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摘要摘要摘要摘要    

本研究目的是探討隨機子空間識別法（Stochastic Subspace Identification, SSI）

在只有結構微震反應的量測下，於土木結構系統識別及損壞診斷上的應用範疇。

在離線分析的應用上，可將於不同矩陣維度識別出之系統極點（system poles）繪

製成穩定圖，以達正確識別結構震態的目的。在此研究的前半段，首先將對隨機

子空間識別法搭配穩定圖的識別效果做研究，在不同情況諸如：訊號之雜訊、非

線性、時變性與間隔緊密頻率等因素之甘擾下，比較各種隨機子空間識別法對此

等甘擾因素之敏感度。接下來，協方差型隨機子空間識別法（Covariance driven 

Stochastic Subspace Identification, SSI-COV）將應用在廣州電視塔（Canton Tower）

的系統識別工作，其為一座大型挑高細長結構，並為結構健康監測之標杆問題。

除此之外，奇異譜分析法（Singular Spectrum Analysis, SSA）將以「前置子空間濾

波器」的概念與協方差型隨機子空間識別法結合，名為「SSA-SSI-COV」識別法，

除了能有效提昇資料解析能力，更提供一個能決定系統識別之最佳系統維度的做

法。 

研究的第二部份是針對系統震態參數之線上識別與損壞診斷技巧的開發，以

遞迴式協方差型隨機子空間識別法（Recursive Covariance-driven Stochastic 

Subspace identification, RSSI-COV）為主體，並搭配延伸工具變項─投影近似子空

間追蹤演算法（Extended Instrumental Variable – Projection Approximation Subspace 

Tracking algorithm, EIV-PAST）達成線上更新子空間的目地。另外，一個可供線上

作業之子空間前置濾波器─「遞迴式奇異譜分析法（recursive Singular Spectrum, 

rSSA）」的開發與搭配，可有效減低雜訊對實地結構識別品質之影響，提昇線上

分析的穩定性。此兩種子空間技術將透過時變性系統之數值模擬與實地試驗數據

得到驗証，並從中取得可靠的識別模型控制參數。最後，它們將被應用在三個結

構震態追縱的實驗上：（1）三層樓鋼構試體瞬時勁度折減之震動台實驗，（2）

單層雙跨鋼筋混凝土結構之震動台試驗，此兩者皆以結構受到地震作用下之輸出

反應做線上震態識別。最後，（3）橋樑沖刷實驗之損壞診斷與預警之應用。 

關鍵詞關鍵詞關鍵詞關鍵詞：：：： 隨機子空間識別、協方差型、系統識別、結構健康監測、遞歸式隨機子

空間識別、遞歸式奇異譜分析、廣州電視塔
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Abstract 

In this research the application of output-only system identification technique 

known as Stochastic Subspace Identification (SSI) algorithms in civil structures is 

carried out. With the aim of finding accurate modal parameters of the structure in 

off-line analysis, a stabilization diagram is constructed by plotting the identified poles 

of the system with increasing the size of data matrix. A sensitivity study of the 

implementation of SSI through stabilization diagram is firstly carried out, different 

scenarios such as noise effect, nonlinearity, time-varying systems and closely-spaced 

frequencies are considered. Comparison between different SSI approaches was also 

discussed. In the following, the identification task of a real large scale structure: Canton 

Tower, a benchmark problem for structural health monitoring of high-rise slender 

structures is carried out, for which the capacity of Covariance-driven SSI algorithm 

(SSI-COV) will be demonstrated. The introduction of a subspace preprocessing 

algorithm known as Singular Spectrum Analysis (SSA) can greatly enhance the 

identification capacity, which in conjunction with SSI-COV is called the SSA-SSI-COV 

method, it also allows the determination of the best system order.  

The objective of the second part of this research is to develop on-line system 

parameter estimation and damage detection technique through Recursive 

Covariance-driven Stochastic Subspace identification (RSSI-COV) approach. The 

Extended Instrumental Variable version of Projection Approximation Subspace 

Tracking algorithm (EIV-PAST) is taking charge of the system-related subspace 

updating task. To further reduce the noise corruption in field experiments, the data 

pre-processing technique called recursive Singular Spectrum Analysis technique (rSSA) 
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is developed to remove the noise contaminant measurements, so as to enhance the 

stability of data analysis. Through simulation study as well as the experimental research, 

both RSSI-COV and rSSA-SSI-COV method are applied to identify the dynamic 

behavior of systems with time-varying characteristics, the reliable control parameters 

for the model are examined. Finally, these algorithms are applied to track the evolution 

of modal parameters for: (1) shaking table test of a 3-story steel frame with 

instantaneous stiffness reduction. (2) Shaking table test of a 1-story 2-bay reinforced 

concrete frame, both under earthquake excitation, and at last, (3) damage detection and 

early warning of an experimental steel bridge under continuous scour. 

 

Keywords: Stochastic Subspace Identification, Covariance Driven, System 

Identification, Structural Health Monitoring, Recursive Stochastic Subspace 

Identification, Recursive Singular Spectrum Analysis, Canton Tower 
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Chapter 1 
Introduction 

1.1 Background 

Structural health monitoring and damage detection in civil infrastructures is an 

issue that has attracted much attention in the last decades, a dense research work was 

carried out trying to prevent disasters caused by the agedness, deterioration and damage 

in structures. In recent years, there are painful example like the sudden collapse of 

I-35W Mississippi River Bridge on August 1, 2007, in the United States, with 13 dead 

and 144 injured as the victims; the collapse of Kao-Ping Bridge (高屏大橋) in Taiwan 

on August 27, 2000, with 30 injured, and the collapse of Ho-Feng Bridge (后豐大橋) in 

Taiwan on September 14, 2008, with 6 dead; the last two has occurd during the 

Typhoon struck and caused by the bridge pier scouring.  

The raise in the safety concern on the civil infrastructures and the need of strategies 

and methods able to detect damage from the large scale civil structural systems and 

hence to make early warnings, is the reason that explains the intensive research activity 

in this challenging field over the last years.  

The vibration-based damage detection is a global monitoring and assessment 

method [14], which has as its hypothesis that the global dynamic behavior of the 

structure is a function of the physical properties of the structure (mass, damping, and 

stiffness) whose changes will be reflected in the vibration signals, collect through 

sensors like: displacement transducers, velocity sensors, accelerometers…, etc. The 

statistical pattern recognition from the vibration signals is fundamental for the health 
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monitoring process [16]. Based on that point out in [44], it consists in a four-part 

process: (1) operational evaluation, (2) data acquisition, fusion and cleansing, (3) 

feature extraction and information condensation, and (4) statistical model development 

for feature discrimination. 

The identification of damage can be grouped into two branches: the model-based 

and non-model-based [11, 14]. The construction of the mathematical model of dynamic 

systems from experimental data is the so-called system identification, different 

model-based identification approaches are available in classical literatures [24, 29, 43]. 

During the past few years, the subspace identification algorithms had been 

successfully applied on structural system identification. The subspace method can be 

classified into the Subspace Identification (SI) algorithm which uses both input and 

output data, and the Stochastic Subspace Identification (SSI) algorithm which is an 

output-only identification algorithm. The developments of these methods are based on 

concepts from linear algebra, system theory and statistics. There are two essential 

numerical tool for the subspace methods in linear algebra: Singular Value 

Decomposition (SVD) and the QR decomposition. Classical algorithms to perform such 

matrix decomposition tools are completely described in [18]. 

For large scale civil structures such as bridges, the input excitation to the structural 

system is unknown, the output-only Stochastic Subspace Identification (SSI) is suitable 

for the identification and monitoring of these structures excited by ambient vibrations. 

There are several varieties of SSI technique such as Covariance-driven (SSI-COV), 

Data driven (SSI-DATA), or combined with other methods like Expectation 
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Maximization technique (SSI-EM) [39, 42] and the Empirical Mode Decomposition 

(EMD) based stochastic subspace identification [52]. 

SSI-DATA algorithms were fully enhanced by Van Overschee and De Moor [47]. 

The core of output-only identification through SSI-DATA is the orthogonal projection 

carried out by LQ decomposition [47, 50], followed by the SVD used to extract the 

system subspace. There are variants of the Data-driven algorithm which correspond to a 

different choice of weighting matrices before factorizing the projection matrix. The 

well-known SSI-DATA algorithms include CVA, N4SID, MOESP and IV-4SID [27, 46, 

48]. Application of the SSI-DATA algorithm to investigate the dynamic characteristics 

of a cable-stayed bridge had been studied in [49]. In [9] the algorithm was also applied 

to the identification of a Steel-Quake benchmark structure. In [55] the method is applied 

to identify the modal parameters of The Heritage Court Tower in Vancouver, Canada, 

and the Beichuan Bridge located in China, which has its arch made by concrete filled 

steel tube. The reference-based SSI algorithms were also developed in [36, 37, 38] and 

applied in the identification of a steel transmitter mast and a prestressed concrete bridge 

(the Z24-bridge in Switzerland). 

As opposed to SSI-DATA, the SSI-COV algorithm avoids the computation of 

orthogonal projection, instead, it is replaced by converting raw time histories in an 

assemble of block covariances which is called Toeplitz matrix. The SSI-COV algorithm 

appears early as the Modified Instrumental Variable methdod, with applications in 

laboratory tests, such as the identification of a vertical steel clamped-free beam and 

modal analysis of a carrying bogie [7]. Other application can be found in the 

identification of offshore structures and rotating machinery [1] and an aircraft [2]. 
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Different family of SSI-COV exist, a very famous identification algorithm is a 

combined approach of the Natural Excitation Technique (NExT) [23] and the 

Eigensystem Realization Algorithm (ERA) [25] to find modal parameters from ambient 

response. It is called as the Natural Excitation Technique and Eigensystem Realization 

Algorithm (NExT-ERA) [10] which has been applied to the identification and damage 

detection of a 4-story 2-bay steel IASC-ASCE Benchmark structure. The same 

algorithm is also applied to the identification of a cable stayed bridge in [53], where 

alternative form to construct the stabilization diagram [37] was proposed. Another 

similar approach exists: it is a combination of the Random Decrement method (RD) [4, 

33] and ERA using Data Correlations (ERA/DC) [26]. This RD-ERA/DC algorithm is 

applied to the modal identification of Tsing Ma Bridge, located in Hong Kong [40]. 

Improvements were achieved by substituting random decrement functions by their 

cross-correlation in the assembling of the Hankel matrices. 

Different from the off-line analysis, the output-only system identification and 

damage detection through on-line recursive algorithms has received considerable 

attention recently, it is suitable for long-term continuous monitoring systems and 

development of early warning systems. In the past few years, several recursive subspace 

identification algorithms have been proposed to update in an recursive fashion the main 

decomposition tools of the SSI algorithm: the LQ decomposition and SVD. 

The updating of the LQ decomposition is done by means of Givens rotations [18], 

the SVD updating problem is circumvented by considering the similarities between 

recursive SSI and adaptive signal processing techniques for direction of arrival 

estimation [56], and only the column space of extended observability matrix is updated 
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[19, 20, 34]. The recursive stochastic realization by the classical Covariance-driven SSI 

algorithm (RSSI-COV) is proposed in [17], and the application for in-flight flutter 

monitoring is discussed in the paper. However, recursive Data-driven subspace 

algorithm is the most widely used method in the literature. Application for in-flight 

modal analysis of airplanes can be found in [13]. In [28] the RSSI-DATA is applied to 

the system identification of Donghai Bridge located in China. Damage detection 

example of the mentioned 4-story 2-bay steel IASC-ASCE Benchmark structure can be 

found in [12], and finally, application to the health monitoring and damage detection of 

a single pier subjected to scour, and to the 1-story 2-bay reinforced concrete frame can 

be found in [58]. 

Although the literature of SSI algorithms were reviewed, there is another useful 

output-only subspace tool called the Singular Spectrum Analysis (SSA), which is a 

novel non-parametric technique and it was firstly applied to extract tendencies and 

harmonic components in meteorological and geophysical time series [3]. Except the 

extraction of tendency, SSA can be applied to eliminate noise effect, or to detect the 

singularities, e.g., to extract structural residual deformation [32]. 

The conjunction of SSA to SSI-COV will be the main contribution of this thesis. 

Although it is simply the addition of a pre-processing tool and no more, this action 

allows the determination of the best system order from the connection in-series of two 

SVD decomposition engine, and has greatly enhanced the identification quality and 

stability. Moreover, the recursive Singular Spectrum Analysis algorithm will be 

proposed in this thesis, which in conjunction with RSSI-COV method offers a very 

stable and accurate online tracking capacity. 
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1.2 Research Objectives 

The objective of this research is to, first, enhance the Covariance-driven Stochastic 

Subspace Identification method (SSI-COV) to the named “Singular Spectrum Analysis– 

Covariance driven Stochastic Subspace identification method” (SSA-SSI-COV), 

validated both by numerical simulation and the application in system identification of 

Canton Tower, a benchmark problem for structural health monitoring of high-rise 

slender structures. 

Second, develop the recursive Singular Spectrum Analysis method (rSSA), and in 

conjunction with the recursive Covariance-driven Stochastic Subspace Identification 

method to construct the named “recursive Singular Spectrum Analysis – Covariance 

driven Stochastic Subspace Identification method” (rSSA-SSI-COV), through a moving 

window approach. The method will be validated firstly by numerical simulation and 

later by application in the damage detection and health monitoring of laboratory 

experiments.  

The organization of this thesis is briefly described as follows: 

Chapter 2: The basic methodology of subspace identification algorithm is recalled 

through, firstly, the introduction of the dynamic model of a linear system, followed by 

the formulation of SSI-COV and SSI-DATA method, and finally, the Singular Spectrum 

Analysis (SSA) procedure will be described.  

In system identification algorithms, it is important to distinguish the structure modes 

from the spurious modes because the order of the real system is always unknown. The 

alternatives to build the stabilization diagram will be introduced and compared one to 
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another. A comparison benefit-drawback and implementation issues will be discussed 

through a numerical simulation example and the identification of a laboratory test. 

Chapter 3: A comprehensive numerical study and comparison between different SSI 

algorithms is carried out. Measurement noise effect and the addition of a noise which 

violates the SSI assumption is discussed. Identification of the simulated nonlinear 

signals, signals with time-varying frequency, signals with closely-spaced frequencies 

mixed with white noise is done to understand the performance of SSI algorithms under 

different scenarios of assumption violation and the mechanism to overcome this 

difficulties. The SSA-SSI-COV algorithm is introduced in this chapter to solve the 

identification problem of closely-spaced frequencies with added white noise. 

Chapter 4: Application of SSI algorithms in system identification of the Canton Tower 

is discussed. The order determination procedure through the SSA-SSI-COV algorithm 

will be described. Comparison between different SSI approaches is made in this chapter. 

The procedure called decimation is although studied and applied to increase the 

convergence speed of the stabilization diagram. 

Chapter 5: the derivation of Covariance-driven Recursive Stochastic Subspace 

Identification algorithm (RSSI-COV) can be found in this chapter. The Projection 

Approximation Subspace Tracking algorithm (PAST) and its Instrumental Variable 

extensions (EIV-PAST) is also described and implemented to RSSI-COV. To consider 

the noise contaminated data, a recursive pre-processing technique called recursive 

singular spectrum analysis technique (rSSA) is derived to enhance the accuracy and 

stability in the online tracking capability. 
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Chapter 6: the RSSI-COV method and the proposed rSSA-SSI-COV algorithm through 

a moving window approach are validated in this chapter by means of numerical 

simulation of a 6 DOF system, cases with sudden reduction and slow decreasing in 

system stiffness are studied. The effects of the selected RSSI model parameters in the 

online modal analysis, and the influence of time-varying frequencies in the selection of 

system order are also discussed. 

Chapter 7: the RSSI-COV method and the proposed rSSA-SSI-COV algorithm through 

a moving window approach are applied to the monitoring and damage detection of, first, 

shaking table test of a 3-story steel structure with instantaneous stiffness reduction. 

Second, the shaking table test of a 1-story 2-bay reinforced concrete frame subjected to 

earthquake excitations with increasing intensity. Finally, application to the monitoring 

of a three pier and four span steel bridge under continuous scour is carried out.  

Chapter 8: Summaries and suggestions for the use of the proposed algorithms will be 

given here. The potential research topics are indicated at the end.
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Chapter 2 
Stochastic Subspace Identification Methods  

2.1 Introduction 

In output-only characterization, the ambient response of a structure is recorded 

during ambient influence (i.e. without artificial excitation) by means of highly-sensitive 

velocity or acceleration sensing transducers. The Stochastic Subspace Identification 

(SSI) technique is a well known multivariate identification technique for output-only 

measurements. It was proved by several researchers to be numerically stable, robust to 

noise perturbation and suitable for conducting non-stationarity of the ambient 

excitations although its stationary assumption is violated [5, 37, 53].  

The SSI-DATA algorithm was fully enhaced by Van Overschee and De Moor [47], 

while SSI-COV algorithm has as its antecedent the Eigensystem Realization Algorithm 

[25] for the free response of a structure, which are applied along with the Natural 

Excitation Technique (NExT) or Random Decrement (RD) functions. This chapter will 

begin with the introduction of the dynamic model of structures, followed by the 

stochastic properties and the system realization methods of each subspace algorithm. 

2.2 Models of vibrating structures 

2.2.1 Continuous-time state-space model 

The Finite Element model of a linear time-invariant dynamic system can be 

expressed as: 

( ) ( ) ( ) (t)(t)ttt uFqqq LKCM 2 ==++ &&&  (2.1) 
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where M , C2 and K nn×ℜ∈  are the mass, damping and stiffness matrix.  

( ) nt ℜ∈q  is the displacement vector at continuous time t.  

( )tq&  is the velocity vector.  

( )tq&&  is the acceleration vector with the same dimension as the displacement vector.  

n(t) ℜ∈F  is the excitation vector. 

mn×ℜ∈L is the input location matrix. 

m(t) ℜ∈u is the vector describing m inputs as a function of time t. 

n is the number of DOFs and m is the number of inputs. 

The above second order differential equation can be rearranged into a first order 

differential equation known as the state-space model, which consist of two equations 

[24]: 

The state equation: 

( ) ( ) ( )ttt uxx cc BA +=&  (2.2) 

where ( ) ( )
( )

12 ×ℜ∈
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
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& . Ac is the so-called system matrix since it contains all the information 

related to the system (M , C2, K  in the equation of motion), and Bc is the definition of 

input matrix in the state equation. Ac and Bc are arranged as follows: 
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The state equation which is a first order differential equation has the following 
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solution [57]: 

  ( ) ( ) ( ) ( ) ( )∫
−− +=

t

t

ttt detet
0

0
0 τττ uxx c

AA Bcc  (2.4) 

where the 1st term is the free vibration solution given an initial condition x(t0), and the 

2nd term is a typical convolution integral. Through an eigen-analysis of the system 

matrix Ac, the state equation can be decoupled through a coordinate transformation 

using the obtained complex eigenvectors.  

  1−= ΨΨΛA cc   , ( ) ( )tt ηx Ψ=  (2.5) 

where ( )tη  is the generalized coordinate. nn 22 ×ℜ∈cΛ is a diagonal matrix containing 

complex eigenvalues iλ  in the diagonal which appear in conjugate pairs, nn 22 ×ℜ∈Ψ  

are the complex eigenvectors. From the eigen-analysis cc ΨΛΨA = , one may find that 

they have the following structure: 

     



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= *
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Λ
Λc =  ,  






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
=

**

*

ΛΘΘΛ

ΘΘ
Ψ  (2.6) 

In fact, it can be easily verified that Λ  are the same eigenvalues and Θ  the 

same eigenvectors, i.e., mode shapes, than those obtained by conducting eigen-analysis 

directly in the unforced equation of motion (2.1), but they cannot be used to decouple 

the equation of motion unless it is a proportionally damped system. 

Then, the decoupled state equation can be written as follows: 

  ( ) ( ) ( )ttt uηη cc BΨΛ
1−+=&  (2.7) 

Furthermore, to relate the obtained complex eigenvalues to a physical 

interpretation, a Taylor Expansion is required to decouple the free vibration term te cA  

in (2.4), which is a matrix exponential: 
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where diag(·) is the diagonal operator. Therefore, considering only this free vibration 

term in (2.4) and having in mind that the complex eigenvalue has its real and imaginary 

part: iii jβαλ += , solution to the i-th mode free vibration is: 

( ) ( )( ) ( ) ( ) ( ) ( )[ ] ( )0000 sincos00 tttjttetet iii
tt

i
ttj

i
iii ηββηη αβα −+−== −−+  (2.9) 

where the coordinate transformation shown in (2.5) has been applied to decouple the 

free vibration solution. Comparing (2.9) with the well-known free vibration solution of 

a SDOF system, the so-called i-th effective modal frequency iω′  and effective damping 

ratio iζ ′  can be realized: 

iiii λβαω =+=′ 22   ,  
i

i

ii

i
i λ

α
βα

αζ −=
+

−=′
22

 (2.10) 

The effective modal frequency and damping ratio are exactly those obtained by 

normal mode approach if it is classical or proportional damping. In the case of 

non-proportional damping, iω′  will be slightly different than the normal natural 

frequency, and iζ ′  can be called as the i-th effective attenuation rate [57].  

One can note that iω′  is actually the amplitude of the complex system pole, and 

iζ ′  is related to the phase. Hence, when a structural system is changed due to damage, 

the migration of system poles will be directly reflected by the computed effective modal 

frequency and damping ratio, which the term “effective” will be omitted hereafter. 
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The observation equation:  

If only subsets of the n DOF can be measured, and considering that measurements 

are taken at l locations and the sensors can be either accelerometers, velocity or 

displacement transducers, the observation equation can be defined as: 

( ) ( ) ( ) ( )tttt qqqy dva CCC ++= &&&  (2.11) 

where ( ) lt ℜ∈y  represents the l outputs.  Ca, Cv and Cd
nl×ℜ∈  are the output 

location matrices corresponding to acceleration, velocity and displacement respectively. 

To relate the output y(t) to the system state x(t), the equation of motion (2.1) can be 

used to eliminate ( )tq&& , and by arranging and grouping location matrices, the 

observation equation become: 

( ) ( ) ( )ttt ux cc DC +=y  (2.12) 

where ( ) nl 211 ×−− ℜ∈−−= 2avadc CMCCKMCCC  is the output matrix, and 

ml×− ℜ∈= LMCD ac
1  is the direct transmission matrix.  

Although the eigenvectors of system matrix A contains mode shapes information 

as that shown in (2.6), however, there is no knowledge about the location of each DOF 

when the matrix A is identified, moreover, usually the number of modes, i.e., order of 

the system extracted from measurement data is different than the number of sensors, 

thus, the system eigenvectors should be mapped to the sensor locations through the 

output location matrix Cc: 

ΨCV cc =  (2.13) 

where Vc are the observed mode shapes. 
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2.2.2 Discrete-time state-space model 

Since all data is sampled in discrete time, the above continuous time state-space 

model can be converted into a discrete time state-space model. By gathering together 

the state and observation equation: 

kkk

kk1k

uxy

uxx

DC

BA

+=
+=+  (2.14) 

where ( ) [ ]TT
k

T
kk tk qqxx &=∆=  is the discrete state vector containing the sampled 

displacements and velocities. uk and yk are sampled input excitation and output 

measurement. A is the system matrix, B is the input matrix, C is the observation matrix 

and D, the direct transmission matrix, all in discrete-time. The relationships between 

these matrices in discrete-time and continuous time are the following [24]: 

te ∆= cAA   ,  ( ) c
A BΙAB c

c −= ∆− te1   , cCC =   ,  cDD =  (2.15) 

A basic assumption behind these relationships is that, the external perturbation is 

constant within a sampling period, i.e., ( )tkk ∆= uu  for the period of time 

( ) tktk ∆+<≤∆ 1τ . It is provided that the inverse of system matrix Ac exists. 

The eigenvalues µi of the discrete-time system matrix A can be, therefore, related 

to the continuous-time eigenvalues by 

( )
t

e i
i

t
i

i

∆
=⇔= ∆ µλµ λ ln

 (2.16) 

Then, frequencies and damping ratios can be computed as mentioned before. Both 

the observation matrix and complex eigenvectors are not affected by the discretization 

in time, the above-mentioned equations can be used without any change. 
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This model is called the deterministic state-spaced model since both input and 

output are known. 

2.2.3 Stochastic state-space model 

Considering that there is always noise and perturbations both in the system (due to 

modelling inaccuracies) as in the measurementes, therefore (2.14) can be modified to its 

combined deterministic-stochastic state-space model: 

k

k

vuxy

wuxx

kkk

kk1k

′++=
′++=+

DC

BA
 (2.17) 

The stochastic state-space model stems from the need of output-only system 

identification, situation under which both the input excitation as the noise terms are 

unknows. Both the input terms and the noise terms are assumed to be a spatially white 

noise and they can be combined together as the process noise . Therefore, the 

discrete-time sthochastic state-space model can be simply stated as: 

k

k

vxy

wxx

kk

k1k

+=
+=+

C

A
 (2.18) 

where 12 ×ℜ∈ n
kw  and 1×ℜ∈ l

kw  are assumed to be zero mean, spatially white noise 

and with the following covariance matrices: 

( ) pqT
T
q

T
q

p

p
E δ








=























R
vw

v

w

S

SQ
 (2.19) 

where E(·) denotes expectation operator and δpq is the Kronecker delta (δpq=1 if p=q, 

otherwise δpq=0). p and q are arbitrary time instants. 

One should note that if acceleration measurement is used, the direct transmission 
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term Duk is also considered by the stochastic model as a process noise. Reviewing 

expressions (2.11) and (2.12), if only velocity or displacement transducers are used, Cc 

= ( 0  Cv ) or Cc = ( Cd  0 ), and Ca = 0, the direct transmission matrix vanishes, 

therefore, theoretically the external excitation will not be measured.  

In the case of structures subjected to ground motions such as earthquakes, L  is an 

identity matrix, and ( ) ( )tt gqu &&M−= , hence, quantities in the state vector shown in (2.2) 

will be relatives. If accelerometers are used and since it measures absolute accelerations, 

the ground acceleration should be added to the observation equation (2.12):  

( ) ( ) ( ) ( ) ( )[ ] ( )ttMtttt g xqqxuxy g caaccc CCMCCDC =+−+=+= − &&&&1   

The Dcu(t) term will be cancel out with the ground acceleration, i.e., in the case of base 

excited structures, the acceleration measurements are free from the external noise 

contributed by Dc term. But this is not the case for structures excited by wind or other 

sources acting directly in the body of the structure, this externally imposed acceleration 

will be transmitted in the measurements as a measurement noise. 

Properties of the stochastic state-space model is summarized in the following chart 

[37]: 

The system state is a stochastic process and assumed to be stationary with zero mean: 

Σ=][ T
kkE xx  , [ ] 0x =kE                      (2.20) 

The noise terms are zero mean white noise and uncorrelated with the current system 

state: 

0wx =][ T
kkE   ,  0vx =][ T

kkE                   (2.21) 
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The output covariance matrices ll
i

×ℜ∈R  of arbitrary time lag i are defined as: 

]yy[ T
kiki E +=R                                (2.22) 

The “next-step – output” covariance matrix ln×ℜ∈ 2G is defined as: 

][ 1
T
kkE yx +=G                                (2.23) 

From the stationarity, spatially white noise assumption and the previous definitions, 

following properties can be deduced: 

QAΣΣ += TA                              (2.24a) 

RCΣR += TC0                              (2.24b) 

SAΣG += TC                              (2.24c)  

From the stochastic state-space model and applying stochastic properties shown in 

(2.24), the most important property can be deduced: 

GCAR 1−= i
i                                (2.25) 

This last will be the key property to derive the Covariance-driven SSI algorithm. 

2.3 Covariance-driven Stochastic Subspace Identification (SSI-COV) 

The SSI-COV stems from the need to solve the problem through identifying a 

stochastic state-space model (matrices A and C) from output-only data. The first step is 

to gather the measurement vectors in a Hankel Data matrix:  
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(2.26) 
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where Yp denotes the past measurements and Yf denotes for the future measurements. It 

can be easily find that the block Toeplitz matrix can be obtained by a multiplication 

between future and transpose of past measurements:  

( )Tpf

ii

i

YY

RRR

RRR

RRR

T =



















=

−−

+

i2212

2i1i

11-i

1/i

...

............

...

...

 (2.27) 

where Ri is the block output covariance with time lag i defined in (2.22). 

Through the stochastic property in (2.25), the Toeplitz matrix can be factorized 

into the extended observability matrix nli
i

2×ℜ∈O  and the reversed extended stochastic 

controllability matrix lin
i

×ℜ∈ 2
Γ   , as shown below: 

[ ]GAGGA

CA

CA

C

ΓOT ...
...

1

1

1/i
−

− 

















== i

i

ii  (2.28) 

where i is the order of the Toeplitz matrix, i.e., number of block rows and columns it 

constitutes. Singular Value Decomposition (SVD) is the tool used to perform the above 

mentioned factorization:  

( ) T

T

T
T VSU 111

2

11
211/i 00

0
=
















==

V

VS
UUUSVT  (2.29) 

where lili ×ℜ∈U  and lili ×ℜ∈V are orthonormal matrices, l are the number of outputs, 

and S is a diagonal matrix containing positive singular values in descending order. 

