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Abstract: Foundation scour is a widespread reason for the collapse of bridges worldwide. How-
ever, assessing bridges is a complex task, which requires a comprehensive understanding of the
phenomenon. This literature review first presents recent scour detection techniques and approaches.
Direct and indirect monitoring and machine learning algorithm-based studies are investigated in
detail in the following sections. The approaches, models, characteristics of data, and other input
properties are outlined. The outcomes are given with their advantages and limitations. Finally,
assessments are provided at the synthesis of the research.
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1. Introduction and Background—Scour Identification Approaches

Scour is one of the most common causes of bridge collapse. Bridge collapses cause
large numbers of fatalities and financial losses. Therefore, the vulnerability of bridges to
scour should be assessed and adequate actions should be taken. Piers, abutments, founda-
tions, and piles at risk of scour could be protected from scour by taking countermeasures
(with backfills, sheet piles, sacrificial piles, etc.) and repairing damaged elements (using
ripraps, splitter plates, etc.) before global damage occurs. However, even after the bridges
are properly protected against scour, it is important to continue monitoring the scouring
condition. For several reasons, scour detection is a complex task; diving inspections to
identify scouring are relatively dangerous. Underwater conditions complicate the imple-
mentation and maintenance of scour depth measurement devices. Moreover, hydraulic
scour models are dependent on various parameters and there are still unsolved modeling
issues caused by scaling and sediment gradation [1]. Traditional empirical scour formulas
do not result in very accurate predictions of scour depths. To overcome this complex task to
detect and locate scour, various methods have been developed. This review paper mainly
focuses on a detailed assessment of scour monitoring and machine learning (ML)-based
scour identification methods with relevant recent studies. However, an introduction with
brief explanations of other scour detection approaches is provided as well. This section
includes underwater inspections, empirical formulas, hydraulic and representative scour
modeling, experimental studies, and probabilistic scour detection methods.

To begin with, empirical studies are one of the former scour detection and scour depth
estimation methods [2–5]. These former studies were based on extracting scour length
formulas using laboratory experimental results or field measurements. The relationship
between flow velocity and duration, depth of charge, bed material properties, sediment
movement, and substructure geometric properties on maximum local scour depth of piers
and abutments or stresses in the riverbed were aimed to be quantified. Some of the scour
formulas used are 65-1, 65-2 (Chinese), Melville-Sheppard, MBW, Hydraulic Engineering
Circular No. 18 (HEC-18), Dey and Barbhuiya [6], and Muzammil [7].

Underwater inspections could be classified as eye inspections and equipment-based
ones. In the eye inspection, the divers go through a difficult and dangerous search and a
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detailed examination report is prepared. During underwater inspections, the human eye
might fail to detect scour. Ground-penetrating radars, water-penetrating radars, SONAR,
and some specific laser systems are examples of equipment-based underwater examina-
tions. Penetrating radars in boats of floating units emit electromagnetic waves and receive
echoes from the soil. In one of the latest studies in this field, the researchers mapped the
bathymetric profile (water depths and sediment thicknesses) of a river bed in North Ire-
land and managed to detect scour holes around upstream piers using a water-penetrating
radar [8]. On the other hand, another study aimed to quantify scour depths in a river in
Switzerland with a gravel bed and find the relationship between the subsurface and the
structure of the riverbed using a ground-penetrating radar [9]. The researchers detected
a four-meter-deep scour hole that could not be detected by bathymetric (water-based)
surveys. Moreover, SONAR is another technology for collecting underwater images and
therefore can help detect scour holes. A recent and successful study managed to locate and
measure scour depths by combining SONAR data and a deep convolutional network [10].
Furthermore, it was revealed that although it performs worse in high turbidity, green laser
technology was able to detect scour around bridge piers in an economic and safe way [11].

The scour development process and how it is affected by the flow, bed material char-
acteristics, and geometry of the scoured elements have been investigated by hydraulic
model-based studies. [2] is a sample study examining the non-cohesive sediment’s move-
ment in sloping and [12] is another study where the fundamentals of the scour development
process and mathematical modeling of flows around bridge piers/piles, below pipelines,
and other structures such as groins, breakwaters, and seawalls were examined. According
to a former study [13] the basic idea behind scour development was believed to be the
horseshoe vortex system [14]. Later, the whole turbulence scheme was shown to be the
most important eroding flow process; horseshoe vortex is only an element of this scheme
and the whole pattern also consists of downflow and acceleration of the discharge around
the sides of the pier [10]. Experimental studies have been used to test the effects of different
layouts, shapes of piers, and flow parameters on scour [3,4,15,16]. Scour in clear water
and accumulations around hexagonal arrays of emergent circular cylinders for various
solid portions and an orientation of cylinders that resulted in less scour than an individual
large pile was proposed [15]. Another study measured the complex turbulent discharge for
different fluid velocities, Reynold shear stresses, and the density of the horseshoe vortex [4].
There were also studies on perpendicular wall abutments [5] investigating how channel
width, shape, sediment dimensions, flow depths, and abutment lengths affect pier and
abutment scour.

Furthermore, there have been studies that simulate scour instead of building a hy-
draulic model that directly represents it. To identify scour, mode shape ratio, apparent
profile, Eigen frequencies, and decentralized modal analysis methods were adopted by
various studies, namely [17], [18], and [19]. These studies did not aim to obtain scour
depth but rather to detect its presence by identifying changes in the dynamic properties
of the structure as an index that reveals the existence of scour. Alternatively, to evaluate
the performance of scour-critical bridges, a soil–pile–structure interaction analysis was per-
formed [20]. Some researchers have validated their approaches with experiments, [21–23]
and therefore gathered more trusted results. Many studies with scour indexes were ex-
plained in detail in Section 2.1.1 with their approaches, model features, and outcomes.

Finally, there are probabilistic approaches that overcome the uncertainties of deter-
ministic approaches summarized above. Uncertainties of scour identification problems
include insufficiencies of visual inspections, assumptions, and estimations of parameters
(geometric properties, hydraulic parameters, etc.). Since the accuracy of the deterministic
models is highly dependent on the input, these might lead to over or underestimation of
scour. Probabilistic scour models investigate the probability of structural failure under
scour [24–28]. The limit state function is defined as the residual resistance of the structure
after load effects are compensated; where load, resistance, and therefore limit state function
are dependent on random variables [28]. To solve the probabilistic failure problem, there
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are different types of reliability methods, for example risk-based, numerical, approximation,
and semi-probabilistic designs [28]. Changing environmental conditions such as climate
change effects might invalidate initial assumptions and cause unexpected rainfall regimes,
floods, and therefore scour issues. The effects of such uncertainty, i.e., gradual change
of flow properties was investigated by [24] and probabilistic scour failure analysis was
performed. The researchers statistically analyzed the maximum annual flow of a UK river
and aimed to predict local pier scour with Monte Carlo simulation. Simultaneous gradual
increments of flow variability and the mean of the flow resulted in the greatest scour depth
predictions. Another study investigated scour around a complex bridge pier and adopted
a reliability analysis with an optimization method with a semi-probabilistic design [25].
Using this method, these researchers developed a safety factor to reach the desired safety
level of the foundation design. Additionally, their sensitivity analysis revealed that pier
width and correction factor were the most effective variables on the reliability of bridge
pier against scour. A very remarkable uncertainty is caused by the memory effects, i.e.,
the accumulated scouring effects throughout the long service life of bridges [26]. Using a
Markovian approach, scour depth changes aimed to be observed and scour depth domain
was decomposed into multiple discrete states for various flood events. The research showed
that after the first years of prediction, in time, the probabilistic scour depth distribution
evolved and reached a stationary value [26]. The probabilistic local scour analysis of a
bridge pier in a clay and sand mixture sediment was performed in five different reliability
methods [27]. These simulation-based methods were line sampling, subset simulation, im-
portance sampling, Monte Carlo simulation, and directional simulation. The most accurate
results were obtained through subset simulation.

