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ABSTRACT 
 
 

Scour is one of the most significant threats to bridge infrastructure and is the 

leading cause of failure within the United States. Given this risk to the nation’s 

transportation infrastructure, it is necessary to understand the development of scour holes 

around bridge piers and abutments. This can be achieved with scour monitoring, a 

Federal Highway Administration approved scour countermeasure. As the monitoring 

techniques available range from simple devices that rest on or in the channel bed to 

advanced scanning systems that provide a bed contour profile, a concise study of the state 

of the art in real time scour measurement capabilities is required. This is accomplished in 

this work, along with the development of a scour monitoring technique that is show to 

provide reliable information during a wide variety of channel conditions. The current 

technologies available for monitoring scour are reviewed to highlight the governing 

physics, to evaluate the field performance, and to identify the effect of environmental 

factors on the performance. From this assessment, two devices are selected for further 

study; a sonar fathometer and a time domain reflectometry device. Several environmental 

factors are highlighted that influence these devices, including channel temperature, 

salinity, and suspended sediment concentration. A novel device is proposed which 

exploits the turbulence in open channels as a means of monitoring the bed level. The 

device uses a sensor that is sensitive to the dynamic pressure due to the natural turbulence 

in open channels. This sensor vibrates at a significantly higher magnitude when in the 

channel flow relative to an identical sensor located in the sediment. The vibration-based 

method, time domain reflectometry, and sonar devices are then evaluated against 
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simulated field conditions in order to determine their relative sensitivities to 

environmental conditions. These tests reveal that sonar and time domain reflectometry 

devices can be influenced by channel salinity and temperature. In addition, the sonar 

device is shown to be sensitive to the suspended sediment concentration in the channel. 

The vibration-based method is shown to be insensitive to the suspended sediment 

concentration as well as bed sediment type. The effect of flow angle is also evaluated for 

the vibration method, and reveals that the novel device operates in highly misaligned 

flows. Lastly, an analytical model is built for further optimization of the device. The 

model is then verified, calibrated and validated with experimental data. The validated 

model is used to develop a field prototype, which is tested experimentally and reveals 

satisfactory performance for deployment to bridge sites. 
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CHAPTER ONE 
 

INTRODUCTION 
 

One of the most significant financial investments in any transportation 

infrastructure system are the bridges that connect otherwise geographically isolated 

communities. Failure of these structures can have significant impacts, both in financial 

and human terms. The leading cause of failures in the United States is due to the removal 

of bed material surrounding the foundations of bridge piers and abutments, a process 

known as scour. Scour failures, accounting for 60% of all bridge failures (Legasse et al., 

1997), have resulted in the direct loss of lives, and have accounted for hundreds of 

millions of dollars in repair damage. Additionally, bridge failures due to scour can have a 

dramatic impact on the local community, with the financial impact estimated to be five 

times the actual repair cost (Rhodes and Trent, 1993). Therefore, it is necessary to protect 

these critical infrastructure elements against scour damage.  

Scour damage can be prevented by armoring the bed to reduce the amount of 

scour or by adjusting the river hydraulics to reduce the peak flow, requiring significant 

amounts of time and financial resources for implementation. Scour monitoring, however, 

can be implemented relatively quickly and at reduced cost relative to the other 

preventative measures. For this reason the Federal Highway Administration’s Highway 

Engineering Circular #23 lists scour monitoring as a viable countermeasure for scour 

critical bridges (Legasse et al., 2009). Scour at bridges occurs over time, with peak flow 

events progressively adding to the scour around the pier or abutment. Thus, by 
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monitoring the history of scour at a bridge, it is possible to determine if the scour depth is 

approaching the critical value determined during the bridge design. As the scour depth 

approaches this threshold value, it is possible to begin planning the more extensive 

armoring or river training mechanisms required to protect the bridge. Given the 

importance of scour monitoring in determining the health of the bridge related to this 

threshold, it is necessary to understand and advance the state of the art in scour 

monitoring. 

To that end, a study has been conducted with the following objectives: 

Objective 1: Understand the state of the art in scour monitoring, highlighting the physical 

principles behind the operation of the devices, documented field performance, and 

sensitivities to environmental factors that can influence the scour measurements. 

Objective 2: Evaluate the best in class scour monitoring instruments under simulated field 

conditions to explore their sensitivity to common environmental factors in natural 

channels, such as salinity, temperature, and suspended sediment. 

Objective 3: Evaluate the feasibility of a novel scour monitoring method that exploits the 

natural turbulence in open channels as a means to determine the water/sediment interface. 

Objective 4: Optimize the novel method for field deployment. 

Objective 5: Confirm the performance of the novel method with laboratory experiments. 

The following manuscript outlines the work conducted to accomplish these 

objectives. In Chapter 2, the state of the art in scour monitoring is explored by evaluating 

the currently available measurement techniques, of which the best in class devices were 

determined to be the sonar fathometer and the time domain reflectometry (TDR) method. 
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Chapter 3 focuses on the feasibility study of the novel method. Chapter 4 discusses the 

results of several experiments that were conducted for the sonar, TDR, and novel 

methods under common environmental conditions. Chapter 5 outlines the optimization of 

a prototype device for field deployment. Finally, Chapter 6 summarizes the key 

contributions to the state of art in scour monitoring. 

Through the work discussed in this manuscript, deficiencies in the current 

capabilities of scour monitoring are identified and the development and validation of a 

novel method that advances the state of the art in scour monitoring are presented. 
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CHAPTER TWO 

 
THE STATE OF THE ART IN SCOUR MONITORING 

 

2.1 Introduction 

Scour around bridge piers and abutments occurs when high velocity flows 

impinge on the riverbed, leading to the removal of bed material, which undermines the 

structural stability of bridge elements located in the flow. Scour monitoring, in turn, is 

critically important because it allows the infrastructure owner to monitor the health of 

their bridge hardware. Additionally, scour monitoring is an approved countermeasure, as 

are traditional physical countermeasures such as rip-rap (Lagasse et al., 2009). Therefore, 

it is necessary, to understand the physical operating principles and past field performance 

of any device deployed to measure scour. 

The degradation of the channel bed around bridge piers and abutments occurs in 

natural channels around the globe and has historically caused failure of bridges, is costly 

to repair, and can result in the loss of lives. Several bridge failures have been directly 

attributed to scour including the I-90 Bridge over the Schoharie Creek in New York in 

1987, the U.S. 51 Bridge over the Hatchie River in Tennessee in 1989, and the I-5 Bridge 

over the Arroyo Pasajero River in California in 1995. The NTSB investigated both the 

Schoharie Creek and Hatchie River Bridge failures and concluded that scour was the 

cause of failure. The I-90 Bridge failure was attributed to inadequate protection of a pier 

footing leading to the formation of a scour hole that undermined the pier, while the U.S. 
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51 failure was attributed to the migration of the main channel, which undermined a 

bridge column, leading to the collapse of the bridge (NTSB, 1987; NTSB, 1989). The I-5 

collapse was attributed to a 3 m scour hole, which developed over the long-term, and led 

to the collapse of the bridge columns (Arneson et al., 2012). Additionally, the United 

States Geological Survey (USGS) reported that the number of bridges damaged during 

flood events ranged from 17 in the U.S. Northeast in 1987 to more than 2,500 in the 

Midwest during the 1993 flood season (Mueller, 2000). Murillo (1987) reported that 

during 1961-1974, 46 of the 86 major failures of bridges in the U.S. were due to scour, 

more than any other cause. Lin et al. (2004) reported that 68 bridges in the U.S. were 

damaged due to scour from 1996 to 2001. Furthermore, Richardson and Price (1993) 

reported that in 1993, 109,464 bridges in the U.S. were scour critical or scour susceptible 

and required countermeasures. Hunt (2009) reported that of the 590,000 bridges in the 

U.S., 20,904 are scour critical. Overall, estimates place scour as the leading cause of 

bridge failure, accounting for approximately 60% of all events (Lagasse et al., 1997). 

Not only is scour widespread, it can result in significant human and financial 

costs. The human impact is associated directly with the loss of life during a bridge 

collapse as well as the indirect costs associated with loss of infrastructure. During the 

Schoharie Bridge collapse, 10 individuals lost their lives (NTSB,1987). The U.S. 51 

bridge collapse in Tennessee cost 8 lives, while the I-5 Bridge failure over the Arroyo 

Pasajero River cost the lives of 7 individuals (NTSB, 1989; Arneson et al., 2012). In 

addition to the direct cost of human lives, the indirect human impact is felt in the loss of 

critical infrastructure, which can impede both evacuation routes (e.g., during a hurricane) 
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or relief and recovery efforts after a flood. Butch (1996) reported that the cost of flood 

repairs during the 1980s was estimated to be $300 million. More recently, the USGS 

reported that from 1993 to 1995, floods in the Midwest, Georgia and Virginia cost $178 

million, $130 million and $40 million, respectively (Mueller, 2000). These figures 

account for the total cost of damage from floods. Brice and Blodgett (1978) estimated the 

cost of repairing a bridge with scour damage to be $100 million per event during 1964-

1972. Lagasse et al. (1997) reported that $30 million is spent annually on scour related 

bridge repairs. In addition to the cost of the failures and associated repairs, the economic 

impact of a bridge failure to the local community is estimated to be as much as five times 

the repair costs (Rhodes and Trent, 1993). 

Thus, given the widespread nature of scour damage, the rapid time frame in which 

scour hole formation can occur, and the ancillary costs of repair, an adequate 

methodology for monitoring the formation of scour holes around bridge structural 

elements is essential. In an effort to accomplish this goal, 32 states have deployed scour 

monitoring systems and employed 164 sonar fathometers on 48 bridges (Lagasse et al., 

1997). In addition, several state level Departments of Transportation and the Federal 

Highway Administration have funded various scour monitoring programs. In order to 

make use of the field information gained from these and other projects, it is necessary, 

therefore to review the performance of the various devices used in scour monitoring 

campaigns.  

To that end, available scour monitoring methods are reviewed, including both 

single point techniques, covered in Section 2, and distributed techniques, discussed in 
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Section 3. The operating principle for each of the devices is discussed along with 

pertinent performance results from the various field deployments. A review of the 

environmental factors that affect the operation of the devices are also included, with the 

goal of highlighting the strengths and weaknesses of each device and to provide the 

engineering community with a solid understanding of the tools at their disposal for scour 

monitoring. Section 4 follows with a summary of the state-of-the-art including both 

deficiencies in the various methods and avenues for further study 

By evaluating the various scour monitoring methods available, it will be possible 

to determine the operating principles, strengths and weaknesses of each device, and to 

highlight the channel conditions that may favor one device over another. Engineers 

designing future bridge monitoring campaigns can use the information provided herein to 

select the optimal measurement systems for their particular field conditions and install a 

more robust system with improved scour monitoring capabilities. 

2.2 Point Scour Measurement Methods 

2.2.1 Sounding Rods 

Sounding rods and sounding weights, adapted from depth finding methods on 

naval vessels, have been used since the early 19th century to monitor the depth to the 

riverbed from bridge platforms (Lagasse et al., 1997). The latest embodiment consists of 

a solid rod and baseplate that rests on the riverbed surface (Zabilansky, 1996). As the 

scour hole develops, the rod moves down with the bed surface from inside its support 

housing. This motion is tracked with a chain that connects the rod to the support housing, 
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but does not provide any resistance to motion. The downward movement of this chain is 

then tracked from the bridge deck or another fixed datum, permitting measurement of the 

maximum scour underneath the rod location. During a refill event, the baseplate and rod 

will be buried and will not provide information about the aggradation of material in the 

scour hole. The ability to record refill is important for scour monitoring as it provides 

information that is not obtained via regular bridge inspections. Refill typically occurs 

with material of different properties than the native bed. Thus, a refilled scour hole can 

appear as acceptable during a survey, but in reality the foundation is undermined. 

Sounding rods were tested during both scaled laboratory and full-scale field 

testing as part of the National Cooperative Highway Research Program (NCHRP) 21-3. 

During the laboratory testing, two baseplate sizes (0.0762 and 0.127 m) were tested for 

multiple channel bed materials. Overall, the results showed that with either baseplate, the 

scour readings were within +/- 10% of the scour depth (Lagasse et al., 1997). During the 

field installation at the Orchard Bridge site in Colorado, the device provided readings of 

the location of the channel bed; however various challenges were encountered with the 

device.  

The sounding rod tests indicated several factors that should be considered in scour 

measurements. In both the laboratory and the field environments, the experimental results 

indicated that the rod itself could penetrate the riverbed and gave a false depth reading. In 

the scaled testing, this was overcome via the addition of a larger baseplate, which in the 

scaled model was three times the diameter of the rod. Adding the larger baseplate, 

however, influenced the scour hole development. During the field campaign, 
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measurements showed that the device had significant self-burial problems with the 

standard baseplate. Additionally, a total failure of the device occurred during a major 

scour event in which the sounding rod travelled out of the bottom of the support pipe and 

in the process, damaged the encoder chain. Even during normal operation of the device 

the encoder that logged the depth of the rod was problematic; as such further tests with 

this device were abandoned (Lagasse et al., 1997). 

Overall, sounding rods are limited in that they can only record the maximum 

scour, the device itself can penetrate the bed, depending upon the baseplate size it is 

possible that the scour hole formation may be influenced, and the device is not robust in 

that a large scour hole can result in total loss of the device. 

2.2.2 Float-Out Devices 

The range of devices that fall into this category vary greatly from basic buoyant 

floats to sophisticated radio transmitters that measure movement. Some of the commonly 

used float devices are shown in Figure 2.1. The simplest float-out devices are colored or 

numbered floats connected by a tether to a weight that acts as an anchor (DeFalco and 

Mele, 2002). Multiple floats and anchors are buried at various layers in the sediment, and 

as a scour event occurs, the float corresponding to the depth of degradation rise to the 

water surface. Field staff can then review those floats that have reached the surface to 

determine the depth of scour. In addition to the basic buoyant floats, several researchers 

have developed automated devices. Yao et al. (2011) reported on the use of switches that 

are tethered to a rod buried in the sediment, denoted as tethered-buried-switches. The 

device consists of switch housed inside a sealed aluminum tube that triggers when the 
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unit orientation changes to a horizontal position. As the scour develops and uncovers the 

device, drag forces pull the sensor along the sediment surface, triggering the device. 

Zabilansky (1996) developed a more sophisticated form of a float-out device based upon 

wildlife movement tracking units consisting of a wireless transmitter that emits a timing 

pulse, which varies if the device is in motion. These transmitters are instrumented along a 

support rod that is then buried in the sediment. If a transmitter is buried, it is not subject 

to any of the turbulent flow and therefore the timing pulse is stable. After a scour event, 

in which the transmitter is uncovered, the water flowing past the transmitter causes it to 

move and vibrate, resulting in a change in the timing pulse. Thus, by monitoring the 

signal from each transmitter, it is possible to determine the depth of the scour hole 

present in the channel bed. In the field setup, each transmitter is assigned an individual 

frequency and the timing pulse of each is monitored by a telemetry system and data 

logger located on the bridge. A minimum of 0.102 m/s of flow past the transmitter is 

required in order for the transmitter to register movement. An advantage of the 

transmitter based device over the other float-out devices discussed earlier is that during a 

refill event, where material is deposited in the scour hole, the transmitters will be re-

buried. Thus, the wildlife tracker based transmitters can record maximum scour and refill, 

while the buoyant floats and tethered-buried-switches can only provide information on 

the maximum scour. 
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Figure 2.1 - Example of float-out device installation. Highlights buoyant floats, tethered-
buried switches, and wildlife tracker based transmitters. Based upon Yao et al (2011) and 

Zabilansky (1996). 
 

The tethered-buried-switches were deployed at two bridges in Texas, the US 59 

Bridge over the Guadalupe River and the SH 80 Bridge over the San Antonio River. 

During the reported measurement period for both bridges, the device failed to trigger due 

to a lack of scour hole formation (Yoa et al., 2011). As a part of an ice and scour 

monitoring project (Zabilansky, 1996), fifteen of the wildlife based tracking transmitters 

were deployed around a bridge pier at the Bridge Street Bridge over the White River 

junction in Vermont. The transmitters were distributed over four rods and were placed at 

an interval of 0.152 m. Though two transmitters were lost due to potential damage during 
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the field campaign, one transmitter recorded a scour event for nine hours before it was 

reburied after the breakup of the surface ice. 

While the field performance of the float-out devices is limited, several potential 

factors that could influence the performance of these devices are anticipated. Since the 

tethered-buried-switches lie on the riverbed once exposed by the scour, debris in the flow 

can damage the unit. Additionally, if the depth of scour exceeds the depth of the anchor 

for the tethered-buried-switch, the entire device can fail. The removal of the anchor by 

scour is also a potential problem with the buoyant floats and the wildlife tracker based 

transmitters. Furthermore, failure of individual devices due to debris is a concern as 

reported in the Vermont field tests, where two transmitters were lost. 

Overall, for all float out devices in general, and for the buoyant floats and the 

tethered-buried-switches in particular, the main disadvantage is that they require 

reinstallation after a scour event and thus, can only record the maximum scour depth. 

This difficulty was resolved with the wildlife tracker based transmitters that remain 

tethered to the support rod, allowing for reburial of the transmitters during a refill event. 

With the exception of the transmitter units, scour the use of float out devices during a 

long-term campaign is difficult and requires extensive use of field staff. Finally, as with 

all devices mounted in the channel bed, float-out devices are susceptible to debris damage 

and they also only provide information about the scour depth at the point immediately 

surrounding the location where they are installed. 
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2.2.3 Magnetic Sliding Collars 

The magnetic sliding collar, MSC, is one of the several rod-and-collar based scour 

monitoring devices. MSC consists of a rod buried in the riverbed with an attached collar. 

The collar rests on the riverbed, and during a scour event the collar moves down the rod, 

thus measuring the bed scour. The MSC device was preceded by a rod equipped with a 

collar housing a radioactive element (Lagasse et al., 1997). A detector capable of sensing 

the presence of the radioactive element is used to track the movement of the collar. This 

detector is lowered inside the rod from the bridge deck, through a guide tube. Due to 

environmental concerns regarding the use of a radioactive element on the collar, this 

device was abandoned in favor of a similar device that relies upon a magnetic element 

installed on the collar (Lagasse et al., 1997). To monitor the location of the collar, two 

variations of the MSC device were developed and patented (Richardson et al, 1996). In 

the first embodiment, the location of the magnet is detected by lowering a magnetic 

switch on a chain from the bridge deck inside a guide tube that is connected to the rod 

mounted in the riverbed, see Figure 2.2. When this switch nears the collar, the field from 

the collar’s magnet trips the switch. The position of the chain at this point is then 

recorded, and thus, by knowing the chain length, the depth of scour can be determined. 

This approach however, is difficult to automate for remote monitoring applications. To 

overcome this weakness, a second version was developed that equipped the rod with 

magnetic switches located every 0.3 m along its length. As the collar moves down the 

rod, these switches are tripped; the time and location of each tripped switch during an 

event is recorded by a data acquisition system located on the bridge. Typically, a 0.15 m 
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magnet is fixed to the collar, resulting in scour depth measurements at intervals of +/- 

0.15 m (Lagasse et al., 1997).  

 

 
Figure 2.2 - Example of magnetic sliding collar installation. Figure shows the first 

embodiment of the MSC device, adapted from (Richardson et al, 1996; Nassif et al., 
2002). 

 

MSC rods were deployed as scour monitoring devices as part of the NCHRP 21-3 

Research Program, as well as in separate projects by the New Jersey and Indiana State 

Departments of Transportation. The first embodiment of the MSC device was installed at 

two bridges, one located in Colorado and one in New Mexico. A 1.5 m scour event was 

measured with this device in Colorado while a 0.86 m event was recorded in New 

Mexico (Lagasse et al., 1997). Two automated MSC devices were installed on the Kersey 
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Bridge Abutment in Colorado and the Nassau Sound Bridge in Florida. A 0.6 to 0.9 m 

scour event was recorded with the automatic device in Colorado while no scour was 

observed during the Florida field tests (Lagasse et al., 1997). Additional tests were 

conducted in Michigan, Minnesota, and Texas by various state Departments of 

Transportations or the FHWA as part of the broader NCHRP project. Though various 

installation issues were encountered, scour events were measured in these additional field 

tests from 0.24 to 1.5 m in depth. Automatic MSC devices were also installed on two 

bridges in New Jersey, which recorded a 0.45 m deep scour event on the Passaic Bridge 

(Nassif et al., 2002). Cooper et al. (2000) discussed the performance of both MSC and 

sonar devices on two bridges in Indiana. During the program, several scour events were 

recorded with the MSC collars ranging from 0.15 to 0.45 m in depth, which were also 

typically well correlated with the sonar readings taken during the same period.  

During the field operation of the first MSC embodiment in Colorado, debris 

impacted the guide pipe needed to route the detector from the bridge deck, through the 

water column, and to the rod. This damage, however, did not prevent the operation of the 

device (Lagasse et al., 1997). In the New Jersey study, subsequent analysis of the 

available data revealed that while the MSC collar was able to record scour events, the 

success of the entire measurement was highly dependent upon a reliable data logger 

(Nassif et al., 2002). In the Indiana study, the most significant issue encountered in the 

field was the survival of the sensors (Cooper et al., 2000). At the Wabash River site, the 

MSC rod was lost entirely, which was attributed to debris colliding with the sensor. At 

the Wildcat Creek site, though the rod survived debris damage, the cable to the data 

15 

 



acquisition system was damaged resulting in the loss of the data. Additionally, during the 

development of the MSC device, it was reported that the space between the collar and the 

rod could fill with sediment, causing the collar to stick and give a false reading (Lagasse 

et al., 1997). 

Based upon these results, the main channel condition that can affect the 

survivability of MSC devices is the presence of debris. As indicated, several of the 

devices themselves or the cabling connecting the rods to the data acquisition units were 

damaged. An additional problem with a collar based system is that the collar/rod 

clearance must be controlled to prevent sediment from obstructing the collar. Finally, as 

the collar rests on the bed surface, if the scour hole were to refill with additional material 

after the high flow event, the collar would become submerged. Any subsequent scour 

events with a magnitude less than the event that submerged the collar would not be 

recorded. 

2.2.4 Sonar/Fathometer 

A sonar based scour monitoring system consists of a sonar transducer (or an array 

of transducers), often-called fathometers or echo sounders, and the associated data 

collection and monitoring equipment. A typical installation is shown in Figure 2.3. Sonar 

transducers employ piezoelectric crystals that are either connected to a membrane or 

diaphragm. When an electric potential is applied across the crystal, an electric field is 

induced, which causes strain and thus, displacement of the crystal and the membrane. 

This field is then cycled, yielding an acoustic wave that is generated in the surrounding 

fluid (Jaffe and Berlincourt, 1965; Guo et al., 1992). As the sound wave propagates 
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through the channel, it will encounter various surfaces and objects that will cause a 

portion of the signal to reflect, called the echo signal. The time between when the original 

signal was emitted and when the echo is received, ERt , can be measured. Typically, this 

measurement is made from the point at which the pulse was emitted, called the zero line, 

and the beginning of the upward pulse of the received echo (Hayes and Drummond, 

1995). During this time, the signal traveled twice the distance to the object, D , as it 

traveled out to the object and back to the receiver. This wave travels at the speed of 

sound, c , in the water. From the measured travel time, the distance D  can be calculated, 

as shown in Equation (2.1) (Burczynski, 1982). 

 
2

ERc tD ⋅
=  (2.1) 

 
Figure 2.3 - Typical sonar system installation. Based upon Nassif et al (2002). 
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The resolution of the sonar system is a function of pulse duration, Dt , the time 

during which the transducer emits its pulse, and the pulse frequency, f . The effect of the 

pulse duration can be determined from Equation (2.1), by replacing the echo time with 

the pulse duration. For example, if the speed of sound in water is 1,500 m/s and the pulse 

duration is 0.1 milliseconds, the resolution of the device is limited to 7.5 cm. The ability 

to resolve the riverbed features is also a function of the frequency of the acoustic wave. 

For example, if the pulse consisted of only a single complete cycle of vibration of the 

transducer, then the resolution would become a function of the period of the wave. The 

period of the wave is inversely proportional to the frequency, thus as the frequency 

increases, the minimum size of an object that can be resolved by the device decreases. 

For example, a 50 kHz signal can resolve objects greater than 1.5 cm where as a 200 kHz 

signal can resolve an object down to the size of 3.75 mm. 

While increasing the sonar frequency improves the ability to resolve small-scale 

structures in the riverbed, it also affects the attenuation of the sonic pulse. Attenuation 

occurs due to the scattering and absorption from the presence of particles in the flow 

(both suspended particles and the fluid particles) as well as due to friction (Burczynski, 

1982; Urick, 1975). As the frequency increases, the attenuation increases, and the amount 

of signal returned to the transducer is reduced, limiting the maximum distance of the 

device.  

Sonar systems were evaluated as part of several research projects. Lagasse et al. 

(1997) instrumented several bridges with fathometers, including the Orchard Bridge in 
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Colorado, the San Antonio Bridge test site in New Mexico, Johns Pass Bridge in Florida, 

and the Kersey Bridge Abutment in Colorado. During these field measurements, the 

sonar units recorded scour events of 0.23 m, 1.2 m, 0.91 m, and 0.5 m, respectively, as 

well as refill at some of the sites. The Florida site also showed that the sonar system 

could operate in a marine environment and during a peak flow event generated during 

Hurricane Opal. In a study for the New Jersey Department of Transportation, Nassif et al. 

(2002) reported on the performance of sonar systems on two bridges. During the 23 

months of testing, two scour events were observed; the initial event resulted in the 

development of a 0.5 m deep scour hole, followed by aggradation of material that refilled 

the hole within 2 hours. A subsequent scour event of approximately 0.3 m in depth was 

observed. Hunt (2005) reported on the development and installation of several sonic 

fathometer systems in New York and in the District of Columbia. As the channel depths 

made an MSC approach unfeasible, fathometers were installed. Though some of these 

devices had been operational for seven years at the time of the report, the reliability of the 

data or any conclusions regarding the magnitude of scour events were not discussed. 

Mason and Sheppard (1994) collected data from a sonar monitoring system installed at 

the Herbert C. Bonner Bridge in North Carolina. The system consisted of 16 different 

sensors installed 1.5 m from the channel bed and 1.8 to 4 m below the water surface. 