Comparing (2.28) and (2.29), the matrix Oi in which contains the system matrices (A 

and C) can be computed by splitting the SVD in two parts: 



19 

 

2/1
11 SSSSUO =i

       

T
i 1

2/1
1 VSΓ =  (2.30) 

From Oi matrix, the system matrices (A and C) can be obtained easily. In 

MATLAB notation, the C matrix is just the first block of Oi: 

( ):l,:i 1OC =  (2.31) 

System matrix A can be computed by exploiting the shift structure of the extended 

observability matrix Oi: 

A
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CA

C

CA

CA

CA
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−− 21

2

ii

MM
 (2.32) 

therefore, 

( )( ) ( ):li,:l,:i:l ii 111 +−= OOA D  (2.33) 

where ( )D⋅ denotes pseudo-inverse. Then, by conducting eigenvalue decomposition on 

the system matrix A, after the eigenvalues are converted to a continuous-time poles with 

(2.16), modal frequencies and damping ratios can be computed with (2.10). The 

observed mode shapes can be obtained by applying (2.13). 

2.4 Data-driven Stochastic Subspace Identification (SSI-DATA) 

As opposite to SSI-COV, the Data-driven algorithm (SSI-DATA) avoids the 

calculation of covariance. Instead, the data reduction step is accomplished by projecting 

the row space of the future outputs into the row space of past outputs. Covariance and 

orthogonal projection are closely related, in that they are both intended to eliminate 

uncorrelated noise contributions. From the data structure shown in (2.26) the orthogonal 
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projection can be defined as follows:  

( ) ip
T
pp

T
pfpf PYYYYYYY =≡ D

/  (2.34) 

where Yf and Yp are defined as (2.26), ( )D⋅ denotes pseudo-inverse, and jli
i

×ℜ∈P  is the 

orthogonal projection matrix. The main theorem of stochastic subspace identification 

[47] implies that the extended observability matrix Oi can be found from the result of 

orthogonal projection: 

iii XOP ˆ=  (2.35) 

where jn
i

×ℜ∈ 2X̂  is the estimated state sequence in stochastic system which is equal to 

the estimates from the forward non-steady state Kalman filter [47].  

( )121 ...ˆ
−+−++= jijiiii xxxxX  (2.36) 

Instead of (2.34), the orthogonal projection can be performed by a numerically 

robust and stable tool called LQ decomposition (this is, actually, the transpose version 

of the well-known QR decomposition), which is applied directly on the Hankel data 

matrix: 
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 (2.37) 

where L  is a lower triangular matrix, and Q is an orthogonal matrix. L ij are partitions of 

the lower triangular matrix and Qij are partitions of the Q matrix. 

jliT
iii

×ℜ∈







== 1

31

21ˆ Q
L

L
XOP  (2.38) 

The proof of the above equation can be found in [50], i.e., the desired column 
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space of Oi can be obtained directly from the column space 









31

21

L

L  . This is the key of 

why these algorithms are called “subspace” identification algorithms. They retrieve 

system matrix as the subspace of the projection matrix. If only system matrices (A,C) 

are required, the SVD shown in (2.29) and its subsequent equations can be applied to 










31

21

L

L  to determine the system order by separating the system subspace (non-zero 

singular values) from the noise subspace, which corresponds to vanishing singular 

values, and from now on, everything can be computed as that outlined in SSI-COV. 

Estimating the noise covariances: Q, R and S 

The Kalman filter state sequence 
iX̂  can be determined from the projection matrix by: 

iii POX D=ˆ  (2.39) 

where Oi is obtained by applying (2.29) and (2.30), ( )D⋅ denotes for pseudo-inverse. 

The Hankel data matrix can be split in a different way: 
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 (2.40) 

where +
pY  and −

fY  are obtained by displacing the first block row of the future outputs 

to the past outputs as its last block row. Similar to the main theorem of the orthogonal 

projection [47], it can be realized that: 

( ) 111
ˆ/ +−

++++−+−
− =≡= iip

T

pp

T

pfpfi XOYYYYYYYP
D

 (2.41) 

where Oi-1 is the same as Oi but deleting the last l rows. 

Similarly to (2.38), Oi-1 computed in a numerically stable way is in terms of the LQ 
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partitions: 

( ) ( ) jil

T

T

iii
×−

+−− ℜ∈








== 1
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1
3231111

ˆ
Q

Q
LLXOP  (2.42) 

Since Oi-1 can be computed just deleting the last l rows, Pi-1 is calculated by the LQ 

decomposition, then, the shift Kalman state sequence can be determined by doing 

pseudo-inverse to Oi-1: 

111
ˆ

−−+ = iii POX D  (2.43) 

The sequence 1
ˆ

+iX  as 
iX̂  can be substituted into the stochastic state-space model: 
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Both 1
ˆ

+iX  , 
iX̂  and 1,1 ++ iiH  are sequences of length j, (2.44) is in fact, a typical 

least square formulation and the system matrices (A,C) can be determined either by 

doing pseudo-inverse to 
iX̂  or by the typical QR decomposition. After estimates of 

(A,C) are determined, the residual sequence, i.e., the process noise sequence ρw and ρv 

can be easily calculated:  

i

ii

i X
C

A
H

X

ρ

ρ

v

w ˆ
ˆ

ˆˆ

1,1

1











−













=









++

+  (2.45) 

Then, the required noise covariances can be determined from ρw and ρv. This 

algorithm guarantees the positive realness of the identified error covariances [47]: 
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2.5 Singular Spectrum Analysis (SSA) 

SSA [65] is a novel non-parametric technique used in the analysis of time series 

based on multivariate statistics. This method was firstly applied to extract tendencies 

and harmonic components in meteorological and geophysical time series [3]. Except the 

extraction of tendency, SSA can be applied to eliminate noise effect, or to detect the 

singularities, e.g., to extract structural residual deformation [32]. Basically, this method 

is capable of decomposing the original series into a summation of principal components, 

so that each component in this sum can be identified as a tendency, periodic 

components (stationary), nontationary signal or noise.  

The SSA procedure starts from: (1) Embedding: generate a Hankel matrix from the 

time series itself by sliding a window that is shorter in length than the original series. 

Firstly, let ),,,( 2 Nyyy1 K=Y  be the time series of length N. And let L be the window 

length or number of block rows of the Hankel matrix, which is an integer in 1< L<N. 

Each sliding window vector Xj with length of L would then be derived: Xj ={  yj, yj+1 , …, 

yj+L-1 }
T, j = 1, 2, …, K, where K =N-L+1 is the number of columns. The matrix X = [X1, 

X2, …, XK] is a Hankel data matrix (or called trajectory matrix):  
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(2) Singular Value Decomposition: the Hankel matrix can be represented in the form: X 

= E1+ E2+…+ Ed, where d is the number of non-zero eigenvalues of theLL × sample 

covariance matrix SCOV = X．XT. The i-th elementary matrix, or called i-th eigentriple, 

are given by Ek = kλ uk vk
T = sk uk vk

T where
dλλλ ...,, 21
 are the non-zero eigenvalues of 
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SCOV, in descending order, u1, u2, …, ud are the corresponding eigenvectors, and vectors 

vk are derived by 
kk

T
k λ/uv ⋅= X , k =1, 2, …,d. 
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(3) Grouping: the plot of the singular values in descending order is called the singular 

spectrum and is essential in deciding the index from where to truncate the summation. 

Finally, decide a parameter r to reconstruct an approximate matrix of X, i.e. 

r21 ...
~

EEEX +++≈ , r does not need to be equal to the number of non-zeros singular 

values d. 

(4) Averaging: the elements along the anti-diagonals of X are the same originally, 

however, after X
~

 is reconstructed, these may become slightly different, therefore, 

these entries are averaged to reconstruct signal: 
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(2.49) 

It is proved in [65] that averaging the signal along the anti-diagonals of the 

approximate matrix X
~

, makes minimum the Frobenius norm of the error between X
~

 

and the Hankel matrix assembled by the reconstructed signal, i.e., the averaging leads to 

the optimal signal reconstruction in terms of the principal components. 
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2.6 Pole discrimination: the stabilization diagram 

2.6.1 Alternatives to build the stabilization diagram 

In real world applications, noise and perturbations are always present at any 

measurement, and there is no prior information about the number of modes can be 

extracted from the data, i.e., there are always uncertainties in the determination of 

system order. Therefore, a stabilization diagram is used to discriminate between noise or 

spurious poles and true system poles. Based on the procedure of SSI-COV, there are 

several ways to build the stabilization diagram: 

1st version: Decide first the maximum dimension of the Toeplitz matrix shown in (2.27), 

perform SVD, and let the order of system matrix A increases from a lower value till 

reaching the maximum dimension of the Toeplitz matrix defined by the user.  

The advantage of this version is that only once has to be done the SVD; less time is 

consumed in the construction of the stabilization diagram. The drawback is that, there is 

no clear criterion to ensure that the chosen maximum dimension is sufficient or not to 

reveal true system information. While the order of system matrix A is increasing, more 

noise information will be included in the system matrix A, consequently, more noise or 

spurious poles will appear on the diagram. For this purpose, modal transfer norm [41] 

was introduced in addition, to clear out the large number of spurious poles at higher 

orders thus clarifying the stabilization diagram. But again, a threshold level has to be 

defined for the modal transfer norm. The concept behind this version to construct the 

stabilization diagram is that, even including more spurious poles in the system matrix A, 

the true modes (frequency, damping, mode shape) extracted by eigen-decomposition 

will remain stable.  
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2nd version: Determine the order of system matrix A by observing the variation of the 

singular values, and then, increase the size of the Toeplitz matrix both rows and 

columns holding the order of system matrix unchanged. It is important to note that if 

full sensors are used to compute the covariance as usually does, the formed covariance 

block is a square matrix, for convenience, this version will be called the “square Toepliz 

matrix” because the shape of Toeplitz matrix remains squared. The main drawback of 

this alternative is, first, more time consuming, and second, the system matrix order must 

be defined previously. For field measurement data, generally there is no clear gap on the 

distribution of singular values as that appearing in numerical simulation. The advantage 

of this version is that, one do not have to try at the beginning the maximum Toeplitz 

matrix size, since the required size to achieve good results may vary from case to case.  

Increase of the Toeplitz matrix dimension means a larger subspace dimension and 

also more data to extract the orthonormal base which spans the system-related 

information, therefore, a better separation between signal and noise can be achieved. 

Moreover, this also means an increment of the extended observability matrix order, 

since the system matrix A is extracted by taking advantage of the shift structure of 

matrix Oi as shown in equation (2.32). Evidently, the pseudo-inverse of Oi is a 

numerically stable way to determine the system matrix A by least square, i.e., a 

convergent estimate of modal parameters is expected by increasing the Toeplitz matrix 

order. 

Both SSI-DATA and SSI-COV, the system information is extracted by applying 

SVD to the projection matrix and Toeplitz matrix respectively. If the Hankel data matrix 

in (2.26) has the same number of rows in both past Yp and future Yf measurements, the 
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resultant 
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L  term in (2.38) and Toeplitz matrix is square; however, if different 

number of rows is chosen for Yp and Yf, e.g., if only number rows of Yf is increased 

keeping number of rows of Yp constant, both 
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L  and Toeplitz matrix will become a 

rectangular matrix. This constitutes the alternative form to construct the stabilization 

diagram, which is presented as follows: 

3rd version: This is a modification of the second version. Since Toeplitz matrix has not 

necessary to be a square matrix, an alternative way to construct the stabilization diagram 

is to increment only block rows of the Toeplitz matrix by keeping number of block 

columns and system matrix A order constant [53]. For convenience, this version is 

called as the “rectangular Toeplitz matrix” because it only increments rows but not 

columns. The advantage of this method is that, it conserves the data addition property of 

the stabilization diagram in a least square sense (it is much faster than the 2nd version).  

The difficulty on the choice of number of block columns constitutes the main 

drawback of this method, because this latter will determine the number of components 

the Toeplitz matrix will be decomposed by SVD. In the presence of noise, if the number 

of columns of the Toeplitz matrix is lower than the required, it will lead to an unstable 

diagram and a poor estimation of modal parameters. On the contrary, the use of square 

Toeplitz matrix has not to worry about the noise effect and the determination of number 

of columns, since the presence of noise will only delay the outcome of a stable diagram. 

Having reviewed the advantages and drawbacks of each way to construct the 

stabilization diagram, the use of rectangular Toeplitz matrix (3rd version) may be 

recommended for systems with prior knowledge about the noise content, however, for 

identification task in first time, the use of square Toeplitz matrix (2nd version) is 
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recommended although it implies more time consuming. 

Stabilization criteria 

A typical stabilization diagram is shown in Figure 2-2. It is implemented by 

comparing the poles obtained between two consecutive matrix order, from lowest to 

highest, and applying stabilization criteria to modal frequencies, damping ratios and 

mode shapes, to discriminate if a pole is stable or not. 

The chosen stability criteria are referenced from [37] and is defined as follows: 

Modal frequency: 
( ) ( )
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ii
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Mode shape: ( )( ) %31001,1 ≤×+− %iiMAC  

(2.50) 

where i is the number of block rows of Yf in (2.26), which determines the Toeplitz or 

projection matrix order, and MAC is the Modal Assurance Criterion, which is nothing 

else than the squared correlation between two mode shape vectors: 
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where the subscript H denotes Hermitian transpose, v is the given mode shape vector, 

and MAC is a scalar between zero and unity. 

The system poles are generally more stable in terms of its modal frequency as the 

matrix order is increased, followed by mode shape, and damping ratio is the more 

unstable quantity. Therefore, firstly, the poles are discriminated based on the modal 
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frequency, the frequency stable poles are grouped and marked in the diagram as a blue 

circle “o”. Later, from the group of frequency stable poles, mode shape and damping 

ratio stable poles are discriminated, and they are represented by a green cross “+” and 

red “x” respectively. This means that, if a pole appears in the diagram as an assembly of 

this three symbols (“O”, “ +” and “x”), it is stable either in frequency and mode shape, 

as in damping ratio. 

2.6.2 Comparison of stabilization diagram alternatives and influence of the model 

order determination 

The 1st alternative has been studied and applied in [37], although it is the fastest 

way to construct the stabilization diagram, however, higher the order in the stabilization 

diagram, noisier is the system matrix and more spurious poles appear in the diagram. 

Otherwise, the 2nd and 3rd version to construct the stabilization diagram have more 

statistical meaning, because by increasing the order of stabilization diagram, more 

accurate modal parameter solution is expected due to the convergent property explained 

before. The following are comparisons between the 2nd and 3rd version considering the 

problem of model order determination. 

2.6.2.1 Simulation example: 6-DOF simulation study. 

The simulation example consists in a lumped mass model and a shear building type 

stiffness matrix. The system natural frequencies are: 

f = [1.0107 , 2.2795 , 3.9280 , 5.4433 , 7.5773 , 8.2290 ] Hz 

Rayleigh damping was assumed for the derivation of damping matrix, the assumed 

damping ratio for each mode are: 



30 

 

 ξ = [0.0351 , 0.0299 , 0.010 , 0.0087 , 0.0105 , 0.0058 ], 

Response is generated using discrete time deterministic state-space model having a 

spatially white noise as the input, and measured at each DOF. Measurement noise can 

be added after the system response is obtained. Figure 2-1 shows the noise free velocity 

measurement at 6th DOF, the sampling rate is 200 Hz and the total generated data length 

was 15000 points, which is equal to 75 sec. 

Figure 2-2 shows a comparison between the stabilization diagram using square 

and rectangular Toeplitz matrix for noise free data. 10000 data points were windowed to 

form the covariance matrices. Since this is a 6 DOF simulation example, there is no 

choice but to define system order as 12. 

The 3rd version only uses 2 block columns but let the block rows increase; SVD of 

Toeplitz matrix with 2 block columns have only 12 singular values since 6 sensors are 

used, this means that the order of matrix A is the same as the number of columns. 

Clearly one can see in Figure 2-2 that there is no difference between the two versions 

and the identified modal parameters are very stables at the beginning, because extra 

principal components were not needed since this is a noise free case. 

For the same system but considering acceleration measurements, as mentioned in 

section 2.2.1, equation (2.12) shows that the external excitation is directly transmitted 

into the acceleration measurements. A plot of this noisy signal from 6th DOF is shown 

in Figure 2-3. The input is generated by a 0 decibel (dB) spatially white noise, after 

multiplied by the direct transmission term it is equivalent to a noise to signal ratio of 

0.456, i.e., 45.6% in RMS sense (ratio of Frobenius norm between noise and response 

data). Under this type of noise which is correlated with output, an insufficient Toeplitz 
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matrix size will lead to a poor estimate of the lower modes. These results are shown in 

Figure 2-4. 

On the contrary, although it is more time consuming the use of the square Toeplitz 

matrix, one has not to worry about the noise and the determination of number of 

columns, as shown in the Figure 2-5, noise in the measurement data will only delay the 

emergence of a stable diagram. This explains why SSI-COV technique is robust against 

non-stationarity even its assumptions were violated, the essence of SSI-based 

algorithms is SVD, the larger the size of Toeplitz matrix, or projection matrix in case of 

SSI-DATA, the greater is the subspace dimension, more covariance data will be used by 

SVD to determine the system-related orthonormal base which span the Toeplitz matrix, 

i.e., a better fitting of the system information can be achieved. 

The simulation results are summarized in Table 2-1. For the noise free case, only 

excitation level of 50 dB is considered and correct results were obtained just at the 

beginning of the stabilization diagram, e.g., at 10 block rows using square Toeplitz 

matrix, moreover, answers picked from different number of rows are accurate enough. 

In the case of noisy measurements due to the directly transmitted excitation acceleration, 

three levels of excitation power were considered: 0 dB, 10 dB and 50 dB. Answers 

obtained using square Toeplitz matrix always converge to the correct solution, however, 

in the case of rectangular Toeplitz matrix, if the number of block columns are 

insufficient as mentioned before, lower mode answers are quite wrong or does not 

appear. 

As conclusions from the numerical simulation, it is important to note that SSI 

algorithm cannot recover the exact answer even for a simulated and noise free 
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measurements due to its stochastic assumption, which switches from a input-output 

model to an output-only model. A good estimate of frequency can be always achieved 

by increasing the size of square Toeplitz matrix despite higher noise content in the data, 

i.e., convergence to the true answer. However, damping estimate seems to be quite 

sensible to noise and some deviations are significant. 

2.6.2.2 Experimental example: identification of a 6-story steel frame from shaking 

table test 

The 6-story steel frame shaking table test was carried out at National Center for 

Research on Earthquake Engineering (NCREE), Taiwan, at August 2007. The structure 

and the sensor placement are shown in Figure 2-6. Accelerometers are placed at the 

center of each floor. Dimension of the columns are 150 x 25 mm (rectangular). 

Beams(L shape): 50x50x5 mm. Floor slab : 1000 x 1500 x 20 mm. Base plate : 1700 x 

1700 x 20 mm. The mass on each floor (lumped mass) is 862.85 kg (include bracing).                                         

Response data of the structure subjected to a white noise ground excitation of 50 

gal is used for system identification. A plot of the measured acceleration response in the 

6th floor is shown in Figure 2-7, signals looks quite clear and is similar to that shown in 

Figure 2-1. This verifies the fact that, for the base-excited structure, the Duk term in 

(2.12) will cancel out with the ground acceleration to obtain a “noise free” absolute 

acceleration measurement. Based on the previous simulation results, rectangular 

Toeplitz matrix with reduced number of block columns should be able to identify 

system poles correctly. For the identification purpose, data of all 6 sensors are used 

simultaneously, Total data length is 11800 points but only 8000 points was windowed to 

form covariance. The sampling rate is 200 Hz. 
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In this simple case, intuitively, a 6 story steel frame can be modeled as a 6 DOF 

system, therefore the order of system matrix A can be determined as 12. A plot of 

singular values can be a good indicator of the order that one may choose, which is 

shown in the Figure 2-8.  

Figure 2-9 shows the result obtained using both square and rectangular Toeplitz. 

The result is consistent with that obtained in the simulation example: for this almost 

noise free measurements, accurate results are obtained even using only 2 block columns 

(corresponding to 12 singular values to match the system order, no extra components 

used for noise). 

In order to verify the performance of stabilization diagram in case of 

underestimation or overestimation of the system order, different cases were analyzed 

and shown in Figure 2-10. 

Conclusion obtained from Figure 2-10 are that, when rectangular Toeplitz matrix 

is used, underestimation of system order leads to incorrect results for those modes 

corresponding to the selected singular values, however, correct answers can be achieved 

using square Toeplitz matrix for the same case. On the other side, overestimation do not 

consist any problem for both ways to construct the stability diagram. Having in 

consideration the error tolerance requirement in the selection of model order, specially 

for field data collected from full-scale real structures, square Toeplitz matrix seems to 

be more suitable for an accurate and reliable system identification.
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Chapter 3  
Simulation study of SSI-based algorithms 

A comprehensive numerical simulation task was carried out to understand the 

sensitivity of SSI-based algorithms subject to different perturbation factors and with 

special attention in their effects on the stabilization diagram.  

3.1 Noise effect in the identification of modal parameters 

In this section, comparison will be made for different SSI-based algorithms under 

noise effect. The same 6-DOF system of section 2.9.2 is used here again, which has well 

spaced frequencies.  

3.1.1 Addition of a spatially white noise (from 50% to 200%) 

In this part, a spatially white noise was added after the system response was 

generated. Figure 3-1 shows a segment of the 6th DOF measurement with 100% noise 

added in terms of percentage of signal RMS. Figure 3-2 and Figure 3-3 Show the 

stabilization diagram for the case of 100% and 200% respectively. A total of 8000 

points (sampling rate 200 Hz) were used for identification, the numerical results were 

picked when the matrix order is 80 block rows. The order ic is defined as half of the 

order of Hankel data matrix i, for pseudo-inputs in the case of PEM/SSI (Appendix B).  

Clearly one can see that there is not any problem for SSI-based algorithms to 

identify accurately the modal frequencies, since the first step of these algorithms either 

covariance or projection can cancel out almost all added white noise once at all. 

Therefore, even adding 200% of noise in RMS sense (noise to signal ratio), which is 

quite exaggerated, error of the identified frequencies is less than 4% for the 1st mode 
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and less than 1.5% for the remaining modes, as it is shown in Table 3-1. On the 

contrary of modal frequencies, damping ratio is very sensible to the addition of any type 

of noise even it is very small, as shown in Table 3-2, the error can be so large that 

reaches 100%. 

The stabilization pattern of SSI-COV and SSI-DATA are similar. PEM/SSI 

algorithm makes stabilization start slightly earlier for lower modes, however, the 

number of rows to reveal a total stable diagram is similar to that of SSI-DATA and 

SSI-COV. Therefore, one can conclude that these three algorithms together with 

stabilization diagram perform quite well under the addition of white noise, because 

noise assumptions of the stochastic state-space model were satisfied. 

3.1.2 Addition of a white noise correlated with output (violation to SSI assumption) 

For the same system and considering the same acceleration measurements shown 

in Figure 2-3, the type of added noise is the input multiplied by the direct transmission 

term and thus, it is correlated with output through the system matrix. It is equivalent to a 

noise to signal ratio of 0.456, i.e., 45.6% in terms of RMS. 

Results using SSI-COV, SSI-DATA and PEM/SSI are shown in Figure 3-4. Even 

a noise correlated with output measurement is added which violates the SSI 

assumptions, by increasing the order of projection or covariance matrix up to a certain 

level, frequencies can be accurately identified with stability diagram. But this is not the 

case for PEM/SSI, the reason of the loss of stability for the lowest mode is mainly due 

to the second projection, which tries to double fit the future measurements. Since in this 

case the SSI assumptions were violated, the second fitting rather is trying to include the 

undesired noise in the projection, therefore, the first mode was perturbed and cannot be 
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identified correctly. On the other side, lower modes are the most affected by the noise 

effects and take more time to stabilize meanwhile the matrix order increase. 

Since there is always uncertainty about the ambient noise or perturbations, one 

may conclude from this simulation experience that, the way to improve the noise 

robustness of SSI algorithm, is more convenient a pre-processing filter to firstly 

eliminate the perturbation factors than the post-processing approach as the case of 

PEM/SSI. Hence, in the next sections, the pre-processing tool known as SSA will be 

introduced. 

3.2 Nonlinearity in the signal 

There is always some nonlinearity present in real world civil structures, therefore, 

after the study of the influence of noise in the measurements, another question to answer 

is: what outcome will be obtained by a linear system identification technique to identify 

a system with certain nonlinearity? And, whether the stabilization diagram works or not 

due to the presence of this nonlinearity? 

To make simulation example possible, Duffing model [8] was considered to 

simulate a nonlinear SDOF system. Duffing model assume a cubic stiffness function, 

k3u
3, which is added to the linear stiffness term in the equation of motion, where u is the 

displacement. A positive value of k3 indicates hardening phenomenon and a negative 

value, softening. Considering that softening is more common in civil infrastructures, a 

set of negative values of k3 will be used in the modeling. 

Newmark-beta method and a white noise input was used to generate the system 

response. Since there is an extra nonlinear term in the equation of motion, an iterative 
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procedure had to be used to approximate the secant stiffness [22] as shown in Figure 

3-5. First, the tangent stiffness (ktang = k + 3k3ui
2, where “i” is the i-th step) was used as 

initialization, after found ui+1, the secant stiffness can be calculated from ui and ui+1, but 

again, this secant stiffness is used to compute the next step ui+1
(1) and so on, until the 

difference between ui+1
(m)

 and ui+1
(m+1) is less than the specified convergence tolerance. 

The same tolerance applies to the estimated next step velocity and acceleration. Here, 

the tolerance is specified as the difference between m+1th and mth iteration, which must 

be less than 0.01%. 

Three natural frequencies were used in the simulation with different values of k3, 

this is shown in Table 3-3. Moreover, 1% damping ratio was assumed.  

Figure 3-6 shows a comparison between the generated signal of a system of 0.1 Hz. 

Clearly due to the softening effect (frequency became lower in some time instants) the 

acceleration response is delayed with respect to the signal of a linear system. Figure 3-7 

shows the comparison between the computed nonlinear (Duffing) and linear restoring 

force. 

Figure 3-8 shows the comparison of stabilization diagram constructed using 

SSI-COV, SSI-DATA for different frequencies, and one example for PEM/SSI. The 

diagram shows convergent properties, and the identified frequencies are slightly lower 

than the natural frequency of the original linear system as shown in Table 3-4. This 

result was expected because SSI algorithms is just finding a best fit of the nonlinear 

signal to a linear system, and since it is a softening model we are dealing with, the 

obtained equivalent frequency is reasonable to be slightly lower than the corresponding 

linear frequency.  
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With these results one can conclude that SSI-based algorithms can identify an 

equivalent linear system from nonlinear signals effectively. Nonlinearity of the signal 

does not interfere the stabilization diagram. 

3.3 Closely-spaced frequencies blended with signals of a time-varying 

system 

In this section, two closely-spaced frequencies sine waves were generated, but it is 

blended with a signal with time-varying frequency. No noise was added in this 

simulation experiment, and the frequencies are close enough: f1 = 7.99 Hz and f2 =8.00 

Hz, the time varying term is “sin(t2)” which is shown below. The sampling rate is 100 

Hz, the total data length was 1000 points. The signal together with the result from 

recursive frequency tracking using RSSI-COV is shown in Figure 3-9. Note that the 

first 100 points is the window length to initiate the recursive algorithm. 

2
21 sin2sin2sin ttftfy ++= ππ  (3.1) 

Although it is not appropriate to use linear SSI algorithm and stabilization diagram 

to identify time-varying systems for which is more convenient a recursive algorithm, the 

purpose is to understand the behavior of SSI and stability diagram in the presence of 

time-varying frequencies. Figure 3-10 and Figure 3-11 shows the stabilization diagram 

constructed using SSI-COV and SSI-DATA for different system orders, Figure 3-12 

shows the diagram for PEM/SSI. 

These figures is showing that the closely-spaced frequencies appear as a single 

frequency if insufficient system order was chosen, as the system order increases to a 

sufficient level, two close-spaced frequencies will be revealed, but to make it stable 
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from the beginning to at least 100 block rows, the system order must be at least 26. 

Although the stabilization behavior is different between SSI-COV and SSI-DATA since 

the first uses correlation and the second, projection, SVD is the main reason of the 

mentioned phenomena, i.e., SVD is the tool used to extract the observability matrix: 

when the system order is only 4 or 6, only the first 4 or 6 orthonormal vectors was 

chosen and the closely-spaced frequency information cannot be recovered, because 

there are time-varying frequencies with the same power which contains, in other words, 

“a lot of frequencies” within the data being analyzed. Consequently, the closely-spaced 

frequencies cannot be revealed until the selected system order is enough to cover all the 

orthonormal vectors which span the system-related information.  

Furthermore, as the data matrix order increases, in more orthonormal vectors and 

with larger dimensions the signal time-varying frequencies will be decomposed, then, 

more “equivalent frequencies” appear in the diagram to fit this time-varying signal, as 

shown in Figure 3-10 d), but these poles are not stable. When the system order is 

insufficient, two closely-spaced frequencies will be perturbed at higher number of rows 

due to the finer decomposition of the time-varying signal. Thus, the required system 

order to include all information is higher as well as the number of block rows increases. 

