710 research outputs found

    Image data hiding

    Get PDF
    Image data hiding represents a class of processes used to embed data into cover images. Robustness is one of the basic requirements for image data hiding. In the first part of this dissertation, 2D and 3D interleaving techniques associated with error-correction-code (ECC) are proposed to significantly improve the robustness of hidden data against burst errors. In most cases, the cover image cannot be inverted back to the original image after the hidden data are retrieved. In this dissertation, one novel reversible (lossless) data hiding technique is then introduced. This technique is based on the histogram modification, which can embed a large amount of data while keeping a very high visual quality for all images. The performance is hence better than most existing reversible data hiding algorithms. However, most of the existing lossless data hiding algorithms are fragile in the sense that the hidden data cannot be extracted correctly after compression or small alteration. In the last part of this dissertation, we then propose a novel robust lossless data hiding technique based on patchwork idea and spatial domain pixel modification. This technique does not generate annoying salt-pepper noise at all, which is unavoidable in the other existing robust lossless data hiding algorithm. This technique has been successfully applied to many commonly used images, thus demonstrating its generality

    Preserving privacy in edge computing

    Get PDF
    Edge computing or fog computing enables realtime services to smart application users by storing data and services at the edge of the networks. Edge devices in the edge computing handle data storage and service provisioning. Therefore, edge computing has become a  new norm for several delay-sensitive smart applications such as automated vehicles, ambient-assisted living, emergency response services, precision agriculture, and smart electricity grids. Despite having great potential, privacy threats are the main barriers to the success of edge computing. Attackers can leak private or sensitive information of data owners and modify service-related data for hampering service provisioning in edge computing-based smart applications. This research takes privacy issues of heterogeneous smart application data into account that are stored in edge data centers. From there, this study focuses on the development of privacy-preserving models for user-generated smart application data in edge computing and edge service-related data, such as Quality-of-Service (QoS) data, for ensuring unbiased service provisioning. We begin with developing privacy-preserving techniques for user data generated by smart applications using steganography that is one of the data hiding techniques. In steganography, user sensitive information is hidden within nonsensitive information of data before outsourcing smart application data, and stego data are produced for storing in the edge data center. A steganography approach must be reversible or lossless to be useful in privacy-preserving techniques. In this research, we focus on numerical (sensor data) and textual (DNA sequence and text) data steganography. Existing steganography approaches for numerical data are irreversible. Hence, we introduce a lossless or reversible numerical data steganography approach using Error Correcting Codes (ECC). Modern lossless steganography approaches for text data steganography are mainly application-specific and lacks imperceptibility, and DNA steganography requires reference DNA sequence for the reconstruction of the original DNA sequence. Therefore, we present the first blind and lossless DNA sequence steganography approach based on the nucleotide substitution method in this study. In addition, a text steganography method is proposed that using invisible character and compression based encoding for ensuring reversibility and higher imperceptibility.  Different experiments are conducted to demonstrate the justification of our proposed methods in these studies. The searching capability of the stored stego data is challenged in the edge data center without disclosing sensitive information. We present a privacy-preserving search framework for stego data on the edge data center that includes two methods. In the first method, we present a keyword-based privacy-preserving search method that allows a user to send a search query as a hash string. However, this method does not support the range query. Therefore, we develop a range search method on stego data using an order-preserving encryption (OPE) scheme. In both cases, the search service provider retrieves corresponding stego data without revealing any sensitive information. Several experiments are conducted for evaluating the performance of the framework. Finally, we present a privacy-preserving service computation framework using Fully Homomorphic Encryption (FHE) based cryptosystem for ensuring the service provider's privacy during service selection and composition. Our contributions are two folds. First, we introduce a privacy-preserving service selection model based on encrypted Quality-of-Service (QoS) values of edge services for ensuring privacy. QoS values are encrypted using FHE. A distributed computation model for service selection using MapReduce is designed for improving efficiency. Second, we develop a composition model for edge services based on the functional relationship among edge services for optimizing the service selection process. Various experiments are performed in both centralized and distributed computing environments to evaluate the performance of the proposed framework using a synthetic QoS dataset

    Error resilient image transmission using T-codes and edge-embedding

    Get PDF
    Current image communication applications involve image transmission over noisy channels, where the image gets damaged. The loss of synchronization at the decoder due to these errors increases the damage in the reconstructed image. Our main goal in this research is to develop an algorithm that has the capability to detect errors, achieve synchronization and conceal errors.;In this thesis we studied the performance of T-codes in comparison with Huffman codes. We develop an algorithm for the selection of best T-code set. We have shown that T-codes exhibit better synchronization properties when compared to Huffman Codes. In this work we developed an algorithm that extracts edge patterns from each 8x8 block, classifies edge patterns into different classes. In this research we also propose a novel scrambling algorithm to hide edge pattern of a block into neighboring 8x8 blocks of the image. This scrambled hidden data is used in the detection of errors and concealment of errors. We also develop an algorithm to protect the hidden data from getting damaged in the course of transmission