2. Conventional Monitoring-Based and Machine Learning-Based Methods to
Identify Scour

Both machine learning and conventional monitoring approaches are based on mea-
sured or simulated data. However, the way of processing the input data creates the main
difference between these two approaches. Conventional methods require the creation of
models, whereas machine learning methods eliminate the need of knowing the relationship
between input and output [29]. Even though it is possible to generate simulated signals,
field (full-scale) measurements provide more realistic information. Hence, many different
types of sensors have been developed to collect signals. Sensors used for signal monitoring
were classified under three main categories: kinematic, ambient, and mechanical prop-
erty collectors [30]. Kinematic properties are accelerations, velocities, and displacements;
ambient properties include features such as temperature, wind, and soil permeability;
while mechanical properties are strain, stress, and shear/bending/torsional deformations.
Accelerometers, strain gauges, and displacement gauges are the most widely-used mon-
itoring sensors. Narrowing down to sensors to monitor scour was explained under the
two following main clusters [31]: the ones using devices that measure the depth and those
utilizing changes in the dynamic properties of the structure. They listed depth monitoring
devices as follows:

1. Single-use devices;
2. Pulse or radar devices;
3. Fiber Bragg grating sensors;
4. Buried or data-driven equipment;
5. Sound wave appliances;
6. Electrical conductivity devices.

They noted that accelerometers and tiltmeters were some of the sensors that use
changes in the dynamic properties of the bridge. Bridge scour monitoring devices were
visualized in Figure 1 [32]. With developing technology, monitoring devices have improved
and alternative systems have been generated. A Scour Monitoring Decision Framework
was developed, which was based on software [33]. This framework assisted the Minnesota
Department of Transportation engineers to determine the most adequate fixed scour mon-
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itoring equipment for the specific bridge they were working on. It decreased potential
issues related to the sensor chosen by the user and supplied warnings on the occasion of
abnormal scour activity in the field. One of the recent experimental monitoring studies
investigated the consequences of scour for bridge frequencies [34]. The outcomes of the
theoretical model corresponded with the laboratory outcomes. The numerical background
of another study was used to decide the location of the sensors and the limitations of the
railway bridge monitoring [35].
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Data collection systems include several other elements rather than sensor technology.
The main elements when instrumenting a data acquisition scheme were listed as [36]:

1. Sensors;
2. Sensor data collection topologies;
3. Wireless connection;
4. Power supply;
5. Synchronizing the data obtained from a set of sensors;
6. Environmental effects and data;
7. Collection and processing systems.

The data collection system has to be adequately implemented according to the struc-
ture and service conditions. For large-scale bridges, locating, implementing, and maintain-
ing sensors should be well planned since some parts of the structure could be inaccessible,
such as the deck bottom of the suspension bridges. Although indirect monitoring tech-
niques do not interrupt service conditions, for direct monitoring systems, service conditions
are important factors to be considered. There can be time restrictions during the day or
parts of the structure that cannot be closed to service for data acquisition. After obtaining
data through sensors, wireless connections are used to transfer signals. Wireless sensing
units were leveled up when combined with low-cost mobile devices and these units are
still being developed for better software and hardware [37].
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The following sections explain the methods, properties, and main outcomes of conven-
tional monitoring-based and machine learning-based studies. For conventional monitoring-
based studies, the databases searched were Google Scholar and Scopus and a total of
168 studies were screened. After applying the exclusion criteria, 22 studies remained. For
machine learning-based studies, the databases searched were Web of Science and Scopus.
A total of 38 elements were screened. Applying the exclusion criteria, this resulted in
14 studies.

The eligibility criteria applied were:

• Academic papers published in the recent years;
• Written in English;
• Aiming to detect bridge scour, not other types of damage;
• Scour detection methods were monitoring or ML-based.

2.1. Methods, Properties, and Main Outcomes of Studies
2.1.1. Cluster 1—Conventional Monitoring-Based Approaches to Detect Scour

Table 1 provides the type of monitoring, numerical approach, and dynamic structural
property addressed, and the presence of experimental/field data in the studies. Descrip-
tions of direct and direct monitoring systems, technical information about the sensors, and
analysis methods used in the studies in Table 1 are explained in this section.

Scour monitoring could be classified under direct and indirect methods [38]. In direct
monitoring, structural parts of the bridge are equipped with sensors. The sensors are fixed
while in indirect monitoring, the vehicle passing over the structure is instrumented with
measurement devices, i.e., sensors are moving. Indirect or so-called drive-by monitoring
utilizes the responses of the sensors on the vehicles to extrapolate the condition of the
bridge [38]. These responses (measurements) could be accelerations, displacements, or
speed. There are some challenges of direct monitoring as well as its major advantages of
ensuring improvement in public safety early risk detection and minimizing downtime [39].
There are some disadvantages. Direct monitoring is not suitable for all applications, the
whole scheme is costly, and there are some undesired implications such as high maintenance
costs. This was where indirect monitoring became more advantageous since it was found to
be more economical, independent from the features of the structural system to be assessed,
and provided maintenance-friendly measurements. The indirect monitoring technique is
also known as drive-by monitoring and enables scour identification without any traffic
interruptions to the railway or highway operations on the bridge. In direct monitoring,
signals are obtained from structure form input data, while signals of single run or multiple
vehicle batches are products of indirect monitoring. To extract the dynamic properties of the
bridge, data were processed with numerical approaches. Utilizing displacements of a beam
which were found from a vehicle–bridge interaction finite element model was aimed to
calculate the distribution of the flexural rigidities throughout the length retrospectively [40].
They also sought to estimate the damage level of the bridge. For detecting damage, it is also
possible to eliminate the dependence on reference signals from a healthy bridge. Another
study focused on monitoring analyzed the difference between right and left accelerations
of the train (i.e., roll component) which occurred in the presence of deformation, to prove
the imbalance in the bridge behavior [41].
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Table 1. List of monitoring-based scour detection studies.

Monitoring Type Study Reference Numerical Method and Sensor Technology Presence of Experimental
Cases /Field Tests

Direct

[42] Mode Shape Ratio None

[43] Vibration energy harvesting device Yes

[44] Hilbert Huang Transform Yes

[45] Fiber Optic Sensors Yes

[46] Eigen frequency None

[47] Frequency Domain Decomposition None[17]

[23] Decentralized modal analysis Yes

[48]
Frequency analysis of piezoelectric rod sensors[49] Yes

[50]

[51] Unmanned Aerial Vehicle using smart rocks Yes

[31] Smart probes
instrumented with electromagnetic sensors[52] Yes

[53] Micro energy harvesters None

[54] Horizontally-displaced mode shapes and changes
in dynamic flexibility Yes

[55] Unmanned Aerial Vehicle-based smart rock Yes

Indirect

[56]
Wavelet transformation None[37]

[57]

[18] Eigen frequency None

[19] Closed-form mode shape derivation Yes

The studies listed in Table 1 use numerous sensors. Accelerometers were located
at the mid-spans and piers of the bridges. Signals from the superstructure of the bridge
were collected using velocity sensors to reveal the dynamic features of scour [55]. Their
experimental setup consisted of inclinometers, a camera, a level transmitter, and a wireless
transmitter as well. As the flow continued, the velocity sensors sensed vibrations and the
inclinometer showed the angle of tilt during scour. Besides accelerometers and velocity
sensors, piezoelectric rods, electromagnetic sensors, micro-electro-mechanical systems
(MEMS), vibrational power generators, optic sensors (image tracking), and permittivity
change of the soil were utilized for the detection of scour. When the water flowed, the
buried piezoelectric rods were subjected to hydrodynamic effects resulting in vibrations
that created voltage in the rods [48]. A frequency domain analysis of the voltage–time
history of the rod will result in the length. As sediment moves away, the length of the rod
increases and this is felt through the change in the frequency. The difference between the
initial and instantaneous length will give scour depth. Moreover, unconstrained distributed
fiber optic sensors are one of the recent technologies used for investigating scour. In the
research of [45], fibers deform freely under water flow. Deformation changes are detected
by ultra-weak fiber Bragg grating which is written in the optical fiber. Since temperature
changes at pier at an elevation of around 10 meters below water are slow and small, the
central wavelength of the fiber is only affected by the altered strains, i.e., deformations of
the fiber. Differences in central wavelength changes give scour length. Some innovative
researchers used innovative technology, i.e., smart rocks for scour monitoring. [51,55].
Based on the theory of the magnetic field, developed algorithms were able to find the
locations of the rocks, which were rolled down into scour holes. The proposed system for
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scour monitoring of other studies [31,52] had a probe with an integrated electromagnetic
sensor that identifies different dielectric permittivity values of the soil that surround the
foundation of the bridge. Using the frequency of the oscillators implemented in the sensors,
measuring the capacitance which only changes with the dialectic property of the soil around
them was proven possible [33]. The monitoring system of [53] on the other hand, consisted
of MEMS harvesters to detect pier scour, which gathered energy from environmental energy
sources to produce electricity. Further expiation of the authors about these micro energy
harvesters revealed that depending on the frequency change induced by the oscillation of
the electrode, having the rent as output was possible and the frequency was detected via a
small wireless apparatus.