During Hurricane Emily, the system recorded the development of a 0.6 m scour hole 

followed by refill, as well as 1 m of erosion and refill of the main channel. The 

performance of the system was also compared with several calibration measurements 

taken by divers at the measurement sites. The results from the sonar systems and the 
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divers were well correlated. In addition, De Falco and Mele (2002) reported on the 

performance of two sonar scour monitoring systems installed at two separate railway 

bridges in Italy. Their results indicated scour hole developments of 1.5 to 2.0 m at the 

Mezzana Corti Bridge and 0.9 m at the Borgoforte Bridge. These results were then 

compared to prediction models and showed agreement between the measured and 

computed scour depths, with a 7% difference for the Mezzana Corti bridge and 10% 

difference for the Borgoforte pier. Finally, Holnbeck and McCarthy (2011) reported on 

the performance of a USGS sonar monitoring system at the I-90 Bridge over the 

Blackfoot River in Montana. A downstream dam was removed from this reach in 2008 

resulting in an increase in the flow velocity through the bridge contraction. To monitor 

the performance of several scour countermeasures and to record the overall 

bed/foundation health, four sonar fathometers were installed on the two piers in the 

channel. A scour event of 1.2m was observed, which was later confirmed by a follow-up 

survey. 

Sonar fathometers have shown the ability to record both maximum scour and 

refill, it is necessary therefore to evaluate their performance under typical natural channel 

conditions. Since the operation of the sonar device relies upon measuring the time when 

the echo signal is received, any false echoes recorded by the device can lead to errors in 

the measurements. These false echoes can occur due to air entrainment or debris in the 

channel. In addition to the field test discussed previously, Lagasse et al (1997) also 

conducted laboratory tests and showed that sonar fathometers are susceptible to air 

entrainment, which prevented the sonar device from determining the depth to the bed. 
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Similarly, DeFalco and Mele (2002) reported that during their field campaign, the sonar 

results often showed peaks in the time history data of approximately 5 m in depth, which 

were not correlated to scour but instead to the presence of air bubbles, sediment load and 

turbidity in the channels. Holnbeck and McCarthy (2011) reported that air entrainment 

and channel turbulence was responsible for failure of three out of the four installed 

sensors. Debris in the channel can also provide false echo signals, leading to errors in the 

sonar signal. To overcome this problem, Nassif et al. (2002) reported on the development 

of a debris detection algorithm that helped to eliminate false readings. In addition to the 

false readings that can occur from debris, sonar devices are also susceptible to debris 

damage. Cooper et al. (2000) reported that the sonar instrument itself was susceptible to 

debris, as was the cable to the data acquisition system. Indeed, in one case, the sensor and 

cable were completely removed from the pier due to debris impacting the hardware. In 

addition to debris damage, the environmental conditions that affect the speed of sound 

within the channel, including water temperature and salinity, can also affect the 

performance of sonar systems. At the John’s Pass Bridge site in Florida, Lagasse et al. 

(1997) reported that it was necessary to correct the measured signal, with an average 

correction of 0.46 m, for these two parameters. Additionally, since the sonar pulse 

expands with distance from the transducer, the beam width may exceed the scour hole 

dimensions. It is then possible to have multiple echoes from the edge of the hole, the 

sides of the hole and the bottom of the scour hole itself. As part of the NCHRP 21-3 

project, testing was conducted on the ability of a sonar unit to observe the scour hole. 

This was accomplished with a Lowrance X-25 sensor subjected to unit steps in depth in a 

21 

 



series of tests in a swimming pool. During the analysis, it was determined that the sonar 

unit recorded the depth at the center of the beam and not an average over the entire beam 

width (Lagasse et al., 1997). Finally, low levels of reliability from some sonar fathometer 

installations have been attributed to electronic interference issues and cross talk between 

multiple sensors (Mason and Sheppard, 1994). 

As indicated previously, the sonar systems can provide reliable measurements of 

the river bottom including the maximum scour and refill during peak flow periods. Sonar 

systems, however, are also susceptible to the environmental conditions in the channel 

(i.e., salinity, temperature of the water, the amount of channel turbulence and air 

entrainment, electronic noise, debris-damage, false echoes, as well as size of the scour 

hole relative to the sonar beam). Some of these parameters can be accounted for by either 

calibration methods or measuring additional channel parameters, e.g., salinity and 

temperature, while other factors, such as debris, can cause device failure directly. Despite 

these complications, sonar devices are one of the most commonly deployed units because 

of their ability to record both maximum scour and refill. 

2.2.5 Time Domain Reflectometry 

A time domain reflectometry (TDR) scour monitoring system consists of a 

coaxial cable and scour probe connected to an electro-magnetic pulse generator and 

signal analyzer; the latter component is referred to as the TDR device itself, which emits 

a sharp rising voltage pulse into the cable. As the pulse travels along the cable it 

encounters various changes in material surrounding the cable that cause reflections, 

which then travel back to the pulse emitter. The scour probe typically consists of two or 
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three metal rods of various thicknesses separated by a non-conducting material. The 

device employed by Yankielun and Zabilansky (1994) consisted of two black iron pipes 

of 3 cm in diameter and 86 cm in length with the ends held together with Plexiglas 

clamps. Yu and Yu (2011) used commercially available soil moisture probes, such as the 

Campbell Scientific CS605, consisting of three probes of 9.5 mm in diameter and 204 

mm in length, spaced 66 mm apart. The TDR pulse emitting devices used in the literature 

vary from the Tektronic 1502 B, 1503C TDRs to the Campbell Scientific (CS) TDR100. 

Of these instruments, the currently commercially available unit is the CS TDR100, which 

employs a rising voltage pulse of 250 mV in amplitude that lasts for 14 microseconds. 

The rise time of the signal is less than 300 picoseconds (Campbell Scientific, 2011). 

The EM pulse travelling through the TDR cable and scour probe will reflect a 

portion of the emitted pulse at each change in interface. These reflections occur due to 

changes in the cable/scour sensor itself and changes in the external medium surrounding 

the cable/probes, with a critical reflection occurring at the cable/scour probe interface. If 

the impedance of this interface is poorly matched, a large portion of the signal can be 

reflected back to the emitter, preventing a sufficient portion of the signal from entering 

the probe (Yankeilun and Zabilansky, 1999). Additional reflections will occur at the 

air/water interface (should it occur), at the water/sediment interface, and the end of the 

probe, see Figure 2.4. 
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Figure 2.4 - Typical TDR waveform. 

 

As with sonar device, the velocity of the EM pulse through the scour probe 

depends upon the material surrounding the probe. The EM pulse is affected by the 

apparent dielectric constant, AK , of the media, through which it travels. In some media 

the pulse will travel faster than in others. The actual travel speed of the pulse, v , is the 

ratio of the speed of light in a vacuum, Lc , to the square root of the dielectric constant, as 

shown in Equation (2.2) (Yankeilun and Zabilansky, 1999). 

 L

A

cv
K

=  (2.2) 

If the speed of the pulse is known, then the depth to the sediment can be 

determined by analyzing the TDR signal for the time when the reflection occurs from the 

start of the probe, 1t , the water/sediment interface, 2t , and the end of the probe, 3t , as 

shown in Figure 2.4. For each point in the waveform in Figure 2.4, the pulse travels from 
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the TDR emitter, to the point of the reflection, and then the reflected wave travels back to 

the TDR unit, covering twice the physical distance to this interface. Therefore, assuming 

that the wave travels at the speed of light, then the product of one half of the travel time 

from points 1 to 2 in Figure 2.4, and the speed of light represents the distance covered 

during this period, known as the apparent length of the probe in the water, 1AL . The 

length is called the apparent length since it assumes that the pulse traveled at the speed of 

light. A similar expression for the apparent length of the probe in the sediment, 2AL , is 

computed from the product of the speed of light with one half of the travel time 3 2t t− . 

Both of these apparent lengths are related to the actual length by the apparent dielectric 

constant of the water and saturated sediment, ,A WK  and ,A SK  respectively, (Yankeilun 

and Zabilansky, 1999), as shown in Equations (2.3) and (2.4). 

 1
1

,

A

A W

LL
K

=  (2.3) 

 2
2

,

A

A S

LL
K

=  (2.4) 

To determine the actual lengths, it is necessary to know the values of the apparent 

dielectric constants for each medium. While it has been argued that the value for water is 

relatively constant, the value for the sediment is dependent upon the nature of the 

riverbed and cannot be known a priori. Therefore, for the three unknowns, 1L , 2L , and 

,A SK , it is necessary to add an additional equation. Two equations are available, either 

based upon the total apparent length, AL , or the physical lengths, L , of the probe, as 

25 

 



shown in Equations (2.5) and (2.6) provided by 0. The apparent length, LA, is based upon 

the travel time 3 1t t−  and the speed of light. 

 1 , 2 ,A A W A SL L K L K= +  (2.5) 

 1 2L L L= +  (2.6) 

In the method outlined above, an apparent dielectric constant for the water in the 

channel must be assumed. Yu and Yu (2011) developed another method that calibrates 

the response of the TDR signal/system for the conditions expected in the field. Their 

method is based on the volumetric mixing model for dielectric materials by Birchak et al. 

(1974), which defines the apparent dielectric constant of the mixture, MK , as the sum of 

the product of the volume fractions of each layers, if , with the apparent dielectric 

constant for that layer, iK , as shown in Equation (2.7). 

 ( )1 1 1 21MK f K f K= + −  (2.7) 
Yu and Yu (2011) extended this model to the water and saturated sediment 

surrounding a TDR probe by replacing the volume fractions with the lengths of each 

layer, which is valid assuming that the EM pulse passes through the same interface area 

in each layer. To use the model, as shown in Equation (2.8), the mixture dielectric 

constant is necessary, which can be found from the TDR waveform as the ratio of the 

apparent length to the physical length of the total probe.  

 1 , 2 ,M A W A SL K L K L K= +  (2.8) 

Using Equation (2.6), Yu and Yu (2011) manipulated Equation (2.8) into a linear 

form that can be calibrated to the specific sediment in place in the riverbed, the modified 
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form of which is shown in Equation (2.9), where RX  is the ratio of the sediment length to 

the total probe length.  

 ,

, ,

1 1A SM
R R

A W A W

KK
X aX b

K K

 
 = − + = +
 
 

 (2.9) 

Using this model, it is possible to measure the slope of Equation (2.9) 

experimentally by using sediments similar to those in the riverbed as a calibration test. 

Such measurements require measuring the apparent dielectric constant of the water and 

the saturated sediment for different layer lengths. Yu and Yu (2011) also developed a 

method to calculate the slope of the Equation (2.9), again using the Birchak et al. (1974) 

volumetric model, but here they applied it to the saturated sediment only, as shown in 

Equation (2.10). The additional parameters introduced include the porosity of the 

sediment, n , and the apparent dielectric constant of the dry sediment, ,A DSK . This model 

assumes that the porosity and apparent dielectric constant of the dry sediment are known 

for the riverbed material from sediment surveys of the riverbed. 

 ( ), , ,1A S A W A DSK n K n K= + −  (2.10) 

In addition to providing the soil/water interface location, the measurements made 

with a TDR system can also reveal information about the soil properties. Topp et al. 

(1980) showed that the volumetric water content, θ , of the soil/sediment could be 

calculated from the dielectric constant, as shown in Equation (2.11). Similarly, Drnevich 

et al. (2001) showed that the gravimetric water content, w , could also be determined 

from the measured dielectric constant of the sediment layer, provided that the dry soil 

density, Dρ , is known, as shown in Equation (2.12). They also hypothesize that for most 
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soils, the values for the constants a  and b  in Equation (2.12) are approximately 1 and 8, 

respectively. These two water content relationships are related as shown in Equation 

(2.13), where Wρ  is the density of water. 

 6 3 4 2 2 24.3 10 5.5 10 2.92 10 5.3 10A A AK K Kθ − − − −= ⋅ − ⋅ + ⋅ − ⋅  (2.11) 
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w ρθ
ρ

=  (2.13) 

The laboratory and field performance of TDR probe under various environmental 

factors must also be evaluated. Yankielun and Zabilansky (1999) validated their method, 

Equations (2.5) and (2.6), in the laboratory for several sediment types, from sand to pea 

gravel to cobble stones. The results from the experiments conducted revealed that for 

depths up to 1 m, the linearity of the results were within 5-7% of the independently 

measured scour depth. Similarly, in the tests conducted by Yu and Zabilansky (2006), the 

TDR and independently measured lengths of the sediment were well correlated, with a 

linear fit through the data yielding an R2 value of 99 %. Using the second measurement 

method, Equation (2.9), Yu and Yu (2011) showed that for a saturated sediment constant 

of 6, the slope measured experimentally and the slope calculated using Equation (2.9) fell 

within a 5% range of error. In addition to the measured sediment depth, Yu and Yu 

(2006) also tested the performance of the methods for predicting the soil properties for 

volumetric and gravimetric moisture contents in the range of 0.023 to 0.145 and 0.014 to 

0.092, respectively, and found reasonable agreement between the TDR and independently 

measured parameters. The listed mean squares of the errors were on the order of 10-3 with 
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equally small standard deviations of the errors listed. An analysis of these results 

determined that the percentage error for the values listed varied greatly for different soil 

conditions from as little as less than one percent to as much as several tens of percent and 

beyond. While the available literature on TDR systems performance in laboratory and 

simulated cases is extensive, there is limited field performance data. The US Army Corps 

tested seven TDR probes to record the impact of ice formation on channel stability on the 

Highway 16 Bridge in Missouri, as reported in Zabilansky and Ettema (2002) and Ettema 

and Zabilansky (2004), and observed several instances of scour and refill on the order of 

0.15 m (0.5 ft). 

While the experimental results have shown primarily that the TDR device works 

well in the laboratory, it is necessary to consider conditions that can occur in the field that 

can impact the performance of the method. These include the variability of the sediment 

dielectric constants present in natural channels, and the impact of water salinity and 

temperature. To consider the impact of the riverbed conditions on the 2nd post processing 

method, Equation (2.9), it is possible to evaluate the impact of the dry sediment dielectric 

constant on the results. Yu and Yu (2011) used a value of 6 for the dry sediment, though 

the range can vary from 3 to 8 (Yankielun and Zabilansky, 1999). If the full range of the 

apparent dielectric constant of the dry sediment is used, the slope can vary by 6 to 11%, 

versus the data from Yu and Yu (2011). Such discrepancies indicate that in order to use 

the linear slope model, the system must either be calibrated onsite with the actual 

sediment in the riverbed or samples must be obtained so as to determine the actual value 

for the dry sediment, thus enabling an off-site calibration of the data. Also, given that 
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scour hole refill typically consists of a material of a different porosity (and sediment 

type), the ability to record significant refill with the linear fit method should be verified 

experimentally. In addition to the impact of sediment, TDR results can also be influenced 

by the water conditions. Yu and Yu (2011) tested the performance of the TDR probe in 

saline solutions up to 750 parts per million (PPM) sodium chloride. Based on the tests, 

the TDR results typically fell within 5% of the independently measured results, however, 

some conditions exceeded this 5% error range. It should be noted that the salinity range 

tested is limited, since in estuarine environments, the specific conductance, a measure of 

the salinity, can vary from a yearly average of approximately 100 μS/cm to a maximum 

of 25,000 μS/cm corresponding to approximately 50 to 17,500 parts per million 

concentration (USGS, 2006a; USGS, 2006b), well above the range tested in the 

laboratory. Thus the salinity conditions tested in the laboratory are below those expected 

in the field, which does not guarantee performance. The temperature effect can be 

evaluated theoretically by adjusting the dielectric constant for the temperature in the 

channel, using, for example, the dielectric constant model developed by Stogryn (1971). 

For arguments sake, if a 0.8 m scour probe is buried 0.7 m deep in sediment, the percent 

error in the results when the temperature change is not accounted for can amount to 7% 

for a temperature change of 20 °C. 

Though TDR systems can provide detailed information about the riverbed 

condition including the water/sediment interface, the soil dielectric constant and the 

volumetric constant, water and sediment based parameter must either be known or 
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assumed. These assumptions, whether they are for the dielectric constant of the sediment 

or the water, can result in errors between 5 and 10%. 

2.2.6 Fiber Optics 

Fiber optic sensors have been used as method for undertaking scour measurement 

in recent years, consisting of either wavelength or intensity based measurement methods. 

Wavelength based devices are the most common type of fiber optic sensor employed for 

scour analysis and include the devices developed by Ansari (2010) and Lin et al. (2004; 

2006), which are discussed after a brief overview of the physical operation of wavelength 

and intensity based fiber optic methods. The wavelength based sensors consist of Fiber 

Bragg Gratings (FBG) that consist of a length of the fiber, in which a series of periodic 

changes to the refractive index of the fiber core have been altered. When broadband light 

is incident to the FBG, based upon the pitch of the FBG, the reflected light is narrowband 

with a discrete, measureable wavelength. The reflected wavelength then shifts when the 

FBG is strained, and is correlated to the amount of strain in the fiber, as shown in 

Equation (2.14) (Guemes and Menendez, 2006; Manzoni et al., 2011a). The wavelength 

shift, Rλ∆ , is related to the original reflected wavelength and the amount of mechanical 

and thermal strain in the fiber, Mε  and Tε  , respectively. A gauge specific constant, GK , 

is used to calibrate the device. Additionally, it is necessary to consider the thermal strain 

in the fiber, given by the linear expansion coefficient of the refractive index, Fα , and the 

temperature change, T∆ . 
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In contrast to measuring the reflected wavelength, intensity based measurements 

compare the amount of light emitted into the fiber relative to the amount reflected back 

from the fiber termination. Based upon Fresnel’s Law, it is possible to predict the 

reflection index, R , based upon the refractive index of the core and the external 

environment at the fiber termination, COREn  and ENVn  respectively, as shown in (2.15) 

(Guemes and Menendez, 2006).  
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In order to apply these two techniques to monitor scour, several researchers have 

developed methods that utilize fiber sensors in instruments buried in the riverbed. FBG 

based devices will be reviewed first, followed by intensity based methods. Ansari (2010) 

developed an instrument consisting of a buried rod instrumented with FBG sensors acting 

as dynamic strain gauges. The rod vibrates at a certain natural frequency depending upon 

the depth of burial, which can be predicted based upon material and geometric properties 

of the rod and surrounding soil. As the scour hole develops, the length of rod that is 

buried will decrease and the natural frequency of the rod will change. In order to relate 

the change in natural frequency to the amount of exposed rod, the method proposed by 

Ansari (2010) relies upon the use of a finite element model for calibration. Lin et al. 

(2004; 2006) proposed several additional measurement techniques that employ FBG 

sensors. In the first configuration, sensors are attached at discrete points along a flexible 
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rod buried in the riverbed. As the rod is uncovered due to scour, it deflects with the flow, 

inducing a strain in the FBG sensors located further down the rod. The depth can then be 

recorded by the distribution of strain along the rod. In the second configuration, a series 

of thin, cantilevered plates are distributed on a rod covering the length of the pier. The 

deflection of the plates is greater in the flow than in the sediment, thus the scouring 

process can be recorded by monitoring the time history of the strain distribution along the 

rod. A modified version of the second device was developed by Lin et al. (2006) and 

deployed on bridges in Taiwan. This modified approach consists of encasing the FBG 

sensors in a button housing that deflects due to the water pressure, causing strain on the 

FBG. The arrays of FBG units are housed within two concrete-steel tubes (CSTs) for 

protection of the fiber. By measuring the strain of each FBG along the length of the 

CSTs, it is possible to determine which positions are surrounded by water, and therefore 

it is possible to locate the riverbed surface. 

In addition to the wavelength based devices, a scour monitoring device that 

exploits the intensity based method was proposed by Isley et al. (2006) and consists of a 

rod with multiple fibers embedded within. These fibers terminate into the surrounding 

media at discrete points along the length of the rod. By monitoring the intensity of the 

light reflected back in each fiber, it is possible to distinguish whether the material 

surrounding each fiber termination is water or sediment. 

Considering the experimental performance of the FBG units, Ansari (2010) 

reported on both laboratory and field results of the dynamic FBG based method that 

monitored the natural frequency of a buried rod. The laboratory tests were conducted in a 
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tank with a sediment layer submerged in flowing water, circulated by a pump. Bed 

material was removed and deposited from the region surrounding the rod to simulate 

scour and refill, which was measured by the rod and independently by a fixed, graduated 

ruler. Based upon the measured results, the correlation coefficients (R2) of the rod based 

to actual scour hole depths were 0.89 and 0.96 for the degradation and aggradation 

process, respectively. Two short term field tests were also conducted, the results of which 

indicated that the device was able to resolve the riverbed surface location to within 

0.0254 m (Ansari, 2010). Laboratory and field experiments were conducted on the 

various systems developed by Lin et al. (2004; 2006). The results for the cantilevered rod 

approach revealed that the amount of strain recorded by an FBG, as it was exposed, 

resulted in a step change in the strain signal, however this change was small compared to 

the apparent noise in the signal. For the cantilevered plate method, the laboratory results 

indicated that the presence of water flowing around the plate resulted in a step change of 

0.02 nm in the reflected wavelength, while the increase in strain due to scour only added 

an additional 0.005 nm, again resulting in a small signal-to-noise ratio. Lin et al. (2004) 

reported on the performance of the cantilevered plate based FBG system during the I-Li 

Typhoon in August of 2004, however, only wavelength shifts were reported, and not 

actual scour depths, nor was any attempt made to correlate the FBG results with an 

independent scour measurement. Lastly, Lin et al. (2006) also reported the performance 

of the CST based method during Typhon Aere in 2004. One CST was installed upstream 

of pier 12 and an additional unit was located downstream of the same pier on the Dadu 

Bridge over the Wu River in Taiwan. During Typhoon Aere, the upstream CST recorded 
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the development and refill of a 3 m scour hole while the downstream unit recorded a 0.5 

m scour hole. As with the other field installation, no independent scour monitoring device 

was deployed to verify these results. Lastly, for the intensity based scour monitoring 

technique, Isley et al. (2006) reported the results of various laboratory experiments. The 

results showed that while the device could distinguish if the surrounding material was 

water or sediment, it was not able to distinguish the sediment/water interface when the 

water was a turbid mix. 

Performance data for the various fiber optic based scour monitoring devices is 

limited, thus evaluating the reliability of the device in changing environmental conditions 

from field data is not possible. It can be postulated, however, what the potential impacts 

that various conditions could have on the performance of the various fiber optic based 

scour monitoring methods. Beginning with the natural frequency based method proposed 

by Ansari (2010), the main weakness of the approach lies in the reliance upon a finite 

element model to correlate the natural frequency to the depth of burial. Since the riverbed 

material will change from site to site (and even within a site) the accuracy of the finite 

element model for each particular installation location must be assured before the results 

can be deemed reliable. Additionally, the natural frequency of the rod can change for 

reasons unrelated to the development of a scour hole, such as temperature changes of the 

rod or water; thus the monitoring of the natural frequency as a means of determining the 

scour depth is complicated. Similarly, the responses of the FBG based methods proposed 

by Lin et al. (2004; 2006) were shown in the laboratory experiments to be sensitive to the 

flow temperature. Additionally, the cantilevered beam method will have limited 
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performance during a refill event, since it will remain in its deflected shape. Finally, as 

with most rod based devices, any instrument located in the channel has the potential to 

suffer from debris impact damage. Given the protection provided by the CST housing, it 

is likely that this device could withstand field deployment for long term monitoring 

campaigns.  

Overall, both the laboratory and field performance data suggest that it is possible 

to undertake scour measurements with fiber optic techniques. While the FBG sensors 

cannot record scour alone, it is possible to develop devices that transfer the change in the 

bed conditions to strain on the sensor. These devices are subject to debris impact damage, 

as are other rod based devices, however it is possible to provide additional protection, as 

with the CSTs. The natural frequency based method proposed by Ansari (2010) is also 

dependent upon the accuracy of the field calibration and potentially the temperature. 

Lastly, the intensity based methods fail to perform in turbid water, a common 

characteristic of natural channels. 

2.2.7 Temperature Measurements 

Temperature variations across a riverbed have also been used to measure the 

water/sediment interface and thus, scour. Camp et al. (1998) developed a thermocouple 

based scour monitoring system consisting of a series of thermocouples located every five 

cm along a partially buried rod. The device operates on the premise that the water 

temperature in the saturated sediment is at a consistently lower value than the water in a 

river channel. Thus, by measuring the temperature gradient along the length of the rod, it 

is possible to determine the location of the riverbed, and the amount of scour. In addition 
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to the thermocouple based measurement methods, a novel method developed by Manzoni 

et al. (2011a; 2011b) utilized FBG sensors as thermocouples instrumented along the 

length of a rod buried in the sediment. A heating element located next to each FBG on the 

rod is activated periodically, leading to a temperature change within the fiber. The fibers 

in the sediment are surrounded by stagnant, saturated sediment and the only source of 

heat loss is via conduction into the surrounding media. For the FBGs in the flow, the 

dominant heat loss mechanism is accomplished via convection. As such, the rate of heat 

loss in the flow exceeds the heat loss occurring in the sediment. Therefore, for a uniform 

heat load, the steady state temperature change between unheated and heated states in the 

sediment will exceed the temperature change in the portion of the rod in the flow. 

The thermocouple based method, developed by Camp et al. (1998), was tested in 

laboratory conditions and in a short term field operation. During the laboratory tests, the 

rod was partially buried in a tank of sediment while heated water flowed past the partially 

exposed upper portion of the device. The thermal gradient along the length of the pipe 

was measured and revealed that thermal diffusion of the water temperature into the bed 

only occurred in the upper 0.051 m of the sediment. Thus, by observing the location of 

the largest thermal gradient, it was possible to determine the location of the 

water/sediment interface. Additionally, as sediment was removed, the thermocouples 

recorded a temperature change from that of the sediment to that of the water. A field unit 

was also deployed and revealed a fluctuating time history for the thermocouples that 

corresponded with the atmospheric temperature fluctuations. The daily variation in the 

thermocouples located in the riverbed was of the order of 1.5 °C, while the 
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thermocouples in the flow varied from 5 to 7.5 °C (Camp et al., 1998). Despite this 

variation, it was still possible to determine the presence of the water/sediment interface 

and thus monitor scour. Manzoni et al. (2011a; 2011b) also reported the experimental 

verification in the laboratory of the heat load based method. They observed that for heat 

loads greater than 10-15 W/m, the resulting temperature change was large enough to be 

detected, with a 95% confidence, and that the uncertainty in the temperature difference 

measurements was ± 1.72 °C. The FBG sensors were also capable of recording the time 

constant associated with the transient temperature change that occurred at the start of the 

heating cycle. The laboratory results showed that for flow rates of 0.4 m/s, the time 

constant for the FBGs in the sediment was between 9 to 14 s while the time constant for 

the FBG sensors in the flow was 4-6 s, for 5-50 W/m. Thus, it was shown that heat load 

based method also provides a means of recording the water/sediment interface and could 

therefore monitor the development of a scour hole.  

