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Abstract

Scalability of managed applications on Non-Uniform Memory Access (NUMA)
architectures has always been a challenging task. Focus has been steered on
performance-critical components of the Managed Runtimes such as the Garbage
Collectors where NUMA scalability optimizations have been proposed. However,
prior to knowing under which circumstances NUMA architecture can be beneficial, the
extensive research investment needed for such optimizations would be on quicksand.
Moreover, th lack of tooling support for managed runtimes in the context of NUMA
puts additional obstacles in the way of analyzing scalability bottlenecks and conclude

whether a managed application can benefit from NUMA.

The current thesis studies several memory and scalability aspects of managed
applications in the context of NUMA architectures, in order to enable the NUMA
scalability of MREs. More specifically, it leverages several Java applications and
MaxineVM, a metacircular research VM written in Java. To tackle the lack of tooling
support, this thesis proposes a tool-chain composed by the NUMAProfiler, a new Java
profiler enriched with NUMA awareness, and by PerfUtil, a microarchitectural profiler
with multiplexing support. The effectiveness of the tool-chain is based on the co-
utilization of high and low-level profiling tools towards correlating HW metrics with
Java application properties. The tool-chain is used to analyze the memory behavior of
multiple Java applications picked from two benchmark suites. Moreover, a scalability
analysis methodology is presented and applied on those applications in order to
characterize them as per their scalability-critical properties. This characterization
results in revealing multiple distinct application categories in which typical Java

applications can potentially fit.

The research findings that occur from the memory behavior and NUMA scalability
studies are formalized into effective NUMA scalability guidelines for improving the
performance of a managed application in a NUMA system. The scalability guidelines

are amalgamated into a dynamic, application-agnostic, online optimization mechanism

9



that it is implemented into the runtime layer of MaxineVM. The experimental
evaluation of the mechanism showcase that performance ranges from 0.66x up to 3.29x
with geometric mean of 1.11x, in comparison to the naive performance of the managed

applications on a NUMA system.
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Chapter 1
Introduction

Cloud computing and the arising era of the software-as-a-service paradigm push
towards servers of larger scale. Modern datacenters are destined to host applications
for Big Data, Machine Learning, In-Memory Databases, and more, which tend to
be more data-intensive than ever. The ever-increasing amount of data that those
applications typically manage have tremendous demands for hardware resources.
Therefore, computer architecture is compeled to provide scale-up and scale-out
solutions in order to provide sufficient and scalable resources. However, the scale-
up techniques of traditional multicore CPUs are not efficient for large-scale systems
and applications. The aggregation of multiple cores and one physical memory around
a centralized data bus linearly drops the available memory bandwidth per core as the
number of cores increases. Therefore, the traditional multicore systems with more than
8-16 cores struggle to efficiently support scalability [ ]. Non-Uniform Memory
Access (NUMA) architecture has been introduced to push forward the aforementioned
boundaries. It enables excessive scalability through a more flexible and decentralized
hardware layout. It consists of multiple CPUs (nodes) unified into a shared memory
system via a high-speed interconnect. However, the existing software is not always
capable of exploiting the potential scalability and performance offerings of a NUMA
system. As a result, the effort for improving perfromance in the context of NUMA

architecture is ever-shifting towards the software-end of the stack.

Progarmming languages, like Java and Python, that rely on Managed Runtime
Environments (MREs) offer programmability and safety in development due to the
automatic memory management of Garbage Collection (GC), and the hardware and
platform-agnostic abstractions. The feature of GC eases the development process

because it alleviates the developer from the responsibility of memory management

16
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which can be a harsh and error-prone task. Moreover, the hardware and platform
abstractions further simplify the development process because a developer is not
required to be aware of the hardware and OS low-level details. For the reasons above,
the managed programming languages enhance productivity because they simplify
and consequently decrease development time. Hence, they are broadly prefered
by the developers. Two out of the top-three most popular programming languages
(Python, C, Java) according to the TIOBE' and IEEE Spectrum” ranking systems, are
managed languages. In addition, several programming frameworks for quick and easy
development of large-scale applications are built for and in managed languages. Such
examples, are the Apache Spark [ ], and Apache Flink [ ] which are
written in Java and Scala, and are leveraged for the development of Java and Scala
Big Data processing applications. Managed applications that are developed in these
frameworks usually manage massive amounts of memory and therefore, have large
memory demands. As a result, the interoperability of MREs with NUMA systems is
inevitably a major optimization point regarding the efficient exploitation of large-scale

resources by large-scale applications.

This thesis focuses and contributes to this research field by studying the memory
behavior of several managed applications, and their NUMA scalability properties.
Moreover, it proposes two new profiling tools and a dynamic optimization mechanism
for MREs towards improving the performance of a managed application on a
NUMA machine. The memory behavior study provides numerous research data
and metrics that derive by the co-utilization of the two tools. Those data are
analysed and discussed towards drawing reasonable and multi-aspected conclusions
that augment the state-of-the-art understanding of the research community for the
Dacapo and Renaissance applications. Moreover, this study aims to offer an advanced
foundation for future research works, characterisation studies, and optimizations that
focus on those managed applications. In addition, the scalability study provides
a thorough methodology on which application properties should be assesed under
the scope of scalability on a NUMA system. According to the evaluated data this
methodology can estimate with confidence the scalability potential of a managed
application on a NUMA system, while it is applicable to any managed application.
Finally, the optimization mechanism bears the research findings of both studies and

stands as a proof-of-concept for novel application-agnostic, low-overhead, and online

Thttps://www.tiobe.com/tiobe-index/
Zhttps://spectrum.ieee.org/top-programming-languages/



18 CHAPTER 1. INTRODUCTION

optimization approaches.

The rest of this chapter is organized as follows: Section 1.1 provides an overview of
NUMA architecture along with the traditional challenges that are derived. Section 1.2
introduces the reader to the major challenges for an MRE when run on NUMA
architecture. Section 1.3 states the research question, explains the research objectives
of the current thesis, and highlights the contributions of the current thesis. Finally,
Section 1.4 provides an overview of the thesis structure, while Section 1.5 lists the

publications derived from this work.

1.1 Challenges for NUMA architecture

NUMA architecture enhances scalability for systems that aggregate a large amount
of CPU cores (more than 8-16). The scalability of this architecture derives from the
fact that the computing, and memory resources are distributed instead of centralized.
Essentially, NUMA architecture aims to increase the available memory bandwidth per
aggregated core. This is achieved by moving away from the monolithic aggregation of
resources around a centralized data bus of traditional multicores. Instead, the resources
are placed in discrete nodes. Each node is composed by a number of CPU cores
and contains its own local memory. The nodes communicate through a low-latency
interconnect and provide a globally shared address space across the system (each
core can access any memory of any node). This design increases the local memory
bandwidth, nevertheless the communication with other nodes becomes more complex.
Even though memory of any node is globally shared to any core of the system, higher
latency is paid for a remote node memory access. This lack of uniformness requires
awareness and special utilization of the hardware by the overlying software stack in
order to effectively scale the running application.

The so-called NUMA-awareness, is provided to the software stack in numerous
ways. Many Operating Systems, such as Linux and Windows, have been equipped
with NUMA-awareness features in order to place data and schedule the processes in
a NUMA-friendly manner. For example, the Linux kernel is aware of the hardware
topology and aims to place data and threads on the same node wherever possible.
In addition, it exposes to the userspace the libnuma, a collection of system calls
that a programmer can leverage in order to manually control the thread and data
placement. Moreover, programming frameworks, such as the OpenMP [ ] for

parallel programming, provide support to the application developer similarly to the
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Linux kernel. It is notable that, even though support for NUMA architecture is
common across OSs and programming frameworks, expertise is also required by
programmers. In order to benefit from the capabilities of a NUMA system, the

developer is required to know the principles of this architecture.

1.2 Challenges for MREs in NUMA

1.2.1 Effective NUMA-awareness for the MREs

The managed applications face additional challenges due to the interference of the
MRE. A managed application is hosted by an MRE which stands as a layer of
abstraction between the developer and the underlying OS and hardware. Typically,
the MRE takes over the management of memory and consequently, the developer has
no control over where the data is placed. As explained before, the amount of remote
memory accesses should be limited in order to avoid the performance penalization
of the application. However, if the MRE is unaware of the underlying topology, the
allocated memory may be spread across NUMA nodes, while the application threads
may manipulate data which is placed on a remote node. These peculiarities bring to the
spotlight the objective of enhancing the NUMA-awareness to the MRE itself in order
to increase the performance of a managed application on a NUMA system.

Multiple research works have studied the challenge of adding NUMA-awareness
in the Java Virtual Machine (JVM), an MRE for the Java programming language.
They focus on dynamic runtime features such as the Garbage Collection (GC) and
propose numerous NUMA GC optimizations. In addition, NUMA-awareness has
been introduced to the OpenJDK HotSpotVM (the current reference implementation
of the JVM) by relying on a fragmented - across the NUMA nodes - heap design and
allocating the new objects into the heap fragment that is local to the NUMA node that
the thread is running (-XX:+UseNUMA). Therefore, it is well known that the lack of
GC scalability in a NUMA context leads to performance degradation and significant
application pause times [ , , , ].