In our case, a system order of 26 was enough to cover up to 100 rows. 

Since this simulated signal is a sine wave with zero damping, this can be treated as 

free vibration of a idealized undamped system. As mentioned in the theoretical 

framework, terms in the extended observability matrix Oi is actually a sequence of 

observed free vibration of the system. Whether is covariance used in SSI-COV or 

orthogonal projection in SSI-DATA, the main objective is to cancel out the random 

input excitation which is represented by process noise in stochastic state-space model. 
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In this case of sine waves, there is no input and hence, covariance or projection is not 

required here as it is shown in the following expressions: 

ppip ΠUXOY +=  (3.2) 
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with Up = 0 

(3.3) 

where Up is the past input, Xp is the past Kalman filter, and the other variables are the 

same as defined in chapter 2. The expression is deduced from discrete-time 

deterministic state-space model [47], SVD can be applied directly to the Hankel data 

matrix and correct answer can be obtained. This result is shown in Figure 3-13. 

From Figure 3-13 one can realize that, without any noise cancellation procedure, 

the time-varying signal is “literally” fitted with “a lot of equivalent linear frequencies”, 

and the respective diagram is approximately stable.  

The effect of doing first covariance by SSI-COV is effective to distinguish the 

signals with time-varying frequency from the signal with time-invariant characteristic 

because together with the stabilization diagram, the poles of time-varying frequencies 
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“split” continuously as the number of block rows increases and do not stabilize, as that 

shown in Figure 3-10 d). This continuous splitting phenomenon is a useful way to 

identify the presence of time-varying signals when SSI-COV is used. 

3.4 Preprocessing with SSA and noise effect in closely-spaced 

frequencies 

So far all analysis presented in section 3.3 were done for a noise free signal. In this 

section, white noise will be added to the signal to test the ability of SSI-based 

algorithms to identify closely-spaced frequencies. Unfortunately, after adding 5% noise 

neither SSI-COV nor SSI-DATA are able to identified the close frequencies. The results 

is shown in Figure 3-14. Later on, the subspace preprocessing tool known as SSA will 

be introduced to address this noise perturbation problem.  

To focus only in the noise effect in closely-spaced frequencies, the time-varying 

signal is removed and the result is shown in section 3.4.1.  

3.4.1 Sinusoidal waves 

Consider the case of a signal constituted by 7.99 Hz and 8.00 Hz sine waves with 

added 10% noise, which is shown in Figure 3-15. 15000 points were generated with a 

sampling rate of 200 Hz, 10000 points were used in covariance for SSI-COV, and 

similarly, 10000 columns form Hankel matrix for SSI-DATA. Since SVD does not 

decompose signal according to frequency components, although theoretically a system 

order of 4 is enough for 2 frequencies, after several trial and error, system order was 

chosen as 8 in this noisy case, and the resulting stabilization diagram is shown in Figure 

3-16. The diagram starts to converge and stabilize up to approximately 260 rows in 
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SSI-COV, but for SSI-DATA the diagram is still not stable. However, both resultant 

diagram spinning around and converges very slowly to the correct answer, the required 

number of rows is approximately about 400 rows.  

The identified frequencies are: 7.9946 Hz and 8.0040 Hz; damping ratios are: 

0.00057 and 0.00455 for SSI-COV. For SSI-DATA, the identified frequencies are: 

7.9966 Hz and 7.9794 Hz; damping ratios are: 0.0003 and -0.0009. 

Here we can conclude that a small level of noise can interfere severely in the 

identifiability of closely-spaced frequencies. PEM/SSI was proven in previous sections 

to be very sensible to noise contamination, thus, the use of SSA before SSI is an option 

to, filter out first the noise contamination and then the identification quality of the 

stabilization diagram can be improved. Figure 3-17 shows the variation of singular 

values (singular spectrum) obtained in SSA: a) is the singular values obtained by the 

SVD of a Hankel matrix of 200 by 5000, there are in total 200 singular values. One can 

note that in a) there are only 2 singular values separated from the remains, i.e., the 

decomposition order is not enough to separate the two close frequencies from noise. On 

the contrary, when the size of Hankel matrix is increased to a 1000 by 3000 matrix as 

shown in b), the noisy signal data is decomposed into 1000 components, and effectively 

4 singular values were separated from the remains, i.e., the 2 close frequencies are 

extracted.  

The stabilization shown in Figure 3-18 shows the stabilization diagram for the 

cases a) and b): only one frequency appears in a) meanwhile two close frequencies were 

revealed in b), the identified frequencies and damping ratios at 100 rows are: 7.9949 Hz, 

8.0278 Hz, and 0.00028, 0.0167 respectively (original damping ratio is zero). This result 
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shows that SSA-SSI-COV is an effective algorithm to treat noisy measurements and to 

improve the identification quality.  

3.4.2 Response of a 2-DOF system subjected to white noise excitation 

In fact, sine waves will never be measured in real world structures subjected to 

ambient excitations, thus, to complete the research in closely-spaced frequencies 

contaminated with noise, a 2 DOF system was created with the following properties: 

M = [1  0; 0  1];   

C = [0.1141  -0.0710 ; -0.0710  0.1141];   

K = [5  -0.35 ; -0.35  5]; 

Natural frequencies = [0.3432  0.3681]; 

Damping ratios = [0.01  0.04]; 

15000 data points were generated, sampling rate is 50 Hz, a plot of the generated 

acceleration measurements in the 2nd DOF is shown in Figure 3-19, the noisy 

measurement shown in Figure 3-19 b) is due to the direct transmitted acceleration of 

external excitation, and it is equivalent to 128.86% of noise in terms of RMS of the 

signal. 

Both SSI-COV and SSI-DATA do not have any problem to identify close 

frequencies when the signal is noise free and the system was excited by a white noise 

input as shown in Figure 3-20.  

For noisy acceleration measurements shown in Figure 3-19 b), the close 

frequencies shows convergent property up to 60 rows and seems to be stable after 120 
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rows when SSI-COV is used. This is shown in Figure 3-21 a). The result obtained using 

SSI-DATA is better for the singles generated by state-space model than pure sine waves 

with added noise; up to 60 rows the poles are stables. This can be explained because 

SSI-DATA derivation is based on the same state-space model and under the assumption 

of a continuous white noise excitation. 

To improve the stability of the diagram and enhance the identification quality with 

a reduced number of rows, which means a significant reduction in computation effort, 

the pre-processing tool SSA can be used in conjunction with SSI-COV. The Hankel 

matrix to be decomposed by SSA was decided to be 800 block rows (totally 1600 rows 

with 2 sensor) by 3000 columns, the variation of singular values is shown in Figure 

3-22, and a comparison of the reconstructed signal with the noise free signal is shown in 

Figure 3-23.  

Although SSA could not recover exactly the noise free signal as shown in Figure 

3-24, however, it conserves the required information to perform a good SSI-COV 

identification: 3500 points were used in covariance, and rows were increased from 2 to 

100, system order is determined to be 4. A comparison between different possible 

choices of singular values was made in this figure. 

Through Figure 3-24 one can realize that even with only 4 singular values, the 

information is sufficient to let SSI-COV able to identify the system frequencies, but it is 

not for damping ratio, this is observed in Table 3-5.  

As a conclusion for this example, from the different choices shown above, 8 

singular values chosen from SSA is the optimum in terms of the obtained modal 

parameters. Selecting more singular values than the amount in need will introduce extra 
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noise components in the filtered signal and hence, the stabilization became worse; on 

the other side, although insufficient singular values is leading to negative damping ratio 

estimates (unstable systems poles), both the stability diagram and the frequency 

estimate has the same quality and accuracy. From this point, there should be a best 

choice of singular values at SSA step, which leads to the best estimate of modal 

parameters through SSI-COV. Furthermore, below this critical number, the stabilization 

diagram will be always stable and with the same accuracy whatever the number of 

singular values chosen. 

The unique drawback of the use of SSA before SSI-COV is the uncertainty about 

the damping ratio estimate, since it seems to be always lower than the true damping 

ratio. The reason is that, the information extracted by SSA is sufficient to obtain an 

accurate estimate of the frequency, but a great portion of the signal was filtered out 

loosing in this way the possibility to obtain a reliable damping ratio estimate. However, 

anyway, as what is shown in previous sections, the damping ratio obtained by SSI-based 

algorithms from ambient vibrations is generally bad due to the noise interference. 

After these simulation studies, SSA-SSI-COV has been proven to be very effective 

to deal with noisy measurements, accuracy and stability diagram are also improved. In 

section 4, the application of SSA-SSI-COV in the identification task of a real and 

complex structure leads to a very practical way to determine the system order. 
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Chapter 4 

Application of SSI to the identification of Canton Tower 

The Canton Tower is located at Guangzhou, China. It is a super high-rise 

tube-in-tube structure with a height of 610 m, as shown in Figure 4-1. This structure 

comprises a reinforced concrete inner tube and a steel outer tube with concrete-filled 

tube (CFT) columns. There are 37 floors connecting the inner tube and the outer tube. 

The outer tube consists of 24 CFT columns, uniformly spaced in an oval while inclined 

in the vertical direction. The inner tube is an oval shape but with constant dimension of 

14m by 17m in plan, but its centroid differs from the centroid of the outer tube. The 

Hong Kong Polytechnic University is in charge of the implementation of the long-term 

SHM both during the construction as in the service stage. More details can be found in 

references [35, 63, 64]. The data were recorded from 18:00 pm on 19 January 2010 to 

18:00 pm on 20 January 2010, lasting 24 hours. I The acceleration, wind direction, wind 

speed and ambient temperature were measured during the period. 

Twenty uni-axial accelerometers (Tokyo Sokushin AS-2000C) were employed for 

vibration measurements, the frequency range is DC-50 Hz (3dB), amplitude range ±2 g, 

and the sensitivity 1.25 V/g. They were installed at eight levels as shown in Figure 1, 

the 4th level and the 8th level were equipped with four uni-axial accelerometers, two for 

measurement of the horizontal acceleration along the long-axis of the inner structure 

and the other two for the short-axis. At the other six levels, each section was equipped 

with two uni-axial accelerometers, one along the long-axis of the inner structure and the 

other along the short-axis of the inner structure. Figure 4-1 also shows a plan of the 

section and the measurement direction of acceleration. The sensors were fixed to the 

shear wall of the inner structure via a steel angle. The sampling frequency of the 
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acceleration and wind data was 50 Hz. Figure 4-2 shows the acceleration measurement 

at the first minutes of the 1st and 20th sensor which are located at a lower and a higher 

place of the tower respectively. Signals of the 20th sensor appear to contain a long 

period signal (about 2 seconds) as compared to the measurement of 1st sensor. 

4.1 Frequency Domain Decomposition (FDD) 

Before applying the SSI analysis, the FDD (Appendix A) was used to identify the 

possible number of modes contain in the response measurements. The FDD spectrum 

was calculated using the first 131072 points (43.69 minutes data) starting from 18:00 

pm on 19 January 2010, Welch’s periodogram [54] was used to estimate the power 

spectrum density function with a window length of 8192 points and an overlap of 4096 

points which leads to a power spectrum estimate obtained by averaging a total 31 

Fourier spectrums. Since the sampling rate is 50 Hz, the used of window length of 8192 

points leads to a frequency resolution of 0.006 Hz. The result of FDD spectrum is 

shown in Figure 4-3. 

4.2 SSI-COV and SSI-DATA 

To construct the stabilization diagram using SSI-COV, the first 18000 points (6 

minutes data starting from 18:00 pm on 19 January 2010) were used in the covariance, 

and the size of square Toeplitz matrix increases from 5 to 300 block rows, all 20 sensors 

were used in the computation. By observing the variation of singular values shown in 

Figure 4-4, there is not any significant gap between the extracted singular values. There 

is no clear criterion to determine the system order based on the singular spectrum in 

SSI-COV. As an extra help, one can count the number of peaks appearing in FDD 

spectrum multiplied by two to get an estimate of the system order, i.e., number of 

singular values to be chosen. In our case, 90 singular values were chosen.  
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In the case of SSI-DATA, a 8000 columns Hankel data matrix with rows i 

increasing from 20 to 280 block rows (the actual maximum number of rows is li ××2  

= 11200 rows) are used to identify the modal parameters of Canton Tower. The system 

order is chosen as the same as SSI-COV. 

Based on the experience of simulation examples, either with SSI-COV or 

SSI-DATA, a stable diagram will take time in reveal for noisy acceleration 

measurements, and this occurs as it is expected, the stabilization diagram constructed 

using SSI-COV is shown in Figure 4-5 a), ranging from 0 to 1 Hz, and the outcome for 

SSI-DATA is shown in b). The diagram from 1 Hz to 5 Hz is shown in Figure 4-5 c) 

and d) for SSI-COV and SSI-DATA respectively. A peculiarity of this diagram is that 

the spectrum of the 1st singular value calculated by FDD is plotted at the background of 

the diagram for comparison purpose. The identified modal parameters are shown in 

Figure 4-6 and Figure 4-7, “f” indicates frequency, “d” indicates damping ratio; the 

plots are the complex modes identified by SSI-COV and SSI-DATA for the first 18 

modes. The “R” term represents the correlation coefficient between real part and 

imaginary part of complex modes, this serves as an indicator of the 

almost-proportionality of the structure damping, i.e., if R is near to the unit, damping of 

the structure is almost totally proportional and the phase angle of complex mode shapes 

are in phase (0°) or out-of-phase (180°). 

The first two close frequencies: 0.0404 and 0.0409 Hz have a damping ratio much 

higher than the usual for civil structures, and their complex mode shapes are quite 

sparse besides that the second pole is not stable, hence, this two poles can be discarded 

and they probably correspond to the dominant wind frequency since the wind spectrum 

has its peak around 0.1 Hz. 
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On the other side, SSI-DATA could not find the first mode which is 0.0902 Hz 

based on the identification result of SSI-COV. However, although SSI-COV could 

identify the 1st mode, its complex mode shape is a little more scattered comparing with 

other identified modes which are almost a straight line. The especial difficulty to find 

the first mode may be explained by the fact that the dominant wind frequency identified 

here is very close to the first mode, therefore, this latter is likely to be affected by the 

wind frequency as well as the noise content, thus, from the simulation experience the 

lowest mode is the most affected by the noise. 

Besides that, SSI-DATA could only found three stable frequencies: 0.365, 0.477 

and 0.519 Hz meanwhile SSI-COV found five in that range. The difficulty to identify 

these frequencies may be explained based on the conclusions obtained in previous 

simulation results: closely-spaced frequencies with noise in the measurements are hard 

to be identified, if the noise effect is strong and unable to be filtered out first, generally 

only one equivalent frequency can be identified. Although SSI-COV shows to be able to 

separate these close frequencies, huge Toeplitz matrix size is required to achieve a good 

segregation between system information and noise, i.e., excessive time was consumed 

in computation. 

4.3 SSA-SSI-COV 

4.3.1 Implementation 

In this section, SSA will be used as a pre-processing tool in the sense of a 

“subspace filter”, to extract first the principal components from the measurements, thus, 

to enhance the stability of SSI-COV. The SSA-SSI-COV procedure is listed as follows: 

1. Assemble Hankel Data matrix (100~200 block rows are recommended). The number 
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of columns will determine the available data point to construct the oncoming Toeplitz 

matrix. Usually the number of columns should be much larger than the number of 

block rows. The number of rows will determine the number of principal components 

the signal to be decomposed. 

2. Perform SVD to the Hankel Data matrix in the step of SSA, from the singular 

spectrum (plot of the singular values) obtained in SSA, a preliminary set of principal 

components can be selected to reconstruct the signal. 

3. Reconstruct the signal and repeat it for the set of choices of SV. 

4. Construct Toeplitz matrix from the reconstructed signals, as it is done in SSI-COV.  

5. Conduct SVD to the Toeplitz matrices and plot the singular spectrum (The size of 

Toeplitz matrix could be the largest number of block rows that will be reached in the 

stabilization diagram. 100~200 block rows is recommended for field noisy 

measurements). 

6. Repeat step 4 and step 5 for the set of choices of SV from SSA. 

7. Go from large to small number of components (SV) selected from SSA, and seek for 

the one whose singular spectrum in SSI-COV has a remarkable change of slope. 

8. The best system order will be within the start and end of the change of slope, and the 

stabilization diagram can be constructed for pole discrimination. 

The introduction of SSA before SSI-COV enables the determination of system order, 

which is totally subjective if SSI algorithms are used alone. The above described 

procedure will be demonstrated in the following Canton Tower identification task. 
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4.3.2 Canton Tower identification through SSA-SSI-COV 

Application of SSA-SSI-COV to the measurements of Canton Tower was studied. 

In performing the SSA, 20 sensors measurements in form of vector were placed at once 

in Hankel data matrix with the following dimensions: 340 block rows (totally 6800 rows) 

by 15000 columns. The outcome singular spectrum is shown in Figure 4-8. It is 

difficult to select a suitable number of singular values from this figure because there is 

not any gap on the distribution of singular values obtained by SSA. 

In the implementation of SSA-SSI-COV there are two parameters to be determined: 

the first one is the number of Singular Values (SV) to be chosen by conducting the SSA, 

and the other is the system order to be determined in the SSI-COV analysis. From the 

experience gathered by working on the data of Canton Tower, a specific number of SV 

in SSA step leads to a change of slope in the singular spectrum obtained in SSI-COV 

(one can call it the first critical number of components). This is shown in Figure 4-9 b). 

If the selected number of SV in the step of SSA continues decreasing, up to a second 

critical point the change of slope will become very sharp, almost a vertical jump, as in 

the case of 95SV shown in Figure 4-9 d). This latter phenomenon will remain as the 

number of SV chosen in SSA continues decreasing as that shown in e) and f). In this 

second critical point, usually the number of SV in the SSA step will be very closer to 

the system order, where is an almost vertical jump. From experience, the second critical 

point gives the best identification results, but those not well excited or highly 

contaminated modes will be also filtered out. 

Different stabilization diagrams were made for comparison purpose. Figure 4-10 

shows the result for different choices of SV, ranging from 0 Hz to 1 Hz. In the 

beginning, 312 SV were chosen from SSA, the jump in the singular spectrum of 
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SSI-COV is almost imperceptible and only a few modes appear in the stability diagram. 

When a smaller number of SV is selected, e.g., 136 SV in SSA step, as shown in Figure 

4-9 b), the change of slope is a little more remarkable (this can be considered as 

approximately the first critical point), and the stabilization diagram shown in Figure 

4-10 c) was improved. If one keep reducing the selected SV in SSA step, the diagram 

become more stable and starts earlier. However, in the case of Figure 4-10 d) when 95 

SV were chosen, the 1st mode has been filtered out although a stable diagram starts even 

earlier than Figure 4-10 c) in which 136 SV were selected. Finally, as discussed above 

in the simulation section, although the number of SV selected are fewer than the 

required as in the case of Figure 4-10 e) and f), certain modes will not be discarded, but 

the diagram is totally stable just at the beginning, i.e., correct answers were found at a 

few block rows; in other words, these totally stable modes are free from noise 

perturbation after the pre-processing with SSA. 

To understand the absence of the 1st mode when 95 SV are extracted from SSA. 

The Fourier Spectrum of the response data is shown in Figure 4-11. Title of the figure 

indicates sensor number. In the case of 95 SV, the major peaks are covered, but the peak 

corresponding to the first mode was almost totally filtered out, which is originally very 

small comparing to others and looks fuzzy and blended with the noise frequency. By 

increasing the number of selected SV to 136 (Figure 4-12), in this case, the peak 

corresponding to the 1st mode is conserved, however, the noise filtering is not as good 

as it is the case of 95 SV. Therefore, 95 SV is slightly better in terms of stability 

diagram tan 136 SV. Comparing Figure 4-11 and Figure 4-12, one can note that there 

is another peak at 1.2 Hz just filtered out by SSA using 95 SV. 

The stabilization diagram with frequency ranging from 1 to 5 Hz is shown in 
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Figure 4-13 a) and b), for the cases of 136 and 95 SV respectively. Finally, complex 

mode shapes together with the modal frequency and damping ratio are shown in Figure 

4-14 and Figure 4-15 respectively. A summary and comparison of the identified system 

modal frequencies with the Finite Element Model of the structure is shown in Table 

4-1.  

Similar to the outcome from SSI-COV, the first two identified frequencies by 

SSA-SSI-COV: 0.0345 Hz and 0.0465 Hz (using 95 SV), which are probably wind 

frequencies, whose mode shapes plotted in complex plane appear without any regularity. 

Although the fundamental mode was found by extracting 136 SV, unlike the other 

modes which appear almost in a straight line (meaning that the structure has 

almost-proportional damping) this 1st mode is the unique which has the lowest value of 

R excepting the wind modes, which is equal to 0.7. Here one can conclude that, from 

the several choices of SV from SSA, the use of 95 SV leads to the best stability. But to 

achieve a better identification quality of the 1st mode shape, a larger Toeplitz matrix size 

may be needed.  

4.3.3 Canton Tower identification through SSA-SSI-DATA 

A unique remaining question is that, if SSA can be combined with other SSI 

algorithm as a pre-processing tool, such as SSI-DATA? The stabilization diagram using 

SSA-SSI-DATA is shown in Figure 4-16. From this result one can conclude that SSA 

serves as a preprocessing tool only in conjunction with SSI-COV but not for SSI-DATA. 

The result obtained by SSA-SSI-DATA is worse than that applying directly SSI-DATA. 

This may be explained by the fact that, the orthogonal projection used in SSI-DATA is 

trying to find the best fit by least square of the future measurements in terms of the past 

data. However, the principal components recovered by SSA used for reconstruction of 
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the signal may provide a bad fitting in the projection and worse results were obtained. 

4.4 Low pass filter with SSI-COV 

As it can be observed from the Fourier Spectrum of the acceleration measurement 

of sensor No. 19 shown in Figure 4-17, there is a wide band measurement noise 

distributed in the high frequency range (comparing to the structure fundamental mode, 

after 5 Hz can be considered as high frequency). Low-pass filter is commonly used to 

reduce the noise effect in system identification. Here the use of low-pass filter and its 

effect in stabilization diagram is evaluated. 

A Butterworth IIR (Infinite Impulse Response) filter of order 10 and cutoff 

frequency of 5 Hz is used to low-pass the signal trying the eliminate the measurement 

noise. To avoid phase shifting effect in the filtering process, the data was filtered twice: 

the filtered data is reversed and passed again by the same filter to cancel out all phase 

shift caused by the Butterworth IIR filter. The frequency response function of 10th order 

Butterworth filter with cutoff frequency of 5 Hz is shown in Figure 4-18. The frequency 

axis is normalized, the normalized cutoff frequency corresponds to 0.2 of the original 

Nyquist frequency which is 25 Hz. A segment of the filtered signal is shown in Figure 

4-19, one can see that the high frequency noise content was reduced after filtering. 

The stabilization diagram constructed using both SSI-COV and SSI-DATA are 

shown in Figure 4-20. However, after low-passing the acceleration data, neither 

SSI-COV nor SSI-DATA were able to realize the fundamental mode of the structure at 

a similar matrix order than that used in by SSA-SSI-COV. The mode corresponds to 

0.4243 Hz was also missed by SSI-DATA and the diagram of the same mode is not 

stable. Therefore, although high frequency noise can be filtered out, the noise content 

below 5 Hz still exists and continues perturbing the identification of these 
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closely-spaced frequencies. From this evaluative comparison, when SSI-COV is used, 

one may prefer SSA as pre-processing tool than low-pass filter, thus, besides the better 

noise filtering performance achieve by SSA, it is a practical way to determine the 

system order. 

Finally, to complete the modal information, the three dimensional plot of examples 

of the identified mode shapes with SSI-COV are shown from Figure 4-21 to Figure 

4-24, from the first mode to the 24-th mode. The corresponding first 18 complex mode 

shapes are shown in Figure 4-6 and Figure 4-7, which are the system poles extracted 

from the 300-th block row. 

4.5 Improve the identification convergence speed with decimation 

In addition to the SSA-SSI-COV algorithm which pre-process the noisy data and 

allows to realize all identifiable modes, the convergence of time domain system 

identification algorithms can be easily improved by “decimation”, which is a two-step 

process: low-pass anti-aliasing filter and downsampling, thus, the choice of a proper 

sampling rate is an important issue in system identification [29,66]. The Nyquist 

frequency gives the lower bound for the sampling rate meanwhile the upper bound is 

determined by the numerical instability due to truncation and round-off errors in a 

digital computer. It is shown in [67] that the poles of the transfer function of a 

discrete-time system approach to one on the unit circle as the sampling interval becomes 

very small, which leads to numerical instability in the computation especially when the 

data is noise contaminated. In [68] a sampling rate between 10 times to 50 times the 

closed loop system bandwidth is recommended for the digital implementation of 

feedback systems. 

 The Canton Tower is a very flexible and long period structure with about 0.09 Hz 
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for its first mode, and there are 9 modes below 1 Hz. It is possible that a sampling rate 

of 50 Hz is too high for a fast convergence of these modes below 1 Hz through the use 

of stabilization diagram especially for the 1st mode. 

Three downsampling factors were chosen for comparison: 2, 5, and 10, which will 

reduce the original sampling rate (50 Hz) to 25 Hz, 10 Hz and 5 Hz respectively. To 

avoid aliasing, a low-pass filter must be used as an anti-aliasing filter to reduce the 

bandwidth of signal before it is downsampled, i.e., the signal are firstly low-passed by a 

Butterworth 10th order filter with cut-off frequencies of 12.5 Hz, 5 Hz and 2.5 Hz 

corresponding to the respective Nyquist frequency. The same 400 seconds data length is 

downsampled for identification, thus, there are only 2000 points available for the case 

with sampling rate of 5 Hz, 4000 points for 10 Hz and 10000 points for 25 Hz. The 

system order is defined to be 60 when the data is downsampled to 5 Hz, and 90 when it 

is downsampled to 25 Hz and 10 Hz. The outcome stabilization diagram is shown in 

Figure 4-25 for the frequency ranging from 0 to 1 Hz. It is clear from a) that with the 

data downsampled to 25 Hz, it is still costly to reveal a stable diagram for the 1st mode; 

however, a stable diagram appears for all modes with few block rows when the data is 

downsampled to b) 10 Hz and c) 5 Hz, although for this latter not all modes were 

identified. Figure 4-26 shows the stability diagram for the frequency range between 1 

to 6 Hz. Examples of complex modes shapes identified with different sampling rates are 

shown in Figure 4-27 for modes 1~10 (the wind modes are not shown), the same as 

those obtained in section 4.2 and 4.3 by SSI-COV and SSA-SSI-COV under a sampling 

rate of 50 Hz, these complex modes appear almost in a straight line, thus, the mode 

shape quality is not affected by a proper decimation.   

Finally, the identified modal frequencies and damping ratios are summarized in 
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Table 4-2, one can note that the identified frequencies are the same as that obtained 

with the original sampling rate, only the identified damping ratio for 1st mode (about 1%) 

is much lower than that identified through SSI-COV and SSA-SSI-COV using the 

original sampling rate of 50 Hz. From this analysis, it is concluded that a sampling rate 

of 10 Hz is suitable for identification and monitoring of Canton Tower which implies a 

significant reduction in computation effort. If only lower modes are interested, the 

sampling rate can be even reduced to 5 Hz and the convergence is even faster. 
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Chapter 5 

Recursive Stochastic Subspace Identification algorithms 

Different from the off-line analysis, the on-line system identification and damage 

detection, based on vibration data measured from the structural health monitoring 

system has received considerable attention recently. In this section, the 

Covariance-driven Recursive Stochastic Subspace Identification algorithm (RSSI-COV) 

is discussed, for later, to be used to estimate system modal parameters from the 

response measurements of time-varying systems. To consider the noise contaminated 

data, a recursive pre-processing technique called recursive singular spectrum analysis 

technique (rSSA) is introduced to enhance the accuracy and stability in the online 

tracking capability. 

5.1 Recursive Covariance-driven Stochastic Subspace Identification 

algorithm (RSSI-COV) 

For online application of SSI-COV, instead of arranging the block covariances in 

the so-called Toeplitz matrix as shown in (2.27), these must adopt the form of a Hankel 

Covariance matrix, which is the way it is outlined in NExT-ERA [10]. From the same 

stochastic properties shown in (2.25), the Hankel Covariance matrix has the following 

factorization properties: 
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where nli
i

2×ℜ∈O  is the same observability matrix and lin
i

×ℜ∈ 2
Ω  is the stochastic 

controllability matrix, which is similar to iΓ  shown in (2.28) but with its entries in 

reversed order. The observability matrix can be obtained by applying SVD to the 

Hankel covariance matrix, and then the system matrices and modal parameters can be 

extracted in the same manner than that presented in SSI-COV off-line analysis. The 

Hankel Covariance matrix can be constructed by arranging the output measurement data 

vectors as follows: 
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where 1×ℜ∈ l
ky is the output measurement vector. 1×+ ℜ∈ il

ky  and ilT

k
×− ℜ∈ 1y . l is the 

number of sensors and i is number of block rows which forms the Hankel covariance 

matrix. One can find easily that the latter can be built by the following expression:  
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where k is ranging over the entire set of available data and p~  is an optional 

normalization parameter. As multiplying cov
NH  by a constant does not affect the 

obtained matrices A and C, p~ can be set to 1 without further influence on the obtained 

models. Since the order of the Hankel Covariance matrix is “i” with data length N, then, 

the Hankel Covariance matrix (which is a square matrix since the same order is used for 

rows and columns) can be calculated as the summation over N-2i+1 rank-one matrices 

formed by T

kk
−+ yy , and later a new incoming data point N+1 will be converted into a 
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new rank-one matrix adding to the existing Hankel Covariance matrix.  

