60 research outputs found

    MaxSim: A Simulator Platform for Managed Applications

    Get PDF

    Transparent and Precise Malware Analysis Using Virtualization: From Theory to Practice

    Get PDF
    Dynamic analysis is an important technique used in malware analysis and is complementary to static analysis. Thus far, virtualization has been widely adopted for building fine-grained dynamic analysis tools and this trend is expected to continue. Unlike User/Kernel space malware analysis platforms that essentially co-exist with malware, virtualization based platforms benefit from isolation and fine-grained instrumentation support. Isolation makes it more difficult for malware samples to disrupt analysis and fine-grained instrumentation provides analysts with low level details, such as those at the machine instruction level. This in turn supports the development of advanced analysis tools such as dynamic taint analysis and symbolic execution for automatic path exploration. The major disadvantage of virtualization based malware analysis is the loss of semantic information, also known as the semantic gap problem. To put it differently, since analysis takes place at the virtual machine monitor where only the raw system state (e.g., CPU and memory) is visible, higher level constructs such as processes and files must be reconstructed using the low level information. The collection of techniques used to bridge semantic gaps is known as Virtual Machine Introspection. Virtualization based analysis platforms can be further separated into emulation and hardware virtualization. Emulators have the advantages of flexibility of analysis tool development and efficiency for fine-grained analysis; however, emulators suffer from the transparency problem. That is, malware can employ methods to determine whether it is executing in an emulated environment versus real hardware and cease operations to disrupt analysis if the machine is emulated. In brief, emulation based dynamic analysis has advantages over User/Kernel space and hardware virtualization based techniques, but it suffers from semantic gap and transparency problems. These problems have been exacerbated by recent discoveries of anti-emulation malware that detects emulators and Android malware with two semantic gaps, Java and native. Also, it is foreseeable that malware authors will have a similar response to taint analysis. In other words, once taint analysis becomes widely used to understand how malware operates, the authors will create new malware that attacks the imprecisions in taint analysis implementations and induce false-positives and false-negatives in an effort to frustrate analysts. This dissertation addresses these problems by presenting concepts, methods and techniques that can be used to transparently and precisely analyze both desktop and mobile malware using virtualization. This is achieved in three parts. First, precise heterogeneous record and replay is presented as a means to help emulators benefit from the transparency characteristics of hardware virtualization. This technique is implemented in a tool called V2E that uses KVM for recording and TEMU for replaying and analysis. It was successfully used to analyze real-world anti-emulation malware that evaded analysis using TEMU alone. Second, the design of an emulation based Android malware analysis platform that uses virtual machine introspection to bridge both the Java and native level semantic gaps as well as seamlessly bind the two views together into a single view is presented. The core introspection and instrumentation techniques were implemented in a new analysis platform called DroidScope that is based on the Android emulator. It was successfully used to analyze two real-world Android malware samples that have cooperating Java and native level components. Taint analysis was also used to study their information ex-filtration behaviors. Third, formal methods for studying the sources of false-positives and false-negatives in dynamic taint analysis designs and for verifying the correctness of manually defined taint propagation rules are presented. These definitions and methods were successfully used to analyze and compare previously published taint analysis platforms in terms of false-positives and false-negatives

    The Larch Environment - Python programs as visual, interactive literature

    Get PDF
    The Larch Environment' is designed for the creation of programs that take the form of interactive technical literature. We introduce a novel approach to combined textual and visual programming by allowing visual, interactive objects to be embedded within textual source code, and segments of source code to be further embedded within those objects. We retain the strengths of text-based source code, while enabling visual programming where it is bene�cial. Additionally, embedded objects and code provide a simple object-oriented approach to extending the syntax of a language, in a similar fashion to LISP macros. We provide a rapid prototyping and experimentation environment in the form of an active document system which mixes rich text with executable source code. Larch is supported by a simple type coercion based presentation protocol that displays normal Java and Python objects in a visual, interactive form. The ability to freely combine objects and source code within one another allows for the construction of rich interactive documents and experimentation with novel programming language extensions