That being said, NUMA performance for MREs is not only a subject of GC
scalability. Running a large set of 30 Dacapo [ ] and Renaissance [ ]
applications with MaxineVM [ ] on a NUMA machine (Figure 1.1) reveals
that non-GC execution time is significantly penalized as well, by 15% (grey bar),

on average, and can degrade performance up to 133% for some applications (i.e.,
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Figure 1.1: NUMA effect on Dacapo & Renaissance benchmarks. Execution time in
NUMA normalized non-NUMA.

scrabble). Considering the broadly studied Dacapo applications, it is apparent
that some are a priori unable to benefit from such an architecture due to lack of
scalability-prerequisite properties (i.e. parallelism and concurrency) [ ] or
even are further penalized due to memory related inefficiencies. Consequently, even
with an ideal and linearly scalable GC, it is possible to see no performance gains
or, even worse, harm performance. This reality is rather significant considering its
potential effect on the Total Cost of Ownership for long-running applications on
a large-scale datacenter. Therefore, prior to knowing under which circumstances
NUMA architecture can be beneficial, the extensive research investment needed for
GC and/or other JVM components optimizations would be on quicksand. As a result,
the traditional objective of NUMA optimizations for Managed Runtimes should be
further augmented towards understanding under which circumstances NUMA would
be beneficial for a Managed application. Hence, a characterization methodology
towards deciding whether a managed application is capable to benefit from a NUMA

system is needed.

In addition, as Figure 1.1 reveals there is a lot of space for improving overall
performance of a managed application on a NUMA system. Optimizing the application
performance during mutation can complement a NUMA-aware GC implementation
and formalize a jointly optimized JVM for NUMA systems. Consequently, there is
a need for effective techniques that optimize the mutation performance of a managed

application on a NUMA system.
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1.2.2 Tooling support for MREs in NUMA

The process of narrowing down the bottlenecks that bound performance is a
prerequisite in order to improve performance. However, the correlation of performance
observations with potential bottlenecks is a challenging task.  The Hardware
Performance Counters that any modern CPU is equipped with, offer various metrics
from the microarchitectural layer. However, a microarchitectural-layer profiler lacks
correlation between the observed hardware behavior and the application properties,
thereby leading to an insufficient or even misleading image[ ]. Moreover,
to the best of our knowledge, the Hardware Perfromance Counter support for Java
that is provided by some tools such as the Oracle Solaris Studio [ ], Intel
VTune [ , ], JIMH [Shi], and more, is limited and lack the ability to perform
fine-grain profiling.

On the other hand, numerous application-layer tools and Java profilers have been
proposed throughout the years. Such examples are JProfiler [Tec], VisualVM [ ],
AntTracks [ ], and more. These profilers focus on memory usage towards
mitigating inefficiencies such as memory leaks. Alternatively to those general-purpose
profilers are the special-purpose profilers such as FJProf [ ], AkkaProf [ 1,
and more that are designed and focus on applications build on specific programming
frameworks (i.e., Java Fork/Join [ ], and Akka [ ]). A special-purpose
profiler can provide specialized metrics that are useful and related only in the context
of the target framework. Nevertheless, despite this wide range of tools and profilers
for the JVM, to the best of our knowledge none focuses on NUMA architectures. The
particularities of a NUMA architecture necessitate an approach that also concerns the
NUMA-specific concepts such as remote node memory, etc. Therefore, it is clear
that effective tools for the JVM as well as more sophisticated and novel profiling

methodologies in the context of NUMA are required.

1.3 Research Objectives & Contributions

Considering the above challenges, this thesis breaks down the overarching question of
“how a managed application can take advantage of a NUMA system?” into individual
and specific research questions. On that ground, this section outlines these questions

and briefly discusses their objectives along with the contributions that derive.

1. What information is required to comprehend NUMA-behavior in managed
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languages, and which tools, if any, can assist that purpose? As
explained earlier, performance analysis is a prerequisite towards improving the
performance of i.e., a JVM on a NUMA system. However, lack of tooling
support for the MREs in the context of NUMA puts additional obstacles towards
research approaches in that field. Moreover, the existing profiling tools typically
focus on a single aspect (i.e., application or hardware layer), thereby creating an
insufficient profiling image. The current thesis tackles this gap by proposing a
novel approach that can effectively profile a managed application in the context
of a NUMA system. The proposed approach combines low-level hardware
metrics through Hardware Perfromance Counters and high-level application
metrics from the runtime layer. A low-level profiling of hardware events, even
though insightful, it cannot highlight the root cause of a performance bottleneck
observed in hardware (e.g. the LLC Miss Rate increase when an application is
run on a NUMA machine). For that reason, this thesis provides a multi-faceted
HW/SW profile of an application that analyzes NUMA scalability opportunities
and potential optimizations. More specifically, it proposes the co-utilization of
the PerffUtil profiler for low-level HW events, and the NUMAProfiler, a Java
profiler that also provides insights useful in the context of a NUMA system.
This novel approach advances the state-of-the-art by equipping the research
community with new sound and efficient profiling techniques. The working
principles of this approach are compatible to any MRE even though the current
thesis showcases an implementation for MaxineVM and Java applications. The

above contributions are briefly presented and showcased in Chapter 4.

. Under which circumstances NUMA architecture would be beneficial for a

managed application? To approach this research question, one should consider
all application properties related to NUMA scalability. New approaches and
methodologies are required due to literature’s lack of such studies in the context
of NUMA. To that extent, this thesis quantifies the memory behavior and those
application properties that allow a managed application to effectively scale on a
NUMA system. The main goal is to conclude and formalize a classification
methodology that would be applicable on any managed application. Such a
methodology would allow to draw a conclusion regarding whether a managed
application can benefit from a NUMA system. This research objective is
tackled by Chapters 5 and 6. More specifically, Chapter 5 presents a study

on the memory behavior of 30 managed applications from the Dacapo and
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Renaissance benchmark suites. The memory behavior study advances the
state-of-the-art by presenting several new insights of the applications while it
reveals a couple of misconceptions regarding the latest literature. In addition,
it effectively showcases the benefits of the proposed new profiling approach.

In addition, Chapter 6 presents and apply a methodology on evaluating
the potential benefits of a managed application by executing on a NUMA
architecture. Thirty Dacapo and Renaissance applications are characterized as
per numerous properties critical for NUMA scalability in order to demystify
the necessary and sufficient conditions under which NUMA architecture can
be beneficial for a managed application. The characterization study concludes
into a classification of the applications in categories. Last but not least, the
characterization methodology as well as the applied classification of the Dacapo
and Renaissance applications contribute towards augmenting the knowledge of
the research community, and provide a solid foundation for future research

works.

3. How can an MRE effectively utilize a NUMA system? The addressing of
this research question inevitably derives from the systematic analysis of the
aforementioned studies and their results. It essentially amalgamates all the
research findings and infrastructure into practical and reasonable techniques for
improving the performance of a managed application on a NUMA system. This
thesis formalizes reasonable directions for MRE optimizations on a NUMA
system. These optimizations are implemented by a dynamic, application-
agnostic NUMA-optimization mechanism in the runtime of MaxineVM. The
mechanism is briefly described and demonstrated in Chapter 7. It operates
during run-time with low overhead (geometric mean = 0.86%) and improves by
11% on average. Therefore, this thesis contributes towards proving the concept
of a low-overhead, online optimization mechanism that effectively improves
performance. In addition, the same principles are transferable and applicable
to any MRE.

1.4 Thesis structure

This thesis is organized as follows: Chapter 2 gives an overview of the key-concepts
of MREs, NUMA architecture and Hardware Performance Counters. Chapter 3
further discusses the challenges for MREs in the context of NUMA architectures,
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and highlights related research works on that field. Chapter 4 briefly presents the
proposed tooling infrastructure. Chapter 5 present a memory characterization study
for the Dacapo and Renaissance applications. Chapter 6 presents a NUMA scalability
characterization for the Dacapo and Renaissance benchmark suites. Chapter 7
describes and demonstrates a dynamic, and application-agnostic mechanism that

improves the performance of a managed application on a NUMA system.

1.5 Publications

This section lists in chronological order, all publications that are related to parts of the

current thesis:

* Foivos S. Zakkak, Andy Nisbet, John Mawer, Tim Hartley, Nikos Foutris,
Orion Papadakis, Andreas Andronikakis, Iain Apreotesei, Christos Kotselidis.
On the future of research VMs: a hardware/software perspective., In
Conference Companion of the 2nd International Conference on Art, Science,

and Engineering of Programming (Programming’18) [ ].

* Orion Papadakis, Foivos S. Zakkak, Nikos Foutris, Christos Kotselidis.
You can’t hide you can’t run: a performance assessment of managed
applications on a NUMA machine. In Proceedings of the 17th International
Conference on Managed Programming Languages and Runtimes, 2020 (MPLR
2020) [ ].

* Orion Papadakis, Andreas Andronikakis, Foivos S. Zakkak, Nikos Foutris,
Polychronis Xekalakis, Christos Kotselidis. Micro-architectural and scalability
analysis of managed applications on NUMA systems. Submited to ACM
Transactions on Architecture and Code Optimization (TACO) - [Under Review].



Chapter 2
Background

This chapter aims to provide an overview of the topics related with the thesis. The
most relevant areas to this thesis are the Managed Runtime Environments, the NUMA
architecture as well as the Hardware Performance Counters. This chapter aims to
unfold various sub-topics within the aforementioned areas, such as metacircularity in
the JVM, the MESIF cache coherency protocol and more, which are necessary for the
readers better understanding. Section 2.1 briefly discuss the major concepts of the
Managed Runtimes and explains how a JVM works. It also introduces the reader to
MaxineVM and metacircularity. Section 2.2 describes the advent of the Non-Uniform
Memory Access (NUMA) architecture and how remote memory affects performance.

Section 2.3 introduces the reader to Hardware Performance Counters.