There are three possibilities to formulate the adaptive Hankel matrix for 

RSSI-COV [17]: 

1. Exponential forgetting: The old data is multiplied by a forgetting factor µ when a new 

data is added. 
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2. Sliding window: This formulation require 2 step calculation for each incoming new 

data. The oldest data is removed from the window (downdating) and a new data is 

incorporated (updating). Let the window length be L: 

[ ] ∑
+−=

−+−+ ==
N

iLNk

T

kk

T

kkN p
E

2

cov 1
yyyyH  (5.5a) 

( ) ( )TiLNiLN

T

NNNN
−

+−
+

+−
−

+
+

++ −+= 2211
covcov

1 yyyyHH  (5.5b) 

3. Combined approach: It is the application of forgetting factor in updating as well as in 

downdating. 
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where the superscript N-2i+1 above the forgetting factor µ is because HN is formed by 

the summation over N-2i+1 rank-one matrices formed by T

kk
−+ yy , and since the Hankel 

Covariance matrix is updated first, the rank-one matrix “ ( )TiLNiLN
−

+−
+

+− 22 yy ” to be downdated 

should be multiplied by the corresponding forgetting factor to the power of N-2i+1. 

The software library LAPACK is used in MATLAB to compute SVD of the 

Hankel Covariance matrix in an off-line manner, which uses the classical algorithms 
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like Householder reflections and QR algorithms [18], but it is very costly in the 

computation effort since it takes O(ab2) floating point operations to compute SVD[45], 

where a is the number of rows and b is number of columns of the matrix. It is not 

suitable for online applications. The need of a recursive fashion to update SVD was 

firstly found in the field of sensor array signal processing, in which the subspace 

estimation plays an important role and the online tracking of the direction of arrival 

(DOA) of the plane waves is the main issue. As a consequence, a new approach called 

Projection Approximation Subspace Tracking (PAST) was initially developed by Bin 

Yang [56], who takes advantage of a mathematical lemma to find the required column 

subspace as an unconstrained optimization problem. Later the algorithm is modified to 

its Extended Instrumental Variable version (EIV-PAST) by Gustafsson [20], which is a 

suitable algorithm for the structure of SSI-COV [17]. It is important to mention that 

PAST is not the unique algorithm to track the time varying subspace, it is classified in 

the category of the unconstrained quadratic optimization problem [34]. In the following, 

a brief description of PAST, its extension to EIV-PAST and implementation to 

recursive SSI-COV will be described. 

5.1.1 Projection Approximation Subspace Tracking (PAST) 

The PAST is originally a fast dominant-eigenvectors updating algorithm which is 

based on the following unconstrained cost function: 

( ) ( ) ( ) { }WWWCWWCWCWWW zzz
HHHH TrttEV +−=−= 2

2
zz  (5.7) 

where ( ) 1×ℜ∈ mtz  is a random vector, ⋅  denotes the Euclidean vector norm. E{·} and 

Tr{ ·} are the expectation and trace operator respectively. Cz is the signal covariance 

matrix defined as ( ) ( )][ ttE Tzz=zC . The superscript H denotes Hermitian transpose, W 



62 

 

is a matrix with suitable dimensions. In our case, the covariance of vibration signals is 

real, the desired column subspace W is also real, therefore the Hermitian transpose can 

be treated as the usual matrix transpose. The cost function is known as Yang’s criterion, 

and there is a mathematical statement with respect to the matrix W: 

Theorem 1[20]: The matrix W is a stationary point of V(W) if and only if 

TUW = , where rm ×ℜ∈U  has orthonormal columns and contains any r distinct 

eigenvectors of Cz. All stationary points of V(W) are saddle points, except when 

U contains the r dominant eigenvectors, i.e., UU ′= . In this case, V(W) attains the 

global minimum. Here, rr ×ℜ∈T is an arbitrary unitary matrix. Proof can be found in 

[56]. 

Avoiding the cumbersome mathematical derivations of the proof, more intuitively, 

the cost function is trying to minimize the error between the “transformed” or “filtered” 

signal ( ) ( )tt T zz UU ′′=  and z(t), through a transformation matrix composed by the 

dominant eigenvectors of the signal covariance matrix Cz, i.e., TUU ′′ . Usually the 

computed dominant eigenvectors are orthonormal, thus, TUU ′′  is actually an 

orthogonal projection matrix as it is defined in linear algebra, and ( )tz  is the 

projection of the noisy signal into the signal subspace, thus, noise will be filtered out by 

this orthogonal projection. In fact, this “subspace filtering” concept was the original 

idea of Bin Yang to eliminate the measurement noise, which later will be implemented 

in recursive SSA. 

Based on Theorem 1, instead of solving the Eigen-Decomposition problem through 

classical approaches, the unconstrained cost function only tries to update the dominant 

eigenvectors of the signal covariance matrix Cz. For time-varying systems, the dominant 
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eigenvectors U′  changes with time, the criterion can be modified by introducing a 

forgetting factor: 

( )[ ] ( ) ( ) ( ) ( )
2

1
∑

=

− −=
t

k

Hkt kttktV zz WWW µ  (5.8) 

where µ denotes the forgetting factor used in the summation to give different weights 

to the random vector z(k) in the summation, and the expectation in (5.7) is replaced by 

the summation. Also the definition of Cz has to be replaced by 

( ) ( ) ( )∑
=

−=
t

k

Hkt kkt
1

zzµzC  (5.9) 

However, the inconvenience found in the cost function is that, as shown in 

equation (5.7), after expand the cost function, it is a fourth order matrix equation to be 

solved. To adapt the solution to a Recursive Least Square (RLS) approach, an 

“approximation” is introduced: 

( ) ( ) ( )kkk H zh 1−= W  (5.10) 

which replace ( ) ( )ktH zW  in (5.8). The assumption under this approximation is that 

there is not a drastic subspace change from a point to another, i.e., signal subspace is 

slow varying comparing to the sampling rate of data point.  

With this assumption, since the dominant subspace ( )1−kHW  is already known 

from the previous step k-1, the original cost function is converted to a quadratic 

criterion: 

( )[ ] ( ) ( ) ( )
2

1
∑

=

− −=
t

k

kt ktktV hz WW µ  (5.11) 

which is a typical optimization function in Least Square problems and can be minimized 

by: 
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( ) ( ) ( ) ( )tttt hzh
1−=′= CCUW  (5.12) 

where Czh is the covariance matrix formed by z(k) and h(k): 

( ) ( ) ( ) ( ) ( ) ( )tttkkt H
zh

t

k

Hkt
zh hzhz +−==∑

=

− 1
1

CC µµ  (5.13) 

( ) ( ) ( ) ( ) ( ) ( )tttkkt H
h

t

k

Hkt
h hhhh +−==∑

=

− 1
1

CC µµ  (5.14) 

Thus, when there is a new incoming data at instant t, the matrix inversion lemma 

can be applied to (5.14) and the well-known RLS algorithm can be easily derived for 

updating W(t). 

5.1.2 Instrumental Variable Projection Approximation Subspace Tracking 

(IV-PAST) 

Since PAST by Bin Yang was formulated originally to treat antenna signals 

corrupted with additive noise through a subspace approach [56]. However, from the 

derivations and assumptions shown in section 2: in output-only SSI, the input source 

kuB  is unknown, which together with system noise are assumed to be a stationary and 

spatially white noise, i.e., instead of a simple additive noise, it is rather the source of the 

system response. For this type of noise, it was proved in [43] that the normal least 

square formulation will lead to a biased solution and it is not appropriate to handle this 

type of problem; instead, an Instrumental Variable  (IV) approach must be used. Since 

the instruments must be uncorrelated with noise, usually the same output measurement 

but with a time lag “i” can be chosen for this purpose. The modification of PAST to 

IV-PAST and later Extended IV-PAST was proposed by Gustafsson [20]. 

By introducing the instrument ( ) 1×ℜ∈ mtξ , the least square solution to the 
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objective function in (5.11) becomes the following equation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0][
1

=−=−∑
=

− tttkktkk hz

t

k

HHkt
ξξµ CWCW ξhξz  (5.15) 

Again, the summation over the multiplication of the signal z(k) and instrument 

( )kξ  weighted by the forgetting factor, can replace by the respective cross-covariance 

matrices ( )tzξC  and ( )thξC , which are defined and updated by: 

( ) ( ) ( ) ( ) ( ) ( )tttkkt H
z

t

k

Hkt
z ξzξz +−==∑

=

− 1
1

ξξ µµ CC  (5.16) 

( ) ( ) ( ) ( ) ( ) ( )tttkkt H
h

t

k

Hkt
h ξhξh +−==∑

=

− 1
1

ξξ µµ CC  (5.17) 

Then, by inverting ( )thξC  the matrix W(t) can be found: 

( ) ( ) ( ) ( )tttt hzIV
1−=′= ξξ CCUW  (5.18) 

The same matrix inversion lemma can be applied to (5.18) and the same RLS-like 

algorithm can be formulated for IV-PAST. 

5.1.3 Extended Instrumental Variable Projection Approximation Subspace 

Tracking (EIV-PAST) 

The inconvenience one may found in IV-PAST is that, to let the inverse of the 

cross-covariance matrix exist, the length of the instrument vector must have the same 

size as the measurement vector z(t). Another problem one may found in practice is that 

the cross-covariance matrix may be ill-conditioned for which is not amenable the 

inversion. The Extended Instrumental Variable was derived to solve this problem and 

make further stable the inversion process. Then, the cost function to be minimized can 

be replaced by its corresponding EIV formulation: 
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( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2
2

11
Fhz

F

t

k

Hkt
t

k

Hkt tttkktkktV ξξµµ CWCWW −=−= ∑∑
=

−

=

− ξhξz  (5.19) 

where the subscript F denotes the Frobenius norm defined as ( )Htr σσ . ( )tzξC  and 

( )thξC  are the same as that defined in (5.16) and (5.17). 

The least square solution of (5.19) is readily found to be: 

( ) ( ) ( ) ( ) ( ) ( )[ ] 1−=′= tttttt T
hh

T
hzEIV ξξξξ CCCCUW  (5.20) 

The difference between (5.15) and (5.20) is the effect of the extra-added Frobenius 

norm, which is able to fulfill the need of Recursive Least Square (RLS) via matrix 

inversion lemma, to treat the case of non-square matrices due to the use of instruments 

of different length, or, to obtain a better numerical stability in the recursion. A complete 

derivation and formulas for the EIV-RLS algorithm can be found in [43]. 

5.1.4 Adaptation of EIV-PAST to RSSI-COV 

Since covariance driven subspace can be considered as an SVD-enhanced 

Instrumental-Variable (IV) method [37], one may think that the IV-PAST algorithm is 

suitable to perform the SVD-updating task, or better said, the observability matrix Oi 

(column subspace of the Hankel covariance matrix) updating task, which is not true.  

Let the random vector z(t) in IV-PAST formulation be replaced by the 

corresponding data vector in (5.2), which is 1×+ ℜ∈ il
ky ; on the other side, the 

substitution of the instrument ( )tξ  is evidently ilT

k
×− ℜ∈ 1y . IV Solution to the cost 

function will become: 
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( ) ( ) ( ) 0][ covcov

2

=−=−∑
+−=

−−+
tt

t

iLtk

T

k

T

kk tkt HWHW yhyy  (5.21) 

where ( ) ( ) +−= k
H kk yh 1W  is the above mentioned approximation, 

∑
+−=

−+=
t

iLtk

T

kkt p 2

cov 1
yyH is the definition of Hankel covariance matrix in a moving 

window formulation (forgetting factor defined as the unit), and ( )∑
+−=

−=
t

iLtk

T

kt k
2

cov yH h . 

Similar to (5.18), the dominant eigenvectors can be found by 

( ) ( ) ( ) 1covcov −=′= ttIV tt HHUW  (5.22) 

However, either PAST or IV-PAST algorithm was derived to update dominant 

eigenvectors of the covariance matrix, the relationship between Eigen-Decomposition 

(ED) and SVD of the Hankel covariance matrix is preferred to be revised. The SVD of a 

Hankel Covariance matrix is defined as: 

( ) 

















==

T

T
T

2

11
21

cov

00

0

V

VS
UUUSVH  (5.23) 

where U and V are orthonormal matrices, S is a diagonal matrix containing the singular 

values. But the column subspace U can be also obtained from the ED of the Hankel 

Covariance matrix multiplied by its transpose:  

( ) ( ) 1covcov −=== USSUUSSUUVSUSVHH TTTTTTT
 (5.24) 

From the relationships shown above, the desired observability matrix Oi is the 

same as the column subspace U1 extracted from Hankel Covariance matrix using SVD. 

However, if Theorem 1 is reviewed, after solving (5.21) by least square, the obtained 

dominant eigenvector ( ) ( )tt IVUW ′=  is the eigenvector of the Hankel Covariance 

Symmetric matrix 
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matrix, it is NOT the desired column subspace. This latter must be computed via ED of 

the Hankel Covariance matrix multiplied by its transpose as shown in (5.24), i.e., the 

desired column subspace can be updated as the dominant eigenvectors of the 

“Covariance of Hankel Covariance matrix”. 

Fortunately there is EIV-PAST  whose Frobenius norm is just satisfying this 

requirement. Again, substituting the random vector z(t) and the instrument ( )tξ  by the 

corresponding data vector in (5.2), the objective function of EIV-PAST  to be 

minimized will become: 

( )[ ] ( ) ( ) ( ) 2covcov

2

22
Ftt

F

t

iLtk

T

k

t

iLtk

T

kk tkttV HWHWW −=−= ∑∑
+−=

−

+−=

−+ yhyy  (5.25) 

where the moving window approach is adopted again. Similar to (5.20), the least square 

solution to (5.25) is the follows:  

( ) ( ) ( )( ) 1
covcovcovcov

1

−
== T

tt

T

tttt HHHHUW  (5.26) 

Comparing (5.22) and (5.26), the first one is computing the dominant eigenvectors 

of the Hankel Covariance matrix, on the contrary, (5.26) is computing the dominant 

eigenvectors of 
T

tt
covcovHH as that shown in (5.24), i.e., the desired columns subspace 

U1(t) of the Hankel Covariance matrix. 

Hence, the so-called Extended Instrumental Variable Recursive Least Square 

(EIV-RLS) algorithm can be applied to solve the EIV-PAST problem, which fulfills the 

SVD-updating requirement of RSSI-COV to track the time-varying subspace U1(t). The 

explicit formulas to be implemented in RSSI-COV are shown below. Complete 

derivation of these formulas of EIV-RLS algorithm can be found in [43]. 
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1. From an initial SVD the recursive algorithm can be initialized with U1(t), P(t) and 

tH : 

( ) t
T

t t HUH 1=   &  ( ) [ ] 1−= T
ttt HHP  (5.27a) 

2. Given a new incoming data vector 1+ty , U1(t+1), P(t+1), 1+tH  and 1+tH  can be 

updated and downdated using the following algorithm: 

Updating: 

( ) ( ) +
+=+ 11

*1 t
T tt yh U   ,  ( ) −

+=+ 1
*1 ttt yw H            (5.27b) 

( ) ][1 11
* +

+
−
+=+ tttt yyHv  (5.27c) 

( ) ( ) ( ) ]11[1 *** ++=+ ttt hwψ      (5.27d) 

( ) ( )










−=+
−
+

−
+

0

1
1 11

2

*

µ
µ

µ
t

T

tt
yy

Λ  
(5.27e) 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )ttttttt
T

PψψPψΛK *
1

***2* 11111 +++++=+
−

µ  
(5.27f) 

( ) ( ) ( ) ( ) ( ) ( )**
1

*
11 1]11[1 ++−++=+ tttttt * KψUvUU  (5.27g) 

( ) ( ) ( ) ( ) ( )[ ]**

2

* 11
1

1 ++−=+ ttttt KψPPP
µ

 (5.27h) 

( ) ( )T

ttt t
* −

++ ++= 1
*

1 1 yhHH µ  (5.27i) 

( )T

tttt

* −
+

+
++ += 111 yyHH µ  (5.27j) 
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Several numerical studies of time varying systems subjected to white noise 

excitation were carried out to test the performance of RSSI-COV. Results show that for 

the SSI algorithms, forgetting factor leads to severe problems in the tracking of modal 

parameters. Since forgetting factor is introducing different weightings to the data 

meanwhile Hankel covariance matrix is being formed, the ability of this step to cancel 

out the random components no longer works. Moving window approach with forgetting 

factor set to one is adopted in this work since it better matches the assumptions of 

SSI-COV. The use of a moving window implies the same procedure shown above has to 

be done twice to complete the subspace updating for each new incoming data: after 

adding the new incoming data (updating), the oldest data has to be subtracted from the 

moving window (downdating). The same formulas shown above can be applied for 

downdating by setting forgetting factor µ equals to one, the data vectors +
+1ty  and T

t
−
+1y  

should be replaced by the oldest data vector in the moving window, i.e., if the moving 

window length is L, these become: +
+− iLt 2y  and T

iLt
−

+− 2y . Moreover, several sign changes 

in the last four formulas have to be introduced for downdating: 

Downdating: 

( ) ( ) +
+−+=+ 11 11 Lt

T tt yh *U   ,  ( ) −
+−+=+ 111 Lt

*
tt yw H           (5.28a) 

( ) ][1 111
+

+−
−

+−+=+ LtLt
*
tt yyHv  (5.28b) 

( ) ( ) ( )]11[1 ++=+ ttt hwψ      (5.28c) 

( ) ( )










−=+
−

+−
−

+−

0

1
1 11

2 µ
µ

µ
Lt

T

Ltt
yy

Λ  
(5.28d) 
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( ) ( ) ( ) ( ) ( )[ ] ( ) ( )*12 1111111 +++++++=+
−

ttttttt T PψψPψΛK *µ  
(5.28e) 

( ) ( ) ( ) ( ) ( )[ ] ( )111111 1
*

11 +++−+−+=+ tttttt KψUvUU *  (5.28f) 

( ) ( ) ( ) ( ) ( )[ ]1111
1

1 **

2 +++++=+ ttttt KψPPP
µ

 (5.28g) 

( )( )TLttt t −
+−++ +−= 1

*
11 1 yhHH µ  (5.28h) 

( )TLtLttt
−

+−
+

+−++ −= 11
*

11 yyHH µ  (5.28i) 

Since the updating task is done for the time-varying column subspace U1(t) from 

the formulas shown above, the system information can be then extracted from U1(t) as 

previously discussed in section 2.3, for each time instant. 

5.2 Recursive Singular Spectrum Analysis (rSSA) 

To be able to apply SSA in online filtering of vibration measurements, an on-line 

version of the algorithm that describe the current signal structure at each time instant is 

required. As mentioned before in section 2.7, the first step is to assemble the 

measurement data in a Hankel data matrix of N data points X(N) as shown in (2.47). 

Although a forgetting factor 0<λ<1 can be applied to gives different weights to the data 

in terms of its age, through several simulation studies have been carried out, one 

conclude again that for subspace-based algorithms, the moving window approach 

should be adopted. The number of block rows is i’  and is kept constant meanwhile a 

new data point is added as a new column appended to the moving window Hankel 

matrix: 
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( )

[ ] ( )[ ]111''''

1

3'

2'

1''''

2'3'2'

1'2'1'

...

...
1

++++−+−

+

+−

+−

+++

+−++

+−++

==




















=+

NNNiLNiLN

N

iN

iN

NiN-LiN-L

iNN-LN-L

iNN-LN-L

N

N

XXXXX

y

y

y

y...yy

............

y...yy

y...yy

X

X  (5.29) 

where ( ) KilN ×ℜ∈X , l is the number of sensors, i’  is the sliding window vector order, 

i.e., number of block rows of the Hankel data matrix; L’  is the length of moving window, 

K’=L’–i’ +1 is the number of columns, with K’  > i’ . For convenience, the subscript 

notation for the sliding window vector is different than that used in off-line SSA, which 

becomes now XN-L’+i’+j  , j =0,1,2, …, K’.  

Similar to that shown in (5.24), by applying SVD to the Hankel data matrix 

( )1+NX , the left singular vectors U can be computed via Eigen-Decomposition (ED) of 

the covariance of sliding window vectors: 

T
iLNiLN

T
NN

T
K

j

T
jiLNjiLNSSA NNN ''''11

1
'''' )()()1( +−+−++

=
++−++− −+==+ ∑ XXXXXX XXC  (5.30) 

where CSSA(N+1) is the covariance matrix of the sliding window vector XN-L’+i’+j .  

To make rSSA algorithm possible, only the left singular vectors corresponding to 

the non-zero singular values of X(N+1) will be used and updated as on-line filters: since 

they correspond to the column subspace which span the range of X(N+1), i.e., any 

sliding window vector XN-+L’+i’+j  can be expressed as a linear combination of the 

computed column subspace from X(N+1).  

Since the eigenvectors of the covariance matrix CSSA(N+1) correspond to the 

desired column subspace, this is actually a typical rank-two modification of the 

symmetric eigen-problem, i.e., meanwhile a new data column is appended to the Hankel 

matrix (i.e., rank-one modification), an old data column is subtracted (i.e., rank-two 
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modification). The above-mentioned PAST algorithm is suitable to be implement to 

rSSA, because it is able to update in a recursive fashion the dominant eigenvectors of 

the signal covariance CSSA(N+1), i.e., the subspace of X(N+1). 

Adaptation of PAST to rSSA 

From (5.8), the random vector z(k) can be substituted by the sliding window vector Xk: 

( )[ ] ( ) ( )
21

''

111 ∑
+

+−=

++−=+
N

iLNk
k

H
k NNNV XX WWW  (5.31) 

By introducing the same approximation: 

( ) ( ) k
H kk Xh 1−=′ W  (5.32) 

the original cost function is converted into a quadratic criterion: 

( )[ ] ( ) ( )
21

''

11 ∑
+

+−=

′+−=+
N

iLNk
k kNNV hX WW  (5.33) 

This became a typical optimization function in Least Square problems which can be 

minimized by: 

( ) ( ) ( ) ( )1111 1
,,1 ++=+′=+ −

′′ NNNN hSSAhXSSA CCUW  (5.34) 

where 
hXSSA ′,

C  is the covariance matrix formed by the sliding window vector Xk and 

( )kh ′ , and 
hSSA ′,

C  is the covariance matrix formed by ( )kh ′  and ( )kh ′ T: 

T
iLNiLN

T
NNhXSSAhXSSA

NN ''''11,,
)()1( +−+−++′′ ′−′+=+ hXhXCC  (5.35) 

T
iLNiLN

T
NNhSSAhSSA

NN ''''11,,
)()1( +−+−++′′ ′′−′′+=+ hhhhCC  (5.36) 
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When the matrix inversion lemma is applied to (5.34), the well-known RLS algorithm 

can be easily derived, which is shown in the chart below. 

1. From an initial SVD the recursive algorithm can be initialized with ( )N1U′ , later  

)(
,

N
hSSA ′C and ( )NP′  can be computed: 

( ) ( )[ ] ( ) ( )[ ]TTT
hSSA

NNNNN XUXUC 11, )( ′′=′     (5.37a) 

( ) 1
,

)]([ −
′=′ NN

hSSA
CP  (5.37b) 

2. Given a new incoming sliding window vector XN+1, ( )11 +′ NTU , ( )1+′ NP  and 

( )1+′ Nh  can be updated using the following algorithm: 

Updating: 

( ) ( ) 11
*1 +′=+′ N

T NN Xh U  (5.37c) 

( ) ( ) ( )
( ) ( ) ( ) ]11[

1
1 **

*
*

+′′+′+
′+′

=+′
NNN

NN
N T

T

hh

h

P

P
K

µ
 

(5.37d) 

( ) ( ) ( ) ( )[ ] ( )**
111

*
1 111 +′+′′−+′=+′ + NNNNN N KUUU hX  (5.37e) 

( ) ( ) ( ) ( ) ( )[ ]*** 11
1

1 +′+′′−′






=+′ NNNNN KPPP h
µ

 (5.37f) 

Downdating: 

( ) ( ) ''1 11 iLN
T NN +−+′=+′ Xh *U  (5.38a) 

( ) ( ) ( )
( ) ( ) ( )]111[

11
1

*

+′+′+′+
+′+′

=+′
NNN

NN
N T

T

hh

h
*P

P
K

µ
 

(5.38b) 
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( ) ( ) ( ) ( ) ( )1]11[11 1''
*

11 +′+′+′−−+′=+′ +− NNNNN iLN KUUU hX *  (5.38c) 

( ) ( ) ( ) ( ) ( )[ ]1111
1

1 * +′+′+′−+′






=+′ NNNNN KPPP h*

µ
 (5.38d) 

The recursive SSA is different than the off-line SSA in the reconstruction step. The 

recursive SSA is applied here as a preprocessing tool to filter out the undesired 

measurement noise keeping the system related information, thus, the same “orthogonal 

projection” concept used to derive PAST can be directly applied for rSSA. After the 

column subspace ( )11 +′ NU  is updated, the “filtered” or “projected” sliding window 

vector 
1

~
+NX  can be computed by the orthogonal projection: 

( ) ( ) 1111 11
~

++ +′+′= N
T

N NN XX UU  (5.39) 

where 
1

~
+NX  is the reconstructed data vector.  

Hence, for each new incoming data, a new sliding vector column XN+1 is appended, 

the column subspace is updated to ( )11 +′ NU , and the reconstructed data vector 
1

~
+NX  

can be obtained by procedure shown above. Finally the reconstructed data vector 

1

~
+NX  is placed in the corresponding location of the reconstructed Hankel data matrix 

( )1
~ +NX , then, elements of the same time instant (in the anti-diagonal direction) can be 

averaged to reconstruct the signal: 
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It is important to emphasize here that the rSSA algorithm explained here may be 

somehow different than the algorithm used in SSA, more precisely, this is a combined 
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approach of both SSA and data compression based on the Karhunen-Loéve (KL) 

transformation [56], where a sequence of data vectors is coded by their principal 

components. 
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Chapter 6 

Simulation study of RSSI-COV and rSSA-SSI-COV 

To validate the adaptation of EIV-PAST algorithm to RSSI-COV, and the 

proposed rSSA solved by PAST, together with its applicability and stability in the 

on-line tracking of system modal parameters, through a moving window and recursive 

approach, simulation study was carried out firstly. 

Consider a simulated linear 6-DOF system consists in a lumped mass model and a 

shear building type stiffness matrix, which has the following modal frequencies and 

damping ratios in its original state: 

The system natural frequencies are: 

f = [0.9972 , 2.9254 , 4.6600 , 6.0905 , 7.1353 , 7.7556 ] Hz 

Rayleigh damping was assumed for the derivation of damping matrix, the assumed 

damping ratio for each mode are: 

 ξ = [0.03 , 0.03 , 0.01 , 0.01 , 0.02, 0.02 ], 

Response is generated using discrete time deterministic state-space model having a 

spatially white noise as the input, outputs are measured at each DOF. Measurement 

noise can be added after the system response is obtained. The sampling rate is 200 Hz 

and the total generated data length is 20000 points, which equals to 100 sec. 
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6.1 Implementation of the RSSI-COV and rSSA-SSI-COV algorithm 

In conducting RSSI method, considering the recursive SVD-updating task carried 

out by EIV-PAST algorithm updates only the dominant singular vectors, a procedure is 

proposed to avoid the accumulation of error during the subspace computation:  

1. Select a length for the statistic moving window WLstatistic which samples the identified 

modal frequencies along the time axis. 

2. Calculate the mean frequency over data sampled by the moving window for each 

modal frequency. 

3. Calculate the Euclidean norm of the standard deviation of each modal frequency, i.e., 

take the square root over the sum of squares for the computed standard deviations 

over the moving window of each modal frequency. 

4. Repeat 2 and 3 by moving forward the statistic window over a specific frequency data 

points (dstatistic). 

5. Compare the Euclidean norm of displacement “k” and “k+1”, and calculate their 

percentage of difference. If the percentage between the two segments is greater than 

the specific criteria (e.g. 50%), the traditional SVD will be computed at that given 

time instant and serves as a restart for EIV-PAST. 

6. Continues the recursive computation of modal frequencies, the statistic window 

moves a step forward until the displacement length of the statistic moving window 

dstatistic has been reached, and repeat the steps 2, 3, 4, 5. 

The above procedure is summarized in the flow chart shown in Figure 6-1. 
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6.2 Simulation study 1: time invariant 6-DOF system 

The simulation study starts with the case where the system is time-invariant. Thus, 

the most basic requirement to be meet is the sufficient stability to track the modal 

parameters in a recursive manner, when these latter have not any change. 