There are many various transformation methods to decompose signals gathered
from different sensors. Fourier transform is one of the most common signals processing
methods in a frequency domain analysis. Fourier integrals containing the Fourier transform
represent non-periodic (arbitrarily changing) excitations [58]. Direct Fourier transform
equals the o multiplication of the Fourier transform and complex frequency response
function. To obtain a response in the time domain, inverse Fourier transform is applied.
Fourier transform is best applied to stationary and transient signals since it results in
average frequency [59]. Hilbert spectrum is also an amplitude in the frequency–time
domain; however, it is used for processing non-stationary signals as well. [50]. [60] indicates
one of the most significant features of the Hilbert transform—it could detect frequency
response nonlinear effects. Since applying the Hilbert transform to the frequency response
of a linear structure regenerates the original frequency response, any distortion could
be an indicator of non-linearity. The Frequency Domain Decomposition method [61]
identifies very close and repeated modes. [47] stated that the approach also makes the
extrapolation of dynamic parameters possible with no information about excitation in
the beginning. After calculating the continuous wavelet transform matrix from raw data,
singular values and singular vectors are the products of the singular value decomposition
used to find damping ratios, frequencies, and mode shapes [62]. Wavelet transformations
were defined as visual tools to assess signals more easily and the computation of these
transformations is a prerequisite when a signal will be modified selectively or its pattern
will be sought [63]. A wavelet function has zero mean, changes with a dimensionless
time parameter, and is located in both time and frequency domains, while the convolution
of discrete sequence with the translated and scaled status of the wavelet transformation
was defined as continuous wavelet transformation [64]. The selection of the wavelet
transformation is important. A decentralized modal analysis is engaging the sectors of
mode shapes which are computed at distinct sensor locations [65–67]. The sensors were
accelerometers in the research of [23] and mode shape amplitudes were computed using
Frequency Domain Decomposition explained above. Eigenvalue analysis is performed to
obtain mode shapes, amplitudes, and frequencies of the system. [58] noted that since this
method includes a large computational volume in a large number of degrees of freedom
systems, efficient algorithms were generated in time. Solutions for the eigenvalue problem
were categorized under vector iteration, transformation, and polynomial iteration methods.

All the studies listed in Table 1 have numerical models except for [49]. There were a
lot of studies focused on using accelerations of the bridge to identify scour. They adopted
different frequency analysis methods to interpret acceleration signals to obtain mode
shapes or frequencies and finally set a scour index to identify scoured cases. In [42], the
Mode Shape Ratio was applied to acceleration signals and utilized as an indicator of scour.
Acceleration signals of two points on the bridge were used to gather amplitudes of mode
shapes. Mode shape ratio was the ratio of these amplitudes. Energy harvesting devices
were used in [43], which produce electricity from piezoelectric material’s strain changes.
These were used to identify scour-based frequency shifts of the bridge. [46] and [18]
investigated the influence of scour at different points on eigen frequencies. To obtain mode
shapes from acceleration signals of the structure, [47] and [17] used the Frequency Domain
Decomposition method. Without information on the input motion, it was possible to
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evaluate the dynamic parameters in this method. Decentralized modal analysis enabled [23]
to derive the modal amplitudes of sensors at different locations. To detect bridge pile
scour, [54] utilized the change of the shape of horizontally-displaced modes and flexibility
deformations of a frame-type bridge. Continuous wavelet transformation of a signal was
utilized to process acceleration signals in the research of [56], [57], and [37]. By comparing
responses to the features of a base wavelet, this method could detect transient changes in
frequency signals [68]. To process acceleration signals, [19] proposed a closed-form model
derivation. Based on instantaneous amplitudes calculated for a target bridge frequency,
mode-shape squares were obtained and a damage index was computed.

Direct Monitoring-Based Studies

This section includes main properties and outcomes only direct monitoring-based
studies listed in Table 1. In Table 2, devices, sensing mechanisms, the methods of sensor
signal processing, and the target property of the direct monitoring studies. Additionally,
scour validation tests, and experiments on real bridges are tabulated here. The assess-
ments, outcomes of the studies, performance, and efficiencies are provided at the end of
this section.

Table 2. Properties of devices used in direct monitoring studies.

Study Ref. Device Type Sensing
Mechanism

Signal
Processing

Method

The Target
Property of

Signal
Processing

Scour Validation
Tests

Laboratory or
Field Tests Target Property

[45]
Unconstrained

distributed fiber
optic sensors

Ultra-weak fiber
Bragg grating

Empirical
formula

Central
wavelengths

Detecting
different signals
of set of fibers
embedded in

sand and other
fibers freely

in water

Standard
deviation value
higher than zero

for several
minutes

Scour depth
and location

[44]

Velocity sensors,
inclinometer,

wireless
transmitter,
and camera

2 Velocity
sensors

Hilbert
transform and

empirical mode
decomp.

Individual
instant

frequencies

Single-pier
laboratory
scour test

Caisson-type
and pile-group

foundation
scour tests

Rigid body
motion

[48]

Rod sensor

Piezoelectric
Polymer Film

Wavelet packet
transform and

Hilbert
transform

Instant the
natural

frequency of
the rod

Flume test
Test with

different pier
cross-sections

Scour depth

[49] Piezoelectric
Polymer Film

Fast fourier
transform

Instant natural
frequency of

the rod

Clamped to a
laboratory bench NonePlanted in sand
Implemented in

the sand
[50] Flume test Tested on 1 pier

[51]

1 Direction-
Unknown and 1

Direction-
Known

smart rocks

Ambient
magnetic field

Theory of
magnetic field

Distribution of
the magnetic

field induced by
smart rocks

Field validation
tests

Tests on the
upstream side of

a pier

Localize the
position or track
the move of the

smart rock

[52] E.magnetic
sensors

Changes in the
dielectric

permittivity of
the soil

The reflection
feature of

e.magnetic
waves

The porosity of
the soil

‘Static’ scour
simulations

Not provided Scour depth
variation

Real-time open
channel

flume tests

[55]

Unmanned
Aerial Vehicle
-based smart

rock positioning
system

3-axis
magnetometer

and global
positioning
system on

Unmanned
Aerial Vehicle

Algorithm to
locate smart
rocks using
measured
magnetic
intensities

Magnetometer
measuring

magnetic fields
before and after
the smart rock

has been
deployed

Not provided
I-44W

Roubidoux
Creek Bridge

Pier

Depth of
scour, i.e.,

vertical move of
the rock

The research listed in Table 2 mainly focused on the monitoring device they used. [49], [50], [48],
[44], and [45] aimed to measure scour depth with the sensors they used. [52] monitored
sediment deposition processes. On the other hand, [44] searched for the rigid body motions
of the piles and piers, using velocity sensors. [51] and [55] tried to locate and track the
movement of smart rocks they deployed along the scour hole. Vertical displacement of
the rock into the hole revealed the depth of scour. Direction known and unknown smart
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rocks induced the distribution of the electromagnetic field and their locations were detected
through an unmanned aerial vehicle, equipped with a locating algorithm. [45] preferred a
spiral shape since this geometry brings the sensing points of the fiber optic sensor closer
and to obtain a higher spatial resolution. Adjusting the number of rings around the piers
changes the scour monitoring range along the length. Fibers are supported by the pier only
in two points so that they can freely deform and so central wavelength differences can be
obtained clearly.

Studies that are not tabulated in Table 2 are those having a finite element model to
represent the bridge and piers. [43], [47], [17] [46], [31], [53], and [54] represented the bridge
superstructure (deck and beams) with Euler-Bernoulli beams. Springs were assumed for
the piers and the foundations beneath them. Different spring stiffnesses corresponded to
different stages of scour. In their studies, [23] and [42] also included vehicles in their finite
element models, i.e., vehicle–bridge interaction models. Vehicles were modeled as rigid
masses and were connected with springs and dampers. [31], [43], [54], and [23] also verified
their numerical approaches with experiments.

The scour indicators in the research of [43], [42] and [14], and [53] were the frequency
shifts of the bridge. While [63] used differences in the first mode shape amplitudes at pier
locations, [17] and [54] chose mode shape changes. [54] specifically focused on horizontally-
displaced mode shapes of a frame-type bridge. [23] set fitting curves to the mode shapes
and used root mean square (RMS) differences between healthy and damaged mode shapes
to indicate scour. [48], [49], and [50] detected scour through changes in the fundamental
frequencies of the polymer rods. [52] used the increasing permittivity of the soil to identify
scour; as scour developed, the sensors’ permittivity suddenly increased. Higher apparent
permittivity was related to the reduced soil density of the re-deposited sediment around
the sensor.