2.1 Managed Runtime Environments

A Managed Runtime Environment (MRE) is a dynamic virtual execution environment
that lies in the middle of a Software/Hardware stack, as shown in Figure 2.1.
In the context of this thesis, applications written in Java language are deployed
consequently the MREs have been used as the prime technology and, more specifically
the Java Virtual Machine (JVM) is the utilized MRE of choice. This section
presents the fundamentals of MREs through the JVM paradigm. It describes the
main components and the workflow of a JVM and discusses the main concepts of

MaxineVM [ , ], aresearch VM implementation for Java.

25
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Languages
Application | Scala | | Java | | Python |
Layer
Programming Frameworks
| Spark | | Java Streams | | Akka |
Managed Runtime Environment
Runtime | Class Loader | |Garbage Collector| | Interpreter |
Layer
| Native Interface | | Heap | | JIT Compiler |
Operating System
(0]
Layer | Scheduler | | Memory Management | | Drivers |
Hardware
HW | CPU | | GPU | | FPGA |
Layer

Figure 2.1: An MRE in the context of a typical SW-HW stack.

2.1.1 Java

Programming languages hosted by MREs have emerged as a popular approach
for modern parallel applications because they abstract away all the complexity of
the underlying hardware allowing developers to stay focused on the logic of their
program instead of worrying about hardware specific properties and optimizations.
Their hardware-agnostic approach, as well as, other advanced features like automatic
memory management/garbage collection (GC) have made them popular and attractive
among the software industry. Apache Spark [ ], Akka [ ], Java
Fork/Join [ ], Java Streams | ] and more, are high-level Java frameworks
for parallel applications and have brought the MREs and more specifically the JVM to

the runtime of choice for modern parallel applications.

Java is a high-level, general-purpose, object-oriented language introduced by Sun

Microsystems in May 1995 based on the principle “write once, run anywhere” [ ].
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Figure 2.2: Overview of the JVM architecture.

The design of Java abstracts away the underlying Operating System (OS) and
Instruction Set Architecture (ISA) from the application itself. A Java program
is compiled with the Java Compiler (javac) to a sequence of the so-called Java
bytecodes, the intermediate architecture-agnostic instruction-set of the JVM. The
bytecode representation is stored in a “.class” file. The bytecodes of a Java program can
be executed by any JVM that follows the Java Specification. The JVM implementation
is responsible for bridging the gap between the Java program the OS, and the ISA by
translating the Java bytecodes to architecture-specific machine code, via “Just In Time”

compilation.

2.1.2 Java Virtual Machine (JVM)

The JVM is an MRE that executes programs written in the Java language. In
principle, a JVM is “the abstract computer on which all Java programs run” [ ].
Essentially, it is a software construction which executes the Java bytecodes and forms

a layer between the application and underlying platform (OS & HW). This way the
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JVM, stands as a layer of abstraction between the developer and the implementation
details of the layers underneath. Any JVM conforms to a set of rules, the so-called
specification [ ], which defines all the required properties a JVM implementation
should bear. This way, Java programs are able to be seamlessly executed on any JVM
across different platforms and architectures.

Figure 2.2 shows a high-level overview of the JVM architecture. It is composed of
three major components, the Class Loader Subsystem, the Runtime and the Execution

Engine.

Class Loader

As a first step, the Class Loader Subsystem loads and reads the “.class” files. This
subsystem is responsible for creating a dynamic JVM-internal representation of the
loaded classes, methods, and variables in the Runtime Area. Each loaded class is
represented as a java.lang.class object in the heap. The components of Bootstrap,
Extension and Application Class Loader act hierarchically to load the classes, followed
by a dynamic linking process. Finally, the class objects are initialized along with their

static variables and stored in the heap.

Runtime Area

Upon the completion of the class loading, the Runtime Area contains all the required
data for the execution. These data are organized and stored in the Method Area, the
Stack Area, the PC Registers, the Heap, and the Native Method Stack (see Figure 2.2).
The Method Area is organized per class and holds metadata and the code for methods.
The Stack Area holds a stack frame for each thread. Each frame represents the stack
of each thread where the temporary variables are stored. The PC Registers component
contains a program counter per thread in order to store the address of the currently
executed JVM instruction. The Heap is essentially the JVM’s memory in which all
objects and arrays are allocated. The Native Method Area contains the native method

stack that supports the JVM to interoperate with methods written in a native language
(e.g., O).
Execution Engine

The Execution Engine is the component that essentially orchestrates the bytecode

execution and is typically composed of the Interpreter, the JIT Compiler and the
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Garbage Collector. Initially, the Interpreter leads the execution by reading the
bytecodes and translating them into machine code ready to be executed. As long as
the Interpreter drives the execution, the performance is low due to the continuous
and repetitive interpretation (translates the same method more than once); and that
this results in the generation of un-optimized code. This low-performance phase is
overcome by the optimizing JIT compiler. The JIT compiler monitors (through a
profiler) the invocation count of the interpreted methods and compiles to optimized
machine code the “hot” methods. It considers a method as “hot” in case the latter
is invoked multiple times (beyond the so-called “JIT Compilation Threshold). This
way, the slow interpretation phase is avoided for future invocation(s) of any ‘“hot”
method because the optimized JIT compiled machine code is available and ready to
be executed. The role of the “JIT Compilation Threshold” is to prevent performance
degradation during the JVM start up phase because the JIT compilation consumes high
compute and memory resources. Thus, the JIT compilation is not involved in the
compilation of “cold” methods (those invoked few times), thereby ensuring a quick

startup and that the JVM will be reaching the so-called run-steady phase sooner.

The last key-component of the Execution Engine is the Garbage Collector that
implements the “automatic memory management” feature. Typically, the GC is of
outmost significance/attractiveness for the MRE and especially the JVM because it
alleviates the developer from manual memory management. In its simple form, it is a
daemon thread that is responsible for heap space reclamation either upon its fullness
(explicit) or upon an application request (implicit). Under both circumstances the
Garbage Collector aims to find all the “dead” objects (those are no longer needed) and
reclaim the space they occupy. This can be achieved with two alternative strategies:
Tracing and Reference Counting. The Tracing strategy considers an object as “live” in
case it is reachable via a chain of references starting from certain root objects, so the
rest are considered as “dead” and therefore are “collected”. The Reference Counting
strategy reclaims any object whose reference count (the number of references fo an

object by other objects) is zero.

It should be noted that even though the Interpreter, the JIT Compiler and the
Garbage Collector actively participate in Java Bytecodes execution, they are not a
subject of the Java specification [ ]. A JVM implementation is obliged by the
specification only to provide the means for Java Bytecode execution. Therefore, the
exact components, their design and implementation are up to the creativity of the

JVM developer. As a result, multiple alternative JVM implementations exist and
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a large variety of Interpreters, JIT Compilers, and Garbage Collectors are provided
by each implementation. The OpenJDK HotSpotVM is currently the reference
implementation of the JVM. Other notable industrial-strength JVM implementations
are the Eclipse OpenJ9 [Ecl], and the GraalVM [ ] which provides the
current state-of-the-art Graal JIT compiler. In addition, JikesRVM [ ] and
MaxineVM [ ] are notable research VM implementations. JikesRVM offers
the so-called MMTk module [ ] which contains several state-of-the-art Garbage
Collector implementations and a novel modular design to enable fast prototyping of
new Garbage Collection algorithms. Nevertheless, JikesRVM has not been actively
maintained -by the time of writing this thesis- and lacks of support for modern key-
features (such as 64-bit ISA, Java 8, and more) necessary for a state-of-the-art VM.

2.1.3 The Concept of Metacircularity

Graal JIT Compiler, JikesRVM and MaxineVM execute Java programs and also are
written in Java. The practice of implementing an execution engine (an interpreter, a
compiler or even a whole Runtime Environment) in the same language that it executes
applications for is called “metacircularity”. The current thesis utilizes the MaxineVM
as the language VM of choice for reasons that will be discussed later. The following
paragraphs aim to further explain the concept of metacircularity through the example
of MaxineVM. Nevertheless, it should be noted that similar practices have been applied
to Graal and JikesRVM as well.

As stated above, the source code of MaxineVM is written in Java. Therefore,
two steps are required prior to deploying MaxineVM as a VM itself: 1) translate
MaxineVM Java code to bytecodes, and ii) translate MaxineVM bytecodes to machine
code. The latter step implies similar practices to those that will be applied later
by MaxineVM (interpretation, JIT compilation, etc.) in order to execute a Java
application. Consequently, the major problem of a metacircularity is that the
compilation to machine code of the execution engine itself should have been completed
at an earlier time (“‘ahead-of-time”).

This “odd” situation is resolved by the concept of bootstraping [ ]. In the
MaxineVM case, the bootstraping is performed by the Boot ImageGenerator, a Java
application executed by a pre-existing JVM (the “host” - HotSpotVM in our case) and
results to the so-called “Boot Image” [ ]. The Boot ImageGenerator re-
uses large parts of MaxineVM such as the class loader to create MaxineVM-compatible

class representation as well as, the C1X JIT Compiler to translate MaxineVM'’s
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bytecodes to machine code. Throughout this process, several objects are allocated
by the utilized subsystems of MaxineVM in the heap of the host JVM. Those
objects are carefully collected using the reflection feature of Java and are placed
into the synthetic prefabricated MaxineVM heap of the Boot Image. Moreover, the
Boot ImageGenerator creates and equips the Boot Image with all the key-components
and classes that MaxineVM requires in order to dynamically load classes, compile
methods, and execute Bytecodes on its own. After the creation of the Boot Image, the
VM is ready for stand-alone execution. Upon launching, the MaxineVM is initiated by
a native C program that maps the Boot Image onto the OS virtual memory and passes
over the control to the Java code of the Boot Image by an indirect call to a MaxineVM

entry point.

