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Abstract

In this research the application of output-onlytegs identification technique
known as Stochastic Subspace Identification (S&drahms in civil structures is
carried out. With the aim of finding accurate mogarameters of the structure in
off-line analysis, a stabilization diagram is cousted by plotting the identified poles
of the system with increasing the size of data math sensitivity study of the
implementation of SSI through stabilization diagrasnfirstly carried out, different
scenarios such as noise effect, nonlinearity, thanging systems and closely-spaced
frequencies are considered. Comparison betweenréliff SSI approaches was also
discussed. In the following, the identificationkasd a real large scale structure: Canton
Tower, a benchmark problem for structural healthniteoing of high-rise slender
structures is carried out, for which the capacityCovariance-driven SSI algorithm
(SSI-COV) will be demonstrated. The introduction af subspace preprocessing
algorithm known as Singular Spectrum Analysis (SS@&n greatly enhance the
identification capacity, which in conjunction wi8SI-COV is called the SSA-SSI-COV

method, it also allows the determination of thetlsgstem order.

The objective of the second part of this reseaschoi develop on-line system
parameter estimation and damage detection technigaeugh Recursive
Covariance-driven Stochastic Subspace identifinat{®SSI-COV) approach. The
Extended Instrumental Variable version of Projettidpproximation Subspace
Tracking algorithm (EIV-PAST) is taking charge dfet system-related subspace
updating task. To further reduce the noise corampin field experiments, the data

pre-processing technique called recursive Singdiectrum Analysis technique (rSSA)



is developed to remove the noise contaminant measnts, so as to enhance the
stability of data analysis. Through simulation stad well as the experimental research,
both RSSI-COV and rSSA-SSI-COV method are appliedidentify the dynamic
behavior of systems with time-varying charactersstithe reliable control parameters
for the model are examined. Finally, these algorghare applied to track the evolution
of modal parameters for: (1) shaking table testaof3-story steel frame with
instantaneous stiffness reduction. (2) Shakingetabst of a 1-story 2-bay reinforced
concrete frame, both under earthquake excitatiod,a last, (3) damage detection and

early warning of an experimental steel bridge uradstinuous scour.

Keywords: Stochastic Subspace Identification, Covarianceivddr, System
Identification, Structural Health Monitoring, Resiwe Stochastic Subspace

Identification, Recursive Singular Spectrum Anatys€anton Tower
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Chapter 1
Introduction

1.1Background

Structural health monitoring and damage detectiomivil infrastructures is an
issue that has attracted much attention in thedesades, a dense research work was
carried out trying to prevent disasters causechbyaggedness, deterioration and damage
in structures. In recent years, there are paintalnmgle like the sudden collapse of
[-35W Mississippi River Bridge on August 1, 200i,the United States, with 13 dead
and 144 injured as the victims; the collapse of Rautg Bridge ¢ 4 ~ #f) in Taiwan
on August 27, 2000, with 30 injured, and the cakapf Ho-Feng Bridge{ & ~ ;}?;) in
Taiwan on September 14, 2008, with 6 dead; the tlast has occurd during the

Typhoon struck and caused by the bridge pier soguri

The raise in the safety concern on the civil intftastures and the need of strategies
and methods able to detect damage from the largle stvil structural systems and
hence to make early warnings, is the reason thataies the intensive research activity

in this challenging field over the last years.

The vibration-based damage detection is a globahitoxing and assessment
method [14], which has as its hypothesis that tleal dynamic behavior of the
structure is a function of the physical propertiéghe structure (mass, damping, and
stiffness) whose changes will be reflected in thigration signals, collect through
sensors like: displacement transducers, velocitys@®s, accelerometers..., etc. The

statistical pattern recognition from the vibratisignals is fundamental for the health



monitoring process [16]. Based on that point ouf4d], it consists in a four-part
process: (1) operational evaluation, (2) data aijom, fusion and cleansing, (3)
feature extraction and information condensatiom, @) statistical model development

for feature discrimination.

The identification of damage can be grouped into bsanches: the model-based
and non-model-based [11, 14]. The constructiohefrhathematical model of dynamic
systems from experimental data is the so-calledesysidentification, different

model-based identification approaches are availabdtassical literatures [24, 29, 43].

During the past few years, the subspace identibicatlgorithms had been
successfully applied on structural system idergtfan. The subspace method can be
classified into the Subspace Identification (Sogithm which uses both input and
output data, and the Stochastic Subspace IdenitticdSSI) algorithm which is an
output-only identification algorithm. The developmi® of these methods are based on
concepts from linear algebra, system theory antis8ts. There are two essential
numerical tool for the subspace methods in linedgekaa: Singular Value
Decomposition (SVD) and the QR decomposition. Gtasslgorithms to perform such

matrix decomposition tools are completely descriineld 8].

For large scale civil structures such as briddesjriput excitation to the structural
system is unknown, the output-only Stochastic Satspdentification (SSI) is suitable
for the identification and monitoring of these stures excited by ambient vibrations.
There are several varieties of SSI technique susciCa@variance-driven (SSI-COV),

Data driven (SSI-DATA), or combined with other medls like Expectation



Maximization technique (SSI-EM) [39, 42] and the jiintal Mode Decomposition

(EMD) based stochastic subspace identification.[52]

SSI-DATA algorithms were fully enhanced by Van Gsatree and De Moor [47].
The core of output-only identification through S3ATA is the orthogonal projection
carried out by LQ decomposition [47, 50], followbg the SVD used to extract the
system subspace. There are variants of the Datardalgorithm which correspond to a
different choice of weighting matrices before fating the projection matrix. The
well-known SSI-DATA algorithms include CVA, N4SIDWOESP and IV-4SID [27, 46,
48]. Application of the SSI-DATA algorithm to inviggate the dynamic characteristics
of a cable-stayed bridge had been studied in [49R] the algorithm was also applied
to the identification of a Steel-Quake benchmarkcitire. In [55] the method is applied
to identify the modal parameters of The Heritagei€dower in Vancouver, Canada,
and the Beichuan Bridge located in China, which itesrch made by concrete filled
steel tube. The reference-based SSI algorithms alscedeveloped in [36, 37, 38] and
applied in the identification of a steel transnritteast and a prestressed concrete bridge

(the Z24-bridge in Switzerland).

As opposed to SSI-DATA, the SSI-COV algorithm awoithe computation of
orthogonal projection, instead, it is replaced loywerting raw time histories in an
assemble of block covariances which is called Titeplatrix. The SSI-COV algorithm
appears early as the Modified Instrumental Variablethdod, with applications in
laboratory tests, such as the identification ofeastival steel clamped-free beam and
modal analysis of a carrying bogie [7]. Other apgion can be found in the

identification of offshore structures and rotatmgchinery [1] and an aircraft [2].



Different family of SSI-COV exist, a very famouseittification algorithm is a
combined approach of the Natural Excitation Techaig(NExXT) [23] and the
Eigensystem Realization Algorithm (ERA) [25] todimodal parameters from ambient
response. It is called as the Natural Excitationhhégque and Eigensystem Realization
Algorithm (NExT-ERA) [10] which has been appliedttee identification and damage
detection of a 4-story 2-bay steel IASC-ASCE Benahmstructure. The same
algorithm is also applied to the identification afcable stayed bridge in [53], where
alternative form to construct the stabilization giteam [37] was proposed. Another
similar approach exists: it is a combination of Bendom Decrement method (RD) [4,
33] and ERA using Data Correlations (ERA/DC) [Z6his RD-ERA/DC algorithm is
applied to the modal identification of Tsing Ma d@ye, located in Hong Kong [40].
Improvements were achieved by substituting randaoreiment functions by their

cross-correlation in the assembling of the Hankatfries.

Different from the off-line analysis, the outputhprsystem identification and
damage detection through on-line recursive algaorithhas received considerable
attention recently, it is suitable for long-termngauous monitoring systems and
development of early warning systems. In the pastyfears, several recursive subspace
identification algorithms have been proposed toatgdh an recursive fashion the main

decomposition tools of the SSI algorithm: the L@ataposition and SVD.

The updating of the LQ decomposition is done by mseaf Givens rotations [18],
the SVD updating problem is circumvented by comémdethe similarities between
recursive SSI and adaptive signal processing tgaesi for direction of arrival

estimation [56], and only the column space of edéehobservability matrix is updated



[19, 20, 34]. The recursive stochastic realizabgrthe classical Covariance-driven SSI
algorithm (RSSI-COV) is proposed in [17], and theplecation for in-flight flutter
monitoring is discussed in the paper. However, ngea Data-driven subspace
algorithm is the most widely used method in therditure. Application for in-flight
modal analysis of airplanes can be found in [13][28] the RSSI-DATA is applied to
the system identification of Donghai Bridge located China. Damage detection
example of the mentioned 4-story 2-bay steel IASS®EE Benchmark structure can be
found in [12], and finally, application to the héonitoring and damage detection of
a single pier subjected to scour, and to the lyS?dvay reinforced concrete frame can

be found in [58].

Although the literature of SSI algorithms were eaved, there is another useful
output-only subspace tool called the Singular SpettAnalysis (SSA), which is a
novel non-parametric technique and it was firsthpleed to extract tendencies and
harmonic components in meteorological and geophydime series [3]. Except the
extraction of tendency, SSA can be applied to elate noise effect, or to detect the

singularitiese.g, to extract structural residual deformation [32].

The conjunction of SSA to SSI-COV will be the maontribution of this thesis.
Although it is simply the addition of a pre-procegstool and no more, this action
allows the determination of the best system ordmnfthe connection in-series of two
SVD decomposition engine, and has greatly enhativeddentification quality and
stability. Moreover, the recursive Singular SpettriAnalysis algorithm will be
proposed in this thesis, which in conjunction WRISSI-COV method offers a very

stable and accurate online tracking capacity.



1.2 Research Objectives

The objective of this research is to, first, enleatiee Covariance-driven Stochastic
Subspace Identification method (SSI-COV) to the ea@rtsingular Spectrum Analysis—
Covariance driven Stochastic Subspace identifinatmethod” (SSA-SSI-COV),
validated both by numerical simulation and the eapion in system identification of
Canton Tower, a benchmark problem for structuralthemonitoring of high-rise

slender structures.

Second, develop the recursive Singular Spectrumyaisamethod (rSSA), and in
conjunction with the recursive Covariance-driverochiastic Subspace Identification
method to construct the named “recursive Singulgc8um Analysis — Covariance
driven Stochastic Subspace Identification metho8SA-SSI-COV), through a moving
window approach. The method will be validated Krdty numerical simulation and
later by application in the damage detection andlthemonitoring of laboratory

experiments.

The organization of this thesis is briefly descdlaes follows:

Chapter 2: The basic methodology of subspace identificatigoréithm is recalled
through, firstly, the introduction of the dynamimdel of a linear system, followed by
the formulation of SSI-COV and SSI-DATA method, dimally, the Singular Spectrum

Analysis (SSA) procedure will be described.

In system identification algorithms, it is importal distinguish the structure modes
from the spurious modes because the order of #ilesystem is always unknown. The

alternatives to build the stabilization diagramlvaé introduced and compared one to



another. A comparison benefit-drawback and implaatem issues will be discussed

through a numerical simulation example and thetitleation of a laboratory test.

Chapter 3: A comprehensive numerical study and comparisowds different SSI

algorithms is carried out. Measurement noise effect the addition of a noise which
violates the SSI assumption is discussed. Ideatio of the simulated nonlinear
signals, signals with time-varying frequency, signaith closely-spaced frequencies
mixed with white noise is done to understand théopmance of SSI algorithms under
different scenarios of assumption violation and thechanism to overcome this
difficulties. The SSA-SSI-COV algorithm is introdeet in this chapter to solve the

identification problem of closely-spaced frequescigth added white noise.

Chapter 4: Application of SSI algorithms in system identifiicen of the Canton Tower

Is discussed. The order determination procedur@gir the SSA-SSI-COV algorithm
will be described. Comparison between different §giroaches is made in this chapter.
The procedure called decimation is although studied applied to increase the

convergence speed of the stabilization diagram.

Chapter 5: the derivation of Covariance-driven Recursive B&stic Subspace
Identification algorithm (RSSI-COV) can be found this chapter. The Projection
Approximation Subspace Tracking algorithm (PASTH ats Instrumental Variable
extensions (EIV-PAST) is also described and implaed to RSSI-COV. To consider
the noise contaminated data, a recursive pre-psoawedechnique called recursive
singular spectrum analysis technique (rSSA) isveerito enhance the accuracy and

stability in the online tracking capability.



Chapter 6: the RSSI-COV method and the proposed rSSA-SSI-@Qufrithm through

a moving window approach are validated in this thagpy means of numerical
simulation of a 6 DOF system, cases with suddematezh and slow decreasing in
system stiffness are studied. The effects of thects RSSI model parameters in the
online modal analysis, and the influence of timeyway frequencies in the selection of

system order are also discussed.

Chapter 7: the RSSI-COV method and the proposed rSSA-SSI-@Qufrithm through
a moving window approach are applied to the momitpand damage detection of, first,
shaking table test of a 3-story steel structurehvimistantaneous stiffness reduction.
Second, the shaking table test of a 1-story 2-b@farced concrete frame subjected to
earthquake excitations with increasing intensitypaly, application to the monitoring

of a three pier and four span steel bridge undetimaous scour is carried out.

Chapter 8: Summaries and suggestions for the use of the peapalgorithms will be

given here. The potential research topics are atelccat the end.



Chapter 2
Stochastic Subspace Identification Methods

2.1 Introduction

In output-only characterization, the ambient resgonf a structure is recorded
during ambient influencd.é. without artificial excitation) by means of highbgnsitive
velocity or acceleration sensing transducers. TtoeHastic Subspace Identification
(SSI) technique is a well known multivariate idén#tion technique for output-only
measurements. It was proved by several researthées numerically stable, robust to
noise perturbation and suitable for conducting sttionarity of the ambient

excitations although its stationary assumptionatated [5, 37, 53].

The SSI-DATA algorithm was fully enhaced by Van @ahee and De Moor [47],
while SSI-COV algorithm has as its antecedent tigedsystem Realization Algorithm
[25] for the free response of a structure, which applied along with the Natural
Excitation Technique (NEXT) or Random Decrement YRIDctions. This chapter will
begin with the introduction of the dynamic model stfuctures, followed by the

stochastic properties and the system realizatiadhaods of each subspace algorithm.
2.2 Models of vibrating structures

2.2.1 Continuous-time state-space model

The Finite Element model of a linear time-invariahgnamic system can be

expressed as:

M(t) + C,a(t) + Kalt) = F(t) = Lu(t) (2.1)



whereM, C, andKOO™ are the mass, damping and stiffness matrix.

q(t)0O" is the displacement vector at continuous time

g(t) is the velocity vector.

G(t) is the acceleration vector with the same dimenamthe displacement vector.
F@®OO" is the excitation vector.

L 00O ™" is the input location matrix.

u(t)dO™is the vector describingn inputs as a function of tinte

nis the number dDOFs andmis the number of inputs.

The above second order differential equation cameberanged into a first order
differential equation known as the state-space madeich consist of two equations

[24]:
The state equation:
x(t) = A x(t)+B.uft) (2.2)

qlt)

where x(t):{(t)}DD2nx1 is the state vector at continuous tirheand therefore
q

>‘<(t)={q( )} A is the so-called system matrix since it contairistfa information

G(t)

related to the systenM(, C,, K in the equation of motion), arigl is the definition of

input matrix in the state equatiofi; andB. are arranged as follows:

0 | 0
A, :[—M*K _MAC }DDZ”"Z” , B, {M_lJDDZ"‘m (2.3)
2

The state equation which is a first order diffetl@néquation has the following

10



solution [57]:

x(t) = eA°(t"°)x(to)+ t eA°(t")Bcu(r)dr (2.4)

to

where the 1 term is the free vibration solution given an mitconditionx(t), and the
2" term is a typical convolution integral. Through eigen-analysis of the system
matrix A, the state equation can be decoupled through edicabe transformation

using the obtained complex eigenvectors.
A =YAY T, x(t)=wy(t) (2.5)

Wheren(t) is the generalized coordinateA, 101°™*"is a diagonal matrix containing
complex eigenvaluesi, in the diagonal which appear in conjugate pats,10>™*"
are the complex eigenvectors. From the eigen-asalfs¥ = WA, one may find that

they have the following structure:

(A _ (e o
AC_[ A*j- , ‘P‘(@A ®*A*j (2.6)

In fact, it can be easily verified thak are the same eigenvalues a@d the
same eigenvectorge., mode shapes, than those obtained by conductyam-@nalysis
directly in the unforced equation of motion (2.4t they cannot be used to decouple

the equation of motion unless it is a proportiondhmped system.

Then, the decoupled state equation can be wrigdall@aws:
it)= A(t)+¥B.u(t) 2.7)

Furthermore, to relate the obtained complex eigemga to a physical

interpretation, a Taylor Expansion is required ézaliple the free vibration terra*

in (2.4), which is a matrix exponential:
11



3
= e = ety = ‘I’diag(e”“)‘l“1

2 3 2 3
e = | +Act+A°2t +Ac3t_+___:\11 | +Act+£+£+... p
2! 2! 3 (2.8)

wherediag(‘) is the diagonal operator. Therefore, considennty this free vibration
term in (2.4) and having in mind that the complageavalue has its real and imaginary

part: A =a, + jf , solution to the-th mode free vibration is:

7,(t) = €400 (1) = e HcosB (t -t + sin B (t -t ), (to) (2.9)
where the coordinate transformation shown in (2&3 been applied to decouple the
free vibration solution. Comparing (2.9) with thelisxknown free vibration solution of
a SDOF system, the so-calleth effective modal frequencyJ and effective damping
ratio ' can be realized:

2 2 _ "= a -4
o =\a’+ B —|/1i| 4 __\/ai2+18i2 B |,1i| (2.10)

The effective modal frequency and damping ratio exactly those obtained by

normal mode approach if it is classical or promorél damping. In the case of

non-proportional damping« will be slightly different than the normal natural

frequency, and{/ can be called as the i-th effective attenuatioa j7].

One can note thatJ is actually the amplitude of the complex systerte pand
¢/ is related to the phase. Hence, when a structystém is changed due to damage,
the migration of system poles will be directly sefled by the computed effective modal

frequency and damping ratio, which the term “effe£twill be omitted hereafter.

12



The observation equatian

If only subsets of the DOF can be measured, and considering that measatem
are taken at locations and the sensors can be either accelézmnevelocity or

displacement transducers, the observation equedinrioe defined as:
y(t) = C.dlt)+ C.4(t)+ Calt) (2.11)

where y(t)OO' represents thd outputs. C, C, and CqO0"™ are the output

location matrices corresponding to acceleratiolgory and displacement respectively.

To relate the output(t) to the system statet), the equation of motion (2.1) can be
used to eliminateq(t), and by arranging and grouping location matrictee

observation equation become:
y(t) = Cox(t) + Du(t) (2.12)

where C_=(C,-C,M7K C,-CM™7C,)00"*" is the output matrix, and

D, =CM™L 00" is the direct transmission matrix.

Although the eigenvectors of system mathixcontains mode shapes information
as that shown in (2.6), however, there is no kndgdeabout the location of each DOF
when the matribA is identified, moreover, usually the number of m®de., order of
the system extracted from measurement data isreliffehan the number of sensors,
thus, the system eigenvectors should be mappebetsdnsor locations through the

output location matrixC.:

V., =C.¥ (2.13)

C

whereV. are the observed mode shapes.

13



2.2.2 Discrete-time state-space model

Since all data is sampled in discrete time, thevalmntinuous time state-space
model can be converted into a discrete time s{adees model. By gathering together

the state and observation equation:

Xip = AX, +BU,

y, =Cx, +Du, (2.14)

where x, :x(kAt)=[q[ q[]T is the discrete state vector containing the sasnple

displacements and velocitiesyk and yx are sampled input excitation and output
measurement is the system matribB is the input matrixC is the observation matrix
and D, the direct transmission matrix, all in discrated. The relationships between

these matrices in discrete-time and continuous &rmeehe following [24]:

A=t B :A:l(eAcAt —I)Bc ,C=C, , D=D, (2.15)

A basic assumption behind these relationshipsag the external perturbation is
constant within a sampling period,e., u,=u(kaAt) for the period of time

kAt <7 <(k +1)At. Itis provided that the inverse of system maftbexists.

The eigenvalueg; of the discrete-time system matéxcan be, therefore, related

to the continuous-time eigenvalues by

(2.16)

Then, frequencies and damping ratios can be commgaenentioned before. Both
the observation matrix and complex eigenvectorsnateaffected by the discretization

in time, the above-mentioned equations can be wi#edut any change.

14



This model is called the deterministic state-spacemtiel since both input and

output are known.

2.2.3 Stochastic state-space model

Considering that there is always noise and pertimis both in the system (due to
modelling inaccuracies) as in the measurementegeftire (2.14) can be modified to its

combined deterministic-stochastic state-space model

Xiirp = AXy +BU + W

2.17
Yi =Cx, +Du, +v, (247)

The stochastic state-space model stems from thd péeoutput-only system
identification, situation under which both the ihpxcitation as the noise terms are
unknows. Both the input terms and the noise tenrasaasumed to be a spatially white
noise and they can be combined together as theegsonoise . Therefore, the

discrete-time sthochastic state-space model camigay stated as:

Xiwp = AX W,

Vo ZCX, +V, (2.18)

where w, 00*** and w, 00" are assumed to be zero mean, spatially white noise

and with the following covariance matrices:

S
El:(\\lfv:J(W; v;)}:(g Rjé'pq (2.19)

whereE(-) denotes expectation operator afg is the Kronecker deltas=1 if p=q,

otherwised,=0). p andq are arbitrary time instants.

One should note that if acceleration measuremeunsésl, the direct transmission

15



term Duy is also considered by the stochastic model asoaeps noise. Reviewing
expressions (2.11) and (2.12), if only velocitydisplacement transducers are used,
=(0 G )orC.=(Cq 0), andC, =0, the direct transmission matrix vanishes,

therefore, theoretically the external excitatiofi wot be measured.

In the case of structures subjected to ground mstguch as earthquakésjs an
identity matrix, and u(t) =-Md, (t) hence, quantities in the state vector shown .i2) (2
will be relatives. If accelerometers are used andesit measures absolute accelerations,

the ground acceleration should be added to thencdasen equation (2.12):
y(t) = Cox(t) + Du(t) = C.x(t) + C.M |- Mg, t)] + C.di, = Cox(t)

The D.u(t) term will be cancel out with the ground accelerati.e., in the case of base
excited structures, the acceleration measuremametsfrae from the external noise
contributed byD. term. But this is not the case for structures texicby wind or other
sources acting directly in the body of the struetdhis externally imposed acceleration

will be transmitted in the measurements as a measnt noise.

Properties of the stochastic state-space modahmsmarized in the following chart

[37]:

The system state is a stochastic process and adgarbe stationary with zero mean:
E[xx 1=X , E[x]=0 (2.20)

The noise terms are zero mean white noise and rglatad with the current system

state:

E[xw;]=0 , E[xV,]=0 (2.21)

16



The output covariance matriceR, 00" of arbitrary time lag are defined as:

R, = E[y,.y¢] (2.22)
The “next-step — output” covariance matrx 0 0*™ is defined as:

G = E[ Xy Vi ] (2.23)

From the stationarity, spatially white noise asstiampand the previous definitions,

following properties can be deduced:

L=AZA"+Q (2.24a
R,=CXZC" +R (2.24b
G=AXC' +S (2.24c)

From the stochastic state-space model and appéyowpastic properties shown in

(2.24), the most important property can be deduced:
R, =CA"G (2.25

This last will be the key property to derive thev@nance-driven SSI algorithm.

2.3 Covariance-driven Stochastic Subspace Identificatio (SSI-COV)

The SSI-COV stems from the need to solve the prollerough identifying a
stochastic state-space model (matridesndC) from output-only data. The first step is

to gather the measurement vectors in a Hankel iDatax:

i Y1 Yo yj ]
Y, Y o yj+1
_ 1 Yi Y yi+j—1 Yp
H.. = =| P
12i \/ﬁ yi+1 yi+2 yi+j |:Yf (226)
Yiez  Yies yi+j+1
| Y2 Yo 0 Yaisj |
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whereY, denotes the past measurements¥ndienotes for the future measurements. It
can be easily find that the block Toeplitz matrancbe obtained by a multiplication

between future and transpose of past measurements:

R; Ria R,
R, R ..R

Ty = ' ’ =Y (Yp)T (2.27)
RZi—l RZi—Z Ri

whereR; is the block output covariance with time lagefined in (2.22).

Through the stochastic property in (2.25), the Titepnatrix can be factorized

into the extended observability matri@, 00"™*" and the reversed extended stochastic

controllability matrix T, 00*" , as shown below:

c
cA |
T, =OT, = [A7G .. AG G (2.28)

CAi—l

wherei is the order of the Toeplitz matrike., number of block rows and columns it
constitutes. Singular Value Decomposition (SVD) istth@ used to perform the above

mentioned factorization:

T, =USV' = (Ul Uz)(il gj[xlTJ =U,8V/ (2.29)

where UOO"™ and vV OO" are orthonormal matrice$,are the number of outputs,
and S is a diagonal matrix containing positive singulatues in descending order.
Comparing (2.28) and (2.29), the matfx in which contains the system matricés (

andC) can be computed by splitting the SVD in two parts:
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0,=U,S}? I, =S/?Vv/ (2.30)

From O; matrix, the system matricedA (and C) can be obtained easily. In

MATLAB notation, theC matrix is just the first block dD;:
C=0,(tl) (2.31)

System matribA can be computed by exploiting the shift structofréhe extended

observability matriO;:

CA C
CA? CA
C= L A (2.32)
CA™| |CA™?
therefore,
A=0,@l(i-1,)0,0+zl,:) (2.33)

where (J denotes pseudo-inverséhen, by conducting eigenvalue decomposition on
the system matrif, after the eigenvalues are converted to a contisitione poles with
(2.16), modal frequencies and damping ratios cancdmputed with (2.10). The

observed mode shapes can be obtained by applyihg)(2

2.4 Data-driven Stochastic Subspace Identification (SSDATA)

As opposite to SSI-COV, the Data-driven algorith®S[-DATA) avoids the
calculation of covariance. Instead, the data redndtep is accomplished by projecting
the row space of the future outputs into the roacspof past outputs. Covariance and
orthogonal projection are closely related, in ttiety are both intended to eliminate

uncorrelated noise contributions. From the datacsire shown in (2.26) the orthogonal
19



projection can be defined as follows:

YOIY, =Y YI(Y YI) Y, =P (2.34)

whereY andY, are defined as (2.26)()f denotes pseudo-inverse, amio0"™ is the
orthogonal projection matrix. The main theorem tafchastic subspace identification
[47] implies that the extended observability matixcan be found from the result of

orthogonal projection:
P =0X (2.35)

where X, 00 is the estimated state sequence in stochastiemyshich is equal to

the estimates from the forward non-steady statenialfilter [47].
>A(i :(Xi Xig o Xiyj2 Xi+j—l) (2-36)

Instead of (2.34), the orthogonal projection canpeeformed by a numerically
robust and stable tool called LQ decompositions(thj actually, the transpose version
of the well-known QR decomposition), which is apglidirectly on the Hankel data

matrix:

i1 1G-1) ]
H,, li L 0 0 !
H.. = ! = 1 1 =L
12i H 1t | L , L " 0 Q; Q (2 37)

Hioz ) 1(-0) \Ly Ly Ly )QF

whereL is a lower triangular matrix, ar@ is an orthogonal matrixt.;; are partitions of

the lower triangular matrix an@; are partitions of th® matrix.