    Towards Principled Dynamic Analysis on Android

    Get PDF
    The vast amount of information and services accessible through mobile handsets running the Android operating system has led to the tight integration of such devices into our daily routines. However, their capability to capture and operate upon user data provides an unprecedented insight into our private lives that needs to be properly protected, which demands for comprehensive analysis and thorough testing. While dynamic analysis has been applied to these problems in the past, the corresponding literature consists of scattered work that often specializes on sub-problems and keeps on re-inventing the wheel, thus lacking a structured approach. To overcome this unsatisfactory situation, this dissertation introduces two major systems that advance the state-of-the-art of dynamically analyzing the Android platform. First, we introduce a novel, fine-grained and non-intrusive compiler-based instrumentation framework that allows for precise and high-performance modification of Android apps and system components. Second, we present a unifying dynamic analysis platform with a special focus on Android’s middleware in order to overcome the common challenges we identified from related work. Together, these two systems allow for a more principled approach for dynamic analysis on Android that enables comparability and composability of both existing and future work.Die enorme Menge an Informationen und Diensten, die durch mobile Endgeräte mit dem Android Betriebssystem zugänglich gemacht werden, hat zu einer verstärkten Einbindung dieser Geräte in unseren Alltag geführt. Gleichzeitig erlauben die dabei verarbeiteten Benutzerdaten einen beispiellosen Einblick in unser Privatleben. Diese Informationen müssen adäquat geschützt werden, was umfassender Analysen und gründlicher Prüfung bedarf. Dynamische Analysetechniken, die in der Vergangenheit hier bereits angewandt wurden, fokussieren sich oftmals auf Teilprobleme und reimplementieren regelmäßig bereits existierende Komponenten statt einen strukturierten Ansatz zu verfolgen. Zur Überwindung dieser unbefriedigenden Situation stellt diese Dissertation zwei Systeme vor, die den Stand der Technik dynamischer Analyse der Android Plattform erweitern. Zunächst präsentieren wir ein compilerbasiertes, feingranulares und nur geringfügig eingreifendes Instrumentierungsframework für präzises und performantes Modifizieren von Android Apps und Systemkomponenten. Anschließend führen wir eine auf die Android Middleware spezialisierte Plattform zur Vereinheitlichung von dynamischer Analyse ein, um die aus existierenden Arbeiten extrahierten, gemeinsamen Herausforderungen in diesem Gebiet zu überwinden. Zusammen erlauben diese beiden Systeme einen prinzipienorientierten Ansatz zur dynamischen Analyse, welcher den Vergleich und die Zusammenführung existierender und zukünftiger Arbeiten ermöglicht

    Unwoven Aspect Analysis

    Get PDF
    Various languages and tools supporting advanced separation of concerns (such as aspect-oriented programming) provide a software developer with the ability to separate functional and non-functional programmatic intentions. Once these separate pieces of the software have been specified, the tools automatically handle interaction points between separate modules, relieving the developer of this chore and permitting more understandable, maintainable code. Many approaches have left traditional compiler analysis and optimization until after the composition has been performed; unfortunately, analyses performed after composition cannot make use of the logical separation present in the original program. Further, for modular systems that can be configured with different sets of features, testing under every possible combination of features may be necessary and time-consuming to avoid bugs in production software. To solve this testing problem, we investigate a feature-aware compiler analysis that runs during composition and discovers features strongly independent of each other. When the their independence can be judged, the number of feature combinations that must be separately tested can be reduced. We develop this approach and discuss our implementation. We look forward to future programming languages in two ways: we implement solutions to problems that are conceptually aspect-oriented but for which current aspect languages and tools fail. We study these cases and consider what language designs might provide even more information to a compiler. We describe some features that such a future language might have, based on our observations of current language deficiencies and our experience with compilers for these languages

    Security of esoteric firmware and trusted execution environments

    Get PDF
    Computer systems have become deeply integrated into everyday life and become more complex in order to satisfy functionality requirements. In modern vehicles, there are multiple embedded devices of different architectures, connected together to improve the driving experience. Modern computers including PC and server systems are also becoming a piece of embedded system with multiple components. Apart from the main Central Processing Unit (CPU), there are multiple microcontrollers on the motherboard. Additionally, modern architectures often provide a Trusted Execution Environment (TEE) which aims to provide a secure environment to protect the information used in it, even if the device is under the attacker's control. These new developments in computer systems raise new challenges to security analysis. With multiple devices and microcontrollers of different architectures used in the system, firmware analyses have become a challenging task. Besides, with the complex design of x86 systems, the threat model of TEE, where the device holder can be considered malicious, has not been fully evaluated. In this thesis, we contributed to three aspects of the security analysis of the after-mentioned systems. Firstly, MetaEmu provides an architecture-agnostic emulator for re-hosting firmware of different architectures, which makes dynamic analysis possible for esoteric firmware. Furthermore, the firmware partitioning method introduced in Incision makes it easier to dissect large firmware blobs to aid manual analysis. Secondly, with the analysis of Voltage Regulator Module (VRM) and TEE on Intel platforms, which is Intel SGX, we developed VoltPillager, a low-cost tool for injecting messages on the Serial Voltage Identification bus between the CPU and the voltage regulator on the motherboard. This allows us to precisely control the CPU core voltage. We leverage this powerful tool to mount the first hardware-based fault-injection attacks that breach confidentiality and integrity of Intel SGX enclaves. This attack would require a rethink of the SGX adversarial model, where a cloud provider is untrusted and has physical access to the hardware. Last, but not least, PMFault investigated the board-level security of server motherboards. With the analysis of Baseboard Management Controller (BMC) firmware and the motherboard design, we showcase new attacks which utilize the software-hardware interface exposed by microcontrollers on the motherboard. These attacks can cause serious security vulnerabilities, including leak of sensitive information in SGX and permanent damage to the CPU. This work gives a new perspective in the security evaluation of modern computer systems, which is board-level security analysis
    corecore