The research on temperature based scour measurements to date has focused on 

evaluating the feasibility of the methods, with only limited field performance data 

available. Despite this deficiency, it is possible to estimate the potential impact that 

changes in channel conditions will have on the two methods discussed previously. The 

environmental conditions that often affect the performance of scour monitoring methods 

are debris, turbidity, and the presence of a live bed. As with all scour monitoring methods 

anchored in the channel bed, any debris that impacts the device can damage the 

measurement rod or its attached power and data cables. The two temperature based 

methods are sensitive to this factor. Similarly, for water turbidity, it is expected that the 
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impact to either the temperature gradient or the step change in response to a fixed heat 

load will be minor, thus both measurements are expected to be relatively insensitive to 

the sediment load in the channel waters. If the channel conditions, however, are such that 

there is a live bed, it is possible that the presence of this mobile sediment layer will affect 

the thermal gradient between the channel and the riverbed. Since the live bed temperature 

is likely to be between the riverbed and channel flow temperatures, the sharpness of the 

thermal gradient may be lessened, and thus the determination of the point of maximum 

gradient, may become less distinct as this region increases in size. Without the 

experimental data from either the laboratory or the field, it is difficult to determine how 

significant this impact could be on the results. In a similar manner, the presence of a live 

bed around the heat load based scour measurement rod may also affect the step change 

and the time constant for any measurement points in the region of moving sediment. It is 

expected that these values will be between the channel flow and the riverbed, again 

making the exact point of the transition between the water and the sediment less distinct. 

Finally, for the heat load based method, the research to date has not considered at what 

minimum flow rates the temperature change between the sediment and the channel flow 

is still valid. Additionally, no attempt is made to correlate the flow speed with the time 

constant for the heated condition. 

In summary, temperature based methods that exploit either the amount of heat lost 

or the natural temperature variation between the channel flow and riverbed are available 

to monitor scour. These devices have been tested in laboratory conditions to evaluate the 

feasibility of the methods. However,  field data available to assess the performance of 
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temperature based methods in natural channels is scarce. However, it can be anticipated 

that debris impact to the hardware itself or the presence of a live bed are conditions that 

may affect both temperature based measurement devices. 

2.2.8 Piezoelectric Film Sensors 

A novel sensor consisting of a flexible fin like structure attached to a rod has also 

been used to measure scour (Lagasse et al., 1997). A flexible piezoelectric film is 

attached to each fin that generates a voltage when subject to the turbulent fluctuations of 

the flow past the rod, which can be measured by a standard voltmeter or data logger. An 

instrumented rod with multiple films attached on the downstream side is then buried in 

the sediment around a pier. The sensors in the flow will vibrate, generating a measureable 

voltage, which in turn indicates the water/sediment interface location, see Figure 2.5.  
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Figure 2.5 - Piezoelectric film sensor. Based upon Lagasse et al. (1997). 

 

During laboratory testing, several additional measures were undertaken to 

improve the long-term survival rate of the devices with the optimal configuration being to 

bond the film sensor to a section of flexible silicone tubing (Lagasse et al., 1997). The 

devices were also field tested at the Orchard Bridge and Sandy River sites in Colorado as 

part of NCHRP project 21-3. At the Orchard Bridge site, a rod was instrumented with six 

sensors spaced 0.15 m apart for the bottom four sensors and 0.3 m apart for the top two 

sensors. During the testing, voltage readings were observed from all of the sensors. It was 

determined that the bridge structural vibrations lead to movements of all of the 

piezoelectric films , which caused erroneous results. The Sandy River site revealed the 
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ability to measure scour even after being hit by debris, however the USGS did not 

indicate the scour depth during this event.  

In terms of environmental factors that can affect the device, it has already been 

shown that structural vibrations of the bridge can influence the reliability of the results. In 

addition, the piezoelectric film can de-bond from the fin or the device itself can degrade 

over time, leading to a failure of the sensor. In addition, as with any rod-based device, 

they also suffer from susceptibility to debris damage. The overall conclusion of the 

NCHRP project 21-3 was not to use these devices for future field tests. 

2.2.9 Mercury Tip Switches 

A mercury tip switch system consists of commercially available mercury 

switches, with each switch composed of small chambers housing two terminals. The 

chamber contains a small amount of liquid mercury and is attached to a buried rod. As 

the switch is rotated, gravity pulls the mercury around the chamber and either closes or 

opens the circuit between the two terminals. In the scour application, the initial position 

of the sensors was such that it was folded up against the rod. As the scour hole develops, 

these switches are exposed and fold down, opening the circuit. By monitoring the 

condition of each circuit on the rod, it is possible to determine the depth of maximum 

scour in the riverbed. Due to the deployment of the switch during a scouring event, it is 

only possible to record the maximum scour with this device since the switch is not 

returned to its neutral position by the refill of material into the hole. 

The laboratory test results of this device indicated that the switch often tripped as 

the scour depth approached the sensor position, but before the actual depth had reached 
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the sensor (Lagasse et al., 1997). This is likely due to the buoyant force of the chamber 

pushing out on the layer of soil holding it in place. An additional disadvantage of this 

device is that it contains mercury, which is a hazardous substance and should not be 

released into the environment. Due to the limitations of this device and due to the fear of 

environmental contamination, mercury tip switches were eliminated from further testing 

as part of the NCHRP project (Lagasse et al., 1997). 

2.3 Distributed Scour Measurement Methods 

2.3.1 Radar 

In addition to TDR, other techniques are available that employ electromagnetic 

(EM) waves. Specifically, a Ground Penetrating Radar (GPR) system uses the EM waves 

in a manner to which a sonar system uses sonic pulses. As with the sonar method, the 

waves reflect off of objects in the path of the wave. The radar system has emitting and 

receiving transducers, called antenna, to send and receive reflected EM waves, typically 

designated Tx and Rx, respectively. This technique has been adopted from traditional 

non-destructive testing (NDT) and geotechnical surveys methods and applied to scour 

monitoring. Typical NDT testing on concrete or masonry send EM pulses with 

frequencies in the range of 500 MHz to 1 GHz, while geotechnical surveys employ 

frequencies in the range of 50 to 300 MHz, the main difference being the desired 

resolution of the reflected signals (Millard et al., 1998). For NDT, a higher frequency 

signal is used in order to increase the resolution of the Radar image at the cost of depth of 

penetration. Geotechnical surveys, however, are focused on determining the nature of 
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various layers of soil/rock in the subsurface and are less critical of the resolution but 

more interested in maximizing the depth of propagation; hence, lower frequencies are 

employed. Both ranges have been employed in scour monitoring applications (Millard et 

al., 1998; Webb et al., 2000; Paczek and Haeni, 1995). As with the TDR system, the 

speed of propagation is governed by the dielectric constant of the medium through which 

the EM pulse is transmitted, see Equation (2.2). Thus, by knowing the time between 

emitting and receiving a reflection as well as the speed of light, the distance to the object 

that causes the reflection can be determined. GPR can provide an image of the riverbed, 

recording depth as the unit is traversed across the channel. Typically this can be 

accomplished at rates of 1 m/s for handheld units and up to 50 km/h for vehicle based 

systems (Manzoni et al., 2011b). The reflections are processed by the GPR unit into 

depths values by first assuming the EM wave propagated with the speed of light. These 

initial images are then reprocessed into actual depth values by accounting for the 

dielectric constant of the channel flow. Unlike the TDR method, it is necessary to use an 

assumed dielectric constant of water and river bed material, since the actual dielectric 

constant is not determined as part of the post processing. Given the unknown dielectric 

constant below the river bed, any depth values below the water/sediment interface are 

only relative values and cannot be regarded as true depths. For an open, unfilled scour 

hole this is not a hindrance to the method since the depth can be determined directly as 

the EM wave only travels in the water column. This is not the case, when the scour hole 

has been refilled with additional sediment, therefore it is only possible to qualitatively 
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observe the presence of a refilled scour hole, the magnitude of which cannot be 

quantified. 

As mentioned previously, GPR systems have been deployed in NDT and 

geophysical site surveys. In order to evaluate the performance of GPS systems for scour 

monitoring, several laboratory and field measurements have been conducted to assess 

their performance. Millard et al. (1998) conducted laboratory tests using GPR to measure 

scour holes around concrete piers and to profile the sub bottom of a refilled scour hole. 

Though the GPR recorded the profile, no quantitative measure of the precision was 

provided. Also, the presence of the concrete pier resulted in additional reflections, 

complicating the results during the laboratory testing. In addition, they determined that 

the nature of the refill material can complicate the profile of a refilled scour. If the infill 

and riverbed materials have similar dielectric constants, it is difficult to discern the 

presence of a refilled scour hole. In field surveys conducted in the Dee, Ribble, Severn 

and Coln Rivers in the U.K, Millard et al. (1998) investigated the performance of various 

GPR frequencies of the GSSI SIR-2 system, which varied from 300 to 500, 900 MHz and 

1 GHz. The reported results indicated that 300 and 500 MHz are optimal due to increased 

attenuation at higher frequencies, reducing the strength of the reflected wave. A scour 

hole was observed around a local bridge pier on the River Ribble and was confirmed with 

a sonar fathometer survey. However, a quantitative comparison of the two depths was not 

provided. In a report on the performance of a GPR unit at measuring scour holes and 

riverbed profiles at ten bridges in Missouri, Webb et al. (2000) used equipment consisting 

of a GSSI SIR-10B GPR unit with 200 MHz and 400 MHz antennas, which were 
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traversed across the channel either from the bridge deck or from a boat. Survey scans 

conducted at a rate of 50 scans per second with traces of 125 to 350 ns in length found 

that this method was adequate for measuring scour holes (holes up to 0.73 m deep were 

recorded), the presence of refilled scour holes, and in some cases multiple layers of 

scoured and refilled material in one hole. Similarly, in their study of the field 

performance of GPR and sonar systems on six bridges in Connecticut, Placzek and Haeni 

(1995) found that their GPR units were effective in measuring the refilled scour holes or 

subsurface gravel layers in the channel profiles. For the 80, 100 and 300 MHz units 

tested, the resolution achieved in the field were 0.76, 0.61 and 0.30 m, respectively, the 

corresponding penetration depths were reported to be 15, 12 and 3.0 m. into the sub 

bottom. The performance of the system was equivalent to the Continuous Seismic-

Reflection Profilers (CSP) also employed in this field-testing program, which are 

discussed in a subsequent section.  

One of the challenges in using a radar system for scour monitoring is that the 

speed is altered by changes in the temperature and salinity of the water column as 

discussed earlier for TDR. In addition to these effects, the attenuation coefficient of the 

medium, α , is correlated to the conductivity. As the conductivity of the medium 

increases, so does the attenuation coefficient (see Table 2.1). The attenuation of the signal 

can be modeled as shown in Equation (2.16), where OE  is the initial signal amplitude, 

and XE  is the attenuated amplitude of the EM pulse at a depth d . Thus, in salt water the 

maximum depth is of the order of several centimeters, while Millard et al. (1998) 
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reported achieving measurements at depths of up to 8 m in freshwater river scour 

monitoring applications.  

 d
X OE E e α−=  (2.16) 

 
Table 2.1 - Soil Properties Pertinent for Radar EM Techniques, adapted from Millard et 

al. (1998) 

Material Dielectric 
Constant 

Conductivity 
[S/m] 

Attenuation 
Ceofficient 

[m-1] 
Air ~1 0 0.0 

Freshwater 77-87 10-3 0.04 
Saltwater 65-75 4 ~74 
Saturated 

Sand 15-25 10-4 - 10-2 0.53 

Saturated 
Clay 15-60 10-1 - 1 4.6 

Gravel 22 0.02-0.025 2.1 
 
In addition to the problems of attenuation in saline environments, none of the field 

measurements conducted to date have consisted of fixed GPR installations. Instead, all of 

the measurements have consisted of traversed systems, which are reliant on operators to 

reposition and monitor the equipment. Despite these challenges, the benefits of a GPR 

scour monitoring system lies in its capability to provide sub bottom information, 

including the presence of a scour hole even after refill has occurred. Temperature and 

salinity affects also pose problems, as with the TDR method. However, these effects can 

be accounted for by measuring the temperature and salinity in the river. Finally, in order 

to generate a 2D profile or a 3D contour, a means of tracking the unit across the channel 

is necessary, which adds complications for a long-term deployment of the scour 

monitoring system. 
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2.3.2 Bridge Vibration Measurements 

The objective of all scour monitoring systems is to measure indicators of the 

bridge health in order to determine conditions, under which a bridge may become 

unstable. With traditional measurements, determining the margin to the stability limits is 

accomplished by comparing the current scour depth to a previously determined maximum 

allowable scour depth, which is based upon model or experimental data that indicates at 

what point the foundation becomes unreliable. Another approach, which focuses on 

determining the ‘health’ of the bridge pier directly, measures the ambient vibration of the 

bridge to assess changes in the vibration response resulting from a change in the 

foundation stability. 

Samizo et al. (2007; 2011) developed a method for measuring the response of the 

bridge piers to microtremors, excitation forces derived from either man-made or natural 

sources that leads to a general background vibration of the bridge and surrounding 

sediment. The system consists of two vibration sensors located on the upstream and 

downstream sides of the bridge pier. The units measured the vibration of the bridge in 

three axes at 100 Hz for 5 minutes, occurring once every hour (Samizon et al., 2011). The 

measured vibrations were then transformed from the time domain into the frequency 

domain using a moving window with 2/3 overlap of 30 seconds each. The average 

spectral shape during the five minutes was monitored to observe changes in the natural 

frequencies of the pier, which were assumed to correspond to changes in its stability 

(Samizo et al., 2007). In a similar approach, Ko et al. (2011) proposed to monitor both 

the natural frequency of the bridge as well as changes in the mode shape, which they 
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argued could be attributed to changes in the amount of material surrounding the 

foundation, thus scour. Yao et al. (2011) proposed an additional vibration parameter that 

could be monitored to indicate changes in the pier foundation. Their approach consisted 

of computing the ratio of the root mean square (RMS) of each accelerometer axis with its 

orthogonal axes ( 2 2x y  , 2 2x z  , and . 2 2y z  ., for example). 

Several field and laboratory experiments were conducted to evaluate the utility of 

the vibration based method to determine changes in the pier due to scour. Integral to the 

method proposed by Samizo et al. (2007; 2011) is the ability to use microtremors as the 

source of excitation for the pier, which then allows for the determination of the first 

natural frequency of the pier from the accelerometer measurements. This hypothesis was 

tested on bridge A (unidentified Japanese railway bridge), where the first natural 

frequency of the bridge was measured with both traditional impact and microtremor 

based measurements before and after a 4 m excavation, a simulated scour event. The 

impact testing results indicated that the natural frequency of the bridge shifted from 14.6 

Hz in the unscoured condition to 5.9 Hz in the scoured condition. For the microtremor 

based measurements, the broad spectral response of the bridge in the unscoured condition 

was characterized by a lack of discernable peaks, while the scoured case exhibited a 

clearly distinct peak at 6 Hz. On a separate bridge, Bridge B, impact and microtremor 

testing on the bridge also revealed that the natural frequency were consistent with each 

other, 11.3 and 11.5 Hz, respectively (Samizo et al., 2007). They concluded that 

microtremors were capable of providing adequate input to the pier to excite the structure 

as well as indicating that the 1st natural frequency of the pier declined as the scour depth 
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increased. To verify these results, experiments were conducted on a model pier consisting 

of steel beams (3.85 m long) and a single concrete bridge pier (1.5 x 0.25 x 0.75 m) 

supported on a bed of crushed stone less than 20 mm in diameter (Samizo et al., 2011). 

Initially buried 0.5 m below the sediment surface, the stone surrounding the foundation 

was progressively removed in order to simulate various scour states. For both impact 

testing and microtremors, the results of the vibration testing for this model indicated that 

the first natural frequency of the bridge decreased with increasing amounts of pier 

foundation exposure. For the fully exposed foundation the natural frequencies declined 

by as much as 60 to 80%, depending upon the bearing capacity of the sediment, which 

was also varied (Samizo et al., 2011). In addition to this fundamental work on the use of 

pier natural frequencies to detect for scour, Ko et al. (2011) conducted field 

measurements on the Wensui and Hsichou Bridges in Taiwan. The measured results, the 

natural frequency and mode shape, were compared with a finite element model of the 

simply supported, single span bridge units for this site. The foundation was modeled with 

springs around the piers and the depth of support was varied to correspond to different 

scour events. During the model evaluation, it was determined that the horizontal-

longitudinal (HL) and horizontal-transverse (HT) mode shapes were useful for 

determining scour. Measurements were then conducted on the two bridges in the field 

during various reconstruction efforts when the pier foundations were exposed by varying 

amounts. The measurements were conducted for 10 to 20 minutes on each bridge during 

non-peak traffic periods. The measurements were taken at a sampling rate of 200 Hz and 

the average spectra were computed using overlapped windows. For the Wensui Bridge, 
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two piers were partially exposed with Pier Three (P3) being exposed 6-7 m while Pier 

Two (P2) was only partially exposed. The spectral response, in the HT direction, showed 

a peak at 1.7 Hz for both piers. The response on P3 had a larger amplitude compared to 

P2, indicating more scour at this location than on P2. For the Hsichou Bridge, Pier 36 

(P36) was exposed 4.5 m and 7.5 m before and during renovations on the bridge. The HT 

spectral response indicated a frequency of 2 and 1.5 Hz for the 4.5 and 7.5 m exposed 

cases, a shift of 20%. Yao et al. (2011) also reported on the use of vibration sensors to 

monitor bridge pier health during laboratory and field experiments in Texas. During the 

laboratory testing, a simulated pier was instrumented with three axis accelerometers, 

sampling at 124 Hz. The first natural frequency of the pier in each direction was 

monitored during a transient scour event along with the ratio of the RMS time histories of 

each axis. The results indicated a shift in the first vertical natural frequency after the 

initial formation of the scour hole. In addition, the RMS ratios for the main flow direction 

versus the lateral direction and for the main flow direction versus the vertical direction 

showed a shift when the scour hole reached the base of the foundation, at which point an 

ancillary tilt meter detected settling of the pier.  

From the various laboratory and field tests conducted it is possible to conclude 

that the proposed methods show promise in determining the changes in the health of the 

bridge pier associated with scour. Various factors, can affect the measured vibration 

characteristics including changes in the flow rate, the ambient temperature, and 

potentially the background vibration level. Samizo et al. (2007; 2011) addressed the first 

of these conditions by conducting long-term experiments on Bridge B and D 
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(unidentified Japanese railway bridges) to determine the relationship between the flow 

rate and the natural frequency of the pier. On Bridge B, the spectral shape at low and high 

flow rates consisted of similar natural frequency peaks, with the only difference being the 

amplitude of various peaks. This result indicated that as the flow rate increases, the 

amplitudes of the main peaks become increasingly apparent improving the ability to 

detect changes during high flow periods typically associated with rapid scour hole 

formation (Samizo et al., 2007). Bridge D spectra results indicated that the peak 

frequency from the microtremor measurements occurred between 2.5 and 3 Hz for low 

and high flow rates, respectively. Additional modes occurring at 3.1 and 2.8 Hz, 

determined during impact testing on bridge D, made it impossible to assign a particular 

frequency to the pier (Samizo et al., 2007). Despite this complication, the overall trend 

observed on Bridge D indicated a convergence of microtremor results with a 

corresponding increase in water depth. These results suggest that as the flooding 

progresses, the pier natural frequency increases in amplitude and become more apparent. 

Thus, a shift occurring in this frequency during a flood is a likely indicator that scour has 

occurred. Additional field measurements were conducted by Yao et al. (2011) on the US 

59 Bridge over the Guadalupe River and the SH 80 Bridge over the San Antonio River in 

Texas. The reported results indicated that the RMS ratio was the only vibration based 

measurement that yielded usable results on the US 59 Bridge. The ability to detect the 

natural frequencies was complicated due to background noise from traffic. For the SH 80 

Bridge, the data was reportedly unusable and the vibration-based systems were removed 

in favor of tilt sensors. In addition to problems with the background noise, variations in 
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the ambient temperature, traffic loading or possible migration of the main channel in the 

river can lead to changes in the natural frequency of a pier that are unrelated to scour. 

While it is possible, to decouple these shifts from those due to scour, this is a complicated 

endeavor that requires sophisticated pattern recognition techniques. Therefore, 

monitoring just the natural frequency and mode shape alone as the sole indication of the 

formation of a scour hole is complicated at best.  

Overall, the results of the various vibration-based measurements indicate the 

potential for using microtremors to monitor the health of the pier directly. The main 

challenge is to determine which of the frequencies can be associated with the pier itself. It 

is necessary to have a distinct peak for the pier that can be monitored over time. The 

RMS ratio of the various axes also proved useful in the lab, with only limited success in 

the field. Additionally, monitoring the natural frequency and making a correlation to 

scour depth is complicated at best since changes in measured frequencies can occur from 

temperature variations, changes in traffic or loading patterns, wind loading patterns, etc., 

that make a direct cause and effect relationship difficult to quantify. 

2.3.3 Advanced Sonar Techniques 

In addition to the standard fixed fathometers discussed previously, there are other 

sonar based systems that can be deployed that provide detailed information about the 

riverbed. These vary from fixed frequency fathometers that are tracked during a traverse 

to provide a profile, Side Scan Sonar units, Sector Scanning Sonar, Lens Based Multi-

Beam Sonar, and Continuous Seismic-Reflection Profilers (CSP). Each of these units will 
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be discussed briefly below, along with a summary of their performance in various field 

tests. 

Fixed fathometer units only provide information about the bed depth at one 

position. To overcome this, it is possible to traverse the sonar unit across the channel, 

either in a boat or from the bridge deck. In either case, an additional tracking unit is 

required, and is typically accomplished with robotic/automatic total-stations. However, 

this additional equipment is not well suited for long-term monitoring of scour hole 

formation. Side-Scan Sonar can achieve a 2-D profile and consist of a linear array of 

sonar units, resulting in a sonar pulse that is narrow in the azimuthal direction (direction 

of travel of the sonar unit) while it is very wide in the elevation direction (Spindel, 1998). 

Typically these units also employ a 2nd array of units to act as a receiving array to allow 

for differential time measurements, and thus depths. The frequencies employed typically 

range from 80 to 800 KHz (Browne, 2011). The wide angle of the sonar beam allows for 

a quick survey of a large profile and if used in a fixed orientation does not require a 

traverse to provide a 2D profile. Typically, the units are deployed from a boat in the 

channel and allow for the determination of a 3D contour of the riverbed. While the 

additional information is beneficial it is also complicated by the need to account for the 

position of the unit with time and for roll and pitch of the boat or float housing the unit. A 

modification to the Side-Scan Sonar technique is the Sector-Scanning Sonar method, 

which employs a fan shaped acoustic pulse from a rotating head. The unit emits a pulse, 

waits for a set period to receive the reflected signals, and then rotates to a new position 

and repeats the measurement. Post-processing of the reflections permits the determination 
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of 2D channel bottom images. These units typically operate in the 330 KHz to 2.25 MHz 

range with the most commonly deployed units operating at 675 KHz (Browne, 2011). 

Hayden and Puleo (2011) have proposed a two unit scanning sonar arrangement that can 

be installed on bridge piers and utilize 250 KH transducers with a beam width of 3°, 

housed inside an oil filled lenses. The units are mounted to motors that can rotate 180° in 

both azimuth and tilt, leading to a full hemispherical view of the river bottom. The device 

records 40,000 data points during the measurement sequence which are then interpolated 

onto a 2 x 2 m grid to provide a full 3D contour map of the scour hole development over 

the entire channel bed. The final advanced sonar technique that has been deployed in the 

field to measure scour holes around bridge elements is the Continuous Seismic-

Reflection Profilers (CSP) unit, which has been adopted from geotechnical surveys. The 

main difference between these sonar units and standard fixed fathometers is the operating 

frequency of the acoustic pulse. CSP units typically operate in the 2-20 KHz range as 

opposed to the 50 to 300 KHz range registered by fathometers (Placzek and Haeni, 1995). 

This lower frequency means that less of the signal is attenuated and stronger reflections 

are obtained from subsurface features in the riverbed. In addition, CSP units employ 

either fixed or variable frequencies, called chirp frequencies. The fixed units typically 

come in 3.5, 7 and 14 KHz units while chirp CSP units typically use an increasing 

frequency pulse from 2 to 16 KHz (Placzek and Haeni, 1995). The variable frequency 

units combine the benefits of a low frequency CSP, i.e., greater depth penetration, with 

the improved accuracy of a higher frequency CSP. The downsides of the variable 
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frequency are multiple side lobes and a subsequent increase in noise due to scatter from 

piers, etc. (Browne, 2011). 

While the physical principles behind the operation of the advanced sonar 

techniques are not significantly different from that of a fixed fathometer, it is still useful 

to review the field performance of these devices. Beginning with the side-scan sonar 

systems, Eilertsen and Hansen (2008) reported the use of one such device for measuring 

general river scour in the Øyeren Delta in Norway. The system used a 250 KHz 

Geoswath interferometric side-scan sonar to record both depth and the amount of 

reflected signal, which can be correlated to the sediment type. Fourteen scour events were 

recorded throughout the delta with the largest being a 24 m deep scour hole adjacent to a 

sandbar that constricted the main channel flow. Hayden and Puleo (2011) reported on the 

deployment of two lens based sonar systems on the Indian River Inlet in Delaware, which 

is a scour prone site. Throughout their field campaign, the performance of this system 

was compared with both Army Corp of Engineers (USACE) and University of Delaware 

surveys conducted with a 500 KHz, single unit fathometer linked with a GPS unit and 

motion tracker. While the USACE data was conducted three years prior to the installation 

of the two sensors, the interpolated dataset indicated that 82% of the results were within 3 

m of the each other. Using the University of Delaware data conducted on the same date 

as a dataset from the two scanning units resulted in a linear correlation with a slope of 

0.98 and an R2 value of 0.84, indicating a well correlated data set. Lastly, Placzek and 

Haeni 19950) conducted several field tests of multiple sonar and GPR technologies at six 

bridges in Connecticut. At the Old Baldwin Bridge over the Connecticut River, a 200 
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kHz fathometer survey was conducted that revealed several scour holes around the bridge 

piers. A 3.0 m hole was recorded upstream of a pier, which was then surveyed with a 3.5 

kHz CSP system and measured a 0.61 m gravel refill layer. Similar measurements were 

conducted on the replacement for the old Baldwin Bridge and indicated 6.4 and 4.6 m 

scour holes on the bridge piers (200 KHz Fathometer), which was confirmed by a 3.5 

KHz fixed frequency CSP survey that also indicated 1.5 m of refill in a scour hole 

upstream of one of the bridge piers that was not detected by the fathometer. A swept 

frequency CSP unit was also used to survey the same bridge as the fixed frequency unit 

and indicated the same results, with an improved accuracy. The I-84 Buckley Bridge over 

the Connecticut River was also surveyed as part of this USGS project. The 200 KHz 

fathometer survey revealed the presence of a 15 m by 46 m scour hole upstream of pier 

four. The survey data was used to generate a 3D contour of the riverbed and scour hole. 