L21

P =0,X, :(L JQI og' (2.38)
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The proof of the above equation can be found ir],[b68., the desired column
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space ofO; can be obtained directly from the column spféej . This is the key of
L31

why these algorithms are called “subspace” iderdifon algorithms. They retrieve
system matrix as the subspace of the projectiomixndt only system matricesA(,C)

are required, the SVD shown in (2.29) and its sgieet equations can be applied to

('—a} to determine the system order by separating tlstesy subspace (non-zero
L31

singular values) from the noise subspace, whichresponds to vanishing singular

values, and from now on, everything can be compasetthat outlined in SSI-COV.

Estimating the noise covariance§, R and S

The Kalman filter state sequence can be determined from the projection matrix by:
X, =O[P (2.39)
whereQ; is obtained by applying (2.29) and (2.3@); denotes for pseudo-inverse.

The Hankel data matrix can be split in a diffenealy:

H,. Y
H = 1i+1 = p
1,2 [HHZVZi} (Y;J (240)

where Y and Y; are obtained by displacing the first block rowthué future outputs

to the past outputs as its last block row. Sintitathe main theorem of the orthogonal

projection [47], it can be realized that:

A~

PL=Y[/Y] EY{Y;T(Y;Y;TyY; =0, X (2.41)
whereO; is the same a9; but deleting the lastrows.

Similarly to (2.38),0i.1 computed in a numerically stable way is in terrhthe LQ
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partitions:

]
PL=0. X, =(Ly L Q{g#} oot (2.42)
2

SinceO;.; can be computed just deleting the lasiws,P;.; is calculated by the LQ

decomposition, then, the shift Kalman state seqeiezan be determined by doing

pseudo-inverse t0;;:
>A(i+1 = Oix—lpi—l (2'43)

The sequencex,,, as X, can be substituted into the stochastic state-spacke!:

>A(i+1 _ Al + Pw
[HHLHJ_(CJXi (Pv] (2.44)

Both X. X, and H,,,,, are sequences of length(2.44) is in fact, a typical

i+1 !
least square formulation and the system matriée€)(can be determined either by

doing pseudo-inverse t&, or by the typical QR decomposition. After estinsatef

(A,C) are determined, the residual sequeneg,the process noise sequempgeandp,

can be easily calculated:

el e @49

Then, the required noise covariances can be detedmiromp, and p,. This

algorithm guarantees the positive realness ofdbetified error covariances [47]:

[SQ FSJ H‘;](p pt)} (2.46)
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2.5 Singular Spectrum Analysis (SSA)

SSA [65] is a novel non-parametric technique usethe analysis of time series
based on multivariate statistics. This method westlyf applied to extract tendencies
and harmonic components in meteorological and gesopdl time series [3]. Except the
extraction of tendency, SSA can be applied to elate noise effect, or to detect the
singularitiese.g, to extract structural residual deformation [Résically, this method
is capable of decomposing the original series @sommation of principal components,
so that each component in this sum can be idethtiae a tendency, periodic

components (stationary), nontationary signal os@oi

The SSA procedure starts from: (1) Embedding: gegrea Hankel matrix from the
time series itself by sliding a window that is gkorin length than the original series.
Firstly, let v =(y,,y,.....y,) be the time series of length And letL be the window
length or number of block rows of the Hankel matkishich is an integer id< L<N.
Each sliding window vectaX; with length ofL would then be derive; ={ y;, Yj+1, ..,
Yi+L1 1T.j=1, 2, ..., K whereK =N-L+1 is the number of columns. The matkx= [X1,

X2, ..., Xk] is a Hankel data matrix (or called trajectory mat

Y1 Yo oo Yk
x=| Y Y Y (2.47)
Yoo Yiw 0 W

(2) Singular Value Decomposition: the Hankel matan be represented in the foi:
= E;+ Ex+...+ Eg, whered is the number of non-zero eigenvalues ofLtke sample
covariance matriScoy = X - X'. Thei-th elementary matrix, or calldeth eigentriple,

are given byEx =3 Uk = ScUkVi wherea, 4,4, are the non-zero eigenvalues of
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Scov, in descending ordeuy, Uy, ..., Uq are the corresponding eigenvectors, and vectors

v are derived byv, = X", /,/A, , k=1, 2, ....d.

s v
S v,
‘. . d
X=USV' =(u u, - u;, - u) =Y suye (2.48)
Sd Vd k=1
SUNA

(3) Grouping: the plot of the singular values irscknding order is called the singular
spectrum and is essential in deciding the indemfmhere to truncate the summation.
Finally, decide a parameter to reconstruct an approximate matrix &f i.e.
X=E,+E,+..+E,, r does not need to be equal to the number of navszingular

valuesd.

(4) Averaging: the elements along the anti-diagen#l X are the same originally,

however, afterX is reconstructed, these may become slightly differ therefore,

these entries are averaged to reconstruct signal:

70 S T Al
I
X;,:: X&"'.XAL-'- y5 yK+2 :____’ |§7
e B ) (2:49)
_'yL yL+1 y|_+2 yN | 7.2&
I/

It is proved in [65] that averaging the signal gotihe anti-diagonals of the

approximate matrixX , makes minimum the Frobenius norm of the errowbeh X
and the Hankel matrix assembled by the reconstisitgal,i.e., the averaging leads to

the optimal signal reconstruction in terms of thieg@pal components.
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2.6 Pole discrimination: the stabilization diagram
2.6.1 Alternatives to build the stabilization diagram

In real world applications, noise and perturbati@me always present at any
measurement, and there is no prior information ale& number of modes can be
extracted from the data.e. there are always uncertainties in the determonaobf
system order. Therefore, a stabilization diagraosed to discriminate between noise or
spurious poles and true system poles. Based oprteedure of SSI-COV, there are

several ways to build the stabilization diagram:

1% version: Decide first the maximum dimension of the Toepiitatrix shown in (2.27),
perform SVD, and let the order of system matkxncreases from a lower value till

reaching the maximum dimension of the Toeplitz matefined by the user.

The advantage of this version is that only oncetbde done the SVD; less time is
consumed in the construction of the stabilizati@ghm. The drawback is that, there is
no clear criterion to ensure that the chosen maxindimension is sufficient or not to
reveal true system information. While the ordesydgtem matrixA is increasing, more
noise information will be included in the systemtrmaA, consequently, more noise or
spurious poles will appear on the diagram. For phigpose, modal transfer norm [41]
was introduced in addition, to clear out the larngenber of spurious poles at higher
orders thus clarifying the stabilization diagranut Bgain, a threshold level has to be
defined for the modal transfer norm. The concefiirize this version to construct the
stabilization diagram is that, even including msgperious poles in the system mathix
the true modes (frequency, damping, mode shapejctetl by eigen-decomposition

will remain stable.
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2" version: Determine the order of system matAxby observing the variation of the
singular values, and then, increase the size ofTeplitz matrix both rows and
columns holding the order of system matrix unchdndeis important to note that if
full sensors are used to compute the covarianaesaally does, the formed covariance
block is a square matrix, for convenience, thisier will be called the “square Toepliz
matrix” because the shape of Toeplitz matrix remaquared. The main drawback of
this alternative is, first, more time consumingd &econd, the system matrix order must
be defined previously. For field measurement dzeagrally there is no clear gap on the
distribution of singular values as that appearmgumerical simulation. The advantage
of this version is that, one do not have to tryhet beginning the maximum Toeplitz

matrix size, since the required size to achievalgesults may vary from case to case.

Increase of the Toeplitz matrix dimension meanargelr subspace dimension and
also more data to extract the orthonormal base twisipans the system-related
information, therefore, a better separation betwsignal and noise can be achieved.
Moreover, this also means an increment of the ee@nobservability matrix order,
since the system matri& is extracted by taking advantage of the shift citme of
matrix O; as shown in equation (2.32). Evidently, the psenderse ofO; is a
numerically stable way to determine the system imalr by least squarei.e. a
convergent estimate of modal parameters is expdxtadcreasing the Toeplitz matrix

order.

Both SSI-DATA and SSI-COV, the system informatienextracted by applying
SVD to the projection matrix and Toeplitz matrispectively. If the Hankel data matrix

in (2.26) has the same number of rows in both Wasind futureYs measurements, the
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resultant[LzlJ term in (2.38) and Toeplitz matrix is square; heere if different
L31

number of rows is chosen faf, andYy, e.g, if only number rows off; is increased
keeping number of rows of, constant, botl-('-uJ and Toeplitz matrix will become a
L31

rectangular matrix. This constitutes the alterratiorm to construct the stabilization

diagram, which is presented as follows:

3" version: This is a modification of the second version. Siffioeplitz matrix has not
necessary to be a square matrix, an alternativetovegnstruct the stabilization diagram
is to increment only block rows of the Toeplitz nratby keeping number of block
columns and system matrik order constant [53]. For convenience, this versgon
called as the “rectangular Toeplitz matrix” becaitsenly increments rows but not
columns. The advantage of this method is thagnserves the data addition property of

the stabilization diagram in a least square sehieruch faster than thé®version).

The difficulty on the choice of number of block gpins constitutes the main
drawback of this method, because this latter weledmine the number of components
the Toeplitz matrix will be decomposed by SVD. le ppresence of noise, if the number
of columns of the Toeplitz matrix is lower than tleguired, it will lead to an unstable
diagram and a poor estimation of modal parame@@mnsthe contrary, the use of square
Toeplitz matrix has not to worry about the noise&fand the determination of number

of columns, since the presence of noise will ordlayg the outcome of a stable diagram.

Having reviewed the advantages and drawbacks df @ay to construct the
stabilization diagram, the use of rectangular Tiephatrix (3% version) may be
recommended for systems with prior knowledge altegitnoise content, however, for

identification task in first time, the use of sgmafoeplitz matrix (2" version) is
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recommended although it implies more time consuming

Stabilization criteria

A typical stabilization diagram is shown ihgure 2-2 It is implemented by
comparing the poles obtained between two consexutiatrix order, from lowest to
highest, and applying stabilization criteria to rabffequencies, damping ratios and

mode shapes, to discriminate if a pole is stableobr

The chosen stability criteria are referenced fr8@ and is defined as follows:

(i+1) _ ¢ (i)
Modal frequency: ‘fﬁffﬁ‘ x100%6 < 1%

(i+1) _ ~(i)
Modal damping ratio:‘z—zﬁzﬁ‘ x100% < 5% (2.50)

Mode shape:(1- MAC(i,i +1))x100% < 3%

wherei is the number of block rows of in (2.26), which determines the Toeplitz or
projection matrix order, anMAC is the Modal Assurance Criterion, which is nothing

else than the squared correlation between two rabdpe vectors:

(V(i +1)H V(i))Z

MAC( i +1)= (IR 007y )

(2.51)

where the subscript denotes Hermitian transposejs the given mode shape vector,

andMAC is a scalar between zero and unity.

The system poles are generally more stable in tefnits modal frequency as the
matrix order is increased, followed by mode shap®] damping ratio is the more

unstable quantity. Therefore, firstly, the poleg discriminated based on the modal
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frequency, the frequency stable poles are groupddraarked in the diagram as a blue
circle “o0”. Later, from the group of frequency dsklpoles, mode shape and damping
ratio stable poles are discriminated, and theyrepeesented by a green cross$ and

red “X” respectively. This means that, if a pole appé&atbe diagram as an assembly of
this three symbols Q”, “+” and “X”), it is stable either in frequency and mode shape

as in damping ratio.

2.6.2 Comparison of stabilization diagram alternatives anl influence of the model

order determination

The T' alternative has been studied and applied in [8Though it is the fastest
way to construct the stabilization diagram, howehégher the order in the stabilization
diagram, noisier is the system matrix and more isparpoles appear in the diagram.
Otherwise, the ¥ and & version to construct the stabilization diagram ehamore
statistical meaning, because by increasing therooflestabilization diagram, more
accurate modal parameter solution is expectedatleetconvergent property explained
before. The following are comparisons between Head 3 version considering the

problem of model order determination.

2.6.2.1 Simulation example: 6-DOF simulation study.

The simulation example consists in a lumped masdehand a shear building type

stiffness matrix. The system natural frequencies ar
f=[1.0107 , 2.2795, 3.9280, 5.4433 , 7.5772280 | Hz

Rayleigh damping was assumed for the derivatiotaofiping matrix, the assumed

damping ratio for each mode are:
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& =1[0.0351, 0.0299, 0.010, 0.0087 , 0.0105 0B8],

Response is generated using discrete time detesticistate-space model having a
spatially white noise as the input, and measurezhah DOF. Measurement noise can
be added after the system response is obtakigdre 2-1 shows the noise free velocity
measurement af @OF, the sampling rate is 200 Hz and the totabgated data length

was 15000 points, which is equal to 75 sec.

Figure 2-2 shows a comparison between the stabilization dmagusing square
and rectangular Toeplitz matrix for noise free da000 data points were windowed to
form the covariance matrices. Since this is a 6 B@Rulation example, there is no

choice but to define system order as 12.

The 3% version only uses 2 block columns but let the blmws increase; SVD of
Toeplitz matrix with 2 block columns have only liglar values since 6 sensors are
used, this means that the order of matixs the same as the number of columns.
Clearly one can see igure 2-2 that there is no difference between the two vession
and the identified modal parameters are very stabtethe beginning, because extra

principal components were not needed since tlasigise free case.

For the same system but considering acceleraticasanements, as mentioned in
section 2.2.1, equation (2.12) shows that the eatezxcitation is directly transmitted
into the acceleration measurements. A plot of tloisy signal from B DOF is shown
in Figure 2-3. The input is generated by a 0 decibel (dB) spati@hite noise, after
multiplied by the direct transmission term it isuaglent to a noise to signal ratio of
0.456, i.e., 45.6% in RMS sense (ratio of Frobemiaisn between noise and response

data). Under this type of noise which is correlatgth output, an insufficient Toeplitz
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matrix size will lead to a poor estimate of the &svwnodes. These results are shown in

Figure 2-4.

On the contrary, although it is more time consunthrgyuse of the square Toeplitz
matrix, one has not to worry about the noise arel dbtermination of number of
columns, as shown in thegure 2-5, noise in the measurement data will only delay the
emergence of a stable diagram. This explains wHyC&8/ technique is robust against
non-stationarity even its assumptions were violatdte essence of SSl-based
algorithms is SVD, the larger the size of Toepftatrix, or projection matrix in case of
SSI-DATA, the greater is the subspace dimensionemovariance data will be used by
SVD to determine the system-related orthonormag wetsich span the Toeplitz matrix,

i.e., a better fitting of the system information candohieved.

The simulation results are summarizedrable 2-1 For the noise free case, only
excitation level of 50 dB is considered and cormasults were obtained just at the
beginning of the stabilization diagrama,g, at 10 block rows using square Toeplitz
matrix, moreover, answers picked from different bemof rows are accurate enough.
In the case of noisy measurements due to the Witieahsmitted excitation acceleration,
three levels of excitation power were considerediB) 10 dB and 50 dB. Answers
obtained using square Toeplitz matrix always cogedo the correct solution, however,
in the case of rectangular Toeplitz matrix, if thember of block columns are
insufficient as mentioned before, lower mode answame quite wrong or does not

appear.

As conclusions from the numerical simulation, itimgportant to note that SSI

algorithm cannot recover the exact answer evenafosimulated and noise free
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measurements due to its stochastic assumption,hwdwétches from a input-output

model to an output-only model. A good estimaterefjfiency can be always achieved
by increasing the size of square Toeplitz matrispite higher noise content in the data,
i.e., convergence to the true answer. However, dampsignate seems to be quite

sensible to noise and some deviations are significa

2.6.2.2 Experimental example: identification of a 6-storyeel frame from shaking

table test

The 6-story steel frame shaking table test wadethwut at National Center for
Research on Earthquake Engineering (NCREE), Taia@August 2007. The structure
and the sensor placement are showirigure 2-6. Accelerometers are placed at the
center of each floor. Dimension of the columns & x 25 mm (rectangular).
Beams(L shape): 50x50x5 mm. Floor slab : 1000 x026@0 mm. Base plate : 1700 x

1700 x 20 mm. The mass on each floor (lumped ma®§2.85 kg (include bracing).

Response data of the structure subjected to a wbite ground excitation of 50
gal is used for system identification. A plot oétmeasured acceleration response in the
6™ floor is shown inFigure 2-7, signals looks quite clear and is similar to thdwn in
Figure 2-1 This verifies the fact that, for the base-excisddicture, theDuy term in
(2.12) will cancel out with the ground acceleratitmnobtain a “noise free” absolute
acceleration measurement. Based on the previousilation results, rectangular
Toeplitz matrix with reduced number of block colsnshould be able to identify
system poles correctly. For the identification msg data of all 6 sensors are used
simultaneously, Total data length is 11800 poinisdmly 8000 points was windowed to

form covariance. The sampling rate is 200 Hz.
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In this simple case, intuitively, a 6 story steenie can be modeled as a 6 DOF
system, therefore the order of system matrix A bandetermined as 12. A plot of
singular values can be a good indicator of the rotbdat one may choose, which is

shown in theFigure 2-8.

Figure 2-9 shows the result obtained using both square actdrrgular Toeplitz.
The result is consistent with that obtained in $iraulation example: for this almost
noise free measurements, accurate results arenetitaven using only 2 block columns
(corresponding to 12 singular values to match gstesn order, no extra components

used for noise).

In order to verify the performance of stabilizatioiagram in case of
underestimation or overestimation of the systenemrdifferent cases were analyzed

and shown irFigure 2-10

Conclusion obtained frorigure 2-10 are that, when rectangular Toeplitz matrix
is used, underestimation of system order leads¢oriect results for those modes
corresponding to the selected singular values, kieweorrect answers can be achieved
using square Toeplitz matrix for the same caseth@rother side, overestimation do not
consist any problem for both ways to construct stability diagram. Having in
consideration the error tolerance requirement engblection of model order, specially
for field data collected from full-scale real sttuies, square Toeplitz matrix seems to

be more suitable for an accurate and reliable syadentification.
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Chapter 3
Simulation study of SSI-based algorithms

A comprehensive numerical simulation task was edriout to understand the
sensitivity of SSI-based algorithms subject to etéit perturbation factors and with

special attention in their effects on the stabil@adiagram.

3.1 Noise effect in the identification of modal paramedrs

In this section, comparison will be made for diéiet SSI-based algorithms under
noise effect. The same 6-DOF system of sectior2 2sQused here again, which has well

spaced frequencies.

3.1.1 Addition of a spatially white noise (from 50% to 2@%)

In this part, a spatially white noise was addectrathe system response was
generatedFigure 3-1 shows a segment of th& ®OF measurement with 100% noise
added in terms of percentage of signal RM#ure 3-2 and Figure 3-3 Show the
stabilization diagram for the case of 100% and 20@%pectively. A total of 8000
points (sampling rate 200 Hz) were used for idemaifon, the numerical results were
picked when the matrix order is 80 block rows. Thderic is defined as half of the

order of Hankel data matrixfor pseudo-inputs in the case of PEM/SSgendix B).

Clearly one can see that there is not any problemSKSI-based algorithms to
identify accurately the modal frequencies, sinaeftrst step of these algorithms either
covariance or projection can cancel out almostaditled white noise once at all.
Therefore, even adding 200% of noise in RMS sense&sé to signal ratio), which is

quite exaggerated, error of the identified frequesds less than 4% for thé' node
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and less than 1.5% for the remaining modes, as ghown inTable 3-1 On the
contrary of modal frequencies, damping ratio isy\s&@nsible to the addition of any type
of noise even it is very small, as shownTiable 3-2 the error can be so large that

reaches 100%.

The stabilization pattern of SSI-COV and SSI-DATAe asimilar. PEM/SSI
algorithm makes stabilization start slightly earli®r lower modes, however, the
number of rows to reveal a total stable diagramsimsilar to that of SSI-DATA and
SSI-COV. Therefore, one can conclude that theseethalgorithms together with
stabilization diagram perform quite well under thedition of white noise, because

noise assumptions of the stochastic state-spacelmeie satisfied.

3.1.2 Addition of a white noise correlated with output (vVolation to SSI assumption)

For the same system and considering the same eatc@emeasurements shown
in Figure 2-3 the type of added noise is the input multipligdie direct transmission
term and thus, it is correlated with output throtigh system matrix. It is equivalent to a

noise to signal ratio of 0.456e., 45.6% in terms of RMS.

Results using SSI-COV, SSI-DATA and PEM/SSI arewshan Figure 3-4. Even
a noise correlated with output measurement is addédch violates the SSI
assumptions, by increasing the order of projectiooovariance matrix up to a certain
level, frequencies can be accurately identifiechwgiiability diagram. But this is not the
case for PEM/SSI, the reason of the loss of stglor the lowest mode is mainly due
to the second projection, which tries to double¢hé future measurements. Since in this
case the SSI assumptions were violated, the sdating rather is trying to include the

undesired noise in the projection, therefore, tist mode was perturbed and cannot be
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identified correctly. On the other side, lower medee the most affected by the noise

effects and take more time to stabilize meanwlhiéerhatrix order increase.

Since there is always uncertainty about the ambmende or perturbations, one
may conclude from this simulation experience thhg way to improve the noise
robustness of SSI algorithm, is more convenientreppocessing filter to firstly
eliminate the perturbation factors than the postessing approach as the case of
PEM/SSI. Hence, in the next sections, the pre-msing tool known as SSA will be

introduced.

3.2 Nonlinearity in the signal

There is always some nonlinearity present in realdvcivil structures, therefore,
after the study of the influence of noise in theamgements, another question to answer
is: what outcome will be obtained by a linear systdentification technique to identify
a system with certain nonlinearity? And, whether stabilization diagram works or not

due to the presence of this nonlinearity?

To make simulation example possible, Duffing mo@#l was considered to
simulate a nonlinear SDOF system. Duffing modeliass a cubic stiffness function,
ksu®, which is added to the linear stiffness term ia ¢iquation of motion, wheteis the
displacement. A positive value & indicates hardening phenomenon and a negative
value, softening. Considering that softening is encommon in civil infrastructures, a

set of negative values &f will be used in the modeling.

Newmark-beta method and a white noise input wasl iegenerate the system

response. Since there is an extra nonlinear tertherequation of motion, an iterative
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procedure had to be used to approximate the sstéfness [22] as shown iRigure

3-5. First, the tangent stiffneskdg = k + 3ksui®, where 1” is thei-th step) was used as
initialization, after foundy.s, the secant stiffness can be calculated fepamdui.1, but
again, this secant stiffness is used to computenéixé stepui.;™ and so on, until the
difference betweeni,;™ andu1™? is less than the specified convergence tolerance.
The same tolerance applies to the estimated nept\&locity and acceleration. Here,
the tolerance is specified as the difference batweel™ andm” iteration, which must

be less than 0.01%.

Three natural frequencies were used in the sinmratith different values oks,

this is shown infable 3-3 Moreover, 1% damping ratio was assumed.

Figure 3-6 shows a comparison between the generated sigaasystem of 0.1 Hz.
Clearly due to the softening effect (frequency Ineedower in some time instants) the
acceleration response is delayed with respecttgitinal of a linear systerigure 3-7
shows the comparison between the computed nonl{i&fing) and linear restoring

force.

Figure 3-8 shows the comparison of stabilization diagram tacged using
SSI-COV, SSI-DATA for different frequencies, andeoexample for PEM/SSI. The
diagram shows convergent properties, and the ftkshtirequencies are slightly lower
than the natural frequency of the original linegstem as shown ifable 3-4 This
result was expected because SSI algorithms isfijuding a best fit of the nonlinear
signal to a linear system, and since it is a softemodel we are dealing with, the
obtained equivalent frequency is reasonable tdigktly lower than the corresponding

linear frequency.
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With these results one can conclude that SSI-basgorithms can identify an
equivalent linear system from nonlinear signaleatftely. Nonlinearity of the signal

does not interfere the stabilization diagram.

3.3 Closely-spaced frequencies blended with signals aftime-varying

system

In this section, two closely-spaced frequencies sraves were generated, but it is
blended with a signal with time-varying frequendyo noise was added in this
simulation experiment, and the frequencies areecey®ughf; = 7.99 Hz and, =8.00
Hz, the time varying term is “sirfjt which is shown below. The sampling rate is 100
Hz, the total data length was 1000 points. The aigogether with the result from
recursive frequency tracking using RSSI-COV is smawFigure 3-9. Note that the

first 100 points is the window length to initiatestrecursive algorithm.
y =sin27f.t +sin 271t +sint? (3.1)

Although it is not appropriate to use linear SSjogithm and stabilization diagram
to identify time-varying systems for which is ma@nvenient a recursive algorithm, the
purpose is to understand the behavior of SSI aaloiléy diagram in the presence of
time-varying frequenciesigure 3-10andFigure 3-11shows the stabilization diagram
constructed using SSI-COV and SSI-DATA for diffeareystem orderskigure 3-12

shows the diagram for PEM/SSI.

These figures is showing that the closely-spaceduencies appear as a single
frequency if insufficient system order was chosasthe system order increases to a

sufficient level, two close-spaced frequencies Wal revealed, but to make it stable
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from the beginning to at least 100 block rows, $lgstem order must be at least 26.
Although the stabilization behavior is differentlWween SSI-COV and SSI-DATA since
the first uses correlation and the second, pr@actSVD is the main reason of the
mentioned phenomenag. SVD is the tool used to extract the observabititstrix:
when the system order is only 4 or 6, only thet fifsor 6 orthonormal vectors was
chosen and the closely-spaced frequency informatemmot be recovered, because
there are time-varying frequencies with the samegpavhich contains, in other words,
“a lot of frequencies” within the data being anagz Consequently, the closely-spaced
frequencies cannot be revealed until the selegtsté® order is enough to cover all the

orthonormal vectors which span the system-relatémmation.

Furthermore, as the data matrix order increases)are orthonormal vectors and
with larger dimensions the signal time-varying fregcies will be decomposed, then,
more “equivalent frequencies” appear in the diagtarfit this time-varying signal, as
shown inFigure 3-10d), but these poles are not stable. When the systeer s
insufficient, two closely-spaced frequencies wal fperturbed at higher number of rows
due to the finer decomposition of the time-varysignal. Thus, the required system
order to include all information is higher as wel the number of block rows increases.

In our case, a system order of 26 was enough teraqvto 100 rows.

Since this simulated signal is a sine wave witlo zZEgmping, this can be treated as
free vibration of a idealized undamped system. Asntioned in the theoretical
framework, terms in the extended observability ma@®; is actually a sequence of
observed free vibration of the system. Whetherasadance used in SSI-COV or
orthogonal projection in SSI-DATA, the main objeetiis to cancel out the random

input excitation which is represented by processenm stochastic state-space model.
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In this case of sine waves, there is no input agmté, covariance or projection is not

required here as it is shown in the following exsiens:

Y,=0,X,+1IU (3.2)
where
B7R 7N 7 c ]
Y Y Yo o yj+1 CA
Yp: Ys  Ya Ys o Vi O, = CA?
LY Yia Yiee o Ve | _CAi_l_
Xp=lx % X .o X]
and (3.3)
[ D 0 0 - 0] fu, u, Uy U
CB D 0 - 0 U, U; U, - Uy,
M= CAB CB D 0 U,=|u; U, Ug - U,
ICA™B CA™B CA™B - D] U Uy U, Uy |
with Up, =0

whereU, is the past inputX, is the past Kalman filter, and the other varialales the
same as defined in chapter 2. The expression isuceed from discrete-time
deterministic state-space model [47], SVD can halieg directly to the Hankel data

matrix and correct answer can be obtained. Thidtressshown inFigure 3-13

From Figure 3-13 one can realize that, without any noise canceltagirocedure,
the time-varying signal is “literally” fitted witHa lot of equivalent linear frequencies”,

and the respective diagram is approximately stable.