2.1.4 MaxineVM

As mentioned above, MaxineVM is a state-of-the-art metacircular research VM
for Java. As a metacircular software construction, MaxineVM offers increased
research productivity (i.e. compared to HotSpot which is written in C/C++) by taking
advantage of Java exclusive features and programmability. For example, Garbage
Collection simplifies VM development by alleviating explicit and error-prone memory
management because the Garbage Collector manages also the MaxineVM objects
along with the executed application ones. Moreover, Java’s reflection, enables self-
introspection capabilities at runtime (i.e. examine object and thread types) which are
more than useful for i.e. tooling development.

The design of MaxineVM is modular and flexible to allow easy replacement of
existing components or the addition of new. The design of MaxineVM takes advantage
of module abstractions, the so-called schemes, to model each component of the VM.
This practice isolates low-level implementation-specific details across the schemes
while it simplifies their inter-operability; hence, it enhances modularity. The schemes
formalize the object layout (Layout Scheme), the references (ReferenceScheme), the
heap allocation and Garbage Collector (HeapScheme), the thread synchronization
(MonitorScheme), the application language environment (i.e. Java) (RunScheme) and
the compilation policies (CompilationBroker). In addition, MaxineVM is equipped
with a rich tooling arsenal (i.e. the Maxine Inspector which provides debugging

support by correlating low-level entities with high-level Java semantics).

On top of the above, MaxineVM has been selected for this work because it offers
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Figure 2.3: Structure of the MaxineVM [WHVDV " 13].

a richer environment compared to JikesRVM [RKN " 17]. Multi-ISA support (x86-
64, ARM v7, ARM v8, RISC-V), two optimizing compilers (Graal and C1X) and
T1X interpreter in version 2.9 constitute MaxineVM as a state-of-the-art research
VM for Java. Moreover, it is compatible with JDK 8 (while JikesRVM is not)
and can run the vast majority of Dacapo-9.12-MR1-bach, Renaissance-0.11 and,
SPECjvm2008 benchmarks. MaxineVM achieves 53-57% of the performance of
HotSpotVM [RKN 17, WHVDV " 13]. Although there is such a performance gap
compared to the state-of-the-art, MaxineVM stands as an adequate solution for
research in topics not related with peak performance (i.e. compiler optimizations)

due to the development productivity it offers.
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Figure 2.4: Overview of the SMP design.

2.2 NUMA Architecture

Computer engineering problems such as heat dissipation terminated the race for higher
CPU clock frequency and, inevitably brought the performance improvements of the
traditional single-core CPU to an abrupt end [ ]. During the early 2000s, the ever-
growing number of cores in a single chip arose to mainstream towards improving CPU
performance by taking advantage of chip manufacturing technology advancements
such as transistor size reduction. Parallelism and scalability were successfully
enhanced by the so-called multicore processors or multiprocessors which essentially
comprise the “scale up” resources paradigm. As illustrated in Figure 2.4 a typical
multiprocessor aggregates more than two cores around a centralized system bus (the
so-called front-side bus) with a single, shared main memory providing symmetrical

memory access latency across cores (Symmetrical Multi-processor - SMP).

SMPs are under the spotlight during the last decades due to the increasing needs of
parallel processing power and memory [ , , , ]. However,
the SMPs revealed their scalability ceiling soon due to the limited amount of cores a
bus can sufficiently serve [ , ]. As the number of processing units on
the bus increases the available bandwidth per core decreases turning the bus-oriented
design of an SMP to a bottleneck. In addition, more processing units need longer

buses which results to increased latency, thereby turning out the scale up strategy
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Figure 2.5: Overview of a NUMA system with 2 nodes and 8 CPU cores per node.

to be extremely challenging. To work around these boundaries the so-called many-
cores have been introduced and suggested a new, distributed and ‘“‘scale out”, resources

organization paradigm (Distributed Shared Memory - DSM) [ , ].

The Non-Uniform Memory Access (NUMA) architecture is such a design example
and enhances scalability over extensive amount of resources by scaling out and
organizing them to multiple distinct nodes. The notion of this architecture is to replace
the bus-oriented topolgy of an SMP with a more flexible and distributed design in order
to enhance parallelism and scalability while avoiding memory’s bandwidth saturation
at the same time. NUMA reorganizes the entire architecture moving away from the
typical SMP design (a monolithic aggregation of multiple processing units) towards a
modular building-block design. In a NUMA system, the cores are clustered into nodes
and are interconnected through high speed interconnection links (Figure 2.5). As such,
a core can access any memory attached to the multiprocessor, but with non-uniform
access latency, since the latency depends on the memory location of the data being
accessed.

AMD Opteron [ ] in 2003 and Intel Nehalem [ ] in 2007 introduced
the first x86 NUMA commodity implementations bearing two significant changes
regarding the memory controller and the intercommunication between CPUs. Both
microarchitectures introduced multiple memory controllers per node (firstly by AMD
Opteron). Each CPU is equipped with one or multiple dedicated memory controller(s)
as well as Last Level Caches (LLC) and Memory Banks; the “Uncore” (as it was
introduced by Nehalem). This design transforms the CPU to an individual building
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block for the entire system. The cores access memory with uniform latency into
the premises of a CPU. However, a low-latency and high-bandwidth point-to-point
connection replaces the restrictive system-bus and can link multiple CPUs to create
systems of larger scale compared to an SMP. Intel and AMD introduced their own
interconnect implementation, the Intel QuickPath (QPI) [ ] in Nehalem and the
AMD HyperTransport [ ] in Opteron accordingly.

As Figure 2.5 abstractly illustrates, each node encompasses a discrete multicore
CPU with local DRAM and a memory controller which communicates with the other
nodes through a high-speed point-to-point interconnect (e.g. Intel’s QuickPath (QPI),
AMD’s HyperTransport, etc.). Even though the LLC and memory are distributed
across the nodes, the modern NUMA implementations aim to provide a unified and
globally shared memory address space [ ]. Those implementations are called
cache coherent NUMA (ccNUMA) because they deploy cache coherency mechanisms
to provide shared memory. The following sections present the major cache coherency
mechanisms (Section 2.2.1), and the components a NUMA node is composed of
(Section 2.2.2)

2.2.1 Cache Coherency

As stated earlier, modern NUMA implementations aim to provide a shared memory
environment. ccNUMA systems are typically easier to program since they do not
require an alternative programming model. Cache coherency is a key requirement
for distributed designs, such as NUMA, because a running program will normally
place copies of the same data in multiple caches across the system [ ].
Lack of coherency between the read/written cached data leads to outdated data
accessing/processing (the so-called coherency problem) and subsequently, lack of
memory consistency [ ]. Consequently, a NUMA system inevitably needs a
mechanism to maintain coherency across the caches of multiple nodes, the so-called
cache coherency mechanism. The high complexity and sensitivity of a cache coherency
mechanism has resulted in a very careful and strict formulation of their algorithmic
behavior, usually through a protocol [ , , ]. The protocols define the
steps required for a cache line to transit from a sharing state to another (i.e. from
Modified to Invalidated) and can be represented by a Finite State Machine. The
“directory-based” and “snooping” are the two most common protocol classes for
a cache coherency mechanism [ ]. Both protocols aim to track the status of

any block of data that is shared across multiple cores. However, they use different
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techniques. A brief description of each protocol class follows:

* Snooping Protocols:

Small chunks of information (snoops) are broadcasted from a node upon the
occurrence of any request. The snoops circulate in the interconnect bus to
reach all nodes consuming valuable bandwidth and increase traffic congestion
undermining scalability (~ beyond 64 nodes). A transaction needs only two
steps (request/response) to be completed, thereby turning snooping protocols to
a fast and easy-to-implement solution. The simplest snooping protocol is the
MSI and is based on three individual cache line status states: Modified, Shared,
and Invalid [ ]. Nevertheless, many variants of the MSI protocol exist
and introduce additional states to optimize its behavior for better performance.
Such examples are the popular MESI [ ] (adds the Exclusive state to reduce
snoops for local cache reads), the MESIF [ ] (extends MESI with the
Forward state to enable multiple copies of shared read cache lines) by Intel and,
the MOESI [ ] (extends MESI with the Owned state to reduce memory
write backs for already Shared cache lines) protocol by AMD.

* Directory-based Protocols:

These protocols depend on multiple distributed directories (for DSMs) that
store information regarding the sharing status and the physical location of
every cache line. Upon a node request, the directory forwards it to a specific
node leading to point-to-point messages on a ‘“‘need-to-know” basis instead of
broadcasting; thus directory-based protocols are more sufficient for large-scale
NUMA machines (i.e. NUMAConnect [Rus]). Directory-based protocols suffer
from longer latencies than snooping because a transaction is composed of three

steps (request-forward-respond).

Even though snooping protocols tend to bound scalability beyond a number of
NUMA nodes, they are highly efficient for systems with few nodes due to low
complexity and the fact that they perform transactions in two steps. Moreover,
the optimizations that significantly reduce the broadcasted snoops and consequently
diminish the interconnect traffic have made snooping protocols more attractive. The
following paragraph discusses the key features of the MESIF protocol as it is the one
deployed by the NUMA machine used in this thesis.
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MESIF Protocol

As stated earlier, this protocol extends the MESI protocol, and it was firstly introduced

by Intel to implement QPI [ ]. It contains the following cache line states:

* The Modified state denotes that the data is cached only on one cache and its
value has already been modified (dirty). Note that main memory should be
firstly updated (write-back) upon read request for the outdated main memory
data. Then the Modified cache line transits to Shared state.

* The Exclusive state expresses that the cached data match the main memory value
(clean). It may transit to Modified upon a write request or to Shared upon a read

request.
* The Shared state indicates that the cache line is clean but present in other caches.
* The Invalid state flags that the cache line is currently outdated (unused).

