373 research outputs found

    Smart Rock Technology for Real-Time Monitoring of Bridge Scour and Riprap Effectiveness -- Design Guidelines and Visualization Tools

    Get PDF
    This study aims to further develop and demonstrate the recently-proposed smart rock technology for scour depth and protection effectiveness monitoring. A smart rock is one or two stacked magnets encased in a concrete sphere with a specially-designed rotational mechanism. Design guidelines, rotational mechanisms, remote measurement tools and localization algorithms of smart rocks were developed and validated at three bridge sites. The effect of steel reinforcement in bridge piers/deck on the orientation of gravity-controlled magnets was negligible. The localization accuracy with a single smart rock met a general requirement of less than 0.5 m in engineering applications. The spherical smart rock placed directly on the riverbed of the Roubidoux Creek successfully demonstrated its movement to the bottom of scour hole during the December 27, 2015, flood. Those deployed in the Waddell Creek and the Gasconade River were washed away and thus replaced with smart rocks embedded in deposits such that their top is in flush with the riverbed for improved stability under water current. For rip-rap effectiveness monitoring, polyhedral smart rocks are recommended to increase their interlock with other natural rocks

    Remote sensing and localization of smart rocks with orientation-controlled magnets for real-time monitoring of bridge scour and riprap effectiveness

    Get PDF
    This study aims to develop and implement a novel smart rock technology for real-time monitoring of the maximum scour depth and the effectiveness of riprap mitigation measures. A smart rock is one or more stacked magnets encased in concrete that can automatically roll to the deepest point of a scour hole around a bridge pier and provide its location through remote measurement over time. Once integrated into a riprap measure, the smart rock moves together with natural rocks and is thus a potential indicator of the effectiveness of the riprap measure. Therefore, the localization and movement of smart rocks were investigated and validated at various bridge sites. Specifically, three types of spherical smart rocks designated as Arbitrarily Oriented System (AOS), Automatically Pointing South System (APSS) and Automatically Pointing Upward System (APUS) were deployed. The AOS and APSS were employed to develop and validate the localization algorithm at an open and bridge sites. The APUS was used in smart rock prototyping for field testing and implementation at three bridge sites. It was demonstrated that the effect of steel reinforcement in bridge piers and decks on the orientation of smart rocks was negligible. The localization accuracy with a single smart rock met the general requirements for scour depth measurement in engineering application. The spherical smart rock placed directly on riverbed at Roubidoux Creek successfully demonstrated its movement to the scour hole during the December 27, 2015, flood. The smart rocks deployed at Waddell Creek and at Gasconade River, however, were washed away. Thus, additional smart rocks were deployed by making their top in flush with the riverbed for future monitoring. Additionally, spherical smart rocks are not stable for riprap effectiveness monitoring and polyhedral shapes are recommended for future study --Abstract, page iii

    Smart Rocks and Wireless Communication System for Real-Time Monitoring and Mitigation of Bridge Scour -- A Proof-of-Concept Study

    Get PDF
    This study aims to integrate commercial measurement and communication components into a scour monitoring system with magnets or electronics embedded in smart rocks, and evaluate and improve its performance in laboratory and field conditions for the movement of smart rocks. Properly-designed smart rocks were found to be automatically rolled into the very bottom of a scour hole and can give critical information about the maximum scour depth and effectiveness of rip-rap mitigation strategies. Four types of smart rock technologies were investigated in this proof-of-concept phase of study, including passive with embedded magnets, active with magneto-inductive communication, active with controllable magnet rotation, and active with acoustic communication. Their performances were evaluated against three criteria: 1) movement accuracy within 0.5 m, 2) transmission distance between 5 and 30 m, and 3) at least one measurement every 15 minutes. Test results demonstrated that the proposed smart rocks are cost-effective, viable technologies for bridge scour monitoring