Noise free 

Figure 6-2 shows the recursive tracking results for the response generated by the 

6-DOF system subjected to a spatially white noise input excitation, without adding any 

kind of noise. From now on, the same number of block rows i will be used for block 

columns, i.e., a square Hankel Covariance matrix. Since this is a simulation example 

with known DOF, naturally the system order is defined to be 12. Comparing a) and b), 

one can note that by increasing the moving window length L used to form the Hankel 

Covariance matrix, the stability is better. This matches the assumption for Covariance 

for which the data length must be theoretically tending to the infinity.  

Figure 6-3 shows the result for the tracking of damping ratio. From a), the use of a 

short moving window (1500 points equals to 7.5 sec) leads to a very unstable damping 

ratio and wrong trace for the 1st mode. By increasing the window length to 3000 points, 

although the deviation from correct answers is still large as it always occurs in damping 

ratio estimates due to its high sensitivity to any perturbation, at least, stable results were 

achieved. The two largest damping ratios correspond to the 1st and 2nd mode.  

Adding noise correlated with output (SSI assumption violated) 

Consider the addition of the input acceleration to the measurement as a noise correlated 

with output, which occurs in acceleration measurements as that discussed in section 
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2.2.3, the purpose is to test the robustnss of RSSI-COV when its assumptions were 

violated. In this case, the moving window length is fixed to 2000 points, system order is 

12. Frequency tracking results is shown in Figure 6-4. The effect of increase number of 

block rows i is shown by comparing a) and b). The 1st mode shown in a) was perturbed 

by noise; the higher the number of block rows i, the better the noise separation, 

consequently a more stable tracking result was obtained in b). 

The recursive tracking of damping ratio is shown in Figure 6-5 for the same case 

when the added noise violate the assumptions. If the number of block rows i is 

insufficient to separate noise from the system information, negative damping appears 

due to noise perturbation as shown in Figure 6-5 a). Although negative damping was 

corrected by increasing the number of block rows in Figure 6-5 b), the trace of damping 

is still unstable and several significant changes occurs in damping tracking meanwhile 

there is not any variation in the correct damping ratio answer. Given this situation, 

damping ratio cannot be used as an reliable index of system change or damage. 

6.3 Simulation study 2: time varying 6-DOF system with sudden 

stiffness reduction. 

To simulated drastic system change scenarios, sudden stiffness reduction and 

damping ratio changes were introduced in the 6-DOF system. The loss of stiffness was 

introduced in the 1st DOF of the simulated shear-building type system, the resulting 

changes in modal frequency are presented in Table 6-1. Comparing with the precision 

level of SSI shown in section 3.1, the resulting change in the 1st modal frequency 

become significant (more than 0.1 Hz for the 1st mode) until the stiffness reduction in 1st 

DOF is more than 50%. 
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Noise free 

Firstly, the RSSI-COV algorithm is applied to trace these sudden drops in modal 

frequencies without adding noise to the simulated measurement. Result for modal 

frequencies is shown in Figure 6-6. The number of blocks i is 70, system order is 12; 

the statistic window length WLstatistic is 400 frequency points, displacing by every 100 

points (as explained in Figure 6-1). The restart criterion is 50% of difference between 

this and the previous standard deviation Euclidean norm. Similar to the results obtained 

in 6.2, the tracking stability was enhanced by increasing the moving window length. 

However, as that shown in Figure 6-7 b) and Figure 6-8 b), variations in damping ratio 

cannot be traced correctly, no clear tendency can be observed even increasing the 

moving window length or system order. Since RSSI algorithm only shows good 

frequency tracking capability, hereafter the results for damping ratio will be omitted. 

Between 7000 and 9000 data points, the 1st mode damping ratio shown in Figure 

6-7 b) has increased to an abnormal level, which indicates existence of problems in the 

identification. Until the system order is increased to 16, 2 pairs of SV more than that 

required theoretically, as that shown in Figure 6-8 a) for frequency and b) for damping 

ratio, a more reasonable range for the 1st mode damping ratio is reached (the negative 

damping ratio corresponds to spurious poles) although it is not accurate at all.  

Based on the previous experience adquired in off-line system identification, since 

the system in no longer time-invariant, more orthogonal components is required to span 

the system subspace, therefore, if insufficient system order is defined, information loss 

in the recovery of system matrix A will lead to an unstable tracking on the 1st modal 

frequency or damping ratio. The use of more system order, however, introduces 

spurious poles in the time-frequency plot.  
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Figure 6-9 shows the six mode shape identification results for several selected 

points, which are obtained with a system order of 12. Except mode 1, all the identified 

mode shapes are almost identical to the correct answer. This phenomena is similar to 

that we find in modal frequency and damping ratio tracking, the 1st mode seems to be 

the most affected by any violating any assumption of SSI, because we are trying to use a 

recursive linear identification algorithm, with a certain moving window length, to 

identify time-varying systems. 

Adding noise correlated with output (SSI assumption violated) 

The combine effect of system with sudden changes in frequency and the addition 

of noise correlated with output is presented in Figure 6-10, both violating SSI 

assumptions. The moving window length is 5000 points for both a) and b). With a 

system order of 12 and 150 block rows in a), bad tracking results were obtained and the 

1st mode almost disappeared. The combination of noise and time-varying signal 

increased the required column subspace to describe the system information, although 

the system order is 12 theoretically as that shown in Figure 6-10 b): by increasing the 

system order to 18, the 1st modal frequency can be traced correctly, but again, spurious 

poles appears in the time-frequency plot. 

6.4 Simulation study 3: time-varying 6-DOF system with gradual 

stiffness reduction 

A gradual reduction in the 1st DOF stiffness from point 4001 to point 16000 is 

introduced in the system matrix to simulate slow varying frequencies. There are totally 

20000 points in the simulation example. The system natural frequencies and the 

corresponding damping ratios from 1 to 4000 points are: 
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f initial = [0.9972 , 2.9254 , 4.6600 , 6.0905 , 7.1353 , 7.7556 ] Hz 

ξ initial = [0.03 , 0.03 , 0.01 , 0.01 , 0.02, 0.02 ] 

After reaching 16000 points the frequencies and damping ratios become finally: 

f final = [0.5380 , 2.2141 , 4.0478 , 5.6599 , 6.9051 , 7.6898 ] Hz 

ξ final = [0.10 , 0.07 , 0.051 , 0.02 , 0.03, 0.05 ] 

Between 4000 and 16000 data point, the natural frequencies and damping ratios are 

interpolated linearly based on the initial and final state of the modal frequency and 

damping ratio. 

Noise free 

Firstly the ability of RSSI-COV to trace slow time-varying frequencies is shown in 

Figure 6-11, a) for the case of using 2500 points for moving window and b) for 4000 

points of moving window. For both cases the number of block rows i is 70, system 

order is defined as 12. The same as that defined in the previous section, the statistic 

window length WLstatistic is 400 frequency points, displacing by every 100 points; the 

restart criterion is 50%. Again, the increase of the moving window length has enhanced 

the tracking stability. However, similar to that found previously, the 1st mode seems to 

be very sensitive and lost the stability in the final points. If the moving window length is 

increased to 5000 points as shown in Figure 6-11 c) keeping the system order as 12, 

certain stability problems still remains; however, similar to what is done in section 6.3, 

if the system order is increased to 18 keeping intact the remaining parameters, stable 

results can be achieved for the final points.  

In fact, this outcome has a similar sense than that obtained in the simulation study 
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of section 3.3, where off-line identification task is carried out for two closely-spaced 

frequencies blended with time-varying frequencies: larger the number of block rows i, 

the time-varying frequencies will be spanned by more orthogonal vectors after being 

decomposed by SVD, thus, higher system order is required to prevent the loss of certain 

mode information due to the order consumption in covering the most time-varying 

component. The fact is ilustrated in Figure 6-12, where the number of block rows has 

been incremented from 100 to 130, moving window length fixed to 5000 points, and 

different system orders is considered. 

Adding noise correlated with output (SSI assumption violated) 

Consider the addition of a noise correlated with output, to test the robustnss of 

RSSI-COV in the case of slow-varying systems when its assumption were violated. 

Firstly, two different number of block rows i is compared, and system order is kept as 

12. Frequency tracking results is shown in Figure 6-13. The effect of the assumption 

violation impacts mostly in the recursive identification of the 1st mode; again, due to the 

time-varying characteristic of the system, higher system order is needed for larger 

number of block rows i, otherwise, the 1st mode information is not covered. This 

explains why the outcome in Figure 6-13 a) using fewer block rows is better than b). 

Consider the use of the Recursive SSA-SSI-COV algorithm, there are two sets of 

parameters to be determined, one for recursive SSA (rSSA): moving window length L’  

and number of block rows i’ ; and another for RSSI-COV: L and i. Regarding to the 

selection of number of block rows i and i’ , 100 block rows is a good choice from 

previous simulation experiences, this is actually a tradeoff between computation effort 

and accuracy. 5000 points is selected for the moving window length of RSSI-COV, 

because the larger the window length, more stable the result. To investigate the 
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influence of the moving window length L’  and the number of principal components to 

be selected in rSSA step, nine different combinations for model parameters are 

considered. For these cases, firstly the singular spectrum in rSSA step is shown in 

Figure 6-14. To determine the best choice of number of SV in rSSA step, 

implementation algorithm shown in section 4.1.3.1 can be applied. The singular 

spectrum in RSSI-COV step is shown in Figure 6-15; they are computed from the first 

5000 data points which corresponds to the moving window length of RSSI-COV. 

From the 9 combinations shown in Figure 6-15, the best choice of model 

parameters for rSSA seems to be a window length L’  of 1000 points and 20 SV, for the 

reason that this choice leads to the best separation of the 6 pairs of singular values 

(corresponding to the system order). This can be verified by selecting various cases for 

comparison as shown in Table 6-2, the frequency tracking results is shown in Figure 

6-16.  

Although the 1st modal frequency were miss for the last points, in Figure 6-16 d), 

if the system order is increased to 16, the final segment stabilizes as shown in Figure 

6-17 a). This is due to the time-varying property of the signal and the reason explained 

above. However, if only RSSI-COV is used, even increasing the system order to 30, this 

final segment is still a little bit unstable. This is shown in Figure 6-17 b). 

After the slow time-varying simulation example is studied, several conclusions 

about the effect of time-varying system in the model parameters are obtained: 

� The required number of orthogonal components (i.e., system order to be chosen ) 

to span the system subspace is more than the actual system order, when it comes to 

the signal processing of time-varying systems. 
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� Although a better noise elimination can be achieved using larger number of block 

columns i, however, the required number of orthogonal components (i.e., system 

order to be chosen) to span the system subspace is also greater. If the selected 

system order is lower than the required, spurious modes appear instead of the 

correct frequency.  

� The larger the moving window length L in RSSI-COV step, more stable the 

tracking results. On the contrary, the shorter is the moving window length L’  in 

rSSA, better the filtering result and, thus, the identification quality. 
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Chapter 7 

Application of recursive SSI algorithms in damage detection 

and early warning 

The RSSI-COV and rSSA-SSI-COV algorithms has been validated through 

numerical examples, sensitivity study of subspace model parameters and their selection 

criteria were also conducted in chapter 6. In the following, these two algorithms will be 

applied to trace modal parameters for several cases: firstly the shaking table test of a 

3-story steel structure with instantaneous stiffness reduction, followed by the shaking 

table experiment of a 2-bay reinforced-concrete frame, both subjected to earthquake 

ground motions, and finally to the bridge scouring experiment. 

7.1 Application: shaking table test of a 3-story steel structure with 

instantaneous stiffness reduction 

A 3-story full-scale steel frame is designed and constructed at the National Center 

for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan, in 2007/01/17. 

As shown in Figure 7-1, the structure consists of a single bay with a 3m by 2m floor 

area and 3m tall stories. The structure is constructed using H150x150x7x10 steel I-beam 

elements with each beam-column joint designed as a bolted connection. To apply 

additional dead load upon each floor, concrete blocks are fastened to the floor 

diaphragms until the total mass of each floor is precisely 6,000 kg. The entire structure 

is constructed upon a large-scale shaking table capable of applying base excitation to 

the structure. In order to change the stiffness of the story abruptly, an extra stiffener 

(brace) is installed in the first story as shown in Figure 7-1, a lock-up system is 

designed as a connection between the stiffener and the first floor. The steel rod in the 
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lock-up system can be released at any time instant to simulate the abrupt degradation of 

the first story inter-story stiffness.  

To measure the output data of the structure, a total of 12 accelerometers are 

installed, with 4 accelerometers on the top of each floor, and there is a LVDT 

displacement sensor installed on the lock-up system to detect the release time. Several 

test cases listed in Table 7-1 were analyzed in this section by applying RSSI-COV and 

rSSA-SSI-COV. 

7.1.1 White noise base excitation 

Firstly off-line identification is carried out to identify the modal parameters when 

the steel frame is subjected to a white noise base excitation, data of the 12 

accelerometers are used simultaneously. Either for the case with added brace (AB) or 

the case without brace (NB), 15000 points (75 sec) were used to form Toeplitz matrix; 

the system order is determined to be 20 from the singular spectrum shown in Figure 7-2 

a), for the case with added brace, and 26 for the case with brace removed as shown in b). 

From both singular spectrums, although there are 3 pairs of singular values far from the 

others, which corresponding to the three dominant translational modes in X direction, 

the remaining modes need to be identified and serve as the base information for 

recursive tracking of modal frequencies, thus, not only X-direction translational modes 

will be excited by the earthquake ground motions. The stabilization diagrams for both 

cases AB and NB are shown in Figure 7-3, only the stable poles are considered and 

their corresponding modal frequencies and damping ratios are shown in Table 7-2. 

There are 6 stable modes for the case AB and 10 for case NB, their respective mode 

shapes are shown in Figure 7-4, moreover, four additional modes were identified from 

the NB case as shown in Figure 7-5, mostly coupled modes. The mode shapes are 
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normalized such that the 3rd floor translation amplitude in X-direction is 0.5. 

RSSI-COV is applied to trace the modal frequencies for both AB and NB case 

excited by white noise. Data of all 12 sensors are used simultaneously, the moving 

window length is 10 seconds (2000 points), a block Hankel Covariance matrix with 100 

rows is adopted. For the AB case, results for two different system orders, 6 and 16 

respectively, are presented in Figure 7-6 a) and b); Figure 7-6 c) and d) show the 

outcome for the NB case, for system orders of 6 and 20 respectively. The dotted lines 

are the frequencies previously identified by off-line method. With a system order of 6, 

the three translational modes in X direction can be traced for both cases, by increasing 

the system order, those slightly and not continuously excited modes appear in some time 

periods, however, a lot of spurious modes also appear in the diagram. 

Through the application of RSSI-COV, result shown in the time-frequency plot can 

be compared with the outcome of off-line identification. Although modes like 1st torsion 

mode (2.2966 Hz) appears only for a few 10 seconds approximately, as that shown in 

Figure 7-6 b), it appears as a stable diagram in the use of SSI-COV, the same with the 

2nd torsion mode and coupled modes identified in Figure 7-6 d).  

7.1.2 El Centro 100 gal 

Consider the application of RSSI-COV algorithm to track recursively modal 

frequencies when the structure is no longer excited by a white noise but by an 

earthquake. Although the white noise assumption is violated, it can be overcome by 

increasing the moving window length and the block row number as proved before, 

besides, is it known that the structure vibrates under its own natural frequency when it is 

subjected to earthquake ground motion.  
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Firstly, the recursive identification is applied to the cases when there is no sudden 

release of the stiffener but the frame is subjected to El Centro earthquake excitation. 

The same window length of 2000 points and 100 block rows are used for both cases 

with brace and without brace. Two different choices of system order are considered: 

firstly, 3 pairs of singular values is selected and later, this is increased to take into 

account more modes. The outcome is shown in Figure 7-7. 

With the system order defined as 6, only the first three dominant modes can be 

extracted. From the plot shown in Figure 7-7 a), the 3rd X-translational modal 

frequency (5.2736 Hz) has shifted to the 2nd torsion mode (7.3282 Hz), the reason is that 

the signal power of the 3rd X-translational mode is lower than that of the 2nd torsion 

mode as that shown in the spectrogram of Figure 7-8 a), constructed with Short-Time 

Fourier Transform (STFT). Once the system order is increased to 14, both the three 

translational and torsion modes are identified, however, spurious modes also appear in 

the diagram. On the other hand, three X-direction translational modes dominates in NB 

case throughout the time history, this is also verified by the spectrogram shown in 

Figure 7-8 b). The torsion modes are not well excited in this NB case as that shown in 

Figure 7-7 d). 

Consider now the cases when the brace is suddenly removed at 14.75 and 29.41 

seconds. As the brace is removed at 14.75 seconds, the moving window length should 

be less than 2000 points (10 seconds) to leave a sufficient time length before the release 

of stiffener. Although a larger moving window length can enhance the tracking stability, 

it also implies that the algorithm will takes more time to detect system change. To make 

possible a faster detection of the instantaneous stiffness reduction, a moving window 

length of 1000 points (5 seconds) is adopted. The number of block rows is 100.  
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Figure 7-9 shows the result for both RSSI-COV and rSSA-SSI-COV. The moving 

window length for rSSA is set to be 500 points (2.5 s) with the same number of block 

rows than RSSI-COV, and 6 principal components are extracted using rSSA. With a 

system order of 6, the RSSI-COV result for the brace removed at 14.75 seconds is 

shown in Figure 7-9 a), the change in the three translational modal frequencies in X 

direction was correctly traced, the unique drawback is that, even using a quite short 

moving window length, the sudden drop in frequency is delayed about 3 to 4 seconds to 

be reflected completely in the modal frequency trace. Moreover, the 1st modal frequency 

lost its stability after 40 seconds. From the spectrogram shown in Figure 7-10 a), the 

amplitude of the 1st translational mode was decreased after about 39 seconds and hence 

the 1st torsion mode takes place instead. The application of rSSA algorithm before 

RSSI-COV has enhanced the tracking stability as shown in Figure 7-9 b), the 

orthogonal projection performed in rSSA as a signal filter helps to RSSI-COV to extract 

signal component consistent with those modes has been traced. 

From Figure 7-9 c) and d), when a higher system order is used, all excited modes 

are also revealed. There is a high frequency mode (about 16 Hz) appearing just after 14 

seconds, which is the stiffener mode comparing with the off-line identification result. 

The sudden release of the stiffener changes not also the translational modal frequencies 

in X direction, but torsion modes and coupling modes are also excited by this event 

although their contribution is much smaller than the dominant modes. This can be 

understood by comparing the singular spectrum between different time instants as 

shown in Figure 7-11: a) at the beginning there are only three modes clearly excited; b) 

once the stiffener is release, not only translational modes but torsion modes and 

coupling modes appear. It is also interesting to observe what is occurring in the segment 

from 35 to 45 seconds in Figure 7-9 d), the 3rd mode cannot be traced even with a 
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higher system order because it is no longer excited as that shown in Figure 7-10 b). 

This is very clear by comparing Figure 7-11 c) with a), there is only one pair above 102 

in c), meanwhile there are three pairs in a) above the quantity. On the other side, Figure 

7-9 e) and f) shows a comparison between RSSI-COV and rSSA-SSI-COV. Although 

rSSA was able to enhance the tracking stability, the coupled mode at 8.1 Hz appears 

instead of the 3rd X-translational mode after approximately 40 seconds. 

The three translational mode shapes identified from the case where the brace is 

removed at 14.75 seconds are shown in Figure 7-12. These mode shapes are extracted 

from data point of 10 and 30 seconds, the first with brace and the second without brace. 

For the another case where the brace is removed at 29.41 seconds, examples of mode 

shapes are taken from 40 seconds and the comparison with their corresponding mode 

shapes obtained by offline identification are shown in Figure 7-13. The 1st translational 

mode in X-direction is the same as that identified previously by offline analysis. The 

coupled X-Y translational mode has some phase difference, also the amplitude in 

Y-direction is also larger comparing with the offline reference. Torsion modes are 

similar with the reference, but the 3rd Y-translational mode (8.0540 Hz) obtained by 

offline identification is now coupled with the 2nd torsion mode, and the frequency is 

slightly higher: 8.2017 Hz. 

As conclusions obtained from El Centro earthquake, although the RSSI-COV is 

able to track modal parameters and the pre-processing with rSSA can enhance the 

tracking stability, there are several challenges to face in use of recursive subspace 

algorithms. Besides the time delay to show up the system change due to the use of a 

moving window, it is hard to determine the system order, thus, there is an uncertainty 

about the total number of modes can be excited over time. To leave nothing out, usually 
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the system order is defined in a way that even for modes with insignificant contribution 

can be considered, such as coupled modes. The fact leads to several consequences, first 

is that, as that shown in this case of El Centro earthquake, some modes are excited in 

some time periods and disappears in another periods, but once the mode disappears the 

trace goes to another mode or is just converted into a spurious mode, making quite 

confusing the time-frequency plot.  

The second is, simpler models are required for online damage detection. As in this 

case of the 3-story steel frame with instantaneous stiffness reduction in X-direction, 

usually the sensors will be placed only in X-direction since the frame is symmetric and 

its structural dynamics are dominated by the X-direction translational modes. However, 

when the coupled modes engaged in due to the selection of a higher system order, it is 

possible to identify more than one modal frequencies for each mode as that occurs in 

Figure 7-9 d), i.e., coupling modes also appear. Since there are only sensors in 

X-direction, there is no way to distinguish coupled modes from true translational 

modes. 

7.1.3 TCU082 100 gal 

Consider another case where the same steel frame is subjected to Chi-Chi 

earthquake ground motion, data recorded from station TCU082 (N–S direction with a 

duration of 98 s) were adopted as the input excitation. Since the effects of a three 

dimensional structure in the recursive identification work has been discussed, the 

variation in X-translational modal frequencies will be the focus of this example, and 

only the six accelerometers in X-direction will be used. 

For the first case where the stiffener is released at 38.15 seconds, system order is 
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defined as 6 to trace the first three dominant modes, Figure 7-14 a) shows the result for 

a moving window length of 2000 points (10 seconds) and b) shows the improved result 

when the window length is increased to 3000 points. For the second case where the 

stiffener is released at 52.07 seconds, the outcome is shown in Figure 7-15, a) for using 

RSSI-COV alone with the same system order, window length is 3000 points, 100 block 

rows, and b) for the improved result using rSSA-SSI-COV. Parameters for rSSA are: 

window length L’= 500 points, i’ = 100 rows, subspace order= 14, and the window 

length for RSSI-COV is L= 2000 points, system order 8, rows i= 100. System order has 

to be increased to 8 to reveal all information regarding the translational modes in 

X-direction, and consequently some spurious modes and torsion modes appear. 

7.2 Application 2: shaking table test of a 1-story 2-bay RC frame 

A 1-story 2-bay RC frame was designed following the ACI 318-05 design code. 

Dimensions and details of the RC frame can be found in Figure 7-16. The 

instrumentation of the RC frame can be accessed from the Figure 7-17. A total of six 

specimens were constructed with the same design details (denotes as RCF1, RCF2…, 

RCF6). This RC frame has been previously studied in [31, 32] by signal processing and 

nonlinear identification approaches to extract the damage feature. In [51] the RC frame 

is also used to trace the stiffness degradation of equivalent linear time-varying structure 

and the non-linear hysteretic parameters with stiffness and strength degradations. 

The RC frame specimen denoted “RCF6” is used to prove the frequency tracking 

capability of RSSI-COV. A series of shaking table tests with increasing intensity of 

input excitation were applied on the specimen RCF6 to create different damage levels. 

Chi-Chi earthquake ground motion data from station TCU082 (N–S direction with a 
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duration of 98 s) was adopted as an input excitation to this frame. Based on the recorded 

maximum inter-story drift, it is shown that a different level of damaged was induced in 

each specimen. White noise excitation (with a low level peak amplitude defined as 30 

gal) was also conducted in between each strong excitation to simulate the normal 

ambient vibration measurements before and after each earthquake. Block diagram 

shown in Figure 7-18 summarizes the excitation sequence of the test specimen on the 

shaking table, and the corresponding peak amplitude. A total of 97.4 s of acceleration 

response data were collected from the ambient vibration excitation, with a sampling rate 

of 200 Hz. The 800 gal* test data was not recorded. 

Since this is a 1-story frame excited horizontally and in the same plane of the 

frame, only three accelerometers: A1, A4 and A7 are used for identification. The frame 

can be simplified to be a SDOF system, for which is assumed that an equivalent linear 

time-varying system is able to describe the lateral strength degradation. RSSI-COV is 

the algorithm used to trace the modal frequencies.  

The model parameter of RSSI-COV is firstly chosen as follows: the moving 

window length is 5000 points (equivalent to 25 seconds) for more stability, number of 

blocks i is 200, the system order is determined to be 2 because a SDOF equivalent 

time-varying linear system is assumed. The statistic window length WLstatistic is 400 

frequency points, displacing by every 100 points (as explained in Figure 6-1). The 

restart criterion is 50% of difference between this and the previous Euclidean norm of 

standard deviation. The time-frequency plot for the series of earthquake TCU082 scaled 

to different PGA is shown in Figure 7-19, recursive identification of the interspersed 30 

gal white noise excitation is also shown in Figure 7-20. 

In the first case, the frame is subjected to TCU082 earthquake with a PGA of 600 
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gal. Before 30 seconds where the excitation is very small, RSSI-COV cannot identify 

correctly the undamaged state frequency, which is about 5.7 Hz as that determined by 

WN1. The first damage point occurs immediately after the 30 seconds, as that indicated 

in [32], and the identified frequency dropped to 3.9 Hz. The second point correspond to 

37.66 seconds where the peak acceleration occurs. Due to the use of a moving window 

of 25 seconds, at this second damage the decay in frequency starts at 38.27 seconds with 

3.62 Hz and ends at 40.82 seconds with 3.08 Hz. Although a larger moving window 

allows a more stable tracking capability, it takes more time to reflect the system change. 

After the shaking of this 600 gal earthquake, the lowest frequency reached during the 

shaking is about 2.9 Hz, which is also consistent with that identified from 30 gal white 

noise excitation (WN2), which is 3.0 Hz.  

The lowest frequency reached at the second test of 1000 gal TCU082 is 2.27 Hz, 

however, the frequency determined by WN4 is about 2.6 Hz. This may be explained by 

the fact that, after 1000 gal earthquake, the concrete has been severely cracked, and the 

lateral stiffness is highly reduced; however, at the final 10 seconds of this test where the 

excitation level is very small (it is about 0.02 g, i.e., 20 gal), the frequency increases to 

2.4 Hz in the final segment of 1000 gal earthquake. The same phenomenon is observed 

for all cases: 3.6 Hz for the 1st case with peak amplitude of 600 gal, and for the 

remaining cases the frequency oscillates between 2.2 to 2.5 Hz in the final segment. 

These results are actually quite similar to that identified from white noise excitation (30 

gal) which ranges between 2.4 and 2.6 Hz, from WN3 to WN8.  

The discrepancy in the identified frequencies between strong motion and ambient 

vibrations can be explained by the fact that, the strength degradation of RC frame is 

mainly due to the concrete crack. However, the open-off of the cracks does not occur if 
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the excitation level is small, i.e., the lateral stiffness is much larger when the vibration is 

small, therefore, higher natural frequency will be reached for the RC frame under 

ambient excitations.  

Unlike the modal frequencies identified from the 3-story steel frame in section 7.1 

which is almost totally constant, the natural frequencies identified from 30 gal white 

noise excitation for the RC frame shown in Figure 7-20, oscillates between 5.66 Hz and 

5.78 Hz even in the undamaged state, i.e., the RC frame does not behave linearly and 

the signal is slightly time-varying.  

From experience gathered in the simulation example of section 6, more orthogonal 

components than the theoretical system order is required to span the information of a 

time-varying system, i.e., the system order should be defined larger than 2. To avoid 

excessive spurious poles in the plot, a good choice would be the first 4 singular values 

from the singular spectrum shown in Figure 7-21, because they represent the 99.6% of 

total singular value powers. The frequency trace for RCF6 specimen is summarized in 

Figure 7-22. The moving window length is reduced to 3000 points (equivalent to 15 

seconds), and consequently the trace is not as stable as it is when the window length is 

5000 points, but one can expect that it can reflect the system change more quickly. The 

number of blocks rows i is 100. 

The use of a system order of 4 has covered the segment before 30 seconds which is 

incorrrect when a system order of 2 is used. As that shown in Figure 7-23, signal before 

24 seconds are probably a mix of measurement noise and structural response to ambient 

vibrations, but it were cut by the resolution of the measurements. Although the natural 

frequency was able to be identified from data of the first 24 seconds, this may not be 

reliable considering the vibration level is less than 1 gal and the resolution of the 
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measurement. From Figure 7-22 a), the identified frequency corresponding to the 

undamaged state oscillates between 5.5 and 5.75 Hz (between 28 and 29.6 seconds), 

which is quite consistent with that identified from WN1. After the first damage point, 

the identified behavior is the same as that described previously.  

Novelty Index 

The Novelty Index (NI) is calculated by using the first set of the test data (from 

WN1 excitation) as a reference to develop the system matrix (A, C) and noise 

covariances (Q, R), following the procedure described in section 2.4. Based on the 

developed system matrix, the Kalman filter estimation was used to predict the responses 

for other test cases based on the procedure shown in Appendix C.  