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images

    A digital signature and watermarking based authentication system for JPEG2000 images

    Get PDF
    In this thesis, digital signature based authentication system was introduced, which is able to protect JPEG2000 images in different flavors, including fragile authentication and semi-fragile authentication. The fragile authentication is to protect the image at code-stream level, and the semi-fragile is to protect the image at the content level. The semi-fragile can be further classified into lossy and lossless authentication. With lossless authentication, the original image can be recovered after verification. The lossless authentication and the new image compression standard, JPEG2000 is mainly discussed in this thesis

    Compression Technique Using DCT & Fractal Compression: A Survey

    Get PDF
    Steganography differs from digital watermarking because both the information and the very existence of the information are hidden. In the beginning, the fractal image compression method is used to compress the secret image, and then we encrypt this compressed data by DES.The Existing Steganographic approaches are unable to handle the Subterfuge attack i.e, they cannot deal with the opponents not only detects a message ,but also render it useless, or even worse, modify it to opponent favor. The advantage of BCBS is the decoding can be operated without access to the cover image and it also detects if the message has been tampered without using any extra error correction. To improve the imperceptibility of the BCBS, DCT is used in combination to transfer stego-image from spatial domain to the frequency domain. The hiding capacity of the information is improved by introducing Fractal Compression and the security is enhanced using by encrypting stego-image using DES.  Copyright © www.iiste.org Keywords: Steganography, data hiding, fractal image compression, DCT

    Robust watermarking for magnetic resonance images with automatic region of interest detection

    Get PDF
    Medical image watermarking requires special considerations compared to ordinary watermarking methods. The first issue is the detection of an important area of the image called the Region of Interest (ROI) prior to starting the watermarking process. Most existing ROI detection procedures use manual-based methods, while in automated methods the robustness against intentional or unintentional attacks has not been considered extensively. The second issue is the robustness of the embedded watermark against different attacks. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this thesis addresses these issues of having automatic ROI detection for magnetic resonance images that are robust against attacks particularly the salt and pepper noise and designing a new watermarking method that can withstand high density salt and pepper noise. In the ROI detection part, combinations of several algorithms such as morphological reconstruction, adaptive thresholding and labelling are utilized. The noise-filtering algorithm and window size correction block are then introduced for further enhancement. The performance of the proposed ROI detection is evaluated by computing the Comparative Accuracy (CA). In the watermarking part, a combination of spatial method, channel coding and noise filtering schemes are used to increase the robustness against salt and pepper noise. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER). Based on experiments, the CA under eight different attacks (speckle noise, average filter, median filter, Wiener filter, Gaussian filter, sharpening filter, motion, and salt and pepper noise) is between 97.8% and 100%. The CA under different densities of salt and pepper noise (10%-90%) is in the range of 75.13% to 98.99%. In the watermarking part, the performance of the proposed method under different densities of salt and pepper noise measured by total PSNR, ROI PSNR, total SSIM and ROI SSIM has improved in the ranges of 3.48-23.03 (dB), 3.5-23.05 (dB), 0-0.4620 and 0-0.5335 to 21.75-42.08 (dB), 20.55-40.83 (dB), 0.5775-0.8874 and 0.4104-0.9742 respectively. In addition, the BER is reduced to the range of 0.02% to 41.7%. To conclude, the proposed method has managed to significantly improve the performance of existing medical image watermarking methods

    ROI Based Quality Access Control of Compressed Color Image using DWT via Lifting

    Get PDF
    Region-of-Interest (ROI) in an image or video signal contains important information and may be used for access control at various qualities using multiresolution analysis (MRA). This paper proposes a novel quality access control method of compressed color image by modulating the coefficients of ROI at various levels. Data modulation causes visual degradation in the original image and plays the key role in access control through reversible process. The modulation information, in the form of a secret key, is embedded in non-ROI part of the chrominance blue (Cb) channel of the color image using quantization index modulation (QIM). Lifting based DWT, rather than conventional DWT, is used to decompose the original image in order to achieve two-fold advantages, namely (1) better flexibility and low loss in image quality due to QIM and (2) better decoding reliability that leads to better access control. Only the authorized users having the full knowledge of the secret key restore the full quality of ROI. Simulation results duly support this claims
    corecore