privacy and security than orthodox

machine learning, it is still in an inchoate state and spatiotemporal aspect of this not

fully understood. Besides, individual’s data, in terms of the model, are still at the

hand of the centralized entity for which the degree of trust and privacy can are ques-

tionable. One way to redesign the federated learning approach for spatiotemporal

applications (e.g., mobile crowdsensing) with improved trust and privacy is by us-

ing blockchain and smart contract. The blockchain and smart contract would allow

users to train machine learning models for a reward in a trustless manner without

relying on a centralized entity. The smart contract will facilitate automatic valida-

tion of a shared model on the blockchain, and reward and penalize the users based

on the output of the validation process. Such an approach has great potential in de-

signing more secure and privacy-preserving location-based recommendation systems

for IoT systems. Another potential is the creation of an AI market where parties

good at solving machine learning problems can directly monetize their skillset, and

others can solicit machine learning solutions.

7.3 Conclusion

In this dissertation, we present methods to identify and mitigate different privacy

issues associated with the location information shared in an IoT system. The scope

of this research covers both centralized and decentralized P2P architectures for IoT.

In our first study, we propose an approach to define a balance between privacy and

quality of service in real-time IoT systems such that a user’s location information

remains protected in the long-term of the use of the system. We further investi-
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gate the issue with the consideration of system usages with both geo-tagged and

non-geo-tagged data. We show that current existing approaches, designed with the

focus of geo-tagged-data, leak privacy in the presence of heterogeneous data in the

system. We propose a privacy-preserving framework for heterogeneous data sharing

in the context of location-based social network (LBSN). We study the problem in

blockchain-based decentralized IoT systems as well. Blockchain, despite its vari-

ety of benefits, is not directly applicable in resource-constrained IoT systems as it

requires a large amount of resources on the IoT devices. Thus, before analyzing

and addressing its privacy issues, we first propose an approach to reduce its storage

requirement by considering the spatiotemporal mobility of IoT devices. Afterward,

we study the trajectory privacy issue in a permissioned blockchain where the short-

range communication between the devices forms proof-of-locations. We propose an

obfuscation technique that quantifies, both theoretically and experimentally, the re-

lationship between privacy and utility to dynamically protect the privacy of sensitive

locations in the permissioned blockchain.
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