The Kalman filter prediction time history at the undamaged state (WN1) is shown 

in Figure 7-24. Three sensors: 1, 4, 7 are used and a system order of 8 is defined. 

Although the theoretical order for a SDOF system is 2, extra components is added to 

cover the nonlinear and noise components, making sure that the prediction is good at the 

undamaged state. After 600 gal earthquake shaking, the frame was damaged and the 

predicted time history of WN2 is shown in Figure 7-25. The prediction error become 

larger than the undamaged state.  

Figure 7-26 shows the change of NI for both Euclidean norm as Mahalanobis 

norm among different test cases. A larger index was observed for test cases subjected to 

severe excitation. Table 7-3 shows the results of outlier analysis (both Euclidean norm 

and Mahalanobis norm) from the damage detection of a 1-story 2-bay RC frame subject 

to a series of white noise excitations. The parameter α is set as 2, this corresponds to an 

interval of 95.5% confidence for a real normal distribution. The change of the identified 
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dominant frequency from the test specimen with respect to the estimated NI is shown in 

Figure 7-27.  

It is concluded that the RSSI-COV method can provide a technique for continuous 

monitoring of a structure by using either earthquake or ambient vibration measurement. 

Although white noise excitation is assumed for the RSSI model, it is able to overcome 

this assumption violation by increasing the subspace dimension (number of block rows) 

which allows a better signal decomposition, but a higher system order is required to 

cover the system information. Drawback is the spurious poles that appear in the 

time-frequency plot due to the assumption violation. 

On the another side, the novelty index analysis based on the Kalman filter 

prediction error can provide the possibility of getting early warning of structural damage 

before severe damage occurs by using output-only measurements. 

7.3 Application 3: bridge pier scouring experiment 

Consider a four span bridge with its steel decks simply supported on three 

cylindrical piers as shown in Figure 7-28 a). The piers are buried with 30 cm of depth 

and confined by coarse sand. The goal of the experiment is to monitor the state of the 

bridge under continuous scouring, to extract its vibrating features allowing early 

warning of the pier settlement or failure in the foundation of the bridge, and to locate 

damage through an output-only signal processing approach.  

The experiment was conducted in Hydraulic Research Institute of Water Resources 

Agency, Ministry of Economic Affairs, located at Nanshijiao (經濟部水利署南勢角水

工試驗所), Taipei, Taiwan. Several tests take place as shown in Table 7-4. In order to 

create a local damage scenario, a brick wall was used to address the flow and to reduce 
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the stream width, as consequence of the increase in flow rate, the scour rate and depth 

will be also increased. From experimental observation, the failure mechanism was pier 

settlement caused by base hollowing. Figure 7-28 c) shows the final state of the bridge, 

pier three settled and is the one that suffers most from the scour, followed by pier two 

but this latter has not settled. Due to the stream width reduction, pier 1 almost does not 

feel the scour effects at all. 

In order to measure the horizontal vibrations in the transverse direction of the 

bridge, excited by the impact of water flow on the pier, a total of twelve VSE-15D 

velocity sensors (Tokyo Sokushin Corporation) were installed uniformly along the 

center line of the deck. Configuration of the bridge and sensor location is shown in 

Figure 7-28 a). A laser displacement-meter was also installed in January 24 and March 

29, 2011, to monitor the settlement occurred in pier 3. In the last test conducted in 

March 29, twelve AS-2000 accelerometers are used instead. Table 7-5 shows the 

sensors specifications. 

7.3.1 Bridge pier imminent settlement indicator: modal frequency drop 

7.3.1.1 Test conducted in 2011/01/19 with full measurements 

To analyze vibration data of the experimental bridge under continuous scour, 

firstly the modal frequencies will be extracted along time to identify damage. The 

rSSA-SSI-COV algorithm will be the main tool to carry out this job, but also the 

RSSI-COV algorithm is applied for comparison purpose.   

The control parameter of the model is shown in Table 7-6. The determination of 

the subspace order for rSSA and the system order for RSSI-COV follows the same 

procedures of SSA-SSI-COV shown in section 4.1.3.1: the singular spectrum is 
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analyzed in RSSI-COV step using 5000 points of the signal regenerated with rSSA, for 

which the subspace order (number of SV) also must to be determined. 3000 points 

correspond to the moving window length for rSSA: L’ , and 5000 is the length L for 

RSSI-COV. The number of SV chosen from rSSA which leads to the emergence of a 

jump in the singular spectrum of RSSI-COV will be the best choice for the rSSA 

subspace order. Location of the jump also indicates the system order. However, this 

only gives an estimate for the required system order, because as the scour depth 

increases, boundary conditiosn and consequently the dynamic behavior changes; similar 

to that observed in section 7.1(3-story steel frame), the required system order is 

different for different time periods. On the other side, for the case where RSSI-COV is 

applied alone, the parameters were referenced to that chosen for rSSA-SSI-COV but 

with higher block rows to separate system information from noise perturbation. 

The initial 5000 data points were used for the order determination, when the bridge 

is excited only by ambient vibrations. Several singular spectrums is shown in Figure 

7-29, when there are only 15 singular values selected in rSSA, the jump become very 

clear and it is located between 18 to 22 SV at the singular spectrum of RSSI-COV. The 

number of singular values in rSSA and the system order for RSSI-COV must be chosen 

towards the upper limit, i.e., the first appearance of the jump, trying to make sure that 

all information is covered despite the spurious or noise contaminated poles, therefore, 

25 SV were selected from rSSA and the system order is determined to be 20. 

The identified modal frequencies are plotted in Figure 7-30 a) for RSSI-COV and 

b) for rSSA-SSI-COV. The frequency poles were plotted every 0.25 seconds. Although 

the spurious modes are scattered, the evolution of the modal frequencies is clear. It is 

evident the advantage of rSSA-SSI-COV over RSSI-COV, since the second algorithm 



102 

 

could not track the 2nd modal frequency with the same system order and even with much 

higher number of block rows.  

To further clarify the frequency tracking results, besides that the poles with 

negative and more than 50% of damping ratio were discarded, the stable system poles 

can be discriminated from the spurious poles using the same technique used to construct 

the offline stability diagram. The procedure is to compare poles between two successive 

time instants. A pole will be marked as frequency stable if the percentage of difference 

between two time instants is less than the specified criterion. Furthermore, from the 

frequency stable poles, the same procedure can then be applied to damping ratios and 

mode shapes with their respective criterions. The time-frequency plot after applying 

stability criterion is shown in Figure 7-31. 

Interesting phenomena can be observed in the time-frequency plot shown in 

Figure 7-31. The 1st modal frequencies of the bridge under ambient vibration is almost 

2 Hz higher than that obtained under the water flow excitation, the same with the 2nd 

modal frequency. This indicates the dynamic characteristic of the bridge under ambient 

excitation is different than when it is excited by an applied loading. After 485 seconds, 

both the 1st and the 2nd modal frequency decrease rapidly up to 2000 seconds, because at 

this first time period, the surface sand was taken by the stream rapidly. Hereafter, up to 

approximately 7200 seconds corresponds to a period of “stationary scouring”, the modal 

frequencies decrease very slowly and by a almost constant rate. The fact can be verified 

by the scour depth taken by the video camera installed inside the pier, shown in Figure 

7-32. The initial depth corresponds to the depth at which the pier is buried. The scour 

depth increases very fast in pier 3, however, below 7.5 cm is beyond the reach of the 

camera. But from the scour profile of pier 2, it is evident that after 1000 seconds, the 
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scour rate is almost constant.  

After 7200 seconds, there is a sudden drop both in the 1st as the 2nd modal 

frequency. The 2nd mode drops from 17 Hz to 12 Hz, and the 1st from 7.8 Hz to 7.2 Hz 

approximately. Up to about 8000 seconds, another frequency drop occurs, and now the 

2nd mode decreases from 12 Hz to 10 Hz, and the 1st mode from 7.2 Hz to 6.3 Hz 

approximately. Observing the “zoom in” shown in Figure 7-31 b), a very long period 

wave appears just after 8000 seconds; from experimental observation, this long period 

signal is induced by the bridge settlement, but before this event, there is nothing 

abnormal in the signal except that this has overstep the measure range after about 7200 

seconds. The sudden frequency drop is an indicator of imminent pier settlement 800 

seconds before its occurrence.  

The reason of this evident modal frequency drop especially in the 2nd mode can be 

explained as the consequence of the change in the dynamic characteristics of the bridge. 

There are possible two reasons about this sudden frequency drop: (1) once the scour 

reaches at the bottom of the pier which is simply supported because the sand 

confinements were all removed, the loss of the stiffness provided by the sand along the 

bottom area makes the pier very unstable and, causes a sharp drop of the 2nd modal 

frequency which is more sensible. (2) The another possibility is the mode coupling 

effect in a three dimensional structure. Similar to that observed in section 7.1, due to the 

coupling modes, different frequencies is possible for only one mode if a three 

dimensional structure is simplified to a plane structure, i.e., they will have a similar 

mode shape in the considered plane but with different frequencies. In the scouring 

experiment, only the vibration parallel to the stream flow is measured, thus, when the 

scour reaches bottom area of the pier, the coupling modes may take place due to the 



104 

 

change in dynamic behavior instead of the original modes,. 

However, since the signal oversteps the measure range, more tests is required to 

check above statement and make sure that the frequency drop before the settlement is 

not occasional or due to other unknown factors. Moreover, to check that the occurrence 

of the long period signal corresponding to the first settlement, a KEYENCE LK-2000 

Laser displacement sensor is installed above pier 3 in the test conducted in January 24, 

2011. 

7.3.1.2 Test conducted in 2011/01/24 with full measurements 

In this test there are only 9 sensors from No. 1 to No. 9 are available. The order 

determination for rSSA-SSI-COV model is shown in Figure 7-33 , a) shows the 

singular spectrum in rSSA step, and the remaining figures are made from the SVD in 

RSSI-COV step, using the 5000 points contained in the moving window. From the 

examples shown in Figure 7-33, the choice of 20 SV leads to a very clear jump, 

however, considering that the system changes over time, the rSSA subspace order is 

chosen towards the upper limit and defined as 35, i.e., case c) in Figure 7-33, and the 

system order is selected at the jump, which is 34. The model parameter is shown in 

Table 7-7. 

The evolution of the modal frequencies is shown in Figure 7-34. The displacement 

sensor is also installed to measure the settlement at pier 3. The frequency evolution 

pattern is similar to what has been discussed: the water arrivals and impacts the piers at 

about 205 seconds, after that the modal frequencies decrease rapidly up to about 1000 

seconds, and hereafter is the stationary scour stage and the frequency decrease rate 

become almost constant. The first sudden frequency drop is detected at about 6000 



105 

 

seconds, the drop is not as large as that occurs in the previous test: the 2nd mode 

decreases from about 13.3 Hz to 12.8 Hz, the drop in 1st modal frequency is not clear 

due to the scatter in the data. This sudden drop occurred 2000 seconds before the 1st 

settlement which happened at 8030 seconds approximately, and can be served as the 

feature indicating imminent bridge settlement. Once the settlement occurs, the decrease 

in 2nd modal frequency is significant: from 12.8 Hz to about 11.7 Hz, and many coupled 

modes appear. After the first settlement the data become quite sparse especially for the 

1st mode, but arriving to 11000 seconds, there is a sudden increase in modal frequencies. 

From experimental observation, steel decks which are originally simply supported on 

the top of pier and without contact each other, get stuck after several settlements, this 

explains the sudden increase in modal frequencies. 

On the other hand, it is proved in Figure 7-34 b) that the settlement is always 

accomplished by the appearance of a long period signal in the velocity measurement. 

7.3.1.3 Test conducted in 2011/01/26 with full measurements 

Although with the Laser displacement sensor installed in the test conducted in 

2011/01/24, the relationship between settlement and long frequency signal is verified, 

there are only data of 9 sensors available. Therefore, another test was carried out in 

2011/01/26, the model parameter is shown in Table 7-8; the singular spectrums used to 

determined the system order is shown in Figure 7-35. Unlike previous cases, the 

subspace order for rSSA and the system order for this test is reduced to the best choice. 

Figure 7-36 Shows the time-frequency plot of the modal frequencies. 

The same pattern one can found in Figure 7-36, the water arrivals at about 30 

seconds, the decrease in the natural frequency of the bridge in the first 500 seconds is 
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very fast because the surface sands were whisked away by the stream and the scour 

depth increments rapidly; after 500 seconds, the scour rate was slowed down to the 

“stationary” stage during the subsequent 5000 seconds, until a sharp drop of 2nd modal 

frequency occurs at approximately 5500 seconds, which warns of an imminent 

settlement. This latter event occurs in pier 3, evidently a long period signal appears at 

the first time around 5820 seconds in the 9th sensor measurement indicating pier 

settlement, which is shown in Figure 7-36 b). After several bridge settlements, and 

again, decks originally simply supported on the top of pier without contact each other 

get stuck, this explains why a sudden increase in modal frequencies after approximately 

8000 seconds. 

7.3.1.4 Test conducted in 2011/03/29 with full measurements 

The velocity sensors are very sensitive and high quality expensive sensors made 

specially to measure ambient vibrations, otherwise, accelerometers are commonly used 

sensors for vibration-based system identification with more affordable prices. Therefore, 

another test was conducted in 2011/03/29 applying both RSSI-COV and 

rSSA-SSI-COV algorithm to the acceleration measurements. Data measured by the 

twelve sensors are used simultaneously. The acceleration data are filtered in field by an 

analogous band-pass filter having its plateau zone on the Frequency Response Function 

between 0.02 Hz and 50 Hz.  

It is difficult to select a suitable system order directly by RSSI-COV, hence, firstly 

the singular spectrums from the combined approach rSSA-SSI-COV are considered as 

that shown in Figure 7-37. The same as what has been done in previous tests, the 

subspace order in rSSA which cause the appearance of a jump in the singular spectrum 

of RSSI-COV step leads to the better choice for the system order. Figure 7-37 a) shows 
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the singular spectrum constructed with rSSA; from Figure 7-37 b) to f) which 

corresponds to singular spectrum constructed in RSSI-COV, the jump begins to appear 

with 45 SV chosen from rSSA, which is shown in Figure 7-37 c), and the jump is 

located at 44 SV. Hereafter, the jump gets more clear while less SV is chosen. To be 

conservative and trying to reveal all identifiable modes, the order shown in c) is chosen, 

the model parameters for rSSA-SSI-COV is shown in Table 7-9. 

Figure 7-38 shows a comparison between the outcome of RSSI-COV and 

rSSA-SSI-COV after applying the same stability criteria used before. Evidently the 

addition of rSSA before RSSI-COV can enhance the tracking capability and stability in 

addition to the function to determine the system order. The pattern shown in the 

time-frequency plot is quite the same as that shown before: the water arrivals at about 

860 seconds, from now on the modal frequencies slowly decrease until the occurrence 

of the first settlement at 5057 seconds.   

A close picture was taken to the traces between 4500 and 5500 seconds and it is 

shown in Figure 7-39. The 4th mode appears at about 4650 seconds and decreases 

rapidly until about 4950 seconds, moment at which the 1st and 2nd mode frequency trace 

(the poles with frequency and damping ratio stables) are almost completely lost. This 

indicates that there is a very unstable dynamic behaviour before the 1st settlement which 

occurs at 5057 seconds, this together with the appearance and fast decrement of the 4th 

mode constitutes a good indicator of imminent bridge settlement. During the time 

period with successive settlements between 5057 and about 6000 seconds, the traced 

modal frequencies are also very dispersed and the reduction in 3rd modal frequency is 

evident. However, after 6000 seconds the modal frequencies slowly increase because 

the decks are getting stuck each other. 
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Furthermore, this close look to the frequency traces shown in Figure 7-39 allows 

to see that, actually, there are about two frequency traces for 3rd mode, three traces for 

2nd mode and about six traces for 1st mode very close one to another. Besides the factor 

of three dimensional mode coupling effect, these closely-spaced frequencies indicates 

the time varying characteristic of the bridge natural frequencies. 

7.3.2 Damage location indicator: mode shape slope ratio 

Mode shapes have been widely used to figure out the damage location throughout 

its curvature in many researches. The node which suffers from stiffness loss has usually 

larger curvature than the other nodes. The mode shape is a relative quantity which can 

be scaled arbitrary, however, the mode shape curvature is not independent of the scaling 

criteria and consequently, the identification of damage location depends on how one 

scale the mode shape. Taking into account this fact, the concept of mode shape 

curvature can be modified to a quantity which is independent of scaling, and here the 

definition of mode shape slope ratio is introduced.  

Curvature is the rate of change of the mode shape slope, to cancel out arbitrary 

scaling, ratio between consecutive slopes can be used instead of the rate of change of 

the mode shape slope. Moreover, sign of the curvature indicates the concavity. For 

mode shapes identified from field data, sign changes introduced in the concavity due to 

imperfections in the shape could make difficult the identification of damage location. 

To avoid all these inconveniences, the mode shape slope ratio can be defined as follows: 

 

(7.1) 
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where mi is the slope of the i th discrete segment of the spline interpolated mode shape. 

By defining the slope ratio this way, the sign problem can be avoided, and the resultant 

slope ratio will only reflect how large is the slope change in a given point. At the peak 

point of the mode shape where the slope sign changes, the 3rd criterion applies and it is 

just taking an average of the adjacent slope ratios. Finally, to avoid the a 

disproportionate increment in slope ratio comparing to the others, when slope in the 

divisor is near zero, a base 10 logarithm can be applied to the slope ratio. For the 

implementation, the computed mode shapes can be smoothed by curve fitting and 

interpolated with a spline function, which is sampled at 52 points to obtain 50 slope 

ratios along the bridge.  

7.3.2.1 Mode shape slope ratio for test conducted in 2011/01/19 

Figure 7-40 shows examples for the identified 1st modes shape from the test in 

2011/01/19 for two different time instants. Figure 7-41 shows the same but for the 2nd 

mode shape. 

From what is shown in Figure 7-40 and Figure 7-41, there are two identified 

mode shapes for both 1st mode and 2nd mode. The 1st modal frequencies are separated 

by about 2.5 Hz one to another, and by 3 to 4 Hz for the 2nd modal frequencies. Hence, 

although apparently there are three trace of frequencies revealing in the time-frequency 

plot shown in Figure 7-31, where the second trace is not very clear, however, both the 

2nd and 3rd trace corresponds to the 2nd mode. From the experience learned from section 

7.1, a possible explanation of this phenomenon is the mode coupling, because the bridge 

is simplified to a plane model for which only horizontal vibration is measured. 
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Comparing Figure 7-40 a) and b) to Figure 7-40 c); also comparing Figure 7-41 a) 

and b) to Figure 7-41 c) and d), there is no significant difference by visual observation, 

and the result with or without smoothing is similar. The 1st mode shape slope ratio is 

shown in Figure 7-42 a) for the smoothed shape and b) for the shape only interpolated 

by a spline function. 

The automatic discrimination of the mode shapes is based on the fact that, for this 

experimental bridge, the complex mode shape poles shown in Figure 7-40 and Figure 

7-41 are almost a straight line either 1st or the 2nd mode, i.e., the amplitude of the poles 

can be treated as normal modes by only adding a plus o minus sign according to its 

phase. The 1st mode has non zero crossings and the 2nd mode has only one zero crossing. 

The correlation coefficient R between the real part and imaginary part is another useful 

criteria to filter out spurious poles. The defined R criterion for different tests is shown 

in Table 7-10.  

From Figure 7-42, for both a) and b), the zone with higher slope ratio become 

wider after 1000 seconds, indicating that the system has been changed. Initially the peak 

is located at the center of the bridge which is expected for a 1st mode shape; while the 

scouring depth increments, the peak moves toward 300 cm, specially between 7200 and 

8000 seconds as that shown in Figure 7-42 a), moments corresponding to imminent 

pier settlement and, precisely the pier 3 is located at 325 cm.  

The 2nd mode slope ratio is shown in Figure 7-43 a) for the smoothed shape and b) 

for the shape only interpolated by a spline function. Two peaks exist in the 2nd mode 

shape as expected. Although the 2nd peak is located at 325 cm (pier 3 location), but it 

does not change at all along the time history, otherwise, it is the first peak located at 200 

cm which has a drastic movement toward 100 cm at about 7200 seconds, time instant at 
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which the 2nd modal frequency suddenly drops. Therefore, the 2nd mode shape is not 

appropriate to identify the damage location in the bridge, but the drastic change of the 

1st peak position is also an indicator of imminent pier settlement.  

7.3.2.2 Mode shape slope ratio for test conducted in 2011/01/26 

Figure 7-44 shows examples of 1st and 2nd identified mode shape from different 

time instants. In this case the difference is evident. However, the measurement of sensor 

No. 12 seems to have some problem because it has consistently a phase difference with 

all the remaining sensors. This inconvenience is the reason of a peak slope ratio 

appearing at about 400 cm to 430 cm, shown in Figure 7-45 b) and Figure 7-46 b), 

where the mode shape is not smoothed.  

From the smoothed mode shape shown in Figure 7-45 a), it is clear that the 1st 

mode slope ratio is a good indicator of the damage location. In the undamaged state, the 

peak is low and located at the center as it is normal for 1st mode shape; as scour occurs, 

the peak amplitude increases and moves rapidly to the region between 300 and 350 cm 

of the bridge from left to right, where is precisely the pier three location. After 7000 

seconds, again, the peak moves to the region between 200 and 250 cm, where is the 

location of the pier two. This is because the decks on the pier three got stuck and 

stiffness increased, as a consequence of the fact, the peak of the slope ratio moves to 

pier 2 at which the scour continues. 

In the other side, observing Figure 7-46 a), there are two peaks appearing in the 

slope ratio for the 2nd mode which are reasonable considering nature of the 2nd mode 

shape. Although a peak falls in the same region between 300 and 350 cm, there is no 

criterion to distinguish where the damage is located from the two peaks, besides that the 
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first peak (on the top of the figure) seems to be more sensible to the scour state. 

However, the same as that occurred for the 2nd modal frequency, the 2nd mode shape 

ratio can serve for the early warning purpose since position of the first peak changes 

suddenly just before the 1st settlement occurs. 

7.3.2.3 Mode shape slope ratio for test conducted in 2011/03/29 

The mode shape slope ratio results for the test conducted in 2011/03/29 are similar 

to that obtained in the two previous cases. Although three modes were identified, only 

the 1st mode shape slope ratio serves for the identification of damage location. Figure 

7-47 shows the outcome for the 1st mode, the 2nd mode and the 3rd mode are shown in 

Figure 7-48 and Figure 7-49 respectively.  

7.3.3 Novelty Index 

The Novelty Index analysis can be also applied to the scouring experiment. The 

test conducted in 2011/01/26 is selected for the purpose. The system matrix (A,C) and 

noise covariance (Q,R) can be computed following the procedure described in section 

2.4. The model parameters are: data window of 6000 points, 110 block rows and the 

system matrix order is defined as 20. Based on the developed system matrix, the 

Kalman filter estimation was used to predict the responses for the vibration time history 

of all sensors.  

Unlike the case of RCF6 mentioned in section 7.2 for which there are available 8 

white noise test and the statistics was made for every white noise data sequence; for the 

bridge scouring experiment, a moving window of 2000 points (10 seconds) is adopted 

to compute the error norm statistics and to perform the outlier analysis, and it moves by 

every 2000 points, the same as the window length.  
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Figure 7-50 shows the results of outlier analysis (both Euclidean norm and 

Mahalanobis norm). The parameter α is set as 2.5 which corresponds to an interval of 

99% confidence for a real normal distribution. However, 90 seconds after the scouring 

began, both Euclidean norm and Mahalanobis norm outliers have reached to almost 

100% and 80% respectively. Probably the very fast change in boundary condition of the 

bridge in the first minutes has introduced large prediction errors. Although outlier 

analysis cannot be applied, evolution of the statistics like the error norm mean and 

standard deviation can be checked. Figure 7-51 shows the result for the evolution of 

error mean and Figure 7-52 shows that for the error standard deviation, for both 

Euclidean norm and Mahalanobis norm. 

From Figure 7-51 b) and Figure 7-52 b), it is found that Mahalanobis norm is also 

a good indicator of inminent bridge settlement because both the error mean and standard 

deviation were suddenly raised at about 5500 seconds. After the occurrence of the 1st 

settlement at 5820 seconds approximately, both the error standard deviation as error 

mean went down again to the original level. After about 7500 seconds both quantities 

was suddenly reduced to the level at the beginning of the scouring test, this is because 

after several settlements the decks are getting stuck, with the increase of the horizontal 

stiffness the prediction error was reduced. 

The novelty analysis also can be made for every sensor separately to detect damage 

location. The outlier analysis does not apply here because it reaches to the top at the 

beginning as that occurs in Figure 7-50. The error mean and standard deviation per 

sensor are shown in Figure 7-53 and Figure 7-54 respectively. It is clear from these 

figures that both the error RMS mean and standard deviation of sensors 9 and 10 are 

much larger than the other sensors, followed by sensors 7 and 8. Since sensors 9 and 10 
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are the two sensors next to the pier 3, which suffers from settlement; and sensor 7 and 8 

are installed on the deck supported by pier 2 and 3, a quite deep the scour has also been 

reached at pier 2, hence, one can conclude that the novelty analysis done for each sensor 

separately is in fact an effective way to locate damage location. 
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Chapter 8 

Conclusions 

8.1 Research conclusions 

The changes of features in a structural system may due to the change of 

environmental loading pattern, the nonlinear inelastic response of structure or structural 

damage when subjected to severe external loading. The detection of the change of 

features or damage in large structural system, such as buildings and bridges, can 

improve safety and reduce maintenance costs. Therefore, feature extract and damage 

detection from vibration structures are the goals of SHM.  

Development of off-line identification procedure is discussed in the first part this 

thesis, with the aim of finding accurate and true modal parameters, a stabilization 

diagram is implemented by plotting the identified poles against the data matrix order, 

where the system order is fixed. In the sensitivity analysis, both the covariance driven as 

the data driven Stochastic Subspace System Identification techniques are proved to be 

robust and stable even the model assumptions were violated: (1) In the case of nonlinear 

signals, an equivalent linear model can be realized. (2) When there are extra noise added 

to the signal even when the noise is correlated with output, modal frequencies along 

with the mode shapes can be accurately identified by increasing the order of projection 

or covariance matrix. (3) Signals of a time-varying system will be decomposed in more 

and more “equivalent linear frequencies” as one goes up in the stabilization diagram and 

the poles will not stabilize with increase in the number of block rows. (4) The estimates 

of damping ratio are very sensitive to noise and the identification results are not reliable. 

(5) The closely-spaced frequencies blended with noise can be accurately identified with 

the help of the new developed SSA-SSI-COV identification algorithm, which is applied 
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to the identification of Canton Tower, a benchmark problem for SHM of high-rise 

slender structures. Thus, the capacity of SSI-based algorithm is demonstrated. Through 

the off-line analysis on the field response data of Canton Tower, the following 

conclusions are drawn: 

1. The difficulty in using SSI-DATA to identify these frequencies may be explained 

based on the conclusions obtained from previous simulation studies which indicate that 

closely-spaced frequencies are difficult to be identified when the measurements are 

noisy and generally only one equivalent frequency can be identified. Although finally 

SSI-COV could distinguish these close frequencies, giant Toeplitz matrix size was 

required which is actually excessively time and memory demanding.  

2. The use of SSA as a pre-processing tool for SSI-COV enhances greatly the early 

emergence of a stable diagram for the identifiable modes and allows finding the best 

choice of system order. In the case of using 95 SV from SSA, a clear jump appears in 

the singular spectrum obtained in SSI-COV which indicates the best system order, and 

most of all modes are stabilizes starting from about the 25th row or even earlier. On the 

contrary, by using SSI-COV alone the stability starts approximately after 100 to 125 

rows. 

3. SSA as preprocessing technique cannot be used in conjunction with SSI-DATA, 

worse result in stability than using SSI-DATA alone was obtained. The signal 

regeneration by SSA has negative effects in the orthogonal projection carried out in 

SSI-DATA, which is, in fact, the best least square fit of the future measurements in 

terms of the past measurements. 

4. The advantage of SSA over the low-pass filter is proved in this study. The use of SSA 

leads to an earlier emergence of a stable diagram, i.e., accurate answers can be realized 
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with lower matrix order (number of block rows).  

5. Preprocessing raw data with decimation is always necessary in system identification, 

which is able to reduce the computation effort and leads to an accurate and fast 

convergence of the identified modal parameters. 

In the second part of this research, the on-line system parameter estimation 

technique from output-only measurements is developed through Covariance driven 

Recursive Stochastic Subspace identification (RSSI-COV) moving window approach. 

To make possible the SVD-updating task, Extended Instrumental Variable version of 

Projection Approximation Subspace Tracking algorithm (EIV-PAST) was adapted for 

the purpose. Furthermore, the recursive Singular Spectrum Analysis (rSSA) algorithm is 

proposed through the introduction of PAST algorithm, and then, the recursive 

rSSA-SSI-COV method is complete.  