The MESIF protocol aims to take advantage of the fact that data can always be fetched
faster from cache - even from remote node- than memory. For that reason it expands the
MESI protocol by introducing the Forwarding state which essentially is a “special”
Shared state. The MESI protocol allows a Shared cache line to be present in multiple
nodes. In that occasion, the MESIF protocol nominates one of those nodes to be
responsible for responding with the data upon a request instead of memory [ ].
The MESIF protocol achieves that by setting this cache line of the nominated node to
the Forwarding state.

2.2.2 NUMA Node Organization

Figure 2.6 illustrates the components of an Intel Sandy Bridge! NUMA node that
are related to processing, memory and cache coherency. It is composed of cores,
LLC slices (B-Box), C-Boxes, Memory Controllers (iMC), the Home Agent, the P-
Box and the QPI interconnect [ ]. In addition, it contains a power controller
(PCU), an integrated 10 (IIO), PCIe x8, and PCle x16 [ ] which are not
further discussed since they do not concern the current work. The C-Box module
implements the cache coherence infrastructure. The Home Agent which bridges the

iMCs with the interconnect. The P-Box contains the QPI interfaces responsible for

I'The microarchitecture used in this work.
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Figure 2.6: A typical NUMA node architecture (Inspired by [Cor12b]).

the communication with the other NUMA nodes. The incorporation of above modules
creates a shared pool of individual resources aggregated around a low-latency high-
bandwidth two-way interconnect (QPI for Intel) across all NUMA nodes. The several
sub-modules of each NUMA node are not only shared into the scope of a single node
but are also “visible” and shared across multiple nodes of the system. The above

modules - except the cores - comprise the so-called Uncore [Corl2b].

2.3 Hardware Performance Counters

Collecting information and correlating them with the performance of an application has
always been a challenging task with numerous alternative approaches (such as platform
simulation, instrumentation, application-layer profiling etc.). The introduced overhead
as well as the potential distortion of the application’s behavior are traditionally the
main constraints for any profiling approach. Considering the above, since mid 90s

the modern CPUs have been equipped with some special-purpose registers able to
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count a wide-range of hardware events. The so-called Hardware Performance Counters
(HPCs) (or Performance Monitor Units (PMUs) according to Intel terminology),
have been introduced in the Intel Pentium microarchitecture [ ] and have been
established throughout the years as an attractive profiling mean. Nevertheless, they
can be found in CPUs of other vendors as well, such as AMD | 1. The
Hardware Performance Counters essentially are some special-purpose registers in the
CPU die that offer low-overhead readings of hardware-related event counts (i.e. CPU
cycles, instructions, etc.) [ , ]. Moreover, they minimize the distortion of
hardware behavior because they do not interfere or block the pipeline. In addition, can
be handled with low overhead [ ]; hence they stand as an effective and useful

profiling mean [ , , ].

The Hardware Performance Counters are programmable, hence they can monitor
a wide range of performance-critical micro-architectural events, as defined from
the silicon manufacturer. The most common events are related to typical CPU
components such as the cache and TLB (e.g., accesses and misses at all levels),
the cores (e.g., retired instructions, clock cycles, etc.), the Branch Prediction Unit
(e.g., branch instructions, branch misses) and more. However, the support for the
available hardware events has been increased throughout the years, as the shipped
processors evolve [ ]. Modern complex multiprocessors are usually composed of
several subcomponents (such as the Uncore) which are equipped with their own set of
dedicated Hardware Performance Counters [ ]; thus providing an ever-increasing
and broad set of available “events” for one to count. The NUMA systems follow
this trend and offer Hardware Performance Counters for their special components
such as the interconnect, etc. [ ]. The utilization of Hardware Performance
Counters is achieved by ISA-specific hardware instructions (e.g. the RDPMC for x86).
They are deployed by numerous profiling tools and frameworks [ ] such as
PAPI [ ], Intel VTune [ ], and Linux Perf [ , ].

Linux Perf is utilized as the framework of choice by this thesis for deploying the
Hardware Performance Counters because it is included to the Linux kernel; hence no
additional library and installation is required. Linux Perf is a framework/tool of the
Linux kernel. Perf is present in Linux kernel since version 2.6.31 in 2009 [ ].
Perf handles the low-level ISA-specific instructions for the user-defined Hardware
Performance Counters under the hood. On its simplest form Perf can profile any

executable with the perf stat command, as shown in Listing 2.1.

However, perf stat is a “coarse-grain” approach since it profiles the program and
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Listing 2.1: Perf stat example for the 1s program

user@machine: " $ perf stat —e cycles ,instructions ,branches ls
Directoryl Directory2 Directoryd file.txt code.c

Performance counter stats

2,248,079 cycles
1,417,899 instructions
278,393 branches

monitors the counters of choice for the whole end-to-end execution. For more fine-
grain profiling, Perf exposes an API to the user-space through the perf_event_open
system call. The events are handled (enable, disable, reset) with the ioctl (or prctl)
system calls and the event values are read with the read system call. The utilization
of that API can offer “fine-grain” monitoring since it delegates the control for when to
start/stop profiling to the programming layer. As aresult, a (native language) developer
can bind the code section of interest with Perf monitor capabilities in a straightforward
manner and obtain the desired profile. Such an approach is a necessity especially in
the context of MREs to mitigate as possible the effect of the MRE layer and isolate the
application behavior. In addition, enabling a JVM to interface with Perf API would
provide multiple research opportunities. More specifically, the Hardware Performance
Counters utilization from the JVM runtime layer would allow “fine-grain” profiling
of the running application with low overhead, and even drive dynamic optimizations.
However, the Perf API utilization for a managed application is not as straightforward as
in the case of a native application because an additional mechanism that interfaces with
the native Perf API is required. Unfortunately, such a feature is rare across the existing
JVM implementations (to the best of our knowledge is supported only by JikesRVM)
and apparently it is not enclosed in the JVM specification. This fact combined with the
potential opportunities that such a feature could enable motivated us to implement the

utilization of Hardware Performance Counter for MaxineVM (see Chapter 4).
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Related Work

3.1 NUMA-awareness in the Linux kernel

While the lack of effective and efficient NUMA-awareness in Linux has been
acknowledged as an important problem throughout the years, little progress has been
made so far. The complexity and side effects of such an approach which inevitably
involves multiple critical OS components (kernel, scheduler, virtual memory etc.)
prevents many ideas from being adopted. However, Linux kernel is equipped with
an automatic page migration mechanism (NUMA balancing), four memory allocation
policies (default, bind, interleave, and preferred), a user-level library (libnuma) and a
bunch of thread and memory affinity system-calls [ ].

NUMA balancing [ 1, [ ] is an automatic page migration mechanism
in the recent versions of the Linux kernel (after 3.8). This technique lazily reveals the
pages that need to be migrated by exploiting page-faults. After the initial allocation, the
scheduler invalidates the MMU entries of the process, in order to trap the page with
an “artificial” page-fault at its next-touch. If a process touches the “marked” page,
the kernel becomes aware that the page should be migrated at process’s home node,
through the handling of the page-fault. This lazy mechanism restrains unnecessary
page migrations (e.g., if a page is not touched again, or touched by a process on
the same node) while it also avoids space consuming data structures and complex
algorithms that are needed in order to track each memory page during execution.
However, the overhead of migrating a 4 kB memory page is significantly higher than
a remote node access [ ]. Therefore, the restrained remote node accesses cost
due to a page migration should be more than the migration overhead itself, to improve

overall performance. Thus, the trade-off improved locality v.s. the page fault and page

41
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move costs introduced by this mechanism might not always be beneficial. Moreover,
by targeting only to reduced remote memory accesses might lead to inefficiencies of

higher importance such as increased interconnect and memory controller congestion

[ I

3.2 Traditional NUMA scalability issues

Numerous works over the years have highlighted the major bottleneck factors that
bound NUMA scalability as well as, the research and engineering effort need to be
invested towards mitigating drawbacks and exploiting the benefits of NUMA [ ,

, , , , , , , ]. Cache
and memory locality, contention over shared resources, congestion over the memory
controllers and the interconnect as well as inefficiencies related to the page-tables
have been identified as the major NUMA scalability boundaries, and even performance
degradation factors. For example, Zhao et al. [ ] propose a new NUMA profiler
capable in detecting NUMA-related performance issues such as memory controller and
interconnect congestion as well as cross-node migration. On the other hand, scheduling
and memory management mechanisms of the OS are the traditional candidates for
NUMA optimizations due to their straightforward capabilities in adopting awareness of
the underlying hardware topology. More specifically, Zuravlev et al. [ ] optimize
scheduling to mitigate shared resoures contention based on a thread classification
scheme. Kamali [ ] implements a scheduling algorithm that clusters and co-
locates the threads that share data by utilizing some special Hardware Performance
Counters that are related to the snooping protocol. This technique, though novel,
it is efficient only for applications with two threads because the utilized Hardware
Performance Counters can only reflect the effect of data sharing and cannot distinguish
the engaged threads. Majo et al. [ ] take under consideration both memory
locality and process scheduling towards NUMA-friendly scheduling. Dashiti et
al. [ ] argue that memory controller congestion is rather critical for NUMA
performance and refactor Linux Scheduler accordingly. Calciu et al. [ ] relax
contention over shared data structures by implementing Node Replication (NR), an
application-layer API that can automatically transform a sequential data structure
into a concurrent NUMA-aware one in exchange for memory consumption multiple
of the number of NUMA nodes. Gaud et al. | ] claim that modern OS

features such as large pages limit performance gains even under NUMA-locality and
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balance maintenance scheduling, and they extend [ ] towards that objective.
Finally, Achermann et al. [ ] implement NUMA -aware page-table placement
to mitigate excessive remote node accesses as a result of TLB misses.