The outcomes of the direct monitoring studies were summarized here. [43] numerically
proved that the frequencies decreased due to a reduction in foundation stiffness in two
piers (mimicking 24.5% and 44.9% scour cases). In their experimental setup, cantilever-
based piezoelectric energy harvesting devices were used and three scour scenarios were
adopted. One device attached to the pier was successfully the detecting frequency shift
in that pier. When the device was attached to a healthy pier, it could detect the scour of
another damaged pier. For a better performance of the method, they suggested performing
an initial modal analysis of the bridge with accelerometers since this way it would be
possible to monitor obtained modal frequencies in the frequency domain of the device’s
voltage. In the research of [17], the normalized mode shape of a two-span integral-type
concrete bridge changed by around 50%, with a 20% frequency difference for scour depth
of 5 m. They noted that their approach might alleviate the known frequency-associated
problems because the method is based on using the same sensors as the ones used for
gathering the frequency. According to [46], abutments and piers had local vibration modes
and the corresponding frequencies were only sensitive to scour related with the adjacent
element. In their experiment, sensors were represented by virtual node points and located
on two abutments and one pier. The method successfully identified the local frequencies
and the location of the scour. However, they indicated that experimental validation through
a field study was needed. [42] generated research for a two-span integral-type bridge. For
5 m of scour depth, due to central pier scour, the mode shape ratios of two points on the
pier and deck changed by around 50% over the center of the foundation. The loading
sensitivity to vehicle bridge interaction responses, random errors of ambient loading were
main limitations of the study. Moreover, applying the developed approach to abutment by
using the first mode was not possible. The approach was extended to a three-span bridge
but a steady trend could not be obtained. In another study of the author, [46] noted that
as the scour got more severe, the mean-normalized mode shape values at piers decrease.
For example, pier 1 changed from 0.62 to 0.35 when 30% scour was simulated at pier 3.
The experimental setup of the study had accelerometers located at two of the piers and
the midspan of the bridge model, and 24.5% and 44.9% scour were observed. Compared
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with the healthy case, mean-normalized mode shape increased at the scoured pier while
it decreased in the other piers. Their work eliminated the need for knowledge of vehicle
excitation forces, material, and geometrical information of the bridge. However, when
multiple piers had scour at the same time, the approach was not successful. Another
numerical study by [31] showed that the permittivity and porosity of the soil increased
when scour was present. The sensors were installed along four-meter-long scour probes in
the experimental setup. One probe was for measuring the total scour at one pier while the
other one was measuring constriction scour at the middle of the channel. A length of 30 cm
scour was measured by the probe in the middle of the channel after a peak flood. When the
empirical scour formulas and the experimental scour depth were compared, overestimation
of formulas was revealed. Additionally, if the scour hole was not uniform or located at
a very specific point, they suggested that sensor response and the effects of suspended
sediments on the values of dielectric permittivity should be examined in a laboratory. In
the research of [53], a 30% reduction in the values of the first three natural frequencies was
observed compared to the scoured case. The renewable energy sources of the monitoring
devices (wind, heat, electromagnetic field, and light) were a virtue of this study. However,
the approach was only validated for particular structural types.

Furthermore, [54] showed that vertical mode shapes were not sensitive to scour, and
increasing pile heights resulted in a decrease in flexural stiffness and horizontally-displaced
mode frequencies for four scour cases relative to the healthy case. The experimental
model had 11 uniformly distributed unidirectional Integrated Electronics Piezoelectric
accelerometers. The authors concluded that in theory, the modal curvature changes and
bending deflections could be used to detect scour because of their low sensitivity to the
irregularity of the obtained mode shapes. However, the method was not reliable enough to
locate the scour in practice. [23] found that 25% and 45% of scour decreased the stiffness
of the foundation at the central and the right-side piers and reduced mode amplitudes
locally and globally. Additionally, the average change in the central pier was 7.2% and
16.8%, respectively. They used seven re-deployable accelerometers: four at the midspan
and three at the piers in their laboratory test setup. They found reductions in the mode
amplitudes at pier locations and an increase in the amplitudes of non-scoured piers. As
foundation stiffness decreased, the difference in the root means square between healthy
and scoured modes increased linearly. Their study did not require previous information
about the structural behavior and used only two sensors that were sequentially moved
along a bridge to detect mode shapes. However, the study was limited to one-dimensional
models and simplified experiments. [45] managed to locate and measure scour by adopting
the UWFBG technique that was able to sense changes in the wavelength of 0.05–0.06 nm.
This change is related to strain changes of the fibers using an empirical formula. The effects
of water buoyancy and loosening sand on signals were easily excluded. A value of 0.002
for the standard deviation indicated scour and the accuracy was ± 2.5 cm. Instability index
developed by [44] was able to rapidly evaluate bridge safety conditions. A caisson-type
experiment with 10 sensors was performed. These sensors were located at the center of
every deck panel and the cap beam of a pier, as well as 14 velocity sensors for the pile
group. Pier 1 was always in a state of instability. Before the pile started to incline too much,
the instability index changed significantly relative to its original state. Their study could
be used as an early warning system but was limited to the specific types of foundations
tested, i.e., caissons.

Moreover, [48] and [49] calculated scour height, i.e., the exposed length of the rod
calculated via a time history analysis in the frequency domain voltage induced by the
hydrodynamic effect. Sensors were tested in the sand surrounding each pier, in a laboratory.
They observed that as exposed length increased, natural frequencies diminished. The
measurements could last throughout the scour duration, and the sensors had a low cost.
To improve the accuracy, [48] emphasized the need for full-scale tests and [49] pointed
out the requirements for more realistic simulations in a flume. Later research by [50]
compared measured and observed scour depths and showed that the sensor results were
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accurate. At the same time, they revealed difficulties in the implementation of sensors in
real-life applications, and the debris effect could be a challenge for the proposed system.
Magnetic field-based algorithms were developed for locating and tracking smart rocks
moving around scour holes by [51] and [55]. [51] conducted two smart rocks—one direction-
unknown and one direction-known at a bridge pier (upstream). Tracing the vertical
displacements of the smart rock and monitoring the process of the peak scour depth
was possible. Compared to former studies, higher accuracy, validation that considered a
geomagnetic field, and calibration tests were supplied. Nevertheless, the measurement
error was enhanced because of the instability of the direction-known rock during the field
test. The reason was due to the effects of changing ambient magnetic field, caused by
environmental factors. Picking the measurement points and stations (to locate the smart
rock) close to the pier was suggested to diminish errors because the location had an intense
magnetic field due to steel reinforcement. In the study of [55], real-time monitoring was
performed for more accurate results. Before implementing the smart rock, magnetic field
and coordinates were measured by an Unmanned Aerial Vehicle. The Unmanned Aerial
Vehicle could detect the location with an error of less than 36 cm (verified by total station
measurements). In the study of [52], different permittivity values corresponded to pre- and
post-scour conditions. To test the application, six instrumented probes were installed in
the bed segment and fixed on the flume floor. As scour developed, sensors’ permittivity
increased. The higher apparent permittivity is believed to be related to the reduced soil
density of the re-deposited sediment around the sensor. It was an economical, realistic, and
real-time monitoring method, but was not efficient in saline water.

Overall, a lot of direct monitoring-based scour detection studies were focused on
developing monitoring systems such as smart rocks, piezoelectric rod sensors, image-
recognizing micro cameras, or smart probes instrumented with electromagnetic sensors.
Sensor-based studies were advantageous since they provide direct information on scour
depth. Some researchers compared their results with empirical scour formulas and showed
that the formulas overestimated scour, which made the proposed sensors more economical
solutions. Despite being more economical alternatives to traditional monitoring devices, a
couple of issues narrowed down the application fields of newly developed sensors. The
implementation of the developed sensors was problematic; some devices could not be
used after a major flood or regular maintenance was required. This might prevent the
device from being an economical solution in the long-term. Durability problems might
be overcome by improving the mechanical properties of the materials used to build the
sensor. Another issue was that some devices were proven not to be effective in taking
accurate measurements. The studies using the latest technology like unmanned aerial
vehicles equipped with three-axis high-resolution GPS units were promising. However,
the location errors need to be reduced. Developed sensors should be tested in the field to
provide more robust information about their outcomes.