The effect of doing first covariance by SSI-COVeective to distinguish the
signals with time-varying frequency from the sigmath time-invariant characteristic

because together with the stabilization diagrara,gbles of time-varying frequencies
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“split” continuously as the number of block rowsli@ases and do not stabilize, as that
shown inFigure 3-10d). This continuous splitting phenomenon is a usefal to

identify the presence of time-varying signals wisS1-COV is used.

3.4 Preprocessing with SSA and noise effect in closetpaced

frequencies

So far all analysis presented in section 3.3 wereedor a noise free signal. In this
section, white noise will be added to the signaltést the ability of SSI-based
algorithms to identify closely-spaced frequencldsfortunately, after adding 5% noise
neither SSI-COV nor SSI-DATA are able to identifib@ close frequencies. The results
is shown inFigure 3-14 Later on, the subspace preprocessing tool kn@a\&SA will

be introduced to address this noise perturbatioblpm.

To focus only in the noise effect in closely-spadestjuencies, the time-varying

signal is removed and the result is shown in se@id.1.

3.4.1 Sinusoidal waves

Consider the case of a signal constituted by 7.9%mt 8.00 Hz sine waves with
added 10% noise, which is shownFigure 3-15 15000 points were generated with a
sampling rate of 200 Hz, 10000 points were usedawariance for SSI-COV, and
similarly, 10000 columns form Hankel matrix for SSATA. Since SVD does not
decompose signal according to frequency componalttgyugh theoretically a system
order of 4 is enough for 2 frequencies, after s@vieral and error, system order was
chosen as 8 in this noisy case, and the resultéiglization diagram is shown Figure

3-16. The diagram starts to converge and stabilizeauppproximately 260 rows in
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SSI-COV, but for SSI-DATA the diagram is still netable. However, both resultant
diagram spinning around and converges very slowlyhé correct answer, the required

number of rows is approximately about 400 rows.

The identified frequencies are: 7.9946 Hz and 806; damping ratios are:
0.00057 and 0.00455 for SSI-COV. For SSI-DATA, tlkentified frequencies are:

7.9966 Hz and 7.9794 Hz; damping ratios are: 0.G0@B-0.0009.

Here we can conclude that a small level of noise icéerfere severely in the
identifiability of closely-spaced frequencies. PEB3/ was proven in previous sections
to be very sensible to noise contamination, thus,use of SSA before SSI is an option
to, filter out first the noise contamination ancerththe identification quality of the
stabilization diagram can be improvdeigure 3-17 shows the variation of singular
values (singular spectrum) obtained in SSAis the singular values obtained by the
SVD of a Hankel matrix of 200 by 5000, there argatal 200 singular values. One can
note that ina) there are only 2 singular values separated froenrémainsj.e., the
decomposition order is not enough to separatevibectose frequencies from noise. On
the contrary, when the size of Hankel matrix ise@ased to a 1000 by 3000 matrix as
shown inb), the noisy signal data is decomposed into 1000pom@nts, and effectively
4 singular values were separated from the remaims,the 2 close frequencies are

extracted.

The stabilization shown ifrigure 3-18 shows the stabilization diagram for the
cases) andb): only one frequency appearsahmeanwhile two close frequencies were
revealed irb), the identified frequencies and damping ratios0ft rows are: 7.9949 Hz,

8.0278 Hz, and 0.00028, 0.0167 respectively (oalgitamping ratio is zero). This result
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shows that SSA-SSI-COV is an effective algorithnréat noisy measurements and to

improve the identification quality.

3.4.2 Response of a 2-DOF system subjected to white noesecitation

In fact, sine waves will never be measured in waild structures subjected to
ambient excitations, thus, to complete the reseancltlosely-spaced frequencies

contaminated with noise, a 2 DOF system was creaititcthe following properties:
M=[1 0;0 1]
C=[0.1141 -0.0710;-0.0710 0.1141];
K=[5 -0.35;-0.35 5],
Natural frequencies =[0.3432 0.3681];
Damping ratios = [0.01 0.04];

15000 data points were generated, sampling ra&0islz, a plot of the generated
acceleration measurements in th® DOF is shown inFigure 3-19 the noisy
measurement shown Figure 3-19 b)is due to the direct transmitted acceleration of
external excitation, and it is equivalent to 12886f noise in terms of RMS of the

signal.

Both SSI-COV and SSI-DATA do not have any problem identify close
frequencies when the signal is noise free and yetes was excited by a white noise

input as shown irigure 3-20

For noisy acceleration measurements shownFigure 3-19 b) the close

frequencies shows convergent property up to 60 @vagsseems to be stable after 120
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rows when SSI-COV is used. This is showrfrigure 3-21 a) The result obtained using

SSI-DATA is better for the singles generated byestgppace model than pure sine waves
with added noise; up to 60 rows the poles are esaldlhis can be explained because
SSI-DATA derivation is based on the same stateespaadel and under the assumption

of a continuous white noise excitation.

To improve the stability of the diagram and enhatheeidentification quality with
a reduced number of rows, which means a significasiiction in computation effort,
the pre-processing tool SSA can be used in conpmatith SSI-COV. The Hankel
matrix to be decomposed by SSA was decided to Beb&itk rows (totally 1600 rows
with 2 sensor) by 3000 columns, the variation oigailar values is shown iRigure
3-22 and a comparison of the reconstructed signal thghnoise free signal is shown in

Figure 3-23

Although SSA could not recover exactly the noisefsignal as shown fgure
3-24, however, it conserves the required informationptform a good SSI-COV
identification: 3500 points were used in covarigraogd rows were increased from 2 to
100, system order is determined to be 4. A comparisetween different possible

choices of singular values was made in this figure.

Through Figure 3-24 one can realize that even with only 4 singulaugsa) the
information is sufficient to let SSI-COV able tcemntify the system frequencies, but it is

not for damping ratio, this is observedTiable 3-5

As a conclusion for this example, from the diffar@moices shown above, 8
singular values chosen from SSA is the optimumemms of the obtained modal

parameters. Selecting more singular values thaani@unt in need will introduce extra
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noise components in the filtered signal and hettee stabilization became worse; on
the other side, although insufficient singular eslus leading to negative damping ratio
estimates (unstable systems poles), both the i$yalilagram and the frequency
estimate has the same quality and accuracy. Frasnptiint, there should be a best
choice of singular values at SSA step, which letmlgshe best estimate of modal
parameters through SSI-COV. Furthermore, belowdhtgal number, the stabilization

diagram will be always stable and with the sameusay whatever the number of

singular values chosen.

The unique drawback of the use of SSA before SSK@the uncertainty about
the damping ratio estimate, since it seems to i@y lower than the true damping
ratio. The reason is that, the information extrddby SSA is sufficient to obtain an
accurate estimate of the frequency, but a grediopoof the signal was filtered out
loosing in this way the possibility to obtain aiable damping ratio estimate. However,
anyway, as what is shown in previous sectionsg#mping ratio obtained by SSI-based

algorithms from ambient vibrations is generally lolag to the noise interference.

After these simulation studies, SSA-SSI-COV hasjgeven to be very effective
to deal with noisy measurements, accuracy andlisyathiagram are also improved. In
section 4, the application of SSA-SSI-COV in thentification task of a real and

complex structure leads to a very practical wagdtermine the system order.
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Chapter 4
Application of SSI to the identification of CantonTower

The Canton Tower is located at Guangzhou, Chinais Ia super high-rise
tube-in-tube structure with a height of 610 m, bev inFigure 4-1 This structure
comprises a reinforced concrete inner tube anca suuter tube with concrete-filled
tube (CFT) columns. There are 37 floors connedtireginner tube and the outer tube.
The outer tube consists of 24 CFT columns, unifgrsplaced in an oval while inclined
in the vertical direction. The inner tube is anlast@ape but with constant dimension of
14m by 17m in plan, but its centroid differs frohetcentroid of the outer tube. The
Hong Kong Polytechnic University is in charge o timplementation of the long-term
SHM both during the construction as in the sergiage. More details can be found in
references [35, 63, 64]. The data were recordea ft8:00 pm on 19 January 2010 to
18:00 pm on 20 January 2010, lasting 24 hoursel ddceleration, wind direction, wind

speed and ambient temperature were measured doemgriod.

Twenty uni-axial accelerometers (Tokyo Sokushin Z0C) were employed for
vibration measurements, the frequency range is DEH(3dB), amplitude range £2 g,
and the sensitivity 1.25 V/g. They were installeéceight levels as shown in Figure 1,
the 4" level and the 8 level were equipped with four uni-axial accelertens, two for
measurement of the horizontal acceleration alomeglahg-axis of the inner structure
and the other two for the short-axis. At the otkigrlevels, each section was equipped
with two uni-axial accelerometers, one along thegtaxis of the inner structure and the
other along the short-axis of the inner structliigure 4-1 also shows a plan of the
section and the measurement direction of acceteraiihe sensors were fixed to the

shear wall of the inner structure via a steel anglee sampling frequency of the
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acceleration and wind data was 50 Higure 4-2 shows the acceleration measurement
at the first minutes of the®land 28' sensor which are located at a lower and a higher
place of the tower respectively. Signals of thd" 2@nsor appear to contain a long

period signal (about 2 seconds) as compared tm#asurement of*lsensor.

4.1 Frequency Domain Decomposition (FDD)

Before applying the SSI analysis, the FDAppendix A) was used to identify the
possible number of modes contain in the responsesunements. The FDD spectrum
was calculated using the first 131072 points (43r68utes data) starting from 18:00
pm on 19 January 2010, Welch’s periodogram [54] wsed to estimate the power
spectrum density function with a window length @B points and an overlap of 4096
points which leads to a power spectrum estimataiodt by averaging a total 31
Fourier spectrums. Since the sampling rate is 50ttzused of window length of 8192
points leads to a frequency resolution of 0.006 Hae result of FDD spectrum is

shown inFigure 4-3.

4.2 SSI-COV and SSI-DATA

To construct the stabilization diagram using SSM_@e first 18000 points (6
minutes data starting from 18:00 pm on 19 Janu@ft0Pwere used in the covariance,
and the size of square Toeplitz matrix increasas f6 to 300 block rows, all 20 sensors
were used in the computation. By observing theatiam of singular values shown in
Figure 4-4, there is not any significant gap between theaexéd singular values. There
is no clear criterion to determine the system ofelesed on the singular spectrum in
SSI-COV. As an extra help, one can count the nunabgueaks appearing in FDD
spectrum multiplied by two to get an estimate af 8ystem ordern.e., number of

singular values to be chosen. In our case, 90 Engalues were chosen.
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In the case of SSI-DATA, a 8000 columns Hankel dauatrix with rowsi
increasing from 20 to 280 block rows (the actuakimaim number of rows i2xi x|
= 11200 rows) are used to identify the modal patarseof Canton Tower. The system

order is chosen as the same as SSI-COV.

Based on the experience of simulation exampled)eeiwith SSI-COV or
SSI-DATA, a stable diagram will take time in reve@dr noisy acceleration
measurements, and this occurs as it is expectedstbilization diagram constructed
using SSI-COV is shown iRigure 4-5 a) ranging from 0 to 1 Hz, and the outcome for
SSI-DATA is shown inb). The diagram from 1 Hz to 5 Hz is shownHigure 4-5 c)
andd) for SSI-COV and SSI-DATA respectively. A pecultgrof this diagram is that
the spectrum of the®singular value calculated by FDD is plotted atlaekground of
the diagram for comparison purpose. The identifieodal parameters are shown in
Figure 4-6 and Figure 4-7, “f” indicates frequency,d” indicates damping ratio; the
plots are the complex modes identified by SSI-COM &SI-DATA for the first 18
modes. The R” term represents the correlation coefficient betwereal part and
imaginary part of complex modes, this serves as iadicator of the
almost-proportionality of the structure damping,, if R is near to the unit, damping of
the structure is almost totally proportional and ffhase angle of complex mode shapes

are in phase (0°) or out-of-phase (180°).

The first two close frequencies: 0.0404 and 0.04@%ave a damping ratio much
higher than the usual for civil structures, andirtttemplex mode shapes are quite
sparse besides that the second pole is not staaleg, this two poles can be discarded
and they probably correspond to the dominant wirduency since the wind spectrum

has its peak around 0.1 Hz.
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On the other side, SSI-DATA could not find the fimode which is 0.0902 Hz
based on the identification result of SSI-COV. Heer although SSI-COV could
identify the £ mode, its complex mode shape is a little moretsest comparing with
other identified modes which are almost a stralgie. The especial difficulty to find
the first mode may be explained by the fact thatdbminant wind frequency identified
here is very close to the first mode, therefores tatter is likely to be affected by the
wind frequency as well as the noise content, thasn the simulation experience the

lowest mode is the most affected by the noise.

Besides that, SSI-DATA could only found three stafsfequencies: 0.365, 0.477
and 0.519 Hz meanwhile SSI-COV found five in themtge. The difficulty to identify
these frequencies may be explained based on theustwns obtained in previous
simulation results: closely-spaced frequencies wilse in the measurements are hard
to be identified, if the noise effect is strong andhble to be filtered out first, generally
only one equivalent frequency can be identifiedhé&ligh SSI-COV shows to be able to
separate these close frequencies, huge Toeplitzxnsige is required to achieve a good
segregation between system information and naesg excessive time was consumed

in computation.

4.3 SSA-SSI-COV

4.3.1 Implementation

In this section, SSA will be used as a pre-procgsdool in the sense of a
“subspace filter”, to extract first the principalmponents from the measurements, thus,

to enhance the stability of SSI-COV. The SSA-SSMJfocedure is listed as follows:

1. Assemble Hankel Data matrix (100~200 block rames recommended). The number
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of columns will determine the available data paémtonstruct the oncoming Toeplitz
matrix. Usually the number of columns should be mlarger than the number of
block rows. The number of rows will determine thanber of principal components

the signal to be decomposed.

2. Perform SVD to the Hankel Data matrix in thepstd SSA, from the singular
spectrum (plot of the singular values) obtaine@&8A, a preliminary set of principal

components can be selected to reconstruct thelsigna
3. Reconstruct the signal and repeat it for the@tehoices of SV.
4. Construct Toeplitz matrix from the reconstrucseghals, as it is done in SSI-COV.

5. Conduct SVD to the Toeplitz matrices and pla fingular spectrum (The size of
Toeplitz matrix could be the largest number of kloows that will be reached in the
stabilization diagram. 100~200 block rows is recanded for field noisy

measurements).
6. Repeat step 4 and step 5 for the set of choic8% from SSA.

7. Go from large to small number of components (S&fgcted from SSA, and seek for

the one whose singular spectrum in SSI-COV hasnaneable change of slope.

8. The best system order will be within the stad and of the change of slope, and the

stabilization diagram can be constructed for paderdnination.

The introduction of SSA before SSI-COV enablesdbermination of system order,
which is totally subjective if SSI algorithms arsed alone. The above described

procedure will be demonstrated in the following ©@anTower identification task.
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4.3.2 Canton Tower identification through SSA-SSI-COV

Application of SSA-SSI-COV to the measurements ahton Tower was studied.
In performing the SSA, 20 sensors measurementyim 6f vector were placed at once
in Hankel data matrix with the following dimensio40 block rows (totally 6800 rows)
by 15000 columns. The outcome singular spectrurshiswn in Figure 4-8 It is
difficult to select a suitable number of singulalues from this figure because there is

not any gap on the distribution of singular valobgained by SSA.

In the implementation of SSA-SSI-COV there are pasameters to be determined:
the first one is the number of Singular Values (8vbe chosen by conducting the SSA,
and the other is the system order to be determiméide SSI-COV analysis. From the
experience gathered by working on the data of Gafitawer, a specific number of SV
in SSA step leads to a change of slope in the Eangpectrum obtained in SSI-COV
(one can call it the first critical number of conmeats). This is shown iRigure 4-9b).

If the selected number of SV in the step of SSAtiomes decreasing, up to a second
critical point the change of slope will become veharp, almost a vertical jump, as in
the case of 95SV shown Figure 4-9 d) This latter phenomenon will remain as the
number of SV chosen in SSA continues decreasinfaisshown ine) andf). In this
second critical point, usually the number of S\the SSA step will be very closer to
the system order, where is an almost vertical juRnpm experience, the second critical
point gives the best identification results, bubsh not well excited or highly

contaminated modes will be also filtered out.

Different stabilization diagrams were made for canngon purposekigure 4-10
shows the result for different choices of SV, raggifrom 0 Hz to 1 Hz. In the
beginning, 312 SV were chosen from SSA, the jumpghi@ singular spectrum of
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SSI-COV is almost imperceptible and only a few ndppear in the stability diagram.
When a smaller number of SV is selected), 136 SV in SSA step, as shownHigure
4-9 b), the change of slope is a little more remarkaltihes (can be considered as
approximately the first critical point), and thalstization diagram shown ifigure
4-10 c)was improved. If one keep reducing the selectedrSSSA step, the diagram
become more stable and starts earlier. Howevehertase oFigure 4-10 d)when 95
SV were chosen, theé'ode has been filtered out although a stable diagtarts even
earlier thanFigure 4-10 c)in which 136 SV were selected. Finally, as discussed above
in the simulation section, although the number & &elected are fewer than the
required as in the case Bigure 4-10 e)andf), certain modes will not be discarded, but
the diagram is totally stable just at the beginnireg, correct answers were found at a
few block rows; in other words, these totally stalvhodes are free from noise

perturbation after the pre-processing with SSA.

To understand the absence of tiiemiode when 95 SV are extracted from SSA.
The Fourier Spectrum of the response data is shiowigure 4-11 Title of the figure
indicates sensor number. In the case of 95 S\idger peaks are covered, but the peak
corresponding to the first mode was almost totalllgred out, which is originally very
small comparing to others and looks fuzzy and k@endith the noise frequency. By
increasing the number of selected SV to 1B&ure 4-12), in this case, the peak
corresponding to the®mode is conserved, however, the noise filteringasas good
as it is the case of 95 SV. Therefore, 95 SV ighsly better in terms of stability
diagram tan 136 SV. Compariggure 4-11andFigure 4-12 one can note that there

is another peak at 1.2 Hz just filtered out by S&#fg 95 SV.
The stabilization diagram with frequency rangingnfr 1 to 5 Hz is shown in
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Figure 4-13 a)andb), for the cases of 136 and 95 SV respectively. IFinaomplex
mode shapes together with the modal frequency antpiohg ratio are shown irigure
4-14andFigure 4-15respectively. A summary and comparison of thetifled system
modal frequencies with the Finite Element Modeltlué structure is shown ifhable

4-1.

Similar to the outcome from SSI-COV, the first twaentified frequencies by
SSA-SSI-COV: 0.0345 Hz and 0.0465 Hz (using 95 SMhjch are probably wind
frequencies, whose mode shapes plotted in compdere @ppear without any regularity.
Although the fundamental mode was found by extngctl36 SV, unlike the other
modes which appear almost in a straight line (mmeanihat the structure has
almost-proportional damping) thi§' mode is the unique which has the lowest value of
R excepting the wind modes, which is equal to 0.@reHone can conclude that, from
the several choices of SV from SSA, the use of ¥3eads to the best stability. But to
achieve a better identification quality of tiérfiode shape, a larger Toeplitz matrix size

may be needed.

4.3.3 Canton Tower identification through SSA-SSI-DATA

A unigue remaining question is that, if SSA can dmenbined with other SSI
algorithm as a pre-processing tool, such as SSIA?AThe stabilization diagram using
SSA-SSI-DATA is shown irFigure 4-16 From this result one can conclude that SSA
serves as a preprocessing tool only in conjunatitin SSI-COV but not for SSI-DATA.
The result obtained by SSA-SSI-DATA is worse thiaat tapplying directly SSI-DATA.
This may be explained by the fact that, the ortimadggrojection used in SSI-DATA is
trying to find the best fit by least square of thiure measurements in terms of the past

data. However, the principal components recovere®®A used for reconstruction of
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the signal may provide a bad fitting in the proj@etand worse results were obtained.

4.4 Low pass filter with SSI-COV

As it can be observed from the Fourier Spectrurthefacceleration measurement
of sensor No. 19 shown iRigure 4-17, there is a wide band measurement noise
distributed in the high frequency range (compatmghe structure fundamental mode,
after 5 Hz can be considered as high frequencyl-hass filter is commonly used to
reduce the noise effect in system identificatioeréHthe use of low-pass filter and its

effect in stabilization diagram is evaluated.

A Butterworth 1IR (Infinite Impulse Response) filteof order 10 and cutoff
frequency of 5 Hz is used to low-pass the signahdy the eliminate the measurement
noise. To avoid phase shifting effect in the filtgrprocess, the data was filtered twice:
the filtered data is reversed and passed agaihdgdme filter to cancel out all phase
shift caused by the Butterworth IIR filter. Thedtency response function of"16rder
Butterworth filter with cutoff frequency of 5 Hz shown inFigure 4-18 The frequency
axis is normalized, the normalized cutoff frequeroyresponds to 0.2 of the original
Nyquist frequency which is 25 Hz. A segment of tittered signal is shown ifigure

4-19, one can see that the high frequency noise con@ntreduced after filtering.

The stabilization diagram constructed using both-@&SV and SSI-DATA are
shown in Figure 4-20 However, after low-passing the acceleration dather
SSI-COV nor SSI-DATA were able to realize the fuméatal mode of the structure at
a similar matrix order than that used in by SSA-88IV. The mode corresponds to
0.4243 Hz was also missed by SSI-DATA and the diagof the same mode is not
stable. Therefore, although high frequency noigse lwa filtered out, the noise content

below 5 Hz still exists and continues perturbinge tidentification of these
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closely-spaced frequencies. From this evaluativeparison, when SSI-COV is used,
one may prefer SSA as pre-processing tool thanpass filter, thus, besides the better
noise filtering performance achieve by SSA, it igpractical way to determine the

system order.

Finally, to complete the modal information, theenidimensional plot of examples
of the identified mode shapes with SSI-COV are shdwem Figure 4-21 to Figure
4-24, from the first mode to the 24-th mode. The cqoesling first 18 complex mode
shapes are shown Figure 4-6 andFigure 4-7, which are the system poles extracted

from the 300-th block row.

4.5 Improve the identification convergence speed with @cimation

In addition to the SSA-SSI-COV algorithm which grescess the noisy data and
allows to realize all identifiable modes, the camemce of time domain system
identification algorithms can be easily improved“dgcimation”, which is a two-step
process: low-pass anti-aliasing filter and downdargp thus, the choice of a proper
sampling rate is an important issue in system ifleation [29,66]. The Nyquist
frequency gives the lower bound for the sampling rmeanwhile the upper bound is
determined by the numerical instability due to tation and round-off errors in a
digital computer. It is shown in [67] that the polef the transfer function of a
discrete-time system approach to one on the umiiecas the sampling interval becomes
very small, which leads to numerical instabilitytite computation especially when the
data is noise contaminated. In [68] a sampling batieveen 10 times to 50 times the
closed loop system bandwidth is recommended for digital implementation of
feedback systems.

The Canton Tower is a very flexible and long pestructure with about 0.09 Hz
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for its first mode, and there are 9 modes belowzl IHis possible that a sampling rate
of 50 Hz is too high for a fast convergence of ¢he®des below 1 Hz through the use

of stabilization diagram especially for th& hode.

Three downsampling factors were chosen for comparig, 5, and 10, which will
reduce the original sampling rate (50 Hz) to 25 Hz,Hz and 5 Hz respectively. To
avoid aliasing, a low-pass filter must be used msmti-aliasing filter to reduce the
bandwidth of signal before it is downsampled, the signal are firstly low-passed by a
Butterworth 18' order filter with cut-off frequencies of 12.5 H%, Hz and 2.5 Hz
corresponding to the respective Nyquist frequefitye same 400 seconds data length is
downsampled for identification, thus, there areya@000 points available for the case
with sampling rate of 5 Hz, 4000 points for 10 Hmal0000 points for 25 Hz. The
system order is defined to be 60 when the datawsndampled to 5 Hz, and 90 when it
iIs downsampled to 25 Hz and 10 Hz. The outcomelligt@iion diagram is shown in
Figure 4-25for the frequency ranging from 0 to 1 Hz. It ieal froma) that with the
data downsampled to 25 Hz, it is still costly teeal a stable diagram for th& fhode;
however, a stable diagram appears for all modds few block rows when the data is
downsampled td) 10 Hz andc) 5 Hz, although for this latter not all modes were
identified. Figure 4-26 shows the stability diagram for the frequency mbgtween 1
to 6 Hz. Examples of complex modes shapes ideatifigh different sampling rates are
shown inFigure 4-27 for modes 1~10 (the wind modes are not shown)stdme as
those obtained in section 4.2 and 4.3 by SSI-CQY38A-SSI-COV under a sampling
rate of 50 Hz, these complex modes appear almoatstraight line, thus, the mode

shape quality is not affected by a proper decimatio
Finally, the identified modal frequencies and damgpratios are summarized in
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Table 4-2 one can note that the identified frequenciestiheesame as that obtained
with the original sampling rate, only the identifidamping ratio for i mode (about 1%)
is much lower than that identified through SSI-C@Wd SSA-SSI-COV using the
original sampling rate of 50 Hz. From this analy#iss concluded that a sampling rate
of 10 Hz is suitable for identification and monitay of Canton Tower which implies a
significant reduction in computation effort. If gnlower modes are interested, the

sampling rate can be even reduced to 5 Hz andotineecgence is even faster.
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Chapter 5
Recursive Stochastic Subspace ldentification algdhms

Different from the off-line analysis, the on-lingstéem identification and damage
detection, based on vibration data measured froenstihuctural health monitoring
system has received considerable attention recenlty this section, the
Covariance-driven Recursive Stochastic Subspactifdation algorithm (RSSI-COV)
is discussed, for later, to be used to estimatéesysnodal parameters from the
response measurements of time-varying systems.omsider the noise contaminated
data, a recursive pre-processing technique ca#edrsive singular spectrum analysis
technique (rSSA) is introduced to enhance the acguand stability in the online

tracking capability.