The above studies converge on the fact that they study non-managed applications,
hence they are able to study the effect of NUMA architecture on HW/SW

interoperability in a more direct and transparent manner.

3.3 NUMA scalability and optimizations in the context
of MREs

The analysis of performance-related issues for managed applications as well as their
correlation with the underlying hardware architecture has posed several challenges.
The MRE itself, as an additional layer, is fused within the application’s observed
memory behavior. In addition, MRE features, such as the Garbage Collection (GC),
interfere on the memory patterns of an application. Therefore, a “divide and conquer”
strategy towards analyzing and optimizing managed applications in the context of
NUMA is a necessity. As such, the key analysis and optimization points are: a)
memory behavior during mutation, which is directly related to application properties
and characteristics; and b) the GC algorithm/strategy.

The current state-of-the-art for the referenve JVM implementation (HotSpotVM)
is the -XX:+UseNUMA option. This option enhances the NUMA-awareness of the
Parallel Scavenge (default until Java 8) and Gl collectors (default from Java 9
onwards') [ , ]. The working principle of this option is to split the heap
into regions (G1 organizes the heap in regions by default) and evenly spread them
across the NUMA nodes. This design aims to enhance scalability by taking advantage
of the object placement in the local node of the thread.

In addition, multiple research works have analyzed performance issues of
managed applications in the context of NUMA, as well as proposing NUMA
optimizations [ , , , ]. Gidra et al. [ ] assess
the scalability of Parallel Scavenge GC and highlight memory access imbalance, lack
of memory access locality and contention over shared resources (locks) as the major
bottlenecks. Moreover, they propose numerous NUMA GC and object placement

optimizations in [ , ]. Alnowaiser et al. [ ] proposes techniques to

IThe -XX : +UseNUMA option was enabled for G1 from Java 14
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improve the locality of GC threads. Patrou et al. [ ] take under consideration
also thread affinity along with GC.

The above studies converge on the perception that the GC is the major NUMA
bottleneck source, hence they focus on it. They lack in corelating application properties
with NUMA bottlenecks and therefore identifying under which circumstances a
NUMA system can be beneficial for a managed application. This, inevitably, results in
limited understanding/discussion for applications that the proposed sophisticated GC
optimizations show negligible or even negative impact. Such an observation further
motivates the research gap that this thesis covers in Chapter 6. The properties and
characteristics which are necessary and sufficient for a managed application towards
effectively exploiting a NUMA system still remain open research fields in which the

focus of this thesis is steered.

3.4 Profiling Tools & Characterization Studies

Many research efforts [ , , , , , ,
] have aimed to analyze the performance-critical properties of managed

applications. Some of them have proposed new profiling tools for the JVM,

such as AntTracks [ ], AkkaProf [ ], and FJProf [ ] as well as
novel profiling techniques, such as bytecode instrumentation [ ], runtime-
driven JVM instrumentation | ], and BottleGraphs [ ]. Kalibera
et al. [ ] exploited bytecode instrumentation and runtime-driven JVM

instrumentation to study a wide set of concurrency metrics for Dacapo benchmark
suite. DuBois et al. [ ] leveraged BottleGraphs and studied the exhibited
parallelism of Dacapo benchmarks. Lengauer et al. [ ] utilized AntTracks to
study the memory behavior of Dacapo, Dacapo Scala and SPECjvm2008 benchmark
suites. AkkaProf and FJProf are two special-purpose profilers [ , ]
utilized for providing effective profiling metrics for Akka and Fork/Join-based
Java applications. Unlike the aforementioned studies and tools which have not
targeted NUMA architectures, MacGregor et al. [ ] proposed NUMA profiling
techniques and characterized memory behavior. However, they focused on the
Glasgow Haskell Compiler (GHC) and on Haskell applications. In addition, it
is notable the limited choices in the available tooling infrastructure regarding the
utilization of Hardware Performance Counters for Java applications. Moreover, the few

and rare implementations either lack the ability to perform fine-grain profiling, such as
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the Oracle Solaris Studio [ 1, Intel VTune [ , ], JMH [Shi] or even are
not actively maintained, such as the JRockit [ ], and the JikesRVM [ ]
which both lack of support beyond Java 6. The tools proposed by this thesis in
the Chapter 4 aim to tackle the scarcity of tooling support regarding the NUMA

architectures and Hardware Performance Counters for the managed applications.



Chapter 4

Memory Profiling of Managed
Workloads: A HW/SW Perspective

4.1 Introduction

Memory profiling for managed applications is a challenging task due to the “noise”
introduced by the MRE itself. This additional layer inevitably increases the
imprecision of the already coarse-grained black-box profiling techniques (e.g., perf
stat [ ]). Moreover, other profiling techniques are rather inefficient
in the context of managed applications. For example, wrapping the application
code section of interest with Perf system calls, would affect the normal behavior
of the application due to the required JNI calls [ ], and would introduce
considerable overhead [ ] especially under frequent utilization. In addition,
requires modifications of the application code, which is a harsh task, especially in
the context of modern managed application that are built in complex frameworks.
Therefore, traditional and easy-to-apply profiling techniques from the native world,
lack of accuracy and applicability in the context of managed applications. Moreover,
the increased complexity that comes with MREs requires multiple layers of a system
stack to be monitored concurrently [ ], thereby demanding more sophisticated
methodologies that would go beyond the state-of-the-art. However, associating the
underlying hardware behavior with the characteristics of managed software and vice
versa is a non-trivial task. Nevertheless, this is a necessity in the context of NUMA
architecture [ ].

This thesis proposes a novel approach that aims to effectively correlate

the application properties with hardware behavior, in order to achieve a better
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Figure 4.1: An abstract figure of the proposed research platform.

understanding of the behavior of managed applications when deployed on a NUMA
system. For that reason, this chapter presents two new tools, that compose the research
platform that is proposed and utilized by this thesis. More specifically, the two tools

are:
1. the PerfUtil, a low-level microarchitectural profiler, and
2. the NUMAProfiler, a high-level application-layer profiler.

In particular, PerfUtil monitors the hardware performance counters, while
NUMAProfiler probes the runtime layer of MaxineVM and monitors object-related
metrics. Figure 4.1 abstractly illustrates the two tools within MaxineVM and provides
an overview of the metrics that each one can provide.

The rest of this chapter describes in detail the two profiling tools of the proposed
research platform and discusses the challenges faced and the key design choices taken.
More specifically, Section 4.2 describes the PerfUtil and Section 4.3 presents the
NUMAProfiler.

4.2 PerfUtil

The Linux kernel exposes the utilization of the Hardware Performance Counters to the
user-space via the perf tool. However, the effective profiling of a managed application
with as higher precision as possible, is challenging; especially as an external observer
(i.e., monitor the whole process with perf stat). As explaned in Section 4.1, such
an approach is considered as coarse-grained, and therefore, ineffective. Moreover,
especially in the context of managed runtimes, it leads to the following inefficiency.
An external observer that monitors the whole process is unable to focus on the behavior

of the application itself because the profiling results inevitably incorporate the MRE
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Figure 4.2: PerfUtil Overview.

behavior and the application behavior. Therefore, a profiling technique capable of
isolating and monitoring only the application behavior is required in order to increase
the precision and the effectiveness of the profiling results. To address that challenging
task, this thesis proposes PerfUtil, a new MaxineVM component to equip the VM itself

with fine-grained utilization of the Hardware Performance Counters.

PerfUtil interfaces the Perf API of the Linux kernel and passes over the control
to the Java code of the VM. Perf is implemented into the Linux kernel space, and
therefore, it is not directly accessible from the user-space. It exposes a higher-level
native API to deploy the hardware events from the user-space, and consequently
it abstracts away the low-level utilization of the Hardware Performance Counters
(see Section 2.3). PerfUtil leverages the Perf API from the user-space, and finally,

it bridges the utilization of Perf events within the Java world.

PerfUtil is illustrated in Figure 4.2 where the major components and the
interoperability with other layers of the stack (Runtime, OS, HW) are highlighted.
As can be observed it can be broken down into two parts, the PerfUtil module and the
PerfUtil API. The PerfUtil module implements all the core functionalilty of the tool
(see Section 4.2.1), while the PerfUtil API supports the interoperation of the PerfUtil
module with the VM Runtime (see Section 4.2.2).
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Listing 4.1: The utilized system calls by the MaxineVM substrate to interoperate with

perf

/l creates a file descriptor that corresponds to one perf event.
int perf_event_open(struct perf_event_attr =attr, pid_t pid, int cpu
, int group_fd, unsigned long flags);

// manipulates a perf event through its file descriptor.
int ioctl(int d, int request, ...);

// reads a perf event’s value through its file descriptor.
ssize_t read(int fd, void =xbuf, size_t count);

4.2.1 PerfUtil Module

The PerfUtil module contains all the neccessary classes, methods, and data
structures to support all the core functionalities for manipulating a Perf event and
a group (create, enable, disable, reset, read, close). It essentially models each
Perf event as an individual Java object (PerfEvent). An event object holds a
MAXINE_PERF_EVENT_ID value which is a PerfUtil-internal ID that correlates the
PerfEvent object with the low-level Perf event configurations. In addition, the
PerfUtil module implements all the necessary native functionality to interoperate with
the OS via the MaxineVM substrate It essentially extends the native substrate of
MaxineVM to include all the system calls needed (perf_event open, ioctl, read)
for a PerfEvent manipulation. Listing 4.1 provides the signature of the utlized Linux

system calls.