Indirect Monitoring-Based Studies

This section includes only indirect-monitoring-based studies listed in Table 1. Vehi-
cle/bridge dynamic interaction models were used to test the drive-by or indirect monitoring
concept. Vehicles were generally modeled as half or quarter cars, representing one or two
axles of a vehicle. The quarter car was particularly unrealistic but its simplicity had value
in that it kept the focus on the bridge structure and did not require assumptions on axle
spacing and other vehicle properties. It should be noted that the half-car was also simplistic
but did serve to introduce some inter-axle effects that have a significant influence.

The studies addressed in the scope of this section processed the acceleration signals
due to multiple train passes. [56] used a dynamic model that considered vehicle bridge
interactions; a quarter car model of the train and two simple supported bridges with a
shared pier. Zero mean base wavelet was chosen as “Mexican Hat” and a set of wavelets
were derived from this base by modifying it with position and scale parameters. Coefficients
are results of continuous wavelet transformation and these relate the analyzing wavelet
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with the specific region in the signal—they give signs of specific frequencies that are valid in
the signal for a given time point. The existence of scour was proven by finding the difference
in wavelet coefficients between healthy and scoured cases. The dynamic model of [19]
consisted of a simple vehicle and a simple supported Euler-Bernoulli beam representing
the bridge. Acceleration of the vehicle was obtained using equations of motion and Hilbert
transform was applied to accelerations to find bridge mode shapes that were already known
to be sensitive to the damping of the structure. [19] investigated the effect of damping
on the mode shape and degree and rearranged the formula that calculates mode shape
squares using the amplitude of the Hilbert transform. The difference between scoured and
healthy cases’ mode shapes was the scour indicator. The researchers also verified their
algorithm numerically with two laboratory experiments. [37] and [57] also used wavelet
coefficients. The dynamic model of [37] first analyzed the vehicle and then computed
beam local and global mass and stiffness matrices using finite element method. The forces
were distributed to the degree of freedoms using shape functions which considered the
location of the vehicle that changed every time step. The chosen base was Morlet wavelet.
Scoured case was simulated in the model by reducing the stiffness of the bridge pier. For
each of the 10, 20, and 30% of scour cases, 200 vehicle runs were generated in the dynamic
model. Continuous wavelet transformation was applied to accelerations of both healthy
and scoured cases and the differences of the coefficients indicated scour. [18] generated a
vehicle–bridge–soil interaction model. The horizontal accelerations due to passing vehicle
were recorded from the top of the pier. They extracted mode shapes out of acceleration
measurements through an Eigen value analysis of a highway bridge. Three different levels
of soil stiffness were considered to represent dense, medium-dense, and loose sand. For all
types of soil, lateral frequencies were calculated for zero and 10-m scour.

The results of the study by [63] showed that bogie accelerations decreased due to a
30% scour case. Identifying a scoured pier was possible by using the difference between
the wavelet coefficients of the scoured case and the healthy case. Vehicle properties such
as mass and speed were considered stable. [37] detected and located scour by showing
the difference between the wavelet coefficients of the scoured case and the healthy case.
Vehicle signals were generated by an external numerical party. Batches of 20, 50, 100, and
200 vehicle crossings were tested for comprehending the reaction of the method. However,
in a low number of batches, false-positive scour indications were seen to increase. [57]
measured instant accelerations at every support and the mean value was obtained and
converted into the frequency–spatial domain using 1000 vehicle passages, and operating
deflection shapes were evaluated for 25 and 45% scour cases. [19] extracted mode shapes
from drive-by data, using the Hilbert transform. In their experimental setup, one of eight
accelerometers was located on the vehicle and seven were fixed to the bridge to gather
modal parameters. Foundation scour was able to be identified only for the fifth bridge
mode shape. They noted that high vehicle speed decreased the accuracy of the mode shape.
Near the damage location, the damage index reached a maximum value. Nevertheless,
an edge effect limited the ability to find the exact location with this approach. The effects
of operational and environmental parameters were not in their scope. Finally, taking the
arithmetical average of multiple runs was suggested. [18] investigated the response of
lateral acceleration at the top level of a pier and a 40% frequency change was obtained due
to scour. The results were only validated for the two-axle truck case.

Overall, all the studies successfully detected scour by processing acceleration signals
from batches of vehicle passes. Since the results of continuous wavelet transformation
were in both spatial and frequency domains, locating scour and having detailed structural
modal information was possible. Both wavelet transformation and operating deflection
shapes methods were proven to be more reliable in locating the scour than modal analyses.
It should be highlighted that when working with the continuous wavelet transformation, a
low number of vehicles per batch leads to an increase in the false-positive scour indications.
Generally, these types of research required fewer sensors, had a lower power requirement
compared to direct monitoring, and did not require underwater inspections. These features
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make this type of monitoring more economical than the direct type. The possibility of
monitoring the bridge under regular service conditions without special monitoring devices
and causing no service interruptions were additional advantages. All these properties
suggest that indirect monitoring is a highly promising approach for scour investigations of
bridges. Having more field tests will help verify studies with real-life applications. Studies
can be expanded by considering variable vehicle properties such as speed and mass,
different types of vehicles, and sensitivities to environmental conditions, and performing
more detailed numerical analyses.

2.1.2. Cluster 2—Machine Learning-Based Research

This section briefly introduces commonly used machine learning algorithms. The
introduction is followed by detailed information about the research noted in Table 3; char-
acteristics of the input data used for training or validating, main and assisting algorithms
used, and the scour property sought. Studies were mainly focused on estimation of the
scour depth around the piers using machine learning algorithms. The characteristics of
black-box models and their prediction capabilities enabled machine learning algorithms
very handy tools for scour –damage formed by various parameters which require detailed
investigations. Introducing the basics of some of the commonly-used machine learning
algorithms and the optimization algorithms for hyperparameter selection might ease un-
derstanding the studies given in this section.

Before training the main algorithm, the majority of the machine learning algorithms
specify a group of hyperparameters, whose determination could remarkably affect the
efficiency of the resultant model [69]. Optimization algorithms are also used for assisting the
search for the value of a parameter that is involved in two different predictions/calculations
for the same structure or for searching the optimal hidden neuron number. Gradient-
based and heuristic methods are two main structural optimization techniques [70]; in
gradient-based ones, the direction of the search, i.e., the gradient, has to be described before
seeking the best solution. However, gradient-based approaches might get stuck the in local
optimum before they access the global optimum, execute insufficient in coping with the
structures with nonlinear, hidden, and impermanent constraints, and a few of them include
detailed optimization constraints [71,72]. Therefore, for overcoming such limitations in
complex problems, heuristic methods were introduced. By solving actual problems of life
simply, quickly, and in an applicable and efficient way, the utilization, requirement, and
prestige of heuristic techniques have quickly boosted [70]. Some of the well-known heuristic
optimization methods applied to civil engineering problems are the genetic algorithm,
ant colony algorithm, particle swarm optimization, and simulated annealing [73]. First,
because of being simple and easy to work with and having minimum requirements, genetic
algorithms have been preferred extensively to solve numerous problems by imitating
basic rules of evolution and natural genetic science [74]. These algorithms can solve the
problem quickly and are handy for extensive problems, nevertheless there is no guarantee
for the best solution in the end of the analysis [75]. Secondly, art colony algorithms are
the most frequently utilized to solve NP-hard problems: for these kinds of problems,
well-known algorithms assuring to detect an optimal result contain worst case scenario
case convolution [76]. Art colony algorithms are used to optimize construction time and
cost [77], task scheduling [78], and design problems [79]. Furthermore, in particle swarm
optimization, the current location of every particle is updated by a vector of velocity,
according to the social attitudes of individuals; when the swarm readjusts itself to the
ambient by reappearing in the advantageous areas that were explored before [80].