Both RSSI-COV and rSSA-SSI-COV are validated through numerical simulation 

study of time-varying dynamic system. Several conclusions were obtained from the 

simulation study: (1) The tracking stability increases with the window length of 

RSSI-COV, but this latter does not increase the computation time. This is an advantage 

of RSSI-COV over RSSI-DATA. However, larger is the window length, more the time 

delay to detect system change. (2) From the experience learned in numerical study, the 

window length for rSSA should be much smaller than that used for RSSI-COV, 

recommended value is about half of the window length of RSSI-COV. (3) The required 

system order for time-varying systems is higher than the theoretical value, because 

signals of a time-varying system demand more orthonormal vectors to span the system 

information. The higher the number of block rows (subspace dimension), i.e., better 

decomposition is achieved, however, the larger the system order demand. This latter is 
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even more evident when the noise is engaged in. (4) In the presence of a noise which 

violated the SSI assumption, huge system order is required for RSSI-COV to track 

recursively the modal parameters. The preprocessing with rSSA enhanced the tracking 

stability and allows tracking the time-varying modal information with less system order. 

Through the application of recursive analysis on several laboratory tests, the online 

tracking capability and robustness of RSSI-COV and rSSA-SSI-COV are demonstrated. 

Moreover, various conclusions can be obtained from the experimental application 

regarding to SHM and damage detection: 

1. The model reduction of a three dimensional structure to, e.g., a plane structure, it is 

possible to find more than one frequency for a single mode (with a very similar mode 

shape) due to the mode coupling effect in three dimensions although the structure is 

symmetric. System change is not the only reason for the variation in the modal 

frequency, it is also possible the frequency shifting due to mode coupling when the 

external loading pattern changes or caused by the same system change. The second 

reason is observed in the experiment of 3-story steel frame with instantaneous stiffness 

reduction. 

2. To avoid confusion between system change and modal coupling, higher system order 

is required. Moreover, the presence of non-linearity and time-varying frequencies such 

as the bridge under constant scour demands a lot orthonormal vector, i.e., system order 

to span the system information. The procedure described in SSA-SSI-COV can be 

effectively applied to rSSA-SSI-COV during the undamaged state and an initial 

estimate of the system order is offered. The system order must be chosen toward the 

upper limit keeping a margin for when the system has changed and when the 

non-linearity and time-varying pattern become strong. 
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3. The goal of early warning to imminent bridge pier settlement is achieved. A sudden 

drop in higher modal frequencies is always present at all bridge scour tests. The 

decrement in frequency is even more significant after the occurrence of the first 

settlement, and the frequency poles are very sparse at this stage. The accuracy and 

robustness offered by rSSA-SSI-COV seems to be the key to obtain evidences of 

imminent bridge settlement. The accuracy and stability are important issues because the 

changes in modal frequencies are usually small even the structure has been damaged.  

4. The peak value of the first mode shape slope ratio is a good indicator of the damage 

location. Although the higher modes are difficult to locate damage because more than 

one peak exists, together with the higher modal frequencies these mode shape slope 

ratios present sudden changes in peak position when the bridge is subjected to imminent 

settlement. All this evidences indicate that the dynamic behavior of bridge is completely 

different when the sand confinement is completely removed due to scouring and the 

settlement is about to occur. 

5. Besides the change in modal parameters, the novelty index through Kalman filter 

prediction error also provides a useful statistical index of damage, the prediction error 

by every sensor can also indicate the damage location, making possible the damage 

detection and early warning. 

8.2 Recommendations for future work 

The long-term goal of the research in SHM is the application of the system 

identification and damage detection methods to the real scale structures, which in fact 

are much more complex, and in addition to the environmental factors, both the 

automatization of the identification process for continuous monitoring, as seeking for 
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reliable criterias and indexes to translate the system identification outcome into a safety 

or warning message are challenges to be overcome. Therefore, further researches and 

experiences with large scale structures are needed. 

The computation speed is another difficult to be overcome in the online application. 

In the bridge scouring experiment, all 12 sensors were required in the application of 

rSSA-SSI-COV to realize accurately the modal frequencies and mode shapes, however, 

using a modern computer and in terms of the selected rSSA-SSI-COV parameters, the 

computation consumed about 10 times more than the required timing for online 

application. Although with reduced number of sensors and reducing the number of 

block rows (less accuracy) the timing requirement can be satisfied, the tracking result 

for modal frequencies is more scattered and is not as clear as that obtained with full 

measurements; furthermore, it is impossible to recover a good mode shape if only a few 

points are available, and thus, damage location cannot be identified. A feasible solution 

to increase the computation speed is through the developement of parallel computation 

algorithms which can exploit the full computation potential of the microcontroller of 

each sensing unit. 

Although the system damage and location can be identified correctly in this study, 

there is still a lack in this research about damage quantification and the estimation of the 

remaining service life. Since SSI-based algorithms are able to accurately identify the 

modal parameters, a possible approach is through the finite element model updating of 

the mass, dampin and stiffness matrix, therefore the damage can be quantified and the 

remaining service life can be assessed. 
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Appendix A: Frequency Domain Decomposition (FDD) 

The Frequency Domain Decomposition can be considered as an SVD-enhanced 

power sepctrum, and it applies when it is the case of multiple measurements. The 

procedure starts from estimating the power spectrum density matrix, which is formed 

applying Discrete Fourier Transform (DFT) to the Covariance matrix shown in (2.22), 

for time lag k ranging theoretically from minus infinity to infinity: 

( ) ∑
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where ll
y

×ℜ∈S  is the spectrum matrix. Having in mind that only finite data length N 

is available, only estimates of the spectrum can be calculated. There is a more 

straight-forward way to compute the spectrum estimated called modified Welch’s 

periodogram [54], which begins by calculating the DFT of the weighted measured 

signal: 
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where wk is a window function to avoid leakage. n is a segment of the total data length 

N. If n is a power of 2, DFT can be efficiently computed using FFT at the discrete 

frequencies: 

tn ∆
= πρωρ

2
 ,  ρ  = 0, 1, 2, …, n-1 

The spectrum estimate is a product between the obtained DFT and its Hermitian 

transpose denoted as the superscript H, scaled by the squared norm of the window 

function, but averaging over all available samples of DFTs, i.e., periodogram: 



129 

 

( ) ( ) ( )tjtj
p

i
n

k
k

tj
y ee

p
e ∆∆

=
−

=

∆ ∑
∑ 


















= ρρρ ωωω H
ii YY

w

~

1
21

0

1
~
1
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where p~  is the number of available samples of DFT from the total data of length N. 

Overlap is permitted in the sampling and, if higher frequency resolution is required, the 

sampled segment can be zero-padded. 

Finally, SVD is applied to the spectrum matrix (which is a complex valued matrix) 

for each discrete frequency ρω . The set of major singular values can be plotted against 

frequency and a singular spectrum in frequency domain will be obtained. The advantage 

of using FDD over the traditional power spectrum is that, information of multiple 

sensors can be gathered and combined in only one outcome, especially if it is the case of 

closely-spaced frequencies, its effects will be reflected in the singular values, e.g., if 

there are two close frequencies, weight of the second singular value will become closer 

to the first one. 
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Appendix B: Prediction Error Method through Stochastic Subspace 

Identification (PEM/SSI) 

The objective of this appendix section is to show the similarity that exists between 

the system realization algorithm based on autoregressive (AR) model, solved through 

prediction error method/least square (PEM/LS), and SSI-DATA. This enables one to 

modify the traditional least square PEM to a subspace approach. 

Prediction error methods PEMs are very common and widely used system 

identification methods. The main idea is to identify a system of linear equations in the 

sense that: based on past inputs and outputs, can predict any output. For the special case 

of multivariate output-only measurements, these models are known as autoregressive 

with moving average vector ARMAv [59].  

In the output only system identification, the traditional PEM is carried out using a 

two-stage least squares approach. The autoregressive AR model can be written as: 

ikikkk −−− −−−−= yyyy AAA ...ˆ 2211  (B.1) 

where the matrices ll
k

×ℜ∈A  are the multivariate AR matrix coefficients; yk is the 

measurement vector. 

The first step is the fitting of the autoregressive AR model to the measurements 

using least square: 
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similar to the number of block rows in SSI, i is the order of the AR model, j is the 
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available data length for least square.  

The error sequence obtained from least square fitting can be used as pseudo-inputs 

of the system and therefore, a pseudo-ARX model (AR model with exogenous input) 

can be built and again, fitted with least square: 

ickickkikikkk −−−−−− ++++−−−−= εεεyyyy CCCAAA ......ˆ 22112211  
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where ic is the order selected for the pseudo-inputs and ll
k

×ℜ∈C  are the pseudo-input 

matrix coefficients. The AR model coefficient matrices Ak are, therefore, arranged and 

associated with the state-space model as that is done in the conventional state-space 

realization algorithm [61]. This two step algorithm is also knwon as the AR-ARX 

method. However, our target is to compare the PEM/LS algorithm with the orthogonal 

projection used in SSI-DATA, to later, be able to apply the SSI procedure to PEM.  

Actually, the equation (B.2) can be rewritten as a simple least square problem in 

the notation of SSI: 

errorT
ip

T
f += AαYY ,1/1,1/  (B.4) 

where T
f 1,1/Y  is the transpose of the 1st row of the future output measurement shown in 

(2.26) and T
ip ,1/Y  is the transpose if the past output measurements from row 1 to row i. 



132 

 

Aα is the matrix containing the AR model coefficient matrices Ak. 

The well-known least square solution for Aα  and, T
f 1,1/Ŷ , the best estimate of 

T
f 1,1/Y  is: 

( )( ) ( ) ( ) T
fip

T
ipip

T
f

TT
ip

T
ip

TT
ip 1,1/,1/

1

,1/,1/1,1/,1/

1

,1/,1/ YYYYYYYYαA

−−
==  (B.5a) 

( ) T
fip

T
ipip

T
ip

T
f 1,1/,1/

1

,1/,1/,1/1,1/
ˆ YYYYYY

−=  (B.5b) 

( ) ip
T

ipip
T

ipff ,1/

1

,1/,1/,1/1,1/1,1/
ˆ YYYYYY

−=  (B.5c) 

where (B.5c) is simply the transpose of (B.5b), and one can realize that (B.5c) is almost 

the same expression that (2.34), the only difference is that (2.34) gets at once the best 

estimate for whole future measurement Yf /1,i while only one block row is obtained by 

(B.5c). 

Therefore, the projection matrix obtained in (2.38) can be interpreted as, in fact, 

the best estimate of the future output in terms of the past outputs in a least square sence, 

i.e., orthogonal projection of the future data in the past data. Therefore, PEM and 

SSI-DATA can be combined and stated at the following: 

First, obtain the projection matrix, i.e., the best estimates of the future data From 

(2.37) and (2.38). Then, the error matrix can be obtained by computing the difference 

between the estimate data matrix and the original data matrix: 
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After this point, the same elements of the error matrix can be grouped and 
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averaged along its antidiagonal as that is done for SSA (section 2.7) and considered as 

pseudo-inputs. In a similar way than the projection for SI using input-output data [47], 

and using the LQ decomposition formulated before, the Hankel data matrix can be now 

re-arranged by inserting the corresponding pseudo-input matrix: 
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where ic is the order selected for the pseudo-inputs, and since the first i data points were 

used in the least square fitting, for this second stage the data begins at point i+1 , j’  is 

used for the row length instead of j, since length of this latter is no longer the same. 

A new projection matrix can be obtained by performing a similar LQ 

decomposition to (B.5): 
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Thereafter, the SVD can be applied to ( )3231 LLO ′′=′  to determine the system 

order, and to separate the system subspace (non-zero singular values) from the noise 

subspace (vanishing singular values), finally the system matrices (A,C) can be 

determined as presented before in the section 2.3. 
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In fact, the LQ decomposition of the Hankel matrix shown in (B.7) is the transpose 

version of the least square problem shown in (B.3): 
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where the block column vector containing the system information in (B.2) Aα  now 

become a matrix of i block columns. However, this latter mentioned matrices are not 

our interest, what is desired is the best estimate of the future data fY ′  in terms of the 

past data pY ′  and pseudo-input pΕ , i.e., 






 ′
′

p

p

f
Ε

Y
Y / : orthogonal projection matrix of 

fY ′  in the row space spanned by pY ′  and pΕ . 

So far, the comparison between SSI-DATA and PEM/SSI is complete, and in 

simple words, PEM/SSI is actually a 2-step-projection SSI-DATA algorithm, since the 

orthogonal projection is done twice. The performance of this algorithm is tested and 

discussed in Chapter 3, where simulation study is carried out. 
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Appendix C: Novelty index through Kalman-Filter-based 

prediction error 

If a structure is subject to damage, the system matrix A will be changed, therefore, 

if the system information is stored at the undamaged state and used for prediction of the 

structure response, it is expected that, as the damage is accentuated, the prediction will 

deviate in a higher degree from the measured response. Statistics made from this 

prediction error serve as useful indexes for damage detection [62]. Discrete-time 

Kalman filter with unknown inputs is the instrument used to perform this prediction 

error task.  

To make the Kalman Filter more adaptive, the version of Kalman Filter shown in 

chapter 3 of [60] is used, which consiste of 2 states: prediction state and updating state. 

Formulas to be implemented are shown below, detail derivation of each statement can 

be find in [60]. 

Firstly assume an initial system state x̂ (0/0) and prediction error covariance P(0/0) 

and later, using the system matrices (A,C) and the stochastic noise covariances (Q,R) 

computed by SSI-DATA algorithm shown in section 2.5, the Kalman filter algorithm 

can be implemented as follows:  

(1) Given the statex̂ (k/k) and P(k/k), compute the predicted state:  

( ) ( )kkkk /ˆ/1ˆ xx A=+  (C.1) 

where (k+1/k) means the predicted state at k+1 step from step k. 

(2) Compute the predicted error covariance matrix: 
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( ) ( ) QAAPP +=+ Tkkkk //1  (C.2) 

(3) Compute the Kalman gain matrix: 

( ) ( ) ( )[ ] 1
/1/11

−
+++=+ RCCPCPK TT kkkkk  (C.3) 

(4) Compute the updated system state from the measurement y(k+1) 

( ) ( ) ( ) ( ) ( )]/1ˆ1[1/1ˆ1/1ˆ kkkkkkkk +−++++=++ xyxx CK  (C.4) 

where (k+1/k+1) means the updated state at k+1 step from measurement at k+1. 

(5) Compute the updated error covariance matrix: 

( ) ( ) ( ) ( ) ( ) ( )11]1[/1]1[1/1 ++++−++−=++ kkkkkkkk TT RKKCKIPCKIP  (C.5) 

(6) set k = k+1 and return to step (1). 

This 2-state Kalman filter differs from the Forward Innovation model [62], because 

the Kalman Gain of this latter is constant and it is obtained by solving Riccatti equation. 

However, the 2-state Kalman Gain is updated at each state by the prediction error 

covariance.  

The prediction error can be computed at the predicted state as:  

( ) ( ) ( )kkkkk /1ˆ11/1 +−+=++ xye C  (C.6) 

sincex̂ (k+1/k) is determined only by the system matrix A, degree of change in the 

system will be reflected directly in the computed prediction error. The advantage of the 

use of the 2-state Kalman filter is that, the update state will correct this deviation at 

every step, which could be very large when the system was severely changed. 

Several statistical indexes can be defined based on the computed prediction error 
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sequence. The Novelty Index (NI) [62] is defined as the Euclidean norm of the 

multivariate error vector: 

k
E
kNI e=  (C.7) 

or as the Mahalanobis norm: 

kk
T
k

M
kNI ee 1−= Σ  (C.8) 

where NT
k /yyΣ = is the sample covariance marix, N is the number of sample points 

contained in the sequence, and y is the multivariate measurement sequence. In online 

applications, a moving window with a given length can be used to sample a sequence 

from the online prediction error and later, statistics can be calculated from the norm 

sequence being considered.  

Moreover, an outlier analysis can be done from the norm sequences. The mean 

θ ′ and standard deviation σ ′  can be calculated from the undamaged state: 

∑
=

′=′
lN

k
k

l

IN
N 1

1θ   and  ( )∑
=

′−′=′
lN

k
k

l

IN
N 1

21 θσ  (C.9) 

where the prime sign indicates undamaged state. An upper control limit can be defined 

as a horizontal line: 

σαθ ′+′=UCL  (C.10) 

If the coefficient α is chosen as 3, this corresponds to an interval of 99.7% 

confidence for a real normal distribution. The outlier analysis is then performed by 

counting how many times the prediction error norms (in % of total samples) are passing 

over the upper limit, in the given windowed sequence. Additionally, the ratio of the 
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mean values and standard variations of NI, between damaged and reference states 

respectively, can also be used as damage indicators. 

A similar strategy can be applied to each sensor individually and (C.7) become a 

simple Root-Mean-Square of the error sequence. Then, (C.9) and (C.10) can be applied 

to the sampled data of each sensor individually; comparison between the outcome of 

each sensor allows to find the damage location, since is expected that the damage occurs 

in the place where is larger the prediction error. 

 



139 

 

Table 2-1  Comparison of identification results of SSI-COV 

 

Excitation level 

and number of 

rows* 

Frequency Damping 

1 2 3 4 5 6 1 2 3 4 5 6 

True answer --- 1.0107  2.2795  3.9280  5.4433  7.5773  8.2290  0.0351  0.0299  0.0101  0.0088  0.0105  0.0058  

velocity measurements (noise free data) 

Square 

Toeplitz 

matrix 

50 dB, 2~10 rows 1.0131  2.2554  3.9181  5.4500  7.5837  8.2146  0.0424  0.0282  0.0106  0.0111  0.0110  0.0060  

50 dB, 2~30 rows 1.0143  2.2538  3.9190  5.4515  7.5830  8.2149  0.0467  0.0301  0.0100  0.0110  0.0111  0.0059  

50 dB, 2~100 rows 1.0039  2.2666  3.9175  5.4522  7.5902  8.2216  0.0321  0.0255  0.0105  0.0115  0.0090  0.0072  

Rectangular 

Toeplitz 

matrix 

50 dB, 2~70 rows 1.0033  2.2575  3.9184  5.4527  7.5823  8.2167  0.0320  0.0260  0.0108  0.0112  0.0108  0.0061  

50 dB, 2~100 rows 1.0121  2.2637  3.9240  5.4565  7.5767  8.2427  0.0406  0.0297  0.0091  0.0125  0.0081  0.0078  

50 dB, 2~150 rows 1.0046  2.2646  3.9178  5.4526  7.5865  8.2198  0.0324  0.0253  0.0106  0.0115  0.0098  0.0068  

Acceleration measurements (noisy data) 

Square 

Toeplitz 

matrix 

0 dB, 5~100 rows 1.0058  2.2659  3.9321  5.4659  7.5751  8.2349  0.0607  0.0270  0.0087  0.0066  0.0094  0.0096  

10 dB, 5~100 rows 1.0158  2.2657  3.9229  5.4553  7.5808  8.2430  0.0321  0.0306  0.0093  0.0118  0.0075  0.0087  

50 dB, 5~125 rows 1.0010  2.2686  3.9162  5.4510  7.5896  8.2250  0.0328  0.0234  0.0105  0.0117  0.0083  0.0074  

Rectangular 

Toeplitz 

matrix 

0 dB, 10~100 rows 0.6522  2.3028  3.9342  5.4737  7.5775  8.2389  1.0000  0.0744  0.0111  0.0080  0.0082  0.0086  

0 dB, 20~100 rows 1.0274  2.2637  3.9311  5.4768  7.5787  8.2394  0.3001  0.0374  0.0113  0.0080  0.0082  0.0085  

0 dB, 30~100 rows 1.0019  2.2634  3.9298  5.4778  7.5799  8.2402  0.0815  0.0348  0.0112  0.0080  0.0082  0.0086  

0 dB, 50~100 rows 1.0039  2.2657  3.9319  5.4648  7.5746  8.2353  0.0688  0.0276  0.0087  0.0067  0.0094  0.0096  

10 dB, 50~150 rows 1.0174  2.2653  3.9232  5.4558  7.5805  8.2418  0.0417  0.0300  0.0093  0.0119  0.0075  0.0086  

50 dB, 2~300 rows ---** ---**  3.9639  5.4806  7.5969  8.2275  ---**  ---**  0.1506  0.0484  0.0161  0.0085  

50 dB, 10~200 rows ---**  2.2791  3.9178  5.4520  7.5874  8.2228  ---**  0.0385  0.0108  0.0117  0.0090  0.0071  

50 dB, 20~150 rows 1.0349  2.2646  3.9177  5.4521  7.5861  8.2214  0.0267  0.1205  0.0106  0.0115  0.0095  0.0068  

50 dB, 30~150 rows 1.0063  2.2649  3.9177  5.4520  7.5864  8.2219  0.0576  0.0253  0.0106  0.0115  0.0093  0.0069  

50 dB, 50~150 rows 0.9975  2.2651  3.9172  5.4522  7.5876  8.2230  0.0407  0.0240  0.0107  0.0115  0.0090  0.0071  

* Number of rows for square Toeplitz matrix, means the number of block rows and columns from the beginning to the 

end of the stabilization diagram. But for rectangular Toeplitz matrix the first value is the number of block columns 

which is fixed, and the second value is the maximum block rows reached in the stabilization diagram. The solutions are 

picked from the last row of the diagram. 

** The empty spaces means not identified parameters. 

 



140 

 

Table 3-1  Comparison of the identified frequencies of the 6 DOF simulation example 

 Algorithm Frequency Error (%) 

 1 2 3 4 5 6 1 2 3 4 5 6 

True 

answer 

--- 

1.0107  2.2795  3.9280  5.4433  7.5773  8.2290        

Added 

50% white 

noise 

SSI-COV 
0.9806  2.2619  3.9329  5.4764  7.5804  8.2441  2.98  0.77  0.13  0.61  0.04  0.18  

SSI-DATA 
0.9865  2.2623  3.9328  5.4763  7.5780  8.2419  2.40  0.76  0.12  0.61  0.01  0.16  

PEM/SSI 
0.9898  2.2716  3.9315  5.4771  7.5789  8.2431  2.07  0.35  0.09  0.62  0.02  0.17  

Added 

100% white 

noise 

SSI-COV 
0.9846  2.2581  3.9315  5.4778  7.5806  8.2393  2.59  0.94  0.09  0.63  0.04  0.13  

SSI-DATA 
0.9795  2.2557  3.9322  5.4770  7.5795  8.2445  3.09  1.04  0.11  0.62  0.03  0.19  

PEM/SSI 
0.9878  2.2476  3.9351  5.4814  7.5827  8.2491  2.26  1.40  0.18  0.70  0.07  0.24  

Added 

200% white 

noise 

SSI-COV 
0.9807  2.2662  3.9342  5.4716  7.5752  8.2332  2.97  0.58  0.16  0.52  0.03  0.05  

SSI-DATA 
0.9747  2.2499  3.9314  5.4846  7.5693  8.2504  3.57  1.30  0.09  0.76  0.11  0.26  

PEM/SSI 
0.9841  2.2656  3.9296  5.4838  7.5830  8.2422  2.63  0.61  0.04  0.74  0.08  0.16  

 

Table 3-2  Comparison of the identified damping ratios of the 6 DOF simulation example 

 Algorithm Damping Error (%) 

 1 2 3 4 5 6 1 2 3 4 5 6 

True 

answer 

--- 

0.0351  0.0299  0.0101  0.0088  0.0105  0.0058        

Added 

50% white 

noise 

SSI-COV 
0.0643  0.0296  0.0105  0.0085  0.0074  0.0086  83.07  0.81  3.50  3.22  29.70  47.55  

SSI-DATA 
0.0598  0.0302  0.0105  0.0077  0.0067  0.0075  70.21  1.08  4.25  12.08  36.43  29.23  

PEM/SSI 
0.0574  0.0272  0.0092  0.0079  0.0061  0.0074  63.41  8.89  9.20  9.83  41.77  27.19  

Added 

100% white 

noise 

SSI-COV 
0.0659  0.0312  0.0090  0.0081  0.0063  0.0085  87.63  4.34  10.65  7.32  40.04  46.20  

SSI-DATA 
0.0714  0.0293  0.0097  0.0072  0.0068  0.0083  103.28  1.84  3.59  17.50  35.44  43.96  

PEM/SSI 
0.0520  0.0283  0.0085  0.0059  0.0069  0.0071  47.98  5.21  15.95  33.22  34.51  23.22  

Added 

200% white 

noise 

SSI-COV 
0.0669  0.0338  0.0117  0.0099  0.0072  0.0068  90.48  13.31  16.15  13.29  31.85  17.16  

SSI-DATA 
0.0551  0.0249  0.0128  0.0095  0.0079  0.0073  56.89  16.75  26.97  8.48  24.78  25.29  

PEM/SSI 
0.0449  0.0260  0.0093  0.0078  0.0065  0.0074  27.87  12.99  7.84  10.52  37.89  27.81  

 
Table 3-3  Different set of frequency and k3 values used in the modeling 

Natural frequency Duffing parameter k3 

0.1 Hz -0.26 k = -0.10264 

1 Hz -80 k = -3158.2734 

10 Hz -7300 k = -28819244.85 

*mass was assumed unitary, therefore the required stiffness k can be derived. 
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Table 3-4  Comparison of identification results for nonlinear signals 

  Frequency Damping 

  50 rows 200 rows 50 rows 200 rows 

0.1 Hz, k3 : -0.26k SSI-COV 0.0960  0.0960  0.095  0.091  

SSI-DATA 0.0955  0.0964  0.071  0.080  

1 Hz, k3 : -80k SSI-COV 0.9642  0.9608  0.010  0.017  

SSI-DATA 0.9624  0.9598  0.018  0.014  

10 Hz, k3 : 

-7300k 

SSI-COV 9.8719  9.8812  0.010  0.009  

SSI-DATA 9.9054  9.8879  0.011  0.009  

* SSI-COV uses 10000 points for correlation, SSI-DATA uses 10000 columns for Hankel matrix. System order is defined as 

2. Rows are increased from 2 to 200 rows. 

 

 

Table 3-5  Comparing identification results of two close frequencies with signal generated by ambient vibrations 

  Frequency Damping ratio 

 Correct answer 0.3432 0.3681 0.01 0.04 

Noise free 

SSI-DATA 10000 columns, 5 to 100 rows, system order 4 0.3450 0.3669 0.023 0.027 

SSI-COV 10000 points covariance, 5 to 100 rows, system order 4 0.3437 0.3668 0.025 0.023 

Noisy 

SSI-DATA 10000 columns, 5 to 150 rows, system order 4 0.3429  0.3682  0.017  0.035  

SSI-COV 10000 points covariance, 5 to 150 rows, system order 4 0.3425  0.3673  0.020  0.037 

SSA-SSI-COV 16 SV, 3500 points covariance, 2 to 100 rows, system order 4 0.3454  0.3603  0.009  0.007  

SSA-SSI-COV 14 SV, 3500 points covariance, 2 to 100 rows, system order 4 0.3456  0.3606  0.006  0.007  

SSA-SSI-COV 8 SV, 3500 points covariance, 2 to 100 rows, system order 4 0.3466  0.3656  0.011  0.010  

SSA-SSI-COV 4 SV, 3500 points covariance, 2 to 100 rows, system order 4 0.3420  0.3647  -0.001  -0.005  

SSA-SSI-COV 8 SV, 3500 points covariance, 2 to 100 rows, system order 8 0.3483  0.3640  -0.003  -0.008  

SSA-SSI-COV 14 SV, 3500 points covariance, 2 to 100 rows, system order 8 0.3447  0.3657  0.009  -0.005  
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Table 4-1  Comparison of the identified modal parameters of Canton Tower 

FEM Mode number  Wind Wind 1 2 3 4 5 6 7 

FEM Mode  Frequency -- -- 0.1100     0.1590     0.3470     0.3680     0.4000     0.4610     0.4850     

SSI-COV 

Order 90 

18000 points, 

300 rows 

Frequency 0.0404  0.0409  0.0902  0.1392  0.3652  0.4243  0.4752  0.5060  0.5223  

Damping  0.2885  1.0000  0.0693  0.0135  -0.0004  -0.0008  0.0018  0.0018  0.0000  

SSI-DATA 

Order 90 

8000 columns, 

280 rows 

Frequency 0.0110  0.0339   0.1377  0.3655  0.4402  0.4774  0.5193   

Damping  1.0000  0.0727   0.0080  -0.0015  0.0048  -0.0002  -0.0017   

SSA-SSI-COV 

136SV, order 120 

15000 points 

170 rows 

Frequency 0.0345  0.0465  0.0958  0.1391  0.3648  0.4232  0.4756  0.5063  0.5226  

Damping  0.2368  0.1978  0.0700  0.0106  0.0024  0.0056  0.0006  0.0024  -0.0008  

SSA-SSI-COV 

95SV, order 90 

15000 points  

140 rows 

Frequency 0.0376  0.0572   0.1388  0.3644  0.4238  0.4757  0.5063  0.5226  

Damping  0.2412  0.3991   0.0122  0.0042  0.0039  0.0006  0.0031  -0.0008  

 

FEM Mode number  8 9 10 11 12 13 14 15  

FEM Mode  Frequency  0.7380 0.9020     0.9970     1.0380     1.1220     1.2440     1.5030     1.7260      

SSI-COV 

Order 90 

18000 points, 

300 rows 

Frequency 0.7982 0.9649  1.1507  1.2031  1.2525  1.3891  1.6401  1.9463   

Damping  0.0041 0.0013  0.0002  0.0058  0.0022  0.0036  0.0022  0.0053   

SSI-DATA 

Order 90 

8000 columns, 

280 rows 

Frequency 0.7977  0.9654  1.1794  1.2281   1.3848  1.6397  1.9428   

Damping  0.0009  -0.0004  0.0017  0.0010   0.0008  0.0003  0.0014   

SSA-SSI-COV 

136SV, order 120 

15000 points 

170 rows 

Frequency 0.7986  0.9652  1.1509  1.1932  1.2518  1.3899  1.6407  1.9445   

Damping  0.0020  0.0006  0.0006  0.0008  0.0013  0.0018  0.0010  0.0026   

SSA-SSI-COV 

95SV, order 90 

15000 points  

140 rows 

Frequency 0.7986  0.9653  1.1512   1.2517  1.3899  1.6407  1.9446   

Damping  0.0022  0.0008  0.0007   0.0015  0.0020  0.0012  0.0031   

Note: rows are block rows. 18000 points and 15000 points are the data length to perform covariance. 