Group-oriented design

PerfUtil also supports group configurations. The notion of grouping implies that a
set of semantically related events are simultaneously counted during the same period
of time so that their values are comparable. Such a technique is necessary for more
complex Perf configurations in order to avoid incosistencies in the profiling results
(i.e., more LLC misses than LLC accesses). Perf checks under the hood whether all the
group events can actually fit in the available physical Hardware Performance Counters;
if yes, that group is successfully scheduled, if not, the measurement is aborted.

The design of PerfUtil is aligned with the above event group management
strategy. A collection of event objects shapes a group object PerfEventGroup. All

PerfEvent objects that are related to a PerfEventGroup are stored in an array
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Listing 4.2: PerfUtil API

void initialize ();

/+ Group Set methods =/

void perfGroupSetSpecificThreadSpecificCore (int threadld, int core)
void perfGroupSetSpecificThreadAnyCore (int threadld)

void perfGroupSetAnyThreadSpecificCore(int core)

void perfGroupSetAnyThreadAllCores ()

/+ Group Read & Reset methods =/

void perfGroupRnRSpecificThreadSpecificCore (int threadld, int core)
void perfGroupRnRSpecificThreadAnyCore(int threadId)

void perfGroupRnRAnyThreadSpecificCore(int core)

void perfGroupRnRAnyThreadAllCores ()

public static void explicitPerfGroupReadAndReset ()

public static void perfGroupClose(int threadld, int core)

into the PerfEventGroup object. The PerfUtil module contains a data structure
(perfEventGroups), which is a simplified custom hash table, that stores the groups.
Each group is uniquely indexed in the hash table. The index of each group in the array
is computed by a hash method therefore, each PerfEventGroup, and subsequently
each PerfEvent, can be retrieved any time with O(1) complexity. This design
choice has been taken due to the minimal overhead it requires in indexing a group.
Keeping the overhead and distortion of the execution as low as possible is of outmost
importance and a conscious choice with the aim of re-using PerfUtil for online dynamic

optimizations.

4.2.2 PerfUtil API

The functionality of the PerfUtil module is exposed to the VM by the PerfUtil API.
The API lies in the runtime layer (MaxineVM code) and contains a collection of Java
methods to make the functionalities of PerfUtil module exploitable from a high level

programming language, such as Java. The API provides three categories of methods:

* the PerfGroupSet for initializing the low level Perf events and the

corresponding objects for a new PerfEventGroup,

* the PerfGroupReadAndReset for reading and reseting the value of an already

active PerfEventGroup and,
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* the PerfGroupClose for closing all the events of a PerfEventGroup.

These methods use the PerfUtil module methods for group manipulation as building
blocks. For example a PerfGroupSet API method consists of the create (), reset ()
and enable () methods of a PerfEventGroup which are implemented in the PerfUtil
module. Note that, the event value is reset right after its creation to avoid any stale

values.

As can be seen in Listing 4.2, multiple versions of each API method category exist.
Each version essentially reflects the alternative available “scopes” that a PerfEvent
can have. A PerfEvent can be counted per thread, per core or per thread and core or
on system-wide fashion. The thread scope can be used to reduce the noise introduced
by the rest of the processes running simultaneously on the system, since the monitoring
events are attached only to the application and the VM threads. In addition, a thread
scope can be combined with a core scope resulting in monitoring a specific thread on a
specific core. However, there are some Hardware Performance Counters that cannot be
utilized per thread, such as those dedicated to the memory controllers. Consequently, a
per core scope is necessary. PerfUtil supports those features by exposing these different
options via the PerfUtil API. The complete list of methods that form the PerfUtil API
is shown in Listing 4.2.

4.2.3 Profiling With PerfUtil

A new -XX VM option has been introduced in MaxineVM that flags whether PerfUtil
should be initialized or not. This way PerfUtil does not affect MaxineVM when it
is not used. The -XX:+UsePerfUtil option initializes the PerfUtil module instance
during MaxineVM start up, and consequently it allows the API utilization. However,
the actual utilization of PerfUtil is controlled by the API calls. A VM engineer is
responsible for injecting the API calls of choice into the proper VM call sites according
to the profiling needs. This way, a VM engineer has fine control over when to start
or stop the measurements at runtime, e.g., PerfUtil can start measuring after X full
Garbage Collections, or Y method compilations, etc.

An abstract overview of how the PerfUtil API is deployed in the context of the
current work is illustrated as an example use-case in Figure 4.3. The horizontal
dimension of the figure provides a time-wise view of the different phases of the

execution when the MaxineVM executes a Dacapo/Renaissance application [ ,
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Figure 4.3: Example Use-Case: VM engineer - PerfUtil API interoperability &
PerfUtil LifeCycle.

PRI 19]". The vertical dimension highlights the utilized API calls in relation to the
layer/component where they have been injected by the user. The groups of choice are
utilized with the “specific thread and any core” scope to profile per thread. Moreover,
the results are gathered per explicit GC due to the iterative nature of Dacapo and
Renaissance benchmark suites. The groups for the VM-internal threads are initialized
(set) during the VM initialization phase since those threads are spawned once and they
never close (only at VM exit). However, the groups of choice targeting the application
threads are set during each mutation phase when each application thread is spawned.
An application thread may close earlier than the whole mutation. It may even re-spawn
multiple times thereafter, due to the multiple roles that can be assigned to a thread by
the application. For that reason, a PerfGroupReadAndReset operation is performed at
the closing of each thread. Finally, a PerfGroupReadAndReset operation is performed

for the remaining threads/groups after mutation and before any explicit GC.

It is clear that PerfUtil is a flexible tool that offers a wide range of profiling
capabilities.  Through its easy-to-use API, the VM engineers are enabled to
utilize Hardware Performance Counters and tailor them in accordance with their

requirements.

I'Those applications perform repetitive iterations, and a System.gc () call precedes each iteration.
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4.2.4 Multiplexing

Each Perf group is composed by a set of “events of interest” that are simultaneously
monitored for the same period of time in order for their results to be directly
comparable. This is achieved only if the group is not “supernumerary” which means
that there is at least one available and compatible Hardware Performance Counter
for each event of the group. When this condition is not satisfied the whole group is
rejected and none of the events is actually measured. Considering that modern CPUs
typically have 8 general-purpose Hardware Performance Counters [ , 1,
this complication is usual. Alternatively, the supernumerary group could be split
to acceptable groups (i.e., with less than 8 events each) in order to get all events
finally counted. However, by the time a group reserves all the available Hardware
Performance Counters, the rest of the groups still will be getting rejected. As a result,
complementary runs of the same application are needed to accommodate a different
group each time. The above approach is called “Trace Alignment” [ ,

]. Such a workaround was initially attempted by the current work due the
simplicity it provides, but later it was put aside due to the following reasons. The Trace
Alignment significantly increases the experimental time due to the complementary
executions it requires in order to monitor all the events (i.e., the exeperimental is
increased by 3x if the supernumerary group has been split to three subgroups). In
addition, the final results might contain unaligned values of semantically related events
(e.g. more llc misses than llc accesses). As a result, the approach of Trace Alignment
was rejected and the so-called time multiplexing [ , ] was leveraged
instead for PerfUtil.

Alternatively, the Linux kernel is able to use time multiplexing for Perf events
with a switch frequency of 100-1000 Hz [ ] to enable multiple events to
be counted by one physical counter. This technique breaks the barrier of the physical
counters unavailability and enables a large set of events to be simultaneously counted.
As aresult, time multiplexing can be exploited to avoid the misaligned profiling values
and simplify the experimental process by requiring only one experimental run. The
count of an event corresponds only to the fraction of time that the event is actually
counted; thus its value needs to be scaled to 100% (see Section 5.2.3). Consequently,
multiplexing measurements might be less accurate (as in any sampling-alike technique)
but it results in a trade-off between usability and accuracy. In the next paragraph, we
measure the accuracy of PerfUtil when using multiplexing, and discuss whether lower

accuracy comes at a high cost.
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Table 4.1: Accuracy of PerfUtil with Multiplexing.

Metric AVG  MEDIAN Metric AVG MEDIAN

Lld Reads | -1.41% -0.26% CPU Cycles | 0.01% -0.44%

L1d Writes | -1.19% -0.17% Instructions | -1.78% -0.23%

LLC Reads | -2.86% -1.78% Branch Instr | -1.79% -0.42%

LLC Writes | -1.11% -0.02% LLC Miss Rate | -0.05% 0.02%

LLC Read Misses | -0.53% 1.02% LLC Miss Rate (NUMA) | 0.26% 0.24%
LLC Write Misses | -0.22% -0.17% MPKI | 0.01 0.00
Node Read Misses | -21.78%  -3.54% MPKI (NUMA) 0.00 0.00

Node Write Misses | -10.11%  -0.64% Remote Mem Accesses | -4.79% -0.45%

Total AVG & MEDIAN | -2.90%  -0.20%

4.2.5 Accuracy of PerfUtil

The accuracy of PerfUtil was initially measured by comparing the profiling results
of a MaxineVM build with PerfUtil without multiplexing in “specific thread on
specific core” mode (Maxine PerfUtil noMux) against the output of the perf stat
command attached to a MaxineVM build without PerfUtil (Maxine_perf_stat).
After normalizing the results of Maxine PerfUtil noMux to those of the baseline
(Maxine perf_stat) the difference varied from -0.71% up to -1.23% and considered

as sufficient to prove the validity of the implementation of PerfUtil.