CSP units and a 100 MHz GPR was also deployed on this site and confirmed the 

fathometer results, adding details on the amount of refill through the bridge section. Two 

additional bridges were surveyed with fathometers and CSP units and indicated the 

presence of scour holes without any refill material or significant sub bottom 

characteristics. The overall performance results of the Placzek and Haeni (1995) testing 

revealed that the 20 and 200 KHz fathometers had a resolution of 0.30 and 0.15 m, 

respectively, while the CSP performance indicated a resolution of 0.30, 0.60, 0.76 and 0.3 

m for the 14, 7, 3.5 and 2 KHz units, respectively. The depth of penetration into the bed 

varied from 6.1, 7.62, 15 and 15 m for the same CSP units, respectively (Placzek and 

Haeni, 1995). 
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In regards to environmental conditions that can influence the results, only one 

research team reported on the performance of the advanced sonar techniques under non-

ideal conditions. Hayden and Puleo (2011) attributed some of the variability in the 

measured datasets for the Indian River Inlet to the nature of the active bed and the 

turbidity of the inlet. In addition to the impact of a live bed on the measured results, the 

amount of time required for post-processing of the signal was not indicated, and only 

daily recordings were indicated. Since a long term monitoring campaign necessitates 

obtaining multiple measurements within an hour, the frequency of the measurements 

must be increased before the system can be used for long term monitoring. In addition to 

these factors, since the operation of the devices considered is very similar to that of 

standard fathometers, factors that affect the performance of the latter, such as 

temperature, salinity, and debris, may also impact the results obtained with the advanced 

sonar techniques.  

Overall, the advanced sonar techniques provide additional information about the 

riverbed, such as 2D and 3D profiles, as well as sub bottom information and refill. 

Typically, these systems either require a tracking unit and traverse or complicated data 

interpolation routines. With the exception of the installation of the two lens-based sonar 

units on the Indian River Inlet, none of the instruments discussed have been deployed for 

long term monitoring.  

2.4 Summary 

The Failure Modes and Effects Analysis (FMEA), often used in evaluating 

product designs, can be used by engineers in the design of a scour monitoring system 
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considering the potential factors that can influence the field performance. The FMEA 

consists of evaluating a system or device against a known failure mode. For each failure 

mode, the effects of the failure are reviewed and given a severity rating (SEV) between 1 

– 10, with one being a failure mode that has little effect, and ten being a failure that 

prevents the ability to monitor scour entirely. After evaluating the severity of the failure 

mode, the likelihood of occurrence is evaluated next (OCC) and also given a rating on a 1 

– 10 scale. Next, the ability of the system or operator to detect the failure mode (DET) is 

assessed. Scores are given to the detectability also on a scale of 1 – 10. The three ratings, 

SEV, OCC and DET are then multiplied together to come up with a Risk Priority Number 

(RPN). This RPN can then be used to evaluate the potential failure modes for the scour 

monitoring installation and highlights the areas that should be considered before any field 

installation begins. The identification of these risk remediation efforts is a critical aspect 

of the FMEA. Ranking scales for each of the FMEA components are identified in Table 

2.2, Table 2.3, and Table 2.4, followed by an example analysis on a hypothetical TDR 

based scour monitoring system in Table 2.5. Through FMEA, it is possible to utilize the 

information discussed previously for each measurement system to determine their ability 

to monitor scour under intended field conditions. 

Table 2.2 - Proposed Severity Ratings for FMEA Analysis of Scour Monitoring System. 
Ranking Severity Rating 

1 Impact to scour monitoring system is minor 
2-4 Increasing inaccuracies in measured scour results 

5 Scour results are available. Magnitude may be 
incorrect 

6-9 As failure mode increases, results become harder to 
obtain 

10 Scour results not available 
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Table 2.3 - Proposed Occurrence Ratings for FMEA Analysis of Scour Monitoring 

System. 
Ranking Occurrence Rating 

1 Event with a 50 yr. return period (P=0.02) 
2-4 Increasing probability of event (P>0.02, P<0.10) 
5 Event with a 10 yr. return period (P=0.10) 

6-9 Increasing probability of event (P>0.10, P<0.50) 
10 Event with a 2 yr. return period (P=0.50) 

 
 

Table 2.4 - Proposed Detectability Ratings for FMEA Analysis of Scour Monitoring 
System. 

Rankin
g Detectability Rating 

1 Scour monitoring device can detect failure mode 
itself 

2-4 Increasing inaccuracy of device to detect failure 
mode 

5 Failure mode can be detected via additional 
instrumentation 

6-9 
Decreasing ability of additional instrumentation to 
detect physical failure, i.e. interpreting based on 

associated parameters 

10 Failure mode cannot be detected, except by user 
onsite 

 

Table 2.5 - Example FMEA Analysis for TDR System. 
Comp. Failure Mode Effect of Failure SEV OCC DET RPN 

TD
R

 System
 

Water 
Turbidity 
Changes 

Dielectric 
constant changes 
a small amount 

1 7 10 70 

Water 
Temperature 

Changes 

Dielectric 
constant changes 

a significant 
amount 

5 9 10 450 

Loss of Power Loss of data 10 3 2 60 
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To facilitate the FMEA analysis for a potential bridge scenario, the apparent 

sensitivities of each of the scour measurement device is reviewed in Table 2.6. Each 

device is rated against a scale of high, medium and low, to represent their relative 

sensitivity to the environmental parameters discussed. 

Table 2.6 - Summary of Scour Monitoring Devices. 

Device Max 
Scour Refill Debris Temp. Salinity Other Impact Obst. 

2.1 Sounding 
Rods Y N M L L L Bed penetration 

2.2 Float-Out 
Devices Y Y-N L-M L L L N.A. 

2.3 MSC Y N H L L L Fouling of collar 
clearance 

2.4 Sonar 
Fathometer Y Y H H M M 

Air entrainment, 
pulse versus 

scour hole size, 
electronic noise 

2.5 TDR Y Y M L M H Sediment 
dielectric 

2.6 Fiber 
Optics Y Y M L L L Sediment 

calibration 
2.7 

Temperature Y Y M L N.A. L Live bed 

2.8 
Piezoelectric 

Film 
Y Y M L L L Structural 

vibrations 

2.9 Mercury 
Tip Switch Y N M L L L Mercury 

3.1 Radar Y Y L L M H Attenuation in 
brackish waters 

3.2 Pier 
Vibrations Y Y L L M L Changes in 

loading patterns 
3.3 Advanced 

Sonar Y Y M L M M Live Bed 
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Thus, all of the scour monitoring systems can be analyzed with the FMEA 

process, leading to a more robust field system. A summary for each of the various 

techniques for monitoring scour is reviewed below. 

Regarding rod based devices, they typically suffer from two main weaknesses: 

The rods themselves and any attached cabling are subject to damage by debris 

impacting the hardware; 

Measurements are made at only one point in the channel bottom. 

In its simplest form, the fixed sonar fathometer units provide both maximum 

scour and refill information for one position in the channel bed. Additional information 

can be obtained by including tracking units or scanning the unit across the channel bed. 

However, this increases the system complexity and post processing requirements. In all 

of its forms, sonar devices are subject to various environmental conditions that can 

hamper the performance of the unit in the field. These variations include: 

Temperature variations; 

Salinity in near coastal waters; 

Sediment loads and turbidity; 

Air entrainment; 

Debris, either impacting the device or causing false echoes; 

The relative size of the scour hole and the sonar beam width. 

Further study should be conducted into the effects of these environmental 

parameters on the sonar system results in order to develop means of accounting for these 

effects. 
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EM based techniques, both TDR and GPR, can be used to determine the depth of 

scour holes present in a river profile. The technique is sensitive to environmental 

parameters, particularly temperature and salinity and data on the field performance of 

these units is limited. Further study should focus on the performance of these units in the 

field as well as in the laboratory to identify the impact of the various environmental 

parameters on the TDR results. 

The vibration based measurement methods discussed provide information about 

the overall health of the bridge directly and do not directly measure the scour hole size. 

The use of this method requires the determination of trends in the vibrational 

characteristic of the pier, which are complicated in practice due to environmental 

changes, such as temperature variations and traffic pattern shifts, as well as channel 

conditions. 

There also exists a series of novel and unique scour monitoring systems that 

exploit various facets of the channel flow from the temperature gradient within the sub 

bottom to movement of devices, which can be linked to the presence of the channel flow. 

These devices have typically been employed in the laboratory and in limited field 

campaigns. Further work on these devices should focus on translating these ideas into 

robust methods with proven track records in the field. 
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CHAPTER THREE 

 

A NOVEL VIBRATION-BASED MONITORING TECHNIQUE FOR BRIDGE 

PIER AND ABUTMENT SCOUR 

 

3.1 Introduction 

Scouring occurs when high velocity flows erode the riverbed, removing the 

material surrounding the bridge piers and abutments, which ultimately affects the stability 

of the bridge foundation. Scour damage to these structural components can potentially 

result in the failure of the entire bridge. Bridge repair and restoration, from all types of 

damage, accounts for 19% of the federal emergency funds allocated for highway repairs 

(Rhodes and Trent, 1993). Between the 1960s and 1990s, of the 1000 bridge failures in 

the U.S., 60% were attributed to scour (Shirole and Holt, 1991). The financial cost 

associated with repairing scour damage to bridge structural elements was estimated to be 

$100 million per scour event from 1964-1972 (Brice and Blodgett, 1978). Rapid riverbed 

scouring typically develops during high flow periods such as floods. Since bridges are 

often key infrastructure elements for the evacuation of the public or transportation of 

relief supplies, any structural failure of a bridge due to scour has an impact beyond the 

losses associated with the collapse of the bridge itself. Therefore, safeguarding bridges 

from failure due to scour, which can be achieved through real-time monitoring of scour 

development in riverbeds, is of critical importance.  
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During the last decade, various projects have been undertaken to evaluate existing 

scour monitoring techniques, the majority of which have involved the investigation of 

sonar fathometers and other riverbed mounted sensors. Sonar fathometers, mounted on 

the bridge piers or abutments, use acoustic signals to record the distance to the riverbed 

(Nassif et al, 2002). In previous experiments, fathometers have been used in the field to 

monitor both the maximum scour and subsequent refill during an event [(Nassif et al., 

2002), (Cooper et al., 2000)]. These field studies, however, were typically hampered by 

various environmental and operational conditions, specifically channel debris, which for 

bridges in Indiana (Cooper et al., 2000) and in New Mexico (Lagasse et al., 1997), 

interrupted the signal reflected from the river bottom. Debris can also directly impact the 

sonar unit or cabling, resulting in a loss of the unit and/or signal altogether (Cooper et al., 

2000). Aside from debris, turbulent water can further hinder the operational environment 

of sonar devices. Holnbeck and McCarthy (2011) reported that of the four sonar units 

installed on each pier of the I-90 bridge over the Blackfoot River in Montana, only one 

provided operational data due to highly turbulent water and air entrainment through the 

bridge section. Temperature and salinity in the channel also significantly affect sonar 

results. Lagasse et al. (1997) reported that for the John’s Pass Bridge in Florida, it was 

necessary to adjust the measured signal by approximately 0.5 m on average to account for 

the temperature and salinity effects. Another commonly used instrument in scour 

observation is the magnetic sliding collar (MSC), a device consisting of a rod driven into 

the riverbed with a collar that rests on the bed surface and slides down the rod during a 

scour event (Lagasse et al., 1997). As the scour hole refills, however, the magnetic collar 
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is buried under the refill material and becomes incapable of recording any refill of the 

scour hole (Lagasse et al., 1997). As with sonar systems, MSC devices are also 

vulnerable to debris impacting the device that in turn damages the monitoring unit [5, 6]. 

It is also possible for sediment in the riverbed to foul the space between the collar and rod 

and prevent the collar from moving during a scour event (Lagasse et al., 1997). 

The time domain reflectometry (TDR) method, which uses EM pulses transmitted 

through pipes buried in the riverbed, is another rod-based method used for scour 

observation (Yankeilun and Zabilansky, 1999). Here, the elimination of debris and 

jamming problems associated with sonar and MSC techniques permits the gathering of 

information regarding the refill of the scour hole. TDR however, is susceptible to 

temperature and salinity changes. Even though Yu and Yu (2009, 2010) reported that 

varying salinity levels from 0 to 750 ppm did not adversely affect the performance of the 

TDR method, these ranges are unsuitable for use in near coastal waters. In estuarine 

environments, for instance, the temperature can vary by 20 °C or more and the specific 

conductance, a measure of the salinity, can vary from a yearly average of approximately 

100 μS/cm to a maximum of 25,000 μS/cm (approximately 50 to 17,500 parts per 

million) [(USGS, 2006a), (USGS, 2006b)], well above the range tested in the laboratory. 

As shown in the relevant literature, available scour monitoring techniques (e.g. 

sonar fathometers, TDR, MSC) are susceptible to environmental and flow conditions, 

including temperature, salinity, turbidity, air entrainment and debris. Furthermore, MSC 

devices can only record the maximum scour depth and cannot record refill. In this 
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manuscript, the authors propose a novel technique that is more resilient to environmental 

and flow conditions and is capable of measuring both scour development and refill.  

In the proposed method, several dynamic sensors mounted on thin, flexible plates, 

referred to as vibration-based turbulent pressure sensors (VTPs), are distributed along the 

length of a sealed pipe that is driven into the riverbed near the pier or abutment. The 

VTPs in the river are subjected to the natural turbulence of the river flow and are excited 

by the associated time varying dynamic pressure. The VTPs in the flow vibrate at 

amplitude levels detectable by modern vibration transducers. Conversely, a VTP in the 

sediment, which is not exposed to the turbulence, vibrates at lower amplitudes than those 

experienced by the VTPs in the flow. The time history of the vibrations of each sensor 

can be recorded by an accelerometer mounted on the inside surface of the plate. The 

captured signals can then be processed to quantify the mean squared acceleration 

response in the time domain, which is related to the signal energy content. By monitoring 

the energy content associated with several VTPs distributed throughout the depth of the 

pier or abutment, it is possible to correlate the changes in vibration response to the 

changes in the bed level. Determining the changes in the bed level allows the assessment 

of not only scour development but also the refill process.  

The VTP mechanism is robust against many of the environmental conditions that 

plague existing scour monitoring devices. Debris in the channel causes false echoes in a 

sonar system, however the VTP method is unaffected by debris since debris accumulation 

does not affect its ability to determine the water/sediment interface. Turbidity, which 

hinders the performance of sonar fathometers, has a favorable effect on the performance 
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of the VTP due to the additional momentum contributed by the particles impacting the 

VTP surface. By the same argument, as salinity has a minimal influence on turbulent 

dynamic pressure, the VTP mechanism is theoretically immune to the changes in the 

salinity in the channel water, which has adverse affects on the TDR method. Finally, 

given the anticipated temperature range in natural rivers, which can affect both the TDR 

and sonar based methods, the response of the VTP method is likely to remain unchanged 

as any variation in the vibration characteristics of the thin flexible plates associated with 

temperature variations will be minor since it is possible to select materials with a low 

coefficient of thermal expansion.  

Starting in Section 2, the underlying principle behind the VTP device is discussed 

along with the practical aspects regarding the development of a prototype VTP system. 

The laboratory experimental campaign is discussed in Section 3 with the results reviewed 

in Section 4. Pertinent conclusions drawn from the laboratory experiments in preparation 

for field implementation of the VTP method are discussed in Section 5 along with an 

overview of future work. 

3.2 Numerical Proof of Concept 

A simplified numerical proof-of-concept model is built based upon the principles 

of dynamics for a plate subjected to an applied pressure distribution. It will be established 

that a single degree of freedom system (SDOF) provides an adequate means for 

estimating the dynamic response of the proposed VTP to the varying pressure caused by 

turbulence in the channel flow. It is useful to define the response of the VTP in the 

frequency domain since models for the response of a SDOF system are readily available. 
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In addition, the turbulent dynamic pressure in the channel is also described well in the 

frequency domain. By combining these models, it will be possible to predict the response 

of the VTP to the pressure associated with the turbulent fluctuation in the channel.  

3.2.1 Modeling of Open Channel Turbulent Flow 

Several features of the nature of turbulence within open channels lend themselves 

to being exploited by the VTP method. In particular, the distribution of the turbulent 

fluctuations in the mean flow direction, 2u′ , peaks near the riverbed in the wall region, 

at y+ of 15 (Nakagawa et al., 1975). The parameter y+  is equal to the product of the 

vertical position in the channel, y , and the friction velocity, *U , divided by the 

kinematic viscosity of the fluid, υ . Additionally, for open channel flows, once the flow is 

fully developed, the power spectral density of the turbulent velocity 

fluctuations, ( )UU fΦ , is stationary. The power spectral density is related to the 

correlation function, ( )xR r , as shown in Equation (3.1), for two turbulent velocity 

measurements, ( )u x′  and ( )u x r′ + , spaced a distance r  apart (Nezu and Nakagawa, 

1993). The Taylor’s hypothesis of frozen turbulence makes it possible to convert the 

spectra, ( )UU kΦ  from wave number space, k , to frequency space, f , as shown in Nezu 

and Nakagawa (1993). In addition, since ( )xR r  can be determined from measurements 

of the velocities in open channel flows, it is possible to develop experimental 

representations of the power spectrum, through the use of the Fourier Transform. The 

resulting power spectrum can be non-dimensionalized for the range of flow conditions 
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typically found in open channels, thus various attempts have been made to develop 

models that matched the experimentally measured spectra.  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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∫

∫
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One such model was developed by Von Karman (1948) for isotropic turbulence at 

high Reynolds number and is valid from the production to the inertial sub-range of the 

turbulent energy spectrum, Equation (3.2). Another model was developed by Heisenberg 

(Nakagawa and Nezu, 1975) and is shown in Equation (3.3), which is valid form the 

inertial sub-range to the point of viscous dissipation. These two models are used to 

predict the magnitude of the turbulent pressure impinging on the VTP. The reader is 

directed to Nakagawa et al. (1975), Nezu and Nakagawa (1993), and Von Karman (1948) 

for further details on the development of these models. 
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These models depend upon the mean eddy macroscale, XL , the characteristic 

frequency, Ok , the dissipation rate of turbulent energy, ε , the mean flow velocity, U , 

75 

 



the mean of the squared turbulence level, 2u′ , the constants γ ′  and C , and finally the 

Kolmogoroff length scale, η . The mean eddy macroscale, shown in Equation (3.4), is a 

function of vertical position in the channel, the channel depth, h , and an empirically 

determined constant, 1B , which varies from 1 to 1.1 [14].  
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 (3.4) 

The additional parameters in Equation (3.2) can be determined from the universal 

function for the turbulence intensity in open channels, which for the mean flow direction 

is shown in Equation (3.5) (Nezu and Nakagawa, 1993). Equation 5, in turn, is dependent 

upon the friction velocity, the friction Reynolds number, *Re hU υ= , y+  defined 

previously, and various empirical constants, 2.3UD = , 10B = , 1 0.3C = . 
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The dissipation rate for isotropic turbulence can be modeled as shown in Equation 

(3.6) (Nakagawa et al, 1975). Finally, the microlength scales (η  and ε ) can be correlated 

to the macrolength scales via the relations in Equations (3.7) and (3.8) (Nezu and 

76 

 



Nakagawa, 1993), with 2ReL Xu L υ′=  and K  as given in Equation (3.9) (Nezu and 

Nakagawa, 1993). 
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Given the spectra for the turbulent velocity fluctuations, the corresponding spectra 

for the associated pressure on the flexible plates is constructed as the product of the 

velocity spectra and the flow density, ρ , as shown in Equation (3.10).  

 ( ) ( )21
2PP UUf u fρ ′Φ = Φ  (3.10) 

3.2.2 Modeling of VTP Dynamic Response: 

Given the nature of the turbulent dynamic pressure in the channel, it is necessary 

to describe the response of a plate to this dynamic forcing function. Following the 

method developed by Blevins (1990), it can be shown that the response of a plate, iw , for 
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each mode i , to the dynamic turbulent pressure, iP , is governed by Equation (3.11), 

where iζ  is the modal damping factor and iJ  is the joint acceptance between the mode 

shape and the pressure distribution. 

 2

21 i
i i i i i

i i

w w w J Pζ
ω ω

+ + =   (3.11) 

The joint acceptance governs the manner in which the modal displacement 

response of the plate corresponds to the spatially varied pressure distribution for a given 

mode. Under the condition that the mode shape and the pressure distribution are aligned, 

the joint acceptance is 1 (Blevins, 1990), and the solution to Equation 10 for a sinusoidal 

pressure distribution becomes the classical harmonic excitation response of a SDOF 

system. Given that the turbulence in open channels is stationary and random, the 

autospectral density of the displacement response of the VTP, ( )XX ωΦ , can then be 

computed from the mean square of the classical harmonic excitation response to the 

autospectral density of the pressure distribution, as shown in Equation (3.12). What 

remains, is then to describe the means square response of the VTP, and couple that 

response function with the previously discussed turbulent pressure spectrum (Equation 

(3.10)). 

 ( ) ( ) ( )2
XX PPHω ω ωΦ = Φ  (3.12) 
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The steady state response function ( ) 2
H ω  can be described from the modal 

damping, and the natural frequency, Nω , of the SDOF system, as shown in Equation 

(3.13) (Blevins, 1990, Craig, 1981). 

 ( ) 2

22 2

1

1 2
N N

H ω
ω ωζ
ω ω

=
    
 + +        

 (3.13) 

A closed form solution for the first natural frequency of a circular plate fixed at its 

circumference is given below in Equation (3.14) (Blevins, 1979), where r  is the radius of 

the disk, E  is the Young’s modulus, ν  is the Poisson’s ratio, ρ  is the density and t  is 

the plate thickness.  
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2 2

10.22

12 1
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Et
r t

ω
ρ ν
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3.2.3 Numerical Model Results 

The SDOF model and the input forcing function, discussed previously, are used to 

model the response of the VTP to the dynamic excitation from turbulent flow. The flow 

case considered has a mean flow speed of 0.3 m/s and a depth of 3 m with a VTP located 

at y/h of 0.1; a representative case for natural channels.  

The displacement response spectra from the VTP model are shown in Figure 3.1, 

along with the velocity and acceleration spectra, computed from derivatives of Equation 

(3.11). The turbulent spectrum of the forcing function (due to turbulent pressure) is also 
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shown in Figure 3.1, including both the production and inertial sub-ranges. The spectrum 

exhibits a broad peak at low frequencies, less than 0.1 Hz, associated with the large eddy 

structures in the flow. The inertial sub-range encompasses approximately 0.1 to 40 Hz, at 

which point the declination in the amplitude of the input spectrum is observed. This 

reduction is associated with the transition to the viscous sub-range. Accordingly, an ideal 

VTP would be sensitive to the turbulent pressure within the 0.1 - 40 Hz frequency range.  

The first natural frequency for a representative circular plate made from neoprene 

rubber, calculated using Equation 14, can be seen in all three response spectra for the 

VTP at approximately 250 Hz. The relative magnitudes between the acceleration, 

velocity and displacement spectra reveal in which frequency range various sensors would 

be useful in recording the response of the VTP. In the low, near DC, frequency range, 

less than 10 Hz, the results indicate that a position sensor would be optimal. However, in 

the range of 10 to 400 Hz, the figure indicates that an accelerometer would be better 

suited to measure the response. Accelerometers with sensitivities over the 10 to 400 Hz 

frequency range are commonly available. Therefore, for the initial prototype these 

accelerometers are selected for the development of the scaled prototype model.  

During operation of the VTP, the variation in the energy content of the flexible 

plates throughout the depth of the pier or abutment must be monitored: a low energy 

content corresponds to sediment, while a high energy content corresponds to channel 

flow. Using the spectra shown in Figure 3.1, it is also possible to compute the mean value 

of the acceleration autospectrum of the vibration response over the frequency range of 

interest (Blevins, 1990). The response spectra computed for various geometric and 
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material configurations can then be used to evaluate the hypothesis behind the operation 

of the VTP device and to determine the optimal configuration for the prototype.  

 
Figure 3.1 – Model response for prototype VTP based upon SDOF model and 

turbulent spectra.  The units for displacement, velocity and acceleration autospectra are m 
Hz-1, m s-1Hz-1, m s-2Hz-1 respectively. 

 

Based upon the numerical model results, an optimal VTP would respond to low 

frequency turbulent pressure fluctuations at a level detectable by commercially available 

accelerometers. The VTP prototype must be designed considering the competing 

constraints of maximizing the energy content response while keeping the dimensions of 

the plate small such that the spacing between VTP sensors is kept to a minimum.  
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For the VTP prototype, both metallic and non-metallic materials are considered, 

including stainless steel (304 Grade), aluminum, (6061-T6), brass, and three plastics, 

PVC, LDPE, and a neoprene rubber (durometer of 30A). Plates 3.2 mm in thickness with 

both circular and square geometric forms are considered. The simplified numerical model 

is used to analyze the response, with an appropriate change in Equation 14 for the square 

geometry (Blevins, 1979). The energy content response computed for various VTP plate 

areas are plotted in Figure 3.2. 

 
Figure 3.2 – Circular and square VTP normalized mean square response as 

computed from the response spectrum from 10 to 400 Hz for circular and square VTPs, 
for various plate areas, and material types. Each result is normalized by the deflected 

mode shape (Equation 3.13). 
 