An artificial neural network includes a couple of units of neurons (or layers, joints),
one to three inexplicit (hidden) neuron layers, and a last unit of resultant neurons [81].
These algorithms do not need to go through lots of statistical training; however, they have
some limitations such as a high volume of network training calculation, and the necessity
of a preprocess for independent variables or predictor [82]. Still, they can help reduce
the uncertainties of the problem. They eliminate the need for a clear description of the
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physical links between bridge scour and numerous affects and they provide better results
than empirical formulations owing to small errors and correlation coefficients [22]. Back
propagation neural network is defined as a method that regularly modifies the weights of
the connections of the network to make the difference between the absolute output vector
and requested output vector minimum [83]. It is a monitor-learning technique which uses
gradient descent and multivariate linear regression for recognition of change with the
weight of connection in the network [84]. In many studies that adopted back propagation
neural network, the accuracy levels of empirical scour formulas were increased [85]. Multi-
variate linear regression seeks for the relationship between the variable to be analyzed and
its independent variables, and applied for prediction purposes [86]. Trial-error method [87]
and beetle antennae search [87,88] are generally preferred when the hyperparameters of
back propagation neural network models are tuned. Support Vector Machines by Vladimir
Vapnik navigate input vectors from primary feature space to a feature space which is
multi-dimensional via a Kernel function [89]. Support Vector Machines were derived from
statistical learning theory and are considerably new and encourage learning to sort func-
tions to recognize the pattern or to operate an evaluation for a function within a regression
problem [90]. Variations of cross-validation such as Leave One Out and k-Fold, Xi-Alpha
bound, generalized comparative Generalized Kullback–Liebler Distance, approximate span
bound, and Radius-margin bounds are some of the successful performance measures to
pick hyperparameters of a Support Vector Machine model; except for Vapnik Chervonenkis
(VC) bound, which failed to provide and efficiently estimate the parameters [91]. Support
Vector Machines can deal with various feature spaces and can categorize the data with no
structure or semi-structure (i.e., image and texts) very well; nevertheless, they require high
computation of complicated data, are bad at processing noisy input, and comprehending
the resulting model, the effect, and weights of the variables is not easy [82]. Compared
with the conventional algorithms based on gradient, extreme learning machines learn
more quickly and eliminate some challenges of stating a criterion to stop, rate of learning,
duration of learning, and local minima [88]. Their fundamental benefit is reducing the
volume of calculation, which is particularly related to working with the templates within
a high dimensional space [89]. Differential evolution algorithms [92], statistical learning
theory [93], and particle swarm optimization [94] are proven to be effective in optimizing
hyperparameters of the extreme learning machines. Gradient tree boosting aims to find a
link which is capable of navigating the input to output to minimize the difference between
the loss function for the pre-defined and anticipated value [95]. Although the process is
time-consuming, Bayesian hyperparameter optimization is a method to set the parameters
of a gradient tree boosting model and grid search; while GPU acceleration provided more
speed in the selection process [96]. Another algorithm providing successful applications for
scour estimation [97,98] is group method of data handling, a procedure which organizes
itself through models created step-by-step, based on their performance assessment on
a group of multi-input–single-output data couples [99]. Grid search is one of the most
common methods to set parameters of group method of data handling models. [100–102].
Finally, ANFIS is a composite neuro-fuzzy system [103] and is the combination of neural
networks and fuzzy logic methods; internal parameters are learnt off-line, such as neural
network does and acts fuzzy logic system when it is operated [104]. Grasshopper opti-
mization algorithm [105] and cultural algorithm [106] are utilized to set parameters of
ANFIS models.
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Table 3. Properties of Machine Learning studies—Cluster 2.

Study
Reference

Quantity of
Data

Training/Validation
Percentages Base Algorithm Assisting Ap-

proach/Algorithm
Compared Algo-
rithms/Existing

Formulas

Most Significant
Parameters
Considered

Target

[107] Not provided

Not provided

Convolutional
Neural Network Not provided

Empirical
Formulas:

- 65-1, 65-2 of
China

- Melville-
Sheppard

-MBW
- HEC-18

Velocity of flow
Depth of water
Diameter of the

sediment
Pier width

Local scour
depths around

piers[108]

11 sets of
field and

laboratory data
(scour depth

measurement-
bathymetric data
measured with

point laser
sensors)

Multiple linear
regression

method

The cost
function for

determination of
the accuracy of

the model

[109]

99 examples of
relative scour

depths of a 0.7 m
deep flume

70% Training
30% Validation

Kstar model
with five hybrid

algorithms:
- Weighted

Instance Handler
Wrapper-Kstar

Pearson
correlation
coefficient

(to pick the most
relevant input
parameters)

Empirical
equations of Dey
and Barbhuiya,

[6] and
Muzammil [7].

Relative Flow Depth
Excess Abutment
Froude number

Relative Sediment
Size

Relative
Submergence

Relative scour
depth around

abutments

[110]

122 laboratory
datasets of scour

depths. An
experiment in a
sand bed flume
and measured
with a vertical
point gauge.

Reduced Error
Pruning Tree
base classifier

- Mean Absolute
Error

- Root Mean
Squared Error

- R (Correlation
Coefficient)

- Taylor diagram
(For fitting and

performance
optimization)

- Artificial
Neural

Networks
- Support Vector

Machine
- M5P

- Reduced Error
Pruning Tree

algorithms and
2 empirical

formulas of the
Florida

Department of
Transportation
and Hydraulic

Engineering
Circular No. 18

(HEC-18).

Pile cap width
Thickness

Column width

Local scour
depth at

complex piers

[111]

476 field pier
scour depth

measurements
for 4 different

geometric shapes
of piers.

80% Training
20% Testing

- The Extreme
Learning
Machines
regression

method
- The

self-adaptive
version of

Differential
Evolution

- Root Mean
Squared Error

- Mean Absolute
Relative Error

- Support Vector
Machine

- Artificial
Neural

Networks

Not provided
Pier dimensions
Sediment mean

diameter

Scour depth
around piers

[112]

321 experimental
datasets of

flumes, scour
depths measured

with a
point gauge

75% Training
25% Testing

Extreme
Learning
Machines

Different sets
of input

combinations
were used to find

the most
effective

variables.

- Support Vector
Machine

- Artificial
Neural

Networks

Critical and avarage
flow velocity

Flow depth Median
diameter of particles

Pile diameter
Number of piles

normal to the flow
Distance between

adjacent piles in line
with the flow

Scour depth
around piers

[113]
476 field pier
scour depth

measurements

80% Training
20% Testing

Extreme
Learning
Machines

Dimensional
analysis to detect

effective
dimensionless

parameters

Existing
regression based

models
Richardson &

Davis [114]
Johnson [115]

Shen [116]
Laursen and

Toch [13]

Ratio of pier width to
flow depth

Ratio of pier length to
flow depth

[117]

104 sets of
experiments to
measure scour
depths with an
electronic total
station device

Not provided

- Gradient Tree
Boosting

- Group Method
of Data

Handling
technique.

Coefficient of
Determination as

to the
performance

index

Support Vector
Machine
ANFIS

Particle Swarm
Optimization-
Based Support

Vector Machine.

For clear water scour:
Sediment size and

quantity
Velocity

Flow time

The scour
depth of
circular,

rectangular
round-nosed,

and
sharp-nosed

piers
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Table 3. Cont.

Study
Reference

Quantity of
Data

Training/Validation
Percentages Base Algorithm Assisting Ap-

proach/Algorithm
Compared Algo-
rithms/Existing

Formulas

Most Significant
Parameters
Considered

Target

[118]

237 pier
scour depth

measurement
datasets taken

with echo
sounder

Not provided

Evolutionary
Radial Basis

Function Neural
Network
model =

Radial Basis
Function Neural

Network
and

Artificial Bee
Colony

Not provided

Genetic
Programming

Back-
propagation

neural network
Regression Tree
Support Vector

Machine
- HEC18

-Mississippi’s
method

Van Wilson [119]
Laursen and

Toch [13]
Froehlich [120]

Pier shape factor
Pier width

Skew of the pier to
approach the flow

Velocity of the flow
Depth of flow

Grain Size of The Bed
Material (d50)

Gradation of bed
material

Scour depth

[121]
170 data samples

of clear-water
scour depths

Not provided

Support Vector
Regression-

based
model

Filter and
wrapper feature

selection
strategies (for
performance

improvement)

HEC18
Richardson &

Davis [114]
Melville &

Coleman [122]
Ataie-Ashtiani

[123]

Under three groups:
Pier geometry
Flow property

Material
characteristic

of the riverbed

Local scour
around

complex piers

[124]

403 sets of
upstream and 61

sets of field
downstream
scour depth

measurements

80% Training
20% Validation

Nondominated
Sorting Genetic

Algorithm

Support Vector
Machine for

increasing the
pool of field data

HEC18
Froehlich [120]

Gene expression
programming

model

Pier width
Approaching flow

depth
Median grain size,

Sediment gradation
coefficient

Gradation of bed
material

Critical scour
depth

[85] 232 field data 66% Training
34% Testing

Deep Neural
Network

Back-
Propagation

Neural Network

Froehlich
Equation [120]

Froehlich Design
HEC-18

HEC-18/Mueller
Equation (1996)

Back-
Propagation

Neural Network

- Not provided
Local scour

around bridge
piers

[125]
175 experimental

datasets for
scour depth

Not provided

Sequential
quadratic

programming
optimization
Least Square

Support Vector
Machine

Sequential
quadratic

programming to
seek the optimal

coefficients

- HEC18
- Melville and
Coleman [122]