    Prediction and mitigation of scour and scour damage to Vermont bridges

    Get PDF
    Over 300 Vermont bridges were damaged in the 2011 Tropical Storm Irene and many experienced significant scour. Successfully mitigating bridge scour in future flooding events depends on our ability to reliably estimate scour potential, design safe and economical foundation elements accounting for scour potential, design effective scour prevention and countermeasures, and design reliable and economically feasible monitoring systems, which served as the motivation for this study. This project sought to leverage data on existing Vermont bridges and case studies of bridge scour damage, and integrate available information from stream geomorphology to aid in prediction of bridge scour vulnerability. Tropical Storm Irene’s impact on Vermont bridges was used as a case study, providing damage information on a wide range of bridges throughout the State. Multiple data sources were combined in an effort to include data, which represents the complex, interconnected processes of stream stability and bridge scour, then identify and incorporate feature that would be useful in a probabilistic model to predict bridge susceptibility to scour damage. The research also sought to identify features that could be included in inspections and into a scour rating system that are capable of assessing network-level scour vulnerability of bridges more holistically. This research also sought to review existing scour countermeasures and scour monitoring technologies available in the literature and examine efficacy of new, indirect scour countermeasures and passive scour monitoring techniques. The specific objectives of this research were to: (1) review the literature and identify methods/technologies that are adaptable to Vermont; (2) analyze Tropical Storm Irene bridge damage information and observations by collecting and geo-referencing all available bridge records and stream geomorphic assessment data into a comprehensive database for identifying features that best represent bridge scour damage; (3) conduct watershed analysis on all bridges, including creation of stream power data to assess if watershed stream power improves the prediction of bridge scour damage; and (4) investigate new scour countermeasures and monitoring technologies, and provide recommendations on implementations

    Developing TRACKER - Portable Monitoring System using Kalman Filtering to Track Rotational Movement of Bridges

    Get PDF
    The combined effects of flooding and scour are the primary causes of bridge failure over flowing water. Improvements in structural health monitoring and inertial sensors have led to the development of advanced monitoring systems that can provide bridge owners with detailed information on the performance of the structure and allow informed decisions to be made about time-critical safety issues following a storm event. However, such systems remain prohibitively expensive for the majority of smaller structures which make up the wider transport network. This thesis details the development of a robust, portable data acquisition logger (TRACK ER), which can be used to target vulnerable infrastructure during a storm event to increase the resilience of the wider transport network. TRACKER uses condition monitoring, recording quasi-static and dynamic deformations, to track the performance of a bridge under the combined effects of storm loading. A benefit of this method is that it requires no direct input force or prior knowledge of the bridge model. Traditionally, tiltmeters or accelerometers are used to measure rotation for structural health monitoring purposes but such sensors can struggle to isolate rotation from translational acceleration if the structure is linearly accelerating. Gyroscopes offer improved rotational measurement capabilities but gyroscope measurements are known to drift over time as a result of the iterative process of converting rate gyroscope data. This thesis will explore gyroscopes as a complementary sensor to accelerometers and introduce a Kalman filter that combines both inertial sensors measurement data to obtain optimised rotation data. To improve the performance of the Kalman filter, the filter is adapted to automatically update the process and noise measurement values. TRACKER, a robust, portable data acquisition logger, was developed and equipped with inertial sensors to provide a stand-alone system that can be rapidly deployed to target vulnerable infrastructure. Verification of the new logger was performed under controlled laboratory conditions to prove the validity of the new logger. The rotational data showed good agreement with rotational measurements obtained from an industry gold-standard vision-based measurement system. TRACKER was deployed on a variety of in-service bridges using different loading scenarios to demonstrate the ability of the new logging system, including loading from ambient weather conditions. TRACKER successfully tracked the performance of the structures, proving the ability of the logger to track the quasi-static and dynamic deformations of a structure during loading from traffic and environmental conditions

    Scour detection with monitoring methods and machine learning algorithms - a critical review

    Get PDF
    Foundation scour is a widespread reason for the collapse of bridges worldwide. However, assessing bridges is a complex task, which requires a comprehensive understanding of the phenomenon. This literature review first presents recent scour detection techniques and approaches. Direct and indirect monitoring and machine learning algorithm-based studies are investigated in detail in the following sections. The approaches, models, characteristics of data, and other input properties are outlined. The outcomes are given with their advantages and limitations. Finally, assessments are provided at the synthesis of the research.This research was funded by FCT (Portuguese national funding agency for science, research, and technology)/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020 and trough the doctoral Grant 2021.06162.BD. This work has also been partly financed within the European Horizon 2020 Joint Technology Initiative Shift2Rail through contract no. 101012456 (IN2TRACK3)

    Scour Damage to Vermont Bridges

    Get PDF
    Scour is by far the primary cause of bridge failures in the United States. Regionally, the vulnerability of bridges to flood damage became evident from the damage seen to Vermont bridges in the 2011 Tropical Storm Irene. Successfully mitigating scour-related problems associated with bridges depends on our ability to reliably estimate scour potential, design effective scour prevention and countermeasures, design safe and economical foundation elements accounting for scour potential, and design reliable and economically feasible monitoring systems. This report presents research on two particular aspects related to bridge scour – 1) System-level analysis of damage observed at Vermont bridges from Tropical Storm Irene. Example case studies are presented including description of the bridge damage, as well as the pre-storm condition of the bridges. Statistical comparison to non-damaged bridges is included to identify significant factors that determine bridge vulnerability to storm damage; and 2)Development of a low-cost scour sensor suitable for monitoring scour and redeposition continuously and communicating the readings wirelessly in real time to stake holders