For the metallic materials, the circular VTP consistently has the higher energy 

content over the square VTP for a given area and material. For the largest VTP, with an 
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area of 0.073 m2, the circular aluminum, brass and stainless steel VTPs have a mean 

response level 9, 13 and 10% greater than the square VTP. For each geometric shape, the 

brass VTP responds, on average, at a level 14% above that of the aluminum VTP and 

18% above that of the stainless steel VTP. Therefore, for the metallic VTPs, the circular 

VTP is the preferred configuration, with the optimum metallic material being brass. 

For the non-metallic materials, the optimal geometric configuration depends upon 

the VTP area. For instance, for the LDPE, the circular VTP at lower areas responds as 

much as 14% more than the square VTP, for the same area. However, as the area of the 

VTP increases, this trend shifts. For the LDPE VTP, this transition occurs at areas above 

0.03 m2, while for the PVC and neoprene VTPs this occurs at 0.008 and 0.005 m2, 

respectively. Within a particular case, the optimal material also is a function of area. At 

lower VTP sizes (0.002 to 0.008 m2), the neoprene VTP responds on average 19% more 

than the PVC VTP. For the 0.01 m2 case, however, the PVC response peaks 68% higher 

than the neoprene area of the same case and size. Then, from 0.02 to 0.07 m2, the LDPE 

response peaks and is several orders of magnitude larger than that of the PVC or 

neoprene VTPs. Thus, for the non-metallic VTPs, the optimal geometry and material 

choice are a function of area. For smaller VTPs, a circular, neoprene VTP is optimal. For 

larger VTPs, an LDPE, square VTP is optimal. 

When considering an optimal VTP configuration for evaluating the hypothesis 

behind the operation of the VTP devices, it is important to balance the desire to maximize 

the response level in the turbulent flow with the size of the plate. Therefore, a size limit 

of 0.01 m2 is imposed to keep the spacing in line with the resolution of an MSC device. 
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Based on this limit, it can be concluded that a circular VTP made from neoprene is 

optimal. 

3.3 Experimental Setup 

According to the materials and geometric form selected in the previous section, a 

prototype is constructed with eight neoprene VTPs of 0.0254 m radius. The VTPs are 

spaced approximately 0.10 m apart, on center, in a 0.10 m diameter PVC support pipe. A 

schematic of the prototype assembly is shown in Figure 3.3. The assembly consists of a 

compression pipe coupling mounted in the support pipe with a toroid disk sandwiched 

between the compression coupling components. The flexible plate is fixed to the toroid 

disk, as shown in Figure 3.3. Overall, the size of the VTP and the support pipe are small 

in comparison with the physical dimensions for a pier, which are typically 0.5 to 1 m or 

more in width. For such a device in a typical field case, the equilibrium scour depth 

predicted with the Neill equation (1964) is approximately 1.4 m, while the pipe would 

only result in a 0.3 m hole, well within the original scour depth. As such, the presence of 

the VTP is anticipated to have a limited affect on the flow around the pier, and any 

subsequent scouring of the riverbed. 

The support pipe is buried below the sediment, with several sensors exposed to 

the flow and several sensors below the water/sediment interface. The experiments are 

conducted in the Clemson Hydraulic Laboratory in a 1.2 x 1.2 m square cross section, 18 

m long flume. The flume is equipped with a recess for scour measurements, in which the 

support pipe and VTPs are located. The support pipe is fixed to the flume frame, as 

shown in Figure 3.4. The riverbed is simulated with quartz sand of a d50 of 1.5 mm. A 
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sand bed represents a worst case evaluation of the VTP method since the pressure waves 

impinging on the bed from the turbulent flow will have a greater depth of penetration in 

the quartz sand bed. Since the dissipation of a wave will be greatest in a clay or silt bed 

(Gutowski and Dym, 1976), the turbulent pressures incident on the sand bed will 

propagate furthest into the sand bed, leading to the highest possible response from a VTP 

in the sediment. The flow rates are varied from 0.028 to 0.14 cubic meters per second, 

which is measured with an FMG3101 magnetic flow meter.  

 
Figure 3.3 – Prototype VTP configuration diagram. Components include: (1) the 

compression fitting, (2) the plate material, (3) a washer (4) toroid disk (5) accelerometer 
and (6) the support pipe. 

 

To measure the acceleration of the VTP plate, a B&K 4507 B 006 uni-axial 

transducer, with a sensitivity of approximately 51 mV/m s-2, is mounted in the center of 

the flexible plate inside each VTP. These accelerometers are connected to a B&K LAN-
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XI 3050A-060 data acquisition system. A sampling frequency of 25.6 kHz yields a 

converged RMS value of the acceleration response for a given flow condition, and is thus 

selected as the measurement frequency for the experiments. The measurements are 

recorded for 10 seconds each with 10 repeat measurements for each flow condition. The 

mean squared value is computed for each VTP from the measured signals, which is 

proportional to the energy of the time domain acceleration. The mean squared value will 

be referred to as the VTP energy content for the remainder of this manuscript. The 

experimental setup is shown in Figure 3.4. 

 

 
Figure 3.4 – Prototype VTP array installed in flume bed. VTPs 1-4 are shown (right/left) 

above the sand bed, housed in support pipe (middle) connected to the flume frame. 
 

3.4 Results and Discussion 

The experiments are conducted with three objectives; (i) to supply a proof-of-

concept, (ii) to evaluate the performance of the VTP system in a scour hole and (iii) to 

determine the precision of the VTPs.   
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3.4.1 Verification of the Hypothesis behind VTP 

During this phase of testing, four VTPs are submerged in the flume: two in the 

sediment (VTPs #7 and #8) and two positioned in the flow (VTPs #5 and #6). VTPs #1-4 

in this test are above the water free surface. VTP #8 is situated at the lowest position 

(0.16 m below the sediment bed) while VTP #5 is situated at the highest position (0.14 m 

above the sediment bed). The results of the tests are shown in Figures 5 and 6.  

In Figure 3.5, the energy content response is calculated for four different flow 

rates ranging from 0.060 to 0.14 m3 s-1 (cms) and plotted against the distance from the 

sediment interface. The mean and standard deviation of the ten 10-second measurements 

are plotted to present the central tendency and the variability of the measurements. In 

Figure 3.5, the VTP within the flow and adjacent to the bed measures the peak energy 

content. The energy content decreases with increasing distance from the sediment 

surface, which is in agreement with the expected profile of the flow turbulence across the 

depth of the channel [13]. On the other hand, the VTP response in the sediment is one to 

two orders of magnitude lower than the measured energy content in the flow. This 

difference between the energy content levels of VTPs in the channel and in the sediment 

are well above the uncertainty bounds of the sensors in the flow; therefore, suggesting 

that the low-frequency vibration response of the VTP can be used to distinguish between 

channel flow and sediment.  

In Figure 3.6, the mean square of the time domain response of VTP #5, located in 

the channel flow, is compared against that of VTP #8, located in the sediment, for 

varying flow rates. For each flow rate, the average for each of the ten 10-second 
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measurements are plotted. For all flow rates, the average difference between the VTPs in 

the flow and the sediment is 0.028 m2 s-4. Depending upon the flow rate, the minimum 

difference between the two signals is one order of magnitude, while the largest difference 

increases to two orders of magnitude. Figure 3.6 shows a general trend where the 

measured energy content increases with flow rate, an observation consistent with 

expectations since the amplitude of the pressure fluctuations due to turbulence increases 

with the mean flow speed, and therefore with flow rate. Even at low flow rates, however, 

the difference between the mean square response in the flow and sediment is detectable. 

Thus, as the flow rate, and therefore the flow velocity increases, the difference in energy 

content levels for VTPs located in the flow versus the sediment increases, aiding in the 

observation of the water/sediment interface, as shown in Figure 3.6. It should be noted, 

however, that for the highest flow rate, the energy content level drops slightly from the 

value at a flow rate of 0.135 cms. This is attributed to the 10 second averaging time, 

which may not fully capture all of the large eddies in the flow. Future field tests should 

investigate longer averaging times to avoid this complication. 
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Figure 3.5 – Energy content of prototype VTPs as a function of distance from the 
water/sediment interface. Flow rates varied from 0.060 to 0.14 cms. Mean values plotted 

including ± 1 standard deviation, as well as the unscoured bed level. 
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Figure 3.6 – VTP energy content of prototype VTPs versus flume flow rates1. 
 

Additionally, Figure 3.6 highlights the potential impact that additional vibration 

sources can have on this method. The energy content of the VTPs in the sediment, which 

are dominated by noise vibration sources1, are an order of magnitude below the responses 

from the VTPs located in the flow, which are also subject to the same noise sources but 

are dominated by the vibrations due to the turbulent flow. 

1 Note that the energy content of the VTP buried in the sediment also increases in Figure 
3.6. Additional experiments reveal that the flume used in the VTP evaluation is excited by 
the flow and pump used in the laboratory. Thus, the increase in the energy content of the 
VTP in the sediment is attributed to the vibration of the flume itself. Corrections to the 
signals to account for this additional structurally borne noise reveal the same trend as 
shown above. Such structural borne noise will, of course, not contribute to the field 
performance of this technique. 
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3.4.2 Assessing Scour Hole Performance 

The nature of the turbulence in a scour hole varies in magnitude and spatial 

distribution from that in the channel flow, making it necessary to verify the performance 

of the VTPs in a scour hole. For this purpose, the response of the VTP located in a 

manually-developed 0.056 m deep scour hole is measured (Figure 3.7). The experiments 

are conducted where VTP #1 is partially submerged in the channel flow, VTPs #2-#4 

fully submerged, VTP #5 partially visible in the unscoured bed and VTPs #6-#8 fully in 

the sediment, as shown in Figure 3.4. The energy content, computed as the mean square 

of the time domain acceleration response, is computed for each VTP and the mean and 

standard deviation are plotted against position relative to the bed in Figure 3.7. 

Figure 3.7 indicates that VTP #5, which is fully uncovered by the scour hole 

development, is subject to an excitation level that is greater than the excitation in the 

main flow. This is expected however, since the turbulence intensity should be higher in 

the scour hole due to the separated flow (Dey and Barbhuiya, 2006). Thus, the presence 

of the scour hole itself improves the VTP approach’s ability to detect the water/sediment 

interface.  
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Figure 3.7 – Turbulent energy content of prototype VTPs in un-scoured and 0.056 m 
scoured channel bed. The mean values are denoted by the points while the dotted lines 

represent the standard deviation of the measured results around the mean value. 

3.4.3 Precision Assessment  

The precision of the VTP scour detection is investigated with several 

experimentally controlled scour holes ranging in depth from approximately 0.04 to 0.14 

m. During these experiments, VTP #1 is partially submerged, VTP #2 to #4 are fully 

submerged, VTP #5-#8 is buried in the sediment and VTPs #5 and #6 are visible due to 

the various scour holes. The slope of the VTP energy content is computed along the 

depth, with the maximum gradient used as the determining point for the sediment 

interface. The depth of the scour hole is determined as the average height between the 
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two VTPs surrounding the point of maximum gradient. Figure 3.8 presents six profiles 

for the cases varying from no scour to the 0.14 m deep scour hole, along with the slope of 

the profiles. Figure 3.8 reveals that, for the 0.056 to 0.14 m deep scour holes, the point of 

maximum slope corresponds to the interface location. 

Also shown in Figure 3.8 are the results for the 0 and 0.038 m deep scour holes, 

where the point of maximum slope is above the channel bed. Since it is only possible to 

locate the interface as the mid-height of the two VTP positions around the point of 

maximum slope, the VTP indicated water/sediment interface is 0.03 m above the original 

bed level. Additionally, in the 0.038 m deep scour hole case, VTP #5 responds at a level 

between its adjacent VTPs. In this case, VTP #5 is not fully exposed by the scour hole, 

indicating that a critical depth of scour around the VTP is required to observe enough of 

the turbulent flow to obtain an accurate measure of the water/sediment interface. As the 

scour hole deepens and uncovers more surface area of the VTP, the response increases, 

yielding a more accurate water/sediment interface location. 

During the development of the scour hole shown in Figure 3.8, the 0.14 m scour 

event occurred prior to the 0.12 m event, thus the 0.12 m results represent a refilling 

scour hole scenario. For the 0.012 m case, VTP # 6 is partially exposed for approximately 

50% of its diameter. Correspondingly, the energy content of VTP # 6 (0.0016 m2 s-4) is 

between the values for the adjacent VTPs, 0.011 m2 s-4 for VTP # 5 in the flow and 

0.0005 m2 s-4 for VTP # 7 in the sediment. As the refill process proceeds, however, the 

response of VTP #6 continues to drop, resulting in a determination of the interface 

location during refill. 
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Figure 3.8 – Energy content of prototype VTPs in scour holes of various sizes. The mean 
profile is plotted alongside the slope of the mean profile, scaled by a factor of 1/10. The 

VTP and the independently measured scour hole depths are indicated for each 
experiment. (a) No Scour (b) 0.0385 m Scour (c) 0.056 m Scour (d) 0.0825 m Scour (e) 

0.1235 m Scour (f) 0.142 m Scour. 
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The scour depth detected by the VTPs is then compared against the independently 

measured scour depth to assess the precision with which the VTP can determine the 

water/sediment interface (Figure 3.9). Ideally, this comparison would yield a straight line 

with a slope of 1:1. The results shown in Figure 3.9, however, highlight the coarse nature 

of the VTP spacing. Error bars plotted for each of the VTP interface locations represent 

+/- ½ of the spacing. Since the point of scour is determined by the average of the two 

VTPs above/below the point of maximum slope, having a larger number of closely 

spaced VTPs would decrease the spacing between detection points. This would lead to an 

improved precision in determining the scour hole location.  

Figure 3.9 also illustrates that for the 0.12 m scour hole, where VTP #6 is 

uncovered for approximately 50% of its depth, the VTP determined scour depth, even 

considering the uncertainty bars, predicts a value below that of the independently 

measured depth. This result, in conjunction with the result from the 0.038 m scour case, 

where VTP #5 was uncovered for approximately 88% of its surface yet still indicated a 

scour position between VTPs #4-5 instead of #5-6, indicates that there is a minimum 

amount of VTP surface that must be uncovered by scour to register the presence of the 

turbulent flow. This result is attributed to the nature of the dynamic force due to 

turbulence impinging on the VTP surface. Since the magnitude of this force is a function 

of the exposed area, for a partially exposed VTP, the energy content is lower than for a 

fully exposed VTP. As the scour location is determined by the point of maximum slope, 

an energy content level between a partially exposed VTP and one in the sediment does 

not result in a significant change in the slope, leading to an inaccurate reading. 
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Conservatively, this minimum exposure can be taken as the entire surface of the VTP 

area. Further testing, however, is necessary for the final field version of the VTP device 

to verify this result. 

 
Figure 3.9 – VTP estimated scour depth versus actual scour values. The scour values 

determined from the VTP setup using the point of maximum slope are plotted against the 
actual physical scour depths. An ideal sensor would fall on the 1:1 line. 

 

The results presented show that the VTPs are capable of distinguishing if the 

surrounding material is sediment or flowing water in a channel. The results also show 

that the method is feasible in the presence of a scour hole, in which the turbulence levels 

results in a dynamic pressure that is higher in magnitude than in the main, unscoured 
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channel. Also, the precision of the method is shown to be within the VTP spacing, which 

can be improved by reducing the spacing of the VTP units through further refinement of 

the device. 

3.5 Conclusions 

Since scour damage to bridge piers and abutments accounts for the majority of 

bridge failures within the U.S., and given that the cost of these repairs can extend into the 

hundreds of millions of dollars, it is of critical importance to develop a robust real-time 

monitoring system that can detect the development and presence of scour. A survey of 

related literature has shown that many of the traditional measurement methods are 

sensitive to the environmental conditions within rivers such as water temperature, 

salinity, and debris in the channel.  

Since measuring scour is of critical importance, and given that traditional devices 

are susceptible to many of the conditions in natural channels, a novel method is proposed 

that can determine scour depth in real time and is also insensitive to many of the 

conditions that cause other monitoring methods to fail. The proposed methodology 

consists of a series of vibration-based turbulent pressure sensors, referred to as VTPs, 

mounted along the length of a support pipe that is buried in the channel bed. The VTPs 

consist of an accelerometer attached to a thin plate, which is exposed to the channel. The 

mean squared acceleration response of the plate is computed in the time domain and used 

to determine if the material surrounding the VTP is water or sediment. Since the device is 

sensitive to the dynamic pressure in the flow associated with turbulent fluctuations, a 

VTP with high energy content indicates the presence of flowing water in the channel. A 
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VTP in the sediment however, is not subject to the same dynamic pressure as a device in 

the flow. Therefore, by measuring the profile of the energy content for multiple VTPs 

mounted along a bridge pier or abutment, it is possible to determine the location of the 

water/sediment interface.  

Based upon the experimental results presented, the evidence demonstrates that the 

energy content of the VTPs located in the sediment is one to two orders of magnitude 

lower than that of the VTPs located in the channel flow. Therefore, the original 

hypothesis that it is possible to exploit the difference between the mean excitation level in 

the sediment and those in the flow to measure the water/sediment interface is 

demonstrated to be an effective means of monitoring the riverbed for scour. Additionally, 

the measurement results show that the slope of the energy content profile relative to depth 

is a reliable means of determining the location of the water/sediment interface, located by 

the point of maximum slope. 

The presence of a scour hole is also shown to have little impact on the ability of 

the VTP method to determine the location of the water/sediment interface. The 

experimental results, however, reveal that the percentage of the VTP surface that is 

exposed to the flow affects the VTP response and thus the determination of the 

water/sediment interface. Even considering this result however, the precision of the VTPs 

are shown to be better than 0.10 m, which is more accurate than the MSC device (which 

has a precision of 0.15 m) but is below that of a sonar/fathometer (which is accurate to 

within 0.03 m). 
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The precision of the device is dependent upon the resolution of the sensors, and 

thus the VTP size. With further refinement of the sensors, the precision of the system can 

be improved. Additionally, further testing is needed to identify the critical amount of 

VTP surface exposure to the turbulent flow required to improve the identification of the 

presence of turbulent flow surrounding the VTP. 
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CHAPTER FOUR 

 
THE EFFECT OF CHANNEL CONDITIONS ON SCOUR MEASUREMENTS 

 

4.1 Introduction 

Scour damage to bridges is widespread and costly, both in human and financial 

terms, and as pointed out in the US Federal Highway Administration HEC-23, can be 

countered with appropriate monitoring of the riverbed (Legasse et al., 2009). These 

monitoring methods are sensitive to many of the environmental conditions in natural 

channels, such as temperature, turbidity, etc. It is essential, therefore, to understand the 

impact these, and other, parameters may have on a scour monitoring method before 

deploying any monitoring system in the field. 

Scour on bridge piers and abutments typically occurs during peak flood periods, 

such as floods or hurricanes, and has been directly linked to the failure of several bridges. 

Flooding in the Northeastern United States in 1987 resulted in damage to 17 bridges, 

while in 1993, 2,500 bridges in the Midwest were damaged (Mueller, 2000). During 

1961-1974, of the 86 bridge failures that occurred, 46 were attributed to scour damage 

(Murillo, 1987). More recently, from 1996-2001, 68 bridge failures in the US were 

attributed to scour (Lin et al., 2006). The potential risk from scour to bridge infrastructure 

can be realized by considering the number of scour critical or scour susceptible bridges; 

109,464 bridges in the US fall into one of these two categories (Richardson and Price, 

1993). Hunt (2009) reported that of the 590,000 bridges in the US, 20,994 are scour 
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critical, the most serious of the two conditions. Overall, 60% of the failures of bridge 

structures are due to scour damage (Lagasse et al, 1997). 

Floods, often the main source of the increased flows, lead to the development of 

scour holes and can cost millions of dollars in damage. In Virginia and the Midwest 

during 1993 to 1995, flooding caused $40 to $178 million in damages, respectively 

(Mueller, 2000). Butch (1996) reported that the repairs from flood damages in the 1980s 

amounted to $300 million. The cost to repair bridges from scour damage have also been 

calculated. For example, Brice and Blodgett (1978) reported that the cost to repair the 

infrastructure is roughly $100 million per scour event. On an aggregate basis, the total 

annual budget devoted to scour repairs by the US federal government (between Federal 

Emergency Management Agency and Federal Highway Administration projects) is $20 

million annually (Rhodes and Trent, 1993). These costs, however, only account for the 

impact to the infrastructure itself and neglect the additional costs to the afflicted 

population, who depend upon the bridge as a vital part of their transportation system. 

These additional costs have been estimated to be as much as five times the cost of the 

actual repairs (Rhodes and Trent, 1993). 

While the financial costs can be significant, the loss of a bridge from scour that 

result directly in the loss of human life are even more costly. Three such failures have 

occurred, including the Schoharie Creek, Hatchie River, and Arroyo Pasajero River 

bridge failures. In 1987, the I-90 bridge failed due to a scour hole that formed around a 

pier footing with inadequate protection, resulting in the loss of 10 lives (NTSB, 1987). 

The U.S. 51 bridge failure over the Hatchie River in Tennessee in 1989 was caused by 
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the scour hole that formed due to migration of the main channel, which went undiagnosed 

(NTSB 1989), and resulted in the loss of eight lives. Seven lives were lost in 1995 in 

California when a 3 m deep scour hole formed on the I-5 bridge over the Arroyo Pasajero 

River (Arneson et al, 2012). 

To counter these threats and to monitor the health of bridge infrastructure, 32 

states have deployed scour monitoring systems. Sonic fathometers represent one of the 

most prominent methods for monitoring scour with 104 fathometers installed on 48 

bridges (Lagasse et al., 1997). The performance of sonar based scour monitoring systems 

has been reported by Legasse et al. (1997), Nassif et al. (2002), Hunt (2005), Mason and 

Sheppard (1994), DeFalco and Mele (2002), Holnbeck and McCarthy (2011), and Cooper 

(2000). These reports have documented accurate measurements of scour holes from 0.23 

to 1.2 m in depth as well as successful operation during hurricanes. While sonar systems 

have been used extensively, the environmental parameters in rivers can impact the 

performance of the device. These include air bubbles entrained in the flow, suspended 

sediment and turbidity, debris, salinity, and temperature. DeFalco and Mele (2002) 

attributed the cause of 5 m spikes in the measured time histories of two bridges in Italy to 

the presence of air bubbles and suspended sediment/turbidity in the channel flows. 

Legasse et al. (1997) reported on the performance of sonar devices in conditions with 

significant air entrainment, which lead to the inability of the system to determine the bed 

depth. Additionally, factors that affect the speed of sound, such as temperature and 

salinity, accounted for a 0.5 m offset in testing on a bridge over an inlet in Florida 

(Legasse et al., 1997). Another factor that can have a significant impact on the 
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performance of a sonar system is the presence of debris in the channel. Debris can result 

in false echoes, leading to inaccurate readings, or direct failure of the device as it 

physically impacts the hardware or cabling. Cooper et al. (2000) reported that debris 

damage led to the loss of the entire hardware system in field tests in Indiana. Lastly, 

sonar pulses are emitted as a discrete cone defined by the hardware itself. As the pulse 

reaches the scour hole, its diameter may be smaller or larger than the hole itself, 

depending upon the distance between the two objects. In this case, if the hole is small 

relative to the beam diameter at the bed, it is possible to have reflected waves returned by 

the unscoured channel bed. This presents a problem for the determination of scour with 

sonar devices. 

Another scour monitoring technique that has received attention is time domain 

reflectometry (TDR), which uses electromagnetic waves to determine the location of 

water/sediment interface. The TDR system consists of rods buried into the riverbed, 

which act as waveguides for EM pulses. The EM pulses are reflected at various 

interfaces, such as the water/sediment interface or the air/water interface. TDR devices 

have been studied extensively in the lab and the investigations have included evaluating 

the device precision with various sediments, the impact of suspended sediments in the 

water as well as salinity effects [(Yankeilun and Zabilansky, 1999), (Yu and Yu, 2006), 

(Yu and Yu, 2011), (Yu and Zabilansky, 2006)]. The device has also been used to 

monitor the development of scour under ice at the Hwy 16 Bridge in Missouri, where the 

growth and refill of scour holes on the order of 0.15 m were measured [(Ettema and 

Zabilansky, 2004), (Zabilansky et al., 2002)]. While the method is more robust than sonar 
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to debris, its sensitivity to conditions within the channel remain a concern. Yu and Yu 

(2011) evaluated the performance of a TDR device in saline and turbid water conditions. 

In their laboratory tests, the device was tested in saline solutions up to 750 parts per 

million (PPM) and revealed that the measured depth values were within 5% of an 

independently measured depths of sediment. For these tests, the TDR device was encased 

in a plastic sleeve that reduced the dissipation of the EM pulse from the tube wave 

guides. Data was not reported for the device in its original, un-sleeved configuration. 

While promising, these results only represent the performance of the TDR system within 

a narrow range of saline conditions, which can vary from 50 PPM in the upper reaches of 

a watershed to 17,500 PPM in near coastal waters [(USGS, 2006a), (USGS, 2006b)]. In a 

similar manner, the temperature of the water in the river can affect the speed of the EM 

pulse, leading to inaccuracies in the measured lengths. For instance, temperatures can 

vary from 7 to 20 °C [(USGS, 2006a), (USGS, 2006b)], which can lead to errors in the 

assumed speed of EM waves in the channel. If the two factors are combined, the result 

can deviate from the true depth considerably. 

Given the variability in the environmental conditions in natural channels that can 

have an effect on scour monitoring equipment, it is necessary therefore to understand the 

impact these conditions can have on a measured scour hole depth. To that end, an 

experimental campaign is undertaken to evaluate the performance of sonar and TDR 

instruments under simulated field conditions. In addition, a novel method, discussed in 

Fisher, et al. (2012a), is also evaluated to determine its sensitivity to these conditions. 
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The performance of the sonar, TDR, and the novel method are considered under the 

following environmental conditions, where appropriate: 

- Saline conditions, from 0 to 35.5 PPT, 

- Water temperatures, from 5 to 40 °C, 

- Water with suspended sediments, for turbidities up to 900 NTU, including 

stratification effects, 

- Scour hole size, 

- Flow angle of incidence, 

- Minimum channel velocity, 

- Bed sediment type. 

The objective of these experiments is to facilitate the deployment of these scour 

monitoring systems in the field, and to provide information on the relative strengths and 

weaknesses of the devices. This can aid in selecting the optimal device for the anticipated 

field conditions. In addition, the factors that should be considered during installation can 

be drawn from these results. 