- Ataie-Ashtiani
[123]

Flow direction
Pile-cap width

Covering soil height
Pier length

Critical velocity of
sediment movement

Flow velocity
Median grain size

Flow depth
River bed material
Standard deviation

Scour depth of
a Bridge with

a complex pier

One of the most important features of the studies is the characteristics of the data
such as the quality, source, and properties. Details of the input data of the studies in
Table 3 were noted here. [107] only noted that the training data source was both field
and laboratory measurements without providing further details. They also indicated that
the verification data belonged to Hangzhou Bay Bridge in China. The input data for the
model training and validation of [108] was scour depth measurements of bridge piers.
Data were gathered from the two following sources: the field data were collected from
three bridges in China—Mingchu, Silo, and Houfeng bridges; while the second source
was laboratory experiments—two sets of laboratory tests were obtained from J. Sterling
Jones Water Conservancy Laboratory of Turner-Fairbank Highway Research Center and the
Colorado State University. Additional laboratory tests were also used from related studies.
In the end, they obtained a total of 12 sets of measurements. Four sets of parameters
were used for training the model. These parameters (data labels) included flow velocity,
water depth, sediment size, and pier width. Relative scour depth data that [109] used
was obtained from flume experiments. At the technology institute of India, 295 runs were
performed in the hydraulic laboratory for three different abutment shapes. The dimensions
of the flume were 20m (longitudinal), 0.7m (depth), and 0.9m (width). [110] obtained
experimental local scour depth measurements of complex piers from National Hydraulic
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Research Institute of Malaysia and Sharif University of Technology in Iran. The laboratory
models scaled existing bridges of Malesia. The tests were performed under clean water
conditions on various complex piers with different geometric parameters such as plan
dimensions of the pier and the piles, water depth, distance of the pile to the edge of the pile
cap, flow direction, the distance between piles, and pile cap elevation [126]. Experimental
setups were such adjusted that the effects of flow depth, sediment size, and contraction on
piers were eliminated. Data sources of [111] were from field measurements of 14 distinct
bridges in Canada, Pakistan, and India. Four different data labels were available—sharp,
round, cylindrical, and square-shaped bridge piers’ scour depth measurements. There
were also sub-labels of this scour depth data—narrow, wide, and intermediate-sized piers’
measurements. Finally, the sub-labels were grouped under five dimensionless categories
of scour depth to flow depth ratio, Froude number, median diameter to flow depth ratio,
pier length to flow depth ratio, standard deviation of bed size grain diameter, and pier
diameter to flow depth ratio. Later in another study, [112] collected the input data from
three different studies. Two of the studies performed the experiments in a four-meter-long
flume and controlled the mean sediment size (0.98 mm) and pipe diameters (0.016m). The
measurements were taken for various pile plan layouts (1:2, 4:1 etc.). The third study
of data resource used a smaller sediment size (0.80 mm) and pipe diameters (0.06m and
0.041m) but a longer flume (46m). In another study, [109] used the same data as they used
in 2017 [113].

Moreover, the data set of [117] included both scour conditions of clear-water and
live-bed. The effect of the independent parameters flow depth, velocity of approach,
duration of flow, median sediment size was investigated on predicting scour. There were
also four different data labels of sharp-nosed, round-nosed, rectangular, and circular piers’
scour depth measurements. [118] adopted field scour depth measurements gathered from
79 sites in 17 states of USA for prediction of equilibrium scour depth. They excluded
scour in group-type bridges and cohesive bed material, moderate, and substantial debris
effects. The parameters considered were the width and the shape factor of the pier, skew
of the pier to approach flow, size of the grain in the bed, gradation of bed material, and
depth and velocity of the flow. [121] used laboratory data which includes four datasets
from the Hydrotech Research Institute of National Taiwan University. Complex pier
foundation scour measurements were taken in a sand bed. Parameters considered were
soil-covering height, median grain size, standard deviation of river bed material, radio of
the mean velocity of the sediment to the critical velocity, flow depth, pier width which
is perpendicular to the flow direction, the width of the pile cap, and pile cap-pier face to
face distance. [124] combined two sets of field data—from bridge scour data management
system (BSDMS) and FHWA documentation by USGS. Departing from the information
of different direction of vortices (and therefore scour developments) in upstream and
downstream, their first data label was location. Velocity and flow depth of approach,
median grain size, gradation of sediment, and scour depth were other data labels. To
improve the overall quality of the input, data with missing location or other properties
listed above were excluded. [85] picked 232 upstream scour length measurements from
another study [127] that collected scour observations in 79 different rivers several states of
USA. Data included skew of the pier to approach flow, pier shape factor, pier dimensions,
flow velocity and depth, grain size, and gradation of bed material. Only raw data were
used to obtain a better performance. In testing the dataset, root mean square values of both
neural networks in the scope of the research were compared to obtain the ideal values for
various parameters defined by user.

In terms of the accuracy level of predictions made, [107] and [108] stated that their
predictions are in good agreement with the measurements, with only one dataset outside the
50% error line. They stated that their approach was more effective in terms of accuracy when
compared to empirical formulas such as M/S, MBW, HEC-18, 65-1, and 65-2. According
to their sensitivity analysis, [108] stated that the most effective parameter in predicting
scour was pier width. They also suggested an increase in the quantity of training data
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to predict scour depths more accurately. [109] investigated scour occurrence for different
shapes of the abutment. They noted that, for all shapes of the abutment, the most effective
parameter was the Excess Abutment Froude number (Fe). Moreover, for vertical-wall-
shaped abutments, the most effective parameter combination contained Excess Abutment
Froude number, relative sediment size (d50/l, where “d50” is the sediment size and “l”
is the dimension of the abutment which is perpendicular to the flow), and relative flow
depth (h/l). Finally, for semicircular and 45◦ wing shape abutments, the combination
of Excess Abutment Froude number and relative sediment size was the most effective
parameter combination in scour prediction. The weighted instance handler wrapper-
Kstar for vertical-wall abutments, random committee-Kstar for semicircular walls, and
45◦ wing wall were the best algorithms among five novel hybrid algorithms studied.
Their algorithms outperformed the empirical formulas of Dey and Barbhuiya [6] and
Muzzammil [7]. The hybrid approach of [107], based on a random subspace meta classifier,
resulted in the pile cap level being the most sensitive factor in the prediction of complex
piers’ local scour depths. The reduced error pruning tree base classifier resulted in similar
root mean square errors to artificial neural networks, support vector machines, and M5P.
The predictions obtained through reduced error pruning tree and other machine learning
algorithms were significantly better than the scour depths computed with the empirical
models of FDOT and HEC-18. Both [109] and [110] were able to increase the prediction
power of standalone algorithms with the hybrid algorithms they proposed. [111] proposed
a self-adaptive evolutionary extreme learning machine to predict scour around bridge piers.
They indicated that the ratio of the median diameter of particle size to flow depth, the
ratio of pier length to flow depth, and the ratio of pier width to flow depth were the most
effective parameters. Self-adaptive evolutionary extreme learning machines outperformed
artificial neural networks and support vector machines. In 2018, [112] proposed 25 models
to predict scour around coastal and hydraulic pile groups. The extreme learning machine
model generated had the most optimal input parameter combination and provided better
results than the artificial neural networks and support vector machines considered. They
also identified that pier diameter affected the predictions the most. Later in 2019, it was
shown that extreme learning machines were one of the most effective heuristic optimization
algorithms for non-linear systems [113]. The sensitivity analysis included 31 models with
different input combinations [113]. Their approach outperformed the empirical equations
of Richardson and Davis [114], Johnson [115], Shen [116], and Laursen and Toch [13]. They
recommended that the proposed methodology be improved by utilizing other artificial
intelligence methods such as gene expression programming, and the group method of
data handling.