5.1 Recursive Covariance-driven Stochastic Subspace Idgfication

algorithm (RSSI-COV)

For online application of SSI-COV, instead of agig the block covariances in
the so-called Toeplitz matrix as shown in (2.2fgse must adopt the form of a Hankel
Covariance matrix, which is the way it is outlinedNEXT-ERA [10]. From the same
stochastic properties shown in (2.25), the Hankelafiance matrix has the following

factorization properties:

R, R, .. R C

cov RZ RB e Ri+l CA i-1

Heov = =0Q = G AG .. A7G (5.1)
Ri Ri+l ' R2i—1 CAi_l
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where O, 00"™" is the same observability matrix am@ 00> is the stochastic
controllability matrix, which is similar tor; shown in (2.28) but with its entries in
reversed order. The observability matrix can beaioled by applying SVD to the
Hankel covariance matrix, and then the system oestrand modal parameters can be
extracted in the same manner than that present&SIFCOV off-line analysis. The
Hankel Covariance matrix can be constructed bynging the output measurement data

vectors as follows:

Yi-isa

+ y—i+ =

Y = e aykT=YkT—i ykT—i—l YkT—znl] (5.2)
Yk

where y, 00"™is the output measurement vecto, 00" and y;' oo*. | is the
number of sensors ands number of block rows which forms the Hankel @aance

matrix. One can find easily that the latter carbbit by the following expression:

cov +y,- 1< oy
HY :E[kakT]zgzkakT

k=2i

Ya Yo 7 WN-ia YiT yiT—l o Y1T (5.3)
_ Yi:+2 yi:+3 yN:—i+2 Yi.T+1 y|T y; =Y;Yk_T
Yoo Yaa 0 Ya [ Wa Waa o Vean

where k is ranging over the entire set of available datal g is an optional
normalization parameter. As multiplyingi©¥ by a constant does not affect the
obtained matrices. andC, pcan be set to 1 without further influence on th&ated
models. Since the order of the Hankel Covarianceixia “i” with data lengthN, then,
the Hankel Covariance matrix (which is a squarerimatnce the same order is used for
rows and columns) can be calculated as the summatierN-2i+1 rank-one matrices

formed by y;y.", and later a new incoming data poltt1 will be converted into a
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new rank-one matrix adding to the existing HankeV&iance matrix.

There are three possibilities to formulate the #&dapHankel matrix for

RSSI-COV [17]:

1. Exponential forgettingThe old data is multiplied by a forgetting factowhen a new

data is added.

cov —_— cov + - \T
HY=uH g + yN+1(yN+1) (5.4)

2. Sliding window:This formulation require 2 step calculation focleancoming new
data. The oldest data is removed from the windoaw(dlating) and a new data is

incorporated (updating). Let the window lengthLbe

cov - 1 N P
HY = E[yk ykT]:_ Z Y« ykT (5.5a)
P k=N-L+2i
cov cov + - Y + _ T
H N+ ™ H Nt yN+l(yN+1) T Yn-Lezi (yN—L+2i) (5.5b)

3. Combined approachit is the application of forgetting factor in upinhey as well as in

downdating.

= i+ v (e =0yl (Ve ) (56)

where the superscrid-2i+1 above the forgetting factaris becausély is formed by
the summation oveM-2i+1 rank-one matrices formed by; y.", and since the Hankel

Covariance matrix is updated first, the rank-onérixd y;  , (y._..,) " to be downdated

should be multiplied by the corresponding forgettiactor to the power dfi-2i+1.

The software library LAPACK is used in MATLAB to owpute SVD of the

Hankel Covariance matrix in an off-line manner, ethuses the classical algorithms
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like Householder reflections and QR algorithms [1Blit it is very costly in the
computation effort since it takes &f) floating point operations to compute SVD[45],
wherea is the number of rows and is number of columns of the matrix. It is not
suitable for online applications. The need of aurswe fashion to update SVD was
firstly found in the field of sensor array signalopessing, in which the subspace
estimation plays an important role and the onliraeking of the direction of arrival
(DOA) of the plane waves is the main issue. As @Bsequence, a new approach called
Projection Approximation Subspace Tracking (PASHBswnitially developed by Bin
Yang [56], who takes advantage of a mathematicahia to find the required column
subspace as an unconstrained optimization prodleter the algorithm is modified to
its Extended Instrumental Variable version (EIV-FA®y Gustafsson [20], which is a
suitable algorithm for the structure of SSI-COV J[1[T is important to mention that
PAST is not the unique algorithm to track the timaeying subspace, it is classified in
the category of the unconstrained quadratic opation problem [34]. In the following,
a brief description of PAST, its extension to EM$T and implementation to

recursive SSI-COV will be described.

5.1.1 Projection Approximation Subspace Tracking (PAST)

The PAST is originally a fast dominant-eigenvectopslating algorithm which is

based on the following unconstrained cost function:
V(W)= Ezft) - ww " 2(t)] =Tr{c, - 2wHe,w + wHc,ww Hw] (5.7)

where z(t)oo™ is a random vector|ii denotes the Euclidean vector norm:}e{nd

Tr{-} are the expectation and trace operator respdgtiv® is the signal covariance

matrix defined asc, = E[z(t)z" (t)]. The superscript denotes Hermitian transpos4,
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is a matrix with suitable dimensions. In our cabe, covariance of vibration signals is
real, the desired column subspatiels also real, therefore the Hermitian transpose ca
be treated as the usual matrix transpose. Thdwosion is known as Yang's criterion,

and there is a mathematical statement with respebe matriX\w:

Theorem [20]: The matrix W is a stationary point oM(W) if and only if

W = UT ,whereU OO ™" has orthonormal columns and contains edjstinct
eigenvectors ofC,. All stationary points ofV/(W) are saddle points, except when
U contains the dominant eigenvectorse., U = U'. In this case}(W) attains the

global minimum. Here, T O O "' is an arbitrary unitary matrix. Proof can be found

[56].

Avoiding the cumbersome mathematical derivationthefproof, more intuitively,
the cost function is trying to minimize the erra@tWween the “transformed” or “filtered”
signal z(t)=U'U""z(t) and z(t), through a transformation matrix composed by the
dominant eigenvectors of the signal covariance ima, i.e, U'U'"T . Usually the
computed dominant eigenvectors are orthonormals,thu'U'" is actually an
orthogonal projection matrix as it is defined imdar algebra, andZ(t) is the
projection of the noisy signal into the signal qudase, thus, noise will be filtered out by
this orthogonal projection. In fact, this “subspditring” concept was the original
idea of Bin Yang to eliminate the measurement naigech later will be implemented

in recursive SSA.

Based orTheorem linstead of solving the Eigen-Decomposition problérough
classical approaches, the unconstrained cost matnly tries to update the dominant

eigenvectors of the signal covariance ma@ixFor time-varying systems, the dominant
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eigenvectorsU' changes with time, the criterion can be modifigdimtroducing a
forgetting factor:

t 2
VIW )] =3t falk) - w W )2k 58)
k=1
where udenotes the forgetting factor used in the summatogive different weights
to the random vectar(k) in the summation, and the expectation in (5.7e@aced by

the summation. Also the definition 6% has to be replaced by
t
C.(t)= Y u*zlk)" (k) 59)
k=1

However, the inconvenience found in the cost fuunctis that, as shown in
equation (5.7), after expand the cost functioms & fourth order matrix equation to be
solved. To adapt the solution to a Recursive Lesgtiare (RLS) approach, an

“approximation” is introduced:
h(k)=w" (k -1)z(k) (5.10)

which replace W " (t)z(k) in (5.8). The assumption under this approximatioithat
there is not a drastic subspace change from a pwmiahotherj.e., signal subspace is

slow varying comparing to the sampling rate of qadant.

With this assumption, since the dominant subspacgk -1) is already known
from the previous step k-1, the original cost fimtis converted to a quadratic

criterion:
7w (1)) = z 1 2(k) - W On(K)| (5.11)

which is a typical optimization function in Leagju#re problems and can be minimized

by:
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W (t)=U"(t)=C,(t)c: () (5.12)

whereC_ is the covariance matrix formed k) andh(k):

t

Call)= X1 (9= ., (1=2)+ " ) (5.13)
ch<t>:gyt-kh(w(k):ycha—1)+h(t)hH<t> (5.14)

Thus, when there is a new incoming data at indtathie matrix inversion lemma
can be applied to (5.14) and the well-known RLSathgm can be easily derived for

updatingW ((t).

5.1.2Instrumental Variable Projection Approximation Subspace Tracking

(IV-PAST)

Since PAST by Bin Yang was formulated originally te@at antenna signals
corrupted with additive noise through a subspagaageh [56]. However, from the
derivations and assumptions shown in section zZwutput-only SSI, the input source
Bu, is unknown, which together with system noise asumed to be a stationary and
spatially white noiseg,e., instead of a simple additive noise, it is ratiher source of the
system response. For this type of noise, it wavgatdn [43] that the normal least
square formulation will lead to a biased solutiom & is not appropriate to handle this
type of problem; instead, dnstrumental Variable (IV) approach must be used. Since
the instruments must be uncorrelated with noiseallysthe same output measurement

but with a time lag i” can be chosen for this purpose. The modificatbriPAST to

IV-PAST and later Extended IV-PAST was proposedimgtafsson [20].
By introducing the instrumeng(t)00™, the least square solution to the
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objective function in (5.11) becomes the followimguation:
> 1 k)™ (k)= W t)h(k)e™ (k)T = Coe (t) - Wt)C (t) = 0 (5.15)
k=1

Again, the summation over the multiplication of thignal z(k) and instrument

é(k) weighted by the forgetting factor, can replacethmy respective cross-covariance
matrices C,(t) and C,,(t), which are defined and updated by:

t

Curl)= 31 A)e" ()= .11 =)+ )" (1) (.16
Coelt)= L4 lk)e" ()= .t~ it (1) (5.7

Then, by invertingC,(t) the matrixw(t) can be found:

W(t)=U, (t)=C,-(t)Ci (t) (5.18)

The same matrix inversion lemma can be applied 8] and the same RLS-like

algorithm can be formulated for IV-PAST.

5.1.3Extended Instrumental Variable Projection Approximation Subspace

Tracking (EIV-PAST)

The inconvenience one may found in IV-PAST is thatlet the inverse of the
cross-covariance matrix exist, the length of th&rimment vector must have the same
size as the measurement ved). Another problem one may found in practicehatt
the cross-covariance matrix may be ill-conditiorfed which is not amenable the
inversion. The Extended Instrumental Variable wasved to solve this problem and
make further stable the inversion process. Thenctst function to be minimized can

be replaced by its corresponding EIV formulation:
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2

Vw(t)= C.(t)-witlc, ). (5.19)

iwz(kw(k)—w(t)gut-kh(kw(q

k=1

F

where the subscript denotes the Frobenius norm defined \&EGGH ) sz(t) and

C,(t) are the same as that defined in (5.16) and (5.17).

The least square solution of (5.19) is readily thtmbe:

W(t)= Ul (1) = C, ()C e, ek 0 (5.20)

The difference between (5.15) and (5.20) is thecotfbf the extra-added Frobenius
norm, which is able to fulfill the need of Recusmsieast Square (RLS) via matrix
inversion lemma, to treat the case of non-squareicea due to the use of instruments
of different length, or, to obtain a better numaristability in the recursion. A complete

derivation and formulas for the EIV-RLS algorithancbe found in [43].

5.1.4 Adaptation of EIV-PAST to RSSI-COV

Since covariance driven subspace can be considasedan SVD-enhanced
Instrumental-Variable (IV) method [37], one maynthithat the IV-PAST algorithm is
suitable to perform the SVD-updating task, or bresd, the observability matri©;

(column subspace of the Hankel covariance matpxgting task, which is not true.

Let the random vectorz(t) in IV-PAST formulation be replaced by the

corresponding data vector in (5.2), which ig 00" ; on the other side, the
substitution of the instrumené(t) is evidently y;" oo*'. IV Solution to the cost

function will become:
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MIyvive ~W(h(K)ye 1=H® -W(EH =0 (5.21)

k=t-L+2i

where h(k)=w"(k-1)y; is the above mentioned approximation,

T

t
H e -1 > y«Y, Is the definition of Hankel covariance matrix innaoving
P k=t-L+

2i

— t u—
window formulation (forgetting factor defined agthnit), and H;*' = Zh(k)y;T :

k=t-L+2i

Similar to (5.18), the dominant eigenvectors camooad by
wW(t)=T,, (t) = He (e )™ (5.22)

However, either PAST or IV-PAST algorithm was dedvto update dominant
eigenvectors of the covariance matrix, the relatdm between Eigen-Decomposition
(ED) and SVD of the Hankel covariance matrix isf@need to be revised. The SVD of a
Hankel Covariance matrix is defined as:

H® =USV" = (U, UZ)(% 8}(&] (5.23)

whereU andV are orthonormal matriceS,is a diagonal matrix containing the singular
values. But the column subspadecan be also obtained from the ED of the Hankel

Covariance matrix multiplied by its transpose:

ymmetric matrix

He'H=" = USVTVSTUT = U(sST U™ = u(sS)u™ (5:29)

From the relationships shown above, the desire@rabbility matrix O; is the
same as the column subsp&g&eextracted from Hankel Covariance matrix using SVD.

However, if Theorem 1lis reviewed, after solving (5.21) by least squdne, obtained
dominant eigenvectorW(t)=U, (t) is the eigenvector of the Hankel Covariance
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matrix, it is NOT the desired column subspace. Tdtier must be computed via ED of
the Hankel Covariance matrix multiplied by its spnse as shown in (5.24)., the
desired column subspace can be updated as the a@umaigenvectors of the

“Covariance of Hankel Covariance matrix”.

Fortunately there i€IV-PAST whose Frobenius norm is just satisfying this
requirement. Again, substituting the random vegeffrand the instrumentf(t) by the
corresponding data vector in (5.2), the objectivmction of EIV-PAST to be

minimized will become:

2

- - W
F

Yyivi -Wl) YRk,

k=t-L+2i k=t-L+2i

VIw(t)] = (5.25)

2
E

where the moving window approach is adopted agimilar to (5.20), the least square

solution to (5.25) is the follows:

_ 1
W(t)=U,(t)= (H covp eVt XH f°VHf°VT) (5.26)

Comparing (5.22) and (5.26), the first one is cotmguthe dominant eigenvectors
of the Hankel Covariance matrix, on the contraB/26) is computing the dominant
eigenvectors ofoOVﬁf"VT as that shown in (5.24).e., the desired columns subspace
Ui(t) of the Hankel Covariance matrix.

Hence, the so-called Extended Instrumental VaridRéeursive Least Square
(EIV-RLS) algorithm can be applied to solve the EPAST problem, which fulfills the
SVD-updating requirement of RSSI-COV to track timetvarying subspaddi(t). The

explicit formulas to be implemented in RSSI-COV a&kown below. Complete

derivation of these formulas of EIV-RLS algorithiancbe found in [43].
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. From an initial SVD the recursive algorithm canibiialized with U(t), P(t) and

H,:
H,=UItH, & Pl)=[rAT]" (5.27a)
. Given a new incoming data vectoy,,,, Us(t+1), P(t+1),H,,, and H,,, can be
updated and downdated using the following algorithm
Updating:
h(t+1) =ul(t)y;, . w(t+1) =H,y., (5.27b)
v(t+1) =[H v vl (5.27¢)
w(t+1) =[wt+1) h{+1)] (5.27d)
1[-(yo.] vi (5.27¢)
A(t +1) yt+1 Y H
#2 U 0
K(t+1) = ’,Uz Alt+1) +y(t+1" Pl)ylt +1)*]_1\|1(t +1) P(t) (5.27f)
U (t+1) = U, )+ [vit+1) - U, (wlt+1) K (t +1) (5.279)
Pt+1) [P w(t+1) K (t +1)*] (5.27h)
Ao, =ui, +0+1) (v, ) (5.27i)
H ;+1 = IUH t + yt++l (yt_+1)T (527J)
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Several numerical studies of time varying systerabjexted to white noise
excitation were carried out to test the performansicRSSI-COV. Results show that for
the SSI algorithms, forgetting factor leads to sey&oblems in the tracking of modal
parameters. Since forgetting factor is introductherent weightings to the data
meanwhile Hankel covariance matrix is being forntée, ability of this step to cancel
out the random components no longer works. Movingdaw approach with forgetting
factor set to one is adopted in this work sincédtter matches the assumptions of
SSI-COV. The use of a moving window implies the egrocedure shown above has to
be done twice to complete the subspace updatingdoh new incoming data: after
adding the new incoming data (updating), the oldesa has to be subtracted from the
moving window (downdating). The same formulas shafmove can be applied for

downdating by setting forgetting factprequals to one, the data vectoys, and ;'

should be replaced by the oldest data vector inrtbeing windowi,i.e., if the moving

window length isL, these becomey: ., and y- 7. Moreover, several sign changes

in the last four formulas have to be introduceddowndating:

Downdating:
A+ 1= U+ i . wh+D)= oy, (5280
VE+1) = [H LY Vil (5.28b)
w(t+1) =[w(t+1) ht+1)] (5.28¢)
A(t+]):i{‘(3/f-m)T )/ ,U} (5.28d)
I U 0
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K(t+1)= [ﬂz Alt+1) +y(t +2) Pt +1) wt +:I)]_l\|;(t +)P{t+1) (5.28¢)

Uyt+1) =U,(t+1) —Mt+1)- Uyt +1) wlt + DK (t+1) (5.28f)

P(t+1)= %[P(t +1) +PE+1) yt+1)K (t+ 1)] (5.28g)
Hoy= ui, -h+1)yr ., (5.28h)

_ * + - u 5.28i
Ht+l_/'1H t+l_yt—L+1(yt—L+1) ( )

Since the updating task is done for the time-vayyolumn subspacdi(t) from
the formulas shown above, the system informationlmthen extracted frotd,(t) as

previously discussed in section 2.3, for each fimséant.

5.2 Recursive Singular Spectrum Analysis (rSSA)

To be able to apply SSA in online filtering of \@lhion measurements, an on-line
version of the algorithm that describe the curseghal structure at each time instant is
required. As mentioned before in section 2.7, thet fstep is to assemble the
measurement data in a Hankel data matriNafata pointsX(N) as shown in (2.47).
Although a forgetting factor 01 can be applied to gives different weights todh&a
in terms of its age, through several simulationd&si have been carried out, one
conclude again that for subspace-based algorittihes,moving window approach
should be adopted. The number of block rows iand is kept constant meanwhile a
new data point is added as a new column appendéldetanoving window Hankel

matrix:
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yN-L +1 yN—L +2 yN—i'+1 yN -i'+2

e T L -
yN-L'+iI yN—L +i'+1 e yN yN+1
:[XN—L'+i‘ Xnotwinn - Xy |XN+1]:[X(N)|XN+1]

where X(N)O O™, I is the number of sensoi,is the sliding window vector order,
i.e., number of block rows of the Hankel data matkiXis the length of moving window,
K'=L'4’+1 is the number of columns, witk’ > i'. For convenience, the subscript
notation for the sliding window vector is differethtan that used in off-line SSA, which

becomes noXn..++ ,J =0,1,2, ..., K!

Similar to that shown in (5.24), by applying SVD tiee Hankel data matrix

X(N +1), the left singular vectons can be computed via Eigen-Decomposition (ED) of

the covariance of sliding window vectors:

K
CSSA(N +1) = Z XN—L'+i'+j Xlzl——L'+i'+j = X(N) XT(N) +X N+1XL+1 - XN—L'+i'X1N——L'+i' (5-30)

j=1
whereCss{N+1) is the covariance matrix of the sliding windo@ctorXn..+i+j -

To make rSSA algorithm possible, only the left silag vectors corresponding to
the non-zero singular values %{N+1) will be used and updated as on-line filterscsin
they correspond to the column subspace which sparrange ofX(N+1), i.e, any
sliding window vectorXy.+++j can be expressed as a linear combination of the

computed column subspace frotfN+1).

Since the eigenvectors of the covariance maBps{N+1) correspond to the
desired column subspace, this is actually a typrealk-two modification of the
symmetric eigen-probleng., meanwhile a new data column is appended to timkefia

matrix (.e., rank-one modification), an old data column istsadied (.e. rank-two
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modification). The above-mentioned PAST algorithensuitable to be implement to
rSSA, because it is able to update in a recursaagbion the dominant eigenvectors of
the signal covarianc8ss{N+1), i.e., the subspace of(N+1).

Adaptation of PAST to rSSA

From (5.8), the random vectz(ik) can be substituted by the sliding window vecét@r

- W (N +2)w " (N +1)X kHZ (5.31)

vIw (N +1)] = ZL\

+i'

By introducing the same approximation:
h(k)=w"(k-1)X, (5.32)

the original cost function is converted into a quasid criterion:

2

- W (N +1)h (k) (5.33)

VIw (N +1)]= ZL\

+i'

This became a typical optimization function in Lie&sjuare problems which can be

minimized by:

W (N +1)=U;(N +1)=Cg, (N +1)C 5 (N +1) (5.34)
where Cg, is the covariance matrix formed by the sliding daw vectorXy and
h'(k), and C, is the covariance matrix formed bly'(k) and h'(k)":

Coonxir (N +1) = Cgpn (N) + X0l = Xy Bl (5.35)
Coony (N +1) =Cg i (N) + R bl - BD (5.36)
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When the matrix inversion lemma is applied to (3.3e well-known RLS algorithm

can be easily derived, which is shown in the chalbw.

1. From an initial SVD the recursive algorithm can ibiialized with U;(N), later

Cespi(N)and P(N) can be computed:
C aon (N) = [U T (N X (N (N )X (N)] (5.372)

P'(N)=[C (N (5.37h)

2. Given a new incoming sliding window vectoty.1, U(N+1), P(N+1) and

(N +1) can be updated using the following algorithm:

Updating:
R(N+2) = U7 (N)X .y (5.37¢)
, . R(N+1)"P(N) (5.37d)
NS [+ P (N+1)"P(N)JR(N +1)]
Uy (N +1) = Uy (N)+[X .. = U (NN +1) [K (N +1) (5.37¢)
P(N+1) = (%j[P'(N)— P(N)F(N +1) K'(N +1) ] (5.37f)
Downdating:
W(N +1) =U; (N +1)* KoL (5.38a)
(N 1) PN PN+ (5.38b)

[p+R(N+2)"P(N+2) (N +1)]
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U(N +2) = U(N +2) —[ Xy —UL(N +2) B'(N +2)]K (N +1) (5.38c)

P'(N+1)= (%j[P’(N +1) =P (N +2) (N +2)K (N +1)] (5.38d)

The recursive SSA is different than the off-lineASS the reconstruction step. The
recursive SSA is applied here as a preprocessinf tto filter out the undesired
measurement noise keeping the system related iafam thus, the same “orthogonal
projection” concept used to derive PAST can bectlyeapplied for rSSA. After the
column subspaceU’l(N +1) is updated, the “filtered” or “projected” slidingindow

vector X ., can be computed by the orthogonal projection:

X o = Up(N+2)U(N +2)" X, (5.39)
where x ., isthe reconstructed data vector.

Hence, for each new incoming data, a new slidirgjorecolumnXy.; is appended,
the column subspace is updated (N +1), and the reconstructed data vectar,

can be obtained by procedure shown above. Finaky reconstructed data vector

X ., is placed in the corresponding location of theonstructed Hankel data matrix
X(N +1), then, elements of the same time instant (in tieddagonal direction) can be

averaged to reconstruct the signal:

_yNLﬂ yNL+2 VN_;iJ¥I yN—yﬂ-Z?N—[+3 yN
)~((N +i' _1) » yNLQ yNL+3 yﬁ;i_;*z yN y ;.*?;""S/r\{j.-ﬂ.:.-- yr\:1+1 (5.40)
_yN-L'+i' yN-L'+i +1§7N yN+1 yN+2 yN+i -1 |

It is important to emphasize here that the rSSAritlgn explained here may be

somehow different than the algorithm used in SSArarprecisely, this is a combined
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approach of both SSA and data compression basetherKarhunen-Loéve (KL)
transformation [56], where a sequence of data vect® coded by their principal

components.
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Chapter 6
Simulation study of RSSI-COV and rSSA-SSI-COV

To validate the adaptation of EIV-PAST algorithm RSSI-COV, and the
proposed rSSA solved by PAST, together with itsliagbility and stability in the
on-line tracking of system modal parameters, thhoagnoving window and recursive

approach, simulation study was carried out firstly.

Consider a simulated linear 6-DOF system consistslumped mass model and a
shear building type stiffness matrix, which has tbkowing modal frequencies and

damping ratios in its original state:
The system natural frequencies are:
f=[0.9972 ,2.9254 , 4.6600 , 6.0905 , 7.1353 5567] Hz

Rayleigh damping was assumed for the derivatiotaofiping matrix, the assumed

damping ratio for each mode are:
§&=1[0.03,0.03,0.01,0.01,0.02,0.02],

Response is generated using discrete time detestimistate-space model having a
spatially white noise as the input, outputs are suead at each DOF. Measurement
noise can be added after the system responseamett The sampling rate is 200 Hz

and the total generated data length is 20000 pairtich equals to 100 sec.
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6.1 Implementation of the RSSI-COV and rSSA-SSI-COV algrithm

In conducting RSSI method, considering the recer8V¥D-updating task carried
out by EIV-PAST algorithm updates only the domingimgular vectors, a procedure is

proposed to avoid the accumulation of error dutirgsubspace computation:

1. Select a length for the statistic moving wind®ksatisic Which samples the identified

modal frequencies along the time axis.

2. Calculate the mean frequency over data sampjethd moving window for each

modal frequency.

3. Calculate the Euclidean norm of the standardatiem of each modal frequendye.,
take the square root over the sum of squares ®rctmputed standard deviations

over the moving window of each modal frequency.

4. Repeat 2 and 3 by moving forward the statisticdaw over a specific frequency data

pOi nts dstatistit‘)-

5. Compare the Euclidean norm of displacemdsitahd “k+1”, and calculate their
percentage of difference. If the percentage betwkeenwo segments is greater than
the specific criteriad.g. 50%), the traditional SVD will be computed at tlgaten

time instant and serves as a restart for EIV-PAST.

6. Continues the recursive computation of modatjfemcies, the statistic window
moves a step forward until the displacement lemgtthe statistic moving window

dstatistic has been reached, and repeat the steps 2, 3, 4, 5.

The above procedure is summarized in the flow dtartvn inFigure 6-1
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6.2 Simulation study 1: time invariant 6-DOF system

The simulation study starts with the case wherestls¢éem is time-invariant. Thus,
the most basic requirement to be meet is the sefficstability to track the modal

parameters in a recursive manner, when these tatter not any change.

Noise free

Figure 6-2 shows the recursive tracking results for the raspayenerated by the
6-DOF system subjected to a spatially white namii excitation, without adding any
kind of noise. From now on, the same number of lolmwsi will be used for block
columns,i.e,, a square Hankel Covariance matrix. Since thia smulation example
with known DOF, naturally the system order is defirno be 12. Comparirg) andb),
one can note that by increasing the moving windemgihL used to form the Hankel
Covariance matrix, the stability is better. Thistoh@s the assumption for Covariance

for which the data length must be theoreticallydiag to the infinity.

Figure 6-3 shows the result for the tracking of damping rafimma), the use of a
short moving window (1500 points equals to 7.5 $eajls to a very unstable damping
ratio and wrong trace for thé' mode. By increasing the window length to 3000 t=in
although the deviation from correct answers i$ Istibe as it always occurs in damping
ratio estimates due to its high sensitivity to @eyturbation, at least, stable results were

achieved. The two largest damping ratios corresportide £ and 29 mode.

Adding noise correlated with output (SSI assumptiviolated)

Consider the addition of the input acceleratioth® measurement as a noise correlated

with output, which occurs in acceleration measumr@s@s that discussed in section
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2.2.3, the purpose is to test the robustnss of &EBI when its assumptions were
violated. In this case, the moving window lengtlfixged to 2000 points, system order is
12. Frequency tracking results is showrrigure 6-4. The effect of increase number of
block rowsi is shown by comparing) andb). The ' mode shown im) was perturbed

by noise; the higher the number of block rowsthe better the noise separation,

consequently a more stable tracking result wasmddanb).