4.2 THEORY AND BACKGROUND 

4.2.1 Sonar 

A discussed in Chapter 2, the speed of sound in water, c , is the fundamental 

parameter that can affect sonar transducer results. Typically, the speed of sound is 

assumed to be constant; however it has been shown to vary with temperature, salinity and 

depth [(Kuwahara, 1939), (Leroy, 1969), (Urick, 1975), (Mackenzie, 1981)]. For a 
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temperature change of 20 °C the error can be up to 4%, corresponding to nearly 0.15 m 

for an initial depth of 3.75 m (Fisher et al., 2012b). Changes in the speed of sound due to 

salinity also cannot be ignored. For an increase in salinity of 18 PPT, not uncommon for 

near-coastal waters, the percent error in the measured result can be as much as 1.4 to 1.6 

% (Fisher et al., 2012b).  

In addition to temperature and salinity effects, the suspended sediment 

concentration can affect the measured sonar results. The suspended sediment manifests 

itself as a density gradient across the channel depth, with a distinct peak occurring near 

the bed for highly stratified turbid flows. To account for this effect it is possible to use a 

model developed by Robins (1990), which accounts for the density gradient effect on the 

reflection coefficient (the ratio of the incident to reflected signals at an interface). Based 

upon this model it is possible to determine the reflection coefficient from the bed material 

and that from any turbidity stratification in the flow. As revealed in Fisher et al. (2012b), 

the reflection coefficient for the channel bed ranges from 0.2 to 0.3. For the stratified 

flows, however, it is necessary to have a suspended sediment concentration of 800 g/L 

before the reflection coefficient approaches 0.2. As typical channels have a suspended 

sediment concentration of 10 g/L (Gray et al, 2003), it is possible to conclude that the 

sonar pulse will not be significantly affected by the stratified flow, and the main 

reflection will occur at the channel bed.  

4.2.2 Time Domain Reflectometry 

As with sonar, the TDR method is also affected by the channel salinity, 

temperature and suspended sediment concentration. Using Stogryn’s (1971) model, it is 
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possible to account for the impact of salinity and temperature on the dielectric constant, 

which was discussed in Chapter 2 as a key parameter that governs the TDR results. 

Temperature alone is predicted to lead to an increase in the percent error of the bed 

measurements by as much as 5% (Fisher et al, 2012b). When the salinity effects are 

combined, this can increase to over 6%. Therefore, the impact of salinity and temperature 

on the TDR method must be considered. Yu and Yu (2011) developed a method which 

can be used to quantify the effect of the effect of suspended sediment on the dielectric 

constant of turbid waters. Using this model, it was determined that error introduced into 

the TDR bed measurements is limited to within a 1% relative error for typical channel 

sediment concentrations (Fisher et al, 2012b). 

4.2.3 Dynamic Turbulent Pressure Based Sensor 

Given the variation in performance of TDR and sonar scour monitoring methods 

to suspended sediment, salinity and temperature, a novel method has been proposed that 

exploits the natural turbulence in the channel to measure the growth of a scour hole in a 

channel bed (Fisher et al., 2012a). The device consists of a series of sensors located along 

the length of a partially buried, vertical pipe that is installed immediately upstream of the 

bridge pier or abutment. Each sensor is equipped with a flexible disk that has been 

selected to respond to the dynamic pressure from the turbulent fluctuations in the flow, 

which gives rise to the sensor name, vibration-based turbulent pressure sensor (VTP). 

The vibrations of the VTPs are measured with an accelerometer in the time domain. The 

mean squared signal from each sensor, referred to as the energy content, is computed and 

is proportional to the vibrational energy of each VTP. The energy content of the array of 
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VTPs is then monitored. It was shown that the energy content of the VTPs in the flow are 

one to two orders of magnitude greater than the VTPs located in the sediment (Fisher et 

al., 2012a).  This variation is then used to determine the water/sediment interface 

location, and thus monitor the formation of scour holes. 

As the VTP method relies upon the turbulent pressure fluctuations to determine 

which sensors are located in the flow, it is essential to assess the performance of the 

method to the environmental properties in the flow that could impact the turbulence 

characteristics in natural channels. To that end, a disposition on the impact of suspended 

sediments, salinity and temperature on turbulence in open channels is required. 

Since the VTP method relies upon the turbulent velocity fluctuations ( u′ , v′ , or 

w′ ) in the channel flow, any impact to these turbulent characteristics could influence the 

performance of the novel method. The available literature on the influence of suspended 

sediment on turbulent flows suggests that the impact is not well understood. Itakura and 

Kishi (1980) evaluated the results from previously published turbulence measurements in 

suspended sediments and concluded that the von Karman constant decreases with 

increasing sediment concentration. Additionally, they concluded that the presence of the 

suspended particles reduced the magnitude of the turbulent velocity fluctuations. 

Coleman (1981), however, conducted several experiments and concluded that while the 

velocity profile can change shape in the presence of suspended sediments, the von 

Karman constant is independent of concentration. More recently, Nezu and Azuma 

(2004) concluded that there is a small decrease in the von Karman constant with 

increasing sediment load. In regards to the velocity fluctuations, Nezu and Azuma (2004) 
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concluded that in the outer region of the flow, the particles have little effect, while in the 

region near the wall, the turbulent fluctuations are enhanced by the presence of suspended 

sediment. In addition to the increase in near bed turbulence due to suspended sediment, 

the impact of the sediment particle on the VTP in the flow may further enhance the 

measured energy content. Thus in all likelihood, the presence of suspended sediment may 

improve the difference in the energy content between the VTPs buried in the river bed 

and the ones in the flow. 

To evaluate the impact on the VTP due to changes in the channel salinity or 

temperature, it is necessary to consider the effect these two parameters may have on the 

turbulent quantities in the flow. For turbulent open channel flows, velocity fluctuations 

increase in magnitude with Reynolds number, until the point at which the flow becomes 

fully turbulent (also called rough turbulent flow). Henderson (1966) reported that for 

su k υ∗  of greater 100, the flow in open channels is fully turbulent, where u∗  is the shear 

velocity based on the bed shear stress, sk  is the surface roughness, and υ  is the kinematic 

viscosity of the fluid. For a straight, uniform channel, the sk  value is approximately 0.3 

cm, for a depth of 0.4 m and velocity of 25 cm/s, u∗  is 3.5 cm/s and the corresponding 

su k υ∗  is greater than 100.  These values represent a very shallow, low velocity natural 

channel. Thus, it is safe to assume that for natural channels of interest for scour 

monitoring, the flow will be fully turbulent irrespective of temperature and salinity 

changes. The salinity has a minor effect on the kinematic viscosity in rivers (the 

maximum salinity in near coastal areas is about 17PPT).  The decrease in temperature 
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causes reduction in kinematic viscosity. However, in natural channels, the irregular bed 

and higher bed roughness will dominate and lead to an increase in the values of su k υ∗ . 

Lastly, in the ideal case the axis of the disk in the VTPs is aligned with the mean 

flow direction. It is possible for the mean flow angle relative to the VTP to shift as the 

channel overflows onto the flood plain. As such, it is necessary to consider the 

misalignment of the probe. 

Given the potential impact of temperature and salinity on the TDR and sonar 

instruments, it is necessary to evaluate their performance under realistic channel 

conditions. All methods show a potential sensitivity to the presence of suspended 

sediment in the channel (i.e. turbidity), and require experimental investigations. 

Furthermore, due to the nature of an expanding sonar beam, it is also important to 

evaluate the performance of a sonar device subject to scour holes of varying size. Finally, 

VTP performance should be evaluated when the probe is not fully aligned with the main 

channel direction. 

4.3 MEASUREMENT SETUP 

To investigate the effects of environmental parameters on sonar, TDR, and VTP 

instruments, several experiments are conducted in the Clemson Hydraulics Laboratory 

(CHL). The experimental setup for the TDR and sonar devices is reviewed extensively in 

Fisher et al. (2012b). The focus in this section of Chapter 4 is to discuss the pertinent 

details of the setup for the novel scour monitoring method. 

To evaluate the VTP performance, experiments are conducted to investigate the 

effect of suspended sediment and misalignment between the main flow direction and the 
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VTP axis. Additionally, the effect of bed material is investigated to determine the impact 

to the sensors located below the channel bed level. Lastly, the flow rate is varied in order 

to determine the minimum flow rate required for a distinct difference between the VTPs 

located in the bed and in the channel flow. 

The VTP configuration consists of sensors with a 2 cm radius neoprene disk, 

instrumented with a PCB 325A24 accelerometer of 0.8 grams, with a sensitivity of 10 

mV per m s-2. The VTPs are installed along the length of an aluminum support pipe, 

spaced at intervals of 10 cm, as shown in Figure 4.1. The measured results were recorded 

with a Bruel and Kjaer  Lan XI 3050A-060 data acquisition system, operating at a 

sampling frequency of 25.6 KHz. A convergence study reveals that a 4 minute 

measurement period is sufficient to yield results that are within 1% of the long time 

period value. For each measurement condition, three repeat measurements are taken. 

 

 

Figure 4.1 - VTP setup as installed in CHL flume for channel effects study. 
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For the turbidity tests, the VTP is evaluated in the CHL flume, with flow depths 

of 62 cm, velocities from 7 to 12 cm/s, and turbidities from 0 to 900 NTU in 300 NTU 

increments. For the flow misalignment tests, the flow velocity is held constant at 27 cm/s 

while the alignment angle was increased in increments of 15° to 90°. For the minimum 

flow rate tests, the velocity ranges from 14 to 30 cm/s, with flow depths up to 0.34 m.  

4.4. Results and Discussion 

The following sections outline the experimental results for the various methods. 

The sonar results are shown in section 4.4.1, the TDR results are reviewed in section 

4.4.2, and the VTP results are discussed in section 4.4.3. 

4.4.1 Sonar 

The measured sonar results indicate that the errors in the bed depth ranged from 

1.8 to 6.0 %, relative to the depth at 20 °C (Fisher et al., 2012b). This is consistent with 

the models available to account for the change in the speed of sound. As this effect is not 

minor, it is necessary to correct for temperature change by measuring this parameter 

along with the sonar results and adjusting for the effect on the speed of sound. Salinity 

effects also revealed that the impact is not minor, with a 3.8% increase in the relative 

error for 35.5 PPT (Fisher et al., 2012b). This can also be accounted for by measuring the 

channel conditions and correcting for changes in the speed of sound. 

The turbidity effects, as discussed in Fisher et al. (2012b) are also measured and 

revealed that for still, turbid waters there is no impact due to suspended sediment, up to 
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the maximum turbidity tested of 525 NTU. For channel flows with a uniform turbidity, 

however, the relative error in the bed measurements increases from 1 to 3% for velocities 

less than 9 cm/s. The results also reveal that suspended sediment concentration was not a 

factor in the results. Above 9 cm/s, the standard deviation of the measured 30 second 

time histories was above the sonar device tolerance limit of 3 cm, indicating an inability 

to determine a stable bed level. This effect was also present in the stratified turbidity 

tests, which show a maximum increase in the relative error in the bed level of 17.5%. 

From these cumulative turbidity test results it can be concluded that sonar should not be 

used independently in highly turbid zones. Lastly, the sonar results for varying beam 

width to scour hole size reveal that the sonar device reports the minimum water depth 

encountered. This presents a problem when measuring scour holes of varying topography 

and size. This can be mitigated by placing the device closer to the bed. 

4.4.2 Time Domain Reflectometry  

The impact of the channel conditions on the TDR method is also evaluated. The 

results, as discussed in Fisher et al. (2012b), reveal that temperature and salinity have an 

effect on the measured TDR signal. The temperature effects result in relative errors in the 

bed level of 1.4 to 5%, which is in line with predictions using Stogryn’s (1971) model. 

This effect can be accounted for by measuring the channel temperature and correcting the 

dielectric constant accordingly. Salinity effects have a more significant effect on the 

measured TDR signal, to the point that the waveform becomes indistinct above certain 

concentrations. The results show that above a salinity of 500 PPM, the TDR signal 

features cannot be distinguished accurately. Therefore, TDR should be confined to 
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freshwater conditions. Lastly, the results showed that the suspended sediment 

concentration had no measureable effect on the TDR signal, which is in line with the 

predictions using the Yu and Yu (2011) method. 

4.4.3 VTP Based Method 

 As discussed in Section 4.2, the VTP based method has the potential to be 

affected by the turbidity in the flow, as well as any misalignment between the main flow 

direction and the VTP axis. Also, in order to fully evaluate the VTP method, it is 

necessary to consider the effect of different sediment types on the measured energy 

content in the bed. Lastly, as the minimum channel velocity needed to achieve a 

measurable difference between those VTPs located in the flow and those in the sediment 

should be determined. The tests used to evaluate the performance of the VTP device 

under these conditions are discussed in the following section. 

The impact of dynamic turbidity on the VTP’s turbulent energy content is shown 

in Figure 4.2 for turbidities ranging from 0 to 900 NTU and flow velocities from 7 to 12 

cm/s. The results indicate that the registered energy content shows a slight increase with 

turbidity. The increase in the VTP energy content with flow velocity is expected since 

2u′  increases with the mean flow velocity. 
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Figure 4.2 - VTP Energy content for various turbidity levels and channel flow velocities. 

 

The results shown in Figure 4.2 indicate that the VTP’s energy content response 

increases with the presence of turbidity in the flow, and thus the device can be deployed 

without the need to monitor the channel condition.  The energy content of the VTP buried 

in the bed was not affected by turbidity and flow velocity. 

During high flow events, it is possible that the main flow direction can shift from 

the nominal flow condition. Therefore, it is necessary to understand how a VTP performs 

as the flow direction relative to the probe changes. Figure 4.3 reveals the VTP energy 

content for three sensors located at different depths within the channel. VTP #6 is located 

in the sediment and therefore the response should not be a function of the flow angle. 

This is revealed in the results shown in Figure 4.3. VTP #5 is located within a scour hole, 

and the results reveal that the response for VTP #5 is insensitive to flow angle. This is 
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attributed to the fact that in the scour hole, the flow is separated. Thus the sensor in a 

scour hole is subject to velocity fluctuations from the separated flow instead of the 

turbulent free stream velocity fluctuations. The recorded energy content for VTP #5 is 

order of magnitude higher than the VTP in the bed (#6), indicating that the method can be 

used to determine the water/sediment interface. The energy content recorded by VTP #4 

is sensitive to the flow angle, dropping from 0.016 m2 s-4 at 15° to 0.0075 m2 s-4 at 90°.  

This is expected as the magnitude of the turbulent fluctuations normal to the VTP surface 

diminishes with increasing misalignment. It is also important to note that the results are 

still order of magnitude higher than the VTP located below the bed. The ratio between 

VTP #4 and VTP #6 at 90° is approximately 75. This suggests that the method can still 

be used in highly misaligned flows. For the higher flow angles, the separated flow around 

the probe itself maintains the energy content at a level much higher than the energy 

content in the sediment. 
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Figure 4.3 - VTP Energy content as a function of the flow misalignment. 

 

Chapter 3 revealed that the minimum energy content in the flow should be at least 

one order of magnitude greater than in the sediment. To investigate the impact of 

velocity, the energy content of two VTPs are recorded for depth averaged channel 

velocities from 14.7 to 30 cm/s, as shown in Figure 4.4. The results reveal that the energy 

content of the VTP in the sediment decreases with decreasing velocity, to a minimum of 

4E-5 m2 s-4. For the VTP in the flow, the energy content decreases to 0.002 m2 s-4. This 

value is low compared to the higher velocity energy content values, however, it is still 

greater than the sediment values by a factor of 50. Thus, the VTP method is still able to 

determine the water/sediment interface. Based upon these results, it can be concluded that 

the VTP method will function for a depth averaged channel velocity of at least 14.7 cm/s. 
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Figure 4.4 – Variation of VTP energy content with channel velocity. 

 

Lastly, when considering the response of the VTP method, it is also important to 

investigate the impact of varying sediment types on the energy content in the sediment. 

The potential effect of varying sediment types was investigated by conducting three 

experiments in two different quartz sands and a clay sediment. The results of these 

experiments are shown in Figure 4.5. The results shown in Figure 4.5 indicate that the 

sediment has no measureable impact upon the measured energy content for the VTPs 

located in the channel bed. Therefore, the device can reliably be deployed without being 

significantly affected by the nature of the sediment type in the channel. 
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Figure 4.5 – Variation in VTP energy content for various bed sediment types. 

 

4.5 Conclusions 

Given the fact that the changing environmental conditions in natural channels are 

inevitable, it is necessary to understand how these parameters can affect any scour 

monitoring system. A series of experiments were conducted on two common scour 

measurement devices, namely a sonar transducer and a time-domain reflectometry probe. 

In addition, the performance of a novel method which exploits the flow turbulence in the 

channel was also evaluated. 

From the series of experiments conducted it can be concluded that for the sonar 

device, changes in the temperature can result in relative errors up to 6%  in channel 

depth. This can be accounted for in the field by measuring the temperature and 
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accounting for the change in the speed of sound. Salinity can lead to relative errors of up 

to 3%, which is within the tolerance of the device tested. 

The concentration of suspended particles does not affect the sonar results in still 

water. For dynamic turbidity, uniform as well as stratified, the relative error in bed level 

measurements can be significant. The results indicate that measuring the standard 

deviation of the recorded signal may be important to ascertain the viability of the 

measurements. Lastly, the beam width with respect to scour size and the height at which 

the sonar is located above the bed may significantly affect the accuracy of the scour depth 

measurements. It was determined that for variable bed topography, the sonar measures 

the shallowest depth. 

The channel temperature can have a significant effect on the measured depth of a 

scour hole recorded with a TDR. The relative errors can be of the order of 5%. This 

effect, however, can be mitigated by monitoring the channel temperature in addition to 

the TDR waveform. Salinities greater than 500 PPM result in a loss of the distinct 

features needed in the TDR waveform that are required to determine the length of the 

water and sediment around the probe. It may be necessary to avoid the installation of 

TDR in brackish conditions. Turbidity in the channel flow had no effect on the TDR 

measurements and can be used for monitoring scour in highly turbid zones. 

The performance of a VTP was evaluated under turbid flow conditions and 

varying flow angles. There was no significant change in the energy content recorded by 

the VTP based method for varying turbidities. Thus, it is possible to use the method in 

turbid zones. The energy content recorded by the VTP located in the flow decreased with 
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increasing misalignment between the probe and the main flow direction. At 90°, the 

energy content of the VTP in the flow is an order of magnitude greater than the VTP in 

the sediment. Thus, it can record the location of the water/sediment interface. In addition, 

it was determined that the VTP method is not affected by the bed sediment type and 

performs in coarse and fine sand beds as well as in clay beds. The study into the 

minimum flow rate revealed that for depth averaged channel velocities of 14.7 cm/s or 

greater, the device can determine those sensors in the channel flow. 

Based upon the results presented for the various methods it is possible to evaluate 

potential scour monitoring sites and to select methods that are insensitive to the 

anticipated channel conditions, resulting in more robust field measurements. 
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CHAPTER FIVE 

 
OPTIMIZATION OF VTP FOR FIELD DEPLOYMENT 

 

5.1 Introduction 

To fully account for the interaction between a fluid and structure, a 3D flow 

model and an associated structural analysis model are necessary. To capture the full 

turbulent flow spectrum, the 3D fluid model must be capable of calculating the 

instantaneous velocity field. This is required to determine the dynamic response of a 

structure to both large and small scale turbulent eddies (low and high frequency incident 

forces). Only Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS) 

methods are available to fully capture the velocity field (Breuer and Münsch, 2008). 

These models, however, require significant computational time and resources, even 

without considering the structural analysis component. Hence, these models are generally 

not applied to design optimization problems. 

To solve the fluid-structure interaction of a dynamic structure and the turbulent 

flow, this study aims to develop a semi-empirical model integrating closed form solutions 

for the structural response and empirical relationships for the turbulent open channel 

flow. The applicability of this semi-empirical model is demonstrated by predicting the 

response of a flexible disk subject to turbulent open channel flows. The flexile disk 

studied herein is a part of a scour monitoring sensing system as discussed in Fisher et al. 

(2012). The device called vibration based turbulent pressure sensor (VTP), measures the 
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vibrational energy content of a flexile disk. The response of a VTP within the flow and in 

the sediment bed is used to locate the water sediment interface and thus monitor scour.  

The objective in this manuscript is to consider the development of a simplified, 

semi-empirical model that predicts the response of a flexible plate to turbulent open 

channel flow and to validate the model predictions with appropriate experimental 

measurements. This is accomplished by considering empirical descriptions for the 

turbulent flow and analytical solutions to a single degree of freedom oscillator, which are 

discussed in Section 2. In Section 3, the model developed is verified, calibrated, and 

validated using experimental data sets obtained from modal tests and vibration 

measurements conducted in an open channel flume. Section 4 presents a case study 

application of the simplified model to optimize the VTP device through a parametric 

analysis. Results from tests on the field prototype are discussed in Section 5 while 

pertinent conclusions from this work and avenues for further research are discussed in 

Section 6. 

 

5.2 Modeling Approach 

The nature of the flows studied in fluid dynamics can be divided into two groups, 

laminar and turbulent. All natural channels flow under turbulent conditions. The 

instantaneous turbulent velocity at any given point may be divided into two components; 

a time-averaged velocity component also called the mean velocity and a fluctuating part. 

Turbulent flow is characterized by the presence of flow instabilities that are responsible 

for velocity fluctuations. The root mean squares (RMS) of these fluctuations vary in 
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magnitude from 5% of the mean flow for turbulent open channels to as much as 10 to 

30% in aerodynamic boundary layers (Panton 2005). 

Fluctuations are present in all of the velocity components and pressure of a flow, 

which can be described through Reynolds’ decomposition into the mean component, U , 

V , and W  in the three cardinal directions in Figure 5.1 ( x  is along the flow direction, y  

is normal to the bed, and z  is across the channel width), and the fluctuation components, 

u′ , v′ , and w′ . Thus, when describing the instantaneous flow velocities, U , V , and W  

at any point, it is necessary to include both components as given by Equation (5.1), see 

Figure 5.2. 

 
U U u
V V v
W U w

′= +

′= +

′= +







 (5.1) 

 

 
Figure 5.1 - Channel parameters relevant to the Navier-Stokes equations. 
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Figure 5.2 - Sample turbulent velocity time history. 

 

A similar expression can be developed for the pressure in the flow, P , which can 

be decomposed into its mean pressure, P , and the fluctuating component, p′ . Based 

upon these definitions, it is necessary then that the average values of U , V , and W  yield 

U , V , and W ; thus the long term average of  u′ , v′ , and w′  are zero. 

Turbulent flows are also characterized by eddy motions. Eddies are instabilities in 

the flow that are spatially and temporally correlated and are responsible for the velocity 

and pressure fluctuations. These eddies vary in size, with smaller eddies contained within 

larger eddies, up to the largest eddy in the flow. These eddies vary in scale from the 

molecular level where the smallest eddies are dissipated due to viscous forces as heat, to 

the large eddies which depend upon the size of the main channel (Panton 2005). The 

distribution of eddy sizes in the flow leads to the energy cascade from the larger eddies 
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responsible for the production of turbulence to the small scale, low energy eddies 

responsible for the viscous dissipation of turbulence. The turbulent flow features 

discussed above will be utilized in developing a model to predict the response of a VTP 

under turbulent flow conditions. 

5.2.1 Model for Prediction of RMS Values of Fluctuating Turbulent Velocity 

Wall bounded turbulent flows can be divided into two regions, the inner region 

(IR) close to the wall, and the outer region (OR) near the free surface (Nezu and 

Nakagawa, 1993). For all wall bounded flows, the inner region is further decomposed 

into the viscous sub-layer (VSL), where viscous forces dominate, a buffer layer, and the 

log-law layer (LLL). Adjacent to the LLL is the outer region, which for open channel 

flows is affected by the presence of the free surface. The OR is broken down into the free 

surface region (FSR) and the equilibrium region (ER), which lies between the inner layer 

and the FSR. For smooth beds, the thickness of the VSL is defined as *5V Uδ υ= , where 

υ  is the kinematic velocity of the fluid and *U  is the friction velocity, which is typically 

small, of the order of 0.5 mm (Nezu, 2005). Throughout the inner region ( )0.2y h < , 

turbulence is generated by low speed streaks, which are ejected from the near wall region 

and subsequently burst (Davidson, 2004, Nakagawa et al., 1975). For rough boundary 

layers, as Sk  (equivalent sand roughness) increases, the large eddies are interrupted by 

the roughness elements, leading to an increasingly isotropic turbulence (Nezu and 

Nakagawa, 1993). Immediately outside the IR lies the ER, ( )0.2 0.6y h< < , where 

neither the free surface or wall effects dominate (Nezu and Nakagawa, 1993). In this 
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region, the rates of turbulent production and dissipation are approximately equal. The 

remaining OR, ( )0.6 1.0y h< < , corresponds to the FSR, where the viscous dissipation 

exceeds any production of turbulence and is roughly equivalent to the rate at which 

turbulent is transported from the IR (Nakagawa et al, 1975).  

In the VSL, Prandtl’s mixing length model leads to Equation (5.2) (Nezu, 2005, 

Nezu and Rodi, 1986), where *U U U+ =  and *y y Uυ+ = . In the log-law-layer, the 

mean flow can be described by Equation (5.3). Based upon experimental evaluation, κ  

and A  for open channel flows have been found to be 0.41 and 5.29 for smooth beds, 

respectively (Nezu and Rodi, 1986). Equations (5.2) and (5.3) are valid for 0.2y h < , 

additional models are required outside this region. 

 U y+ +=  (5.2) 

 1 lnU y A
κ

+ += +  (5.3) 

Coles (1956) proposed that the deviation from the log-law in boundary layers 

outside of 0.2y h >  could be accounted for with a wake function, Ψ . The resulting 

modification to Equation (5.3) are shown in Equation (5.4). The wake function parameter 

Π  is equal to 0.55 for zero-pressure gradient boundary layers (Nezu, 2005). 