 

Table 4-2  Comparison of the identified modal parameters of Canton Tower for different sampling rates 

FEM Mode number  Wind Wind 1 2 3 4 5 6 7 

FEM Mode  Frequency -- -- 0.1100     0.1590     0.3470     0.3680     0.4000     0.4610     0.4850     

SSI-COV 

Order 90 

18000 points, 

300 rows 

Frequency 0.0404  0.0409  0.0902  0.1392  0.3652  0.4243  0.4752  0.5060  0.5223  

Damping  0.2885  1.0000  0.0693  0.0135  -0.0004  -0.0008  0.0018  0.0018  0.0000  

Sampling rate: 25 Hz 

SSI-COV Order 90 

9721 points, 

140 rows 

Frequency 0.0397  0.0407  0.0899  0.1391  0.3659  0.4250  0.4755  0.5057  0.5222  

Damping  0.3034  0.6891  0.2008  0.0133  -0.0020  -0.0014  0.0026  0.0028  0.0001  

Sampling rate: 10 Hz 

SSI-COV Order 90 

3721 points 

140 rows 

Frequency 0.0363  0.0452  0.0924  0.1384  0.3658  0.4242  0.4750  0.5059  0.5222  

Damping  0.4674  0.1504  0.0195  0.0085  0.0020  0.0013  0.0016  0.0019  0.0002  

Sampling rate: 5 Hz 

SSI-COV Order 62 

1721 points  

140 rows 

Frequency There are 6 identified  

frequencies in this range  

0.0929  0.1383  0.3657  0.4240  0.4746  0.5061  0.5223  

Damping  0.0143  0.0057  0.0023  0.0011  0.0021  0.0016  0.0003  

 

FEM Mode number  8 9 10 11 12 13 14 15  

FEM Mode  Frequency  0.7380 0.9020     0.9970     1.0380     1.1220     1.2440     1.5030     1.7260      

SSI-COV 

Order 90 

18000 points, 

300 rows 

Frequency 0.7982 0.9649  1.1507  1.2031  1.2525  1.3891  1.6401  1.9463   

Damping  0.0041 0.0013  0.0002  0.0058  0.0022  0.0036  0.0022  0.0053   

Sampling rate: 25 Hz 

SSI-COV Order 90 

9721 points, 

140 rows 

Frequency 0.7983  0.9646  1.1504  1.1940  1.2525  1.3877  1.6400  1.9464   

Damping  0.0040  0.0013  0.0003  0.0033  0.0022  0.0036  0.0023  0.0053   

Sampling rate: 10 Hz 

SSI-COV Order 90 

3721 points 

140 rows 

Frequency 0.7984  0.9649  1.1505  1.1909  1.2515  1.3890  1.6398  1.9483   

Damping  0.0036  0.0018  0.0003  0.0016  0.0023  0.0028  0.0026  0.0066   

Sampling rate: 5 Hz 

SSI-COV Order 62 

1721 points  

140 rows 

Frequency 0.7987  0.9650  1.1504  1.1917  1.2513  1.3888  1.6361  1.9346   

Damping  0.0023  0.0021  0.0003  0.0018  0.0017  0.0021  0.0019  0.0012   
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Table 6-1  Sudden reduction of modal frequencies due to loss of stiffness 

Points Remaining 

stiffness in 1st 

DOF 

Frequency Damping ratio 

1 2 3 4 5 6 1 2 3 4 5 6 

1 ~ 4000 100 % 0.997  2.925  4.660  6.091  7.135  7.756  0.03 0.03 0.01 0.01 0.02 0.02 

4001 ~ 7000 95 % 0.991  2.908  4.635  6.064  7.116  7.749  0.04 0.04 0.02 0.02 0.03 0.03 

7001 ~ 10000 85 % 0.977  2.868  4.581  6.010  7.079  7.736  0.05 0.04 0.02 0.02 0.03 0.02 

10001 ~ 13000 75 % 0.959  2.822  4.521  5.956  7.046  7.727  0.055 0.04 0.02 0.05 0.03 0.01 

13001 ~ 16000 50 % 0.893  2.663  4.348  5.827  6.979  7.708  0.08 0.06 0.01 0.07 0.05 0.02 

16001 ~ 20000 25 % 0.748  2.416  4.159  5.716  6.929  7.696  0.1 0.05 0.04 0.03 0.02 0.07 

 

Table 6-2  Parameters for rSSA and RSSI-COV 

Recursive Singular Spectrum Analysis (rSSA) 

 Block rows i’  Moving window length L’  SV 

Case 1 100 4000 30 

Case 2 100 2000 30 

Case 3 100 1000 30 

Case 4 100 1000 20 

Recursive Covariance-driven Stochastic Subspace Identification (RSSI-COV) 

 Block rows i Moving window length L System order 

For all case 100 5000 12 

 

Table 7-1 Shaking table test analyzed by RSSI-COV and rSSA-SSI-COV 

No. Ground excitation PGA Stiffness before Stiffness after Release time  Data length 

1 White Noise 100 gal Remove brace Remove brace -- 97.39 sec 

2 White Noise 100 gal Added brace Added brace -- 97.39 sec 

3 El Centro 100 gal Added brace Added brace -- 46.08 sec 

4 El Centro 100 gal Remove brace Remove brace -- 46.08 sec 

5 El Centro 100 gal Added brace Remove brace 14.75 sec 46.08 sec 

6 El Centro 100 gal Added brace Remove brace 29.41 sec 46.08 sec 

7 TCU082 100 gal Added brace Remove brace 38.15 sec 97.39 sec 

8 TCU082 100 gal Added brace Remove brace 52.07 sec 97.39 sec 
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Table 7-2  Identified modal frequencies and damping ratios for case AB and NB from white noise excitation 

Added brace No brace 

Mode Frequency (Hz) Damping ratio Mode Frequency (Hz) Damping ratio 

1st X-translational 1.2356 0.0412 1st X-translational 1.0625 0.0621 

1st torsion 2.2885 0.0034 1st torsion 2.2966 0.0033 

2nd X-translational 3.6544 0.0044 2nd X-translational 3.1672 0.0004 

3rd X-translational 5.2736 0.0078 3rd X-translational 4.9745 0.0076 

2nd torsion 7.3282 0.00035 2nd torsion 7.2833 0.0035 

3rd torsion 12.5522 0.00094 3rd torsion 12.5511 0.0014 

   1st XY-translational 1.4096 -0.0025 

 
  

Coupled X-3rd Y-2nd

 translational 
4.7274 0.0631 

   3rd Y-translational 8.0540 0.0017 

   Local mode 16.2471 -0.0031 

Table 7-3 Outlier analysis from the damage detection of a 1-story 2-bay RC frame  

subject to a series of white noise excitations 

Outliers WN1 WN2 WN3 WN4 WN5 WN6 WN7 WN8 

Mahalanobis norm (%) 4.245 18.963 35.267 41.658 40.888 22.680 31.935 34.328 

Euclidean norm (%) 3.383 7.752 16.976 16.833 18.008 9.097 13.337 17.839 

 

Table 7-4  Bridge scour test schedule and arrangement 

No. Date Sensors Note 

1 2011/01/19 12 velocity sensors Signal oversteps the measurement range  

2 2011/01/24 12 velocity sensors and displacement sensor at 

pier 3 

Only velocity sensors 1~9 available 

3 2011/01/26 12 velocity sensors  

4 2011/03/29 12 accelerometers, 4 velocity sensors at center 

of decks, and displacement meter at pier 3 

 

 
 

Table 7-5  Specification of VSE-15D velocity sensor AS-2000 accelerometer 

 VSE-15D velocity sensor AS-2000 accelerometer 

Max. measuring range ± 0.1 m/s ± 2000 gal 

Frequency range 0.2 to 0.7 Hz DC ~ 100 Hz 

Sensitivity  1000V/m/s 5mV/gal 
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Table 7-6  rSSA-SSI-COV and RSSI-COV model parameter for 2011/01/19 test 

Parameter rSSA-SSI-COV RSSI-COV used alone 

rSSA RSSI-COV 

Window length L’  = 3000 points L = 5000 points L = 5000 points 

Block rows i’  = 100 i = 80 i = 110 

Order First 25singular values First 20 singular values First 20 singular values 

 

Table 7-7  rSSA-SSI-COV model parameter for 2011/01/24 test 

Parameter rSSA-SSI-COV 

rSSA RSSI-COV 

Window length L’  = 2000 points L = 5000 points 

Block rows i’  = 100 i = 80 

Order First 35singular values First 34 singular values 

 

Table 7-8  rSSA-SSI-COV and RSSI-COV model parameter for 2011/01/26 test 

Parameter rSSA-SSI-COV 

rSSA RSSI-COV 

Window length L’  = 3000 points L = 5000 points 

Block rows i’  = 100 i = 80 

Order First 25singular values First 24 singular values 

 

Table 7-9  rSSA-SSI-COV and RSSI-COV model parameter for 2011/03/29 test 

Parameter rSSA-SSI-COV RSSI-COV used alone 

rSSA RSSI-COV 

Window length L’  = 3000 points L = 5000 points L = 5000 points 

Block rows i’  = 100 i = 80 i = 100 

Order First 45 singular values First 44 singular values First 46 singular values 

 

Table 7-10  Selected correlation coefficient R for mode discrimination 

 2011/01/19 2011/01/26 2011/03/29 

1st mode shape R > 0.99 R > 0.98 R > 0.98 

2nd mode shape R > 0.97 R > 0.95 R > 0.92 

3rd mode shape Not identified Not identified R > 0.90 and R > 0.70 
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Figure 2-1  Simulated velocity response at 6th DOF, system subjected to white noise excitation. 

  

Figure 2-2 Comparison between the 2nd and 3rd version of stabilization diagram. 

 

Figure 2-3 Simulated acceleration measurement at 6th DOF. The direct transmitted external acceleration  

serves as the measurement noise. A trend can be observed within the randomness caused by the Duk term. 
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Figure 2-4  Effects of noise and insufficient Toeplitz matrix columns in the use of rectangular Toeplitz matrix. 

 

 

 

Figure 2-5 Effects of noise in the stabilization diagram by square Toeplitz matrix. 
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Figure 2-6 Photo of the 6-story structure and its instrumentation. AX are the accelerometers. 

 

Figure 2-7  Plot of part of the acceleration response measured at 6th floor.  
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Figure 2-8  Singular values determined from SVD of square Toeplitz matrix. As the matrix size increases,  

the gap between the first 12 and the rest become more clear. 

 

Figure 2-9  Stabilization diagram made using a) square Toeplitz matrix and, b) rectangular Toeplitz matrix. 
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Figure 2-10  Square Toeplitz matrix: a) Underestimation, b) Overestimation of the system order.  

Rectangular Toeplitz matrix: c) Underestimation, d) Overestimation of the system order. 

 

Figure 3-1  Measurement of 6th DOF with added 100% white noise. 

  
Figure 3-2  Stabilization diagram for added 100% white noise. 
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Figure 3-3  Stabilization diagram for added 200% white noise. 

   
Figure 3-4  Stabilization diagram for added noise correlated with output. 

 

Figure 3-5  Iterative procedure to find the secant stiffness and next- step displacement. 
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Figure 3-6  comparison between linear and nonlinear acceleration response. Frequency: 0.1 Hz. k3 : -0.26k. 

 

   
Figure 3-7 Comparison between nonlinear and linear restoring force. 

 

   

    

Figure 3-8  Stabilization diagram for 0.1 Hz, k3 : -0.26k. a) SSI-COV, b) SSI-DATA, c) PEM/SSI.  

For 1 Hz, k3 : -80k. d) SSI-COV. e) SSI-DATA. For 10 Hz, k3 : -7300k. f) SSI-COV. g) SSI-DATA. 
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Figure 3-9  Generate signal with two closely-spaced frequency and a time-varying frequency. 

 

 
Figure 3-10  Stabilization diagram built with SSI-COV for different system orders. 
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Figure 3-11  Stabilization constructed with SSI-DATA with different system orders. 

 

   
Figure 3-12  Stabilization constructed with PEM/SSI with different system orders. 
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Figure 3-13  Stabilization diagram obtained by applying directly SVD to Hankel data matrix 

for different system orders. 

 

   
Figure 3-14  Stabilization diagram for signal with 5% noise added. 

 

 
Figure 3-15  7.99 Hz and 8.00 Hz sine wave with added 10% noise. 
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Figure 3-16  Stabilization diagram for signal with added 10% noise, 7.99 Hz and 8.00 Hz. 

 

  
Figure 3-17  Variation of singular values with different dimensions of Hankel matrix. 

 

  

Figure 3-18  Stabilization diagram constructed using SSA-SSI-COV with a) 10 Singular values from 200x5000 

Hankel matrix, and b) 4 Singular values from 1000x3000 Hankel matrix, SSA. 
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Figure 3-19  Simulated system response. a) Noise free acceleration measurements,  

b) with direct transmission of input acceleration. 

  

Figure 3-20  Stabilization diagram built using a) SSI-COV and b) SSI-DATA,  

10000 columns is used in SSI-DATA and 10000 points were used in covariance for SSI-COV. 

  
Figure 3-21  Stabilization diagram for noisy acceleration measurements, a) SSI-COV and b) SSI-DATA. 10000 

columns is used in SSI-DATA and 10000 points were used in covariance for SSI-COV. 
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Figure 3-22  Variation of singular values in a 800 block rows by 3000 columns Hankel matrix, applying SSA. 

 

Figure 3-23  Comparison of the reconstructed signal with the noise free acceleration measurements,  

8 Singular Values chosen from SSA. 

  

  
Figure 3-24  Stabilization diagram built with SSI-COV for different singular values extracted from SSA,  

system order fixed to 4. 
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Figure 4-1  Locations of accelerometers in the Canton Tower. A floor section shows the position of accelerometers. 
 
 

 
Figure 4-2  Acceleration measurements at the first minutes of the record for a) 1st sensor and b) 20th sensor. 
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Figure 4-3  Plot of Frequency Domain Decomposition of GNTVT acceleration data,  

a) whole picture, b) from 0 to 3 Hz. 

 

 
Figure 4-4  Singular Value Decomposition to the square Toeplitz matrix of 300 block rows. 
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Figure 4-5  Stabilization diagram constructed by SSI-COV and SSI-DATA. 
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Figure 4-6  Comparing identified frequencies, damping ratios and complex mode shapes from mode 1 to 8,  

identified by SSI-COV and SSI-DATA. 
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Figure 4-7  Comparing identified frequencies, damping ratios and complex mode shapes from mode 9 to 18,  

identified by SSI-COV and SSI-DATA. 
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Figure 4-8  Singular value decomposition of Hankel matrix with 340 block rows and 15000 columns. 

 

   

   

Figure 4-9  Plot the distribution of SV from SSI-COV analysis, data from:  

a) 312 SV in SSA, b) 134SV in SSA, c) 120 SV in SSA, d) 95 SV in SSA, e) 66 SV in SSA, f) 48 SV in SSA. 
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Figure 4-10  Comparison of stability diagram made with SSA-SSI-COV, 0~1 Hz. 
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Figure 4-11  Fourier Spectrum of the reconstructed signal with SSA 95 SV. 
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Figure 4-12  Fourier Spectrum of the reconstructed signal with SSA 136 SV. 
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Figure 4-13  Comparison of stability diagram made with SSA-SSI-COV, a) 136 SV and b) 95 SV, 1~5 Hz. 
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Figure 4-14  Comparing identified frequencies, damping ratios and complex mode shapes from mode 1 to 8,  

identified by SSA-SSI-COV using a) 136 SV and b) 95 SV. 
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Figure 4-15  Comparing identified frequencies, damping ratios and complex mode shapes from mode 9 to 18, 

identified by SSA-SSI-COV using a) 136 SV and b) 95 SV. 
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Figure 4-16  Stabilization diagram constructed by SSA-SSI-Data using 154 SV, Order 90 a) 0~1 Hz, b) 1~5 Hz. 

 

 
Figure 4-17  Fourier Spectrum of acceleration measurement at sensor No. 19. 
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Figure 4-18  Frequency response function of Butterworth filter. Order: 10, cutoff frequency: 5 Hz. 

 

 
Figure 4-19  Comparison of the low-pass filtered signal with original signal for various sensors. 
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Figure 4-20  Comparison between stabilization diagram constructed with SSI-COV for  

a) 0~1Hz, c) 1~5 Hz, and with SSI-DATA for b) 0~1 Hz, d) 1~5 Hz.
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Figure 4-21  Examples of identified mode shapes with SSI-COV, mode 1~6. 
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Figure 4-22  Examples of identified mode shapes with SSI-COV, mode 7~12. 
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Figure 4-23  Examples of identified mode shapes with SSI-COV, mode 13~18. 
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Figure 4-24  Examples of identified mode shapes with SSI-COV, mode 19~24. 
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Figure 4-25  Comparison of stabilization diagram for 0~1 Hz, signal downsampled to different rates. 
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Figure 4-26  Comparison of stabilization diagram for 1~6 Hz, signal downsampled to different rates. 
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Figure 4-27  Comparison of complex mode shapes for the first 10 modes, signal downsampled to different rates. 
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Figure 6-1  Flow chart of the implementation of RSSI-COV. 

 

  
Figure 6-2  Frequency tracking by RSSI-COV for time-invariant system.  

a) moving window length = 1500 points. b) moving window length = 3000 points. 

Compute recursively the modal parameters with EIV-PAST 

Modal freq. data length ≥ WLstatistic ?  

(Modal freq. data length –WLstatistic) / dstatistic = 0 or integer ? 

Calculate mean of the last WLstatistic frequencies data points for 

each modal frequency. 

Compute the standard deviations for each mode, along the last 

WLstatistic frequencies data points. 

Compute the Euclidean norm of the standard deviations. 

Calculate the percentage of different between this and the 

previous displacement. 

% difference > Specified criteria ? 

Restart EIV-PAST with a traditional SVD. 

Yes 

Yes 

No 

No 

No 

Yes 
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Figure 6-3  Damping ratio tracking by RSSI-COV for time-invariant system.  

a) moving window length = 1500 points. b) moving window length = 3000 points. 

 

 
Figure 6-4  Frequency tracking by RSSI-COV for time-invariant system, adding noise correlated with output.  

a) number of block rows i = 50. b) i = 100 block rows. 

 

  
Figure 6-5  Damping ratio tracking by RSSI-COV for time-invariant system, adding noise correlated with output.  

a) number of block rows i = 50. b) i = 100 block rows. 
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Figure 6-6  Frequency tracking by RSSI-COV for a 6-DOF system with sudden stiffness reduction.  

a) moving window length L = 2500 points. b) L = 4000 points. 

 

  
Figure 6-7  Damping ratio tracking by RSSI-COV for a 6-DOF system with sudden stiffness reduction.  

a) moving window length L = 2500 points. b) L = 4000 points. 

 

  
Figure 6-8  a) Modal frequency, and b) damping ratio tracking by RSSI-COV for a 6-DOF system with sudden 

stiffness reduction. System order: 16. 
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Figure 6-9  Examples of mode shapes computed by RSSI-COV for a 6-DOF system with sudden stiffness reduction.  

a) at point 4000 (100% stiffness), b) at point 12000 (75% stiffness),  

c) at point 15000 (50% stiffness), d) at point 19000 (25% stiffness). 

 

  
Figure 6-10  Frequency tracking by RSSI-COV for addtion of a noise correlated with output.  

a) Order 12, 150 number of block rows i. b) i=120, Order 18. 
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Figure 6-11  Frequency tracking by RSSI-COV for a 6-DOF system with slow stiffness reduction. Noise free. a) moving 

window length L = 2500 points. b) L = 4000 points. c) L = 5000 points, Order = 12. d) L = 5000 points, Order = 18. 

    

    
Figure 6-12  Frequency tracking by RSSI-COV considering the time-varying effect. a) number of block rows i = 100, 

Order 12, b) i = 130, Order 12, c) i = 130, Order 18, d) i = 130, Order = 24. 
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Figure 6-13  Frequency tracking by RSSI-COV for a 6-DOF system with slow stiffness reduction. Noise correlated 

with output. a) i = 70, b) i = 120. 

 
 

   

Figure 6-14  Singular spectrum in rSSA step. 
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Figure 6-15  Singular spectrum in SSI-COV step, for different combinations of the number of SV in rSSA step and the 

moving window length L’ . 
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Figure 6-16  Frequency tracking by rSSA-SSI-COV. Noise correlated with output. Comparison of the 4 cases. 

 

  
Figure 6-17  Compring the recursive frequency tracking by a) rSSA-SSI-COV, system order 16 and  

b) RSSI-COV, order 30.  
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Figure 7-1  3-story steel frame with extra stiffener and lock-up system in the 1st story. 

      

Figure 7-2  Singular spectrum obtained by SSI-COV. 

    
Figure 7-3  Stabilization diagram for pole discrimination. 

Accelerometers 

X direction 

Y direction 



190 

 

  

  

 

Figure 7-4  Three dimensional mode shapes before and after removing the brace. 
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Figure 7-5  Additionally identified three dimensional mode shapes after removing the brace. 

 

 

   
Figure 7-6  Recursive identification of modal frequencies for white noise excitation, a) AB order 6, b) AB order 16. 
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Figure 7-6  Recursive identification of modal frequencies for white noise excitation, c) NB order 6, d) NB order 20. 

 

  

  
Figure 7-7  Recursive identification of modal frequencies for El Centro earthquake,  

with no instantaneous stiffener release. 
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Figure 7-8  Short Time Fourier Transform for steel frame subjected to El Centro earthquake,  

with no instantaneous stiffener release. 

 

  

  
Figure 7-9  Recursive identification of modal frequencies for El Centro earthquake.  

Siffener released at 14 and 29 seconds. 
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Figure 7-9  Recursive identification of modal frequencies for El Centro earthquake.  

Siffener released at 14 and 29 seconds. 

 

  
Figure 7-10  Short Time Fourier Transform for steel frame subjected to for El Centro earthquake, 

 instantaneous stiffener release at 14 s and 29 s. 

 

   

Figure 7-11  Singular spectrum for different time segments. 
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Figure 7-12  Three dimensional mode shapes identified with system order equals to 6,  

case where the brace is removed at 14 seconds. 
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Figure 7-13  Three dimensional torsion and coupled mode shapes identified with system order 16,  

case where the brace is removed at 29 seconds, comparing with the corresponding offline identified modes. 
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Figure 7-14  Recursive identification of modal frequencies for TCU082 earthquake. Siffener released at 38 seconds. 

 

Figure 7-15  Recursive identification of modal frequencies for TCU082 earthquake. Siffener released at 52 seconds. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 7-16  Dimensions and the design detail of 1-story 2-bay RC frame. 
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Figure 7-17  Installation and instrumentation of the RC frame. 

 

 
 
 

Figure 7-18  Arrangement of the series RCF6 shaking table test. 

 

 
Figure 7-19  Frequency traced by RSSI-COV for the RCF6 frame subjected to series of TCU082 earthquake. 

RCF 600 gal 800 gal*  1000 gal 1200 gal 1000 gal 800 gal 600 gal 

White noise 1 White noise 2 White noise 3 White noise 4 White noise 5 White noise 6 White noise 7 White noise 8 
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Figure 7-20  Frequency traced by RSSI-COV for the RCF6 frame subjected to 30 gal white noise excitation  

at different damage state.  

 

 

Figure 7-21  Singular spectrum obtained from the data points between 25 and 40 seconds. 
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Figure 7-22  Frequency traced by RSSI-COV for the RCF6 frame subjected to series of TCU082 earthquake. 

System order increased to 4. 

 

 
Figure 7-23  The first 35 seconds of 600 gal TCU082 earthquake. 
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Figure 7-24  Kalman filter prediction of the structure response under WN1 excitation. 

 

 

Figure 7-25  Kalman filter prediction of the structure response under WN2 excitation. 
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Figure 7-26  Mahalanobis and Euclidean norm of the Kalman filter prediction error. 

 

 

Figure 7-27  The relationship between outlier analysis (Mahalanobis norm and Euclidean norm) 

with respect to the identified system natural frequency. 
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Figure 7-28  (a) Bridge configuration and sensors location (b) Field setup of the bridge 

(c) After concluded the scouring experiment  

 

   
Figure 7-29  Singular spectrum for different choices of singular values in rSSA. 

X distance 
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Figure 7-29  Singular spectrum for different choices of singular values in rSSA. 

 

 

 

Figure 7-30  Variation of bridge modal frequencies traced by a) rSSA-SSI-COV and b) RSSI-COV. 
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Figure 7-31 . Application of stability criterion to the time-frequency plot of bridge modal frequencies,  

test conducted in 2011/01/24. 

 

 
Figure 7-32  Scouring depth for 3 piers, test conducted in 2011/01/19. 

 

   
Figure 7-33  Singular spectrum for different choices of singular values in rSSA. 

 

Arrival of water head Approx. at 485 s 

a) b) 

Arrival of water head Approx. at 485 s 

Order 34 
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Figure 7-33  Singular spectrum for different choices of singular values in rSSA. 

  
Figure 7-34  Evolution of bridge modal frequencies traced by rSSA-SSI-COV with applied stability criterion, test 

conducted in 2011/01/24. 

    
Figure 7-35  Singular spectrums: a) rSSA, b) RSSI-COV for the subspace order with 25 SV. 



207 

 

  
Figure 7-36 . Evolution of bridge modal frequencies traced by rSSA-SSI-COV with applied stability criterion, 

test conducted in 2011/01/26. 

 

   

   
Figure 7-37  Singular spectrum for different choices of singular values in rSSA. 
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Figure 7-38  Evolution of bridge modal frequencies traced by both a) RSSI-COV and b) rSSA-SSI-COV,  

applying stability criterion, test conducted in 2011/03/29 measured by accelerometers. 
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Figure 7-39  Zoom in the evolution of bridge modal frequencies between 4500 and 5500 seconds,  

test conducted in 2011/03/29 measured by accelerometers. 

 

 
Figure 7-40  Identified 1st mode shapes from two time instants. Test in 2011/01/19. 
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Figure 7-41  Examples of identified 2nd mode shapes from two time instants. Test in 2011/01/19. 

 

 

Figure 7-42  1st mode shape slope ratio for a) smoothed mode shapes. 2011/01/19 test. 

 



211 

 

 
Figure 7-42 1st mode shape slope ratio for b) non-smoothed mode shapes. 2011/01/19 test. 

 

 

 
Figure 7-43  1st mode shape slope ratio for a) smoothed and b) non-smoothed mode shapes. 2011/01/19 test. 
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Figure 7-44 Examples of identified mode shapes from two time instants. Test in 2011/01/26. 

 
 

 

Figure 7-45  1st mode shape slope ratio for a) smoothed mode shapes. 2011/01/26 test. 
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Figure 7-45 1st mode shape slope ratio for b) non-smoothed mode shapes. 2011/01/26 test. 

 

 

 
Figure 7-46  2nd mode shape slope ratio for a) smoothed and b) non-smoothed mode shapes. 2011/01/26 test. 
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Figure 7-47  1st mode shape slope ratio for a) smoothed and b) non-smoothed mode shapes. 2011/03/29 test. 
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Figure 7-48  2nd mode shape slope ratio for a) smoothed mode shapes. 2011/03/29 test. 

 

 
Figure 7-48  2nd mode shape slope ratio for b) non-smoothed mode shapes. 2011/03/29 test. 
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Figure 7-49  3rd mode shape slope ratio for a) non-smoothed, R=0.90; b) non-smoothed, R=0.70;  

and c) smoothed, R=0.70 mode shapes. 2011/03/29 test. 
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Figure 7-50  Outlier analysis for a) Euclidean norm and, b) Mahalanobis norm. 

 

 

 
Figure 7-51  Error mean for a) Euclidean norm and, b) Mahalanobis norm. 
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Figure 7-52  Error standard deviation for a) Euclidean norm and, b) Mahalanobis norm. 
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Figure 7-53  Error RMS mean per sensor. 
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Figure 7-54 Error RMS standard deviation per sensor. 
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