The recursive tracking of damping ratio is showrrigure 6-5 for the same case
when the added noise violate the assumptions. df thmber of block rows is
insufficient to separate noise from the systemrmgtion, negative damping appears
due to noise perturbation as shownFigure 6-5 a) Although negative damping was
corrected by increasing the number of block rowSigure 6-5 b), the trace of damping
is still unstable and several significant changesucs in damping tracking meanwhile
there is not any variation in the correct dampiagor answer. Given this situation,

damping ratio cannot be used as an reliable inflexstem change or damage.

6.3 Simulation study 2: time varying 6-DOF system withsudden

stiffness reduction.

To simulated drastic system change scenarios, sudt#ness reduction and
damping ratio changes were introduced in the 6-B@dem. The loss of stiffness was
introduced in the %t DOF of the simulated shear-building type systene, tesulting
changes in modal frequency are presentetiaile 6-1 Comparing with the precision
level of SSI shown in section 3.1, the resultingrade in the % modal frequency
become significant (more than 0.1 Hz for tierode) until the stiffness reduction iff 1

DOF is more than 50%.
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Noise free

Firstly, the RSSI-COV algorithm is applied to trabese sudden drops in modal
frequencies without adding noise to the simulategbsnrement. Result for modal
frequencies is shown iRigure 6-6. The number of blocksis 70, system order is 12;
the statistic window lengthVLgistic IS 400 frequency points, displacing by every 100
points (as explained iRigure 6-1). The restart criterion is 50% of difference betwe
this and the previous standard deviation Euclide@m. Similar to the results obtained
in 6.2, the tracking stability was enhanced by easing the moving window length.
However, as that shown Figure 6-7 b)andFigure 6-8 b) variations in damping ratio
cannot be traced correctly, no clear tendency caroliserved even increasing the
moving window length or system order. Since RSSjoathm only shows good

frequency tracking capability, hereafter the restdt damping ratio will be omitted.

Between 7000 and 9000 data points, tfienbde damping ratio shown Figure
6-7 b) has increased to an abnormal level, which indscateéstence of problems in the
identification. Until the system order is increadedl6, 2 pairs of SV more than that
required theoretically, as that shownHigure 6-8 a) for frequency andb) for damping
ratio, a more reasonable range for tffeniode damping ratio is reached (the negative

damping ratio corresponds to spurious poles) aghauis not accurate at all.

Based on the previous experience adquired in o#-fiystem identification, since
the system in no longer time-invariant, more orthtg components is required to span
the system subspace, therefore, if insufficientesysorder is defined, information loss
in the recovery of system matri will lead to an unstable tracking on th& rmodal
frequency or damping ratio. The use of more systaater, however, introduces
spurious poles in the time-frequency plot.
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Figure 6-9 shows the six mode shape identification resultsstereral selected
points, which are obtained with a system order2fBxcept mode 1, all the identified
mode shapes are almost identical to the correstemdhis phenomena is similar to
that we find in modal frequency and damping ratacking, the T mode seems to be
the most affected by any violating any assumptio8%l, because we are trying to use a
recursive linear identification algorithm, with @rtain moving window length, to

identify time-varying systems.
Adding noise correlated with output (SSI assumptiviolated)

The combine effect of system with sudden changdseguency and the addition
of noise correlated with output is presented Figure 6-1Q0 both violating SSI
assumptions. The moving window length is 5000 oot botha) andb). With a
system order of 12 and 150 block rowsajnbad tracking results were obtained and the
1*' mode almost disappeared. The combination of naeiseé time-varying signal
increased the required column subspace to destirdbsystem information, although
the system order is 12 theoretically as that shomwfigure 6-10 b) by increasing the
system order to 18, thé'Imodal frequency can be traced correctly, but againrious

poles appears in the time-frequency plot.

6.4 Simulation study 3: time-varying 6-DOF system with gradual

stiffness reduction

A gradual reduction in the®1DOF stiffness from point 4001 to point 16000 is
introduced in the system matrix to simulate slowyway frequencies. There are totally
20000 points in the simulation example. The systesmtural frequencies and the
corresponding damping ratios from 1 to 4000 pcanées
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finitial = [0.9972 , 2.9254 , 4.6600 , 6.0905 , 7.13535567] Hz
& iniiat = [0.03, 0.03, 0.01, 0.01, 0.02, 0.02 ]
After reaching 16000 points the frequencies andpdagratios become finally:
ffina = [0.5380 , 2.2141 , 4.0478 , 5.6599 , 6.9051 8980 Hz
final = [0.20, 0.07 , 0.051, 0.02, 0.03, 0.05]

Between 4000 and 16000 data point, the natural&eges and damping ratios are
interpolated linearly based on the initial and ffistate of the modal frequency and

damping ratio.

Noise free

Firstly the ability of RSSI-COV to trace slow tinvarying frequencies is shown in
Figure 6-11, a) for the case of using 2500 points for moving wiwdandb) for 4000
points of moving window. For both cases the numifeblock rowsi is 70, system
order is defined as 12. The same as that defindfemrevious section, the statistic
window lengthWlgiisiic IS 400 frequency points, displacing by every 1@ints; the
restart criterion is 50%. Again, the increase @f tmoving window length has enhanced
the tracking stability. However, similar to thaufal previously, the®*imode seems to
be very sensitive and lost the stability in thafipoints. If the moving window length is
increased to 5000 points as showrFigure 6-11 c)keeping the system order as 12,
certain stability problems still remains; howev&milar to what is done in section 6.3,
if the system order is increased to 18 keepingctintide remaining parameters, stable

results can be achieved for the final points.

In fact, this outcome has a similar sense thandhtdined in the simulation study

83



of section 3.3, where off-line identification tagk carried out for two closely-spaced
frequencies blended with time-varying frequenclasger the number of block rows
the time-varying frequencies will be spanned by enorthogonal vectors after being
decomposed by SVD, thus, higher system order isined|to prevent the loss of certain
mode information due to the order consumption inecmg the most time-varying
component. The fact is ilustrated kigure 6-12, where the number of block rows has
been incremented from 100 to 130, moving windowgikrfixed to 5000 points, and

different system orders is considered.

Adding noise correlated with output (SSI assumptiviolated)

Consider the addition of a noise correlated witlpat) to test the robustnss of
RSSI-COV in the case of slow-varying systems whsnassumption were violated.
Firstly, two different number of block rowsis compared, and system order is kept as
12. Frequency tracking results is shownFigure 6-13 The effect of the assumption
violation impacts mostly in the recursive identfiion of the I mode; again, due to the
time-varying characteristic of the system, highgstem order is needed for larger
number of block rows, otherwise, the *1 mode information is not covered. This

explains why the outcome Figure 6-13 a)using fewer block rows is better thian

Consider the use of the Recursive SSA-SSI-COV dlguar there are two sets of
parameters to be determined, one for recursive 8S8A): moving window length’
and number of block rows; and another for RSSI-CO\L: andi. Regarding to the
selection of number of block rowsandi’, 100 block rows is a good choice from
previous simulation experiences, this is actuallyagleoff between computation effort
and accuracy. 5000 points is selected for the ngowmdow length of RSSI-COV,

because the larger the window length, more stalde result. To investigate the
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influence of the moving window lengthi and the number of principal components to
be selected in rSSA step, nine different combimstidor model parameters are
considered. For these cases, firstly the singyd@ctsum in rSSA step is shown in
Figure 6-14 To determine the best choice of number of SV 8SA step,

implementation algorithm shown in sectighl.3.1 can be applied. The singular
spectrum in RSSI-COV step is shownFigure 6-15 they are computed from the first

5000 data points which corresponds to the movinglaxv length of RSSI-COV.

From the 9 combinations shown iRgure 6-15 the best choice of model
parameters for rISSA seems to be a window lehgibf 1000 points and 20 SV, for the
reason that this choice leads to the best separafidhe 6 pairs of singular values
(corresponding to the system order). This can biiee by selecting various cases for
comparison as shown ifable 6-2 the frequency tracking results is showrFigure

6-16.

Although the ¥ modal frequency were miss for the last pointsFigure 6-16 d)
if the system order is increased to 16, the fimegnsent stabilizes as shown kigure
6-17 a) This is due to the time-varying property of thgnal and the reason explained
above. However, if only RSSI-COV is used, evenaasing the system order to 30, this

final segment is still a little bit unstable. Thgsshown inFigure 6-17 b)

After the slow time-varying simulation example i&idied, several conclusions

about the effect of time-varying system in the mMq@dgameters are obtained:

v" The required number of orthogonal componenss, (system order to be chosen )
to span the system subspace is more than the agstain order, when it comes to

the signal processing of time-varying systems.
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Although a better noise elimination can be achiewsidg larger number of block
columnsi, however, the required number of orthogonal corepts1{.e., system

order to be chosen) to span the system subspagisasgreater. If the selected
system order is lower than the required, spuriougles appear instead of the

correct frequency.

The larger the moving window length in RSSI-COV step, more stable the
tracking results. On the contrary, the shorterss mmoving window length.’ in

rSSA, better the filtering result and, thus, thenidfication quality.
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Chapter 7
Application of recursive SSI algorithms in damage dtection
and early warning

The RSSI-COV and rSSA-SSI-COV algorithms has beafidated through
numerical examples, sensitivity study of subspaocdehparameters and their selection
criteria were also conducted in chapter 6. In tiWwing, these two algorithms will be
applied to trace modal parameters for several cdissly the shaking table test of a
3-story steel structure with instantaneous stifnesduction, followed by the shaking
table experiment of a 2-bay reinforced-concreten&aboth subjected to earthquake

ground motions, and finally to the bridge scouraxgeriment.

7.1 Application: shaking table test of a 3-story steektructure with

instantaneous stiffness reduction

A 3-story full-scale steel frame is designed andstaucted at the National Center
for Research on Earthquake Engineering (NCREE)aipdi, Taiwan, in 2007/01/17.
As shown inFigure 7-1, the structure consists of a single bay with at8n2m floor
area and 3m tall stories. The structure is contsdugsing H150x150x7x10 steel I-beam
elements with each beam-column joint designed dmlted connection. To apply
additional dead load upon each floor, concrete Kdoare fastened to the floor
diaphragms until the total mass of each floor ecpgely 6,000 kg. The entire structure
Is constructed upon a large-scale shaking tablabtapof applying base excitation to
the structure. In order to change the stiffnesshefstory abruptly, an extra stiffener
(brace) is installed in the first story as shownHigure 7-1, a lock-up system is
designed as a connection between the stiffenetttandirst floor. The steel rod in the
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lock-up system can be released at any time insbasitnulate the abrupt degradation of

the first story inter-story stiffness.

To measure the output data of the structure, d tftdl2 accelerometers are
installed, with 4 accelerometers on the top of e#obr, and there is a LVDT
displacement sensor installed on the lock-up systedetect the release time. Several
test cases listed ihable 7-1were analyzed in this section by applying RSSI-Cénd

rISSA-SSI-COV.

7.1.1 White noise base excitation

Firstly off-line identification is carried out taéntify the modal parameters when
the steel frame is subjected to a white noise basgtation, data of the 12
accelerometers are used simultaneously. Eithethiorcase with added brace (AB) or
the case without brace (NB), 15000 points (75 sesre used to form Toeplitz matrix;
the system order is determined to be 20 from thgusar spectrum shown Figure 7-2
a), for the case with added brace, and 26 for the wadth brace removed as showrbin
From both singular spectrums, although there grai® of singular values far from the
others, which corresponding to the three dominaartstational modes in X direction,
the remaining modes need to be identified and sesvdhe base information for
recursive tracking of modal frequencies, thus, ardy X-direction translational modes
will be excited by the earthquake ground motionse Ftabilization diagrams for both
cases AB and NB are shown kigure 7-3, only the stable poles are considered and
their corresponding modal frequencies and dampatgps are shown iMable 7-2
There are 6 stable modes for the case AB and 1@a®e NB, their respective mode
shapes are shown Kigure 7-4, moreover, four additional modes were identifieahf

the NB case as shown Figure 7-5 mostly coupled modes. The mode shapes are
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normalized such that thé*3loor translation amplitude in X-direction is 0.5.

RSSI-COV is applied to trace the modal frequenémesboth AB and NB case
excited by white noise. Data of all 12 sensors wed simultaneously, the moving
window length is 10 seconds (2000 points), a bldakkel Covariance matrix with 100
rows is adopted. For the AB case, results for twitergnt system orders, 6 and 16
respectively, are presented kigure 7-6 a) andb); Figure 7-6 c) andd) show the
outcome for the NB case, for system orders of 6 Zhdespectively. The dotted lines
are the frequencies previously identified by offelimethod. With a system order of 6,
the three translational modes in X direction carirbeed for both cases, by increasing
the system order, those slightly and not continlyoesscited modes appear in some time

periods, however, a lot of spurious modes also @ppethe diagram.

Through the application of RSSI-COV, result shownhe time-frequency plot can
be compared with the outcome of off-line identifioa. Although modes like®itorsion
mode (2.2966 Hz) appears only for a few 10 secampsoximately, as that shown in
Figure 7-6b), it appears as a stable diagram in the use ofC&8/; the same with the

2" torsion mode and coupled modes identifieigure 7-6 d)

7.1.2 EIl Centro 100 gal

Consider the application of RSSI-COV algorithm tack recursively modal
frequencies when the structure is no longer excligda white noise but by an
earthquake. Although the white noise assumptioniotated, it can be overcome by
increasing the moving window length and the bloolw mumber as proved before,
besides, is it known that the structure vibratedeunts own natural frequency when it is

subjected to earthquake ground motion.
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Firstly, the recursive identification is appliedttee cases when there is no sudden
release of the stiffener but the frame is subjette@&l Centro earthquake excitation.
The same window length of 2000 points and 100 blaeks are used for both cases
with brace and without brace. Two different choicdssystem order are considered:
firstly, 3 pairs of singular values is selected datér, this is increased to take into

account more modes. The outcome is showkigare 7-7.

With the system order defined as 6, only the firsee dominant modes can be
extracted. From the plot shown iRigure 7-7 a) the 3 X-translational modal
frequency (5.2736 Hz) has shifted to tl&tarsion mode (7.3282 Hz), the reason is that
the signal power of the'3X-translational mode is lower than that of tH¥ @rsion
mode as that shown in the spectrogranirigire 7-8 a) constructed with Short-Time
Fourier Transform (STFT). Once the system ordeindseased to 14, both the three
translational and torsion modes are identified, &y, spurious modes also appear in
the diagram. On the other hand, three X-directrandlational modes dominates in NB
case throughout the time history, this is also fsgtiby the spectrogram shown in
Figure 7-8 b) The torsion modes are not well excited in this &¢8e as that shown in

Figure 7-7 d)

Consider now the cases when the brace is suddenigvwed at 14.75 and 29.41
seconds. As the brace is removed at 14.75 sectmspoving window length should
be less than 2000 points (10 seconds) to leavéfieient time length before the release
of stiffener. Although a larger moving window lehgtan enhance the tracking stability,
it also implies that the algorithm will takes maime to detect system change. To make
possible a faster detection of the instantaneadtfeaests reduction, a moving window

length of 1000 points (5 seconds) is adopted. Tmeher of block rows is 100.
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Figure 7-9 shows the result for both RSSI-COV and rSSA-SSMWCThe moving
window length for rSSA is set to be 500 points (& with the same number of block
rows than RSSI-COV, and 6 principal componentseateacted using rSSA. With a
system order of 6, the RSSI-COV result for the braemoved at 14.75 seconds is
shown inFigure 7-9 a) the change in the three translational modal feegies in X
direction was correctly traced, the unique drawbmckhat, even using a quite short
moving window length, the sudden drop in frequeisogelayed about 3 to 4 seconds to
be reflected completely in the modal frequencyaradoreover, the*imodal frequency
lost its stability after 40 seconds. From the s&gam shown irFigure 7-10 a) the
amplitude of the % translational mode was decreased after about&hde and hence
the T' torsion mode takes place instead. The applicatibmSSA algorithm before
RSSI-COV has enhanced the tracking stability aswshan Figure 7-9 b) the
orthogonal projection performed in rSSA as a sidittel helps to RSSI-COV to extract

signal component consistent with those modes has traced.

FromFigure 7-9 c)andd), when a higher system order is used, all excitedes
are also revealed. There is a high frequency mableut 16 Hz) appearing just after 14
seconds, which is the stiffener mode comparing whth off-line identification result.
The sudden release of the stiffener changes notiladéstranslational modal frequencies
in X direction, but torsion modes and coupling nodee also excited by this event
although their contribution is much smaller thae thominant modes. This can be
understood by comparing the singular spectrum bEtwdifferent time instants as
shown inFigure 7-11 a) at the beginning there are only three modes glexdited;b)
once the stiffener is release, not only translaiomodes but torsion modes and
coupling modes appear. It is also interesting t®eole what is occurring in the segment

from 35 to 45 seconds iRigure 7-9 d), the 3 mode cannot be traced even with a
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higher system order because it is no longer exatedhat shown ifrigure 7-10 b)
This is very clear by comparirfigigure 7-11c) with a), there is only one pair above®10
in ¢), meanwhile there are three pairsajrabove the quantity. On the other siBgure

7-9 e)andf) shows a comparison between RSSI-COV and rSSA-&8/-@Although
rSSA was able to enhance the tracking stabilitg, dbupled mode at 8.1 Hz appears

instead of the "8 X-translational mode after approximately 40 sesond

The three translational mode shapes identified ftbexcase where the brace is
removed at 14.75 seconds are showhRigure 7-12 These mode shapes are extracted
from data point of 10 and 30 seconds, the firshwitace and the second without brace.
For the another case where the brace is remov2@.41 seconds, examples of mode
shapes are taken from 40 seconds and the compaviortheir corresponding mode
shapes obtained by offline identification are shawRigure 7-13 The ! translational
mode in X-direction is the same as that identifeedviously by offline analysis. The
coupled X-Y translational mode has some phase rdiffee, also the amplitude in
Y-direction is also larger comparing with the affli reference. Torsion modes are
similar with the reference, but thé 3r-translational mode (8.0540 Hz) obtained by
offline identification is now coupled with thé"2torsion mode, and the frequency is

slightly higher: 8.2017 Hz.

As conclusions obtained from El Centro earthqualtough the RSSI-COV is
able to track modal parameters and the pre-prougssith rSSA can enhance the
tracking stability, there are several challengedaie in use of recursive subspace
algorithms. Besides the time delay to show up tfstesn change due to the use of a
moving window, it is hard to determine the systemeo, thus, there is an uncertainty

about the total number of modes can be excited tawex. To leave nothing out, usually
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the system order is defined in a way that evemrfodes with insignificant contribution
can be considered, such as coupled modes. Thieéals to several consequences, first
is that, as that shown in this case of El Centmthgaake, some modes are excited in
some time periods and disappears in another pertsonce the mode disappears the
trace goes to another mode or is just convertenl anspurious mode, making quite

confusing the time-frequency plot.

The second is, simpler models are required fomentiamage detection. As in this
case of the 3-story steel frame with instantanesiiffness reduction in X-direction,
usually the sensors will be placed only in X-dir@atsince the frame is symmetric and
its structural dynamics are dominated by the Xaliom translational modes. However,
when the coupled modes engaged in due to the imslexta higher system order, it is
possible to identify more than one modal frequendéte each mode as that occurs in
Figure 7-9 d) i.e, coupling modes also appear. Since there are sehsors in
X-direction, there is no way to distinguish coupletdes from true translational

modes.

7.1.3 TCUO082 100 gal

Consider another case where the same steel frammubgected to Chi-Chi
earthquake ground motion, data recorded from stalidU082 (N-S direction with a
duration of 98 s) were adopted as the input excitatSince the effects of a three
dimensional structure in the recursive identificatiwork has been discussed, the
variation in X-translational modal frequencies Wik the focus of this example, and

only the six accelerometers in X-direction will bged.

For the first case where the stiffener is release88.15 seconds, system order is
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defined as 6 to trace the first three dominant radéigure 7-14 a)shows the result for

a moving window length of 2000 points (10 secoraig)}b) shows the improved result
when the window length is increased to 3000 poiRts. the second case where the
stiffener is released at 52.07 seconds, the outéemsigown inFigure 7-15 a) for using
RSSI-COV alone with the same system order, windavgth is 3000 points, 100 block
rows, andb) for the improved result using rSSA-SSI-COV. Pararefor rISSA are:
window lengthL’= 500 points,i’= 100 rows, subspace order= 14, and the window
length for RSSI-COV i4.= 2000 points, system order 8, roiws100. System order has
to be increased to 8 to reveal all information rdgey the translational modes in

X-direction, and consequently some spurious moddd@sion modes appear.

7.2 Application 2: shaking table test of a 1-story 2-bg RC frame

A 1-story 2-bay RC frame was designed following &@l 318-05 design code.
Dimensions and details of the RC frame can be foumdFigure 7-16. The
instrumentation of the RC frame can be accessead the Figure 7-17. A total of six
specimens were constructed with the same desigilsiédenotes as RCF1, RCF2...,
RCF6). This RC frame has been previously studig®1n 32] by signal processing and
nonlinear identification approaches to extractdaenage feature. In [51] the RC frame
is also used to trace the stiffness degradatia@yaivalent linear time-varying structure

and the non-linear hysteretic parameters withrets and strength degradations.

The RC frame specimen denoted “RCF6” is used twepthe frequency tracking
capability of RSSI-COV. A series of shaking tabésts with increasing intensity of
input excitation were applied on the specimen R@Féreate different damage levels.

Chi-Chi earthquake ground motion data from stafl@l082 (N-S direction with a

94



duration of 98 s) was adopted as an input excitaticahis frame. Based on the recorded
maximum inter-story drift, it is shown that a diéat level of damaged was induced in
each specimen. White noise excitation (with a lewel peak amplitude defined as 30
gal) was also conducted in between each strongatei to simulate the normal
ambient vibration measurements before and afteh esathquake. Block diagram
shown inFigure 7-18 summarizes the excitation sequence of the tesirapa on the
shaking table, and the corresponding peak amplitAd®tal of 97.4 s of acceleration
response data were collected from the ambient Naor&xcitation, with a sampling rate

of 200 Hz. The 800 gal* test data was not recorded.

Since this is a 1-story frame excited horizontalyd in the same plane of the
frame, only three accelerometers: Al, A4 and A7used for identification. The frame
can be simplified to be a SDOF system, for whichdsumed that an equivalent linear
time-varying system is able to describe the latetadngth degradation. RSSI-COV is

the algorithm used to trace the modal frequencies.

The model parameter of RSSI-COV is firstly chosenfallows: the moving
window length is 5000 points (equivalent to 25 sets) for more stability, number of
blocksi is 200, the system order is determined to be 2Zusx a SDOF equivalent
time-varying linear system is assumed. The statisindow lengthWlggisic is 400
frequency points, displacing by every 100 points éxplained inFigure 6-1). The
restart criterion is 50% of difference between thsl the previous Euclidean norm of
standard deviation. The time-frequency plot forskdes of earthquake TCU082 scaled
to different PGA is shown iRigure 7-19 recursive identification of the interspersed 30

gal white noise excitation is also showrFigure 7-20

In the first case, the frame is subjected to TCU882hquake with a PGA of 600
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gal. Before 30 seconds where the excitation is gengll, RSSI-COV cannot identify
correctly the undamaged state frequency, whictb@ia5.7 Hz as that determined by
WNL1. The first damage point occurs immediatelyratte 30 seconds, as that indicated
in [32], and the identified frequency dropped t0 Biz. The second point correspond to
37.66 seconds where the peak acceleration occuesid®the use of a moving window
of 25 seconds, at this second damage the decaggudncy starts at 38.27 seconds with
3.62 Hz and ends at 40.82 seconds with 3.08 HhoAlh a larger moving window
allows a more stable tracking capability, it takesre time to reflect the system change.
After the shaking of this 600 gal earthquake, thadst frequency reached during the
shaking is about 2.9 Hz, which is also consisteitt that identified from 30 gal white

noise excitation (WN2), which is 3.0 Hz.

The lowest frequency reached at the second tes0@d gal TCUO82 is 2.27 Hz,
however, the frequency determined by WN4 is aboit#. This may be explained by
the fact that, after 1000 gal earthquake, the @iadnas been severely cracked, and the
lateral stiffness is highly reduced; however, atfihal 10 seconds of this test where the
excitation level is very small (it is about 0.02i.@,, 20 gal), the frequency increases to
2.4 Hz in the final segment of 1000 gal earthqudlke same phenomenon is observed
for all cases: 3.6 Hz for the®'Icase with peak amplitude of 600 gal, and for the
remaining cases the frequency oscillates betwe2rta22.5 Hz in the final segment.
These results are actually quite similar to thantdied from white noise excitation (30

gal) which ranges between 2.4 and 2.6 Hz, from Wi\N\B/NS8.

The discrepancy in the identified frequencies betwstrong motion and ambient
vibrations can be explained by the fact that, tthength degradation of RC frame is

mainly due to the concrete crack. However, the agénf the cracks does not occur if
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the excitation level is smalilg., the lateral stiffness is much larger when theatibn is
small, therefore, higher natural frequency will @ached for the RC frame under

ambient excitations.

Unlike the modal frequencies identified from thet8ry steel frame in section 7.1
which is almost totally constant, the natural frexgcies identified from 30 gal white
noise excitation for the RC frame showrFigure 7-20 oscillates between 5.66 Hz and
5.78 Hz even in the undamaged state, the RC frame does not behave linearly and

the signal is slightly time-varying.

From experience gathered in the simulation examptection 6, more orthogonal
components than the theoretical system order iginedjto span the information of a
time-varying systemi.e., the system order should be defined larger thano2avoid
excessive spurious poles in the plot, a good chwmad be the first 4 singular values
from the singular spectrum shownhigure 7-21, because they represent the 99.6% of
total singular value powers. The frequency traceRGF6 specimen is summarized in
Figure 7-22 The moving window length is reduced to 3000 poif@quivalent to 15
seconds), and consequently the trace is not ake stabt is when the window length is
5000 points, but one can expect that it can refleetsystem change more quickly. The

number of blocks rowsis 100.

The use of a system order of 4 has covered theesgigmefore 30 seconds which is
incorrrect when a system order of 2 is used. Asshawn inFigure 7-23 signal before
24 seconds are probably a mix of measurement aogestructural response to ambient
vibrations, but it were cut by the resolution oé tmeasurements. Although the natural
frequency was able to be identified from data @&f tinst 24 seconds, this may not be
reliable considering the vibration level is lesarthl gal and the resolution of the
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measurement. Fronfigure 7-22 a), the identified frequency corresponding to the
undamaged state oscillates between 5.5 and 5.7fhétween 28 and 29.6 seconds),
which is quite consistent with that identified fromMN1. After the first damage point,

the identified behavior is the same as that desdrgyeviously.

Novelty Index

The Novelty Index (NI) is calculated by using thestf set of the test data (from
WN1 excitation) as a reference to develop the systeatrix @, C) and noise
covariances @, R), following the procedure described in section. Bésed on the
developed system matrix, the Kalman filter estiorativas used to predict the responses

for other test cases based on the procedure shrosyppiendix C.

The Kalman filter prediction time history at thedamaged state (WNL1) is shown
in Figure 7-24 Three sensors: 1, 4, 7 are used and a system ofdeis defined.
Although the theoretical order for a SDOF syster2,ig@xtra components is added to
cover the nonlinear and noise components, makirgthat the prediction is good at the
undamaged state. After 600 gal earthquake shakiregframe was damaged and the
predicted time history of WN2 is shown kigure 7-25 The prediction error become

larger than the undamaged state.