    Analysis and Evaluation of Existing and Novel Turbulent Dynamic Pressure Based Methods for Measuring Bridge Pier and Abutment Scour

    Get PDF
    Scour is one of the most significant threats to bridge infrastructure and is the leading cause of failure within the United States. Given this risk to the nation’s transportation infrastructure, it is necessary to understand the development of scour holes around bridge piers and abutments. This can be achieved with scour monitoring, a Federal Highway Administration approved scour countermeasure. As the monitoring techniques available range from simple devices that rest on or in the channel bed to advanced scanning systems that provide a bed contour profile, a concise study of the state of the art in real time scour measurement capabilities is required. This is accomplished in this work, along with the development of a scour monitoring technique that is show to provide reliable information during a wide variety of channel conditions. The current technologies available for monitoring scour are reviewed to highlight the governing physics, to evaluate the field performance, and to identify the effect of environmental factors on the performance. From this assessment, two devices are selected for further study; a sonar fathometer and a time domain reflectometry device. Several environmental factors are highlighted that influence these devices, including channel temperature, salinity, and suspended sediment concentration. A novel device is proposed which exploits the turbulence in open channels as a means of monitoring the bed level. The device uses a sensor that is sensitive to the dynamic pressure due to the natural turbulence in open channels. This sensor vibrates at a significantly higher magnitude when in the channel flow relative to an identical sensor located in the sediment. The vibration-based method, time domain reflectometry, and sonar devices are then evaluated against simulated field conditions in order to determine their relative sensitivities to environmental conditions. These tests reveal that sonar and time domain reflectometry devices can be influenced by channel salinity and temperature. In addition, the sonar device is shown to be sensitive to the suspended sediment concentration in the channel. The vibration-based method is shown to be insensitive to the suspended sediment concentration as well as bed sediment type. The effect of flow angle is also evaluated for the vibration method, and reveals that the novel device operates in highly misaligned flows. Lastly, an analytical model is built for further optimization of the device. The model is then verified, calibrated and validated with experimental data. The validated model is used to develop a field prototype, which is tested experimentally and reveals satisfactory performance for deployment to bridge sites

    協方差型隨機子空間識別法之應用

    Get PDF
    In this research the application of output-only system identification technique known as Stochastic Subspace Identification (SSI) algorithms in civil structures is carried out. With the aim of finding accurate modal parameters of the structure in off-line analysis, a stabilization diagram is constructed by plotting the identified poles of the system with increasing the size of data matrix. A sensitivity study of the implementation of SSI through stabilization diagram is firstly carried out, different scenarios such as noise effect, nonlinearity, time-varying systems and closely-spaced frequencies are considered. Comparison between different SSI approaches was also discussed. In the following, the identification task of a real large scale structure: Canton Tower, a benchmark problem for structural health monitoring of high-rise slender structures is carried out, for which the capacity of Covariance-driven SSI algorithm (SSI-COV) will be demonstrated. The introduction of a subspace preprocessing algorithm known as Singular Spectrum Analysis (SSA) can greatly enhance the identification capacity, which in conjunction with SSI-COV is called the SSA-SSI-COV method, it also allows the determination of the best system order. The objective of the second part of this research is to develop on-line system parameter estimation and damage detection technique through Recursive Covariance-driven Stochastic Subspace identification (RSSI-COV) approach. The Extended Instrumental Variable version of Projection Approximation Subspace Tracking algorithm (EIV-PAST) is taking charge of the system-related subspace updating task. To further reduce the noise corruption in field experiments, the data pre-processing technique called recursive Singular Spectrum Analysis technique (rSSA) is developed to remove the noise contaminant measurements, so as to enhance the stability of data analysis. Through simulation study as well as the experimental research, both RSSI-COV and rSSA-SSI-COV method are applied to identify the dynamic behavior of systems with time-varying characteristics, the reliable control parameters for the model are examined. Finally, these algorithms are applied to track the evolution of modal parameters for: (1) shaking table test of a 3-story steel frame with instantaneous stiffness reduction. (2) Shaking table test of a 1-story 2-bay reinforced concrete frame, both under earthquake excitation, and at last, (3) damage detection and early warning of an experimental steel bridge under continuous scour.UCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Civi
    corecore