 
2

1

2 sin
2

u y A

y
h

κ
π

κ

+ + = + +Ψ 
Π  Ψ =   

 (5.4) 
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Thus, from Equations (5.2), (5.3), and (5.4), it is possible to describe U +  

throughout the depth of open channel flows. Also, as * OU ghS= for uniform flow, it is 

also possible to describe U . Aside from the mean flow distribution in the channel, it is 

also necessary to describe the nature of the turbulent velocity fluctuations throughout the 

flow. Nezu (1977) showed that the turbulence intensity terms (RMS values), outside the 

VSL are independent of  the Reynolds number, Re , and Froude number, Fr , and can be 

described by Equations (5.5), (5.6), and (5.7), with the empirically determined constants 

2.3UD = , 1.27VD = , 1.63WD = , and 1KC =  (Nezu, 2005). 

 
2

*

expU K
u yD C

U h
′  = − 

 
 (5.5) 

 
2

*

expV K
v yD C

U h
′  = − 

 
 (5.6) 

 
2

*

expW K
w yD C

U h
′  = − 

 
 (5.7) 

Equation (5.8) is valid for the RMS value of u′  in the VSL, which can be 

incorporated in Equation (5.5) to describe the velocity fluctuations throughout the depth 

of the flow, as shown in Equation (5.9) (Nezu, 2005), where * *Re hU υ= , B  has a value 

of 10, and ( )1 exp y B+Γ = − − . 

 
2

*

0.3u y
U

+′
=  (5.8) 
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2

* *

exp 0.3 1
ReU

u yD y
U

+
+ ′

= − Γ + −Γ 
 

 (5.9) 

5.2.2 Spectral Model for Turbulence 

Velocity fluctuations lead to the driving force behind the operation of the VTP 

method, therefore it is necessary to determine the spectral content of these velocity 

fluctuations. Experiments have shown that the power spectral density of u′ , uuΦ , are 

self-similar when appropriately normalized, even under different flow conditions. An 

appropriate model is developed to describe uuΦ , which can be leveraged in modeling the 

response of a structure to turbulent flow. 

The power spectral density can be related to the spatial correlation function, 

( )xR r , as shown in Equation (5.10), for two velocity measurements ( )u x′  and ( )u x r′ +  

separated by a distance r . Note that ( )xR r  can be measured experimentally. This 

correlation function has been shown to be an even function (Meechan, 1958), thus the 

power spectral density can be determined from the Fourier Cosine Transformation, as 

shown in Equation (5.11). 

 ( ) ( ) ( )
2x

u x u x r
R r

u

′ ′ +
=

′
 (5.10) 

 ( ) ( )
0

2 cosuu xR r kr dr
π

∞

Φ = ∫  (5.11) 

The power spectral density uuΦ  is independent of flow conditions and turbulent 

flow structure when normalized by the mean eddy macroscale, xL .  Several models for 
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uuΦ  have been proposed to predict power spectral density for the production, inertial, and 

viscous subranges of turbulent flows. The two models considered in this analysis are the 

von Karman and Heisenberg models. These models are typically described in wave 

number space, k . However, under Taylors Hypothesis of frozen turbulence, it is possible 

to convert the parametric equations to frequency space, f , where 2k f Uπ= , where U  

is the depth-averaged mean flow velocity. 

The von Karman spectra, shown in Equation (5.12) (von Karman, 1948) is a 

function of xL  and the characteristic wavenumber/frequency, ok . 

 

5
2 6

22 1uu x
o

kL u
kπ

−
  
 ′Φ = +     

 (5.12) 

The mean eddy macroscale can be determined from the measured correlation 

function, and corresponds to ( )2 0x uuL π= Φ  (Nezu and Nakagawa, 1993). The 

distribution of xL  has been determined experimentally and can be described by the 

relationship shown in Equation (5.13). The coefficient 1B  varies from 1.1 for an *Re  of 

600 to 1.0 for an *Re  of 1600, where **Re U h υ=  

 

1 2

1

1

 for 0.6

0.77   for 0.6

x

x

L y yB
h h h
L yB
h h

 = <     
= > 

 (5.13) 

The characteristic wave number can be determined from mean eddy macroscale 

as shown in Equation (5.14), where the parameter C is the Kolmogoroff Constant with a 

value of 0.5 and K  is given by Equation (5.15). 
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0.41.5

12
o xk K L

Cπ

−−
−

  =      
 (5.14) 

 ( ) 0.50.691 3.98 LK Re −= +  (5.15) 

The Reynolds number, LRe ,  in Equation (5.15) is based upon the RMS value of 

u′  for the velocity scale and xL  for the length scale. The von Karman model corresponds 

to the productive and inertial subranges of the turbulent energy spectral space, 

10 k λ−≤ ≤ , where λ  is the Taylor microscale of turbulence. Roughly, the von Karman 

model covers the open channel flow from the VSL to the ER. In the VSL, turbulence is 

produced and transported into the equilibrium region while in the ER the rate of 

production equals the rate of dissipation (Nakagawa et al., 1975).  

Another model is required to overlap the von Karman model from the inertial 

subrange to the viscous subrange, where the production is zero and the viscous 

dissipation equals the rate of transport. This is achieved with the Heisenberg model, 

shown in Equation (5.16). The new terms introduced in Equation (5.16) include the 

dissipation rate for turbulent energy, ε , the constant γ ′ , and the Kolmogorov microscale 

of turbulence, η . 

 ( ) ( )( ) 4 342 2 3 5 3 1uuu k C k kε γ η
−

−′ ′Φ = +  (5.16) 

The dissipation rate can be determined from Equation (5.17). The u′ terms are 

typically not measured to the resolution required to construct an accurate representation 

of Equation (5.17). Therefore, it is common to exploit the isotropic turbulent assumption, 

leading to the right hand side of Equation (5.17) (Nezu and Nakagawa, 1993). This 
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assumption is an appropriate simplification, since turbulent fluctuations in all three 

directions are of the same order for open channels. 

 
2 2

2

1515 u u
x

υε υ
λ

′ ′∂ = = ∂ 
 (5.17) 

The Taylor and Kolmogorov microscales λ  and η  are defined as shown in 

Equations (5.18) and (5.19), respectively. These microscales are practically solved via the 

fits employed in Equations (5.20) and (5.21). Lastly, the constant γ ′  is taken as 100, as it 

gives the optimal fit with measured and published results from Kironoto and Craf (1994) 

and Nakagawa and Nezu (1993). 

 
215 uυλ

ε
′

=  (5.18) 

 
1

3 2υη
ε

 
=  
 

 (5.19) 

 
1 2

1 2

15
x

L
L K Re
λ

 =  
 

 (5.20) 

 1 4 3 4x
L

L K Re
η

=  (5.21) 

The aforementioned model describes the RMS values of the turbulent flow 

quantities with depth, along with the spectral representation of the turbulent quantities. 

The next step is to calculate dynamic pressure due to these velocity fluctuations.  

5.2.3 Dynamic Pressure 

 In Equation (5.5), the RMS value of u′  is defined, which can be coupled with 

Equations (5.12) and (5.16) to arrive at the spectral representation of the turbulent 
137 

 



fluctuations in the open channel flow. These turbulent fluctuations lead to a time varying 

dynamic pressure, which excites the VTP. This spectrum is a function of the position 

across the channel depth. Given the variation of 2u′ , the dynamic turbulent pressure 

impinging on the VTP disk can be determined by integrating the pressure distribution 

across the disk diameter, Figure 5.3. 

 

 
Figure 5.3 - Area integration of dynamic turbulent pressure distribution across VTP disk. 

 

 At a point in the flow, the dynamic turbulent pressure spectrum is computed as 

shown in Equation (5.22). By integrating Equation (5.22) across the VTP, the average 

pressure quantity, PPΦ , can be computed as shown in Equation (5.23), where r  extends 

from the center of the VTP to the radius of the disk, R  (see Figure 5.3). It is not 

dr r

Cy

y

R

( )D rW

138 

 



convenient to integrate ( )PP rΦ , however it is possible to replace this term with a 

function of y , as Cy y r= − . Additionally, the integrand in Equation (5.23) can be 

replaced with the product of the differential radius dr  and the element width, 

( ) 2 22DW r R r= − . The resulting expression is shown in Equation (5.24). 

 
2

21
2PP uuuρ ′Φ = Φ 

 
 (5.22) 

 ( )1 R

PP PP
VTP R

r dA
A −

Φ = Φ∫  (5.23) 

 ( )1 R

PP PP D
VTP R

r W dr
A −

Φ = Φ∫  (5.24) 

5.2.4 Structural response 

Having established the variation of the dynamic turbulent pressure across the 

channel depth, it is necessary to relate the dynamic pressure to the response of the VTP. 

Following the method outlined in Blevins (1990), it can be shown that the response of a 

plate, for each mode, is described by Equation (5.25), where iω  is the undamped natural 

frequency of mode i  in radians/second, iζ  is the modal damping factor, iJ  is the joint 

acceptance, ( )ip t  is the turbulent dynamic pressure, and ix  is the displacement for mode 

i . 

 ( )2

21 i
i i i i i

i i

x x x J p tζ
ω ω

+ + =   (5.25) 

In the case where the joint acceptance is unity, the mode shape and the pressure 

distribution are spatially correlated for a given mode (Blevins, 1990), and J  is equal to 1. 
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This results in the governing equation for a single degree of freedom oscillator. The 

steady state frequency response function of an oscillator, ( ) 2

i
H ω , to a random, 

stationary, ergodic, and Gaussian pressure spectrum can be computed from Equation 

(5.25) as shown in Equation (5.26) (Blevins, 1990). As turbulence in open channels can 

be categorized as random, stationary, Gaussian, and ergodic (Blevins, 1990; Nezu and 

Nakagawa, 1993; Galanti and Tsinober, 2004), the dynamic turbulent pressure 

determined by these velocity fluctuations can be categorized in the same manner. 

 ( )
( )( ) ( )

2

22 2

1

1 2
i

i i i

H ω
ω ω ζ ω ω

=
− +

 (5.26) 

The response function shown in Equation (5.26) represents the transfer function 

from the input force to the displacement response of the structure. The power spectral 

density of the displacement of the VTP can be computed from the product of Equations 

(5.24) and (5.26). As the joint acceptance is not always unity, Blevins (1977) suggests a 

correction method that requires the inclusion of the joint acceptance. Also, as the input 

force is derived from the dynamic pressure, the characteristic modal pressure, iCP , is 

included to arrive at a displacement response spectrum. The characteristic modal pressure 

at the center of the VTP is shown in Equation (5.27) (Blevins, 1977). The parameters in 

Equation (5.27) are the density of the VTP disk, Dρ , the disk thickness t , and the 

displacement of the VTP center iCx .  

 ( )2
iC D i iCP t xρ ω=  (5.27) 
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Equation (5.27) is then used to compute the displacement for mode i  in physical 

units, xxiΦ , as shown in Equation (5.28). Further, due to the Central Limit Theorem for 

random, independent processes, the mean squared sum of these processes is equal to the 

sum of the mean square of the individual processes. Thus, given that the turbulence in 

open channels is stationary and random, the overall displacement response spectrum of 

the VTP can be computed from the sum of the individual responses of each mode i , 

shown in Equation (5.29). 

 
( )( ) ( )

( )( ) ( ) ( )( )

2 2

2 22 2

2

2 22 2 2

1 2

1 2

i iCPP
xxi

iC
i i i

iPP

i i i D i

J x
P

J

t

ω ω ζ ω ω

ω ω ζ ω ω ρ ω

Φ
Φ =

− +

Φ
=

− +

 (5.28) 

 xx xxi
i

Φ = Φ∑  (5.29) 

Lastly, for random processes, the mean squared displacement response 2x  can be 

related to the power spectral density, as shown in Equation (5.30) (Blevins, 1990). 

Velocity and acceleration response spectra and mean squared response values can be 

derived from Equations (5.29) and (5.30). 

 
2

1

2
f

XX
f

x df= Φ∫  (5.30) 

To solve Equation (5.28) it is necessary to include the natural frequencies and the 

modal damping factors. The natural frequency for a circular disk fixed at all boundaries 

(an appropriate approximation of the VTP device), can be calculated from Equation 
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(5.31), where DE  is the modulus of elasticity for the disk, Dρ  is the density of the disk, 

Dυ  is Poisson’s ratio for the disk, and 2λ  varies from 10.22 to 21.26 for the first two 

modes (Blevins, 1979). An additional mode, which accounts for the mass of the 

accelerometer located at the center of the VTP is also required. The natural frequency for 

this mode can be calculated from Equation (5.31), where 2λ  equals 5.34, as discussed in 

Roberson (1951). 

 
( )

1
22

2 212 1
D

i
D D

E t
r t
λω

ρ υ

 
 =
 − 

 (5.31) 

Another component of Equation (5.28) is the modal damping factor. Due to the 

presence of the fluid around the VTP disk, this damping will consist of the damping from 

the disk material itself, sζ , taken as 0.05 (Berger et al., 2003), and the fluid damping fζ . 

For moving channel fluid, the fluid damping can be estimated from Equation (5.32) with 

an appropriate substitution of the drag coefficient, DC , taken as 1.28 for a plate in cross 

flow, and m  as the mass per unit length of the disk (Blevins, 1990). 

 
2

2f D
i

U R C
D mt
ρζ

ω
=



 (5.32) 

Finally, it is necessary to consider the assumption regarding the joint acceptance. 

The joint acceptance can be computed from the mode shape, ( ),ix r θ  and the pressure 

distribution, ( ),iP r θ , (normalized by ( )2
im ω  for each mode) as shown in Equation 

(5.33). The parameters in Equation (5.33) are the mass per unit area m  and angle θ , 

which varies from 0 to 2π . 
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 (5.33) 

 For the first mode of the VTP disk, the mode shape and dynamic turbulent 

pressure distribution are shown in Figure 5.4. For the first three modes the joint 

acceptance values are 1.11, 1.06, and 1.83 respectively. The natural frequency of the 

subsequent modes, as will be shown in Section 3, are greater than 500 Hz, typically 

outside the range of the VTP response spectra and subsequently have a negligible impact 

on the mean squared response value. The joint acceptance values listed above are 

incorporated into the analytical model, Equation (5.28). 

 

 
Figure 5.4 - Components of the Joint Acceptance for the 1st Plate Mode. 
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5.3 Model Verification, Calibration, and Validation 

A numerical model is prone to errors that originate from the mathematics and the 

physics of the problem. The errors and uncertainties introduced while solving the 

mathematical equations include round-off, discretization, and truncation errors. These 

errors are accounted for under the broad topic of model verification. The second source 

of error in a model arise from uncertainties introduced from an imperfect model 

definition of underlying physical principles as well as the imprecise values for the 

associated parameters of the chosen model (Atamturktur et al., 2012). Models and their 

associated parameters can be conditioned based on the experimental data to reduce the 

uncertainties and infer biases in model predictions. It is important to note that validation 

of a model requires a data set independent from those that are used in the calibration step 

(Trucano et al., 2002).   

The following sections assess the predictive capabilities of the developed semi-

empirical model and will be used for optimization of the field prototype. The verification 

activities involve investigation of the impact of the dynamic pressure integration across 

the VTP. This is then followed by a calibration of the model performance to an 

experimental data set in order to account for the variability inherent in the model input 

parameters. Finally, the model is validated by comparing the predictions against an 

independent data set. 

5.3.1 Model Verification 

It has been well documented (Nezu and Rodi, 1986) that the variation of u′ across 

the channel depth is non-linear, with the peak occurring near the bed. Given that the 
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VTPs are designed to typically operate at 0.3y h < , it is necessary to consider the 

variation in the turbulent velocity fluctuations across the depth of the VTP surface 

(generally having a diameter from 4 to 6 cm). In Equation (5.24) this is accounted for by 

integrating the pressure distribution, which is dependent on u′ , across the disk surface. 

To investigate the effect of the numerical integration step width, dr , for each element, 

the pressure is integrated with decreasing step width, as shown in Figure 5.5. The results 

reveal that after 10 element strips, the result for both y h  of 0.15 and 0.35 are within 1% 

of the 20 element result. From this result, it can be concluded that 15 elements are 

sufficient to capture the pressure variation across the VTP. 

 
Figure 5.5 - Variation in VTP turbulent pressure, as a function of number of 

elements. 
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5.3.2 Model Calibration 

Structural dynamic model: The parameter values used in the development of the 

model, reviewed in Section 2, are best estimates obtained from literature review. 

Therefore, it is necessary to condition the parameter values against the actual measured 

response of the structure. The parameters considered in this calibration include the disk 

material properties, DE , Dζ , and Dρ , as well as the turbulent flow characteristics, *U , 

Fζ , and 2u′ . The calibration of the disk parameters is accomplished by conducting an 

experimental modal analysis on the VTP disk and calibrating the natural frequencies to 

the measured natural frequencies. The calibration of the turbulent flow quantities is 

accomplished via experiments conducted in the Clemson Hydraulics Laboratory (CHL) 

flume.   

To calibrate the natural frequency predictions for the various modes in the VTP, 

model predictions are compared with the measured natural frequencies for a 3.2 mm 

thick, 2.54 cm radius, Neoprene rubber VTP. The measured values are obtained by 

rigidly fixing the VTP and attaching a shaker to the disk surface. The force transmitted to 

the plate is measured with a Bruel and Kjaer 8200+2646 force transducer, with a 

sensitivity of –4 mV/N. The acceleration response of the VTP is recorded with a Kistler 

8732A500 accelerometer, with a sensitivity of 9.64 mV/g. The neoprene test is conducted 

with a span of 800 Hz and 6400 lines, leading to a frequency resolution of 125 mHz. The 

shaker ranges bi-directionally for 1 to 1000 Hz at a rate of 125 Hz/s.  

The comparisons between the calculated and measured natural frequencies are 

shown in Table 1 for the first six modes. For the higher modes, the prediction results are 
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within 10% of the measured frequencies. The first mode is calculated including the 

presence of the accelerometer as a point mass. Model calibration can be completed to 

minimize the disagreements between the measured and calculated natural frequencies 

considering all six modes. However, the disagreement observed for the first mode is 

believed to be due to the stringer connecting the shaker to the VTP sensor. Also, the third 

observed mode is believed to be a spurious mode resulting from the interaction between 

the stringer and the VTP, which is not included in the model. Therefore, the first and the 

third modes are excluded from the calibration activities.  

 

Table 1 - Model and measured natural frequencies for modes in neoprene. 
Mode 
Shape 

Neoprene 30A Calibrated Results 
Model Meas. % Error Model % Error 

11. 80.17 70.3 14   
2 248 292 -15 260 -11 
32. NA 366 NA NA NA 
4 515 534 -3.6 540 1.1 
5 845 773 9.3 886 15 
6 963 903 6.6   

1. Affected by stringer mass & stiffness. 2. Stringer/plate coupled mode. 
 

The natural frequencies presented in Table 1 are dependent upon the model 

parameters DE , Dρ , t , and R . The geometric parameters t  and R  are design 

parameters, which can be controlled during the manufacturing of the prototype, and thus 

are known with high certainty. Furthermore, the density parameter can be measured with 

relative ease and high accuracy. Therefore, the only remaining parameter that is poorly-

known is the Young’s Modulus of the plate, which nominally is 8.3 MPa.  An optimal fit 

is achieved considering modes 2, 4 and 5 with a 10% increase in the modulus of the disk 
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while all other remain at their nominal values. The results of this analysis are also shown 

in Table 1. As indicated, the fit of modes 2 and 4 improve with the calibration in the 

model parameters. This represents an optimal fit since the contribution of each mode to 

the overall response is not equal. Mode 2 contributes 100 times more to the overall 

measured acceleration response than mode five. Thus a 4% reduction in the percent error 

for mode 2 is significant. 

Turbulence Model: To calibrate the turbulence characteristics developed in the 

semi-empirical model, channel velocity is measured in the CHL flume with a Sontek 

acoustic doppler velocimiter (ADV), A701F, at 50 Hz. The sample time of five minutes 

is found to adequately capture all eddy scales. The flume bed consists of quartz sand with 

a median grain size of 1.5 mm. The velocity measurements are made throughout the 

depth, from y h  of 0. 10 to 0.60. Pertinent flow parameters for each of the three runs are 

shown in Table 2.  

Table 2 - Flow parameters for CHL flume tests. 
Run h  

[cm] 
U  

[cm/s] 
*U  

[cm/s] 
*Re  

[N.A.] 
1 29.3 35.7 2.2 6360 
2 26.4 31.1 1.4 3710 
3 32.7 27.4 1.6 4560 

 

 It is also necessary to determine the value for *U , an input for the turbulent 

channel flow model. This can be accomplished from the measured results in two ways. 

Equation (5.3) can be fit, using the least squares method, to the measured values of U  

within the LLL. The coefficient of this fit is equal to the quotient of *U  and κ . Since the 
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von Karman constant is known, this coefficient can be solved for the friction velocity. A 

second approach considers the contribution of the velocity gradient and the turbulent 

shear stress to the bed shear stress. The offset of a liner fit through the product u vρ ′ ′− as 

a function of y  is equal to the bed shear stress, oτ , which can be related to the friction 

velocity, as in Equation (5.34). These two methods yield similar results for runs 1-3. The 

friction velocity values shown in Table 2 are based on the first method. The fit through 

these data points are shown in Figure 5.6 and 5.7. 

 *
oU τ
ρ

=  (5.34) 

  

Figure 5.6 - Distribution of *U U  as a function of depth in the channel, for run 1. 
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Figure 5.7 - Distribution of u v′ ′ , as a function of depth in the channel, for run 1. 

 

With *U  determined, it is then possible to compute the analytical model response 

for the turbulent fluctuations as a function of depth. The velocity fluctuations are 

computed using Equation (5.5) and compared with the measured results, as shown in 

Figure 5.8. The coefficient of determination between the measured values and the model 

is 0.73 for run 1, 0.87 for run 2, and 0.82 for run 3, indicating an acceptable 

representation of the measured data by the turbulence model.  
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Figure 5.8 - Measured and model root mean square of u′  ratio with friction 

velocity, as a function of depth in the channel (Run 1). 
 

 In addition to the turbulent velocity fluctuations, the semi-empirical model must 

accurately represent the velocity spectra. Several spectra are available in the published 

literature, two of which are shown in Figures 5.9 and 5.10. Figure 5.9 shows the 

comparison of the model predictions against the data published by Kironoto and Graf 

(1994). As shown in the figure, the model fit falls within the published data set. The 

coefficient of determination is 0.89. Similarly, the comparison of the model results with 

the data published in Nakagawa and Nezu (1993) are shown in Figure 5.10, where the 

coefficient of determination is 0.97. The results shown in Figure 5.10 indicate that the 

model captures the same trend as the measured data. 
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Figure 5.9 – Comparison of model turbulent velocity fluctuation spectra with 

published results from Figure 7b of Kironoto and Craf (1994). 
 

 
Figure 5.10 - Comparison of model turbulent velocity fluctuation spectra with published 

results from Figure 4.15 of Nakagawa and Nezu (1993). 
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Turbulent spectra can also be constructed from the measured ADV data for runs 

1-3. The power spectral density of the turbulent velocity fluctuations for run 1, for y h  

of 0.1, 0.2, and 0.3 are shown in Figures 5.11 through 5.13, respectively. The figures 

indicate that the model captures the shape and magnitude of the measured turbulent 

spectra, with coefficient of determination of 0.87, 0.79, and 0.92 respectively. For the 

higher frequencies, the model results under predict the measured spectra. This deviation 

is expected due to the nature of the ADV measurements. It is possible to correct the 

measured data as discussed in Hurther and Lemmin (2001). However, this requires a 

sonar device with a fourth probe to correct for the noise in the measured signal. The 

Sontek ADV device used in this study is not equipped with this additional probe, so this 

correction is not possible. 

 
Figure 5.11 - Power spectral density of u′  at a y h  of 0.1, from run 1. 
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Figure 5.12 - Power spectral density of u′  at a y h  of 0.2, from run 1. 

 
Figure 5.13 - Power spectral density of u′  at a y h  of 0.3, from run 1. 
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Figures 9 through 13 reveal that the power spectral density of the u′  velocity 

fluctuations as presented in the turbulence model are in agreement with both published 

spectra and those measured in the CHL flume. In addition, the magnitudes of the velocity 

fluctuations, shown in Figure 5.8, correspond to the measured values obtained with the 

ADV measurements. Thus, it can be concluded that the semi-empirical model component 

for the turbulent open channel flow does not require calibration in order to predict the 

magnitude and spectra of u′ . 

The objective of the overall semi-empirical model is to predict the mean squared 

acceleration response of the VTP. These results will also have to be calibrated in order to 

use the model for prediction and optimization of the VTP for field deployment. Data sets 

corresponding to the conditions for Run 1 are recorded experimentally, as discussed in 

Fisher et al. (2012), and are used to calibrate the model result. The measured VTP energy 

content response is recorded at y h  of 0.16 and 0.51. The mean energy content from this 

data set for the lower VTP is 0.0220 m2 s-4 with a standard deviation of 0.0015 m2 s-4. 

The model predictions for this VTP’s mean energy content is 0.14 m2 s-4. For the upper 

VTP, the mean energy content is 0.0150 m2 s-4 with a standard deviation of 0.0011 m2 s-4. 

The model predictions for this VTP’s mean energy content is 0.0063 m2 s-4. Based upon 

these results, it is necessary to calibrate the model. The objective of the calibration is to 

configure the results such that the model predictions are within 10 times the standard 

deviation of the measured energy contents for the various positions within the channel. 

This will result in a calibrated model that can predict the VTP energy response within the 

appropriate order of magnitude but does not overly constrain the response. Since the 
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model is being used to determine the geometry of the prototype, this will ensure that the 

predicted results are sufficiently accurate to capture the difference between VTPs located 

in the sediment and in the flow. 

The remaining parameters under consideration for calibration include the 

combined structural and fluid damping, the friction velocity, the mean flow velocity and 

a factor introduced in Equation (5.22) that accounts for variations in the proportionality 

of the turbulent velocity fluctuations to the dynamic pressure. These parameters are 

varied by up to 20%. The largest variation in the model response occurs for the friction 

velocity, resulting in a variation in the mean energy content of up to 80%. Given this 

variability in the model results, *U  is chosen for calibration. Based upon the measured 

variation in the model response as a function of position within the channel flow, the 

friction velocity is calibrated by a linear function of position, with a slope of 0.833 and an 

intercept of 0.668. The resulting model predictions are 0.0367 and 0.0150 m2 s-4 for y h  

for 0.16 and 0.51 respectively, a significant improvement in the model results. 

The obtained model is conditioned based on the measured data during calibration 

and thus, it is necessary to validate the model by comparing the predictions against an 

independent data set. 