Figure 7-26 shows the change of NI for both Euclidean norm ahdlianobis
norm among different test cases. A larger index oleE®rved for test cases subjected to
severe excitationTable 7-3shows the results of outlier analysis (both Euaideorm
and Mahalanobis norm) from the damage detectian bftory 2-bay RC frame subject
to a series of white noise excitations. The parameis set as 2, this corresponds to an

interval of 95.5% confidence for a real normal dgttion. The change of the identified
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dominant frequency from the test specimen witheesfo the estimated NI is shown in

Figure 7-27.

It is concluded that the RSSI-COV method can prexadechnique for continuous
monitoring of a structure by using either earthquak ambient vibration measurement.
Although white noise excitation is assumed for R®SI model, it is able to overcome
this assumption violation by increasing the subsmiimension (number of block rows)
which allows a better signal decomposition, butighér system order is required to
cover the system information. Drawback is the sugipoles that appear in the

time-frequency plot due to the assumption violation

On the another side, the novelty index analysisetbasn the Kalman filter
prediction error can provide the possibility oftgeg early warning of structural damage

before severe damage occurs by using output-onisarements.

7.3 Application 3: bridge pier scouring experiment

Consider a four span bridge with its steel deckapi supported on three
cylindrical piers as shown iRigure 7-28a). The piers are buried with 30 cm of depth
and confined by coarse sand. The goal of the exyat is to monitor the state of the
bridge under continuous scouring, to extract itbrating features allowing early
warning of the pier settlement or failure in thairidation of the bridge, and to locate

damage through an output-only signal processingoaep.

The experiment was conducted in Hydraulic Resebustitute of Water Resources
Agency, Ministry of Economic Affairs, located at iNshijiao éxf;ifi?ﬁ[ﬁﬁﬂj%‘&%ﬁ Fl7
" Z4EeRT), Taipei, Taiwan. Several tests take place as shinWable 7-4 In order to

create a local damage scenario, a brick wall wad ts address the flow and to reduce
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the stream width, as consequence of the increa8ewnrate, the scour rate and depth
will be also increased. From experimental obseovatihe failure mechanism was pier
settlement caused by base hollowikgyure 7-28c) shows the final state of the bridge,
pier three settled and is the one that suffers rfmost the scour, followed by pier two

but this latter has not settled. Due to the streadth reduction, pier 1 almost does not

feel the scour effects at all.

In order to measure the horizontal vibrations ie thansverse direction of the
bridge, excited by the impact of water flow on ther, a total of twelve VSE-15D
velocity sensors (Tokyo Sokushin Corporation) warstalled uniformly along the
center line of the deck. Configuration of the beadgnd sensor location is shown in
Figure 7-28a). A laser displacement-meter was also installethimuary 24 and March
29, 2011, to monitor the settlement occurred i @Bieln the last test conducted in
March 29, twelve AS-2000 accelerometers are usstbad.Table 7-5 shows the

sensors specifications.

7.3.1Bridge pier imminent settlement indicator: modal frequency drop

7.3.1.1 Test conducted in 2011/01/19 with full measurements

To analyze vibration data of the experimental bgidghder continuous scour,
firstly the modal frequencies will be extracted rjotime to identify damage. The
rSSA-SSI-COV algorithm will be the main tool to oarout this job, but also the

RSSI-COV algorithm is applied for comparison pugos

The control parameter of the model is showTable 7-6 The determination of
the subspace order for rSSA and the system ordeRES5I-COV follows the same

procedures of SSA-SSI-COV shown in section 4.1.3hE singular spectrum is
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analyzed in RSSI-COV step using 5000 points ofsigeal regenerated with rSSA, for
which the subspace order (number of SV) also mudtet determined. 3000 points
correspond to the moving window length for rSSA; and 5000 is the length for

RSSI-COV. The number of SV chosen from rSSA whehds to the emergence of a
jump in the singular spectrum of RSSI-COV will Heetbest choice for the rSSA
subspace order. Location of the jump also indictltessystem order. However, this
only gives an estimate for the required system rordecause as the scour depth
increases, boundary conditiosn and consequentlghthamic behavior changes; similar
to that observed in section 7.1(3-story steel fiantlee required system order is
different for different time periods. On the otlstde, for the case where RSSI-COV is
applied alone, the parameters were referencedatoctiosen for rSSA-SSI-COV but

with higher block rows to separate system infororatrom noise perturbation.

The initial 5000 data points were used for the poermination, when the bridge
Is excited only by ambient vibrations. Several glag spectrums is shown ifgure
7-29, when there are only 15 singular values selectet685A, the jump become very
clear and it is located between 18 to 22 SV atthgular spectrum of RSSI-COV. The
number of singular values in rSSA and the systesieroior RSSI-COV must be chosen
towards the upper limii,e., the first appearance of the jump, trying to maldee that
all information is covered despite the spuriousioise contaminated poles, therefore,

25 SV were selected from rSSA and the system asdigtermined to be 20.

The identified modal frequencies are plottedrigure 7-30 a)for RSSI-COV and
b) for rISSA-SSI-COV. The frequency poles were plotedry 0.25 seconds. Although
the spurious modes are scattered, the evolutidheofnodal frequencies is clear. It is

evident the advantage of rSSA-SSI-COV over RSSI-C8INce the second algorithm
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could not track the™ modal frequency with the same system order and with much

higher number of block rows.

To further clarify the frequency tracking resultsesides that the poles with
negative and more than 50% of damping ratio weseadded, the stable system poles
can be discriminated from the spurious poles uiegsame technique used to construct
the offline stability diagram. The procedure istimpare poles between two successive
time instants. A pole will be marked as frequen@apke if the percentage of difference
between two time instants is less than the speciiiterion. Furthermore, from the
frequency stable poles, the same procedure canbiepplied to damping ratios and
mode shapes with their respective criterions. Time-frequency plot after applying

stability criterion is shown ifrigure 7-31

Interesting phenomena can be observed in the tietg#ency plot shown in
Figure 7-31 The £' modal frequencies of the bridge under ambientation is almost
2 Hz higher than that obtained under the water féowitation, the same with thé"2
modal frequency. This indicates the dynamic charatic of the bridge under ambient
excitation is different than when it is excited dy applied loading. After 485 seconds,
both the ' and the 2 modal frequency decrease rapidly up to 2000 sexdretause at
this first time period, the surface sand was tdkgthe stream rapidly. Hereatfter, up to
approximately 7200 seconds corresponds to a pefitetationary scouring”, the modal
frequencies decrease very slowly and by a almasitaat rate. The fact can be verified
by the scour depth taken by the video camera ledtaiside the pier, shown Figure
7-32 The initial depth corresponds to the depth atcWtihe pier is buried. The scour
depth increases very fast in pier 3, however, beldsvcm is beyond the reach of the

camera. But from the scour profile of pier 2, iteident that after 1000 seconds, the
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scour rate is almost constant.

After 7200 seconds, there is a sudden drop botthén£' as the > modal
frequency. The ® mode drops from 17 Hz to 12 Hz, and tfi&frbm 7.8 Hz to 7.2 Hz
approximately. Up to about 8000 seconds, anotleguincy drop occurs, and now the
2" mode decreases from 12 Hz to 10 Hz, and thentde from 7.2 Hz to 6.3 Hz
approximately. Observing the “zoom in” shownkigure 7-31 b) a very long period
wave appears just after 8000 seconds; from expatahebservation, this long period
signal is induced by the bridge settlement, butoteefthis event, there is nothing
abnormal in the signal except that this has overgte measure range after about 7200
seconds. The sudden frequency drop is an indicdgt@amminent pier settlement 800

seconds before its occurrence.

The reason of this evident modal frequency droesfly in the 2 mode can be
explained as the consequence of the change inytiedc characteristics of the bridge.
There are possible two reasons about this sudeégudncy drop: (1) once the scour
reaches at the bottom of the pier which is simplypperted because the sand
confinements were all removed, the loss of théngtds provided by the sand along the
bottom area makes the pier very unstable and, saassharp drop of the"2modal
frequency which is more sensible. (2) The anothessibility is the mode coupling
effect in a three dimensional structure. Similathat observed in section 7.1, due to the
coupling modes, different frequencies is posside énly one mode if a three
dimensional structure is simplified to a plane ctinee, i.e., they will have a similar
mode shape in the considered plane but with diftefeequencies. In the scouring
experiment, only the vibration parallel to the atreflow is measured, thus, when the

scour reaches bottom area of the pier, the couplindes may take place due to the
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change in dynamic behavior instead of the origmatles,.

However, since the signal oversteps the measugeranore tests is required to
check above statement and make sure that the fregukrop before the settlement is
not occasional or due to other unknown factors.édwer, to check that the occurrence
of the long period signal corresponding to thet fasttlement, a KEYENCE LK-2000
Laser displacement sensor is installed above piertBe test conducted in January 24,

2011.

7.3.1.2 Test conducted in 2011/01/24 with full measurements

In this test there are only 9 sensors from No. N&o 9 are available. The order
determination for rSSA-SSI-COV model is shown kigure 7-33 , a) shows the
singular spectrum in rSSA step, and the remainiggrés are made from the SVD in
RSSI-COV step, using the 5000 points containedh& moving window. From the
examples shown idrigure 7-33 the choice of 20 SV leads to a very clear jump,
however, considering that the system changes awver, the rSSA subspace order is
chosen towards the upper limit and defined as.85,case c) irFigure 7-33 and the
system order is selected at the jump, which isT3% model parameter is shown in

Table 7-7.

The evolution of the modal frequencies is showRigure 7-34 The displacement
sensor is also installed to measure the settleiepter 3. The frequency evolution
pattern is similar to what has been discussedwtter arrivals and impacts the piers at
about 205 seconds, after that the modal frequemnigerease rapidly up to about 1000
seconds, and hereafter is the stationary scoue stag the frequency decrease rate

become almost constant. The first sudden frequeinop is detected at about 6000
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seconds, the drop is not as large as that occutheirprevious test: the"®2mode
decreases from about 13.3 Hz to 12.8 Hz, the diali'imodal frequency is not clear
due to the scatter in the data. This sudden dreproed 2000 seconds before thé 1
settlement which happened at 8030 seconds apprtelypand can be served as the
feature indicating imminent bridge settlement. Otiee settlement occurs, the decrease
in 2" modal frequency is significant: from 12.8 Hz tmab11.7 Hz, and many coupled
modes appear. After the first settlement the datoime quite sparse especially for the
1*' mode, but arriving to 11000 seconds, there isddeu increase in modal frequencies.
From experimental observation, steel decks whiehaaiginally simply supported on
the top of pier and without contact each other,gjetk after several settlements, this

explains the sudden increase in modal frequencies.

On the other hand, it is proved Fgure 7-34 b) that the settlement is always

accomplished by the appearance of a long periagthkig the velocity measurement.

7.3.1.3 Test conducted in 2011/01/26 with full measurements

Although with the Laser displacement sensor insthlh the test conducted in
2011/01/24, the relationship between settlementlang frequency signal is verified,
there are only data of 9 sensors available. Thexefanother test was carried out in
2011/01/26, the model parameter is showiiable 7-8 the singular spectrums used to
determined the system order is shownHigure 7-35 Unlike previous cases, the
subspace order for rSSA and the system order foitdbt is reduced to the best choice.

Figure 7-36 Shows the time-frequency plot of the modal freaquien

The same pattern one can foundFigure 7-36 the water arrivals at about 30

seconds, the decrease in the natural frequendyeobridge in the first 500 seconds is
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very fast because the surface sands were whiskeg aw the stream and the scour
depth increments rapidly; after 500 seconds, tloeirscate was slowed down to the
“stationary” stage during the subsequent 5000 sts;aimtil a sharp drop of'2modal
frequency occurs at approximately 5500 secondsclwhwarns of an imminent
settlement. This latter event occurs in pier 3demtly a long period signal appears at
the first time around 5820 seconds in tHE €ensor measurement indicating pier
settlement, which is shown iRigure 7-36 b) After several bridge settlements, and
again, decks originally simply supported on the edgier without contact each other
get stuck, this explains why a sudden increaseddainfrequencies after approximately

8000 seconds.

7.3.1.4 Test conducted in 2011/03/29 with full measurements

The velocity sensors are very sensitive and highlityuexpensive sensors made
specially to measure ambient vibrations, otherwageglerometers are commonly used
sensors for vibration-based system identificatiatih wmore affordable prices. Therefore,
another test was conducted in 2011/03/29 applyingth bRSSI-COV and
rSSA-SSI-COV algorithm to the acceleration measar@s1 Data measured by the
twelve sensors are used simultaneously. The aatielerdata are filtered in field by an
analogous band-pass filter having its plateau zonthe Frequency Response Function

between 0.02 Hz and 50 Hz.

It is difficult to select a suitable system ordaedtly by RSSI-COV, hence, firstly
the singular spectrums from the combined appro&8ArSSI-COV are considered as
that shown inFigure 7-37. The same as what has been done in previous thsts,
subspace order in rSSA which cause the appeardrecgimp in the singular spectrum

of RSSI-CQV step leads to the better choice forstystem order-igure 7-37 a)shows
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the singular spectrum constructed with rSSA; fréigure 7-37 b) to f) which
corresponds to singular spectrum constructed inl&EY/, the jump begins to appear
with 45 SV chosen from rSSA, which is shownhkigure 7-37 ¢), and the jump is
located at 44 SV. Hereafter, the jump gets morarakéhile less SV is chosen. To be
conservative and trying to reveal all identifiabtedes, the order shown @) is chosen,

the model parameters for rISSA-SSI-COV is showhahle 7-9

Figure 7-38 shows a comparison between the outcome of RSSI-GOY
rSSA-SSI-COV after applying the same stability enda used before. Evidently the
addition of rSSA before RSSI-COV can enhance taeking capability and stability in
addition to the function to determine the systerdeor The pattern shown in the
time-frequency plot is quite the same as that shbefore: the water arrivals at about
860 seconds, from now on the modal frequencieslgldecrease until the occurrence

of the first settlement at 5057 seconds.

A close picture was taken to the traces betweer® 45@ 5500 seconds and it is
shown inFigure 7-39 The 4" mode appears at about 4650 seconds and decreases
rapidly until about 4950 seconds, moment at whigh®' and 2° mode frequency trace
(the poles with frequency and damping ratio stgbdee almost completely lost. This
indicates that there is a very unstable dynamiabielr before the*Lsettlement which
occurs at 5057 seconds, this together with the axppee and fast decrement of tie 4
mode constitutes a good indicator of imminent beidgettlement. During the time
period with successive settlements between 5057abodt 6000 seconds, the traced
modal frequencies are also very dispersed andetthection in &' modal frequency is
evident. However, after 6000 seconds the modaluéeges slowly increase because

the decks are getting stuck each other.
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Furthermore, this close look to the frequency tsasigown inFigure 7-39 allows
to see that, actually, there are about two frequérazes for % mode, three traces for
2" mode and about six traces fdf hode very close one to another. Besides the factor
of three dimensional mode coupling effect, thesmseally-spaced frequencies indicates

the time varying characteristic of the bridge nakfirequencies.

7.3.2 Damage location indicator: mode shape slope ratio

Mode shapes have been widely used to figure outléineage location throughout
its curvature in many researches. The node whitfersurom stiffness loss has usually
larger curvature than the other nodes. The modpesisaa relative quantity which can
be scaled arbitrary, however, the mode shape auevé not independent of the scaling
criteria and consequently, the identification ohdaye location depends on how one
scale the mode shape. Taking into account this, filke concept of mode shape
curvature can be modified to a quantity which ideipendent of scaling, and here the

definition of mode shape slope ratio is introduced.

Curvature is the rate of change of the mode shhggee,sto cancel out arbitrary
scaling, ratio between consecutive slopes can bd instead of the rate of change of
the mode shape slope. Moreover, sign of the cumandicates the concavity. For
mode shapes identified from field data, sign chang&oduced in the concavity due to
imperfections in the shape could make difficult ttentification of damage location.
To avoid all these inconveniences, the mode shiape satio can be defined as follows:

Ifm;/mis1 > 0 and m; > mey —>  sloperatio(i) = m;/ my-1

Ifm;/miry > 0 and m; < myry, —— sloperatio(i)= m;= /m; (7.1)
Ifm;/mi <0 —> sloperatio(i) = {slope ratio(7) + slope ratio(i+1)}/2
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wherem is the slope of thé" discrete segment of the spline interpolated md@es.

By defining the slope ratio this way, the sign peol can be avoided, and the resultant
slope ratio will only reflect how large is the séophange in a given point. At the peak
point of the mode shape where the slope sign clsatige & criterion applies and it is
just taking an average of the adjacent slope ratiemally, to avoid the a
disproportionate increment in slope ratio compatioghe others, when slope in the
divisor is near zero, a base 10 logarithm can h@iexp to the slope ratio. For the
implementation, the computed mode shapes can betketw by curve fitting and
interpolated with a spline function, which is saetplat 52 points to obtain 50 slope

ratios along the bridge.

7.3.2.1 Mode shape slope ratio for test conducted in 20111®

Figure 7-40 shows examples for the identified' inodes shape from the test in
2011/01/19 for two different time instan@gure 7-41 shows the same but for th&'2

mode shape.

From what is shown irFigure 7-40 and Figure 7-41, there are two identified
mode shapes for botli'mode and % mode. The ¥ modal frequencies are separated
by about 2.5 Hz one to another, and by 3 to 4 Hztfe 2 modal frequencies. Hence,
although apparently there are three trace of freges revealing in the time-frequency
plot shown inFigure 7-31, where the second trace is not very clear, howédath the
2" and 3 trace corresponds to th& 2node. From the experience learned from section
7.1, a possible explanation of this phenomenohdsitode coupling, because the bridge

is simplified to a plane model for which only han#al vibration is measured.
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ComparingFigure 7-40a) andb) to Figure 7-40c); also comparindrigure 7-41a)
andb) to Figure 7-41 c)andd), there is no significant difference by visual atva¢ion,
and the result with or without smoothing is simil@he ' mode shape slope ratio is
shown inFigure 7-42 a)for the smoothed shape abyifor the shape only interpolated

by a spline function.

The automatic discrimination of the mode shapdsed on the fact that, for this
experimental bridge, the complex mode shape pdlewrs in Figure 7-40 andFigure
7-41 are almost a straight line eithetf dr the 29 mode,i.e., the amplitude of the poles
can be treated as normal modes by only adding & @lminus sign according to its
phase. The®imode has non zero crossings and fHexde has only one zero crossing.
The correlation coefficierR between the real part and imaginary part is amatbeful
criteria to filter out spurious poles. The definRccriterion for different tests is shown

in Table 7-1Q

From Figure 7-42, for botha) and b), the zone with higher slope ratio become
wider after 1000 seconds, indicating that the sydtas been changed. Initially the peak
is located at the center of the bridge which iseexgd for a ¥ mode shape; while the
scouring depth increments, the peak moves towaddc8( specially between 7200 and
8000 seconds as that shownFigure 7-42 a) moments corresponding to imminent

pier settlement and, precisely the pier 3 is lataite325 cm.

The 2 mode slope ratio is shown Rigure 7-43a) for the smoothed shape abyl
for the shape only interpolated by a spline functibwo peaks exist in thé'®mode
shape as expected. Although tH8 @eak is located at 325 cm (pier 3 location), but i
does not change at all along the time history, retlse, it is the first peak located at 200
cm which has a drastic movement toward 100 cm @iitai200 seconds, time instant at
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which the 2% modal frequency suddenly drops. Therefore, tifen®bde shape is not
appropriate to identify the damage location in bnieige, but the drastic change of the

1% peak position is also an indicator of imminent giettlement.

7.3.2.2 Mode shape slope ratio for test conducted in 20112&

Figure 7-44 shows examples ofland 29 identified mode shape from different
time instants. In this case the difference is evidelowever, the measurement of sensor
No. 12 seems to have some problem because it Ingstmtly a phase difference with
all the remaining sensors. This inconvenience & hason of a peak slope ratio
appearing at about 400 cm to 430 cm, showRigure 7-45 b)andFigure 7-46 b)

where the mode shape is not smoothed.

From the smoothed mode shape showiFigure 7-45 a) it is clear that the®1
mode slope ratio is a good indicator of the damagation. In the undamaged state, the
peak is low and located at the center as it is mbfor 1 mode shape; as scour occurs,
the peak amplitude increases and moves rapidlgagadgion between 300 and 350 cm
of the bridge from left to right, where is precis¢he pier three location. After 7000
seconds, again, the peak moves to the region bet2@@ and 250 cm, where is the
location of the pier two. This is because the dewksthe pier three got stuck and
stiffness increased, as a consequence of thetfeceak of the slope ratio moves to

pier 2 at which the scour continues.

In the other side, observirf§jgure 7-46 a) there are two peaks appearing in the
slope ratio for the  mode which are reasonable considering nature ePthmode
shape. Although a peak falls in the same regiowdxt 300 and 350 cm, there is no

criterion to distinguish where the damage is loddtem the two peaks, besides that the
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first peak (on the top of the figure) seems to barensensible to the scour state.
However, the same as that occurred for tfen®dal frequency, the"®mode shape
ratio can serve for the early warning purpose simusition of the first peak changes

suddenly just before the'bettlement occurs.

7.3.2.3 Mode shape slope ratio for test conducted in 20BI129

The mode shape slope ratio results for the tesluiad in 2011/03/29 are similar
to that obtained in the two previous cases. Altliotigee modes were identified, only
the ' mode shape slope ratio serves for the identificatif damage locatiorFigure
7-47 shows the outcome for thé' inode, the %' mode and the"3mode are shown in

Figure 7-48andFigure 7-49respectively.

7.3.3Novelty Index

The Novelty Index analysis can be also appliednht gcouring experiment. The
test conducted in 2011/01/26 is selected for tmpgre. The system matriA ) and
noise covariance,R) can be computed following the procedure describeskction
2.4. The model parameters are: data window of Gffifts, 110 block rows and the
system matrix order is defined as 20. Based ondéneeloped system matrix, the
Kalman filter estimation was used to predict thgpmnses for the vibration time history

of all sensors.

Unlike the case of RCF6 mentioned in section 7r2afbich there are available 8
white noise test and the statistics was made feryewhite noise data sequence; for the
bridge scouring experiment, a moving window of 2@aints (10 seconds) is adopted
to compute the error norm statistics and to perftrenoutlier analysis, and it moves by

every 2000 points, the same as the window length.
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Figure 7-50 shows the results of outlier analysis (both Eudidenorm and
Mahalanobis norm). The parameters set as 2.5 which corresponds to an interval of
99% confidence for a real normal distribution. Heee 90 seconds after the scouring
began, both Euclidean norm and Mahalanobis norrmemuthave reached to almost
100% and 80% respectively. Probably the very faahge in boundary condition of the
bridge in the first minutes has introduced largedpotion errors. Although outlier
analysis cannot be applied, evolution of the diaislike the error norm mean and
standard deviation can be checkétyure 7-51 shows the result for the evolution of
error mean andrigure 7-52 shows that for the error standard deviation, fothb

Euclidean norm and Mahalanobis norm.

FromFigure 7-51 b)andFigure 7-52 b) it is found that Mahalanobis norm is also
a good indicator of inminent bridge settlement lisegboth the error mean and standard
deviation were suddenly raised at about 5500 sexohftier the occurrence of thé'1
settlement at 5820 seconds approximately, botheth&r standard deviation as error
mean went down again to the original level. Afteoat 7500 seconds both quantities
was suddenly reduced to the level at the beginafriye scouring test, this is because
after several settlements the decks are gettirgk,stuith the increase of the horizontal

stiffness the prediction error was reduced.

The novelty analysis also can be made for evergmeseparately to detect damage
location. The outlier analysis does not apply Hegeause it reaches to the top at the
beginning as that occurs Figure 7-50 The error mean and standard deviation per
sensor are shown iRigure 7-53 and Figure 7-54 respectively. It is clear from these
figures that both the error RMS mean and standexdaton of sensors 9 and 10 are

much larger than the other sensors, followed bg@an/ and 8. Since sensors 9 and 10
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are the two sensors next to the pier 3, which ssiffem settlement; and sensor 7 and 8
are installed on the deck supported by pier 2 graddliite deep the scour has also been
reached at pier 2, hence, one can conclude thatotedty analysis done for each sensor

separately is in fact an effective way to locatmdge location.
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Chapter 8
Conclusions

8.1 Research conclusions

The changes of features in a structural system chay to the change of
environmental loading pattern, the nonlinear in@agsponse of structure or structural
damage when subjected to severe external loadihg. detection of the change of
features or damage in large structural system, ssltbuildings and bridges, can
improve safety and reduce maintenance costs. Tdrerefeature extract and damage

detection from vibration structures are the goalSieM.

Development of off-line identification proceduredscussed in the first part this
thesis, with the aim of finding accurate and truedal parameters, a stabilization
diagram is implemented by plotting the identifiealgs against the data matrix order,
where the system order is fixed. In the sensitigitalysis, both the covariance driven as
the data driven Stochastic Subspace System Id=iidn techniques are proved to be
robust and stable even the model assumptions viaedad: (1) In the case of nonlinear
signals, an equivalent linear model can be reali@dwWhen there are extra noise added
to the signal even when the noise is correlateth wittput, modal frequencies along
with the mode shapes can be accurately identifiesh¢éreasing the order of projection
or covariance matrix. (3) Signals of a time-varysygtem will be decomposed in more
and more “equivalent linear frequencies” as onesggein the stabilization diagram and
the poles will not stabilize with increase in thenwber of block rows. (4) The estimates
of damping ratio are very sensitive to noise amdidentification results are not reliable.
(5) The closely-spaced frequencies blended witsenoan be accurately identified with

the help of the new developed SSA-SSI-COV idertfan algorithm, which is applied
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to the identification of Canton Tower, a benchmarkblem for SHM of high-rise
slender structures. Thus, the capacity of SSI-batggatithm is demonstrated. Through
the off-line analysis on the field response dataGainton Tower, the following

conclusions are drawn:

1. The difficulty in using SSI-DATA to identify tlse frequencies may be explained
based on the conclusions obtained from previousilatin studies which indicate that
closely-spaced frequencies are difficult to be idieal when the measurements are
noisy and generally only one equivalent frequeray be identified. Although finally
SSI-COV could distinguish these close frequencgant Toeplitz matrix size was

required which is actually excessively time and ragndemanding.

2. The use of SSA as a pre-processing tool for 3V enhances greatly the early
emergence of a stable diagram for the identifiabteles and allows finding the best
choice of system order. In the case of using 95r8M SSA, a clear jump appears in
the singular spectrum obtained in SSI-COV whichdates the best system order, and
most of all modes are stabilizes starting from atibe 25’ row or even earlier. On the
contrary, by using SSI-COV alone the stability tstaapproximately after 100 to 125

rows.

3. SSA as preprocessing technique cannot be usednjunction with SSI-DATA,

worse result in stability than using SSI-DATA alomeas obtained. The signal
regeneration by SSA has negative effects in thieogdnal projection carried out in
SSI-DATA, which is, in fact, the best least squéiteof the future measurements in

terms of the past measurements.

4. The advantage of SSA over the low-pass filtgrasred in this study. The use of SSA

leads to an earlier emergence of a stable diagramaccurate answers can be realized
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with lower matrix order (number of block rows).

5. Preprocessing raw data with decimation is alweessary in system identification,
which is able to reduce the computation effort dedds to an accurate and fast

convergence of the identified modal parameters.