Furthermore, [117] generated a model based on gradient tree boosting to predict
scour depth around piers with different geometries: rectangular, circular, sharp-nosed, and
round-nosed. In conclusion, gradient tree boosting was more accurate and effective than
the group method of data handling for all shapes. It was noted that the model worked
best with the rectangular form. [118] proposed a model using an evolutionary radial basis
function neural network and it outperformed not only empirical HEC-18, Mississippi’s,
Laursen and Toch’s (1956), and Froehlich’s methods, but also other algorithms being com-
pared (back-propagation neural network, genetic programming, M5 regression tree, and
support vector machine). They suggested future studies consider the efficiency, duration
required for computation, stability of artificial intelligence methods, and techniques in
between complements. In their research based on support vector regression, [121] obtained
better predictions when support vector regressions are used together with algorithms for
selecting features. The variable neighborhood search algorithm had the best performance
when compared with sequential forward selection and sequential backward selection for
parameter selection. The proposed method also made more accurate scour depth predic-
tions compared to HEC18, Melville and Coleman [122], and Ataie-Ashtiani [123]. They
recommended a future study of the support vector regression and other Kernel Functions
together. Nondominated sorting genetic algorithm-based method of [124] outperformed
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both hydraulic engineering circular no. 18 and Froehlich equations and gene expression
programming. The authors highlighted that their approach was as simple as empirical
formulas. They noted that the failure rates should be decreased. They also suggested
modifying the function and picking field data and other independent parameter combi-
nations more explicitly. [85] found out that ignoring randomly selected neurons (dropout
layers) on deep neural networks could not level up accuracy level significantly. When the
prediction values were compared with the measurements, it was seen that both deep neural
networks and back-propagation neural networks performed equally well in predicting
the scour depth. Additionally, predictions of deep neural networks outperformed four
empirical formulas listed in Table 3; root mean square errors were 2-4 times better. [125]
proposed an algorithm of sequential quadratic programming optimization and managed to
increase the accuracy of the existing formulas of HEC18, Melville and Coleman [122], and
Ataie-Ashtiani [123] up to 2–4 times.

Overall, the majority of the data used in the studies reviewed under the machine
learning-based cluster were used for training (to feed machine learning algorithms) and the
rest was kept for validation. Selecting the training data correctly by pre-processing before
applying the algorithm-based models helped the models approach accurate predictions
more quickly. The studies provided root mean squared error, mean square error, coefficient
of determination (R2), or cumulative sums of orthogonal distance indexes to compare their
approaches with frequently used machine learning algorithms and/or empirical scour
formulas. The main objective was to generate a new model which provides more robust
scour depths than empirical scour formulas and/or some frequently used machine learning
algorithms. These models adopt one or more (hybrid) algorithms and heuristic parameter
selection algorithms for better predictions and computation time. [74] stated that the usage,
demand, and reliability of heuristic techniques have quickly boosted their use because
these solve actual problems of life simply, quickly, efficiently, and in an applicable way.
Of the studies summarized here in this review, it can be seen that those with sensitivity
analysis, i.e., following an optimization method for hyperparameter selection, resulted
in faster and more accurate predictions of scour depth. Particle swarm optimization and
artificial bee colony were two of the methods used in the studies presented here. With such
optimization methods, it was easier to identify the most effective parameter or combination
of parameters influencing the prediction. One should highlight that this parameter was
not fixed: studies resulted in different conclusions about “the most effective parameter”
because their training data, i.e., input was different from each other. Since all the studies
claimed to make better predictions than empirical formulas, a comparison in terms of
outperforming frequently used, (i.e., reference) algorithms can be meaningful. Specifically,
the researchers adopting extreme learning machines, gradient tree boosting, radial basis
function neural networks, and reduced error pruning tree algorithms, were successful in
performing better than reference algorithms such as artificial neural networks and support
vector machines.

2.2. Synthesis of the Results

This review consists of the detail investigation of 36 studies, represented in two
clusters (one cluster contains both direct and indirect conventional monitoring-based
studies) which were effective in detecting scour damage either by processing vehicle
signals, signals directly gathered from the bridge, or estimating scour depth using machine
learning algorithms. The synthesis of their results was provided below.

2.2.1. Cluster 1—Synthesis of Conventional Monitoring-Based Studies to Detect Scour

First, sensors used for direct monitoring have been improved with developing tech-
nology. The device types were not only limited to inclinometers and velocity sensors, but
also micro cameras, wireless transmitters, fiber-optic sensors, and even Unmanned Aerial
Vehicle-deployed smart rocks. Studies with alternative sensing mechanism sensors in
this review processed the signals gathered via bed-level image recognition, instantaneous
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frequencies, distribution of magnetic field, and porosity of the soil. Although these types of
devices provided direct information, and real-time monitoring of scour and eliminated the
need for underwater inspections, monitoring also involved some challenges. These were
implementation difficulties and maintenance requirements that might be overcome through
the better design of the devices. Additionally, debris and saline water were challenges
in some cases. Direct monitoring-based studies which use traditional sensors such as
accelerometers and global positioning system devices were able to detect the presence of
scour through changes in frequency and mode shape. These occurred due to the decrement
in the foundation stiffness, as a consequence of scour. Direct monitoring-based studies
were advantageous since they did not require knowledge of vehicle forces, or detailed
geometrical and mechanical information about the bridge. Alternatively, energy harvesting
devices are being increasingly utilized as monitoring sensors. They can detect frequency
changes and produce energy out of this vibration at the same time. They have clear ad-
vantages over regular accelerometers in terms of the source of the energy. However, there
were limitations of loading sensitivities and possible errors in the presence of multiple
scoured piers.

Second, it was possible to identify and locate different percentages of scour by process-
ing the vehicle signals. In these studies, (i.e., indirect monitoring-based research) signals
due to multiple vehicle passages were processed to obtain mode shapes or frequencies, or
scour was indicated by the differences between operating deflection shapes or continuous
wavelet transform coefficients between healthy and scoured cases. Mode shape ratio meth-
ods were used in many studies and were able to detect scour successfully. Very significant
changes in the mode shape ratios were observed for the scoured stages. Yet, the sensitivities
due to vehicle load and random errors due to the variability of the ambient loading are
issues that needed to be resolved. Specifically, the mean normalized mode shape method
of [63] was successful in detecting scour at a single pier. However, it was not an efficient
solution when multiple piers were scoured at the same time. Investigating multiple scours
of bridge piers through numerical methods could be a future study. Furthermore, frequency
domain decomposition was a frequently applied method to process acceleration signals
and can be applied to gather modal properties and frequencies of the bridge. Hilbert Huang
transform was another signal analysis method proven to be efficient in decomposing ac-
celeration signals to mode functions. However, due to the very short duration of the data
segment, there is insufficient data. Scour detection based on mode shape methods appeared
to be more robust. Some of the leading advantages of these indirect monitoring are the
need for fewer sensors, eliminating the need for special monitoring devices, underwater
examinations, and the occasional challenges of placing sensors. Furthermore, the service
conditions of the infrastructure were not interrupted and the instrumenting vehicle was
a more economical option than direct monitoring. On the other hand, the most common
limitations were changing vehicle parameters (such as mass and speed) and the need for
large numbers of vehicle runs.

It was highly recommended for all studies with numerical models and algorithms
developed needed to be applied in full-scale bridge tests to be deemed fully effective.
Another improvement for the studies could be upgrading the mathematical models to two-
or three-dimensional ones. Both applying more field tests and replicating mathematical
models could address the limitations of the studies to specific types of structures. The
future studies then can be better and more clearly defined.

2.2.2. Cluster 2—Synthesis of Machine Learning-Based Studies

Machine Learning-based studies reviewed in the scope of this study aimed to find local
or total scour around bridge piers or abutments. The models of the studies were trained
with laboratory or field data. The newly proposed algorithms include convolutional neural
network, multiple linear regression method, K-Star model, reduced error pruning tree
base classifier, extreme learning machines, gradient tree boosting, group method of data
handling, ERBNN model, support vector regression-based model, non-dominated sorting
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genetic algorithm, Gaussian processes regression, relevance vector machines, deep neural
network, and LS-support vector machine. The studies either compared their approach with
other algorithms or with existing empirical formulas. The most frequently used reference
algorithms for comparison with the newly proposed algorithms were artificial neural
networks, support vector machine, gradient tree boosting, group method of data handling,
and extreme learning machines. Most of the time, the proposed algorithms outperformed
these well-known ones, which is the main target of designing new models. The reference
empirical formulas were 65-1, 65-2, Melville-Sheppard, MBW, HEC-18, Laursen & Toch [13],
and Froehlich [120], Mississippi’s method Van Wilson [119], and Ataie-Ashtiani [123]. All
the proposed algorithms performed better in predicting scour than the traditional equations
mentioned above. The proposed models either improved the empirical formulas’ accuracy
levels (one study) or developed a model adapting one algorithm (four studies) or hybrid
models (nine studies) for a more successful prediction of scour depth around the piers.

Some of the challenges faced were the need to decrease the duration of computation,
picking the field data, and the combination of independent parameters more explicitly. It
was usually stated in the discussions that more training data would improve the accuracy
levels of the studies in future work. Another work to improve the accuracy level could be
the contributions of different algorithms to the hybrid models. Improving the accuracy of the
scour height estimations will result in more economical solutions by preventing overdesigns.
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