5.3.3 Model Validation 

The data set used for validating the analytical model consists of the measurements 

taken during Run 3, an independent data set not used for calibration. The measured VTP 

responses are recorded at positions in the channel of y h  for 0.35 and 0.66. The 

measured energy content response for each VTP is 0.013 and 0.0079 m2 s-4 for the lower 
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and upper VTPs respectively. Using the calibrated model, the predictions are 0.0158 and 

0.0075 m2 s-4 for these two positions, which are within the desired model tolerance. 

In addition to computing the mean squared energy content response for the VTPs, 

it is also possible to compare the measured acceleration power spectral density with the 

model predictions. For the two VTP positions, the measured and model acceleration 

power spectra are shown in Figures 14 and 15, respectively. In addition to the synthesized 

modal response of the VTP, the first three modes of the VTP are also shown in order to 

highlight their contribution to the overall response. As shown in Figures 14 and 15, the 

results indicate that the first mode is responsible for the majority of the low frequency 

response. The model response for the first mode also indicates that the model mode is 

underdamped relative to the measured response. This suggests that further refinements in 

the model are possible. However, given that the objective of the model development is to 

optimize a field deployable scour monitoring device, the current model precision is 

acceptable. 
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Figure 5.14 - Measured and model acceleration response spectra for run 3 conditions, 

y h  of 0.35. VTP plate is 1.6 mm thick, 2 cm radius neoprene. 

 
Figure 5.15 - Measured and model acceleration response spectra for run 3 conditions, 

y h  of 0.66. VTP plate is 1.6 mm thick, 2 cm radius neoprene. 
 

10
1

10
2

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

Frequency [Hz]

Φ
aa

(f)
  [

m
2  s-4

 H
z-1

]

 

 

Measured
Model
Mode 1
Mode 2
Mode 3

10
1

10
2

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

Frequency [Hz]

Φ
aa

(f)
  [

m
2  s-4

 H
z-1

]

 

 

Measured
Model
Mode 1
Mode 2
Mode 3

158 

 



5.4 VTP Optimization for Field Deployment 

Having verified, calibrated, and validated the model, it is appropriate to use the 

model to predict the VTP energy content as the geometry of the device changes. In Fisher 

et al. (2012) it has already been shown that nonmetallic disks for the VTP are preferred 

over metallic disks, due to the lower stiffness, and higher acceleration response for a 

given turbulent dynamic pressure. Additionally, it has already been shown that circular 

VTPs are preferred over square geometries. Therefore, the optimization for field 

deployment considers only the radius and thickness of the disk as design parameters. 

From the measured results of the VTP energy content presented in Fisher et al. 

(2012), it was determined that the maximum response from the VTPs located in the 

sediment was 0.009 m2 s-4. In order to ensure the response of the VTP located in the flow 

are at least one order of magnitude greater than the VTPs in the sediment, a threshold 

energy content value is set to 0.01 m2 s-4. This ensures that the VTP device can be used 

for scour monitoring. Additional constraints imposed on the optimization process 

included that the resolution of the device is at equal to that of a magnetic sliding collar, 

which can resolve the bed depth to 0.15 m (Legasse et al., 1997). Also, the material 

selected should be able to withstand the conditions that are likely to occur in the field. 

Given the performance of the neoprene in the experimental results conducted previously, 

the decision is made to select this material for the field deployment. 

Based upon the conditions discussed previously, several predictions are made 

with the analytical model for VTP thicknesses of 1.6 to 3.2 mm and radii from 1.5 to 3.5 

cm. A minimum spacing of 6.2 cm between adjacent VTPs is required for the additional 
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hardware necessary to mount the sensors. It is possible to consider the VTP response 

versus the resolution of the VTPs, as shown in Figure 5.16. The optimal VTP will 

respond above the required threshold and with a minimum spacing (leading to an 

improved resolution). 

The results reveal that the optimal VTP for a thickness of 1.6 mm has a resolution 

of 10.2 cm, and corresponds to a VTP radius of 2 cm. For the 3.2 mm thick neoprene, the 

minimum resolution is determined to be greater than 13 cm (3.5 cm VTP radius). From 

these results, it is determined that the 1.6 mm, 2.0 cm radius is preferred over the thicker 

and larger VTP due to the improved resolution achievable with the smaller device. As 

expected, the model indicates that the energy content to be higher for the thinner VTPs 

for the same dimension. Therefore, it is anticipated that the minimum flow rate that can 

be resolved with the smaller, thinner VTP will exceed that of the larger, thicker VTP. 

 
Figure 5.16 - Optimization of VTP size and thickness for field deployment. 
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5.5 Field Prototype Performance 

Based upon the results presented in Section 4 of this work, the optimal VTP 

configuration is determined to have a disk radius of 2 cm and a thickness of 1.6 mm. A 

field prototype is constructed with 8 VTPs distributed along a 1 m length of the support 

pipe. The VTPs are spaced 10.2 cm apart and housed within removable units which are 

designed to aid maintenance in the field and to ensure that damage to one device does not 

allow water to penetrate into the undamaged VTPs. A schematic of the device is shown in 

Figure 5.17. The fully assembled prototype is shown in Figure 5.18. The accelerometers 

installed in the field prototype are PCB model 352A24, with a sensitivity of 10 mV/m s-2. 

The accelerometers are connected to the bulkhead shown in Figure 5.17, in order to 

provide a water tight seal through which the accelerometer signal is routed. On the 

interior of the support pipe, the signal is carried by a wiring harness to the top flange of 

the pipe, where it passes through a water tight bulkhead and into a wet-mateable fitting 

for connection to the data lines and the data collection units. 
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Figure 5.17 - Schematic of Field VTP Configuration. 

 

 

Figure 5.18 - Field prototype. 

5.5.1 Measured Energy Content Profile 

The fully assembled field prototype is tested in the CHL flume to ensure the 

performance of the device. Tests are conducted in the channel flow with velocities from 

14 to 30 cm/s. The results from these tests are shown in Figure 5.19.  
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The results indicate that the VTP located in the channel flow and closest to the 

bed surface responds with an energy content that is at least one order of magnitude 

greater than the VTPs in the sediment. Therefore, it is possible to conclude that the 

objective of the model development and optimization process has produced a device that 

will meet the required field performance metrics. Additionally, the results in Figure 5.19 

indicate that for the velocity in the range of 14.2 to 20.2 cm/s, the energy content of the 

VTP near the bed varied from 0.0031 to 0.0046 m2 s-4. These values are lower than the 

design threshold in the optimization due to lower mean channel flow velocities used in 

these tests. However, the difference between the VTP located in the flow and the 

sediment for these three cases ranged from a factor of 20 to 31. Thus, even for the low 

velocity cases, the field prototype will still indicate the water/sediment interface and 

therefore can monitor any scour hole development.  

 
Figure 5.19 - Performance of field prototype in CHL flume. 
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5.5.2 Measured and Predicted Sensitivity to Flow Misalignment 

The field prototype is also tested against varying flow misalignment between the 

main flow and the VTP axis. The results from these tests are compared against the semi-

empirical model, which is shown in Figure 5.20. The model and measured results reveal 

that as the misalignment increases, the response from the VTP decreases. The model 

response approaches the measured results for smaller angles of misalignment. As the 

misalignment increases, the model results begin to deviate from the measured results. 

This is expected, as the flow around the probe will begin to separate at the upstream edge 

of the VTP with increasing misalignment. This effect is not accounted for in the 

analytical model. Despite this, the model is able to capture the measured decay in energy 

content with increasing misalignment. This serves to confirm that the semi-empirical 

model is capturing the governing physics that dictate the VTP energy content response. 
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Figure 5.20 - Measured and analytical model response as a function of flow 

misalignment. 
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modulus for the neoprene disk. The turbulent model calibration is investigated and 

reveals that the measured and predicted values are within the expected measurement error 

and is not adjusted. The final calibration showed that the model is sensitive to the friction 

velocity, which is then calibrated against a measured data set.  

The calibrated model is then validated against an independently measured data set 

and reveals that the predicted values are within the desired tolerance of 0.015 m2 s-4. The 

predicted responses from the calibrated model range from 3 to 22% of the measured 

energy content responses for the independent data set. This represents a significant 

improvement in the model over the uncalibrated model. 

After calibrating the model, a VTP is optimized for field deployment by 

considering variations in the VTP size and thickness. Optimal thickness is determined to 

be 1.6 mm while the ideal size is determined to be 2.0 cm. The resulting device is 

sensitive to the turbulent velocity fluctuations while also being sufficiently robust for 

field deployment.  

Based upon the optimized results, a field prototype is developed and tested in the 

laboratory. These tests indicate that the energy content variation across the channel depth 

is sufficient to allow for a determination of the water/sediment level. The model also 

captures the decay in energy with increasing flow misalignment. 
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CHAPTER SIX 

 
CONCLUSIONS 

 

6.1 Summary of Research 

Scour remains the leading cause of bridge failure in the United States and is 

responsible for hundreds of millions of dollars in damage to the nation’s transportation 

infrastructure. It has also been directly linked to the loss of lives resulting from the 

collapse of bridges during peak flow events. Given the threat to these critical components 

of any transportation system, the research presented in this work has outlined the state of 

the art and has made key contributions to overcoming deficiencies in the existing 

methods that advance the field of scour monitoring.  

In order to deploy any system for the purpose of monitoring scour hole formation 

around a bridge pier or abutment it is necessary to evaluate the underlying physics that 

govern the operation of the proposed device. It is also necessary to further consider the 

potential impact of various environmental channel conditions on the proposed scour 

measurement method. In Chapter Two, the existing techniques are reviewed, including 

both point scour measurement devices and distributed scour monitoring methods. The 

available techniques reviewed include devices such as magnetic sliding collars, which 

rely upon the movement of key parts to indicate the presence of scour, to advanced 3D 

sonar systems that are capable of recording the bed topography around a bridge pier. As 

highlighted in Chapter 2, however, each device has certain strengths and weaknesses, 
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which should be considered when deploying any system in the field. To facilitate the 

development of robust scour monitoring systems, the failure modes and effects analysis is 

proposed as a means of designing scour monitoring systems that are more resilient to 

changes in the common environmental factors that exist in natural channels, such as 

temperature, salinity, and suspended sediment. 

 A novel method is developed in response to several of the common weaknesses in 

existing scour monitoring methods. The novel method employs sensors that are selected 

to be sensitive to the natural turbulence in open channel flows. It is hypothesized that 

these sensors, denoted as vibration-based turbulent pressure sensors (VTP), will vibrate at 

significantly higher amplitudes when in the flow as compared to in the sediment. 

Therefore, it is surmised that monitoring the mean squared acceleration response, which 

is denoted as the energy content in this work, across the depth of a bridge pier or 

abutment, can be used to determine the bed level. This method is tested experimentally in 

Chapter 3 and proved that the distribution of energy content can be used to monitor scour 

hole formation. 

 Having established the existing best in class measurement techniques in Chapter 2 

and given the results of the VTP method in Chapter 3, the performance of sonar, time 

domain reflectometry, and the novel method are evaluated against common 

environmental factors found in natural channels. These tests, discussed in Chapter 4, 

reveal key findings about the impact of temperature, salinity, and suspended sediment on 

these three devices. In particular, the tests revealed the strength of the VTP method 

against channel turbidity, flow angle misalignment, and bed sediment type. 
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 Having evaluated the governing hypothesis of the VTP method in Chapter 3, it is 

also necessary to consider the optimization of the device for field deployment. The 

development, verification, calibration, and validation of an analytical model that 

describes the governing physics behind the VTP method are discussed in Chapter 5. The 

results yield an optimal VTP configuration for field deployment, which is then tested and 

indicate the required performance of the device for monitoring the formation of scour 

holes around bridge piers and abutments. 

6.2 Advancements to the State of the Art 

Through the research program outlined in Section 6.1, several key results that 

advance the state of scour monitoring have been identified. These key findings are 

reviewed in the following section. 

In Chapter Two the available scour monitoring systems were reviewed and 

indicated that sonar fathometers and time domain reflectometry devices are the best in 

class techniques for monitoring bridge pier and abutment scour. In addition, the physical 

principles behind the operation of these two devices are evaluated and revealed a 

potential sensitivity to channel turbidity, salinity, and temperature.  

The key findings that relate to the operational principle behind the VTP method, 

as discussed in Chapter Three, include: 

 The fact that the energy content distribution across the pier/abutment depth varies, 

from a minimum in the bed, to a maximum immediately adjacent to the bed in the 

channel flow. The variation in the flow is consistent with the nature of turbulent open 

channel flow. 
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 The energy content of the VTP sensors in the sediment are one to two orders of 

magnitude below the level experienced in the turbulent channel flow. 

 The point of maximum slope in the energy content can be used as a feature to 

determine the location of the water/sediment interface. 

 Due to increases in the magnitude of the turbulent velocity fluctuations in a scour 

hole, the measured energy content increases for VTPs surrounded by a scour hole. 

With the performance of the VTP method established and the best in class existing 

techniques identified, it is necessary to evaluate the performance of these devices against 

commonly encountered channel conditions. The tests performed for each device indicated 

that: 

 The sonar method is sensitive to channel salinity and temperature, which can be 

corrected for by measuring these two parameters in addition to the sonar reading. 

 Turbidity can influence the sonar device, up to the point at which it no longer can 

determine a stable bed reading. This is indicated by an increase in the standard 

deviation of the device above the sonar fathometer tolerance limit. 

 The size of the scour hole within the sonar beam can influence the measured depth as 

the sonar device appears to record the minimum water depth within the beam width. 

 The TDR method is sensitive to salinity above 500 PPM, at which point the 

waveform becomes indistinct. 

 Temperature effects can influence the TDR readings, but can be accounted for by 

measuring the channel temperature and applying an appropriate correction. 

 Suspended sediment concentration has no measured effect on the TDR method. 
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 Suspended sediment in the channel has only a minor impact to the VTP method, with 

the measured energy content increasing slightly for an increase channel turbidity. 

 The flow alignment between the VTP probe and the main channel flow can influence 

the results. However, at 90º, the energy content in the flow is still one order of 

magnitude greater than that of the VTP in the sediment. 

 The sediment type has little impact on the measured energy content in the channel 

bed. 

 The minimum channel velocity tested revealed that for low depth averaged channel 

velocity, the response from the VTP in the flow was an order of magnitude greater 

than the VTP in the sediment, indicating adequate performance even in low flow 

conditions. 

After establishing the performance of the VTP method in Chapter 3, it is then 

necessary to optimize the VTP configuration for deployment in the field. An analytical 

model was constructed to guide the optimization and revealed that after appropriate 

verification and calibration, the resulting model predicted the performance of the VTP 

device to within 20% of an independently measured data set. The optimal VTP 

configuration was determined to have a radius of 2.0 cm, made from 1.6 mm thick 

neoprene rubber. This field prototype was then evaluated in the CHL flume and indicated 

that the measured energy content in the flow was an order of magnitude greater than for 

the same VTPs located in the sediment. 
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6.3 Limitations of the Work and Avenues for Further Study 

In Chapter Two the current state of the art was reviewed and highlighted many of 

the existing, proven techniques for monitoring scour. Given the threat to bridges around 

the globe, many researchers are conducting studies with new and novel methods for 

monitoring scour and the state of the art is evolving rapidly. The current best practices 

include using sonar and TDR for monitoring the formation of scour holes. These two 

methods are sensitive to temperature, salinity and suspended sediment (not TDR). 

However, due to the constant introduction of new and novel methods, scour monitoring 

techniques will continue to evolve that advance the state of the art, but at the same time 

expose these devices to new and unanticipated channel conditions that can influence 

performance.  

In regards to the novel VTP method, the experiments conducted in this research 

program revealed that the device is not sensitive to the common channel conditions that 

affect the performance of sonar and TDR. It is possible, however, that other unanticipated 

conditions can occur which can influence the performance of the VTP method. These 

parameters will be uncovered as the device is monitored in the field. Therefore, long term 

measurements with the VTP method are required in order to elevate the device. Ater this, 

the VTP device can be deployed independently in the field. 

Additionally, in developing the analytical model to predict the performance of the 

VTP to turbulent open channel flow, it was necessary to calibrate both the structural and 

turbulent flow parameters. These calibrations were based on particular data sets 

corresponding to neoprene VTPs. As indicated in Chapter 3, non-metallic disks have a 
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superior performance over metallic disks. Therefore, the analytical model in its present 

form should be restricted to neoprene disks. It is entirely possible, however, to perform a 

similar calibration and validation process as outlined in this report to include additional 

materials, should they be required based upon long term VTP field performance tests. 

In addition to the limitations and opportunities for further research outlined above, 

it is also possible to consider the performance of the VTP device for flow misalignments 

greater than 90º. In this case, the VTP structure will be excited by the separated flow 

around the support pipe. The magnitude of these fluctuations have the potential to be on 

the order of the turbulent velocity fluctuations and could yield acceptable performance of 

the VTP device. The advantage presented by this case is that the device will be less 

sensitive to potential impacts from debris located in the channel. Damage to the VTP 

itself is less likely in this configuration. It remains, however, to be seen if the separated 

flow velocity fluctuations are sufficiently large so as to excite the device. 

 In closing, the research conducted in this project has developed a novel method 

which has been experimentally shown to provide reliable information about the location 

of the water/sediment interface on a bridge pier or abutment. This method was developed 

in response to key deficiencies in the current state of scour monitoring equipment, 

including sensitivities to common environmental conditions in natural channels. The 

novel method was shown to be insensitive to suspended sediment, flow misalignment, 

and other common channel parameters that can influence the VTP device. It was also 

optimized for field deployment, and performed adequately under laboratory simulated 

field conditions. 
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APPENDIX 

 
SEMI-EMPIRICAL MODEL MATLAB CODE 

 
Turbulent Model: 
function [u_prime_sq_bar,Lx,Re_L,S_f,F_f,kw,fw,P_f_sq_mskg]=… 
turbulence_model(parameters) 
y_h = parameters.y_h; 
U = parameters.U; 
h = parameters.h; 
temp = parameters.temp; 
rho_fluid = parameters.rho_fluid; 
U_star = parameters.U_star; 
 
% Interpolate for nu_fluid based on Temp; 
t1 =10; nu1 = 1.307E-6 * 100^2; 
t2 =20; nu2 = 1.004E-6 * 100^2; 
 
nu_fluid = (temp - t1) * (nu2 - nu1) / (t2 - t1) + nu1; 
 
% Location of VTP: 
y = y_h * h; 
 
% Universal Function for u_prime 
Du = 2.3; 
B = 10; 
C = 0.3; 
Re_star = U_star * h / nu_fluid; 
y_plus = y * U_star / nu_fluid; 
gamma_y_plus = 1 - exp(-y_plus/B); 
u_prime_U_star = Du * exp(-y_plus/Re_star)*gamma_y_plus + ... 
    C*y_plus*(1-gamma_y_plus); 
u_prime = u_prime_U_star * U_star; 
u_prime_sq_bar = u_prime * u_prime; 
 
% Determine Lx 
% - first interpolate B1 for Re_star 
R2 = 1600; B12 = 1.0; 
R1 = 600; B11 = 1.1; 
if Re_star > 1600 
    B1 = 1.0; 

176 



elseif Re_star < 600 
    B1 = 1.1; 
else 
    B1 = (Re_star - R1) * (B12 - B11) / (R2 - R1) + B11; 
end 
count = 0; 
diff_Lx = 1000; 
Lx_corr = 1; 
while diff_Lx > .1 
     
    if y/h < 0.6 
        Lx_h = B1*(y/h)^.5; 
        Lx = Lx_h * h; 
    elseif y/h >= 0.6 
        Lx_h = 0.77*B1; 
        Lx = Lx_h * h; 
    end 
    Lx = Lx * Lx_corr; 
     
    % ko = (1/Lx)*.75; 
     
    % Determine Lamda 
    Re_L = u_prime * Lx / nu_fluid; 
    K = 0.691+3.98/sqrt(Re_L); 
    Lx_lamda = (K/15)^.5 * Re_L^.5; 
    lamda = Lx / Lx_lamda; 
     
    % Determine Eta 
    Lx_eta = K^.25*Re_L^.75; 
    eta = Lx / Lx_eta; 
  
    % Determine Epsilon 
    epsilon = 15 * nu_fluid * u_prime_sq_bar / lamda^2; 
     
    % Determine ko 
    ko = (K / (2/(pi*C))^1.5)^(2/5) / Lx; 
     
    check_Lx = (K^(2/3)* u_prime_sq_bar / epsilon^(2/3))^(3/2); 
    diff_Lx = abs(Lx - check_Lx); 
    Lx_corr = Lx / check_Lx; 
    count = count +1; 
    if count > 10 
        break 
    end 
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end 
 
%% Setup Spectra 
% Setup k and f 
k1 = 0.01:.02:lamda^-1; % m 
k2 = lamda^-1:0.02:eta^-1*10; % m 
kw = [k1,k2]; 
f1 = k1 * U / 2 / pi; % Hz 
f2 = k2 * U / 2 / pi; % Hz 
fw=[f1,f2]; 
fo = ko * U / 2 / pi; % Hz 
 
% Determine gamma_prime 
gamma_p = 1E2; %1E2; 
 
% Von Karman's Formula 
S_f1 = 2 / pi * Lx * u_prime_sq_bar * (1 + (k1/ko).^2).^-(5/6); 
%F_f1 = 4 * Lx / U * u_prime_sq_bar * (1 + (f1/fo).^2).^(-5/6); % s (Hz^-1) 
F_f1 = 4 * Lx / U * (1 + (f1/fo).^2).^(-5/6); % s (Hz^-1) 
 
% Heisenberg's Formula 
S_f2 = C * epsilon^(2/3).*(k2).^(-5/3) .* (1+gamma_p*(k2*eta).^4).^(-4/3); 
%F_f2 = 2*pi/U * (C * fudge_factor) * epsilon^(2/3).*(2*pi*f2./U).^(-5/3) .* 
(1+gamma_p*((2*pi*f2./U)*eta).^4).^(-4/3); 
F_f2 = 2*pi/U / u_prime_sq_bar * C * epsilon^(2/3).*(2*pi*f2./U).^(-5/3) .* 
(1+gamma_p*((2*pi*f2./U)*eta).^4).^(-4/3); 
 
S_f = [S_f1,S_f2]; 
F_f = [F_f1,F_f2]; 
 
% Convert Frequency Spectrum to Standard m, kg, units 
rho_fluid = rho_fluid / 100^3;           %[kg/m^3] 
 
% Setup Force and Pressure 
P_f_sq_mskg = (0.5 * rho_fluid * u_prime_sq_bar/100^2)^2 * F_f; 
 
end 
 
VTP Response Model: 
function [U_f,V_f,A_f]=... 
    vtp_model(parameters, P_f_sq_mskg,fw) 
%% 1D Simple Model for Plate Response 
% Setup Workspace 
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r = parameters.r; 
thick = parameters.thick; 
zeta_set = parameters.zeta; 
material = parameters.material; 
accel_mass = parameters.accel_mass; 
 
%% Setup Disk Properties 
if material == 'neop ' 
    load('neop.mat'); 
end 
 
% Convert to Standard m, kg, units 
r = r / 100;                             %[m] 
thick = thick / 100;                  %[m] 
A = pi * r^2;                            %[m^2] 
 
%% Calculate Plate Response 
% Calculate FRF for Clamped Circular VTP 
lamda_sq_c = [10.22,21.26,34.88,51.04; 39.77, 60.82, 84.58, 111.0;... 
    89.10, 120.1, 153.8, 190.3; 158.2, 199.1, 242.7, 289.2;]; 
f_n = lamda_sq_c ./ (2*pi*(r)^2) .* ( (E*thick^3) / (12 * rho * thick * (1 - nu^2)) )^.5; 
sorted_f = sort([f_n(1,:),f_n(2,:),f_n(3,:),f_n(4,:)]'); 
 
for count = 1:3;%length(sorted_f) 
    if length(zeta_set)>1 
        if count <= length(zeta_set)-1 
        zeta = zeta_set(count); 
        else 
            zeta = 0.05; 
        end 
    else 
        zeta = zeta_set; 
    end 
    FRF_temp = 1 ./ ( (1-(fw./sorted_f(count)).^2).^2 + (2*zeta*fw./sorted_f(count)).^2); 
    FRF_modifier = 1.06^2 / (rho * thick * (2 * pi * sorted_f(count))^2)^2; 
    if count == 2 
        FRF_modifier = 1.83^2 / (rho * thick * (2 * pi * sorted_f(count))^2)^2; 
    end 
    FRF_temp = FRF_temp .* FRF_modifier; 
 
     H_f_blev(count+1,:) = FRF_temp; 
    clear FRF_temp FRF_modifier 
end 
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% Calculate FRF for Clamped Circular VTP with Mass 
lamda_sq_table = [0,0.05,0.1,0.2,0.4,0.6,1.0,1.4; 10.2,9.0,8.1,6.9,5.4,4.75,3.8,3.3;]'; 
lamda_sq_c1 = interp1(lamda_sq_table(:,1),lamda_sq_table(:,2),accel_mass / 
(rho*thick*pi*(r)^2)); 
f_n3 = lamda_sq_c1 / (2*pi*(r)^2) * ( (E*thick^3) / (12 * rho * thick * (1 - nu^2)) )^.5; 
FRF_modifier = 1.11^2 / (rho * thick * (2 * pi * f_n3)^2)^2; 
H_f_blev3 = 1 ./ ( (1-(fw/f_n3).^2).^2 + (2*zeta_set(4)*fw/f_n3).^2); 
H_f_blev3 = H_f_blev3 .* FRF_modifier; 
 
% Calculate Combined FRF 
H_f_blev(1,:) = H_f_blev3;%H_f_blev + H_f_blev3; 
 
H_f_blev(end+1,:) = sum(H_f_blev,1); 
 
% Calculate Response Spectra 
for i = 1:size(H_f_blev,1) 
    U_f_mskg_sq(i,:) = H_f_blev(i,:) .* (P_f_sq_mskg); % ./ (rho * thick * 
(2*pi*f_n3).^2).^2; 
     
    U_f_mskg(i,:) = U_f_mskg_sq(i,:);%.^.5; 
     
    % Convert Frequency Spectrum to Standard cm, kg, units 
    U_f(i,:) = U_f_mskg(i,:) * 100^4; 
    V_f(i,:) = U_f(i,:) .* (fw.*(2*pi)); 
    A_f(i,:) = U_f(i,:) .* (fw.*(2*pi)).^2; 
     
end 
 
end 
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