In the second part of this research, the on-linstesy parameter estimation
techniqgue from output-only measurements is develofwough Covariance driven
Recursive Stochastic Subspace identification (RSSV¥) moving window approach.
To make possible the SVD-updating task, Extendetrumental Variable version of
Projection Approximation Subspace Tracking algonittElV-PAST) was adapted for
the purpose. Furthermore, the recursive Singulactpm Analysis (rSSA) algorithm is
proposed through the introduction of PAST algorithend then, the recursive

rSSA-SSI-COV method is complete.

Both RSSI-COV and rSSA-SSI-COV are validated thtomgmerical simulation
study of time-varying dynamic system. Several casidns were obtained from the
simulation study: (1) The tracking stability incses with the window length of
RSSI-COV, but this latter does not increase thepmgdation time. This is an advantage
of RSSI-COV over RSSI-DATA. However, larger is twendow length, more the time
delay to detect system change. (2) From the expegiéearned in numerical study, the
window length for rSSA should be much smaller tithat used for RSSI-COV,
recommended value is about half of the window lerdtRSSI-COV. (3) The required
system order for time-varying systems is highemttize theoretical value, because
signals of a time-varying system demand more oxdhwoal vectors to span the system
information. The higher the number of block rowsbSpace dimension).e. better
decomposition is achieved, however, the largersifstem order demand. This latter is
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even more evident when the noise is engaged inn(#)e presence of a noise which
violated the SSI assumption, huge system ordeegsired for RSSI-COV to track
recursively the modal parameters. The preprocessitigrSSA enhanced the tracking

stability and allows tracking the time-varying mbaofdormation with less system order.

Through the application of recursive analysis oresa laboratory tests, the online
tracking capability and robustness of RSSI-COV &8A-SSI-COV are demonstrated.
Moreover, various conclusions can be obtained fith experimental application

regarding to SHM and damage detection:

1. The model reduction of a three dimensional stinecto,e.g, a plane structure, it is
possible to find more than one frequency for alsimgode (with a very similar mode
shape) due to the mode coupling effect in threeedsions although the structure is
symmetric. System change is not the only reasonther variation in the modal
frequency, it is also possible the frequency gsigftdue to mode coupling when the
external loading pattern changes or caused by dhee ssystem change. The second
reason is observed in the experiment of 3-sto® $tame with instantaneous stiffness

reduction.

2. To avoid confusion between system change andahwodipling, higher system order
is required. Moreover, the presence of non-lingaiid time-varying frequencies such
as the bridge under constant scour demands atlairmrmal vectori.e., system order
to span the system information. The procedure destrin SSA-SSI-COV can be
effectively applied to rSSA-SSI-COV during the undmed state and an initial
estimate of the system order is offered. The systemher must be chosen toward the
upper limit keeping a margin for when the systens lhanged and when the
non-linearity and time-varying pattern become gjron
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3. The goal of early warning to imminent bridgergettiement is achieved. A sudden
drop in higher modal frequencies is always pres@ntll bridge scour tests. The
decrement in frequency is even more significanerathe occurrence of the first
settlement, and the frequency poles are very spatrgbis stage. The accuracy and
robustness offered by rSSA-SSI-COV seems to bek#yeto obtain evidences of
imminent bridge settlement. The accuracy and stalsite important issues because the

changes in modal frequencies are usually small gwestructure has been damaged.

4. The peak value of the first mode shape slope i®a good indicator of the damage
location. Although the higher modes are difficdtlbcate damage because more than
one peak exists, together with the higher modajueacies these mode shape slope
ratios present sudden changes in peak position Wigebridge is subjected to imminent
settlement. All this evidences indicate that theaiyic behavior of bridge is completely
different when the sand confinement is completeinmaoved due to scouring and the

settlement is about to occur.

5. Besides the change in modal parameters, theltpaneex through Kalman filter
prediction error also provides a useful statistioadlex of damage, the prediction error
by every sensor can also indicate the damage twgathaking possible the damage

detection and early warning.

8.2 Recommendations for future work

The long-term goal of the research in SHM is theliaption of the system
identification and damage detection methods toréad scale structures, which in fact
are much more complex, and in addition to the emwitental factors, both the

automatization of the identification process fontouous monitoring, as seeking for
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reliable criterias and indexes to translate theéesysdentification outcome into a safety
or warning message are challenges to be overcoherefbre, further researches and

experiences with large scale structures are needed.

The computation speed is another difficult to beroeme in the online application.
In the bridge scouring experiment, all 12 sensoesewequired in the application of
rSSA-SSI-COV to realize accurately the modal fregues and mode shapes, however,
using a modern computer and in terms of the sela88A-SSI-COV parameters, the
computation consumed about 10 times more than déggired timing for online
application. Although with reduced number of seasand reducing the number of
block rows (less accuracy) the timing requiremeart be satisfied, the tracking result
for modal frequencies is more scattered and isasotlear as that obtained with full
measurements; furthermore, it is impossible toveca good mode shape if only a few
points are available, and thus, damage locationatame identified. A feasible solution
to increase the computation speed is through theloigement of parallel computation
algorithms which can exploit the full computatiootg@ntial of the microcontroller of

each sensing unit.

Although the system damage and location can bdifeehcorrectly in this study,
there is still a lack in this research about dangmtification and the estimation of the
remaining service life. Since SSl-based algorithares able to accurately identify the
modal parameters, a possible approach is througfirthe element model updating of
the mass, dampin and stiffness matrix, therefoeeddimage can be quantified and the

remaining service life can be assessed.
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Appendix A: Frequency Domain Decomposition (FDD)

The Frequency Domain Decomposition can be congidassan SVD-enhanced
power sepctrum, and it applies when it is the aafsenultiple measurements. The
procedure starts from estimating the power specensity matrix, which is formed
applying Discrete Fourier Transform (DFT) to thev@@ance matrix shown in (2.22),
for time lagk ranging theoretically from minus infinity to infiy:

s,(e)= SR e (A1)

k=—c0
where S, O00™ is the spectrum matrix. Having in mind that orilyite data lengtiN

is available, only estimates of the spectrum canchlkeulated. There is a more
straight-forvard way to compute the spectrum edwchacalled modified Welch’'s
periodogram [54], which begins by calculating th&TDof the weighted measured
signal:
Y (e"“m ) = nz_l: W, Y, e (A.2)
k=0

wherew is a window function to avoid leakageis a segment of the total data length
N. If nis a power of 2, DFT can be efficiently computesing FFT at the discrete

frequencies:
w="=——, p =0,12,...,n1

The spectrum estimate is a product between thanglatdDFT and its Hermitian
transpose denoted as the supersdtjpscaled by the squared norm of the window

function, but averaging over all available sam@eBFTs,i.e., periodogram:
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éy(ei”"m)zéi e e o) (A3)

where p is the number of available samples of DFT fromtibtal data of lengtiN.
Overlap is permitted in the sampling and, if higfrequency resolution is required, the

sampled segment can be zero-padded.

Finally, SVD is applied to the spectrum matrix (atis a complex valued matrix)

for each discrete frequency,. The set of major singular values can be plottgairest

frequency and a singular spectrum in frequency domvdl be obtained. The advantage
of using FDD over the traditional power spectrumthat, information of multiple
sensors can be gathered and combined in only duerog, especially if it is the case of
closely-spaced frequencies, its effects will bdeatéd in the singular values,g, if
there are two close frequencies, weight of the mgsingular value will become closer

to the first one.

129



Appendix B: Prediction Error Method through Stochastic Subspace
Identification (PEM/SSI)

The objective of this appendix section is to shbes similarity that exists between
the system realization algorithm based on autossgre (AR) model, solved through
prediction error method/least square (PEM/LS), &®1-DATA. This enables one to

modify the traditional least square PEM to a subs@pproach.

Prediction error methods PEMs are very common andelw used system
identification methods. The main idea is to idgnafsystem of linear equations in the
sense that: based on past inputs and outputs reditipany output. For the special case
of multivariate output-only measurements, these etedre known as autoregressive

with moving average vector ARMAVv [59].

In the output only system identification, the ttamhal PEM is carried out using a

two-stage least squares approach. The autoregeeSBivynodel can be written as:
Ve = =AY ~ ALY T A (B.1)

where the matricess, 00" are the multivariate AR matrix coefficientg; is the

measurement vector.

The first step is the fitting of the autoregressM® model to the measurements

using least square:

T T T T T T T T oT

Yin Yi Yo 0 V| A &in €in Yin Yin
T T T T T T T T oT

Yi.+2 _ yi.+1 y| " ¥2 - A 2 |4 gi.+2 N gi.+2 _ yi.+2 _ yi.+2 (B.2)
T T T T T T T T oT

Yi+j Yisja Yz 0 Y LA &ivj i Yi+j Yi+j

similar to the number of block rows in S$lis the order of the AR modgl,is the
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available data length for least square.

The error sequence obtained from least squaredittan be used as pseudo-inputs
of the system and therefore, a pseudo-ARX model (@drlel with exogenous input)

can be built and again, fitted with least square:

A

Y =AY A Yo =AY TG TG, .+ Cly

.
~A]
T
A,
T T T T T T T :
Yain Yai Yoa o Yia| & 1 7 Eibiewnt (B.3)
T T T T T T T _AT .
y2j+2 — y2.i+1 ¥2i yi.+2 82f+1 8.2i 82i—.ic+2 A: +error
: : : Cl
T T T T|.T T T T
Yoij Yarja Yarj-2 0 Yiuj|8asja Earj2 7 €anesj | C,
.
L CiC i

whereic is the order selected for the pseudo-inputs apdi0™ are the pseudo-input
matrix coefficients. The AR model coefficient ma&sAy are, therefore, arranged and
associated with the state-space model as thatrnie dothe conventional state-space
realization algorithm [61]. This two step algorithim also knwon as the AR-ARX
method. However, our target is to compare the PEVHlgorithm with the orthogonal

projection used in SSI-DATA, to later, be able pply the SSI procedure to PEM.

Actually, the equation (B.2) can be rewritten asiraple least square problem in

the notation of SSI:
Y{u= Y;m 0, +error (B.4)

where Y/ ., is the transpose of thé' fow of the future output measurement shown in

(2.26) and Yg/l,i is the transpose if the past output measuremesitsriow 1 to row.
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a, is the matrix containing the AR model coefficieratnicesAy.

The well-known least square solution far, and, YT .., the best estimate of

f /11

YfT/l,l is:
T 1 T -1

L ((Y;/Li) ng) (ng) YfT/1,1 = (Yp /1,iY;/Li) Yp/l,inT/n (B.5a)

~ -1
YfT/Ll = Y;/Li (Yp /LiY;/Li) Y, /J,inT/l,l (B.5b)
Y _ T T ¥!
Yim =Yy /CLlYpll,i (Yp/ltill,i) Yp/l,i (B.5¢c)

where (B.5c) is simply the transpose of (B.5b), and can realize that (B.5c) is almost
the same expression that (2.34), the only diffezdschat (2.34) gets at once the best
estimate for whole future measurem&hi,; while only one block row is obtained by

(B.5c).

Therefore, the projection matrix obtained in (2.88n be interpreted as, in fact,
the best estimate of the future output in termthefpast outputs in a least square sence,
l.e,, orthogonal projection of the future data in thestpdata. Therefore, PEM and

SSI-DATA can be combined and stated at the follgwin

First, obtain the projection matrikge., the best estimates of the future data From
(2.37) and (2.38). Then, the error matrix can b&iokd by computing the difference

between the estimate data matrix and the origiat thatrix:

Yier Yz 0 Yigj Yier Yiee 0 Vi i1 Ein2 T &y
_ Yis2 Yiegs yi+j+1 9i+2 9i+3 9i+j+1 2 €z T &y
e=Y, -k =", : : o : : = : : (86)
Yo Yo v Yairja Yo Yo 0 Yairja &y &g - &gy

After this point, the same elements of the errortrixacan be grouped and
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averaged along its antidiagonal as that is don&&h (section 2.7) and considered as
pseudo-inputs. In a similar way than the projectmnSI using input-output data [47],
and using the LQ decomposition formulated befdre,Hankel data matrix can be now

re-arranged by inserting the corresponding pseodotimatrix:

Yier Y2 yi+j'
Yis2 Yieg yi+j'+1

Yo Yoisr 0 Yairja

Eavicr1 €aivicz T Eaivicy v
p
E.. E.. e &
2i-ic+2 2i-ic+3 2i-ic+j' +1
Hr = ! ! i J = Ep (B.?)

I
Yi

& Eais1 oo Goiyja

Your Yoz 0 Yaiup

Yoz Yorz y2i+j'+1

Y3 Va1 y3'+'j'—l i
whereic is the order selected for the pseudo-inputs, araghe first data points were
used in the least square fitting, for this secaiagyes the data begins at poift, | is

used for the row length insteadjptince length of this latter is no longer the same

A new projection matrix can be obtained by perforgnia similar LQ

decomposition to (B.5):

li Ixic li |
;i L, O 0 i’ o
= xic [, 1y, ofor|~t@ (B.8)
l Ly L% Lp\QY
Y! A m
oo )0t 1% oo ”

Thereafter, the SVD can be applied @=(L}, L},) to determine the system
order, and to separate the system subspace (norsiggular values) from the noise
subspace (vanishing singular values), finally thstem matrices A,C) can be

determined as presented before in the section 2.3.
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In fact, the LQ decomposition of the Hankel mashown in (B.7) is the transpose

version of the least square problem shown in (B.3):

[_ AT _AT AT
A11 A12 Ali
—AT _AT ... —=AT
Au—Ay Az
T T T T T T T T T : : :
Yau  Yaze 0 Vi Yai Yaa 0 Yia| €2 €34 " €sien : : :
T T T T T T T T T AT _AT .. AT
Yarz  Yawa 0 Yaa Yain Yai 0 Yiez| €an & o Eaicic An —A, A; +error B.10
: : : : : : : : : CT CT CT ( " )
11 L2 1i
T T T T T To|LT T T
Yarp Yasjun 0 Yaspa Yarja Yavjz 7 Yiepl€a+m1 favie 7 Eanicsy | C12-1C12-2 C;
T AT T
L Cic1Cic2 Cii

where the block column vector containing the systeformation in (B.2) @, now

become a matrix of block columns. However, this latter mentioned ncasi are not

our interest, what is desired is the best estiroathe future dataY; in terms of the

past dataY, and pseudo-inpuk,, i.e, y;/gp] orthogonal projection matrix of
p

Y inthe row space spanned bg, and E,,.

So far, the comparison between SSI-DATA and PEM/S8Stomplete, and in
simple words, PEM/SSI is actually a 2-step-pro@ttsSI-DATA algorithm, since the
orthogonal projection is done twice. The perforneant this algorithm is tested and

discussed in Chapter 3, where simulation studgisex out.

134



Appendix C: Novelty index through Kalman-Filter-based

prediction error

If a structure is subject to damage, the systenmmixnatwill be changed, therefore,
if the system information is stored at the undardaggate and used for prediction of the
structure response, it is expected that, as theagarns accentuated, the prediction will
deviate in a higher degree from the measured regpoBtatistics made from this
prediction error serve as useful indexes for damdgection [62]. Discrete-time
Kalman filter with unknown inputs is the instrumamed to perform this prediction

error task.

To make the Kalman Filter more adaptive, the vergsibKalman Filter shown in
chapter 3 of [60] is used, which consiste of 2estaprediction state and updating state.
Formulas to be implemented are shown below, ddtailvation of each statement can

be find in [60].

Firstly assume an initial system stafg(0/0) and prediction error covarian&$0/0)
and later, using the system matric8sQ@) and the stochastic noise covariand@sR()
computed by SSI-DATA algorithm shown in section,2lte Kalman filter algorithm

can be implemented as follows:
(1) Given the statg (k/k) andP(k/K), compute the predicted state:

x(k +1/k) = A%(k / k) (C.1)
where k+1/k) means the predicted statekafl step from steg.

(2) Compute the predicted error covariance matrix:
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P(k+1/k)= AP(k/k)AT +Q (C.2)
(3) Compute the Kalman gain matrix:
K (k+1) = P(k+1/K)CT[cP(k +1/K)CT +R]" (C.3)
(4) Compute the updated system state from the merasunty(k+1)
R(k+1/k+1) = K(k +1/k) + K (k +1) y(k +2)-Cx(k +1/K)] (C.4)
where k+1/k+1) means the updated statd-al step from measurementlatl.
(5) Compute the updated error covariance matrix:
Pk +1/k+1)=[I =K (k +2)C]P(k +1/ k)| -K (k +1)C]" +K (k +)RK T (k +1) (C.5)
(6) setk =k+1 and return to step (1).

This 2-state Kalman filter differs from the Forwdrshovation model [62], because
the Kalman Gain of this latter is constant and iblbtained by solving Riccatti equation.
However, the 2-state Kalman Gain is updated at edate by the prediction error

covariance.
The prediction error can be computed at the predistate as:
elk +1/k +1) = y(k +1) - Cx(k +1/Kk) (C.6)

sinceX (k+1/k) is determined only by the system matfx degree of change in the
system will be reflected directly in the computeddiction error. The advantage of the
use of the 2-state Kalman filter is that, the updstate will correct this deviation at

every step, which could be very large when theesystas severely changed.
Several statistical indexes can be defined basetthe@computed prediction error
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sequence. The Novelty IndeXNIj [62] is defined as the Euclidean norm of the

multivariate error vector:
NI = e (C.7)

or as the Mahalanobis norm:

NIY =g/ X %e, (C.8)

where £, =yy' /Nis the sample covariance mariX,is the number of sample points
contained in the sequence, ands the multivariate measurement sequence. In enlin
applications, a moving window with a given lengdmde used to sample a sequence
from the online prediction error and later, statstcan be calculated from the norm

sequence being considered.

Moreover, an outlier analysis can be done fromrtben sequences. The mean

@' and standard deviatio@’' can be calculated from the undamaged state:

N

o' Nii and 5':\/NLZ(N|;—§')2 (C.9)

| k=1 | k=1

where the prime sign indicates undamaged stateupper control limit can be defined

as a horizontal line:
UCL=8'+aT’ (C.10)

If the coefficienta is chosen as 3, this corresponds to an interva®®7%
confidence for a real normal distribution. The artlanalysis is then performed by
counting how many times the prediction error nofm$%6 of total samples) are passing

over the upper limit, in the given windowed sequen&dditionally, the ratio of the
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mean values and standard variationsNdf between damaged and reference states

respectively, can also be used as damage indicators

A similar strategy can be applied to each sendtividually and (C.7) become a
simple Root-Mean-Square of the error sequence. , Til@8) and (C.10) can be applied
to the sampled data of each sensor individuallynmarison between the outcome of
each sensor allows to find the damage locatiocesmexpected that the damage occurs

in the place where is larger the prediction error.
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Table 2-1 Comparison of identification results of SSI-COV
Excitation level .
Frequency Damping
and number of
1 2 3 4 5 6 1 2 3 4 5 6
rows*
True answer| --- 1.0107 | 2.2795| 3.9280| 5.4433| 7.5773| 8.2290| 0.0351 | 0.0299 | 0.0101 | 0.0088 | 0.0105 | 0.0058
velocity measurements (noise free data)
Square 50 dB, 2~10 rows 1.0131 2.2554| 3.9181| 5.4500 | 7.5837 | 8.2146 | 0.0424 | 0.0282 | 0.0106 | 0.0111 | 0.0110 | 0.0060
Toeplitz 50 dB, 2~30 rows 1.0143 2.2538 | 3.9190| 5.4515| 7.5830 | 8.2149 | 0.0467 | 0.0301 | 0.0100 | 0.0110 | 0.0111 | 0.0059
matrix 50 dB, 2~100 rows 1.0039 2.2666 | 3.9175| 5.4522| 7.5902 | 8.2216| 0.0321 | 0.0255 | 0.0105 | 0.0115 | 0.0090 | 0.0072
Rectangular 50 dB, 2~70 rows 1.0033 2.2575| 3.9184| 5.4527| 7.5823| 8.2167 | 0.0320 | 0.0260 | 0.0108 | 0.0112 | 0.0108 | 0.0061
Toeplitz 50 dB, 2~100 rows 1.012]1 2.2637 | 3.9240| 5.4565| 7.5767 | 8.2427 | 0.0406 | 0.0297 | 0.0091 | 0.0125 | 0.0081 | 0.0078
matrix 50 dB, 2~150 rows 1.0046 2.2646 | 3.9178 | 5.4526| 7.5865| 8.2198 | 0.0324 | 0.0253 | 0.0106 | 0.0115 | 0.0098 | 0.0068
Acceleration measurements (noisy data)
Square 0 dB, 5~100 rows 1.0058 2.2659 | 3.9321| 5.4659| 7.5751| 8.2349 | 0.0607 | 0.0270 | 0.0087 | 0.0066 | 0.0094 | 0.0096
Toeplitz 10 dB, 5~100 rows 1.0158 2.2657 | 3.9229 | 5.4553| 7.5808 | 8.2430 | 0.0321 | 0.0306 | 0.0093 | 0.0118 | 0.0075 | 0.0087
matrix 50 dB, 5~125 rows 1.0010 2.2686 | 3.9162 | 5.4510| 7.5896 | 8.2250 | 0.0328 | 0.0234 | 0.0105 | 0.0117 | 0.0083 | 0.0074
0 dB, 10~100 rows 0.6522 2.3028 | 3.9342 | 5.4737 | 7.5775| 8.2389| 1.0000 | 0.0744 | 0.0111 | 0.0080 | 0.0082 | 0.0086
0 dB, 20~100 rows 1.0274 2.2637 | 3.9311| 5.4768| 7.5787 | 8.2394| 0.3001 | 0.0374 | 0.0113 | 0.0080 | 0.0082 | 0.0085
0 dB, 30~100 rows 1.0019 2.2634 | 3.9298 | 5.4778| 7.5799| 8.2402 | 0.0815 | 0.0348 | 0.0112 | 0.0080 | 0.0082 | 0.0086
0 dB, 50~100 rows 1.0039 2.2657 | 3.9319| 5.4648 | 7.5746| 8.2353 | 0.0688 | 0.0276 | 0.0087 | 0.0067 | 0.0094 | 0.0096
Rectangular

10 dB, 50~150 rows| 1.0174| 2.2653 | 3.9232 | 5.4558| 7.5805| 8.2418 | 0.0417 | 0.0300 | 0.0093 | 0.0119 | 0.0075 | 0.0086

Toeplitz
50 dB, 2~300 rows --kx --Xx 3.9639 | 5.4806 | 7.5969 | 8.2275 --Xx --kx 0.1506 | 0.0484 | 0.0161| 0.0085

matrix
50 dB, 10~200 rows|  ---** | 2.2791| 3.9178| 5.4520| 7.5874 | 8.2228 --* | 0.0385| 0.0108 | 0.0117 | 0.0090 | 0.0071
50 dB, 20~150 rows| 1.0349 | 2.2646 | 3.9177 | 5.4521| 7.5861| 8.2214| 0.0267 | 0.1205 | 0.0106 | 0.0115 | 0.0095 | 0.0068
50 dB, 30~150 rows| 1.0063 | 2.2649 | 3.9177| 5.4520| 7.5864 | 8.2219 | 0.0576 | 0.0253 | 0.0106 | 0.0115 | 0.0093 | 0.0069
50 dB, 50~150 rows| 0.9975| 2.2651| 3.9172| 5.4522| 7.5876| 8.2230| 0.0407 | 0.0240 | 0.0107 | 0.0115 | 0.0090 | 0.0071

* Number of rows for square Toeplitz matrix, medms number of block rows and columns from the baigip to the

end of the stabilization diagram. But for rectamguroeplitz matrix the first value is the numberkdbck columns

which is fixed, and the second value is the maxintlimek rows reached in the stabilization diagraime Bolutions are

picked from the last row of the diagram.

** The empty spaces means not identified parameters
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Table 3-1 Comparison of the identified frequencies of tHe@F simulation example

Algorithm Frequency Error (%)
1 2 3 4 5 6 1 2 3 4 5 6
True
1.0107 | 2.2795| 3.9280 | 5.4433| 7.5773 8.2290
answer
Added ssi-cov 0.9806 | 2.2619| 3.9329| 5.4764 | 7.5804 8.2441 2.98 0.77 0.13 0.61 0.04 0.18
50% white .
’ SSI-DATA 0.9865| 2.2623 | 3.9328| 5.4763| 7.5780| 8.2419 2.40 0.76 0.12 0.61 0.01 0.16
noise
PEM/SSI 0.9898 | 2.2716| 3.9315| 5.4771| 7.5789| 8.2431 2.07 0.35 0.09 0.62 0.02 0.17
Added ssh-cov 0.9846 | 2.2581| 3.9315| 5.4778| 7.5806| 8.2393 2.59 0.94 0.09 0.63 0.04 0.13
100% white -
0 SSI-DATA 0.9795 | 2.2557 | 3.9322| 5.4770| 7.5795| 8.2445 3.09 1.04 0.11 0.62 0.03 0.19
noise
PEM/SSI 0.9878 | 2.2476| 3.9351| 5.4814| 7.5827 | 8.2491 2.26 1.40 0.18 0.70 0.07 0.24
Added ssh-cov 0.9807 | 2.2662 | 3.9342| 5.4716| 7.5752| 8.2332 2.97 0.58 0.16 0.52 0.03 0.05
200% white | SSI-DATA
0.9747 | 2.2499| 3.9314| 5.4846| 7.5693 8.2504 3.57 1.30 0.09 0.76 0.11 0.26
noise PEM/SSI
0.9841 | 2.2656 | 3.9296 | 5.4838 | 7.5830 8.2422 2.63 0.61 0.04 0.74 0.08 0.16
Table 3-2 Comparison of the identified damping ratios af hDOF simulation example
Algorithm Damping Error (%)
1 2 3 4 5 6 1 2 3 4 5 6
True
0.0351 | 0.0299 | 0.0101 | 0.0088 | 0.0105 | 0.0058
answer
Added ssh-cov 0.0643 | 0.0296 | 0.0105 | 0.0085 | 0.0074 | 0.0086 | 83.07 | 0.81 3.50 3.22 29.70 47.55
50% white SSI-DATA
0.0598 | 0.0302 | 0.0105 | 0.0077 | 0.0067 | 0.0075 | 70.21 | 1.08 4.25 12.08 36.43 29.23
noise PEM/SSI
0.0574 | 0.0272 | 0.0092 | 0.0079 | 0.0061 | 0.0074 | 63.41 | 8.89 9.20 9.83 41.77 27.19
Added ssh-cov 0.0659 | 0.0312 | 0.0090 | 0.0081 | 0.0063 | 0.0085 | 87.63 | 4.34 10.65 7.32 40.04 46.20
100% white | SSI-DATA
0.0714 | 0.0293 | 0.0097 | 0.0072 | 0.0068 | 0.0083 | 103.28 | 1.84 3.59 17.50 35.44 43.96
noise PEM/SSI
0.0520 | 0.0283 | 0.0085 | 0.0059 | 0.0069 | 0.0071 | 47.98 | 5.21 15.95 33.22 34.51 23.22
Added ssi-cov 0.0669 | 0.0338 | 0.0117 | 0.0099 | 0.0072 | 0.0068 90.48 13.31 16.15 13.29 31.85 17.16]
200% white SSI-DATA
0.0551 | 0.0249 | 0.0128 | 0.0095 | 0.0079 | 0.0073 56.89 16.75 26.97 8.48 24.78 25.29
noise PEM/SSI
0.0449 | 0.0260 | 0.0093 | 0.0078 | 0.0065 | 0.0074 27.87 12.99 7.84 10.52 37.89 27.81

Table 3-3 Different set of frequency arg values used in the modeling

Natural frequency

Duffing parametey k

0.1Hz
1Hz
10 Hz

-0.26 k =-0.10264
-80 k = -3158.2734
-7300 k = -28819244.85

*mass was assumed unitary, therefore the requiitfidess k can be derived.
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Table 3-4 Comparison of identification results for nonlinsgnals

Frequency Damping
50 rows 200 rows 50 rows 200 rows
0.1 Hz, k: -0.26k | SSI-COV 0.0960 0.0960 0.095 0.091
SSI-DATA | 0.0955 0.0964 0.071 0.080
1 Hz, k3 : -80k SSI-COV 0.9642 0.9608 0.010 0.017
SSI-DATA 0.9624 0.9598 0.018 0.014
10 Hz, k3 :| SSI-COV 9.8719 9.8812 0.010 0.009
-7300k SSI-DATA 9.9054 9.8879 0.011 0.009

* SSI-COV uses 10000 points for correlation, SSI-BATSes 10000 columns for Hankel matrix. System oisléefined as

2. Rows are increased from 2 to 200 rows.

Table 3-5 Comparing identification results of two closedfuencies with signal generated by ambient vibration

Frequency Damping ratio
Correct answer 0.3432 0.3681 0.01 0.04
Noise free
SSI-DATA 10000 columns, 5 to 100 rows, system ofder 0.3450 0.3669 0.023 0.027
SSI-COV 10000 points covariance, 5 to 100 rowstesygorder 4 0.3437 0.3668 0.025 0.023
Noisy
SSI-DATA 10000 columns, 5 to 150 rows, system ofder 0.3429 0.3682 0.017 0.035
SSI-COV 10000 points covariance, 5 to 150 rowstesygorder 4 0.3425 0.3673 0.020 0.037
SSA-SSI-COV| 16 SV, 3500 points covariance, 2 to 100 rows, sysieder 4 0.3454 0.3603 0.009 0.007
SSA-SSI-COV| 14 SV, 3500 points covariance, 2 to 100 rows, sysieder 4 0.3456 0.3606 0.006 0.007
SSA-SSI-COV| 8 SV, 3500 points covariance, 2 to 100 rows, sysieter 4 0.3466 0.3656 0.011 0.010
SSA-SSI-COV| 4 SV, 3500 points covariance, 2 to 100 rows, sysieter 4 0.3420 0.3647 -0.001 -0.005
SSA-SSI-COV| 8 SV, 3500 points covariance, 2 to 100 rows, sysister 8 0.3483 0.3640 -0.003 -0.008
SSA-SSI-COV| 14 SV, 3500 points covariance, 2 to 100 rows, sysieler 8 0.3447 0.3657 0.009 -0.005
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Table 4-1 Comparison of the identified modal parameter€afiton Tower

FEM Mode number Wind Wind 1 2 3 4 5 6 7
FEM Mode Frequency - - 0.1100| 0.1590| 0.3470| 0.3680| 0.4000 | 0.4610| 0.4850
SSI-cov 18000 points, | Frequency | 0.0404 | 0.0409 | 0.0902 | 0.1392| 0.3652| 0.4243| 0.4752| 0.5060| 0.5223
Order 90 300 rows Damping 0.2885| 1.0000| 0.0693| 0.0135| -0.0004| -0.0008| 0.0018| 0.0018 | 0.0000
SSI-DATA 8000 columns, | Frequency | 0.0110 | 0.0339 0.1377 | 0.3655| 0.4402 | 0.4774| 0.5193
Order 90 280 rows Damping 1.0000 | 0.0727 0.0080 | -0.0015| 0.0048 | -0.0002 | -0.0017
SSA-SSI-COV 15000 points | Frequency | 0.0345| 0.0465| 0.0958 | 0.1391| 0.3648| 0.4232| 0.4756| 0.5063| 0.5226
136SV, order 120 170 rows Damping 0.2368 | 0.1978| 0.0700| 0.0106| 0.0024| 0.0056 | 0.0006 | 0.0024 | -0.0008
SSA-SSI-COV 15000 points | Frequency | 0.0376 | 0.0572 0.1388| 0.3644 | 0.4238| 0.4757| 0.5063| 0.5226
95SV, order 90 140 rows Damping 0.2412 |  0.3991 0.0122| 0.0042| 0.0039| 0.0006| 0.0031| -0.0008
FEM Mode number 8 9 10 11 12 13 14 15
FEM Mode Frequency| 0.7380 0.9020| 0.9970| 1.0380| 1.1220| 1.2440| 1.5030| 1.7260
Ssl-cov 18000 points, | Frequency | 0.7982 0.9649 | 1.1507 | 1.2031| 1.2525| 1.3891| 1.6401| 1.9463
Order 90 300 rows Damping | 0.0041 0.0013| 0.0002 | 0.0058 | 0.0022| 0.0036| 0.0022| 0.0053
SSI-DATA 8000 columns, | Frequency | 0.7977 | 0.9654 | 1.1794| 1.2281 1.3848 | 1.6397 | 1.9428
Order 90 280 rows Damping 0.0009 | -0.0004 | 0.0017 | 0.0010 0.0008 | 0.0003| 0.0014
SSA-SSI-COV 15000 points | Frequency | 0.7986| 0.9652| 1.1509 | 1.1932| 1.2518| 1.3899| 1.6407 | 1.9445
136SV, order 120 170 rows Damping 0.0020 | 0.0006 | 0.0006| 0.0008| 0.0013| 0.0018 | 0.0010| 0.0026
SSA-SSI-COV 15000 points | Frequency | 0.7986| 0.9653 | 1.1512 12517 | 1.3899 | 1.6407 | 1.9446
95SV, order 90 140 rows Damping 0.0022 | 0.0008 | 0.0007 0.0015| 0.0020| 0.0012| 0.0031
Note: rows are block rows. 18000 points and 150fiftp are the data length to perform covariance.
Table 4-2 Comparison of the identified modal parameter€afiton Tower for different sampling rates
FEM Mode number Wind Wind 1 2 3 4 5 6 7
FEM Mode Frequency - - 0.1100| 0.1590| 0.3470| 0.3680| 0.4000 | 0.4610| 0.4850
SSI-cov 18000 points, | Frequency | 0.0404| 0.0409 | 0.0902| 0.1392| 0.3652| 0.4243| 0.4752| 0.5060| 0.5223
Order 90 300 rows Damping 0.2885| 1.0000| 0.0693| 0.0135| -0.0004| -0.0008| 0.0018| 0.0018 | 0.0000
Sampling rate: 25 Hz] 9721 points, Frequency 0.0397 0.0407 0.0899 0.1391 0.3659 0.4250 0.4755 0.5057 0.5222
SSI-COV Order 90 140 rows Damping 0.3034| 0.6891| 0.2008| 0.0133| -0.0020| -0.0014| 0.0026| 0.0028 | 0.0001
Sampling rate: 10 HZ 3721 points Frequency | 0.0363 | 0.0452| 0.0924| 0.1384| 0.3658| 0.4242| 0.4750| 0.5059| 0.5222
SSI-COV Order 90 140 rows Damping 0.4674| 0.1504| 0.0195| 0.0085| 0.0020| 0.0013| 0.0016| 0.0019 | 0.0002
Sampling rate: 5 Hz 1721 points Frequency | There are 6 identified 0.0929 0.1383 0.3657 0.4240 0.4746 0.5061 0.5223
SSI-COV Order 62 140 rows Damping | frequencies inthisrange|  0.0143 | 0.0057 | 0.0023| 0.0011| 0.0021| 0.0016| 0.0003
FEM Mode number 8 9 10 1 12 13 14 15
FEM Mode Frequency| 0.7380 0.9020| 0.9970| 1.0380| 1.1220| 1.2440| 1.5030| 1.7260
Ssl-cov 18000 points, | Frequency | 0.7982 0.9649 | 1.1507 | 1.2031| 1.2525| 1.3891| 1.6401| 1.9463
Order 90 300 rows Damping | 0.0041 0.0013| 0.0002 | 0.0058 | 0.0022| 0.0036| 0.0022| 0.0053
Sampling rate: 25 H7 9721 points, | Frequency | 0.7983| 0.9646| 1.1504| 1.1940| 1.2525| 1.3877 | 1.6400| 1.9464
SSI-COV Order 90 140 rows Damping 0.0040 | 0.0013| 0.0003| 0.0033| 0.0022| 0.0036| 0.0023| 0.0053
Sampling rate: 10 Hz] 3721 points Frequency 0.7984 0.9649 1.1505 1.1909 1.2515 1.3890 1.6398 1.9483
SSI-COV Order 90 140 rows Damping 0.0036 | 0.0018 | 0.0003| 0.0016 | 0.0023| 0.0028 | 0.0026 | 0.0066
Sampling rate: 5 Hz| 1721 points Frequency | 0.7987 | 0.9650| 1.1504| 1.1917| 1.2513| 1.3888| 1.6361| 1.9346
SSI-COV Order 62 140 rows Damping 0.0023 | 0.0021| 0.0003| 0.0018| 0.0017| 0.0021| 0.0019| 0.0012

142




Table 6-1 Sudden reduction of modal frequencies due todbssiffness

Points Remaining Frequency Damping ratio

stiffness in & 1 2 3 4 5 6 1 2 3 4 5 6
DOF

1~ 4000 100 % 0.997 2.925| 4.660| 6.091| 7.135 7.756 0.03 0.03 0.01 0.01 0.02 0.02
4001 ~ 7000 95 % 0991 2.908| 4.635| 6.064| 7.116 7.749 0.04 0.04 0.02 0.02 0.03 0.03
7001 ~ 10000 85 % 0.977 2.868| 4.581| 6.010| 7.079 7.736 0.05 0.04 0.02 0.02 0.03 0.02
10001 ~ 13000 75 % 0.95Pp 2.822| 4.521| 5.956| 7.046 7.727 | 0.055 0.04 0.02 0.05 0.03 0.01
13001 ~ 16000 50 % 0.898B 2.663| 4.348 | 5.827| 6.979 7.708 0.08 0.06 0.01 0.07 0.05 0.02
16001 ~ 20000 25% 0.748 2.416| 4.159| 5.716| 6.929 7.696 0.1 0.05 0.04 0.03 0.02 0.07

Table 6-2 Parameters for rISSA and RSSI-COV

Recursive Singular Spectrum Analysis (rSSA)

Block rowsi’ Moving window length_’ SV
Case 1 100 4000 30
Case 2 100 2000 30
Case 3 100 1000 30
Case 4 100 1000 20

Recursive Covariance-driven Stochastic Subspagtifidation (RSSI-COV)

Block rowsi Moving window length_ System order
For all case 100 5000 12

Table 7-1Shaking table test analyzed by RSSI-COV and rSSAGOV

No. | Ground excitation PGA Stiffness before| Stiffness after Release time Data length
1 White Noise 100 gal Remove brace Remove brace  -- 97.39 sec
2 White Noise 100 gal Added brace Added brace -- .39%ec
3 El Centro 100 gal Added brace Added brage -- 8164t
4 El Centro 100 gal Remove brace Remove brace  -- 46.08 sec
5 El Centro 100 gal Added brace Remove brace 14.75 sec 46.08 sec
6 El Centro 100 gal Added brace Remove brace 29.41 sec 46.08 sec
7 TCU082 100 gal Added brace Remove brgce 38.15 sec 97.39 sec
8 TCU082 100 gal Added brace Remove brgce 52.07 sec 97.39 sec
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Table 7-2 Identified modal frequencies and damping ratayschse AB and NB from white noise excitation

Added brace No brace
Mode Frequency (Hz) Damping ratig Mode Frequena) (H Damping ratio
1% X-translational 1.2356 0.0412 ' X-translational 1.0625 0.0621
1% torsion 2.2885 0.0034 Storsion 2.2966 0.0033
2" X-translational 3.6544 0.0044 " X-translational 3.1672 0.0004
3 X-translational 5.2736 0.0078 '$ X-translational 4.9745 0.0076
2" torsion 7.3282 0.00035 "Btorsion 7.2833 0.0035
3" torsion 12.5522 0.00094 "“3orsion 12.5511 0.0014
1% XY-translational 1.4096 -0.0025
Coupled X-3 y-2n
4.7274 0.0631
translational
3 Y-translational 8.0540 0.0017
Local mode 16.2471 -0.0031

Table 7-3Outlier analysis from the damage detection ofsacty 2-bay RC frame

subject to a series of white noise excitations

Outliers WN1

WN2 WN3

WN4 WN5 WN6 WN7 WN8

Mahalanobis norm (%)| 4.245

Euclidean norm (%) 3.383

18.963 35.267
7.752 16.976

41.658 40.888 22.680 31.935 34.328

16.833 18.008 9.097 13.337 17.839

Table 7-4 Bridge scour test schedule and arrangement

No. | Date Sensors

Note

pier 3

1 2011/01/19 12 velocity sensors
2 2011/01/24 12 velocity sensors and displacemarga@ at| Only velocity sensors 1~9 available

2011/01/26 12 velocity sensors
4 2011/03/29 12 accelerometers, 4 velocity sereorenter

of decks, and displacement meter at pier 3

Signal overstlepsrteasurement range

Table 7-5 Specification of VSE-15D velocity sensor AS-2Giizelerometer

VSE-15D velocity sensor AS-2000 accelerometer
Max. measuring range | 0.1 m/s +2000 gal
Frequency range 0.21t0 0.7 Hz DC ~ 100 Hz
Sensitivity 1000V/m/s SmV/gal
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Table 7-6

rSSA-SSI-COV and RSSI-COV model parameter for1201/19 test

Parameter rSSA-SSI-COV RSSI-COV used alo
rSSA RSSI-COV
Window length | L' = 3000 points L = 5000 points L = 5000 points
Block rows i’ =100 i =80 i =110
Order First 25singular values First 20 singular values First 20 singular values

Table 7-7 rSSA-SSI-COV model parameter for 2011/01/24 test
Parameter rISSA-SSI-COV
rSSA RSSI-COV

Window length

L’ = 2000 points

L = 5000 points

Block rows i’ =100 i =80
Order First 35singular values First 34 singular values
Table 7-8 rSSA-SSI-COV and RSSI-COV model parameter for1201/26 test

Parameter

rISSA-SSI-COV

rSSA RSS

[-COV

Window length
Block rows i’ =100

Order

L’ = 3000 points

First 25singular value

i =80

L = 5000 points

5 First 24 singular values

Table 7-9

rSSA-SSI-COV and RSSI-COV model parameter for1203/29 test

Parameter

rISSA-SSI-COV

RSSI-COV used alg

rSSA

RSSI-COV

Block rows
Order

Window length

L’ = 3000 points
i =100

First 45 singular value

L = 5000 points
i =80

sFirst 44 singular values

L = 5000 points
i =100

5 First 46 singular values

Table 7-10 Selected correlation coefficieRtfor mode discrimination

2011/01/19 2011/01/26 2011/03/29
1* mode shape R >0.99 R>0.98 R >0.98
2" mode shape R>0.97 R >0.95 R>0.92

3 mode shape

Not identified

Not identified

R > 0a8@ R > 0.70

145




0.06

0.04
0.02

-0.02
-0.04

Amplitude (in units of velocity)

-0.06

-0.08

| |
2000 3000 4000

Figure 2-1

|
5000

| I
6000 7000

Data point

b) Rectangular Toeplitz mat

X

8000

Simulated velocity response dt BOF, system subjected to white noise excitation.

50
451 B .
40| g -
R . SECLNS .
w w
5 SR R R T .
s S
pt g 250 B B -
e} 0
E £ 20f B B .
Z Z
LT . -
A0 peme B oot e B .
] BT 7
0 i
8 10
Frequency (Hz) Frequency (Hz)
Figure 2-2 Comparison between th&%and 3" version of stabilization diagram.
3
x10
5 T T T T T T
=
L C
£0
2R
70
m @
QL O
E g 0N Il
S5
T2
85
3c
8<
=L
| | | | | | | | |
500 5200 5400 5600 6000 6200 6400 6600 6800 7000
Data points

Figure 2-3 Simulated acceleration measurement"sD®F. The direct transmitted external acceleration

serves as the measurement noise. A trend can keveldswithin the randomness caused byQhgterm.

146



Number of rows

Figure 2-4 Effects of noise and insufficient Toeplitz matcalumns in the use of rectangular Toeplitz matrix.
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a) 20 block rows, 120 singular values

b) 50 block rows, 300 singular values
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a) SS-COV, system arder: 8, 10% noise b) SSI-DATA, system order: 8, 10% noise.
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a) Singuiar Value Decomposition of 200x5000 Hankel matrix, SSA. b) Singular Value Decomposition of 1000x3000 Hankel matrix, SSA.
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Figure 3-17 Variation of singular values with different dingons of Hankel matrix.
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a) Noise free acceleration measurements, 2" DOF
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SVD of 800 block rows by 3000 columns Hankel matrix, SSA.
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Singular Value Decompaosition, SSA.
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Figure 4-8 Singular value decomposition of Hankel matrixha840 block rows and 15000 columns.
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Figure 4-14 Comparing identified frequencies, damping ratind complex mode shapes from mode 1 to 8,
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Figure 4-21 Examples of identified mode shapes with SSI-C@dde 1~6.
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Mode 7: 2" long&short-axis bending F=05223Hz Mode 8- 3" short-axis bending F=07982Hz
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Figure 4-22 Examples of identified mode shapes with SSI-C@dde 7~12.
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Figure 4-23 Examples of identified mode shapes with SSI-C@dde 13~18.
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Mode 20: 5" long-axis bending = 24786 Hz
0 =0.0064
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Figure 4-24 Examples of identified mode shapes with SSI-C@dde 19~24.
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Figure 4-25 Comparison of stabilization diagram for 0~1 Hgnal downsampled to different rates.
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Figure 4-26 Comparison of stabilization diagram for 1~6 Hgnal downsampled to different rates.
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Figure 4-27 Comparison of complex mode shapes for the fidstnbdes, signal downsampled to different rates.
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Compute recursively the modal parameters with EAGP  [€
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Figure 6-1 Flow chart of the implementation of RSSI-COV.
a) RSSI-COY, L=1500 by RSSLCOY, L = 3000
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Figure 6-2 Frequency tracking by RSSI-COV for time-invariagstem.
a) moving window length = 1500 points. b) movingiddw length = 3000 points.
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a) RSSHCOY, L= 1500 by RSSI-COY, L = 3000
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Figure 6-3 Damping ratio tracking by RSSI-COV for time-iniaart system.
a) moving window length = 1500 points. b) movingiddw length = 3000 points.
a) RSSCOV i =50 block rows o b)Y RSSI-COV, i = 100 block rows
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Figure 6-4 Frequency tracking by RSSI-COV for time-invariagstem, adding noise correlated with output.
a) number of block rowss= 50. b)i = 100 block rows.
a) RSSI-COV, i = 50 block rows by RSSICOY, i = 100 block rows
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Figure 6-5 Damping ratio tracking by RSSI-COV for time-inizart system, adding noise correlated with output.

a) number of block rowss= 50. b)i = 100 block rows.
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a) RSSLCOV, L = 2500 points, 70 rows, Order 12, 400/100, 50%
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bl RSSLCOV, L = 4000 points, 70 rows, Crder 12, 400/100, 50%
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Figure 6-6 Frequency tracking by RSSI-COV for a 6-DOF systeith sudden stiffness reduction.

a) RSSLCOV,

a) moving window length = 2500 points. bl = 4000 points.

L =2500,i =70, Order=12, check 400/100, 50%
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Figure 6-7 Damping ratio tracking by RSSI-COV for a 6-DOtmM with sudden stiffness reduction.

a) moving window length = 2500 points. bl = 4000 points.

a) RSSICOV, L =4000,i =70, Order 16, check 400100, 50%
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bl RSSICOV, L =4000,i =70, Order 16, check 400100, 50%
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Figure 6-8 a) Modal frequency, and b) damping ratio trackiygRSSI-COV for a 6-DOF system with sudden

stiffness reduction. System order: 16.
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a) Computed at point 4000 (100% stiffness) b) Computed at point 12000 (75% stiffness)
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Figure 6-9 Examples of mode shapes computed by RSSI-CO¥ 6DOF system with sudden stiffness reduction.
a) at point 4000 (100% stiffness), b) at point 12006% stiffness),
¢) at point 15000 (50% stiffness), d) at point 19(B5% stiffness).

a) RSSICOV, L =5000, i =150, Order 12, check 4007100, 50% b RSSILCOY, L =5000,i =120, Order 18, check 400/100, 50%
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Figure 6-10 Frequency tracking by RSSI-COV for addtion ofogse correlated with output.

a) Order 12, 150 number of block roiv$)i=120, Order 18.
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b) RSSI-COV, L=4000,1=70, Order=12, check 400/100, 50%

a) RSSI-COV, L=2500,1=70, Crder=12, check 400/100, 50%
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Drata point x 10t Data point w10t

Figure 6-11 Frequency tracking by RSSI-COV for a 6-DOF systeith slow stiffness reduction. Noise free. a) nmayi
window lengthL = 2500 points. bl. = 4000 points. ¢) L = 5000 points, Order = 12L.d) 5000 points, Order = 18.

a) RSSHCOY, L =5000,1 =100, Order 12, check 400/100, 50% b} RSSICOV, L =5000, 1 =130, Order 12, check 400/100, 50%

Drata point x 10"

Drata point w10t

Figure 6-12 Frequency tracking by RSSI-COV considering theetivarying effect. a) number of block roivs 100,

Order 12, b) =130, Order 12, d)= 130, Order 18, d)= 130, Order = 24.
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a) RSSICOY, L =5000,i =70, Order 12, check 400/100, 50%

DIRSSICOV, =120, L=5000, Order=12, check 400/100, 50%

1
Data point

x10°

Data point

Figure 6-13 Frequency tracking by RSSI-COV for a 6-DOF systeith slow stiffness reduction. Noise correlated

IS

=1

Singular Value

a) SSA L' = 4000

e

X8
ﬂhe . 0.0001687
‘n

X 10
¥: 8.516e-005

,

60

with output. a) i = 70, b)= 120.

b) SSA, L' = 2000

c) SSA, L' = 1000

b 3
H
%
L
10 ¥
-4 H] W
E 10 X8 3 &L
2 ¥: 0.0001052 S X8
> = ¥:7.071e-005
@ o
= =]
= oy, 2 LN
(5] -%s 2] ﬁ%
0 10 20 30 40 50 60 TO 0 10 20 30 40 50 60 7O

Number of Singular Value

Figure 6-14 Singular spectrum in rSSA step.
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c) Case 3 d) Case 4
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Figure 6-16 Frequency tracking by rSSA-SSI-COV. Noise cotedlavith output. Comparison of the 4 cases.

a)r3SaA L =1000,0" = 100, Order 20, RSSLCOY: L =5000,i =100, Crder=16 by RSSICOY, L=5000,i=70, Order=30, check 400/100, 50%
. : : 0
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Figure 6-17 Compring the recursive frequency tracking byS§A-SSI-COV, system order 16 and
b) RSSI-COV, order 30.
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Figure 7-2 Singular spectrum obtained by SSI-COV.
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Figure 7-3 Stabilization diagram for pole discrimination.

189



0~
4

3028 2 -5 o 0.5 0

1% X-translational mode

red solid line: NB
black dash-dot line: AB

Imaginary Part

Imaginary Part

Imaginary Part

ginary Part

Ima
s
o=
F

AB-1.2386 Hz

0.05 H

Imaginary Part

-0.05 !

-0.08.0200.02.09.06
Real Part

NB-1.0625 Hz
0.0

_“*._o_.cno__

Imaginary Part
o

-0.05

0 0.0D.04.06
Real Part

AB-5.2736 Hz
01 T

0.05

ol-

-0.05

-0.05 0 005
Real Part

NB-4.9745 Hz

o
=
=5

o

-0.05

g

-0.05 0
Real Part

0.05

AB-7.3282 Hz

005 %

005 ;

005 0 005
Real Part

NB- 7.2833 Hz
01

=
=
&

;

-0y

2™ X-translational mode

1% torsion mode

AB-3.6544 Hz
005 :
= o
< s
Eoofoa
g ;
£ |
-0.05 g
-0.040.02 0 0.02.04
Real Part
NB-3.1672 Hz
£ 005 :
o :
F ooono--o
2 2 ;
E 005 :
Y 005 0 005
Real Part
AB-2.2885 Hz
T 005 ;
[+
z
5
=
3
g
E
005 0 005
Real Part
NB- 2.2966 Hz
= T
o :
o008 ;
£ '
£ of--Sum gmo-
005 0 005
Real Part

AB-12.5522 Hz
0.05

Imaginary Part
=

0,08 ;
-0.040.02 0 0.02.04
Real Part

NB- 12.5511 Hz

o
=}
5

]

g
-0.05 :

=)

aginary Part

Im

-0.06.08.09.0200.0a 04
Real Part

Figure 7-4 Three dimensional mode shapes before and afteaviag the brace.
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Figure 7-5 Additionally identified three dimensional modeapls after removing the brace.
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Figure 7-6 Recursive identification of modal frequencies\idite noise excitation, a) AB order 6, b) AB ordér.
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c) NB, system order: 6 d) NE, system order: 20
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Figure 7-6 Recursive identification of modal frequenciesigrite noise excitation, c) NB order 6, d) NB or@éx
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Figure 7-34 Evolution of bridge modal frequencies traced 88A-SSI-COV with applied stability criterion, test

conducted in 2011/01/24.
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Figure 7-37 Singular spectrum for different choices of sirrgulalues in rSSA.

207



Freguency (Hz)

Freguency (HZ)

cceleartion (gal)

Settlernent {cm) |

o
=

o]

45

5]
[ ]

[ ]
(]

a) RSS-COV00/5000, Order=48, check 400/100, criteria: 50%

e I I I

blue: frequency stable poles (1%)
green: freq and mode shape stable poles (3%)
red: freg and damping stable poles (5%)

ROV

£

i ks I
2000 4000

5000

-
B000

- SRR B e -
7000 8000 9000 10000

b)) rsSA00/3000 455y, rS5180/5000, Grder=44, check 400/50, criteria: 0%

blue: frequency stable paoles (1%)
green: freq and mode shape stable poles (3%)
red: freq and damping stable poles (5%)

Ehs

.

0 5000 w000 Foao Boa0 G000 10000
sensar Mod
10 T T T T T T T T -
0 | -
10 | | I I | | | I I -
] a0 2000 3000 4000 S000 ROO0 Faon 000 5000 10000
3 T T T T T I . ] ]
2 — —
1 — —
0 i | i i | | | | —
0 1000 2000 3000 4000 A000 ROo0o 7000 Boa0 G000 10000
Time (sec)
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Zoom in, r33A100/3000 453Y, rS3180/8000, Crder=44, check 400/50, criternia: 20%
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b 1% mode slope ratio (spline)
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a) 1% mode slope ratio (smoothed)
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Figure 7-47 1% mode shape slope ratio for a) smoothed and bjsnwethed mode shapes. 2011/03/29 test.
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Figure 7-53 Error RMS mean per sensor.
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a) Prediction error RMS standard dewiation per sensor, sensor 1~6
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Figure 7-54Error RMS standard deviation per sensor.
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