However, for the reasons discussed in the previous section, it is clear that the
employment of multiplexing might result to lower accuracy. As a result, we also
evaluate and present in Table 4.1, the accuracy of multiplexing. For this experiment,
the baseline is the Maxine PerfUtil noMux which has already been validated.
Therefore, the profiling results of a MaxineVM build with PerfUtil and multiplexing
in “specific thread on specific core” mode (Maxine PerfUtil Mux) are compared
against the Maxine PerfUtil _noMux. All values are normalized to the baseline. The
results in this table indicate that the Maxine PerfUtil Mux yields accurate results
in general because most of the metrics show < 3% average absolute difference.
Benchmarks that show very small counts (according to the Maxine PerfUtil_noMux
and Maxine perf_stat), such as the single-threaded fop negatively affect some
average values (such as Node Read Misses and Node Write Misses), thereby leading to
high differences (i.e., -12.78%, -10.11% ). Counting those applications in a sampling
manner might introduce considerable uncertainty because the events are sparse. Such
a fact implies that the multiplexing technique may be inconsistent for applications
that contain event counts below a threshold. Even though this threshold has not been

explicitly defined yet for the PerfUtil implementation, the experimental data show that
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it is approximately close to 2-3 millions counts of an event. In addition, it should be
noted that the counts with lower values than this approximate threshold are observed
only in events related to remote NUMA node accesses and only in single-threaded
applications. Consequently, the inaccurate values make insignificant difference in
observing the qualitative behavior of those applications because a single-threaded

application normally tends to settle up on one NUMA node.

4.3 NUMAProfiler

4.3.1 Motivation

As explained in Section 4.1 the ultimate goal of the proposed research platform is to
provide the means for evaluating whether a NUMA architecture can be beneficial for
a managed application. The necessity of a tool such as NUMAProfiler arises from the
blind spots that usually occur when the analysis considers only the low-level hardware
metrics [ ]. Although the metrics provided by PerfUtil are tightly coupled
with overall performance observations, they lack of correlation with the application
characteristics (i.e., the amount of data dependencies between the application threads).
Scalability and performance, in the context of NUMA, is strongly affected by higher-
level factors such as serial code sections, contention on shared resources, data locality
and load balancing [ ]. However, a profiling tool limited to the low-level hw
metrics fails in sufficiently covering metrics related to all the above properties, but
data locality. As a result, another tool that focuses on application metrics that reflect
the degree of parallelism, balance, and the data dependencies is needed.
NUMAProfiler aims to enrich the tool-chain’s insights with a higher-level point
of view. It probes into crucial components of the JVM in order to monitor object
allocations and object accesses per thread. An application profile at this layer of the
stack is capable of providing insights regarding the memory allocation and thread data

management patterns.

4.3.2 Overview

NUMAProfiler is a NUMA-aware Java object profiler. It aims to bridge the gap
between the low-level hardware counters and high-level properties of applications.
NUMAProfiler is a new component implemented into the runtime layer of MaxineVM,

as 1illustrated in Figure 4.4. It profiles object allocations and accesses, and
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Figure 4.4: NUMAProfiler Overview.

it can produce the applications’ thread map, heap trace, while also interfacing
with the Linux NUMA library (i.e., libnuma [ 1). Moreover, NUMAProfiler
takes advantage of the thread map and libnuma and classifies the object accesses
as per “ownership” (shared/thread-local, see Section 4.3.7) and NUMA affinity
(local/remote). NUMAProfiler exposes an API to VM. The API calls have been
injected into the proper components of the Runtime and the Execution Engine of
MaxineVM, and they lazily trigger the profiler mechanisms when it is necessary. Note
that keeping the profiling overhead low is challenging, and inevitably, it has a major

effect on design decisions undertaken which are discussed in the following sections.

NUMAProfiler is essentially a Java object allocated into the MaxineVM Java heap.
It is initialized during the starting phase of MaxineVM, and it implements all the
necessary internal functionality along with some auxiliary objects. It monitors object
allocations, object accesses, locality of allocations and accesses, survivor objects after
garbage collection, threads as well as the heap’s virtual pages NUMA placement. Both
the object allocation and the object accesses profiling functionalities are triggered

upon their occurrence. The survivor object profiling and profiling output dump are
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Figure 4.5: UML Diagram of profiling data structures.

performed in the post-GC phase. The collected data are stored in multiple data
structures, as illustrated in Figure 4.5. Moreover, the profiling data are directly
correlated with the application threads. The following Sections 4.3.3 to 4.3.8 present in
detail the features of the NUMAProfiler. Throughout these sections the major design

decision and challenges are reflected and explained.

4.3.3 Profiling Functionalities and Profiling Data Management

All the collected profiling data are stored using buffering techniques. The different
buffer types of NUMAProfiler are illustrated in the UML diagram of Figure 4.5. As
can be observed, NUMAProfiler contains multiple types of buffers because each one
supports a different functionality; hence, each class reflects a different profiling data

format:

* Object allocation profiling: refers to the profiling of each new object allocation.
It is performed in two alternative modes: 1) report the count of the allocated
objects or, i) trace and report each allocation in detail (object type, size, NUMA

node, etc.). The first mode is supported by the AllocationsCounter and
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the second by the RecordBuffer. The detailed profiling of object allocations
comes with higher overhead and produces larger output files. Nevertheless, the
decision regarding which profiling mode will be used is taken in accordance
with the profiling needs. The first mode (i) is the default however, the
RecordBuffer can also be utilized instead of the AllocationsCounter by
using the -XX:+NUMAProfilerTraceAllocations option of MaxineVM in

order to produce a detailed trace of object allocations.

* Object access profiling: refers to the profiling of the accesses that are
performed by the VM and application threads to objects. For this functionality
the AccessesCounter is used. The AccessesCounter buffer contains a
2-d array (the counters[][]) which stores the count of object accesses.
Moreover, monitoring the object accesses enables the profiling of shared

accesses (see Section 4.3.7).

* Thread monitoring: refers to the monitoring of the running VM and application
threads. The Thread Inventory tracks each thread and is able to provide a
timeline of the application’s execution. Apart from that, the inventory assigns a
profiler-internal unique ID to each thread instance (MaxineVMe-internal thread
IDs are re-used so two different thread instances might share the same ID). This
ID is used by the profiler to characterize the access to an object as “thread-local”

or “shared” (see Section 4.3.7).

* Heap placement monitoring: the VirtualPages Buffer keeps a track
of the NUMA node that each virtual memory page of the heap resides
(see Section 4.3.8). Therefore, the NUMA node that an object is placed onto

can be found via the VirtualPages Buffer.

As can be observed in Figure 4.5 each class reflects a different profiling data format.
The AllocationsCounter, the RecordBuffer, and the AccessesCounter are
subclasses of the ProfilingArtifact to enhance the modularity and flexibility
of the design. To summarize, the AllocationsCounter, RecordBuffer,
AllocationsCounter, ThreadInventory, VirtualPagesBuffer are used to store
any type of profiling data. The buffering approach aims to gather the profiling data in
memory as they are being collected and forward them to output in a controlled batched
manner (i.e. one ProfilingArtifact as a whole) that minimizes the application

execution interrupts.
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4.3.4 Thread-Local Buffers

The design of the NUMAProfiler is thread-safe to minimize the profiler-derived
blocking of the application threads. Each ProfilingArtifact instance is thread-
local (its reference is stored in a MaxineVM-internal VmThreadLocal variable). As
a result, the profiling buffers are not centralized; hence, there is no need of thread
synchronization during profiling that would increase the profiling execution path

overhead.

Dumping a ProfilingArtifact to the output file of NUMAProfiler blocks and
distorts execution if it is performed during the mutation phase. However, a thread-
local ProfilingArtifact follows the life cycle of its host thread. Therefore, in
case a thread dies during mutation, the ProfilingArtifact will not be accessible
thereafter. For that reason, a queue (ProfilingArtifactQueue) is used to store and
maintain the ProfilingArtifact reference of any dead thread until the mutation
phase ends. In the next post-GC phase, the ProfilingArtifact is sent to the output
of NUMAProfiler; thus and the distortion of the mutation phase is avoided.

4.3.5 Off-Heap Profiling Data

Implementing a tool into the runtime layer of a metacircular VM inevitably results in
additional Java objects in the heap derived by the tool itself. In case those objects
are large (such as a RecordBuffer) they might end up triggering GC more often.
Such a situation would be another form of distortion for the normal execution of an
application. NUMAProfiler avoids this abnormality by leveraging the native memory
management mechanisms of MaxineVM which enable off-heap object allocation for
the profiling data buffers that contain extensively long arrays. More specifically, the
RecordBuffer contains seven extensively long arrays (one element per allocation in
each array, usually ~ tens of millions), while the VirtualPagesBuffer contains one
very long array (one element per virtual memory page of the heap; the larger the heap,
the lengthier the array). As depicted in Figure 4.5, the attributes of those classes are of
Pointer type (a MaxineVM-internal data type for a virtual memory address pointer).
The allocateOffHeap* methods of those classes implement the off-heap memory
allocation and return a Pointer of the allocated memory space which is then casted to

the desired data type.
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Figure 4.6: “Owner” thread ID injection into the Object Layout.

4.3.6 Interoperability with the MaxineVM Runtime

The “events” of object allocation and object access are modelled as code snippets
in the JIT compiler (C1X) and interpreter (T1X) of MaxineVM. The API calls
of NUMAProfiler have been injected into the proper snippets in order to be
included into the execution code path when NUMAProfiler is enabled. This way,
profiling mechanisms are lazily called when an event of interest occurs avoiding
additional complexity. Although the injected profiling path inevitably comes with
overhead, JVM’s ordinary behavior is not heavily distorted (e.g. as with event-based
interruptions). Moreover, profiling data are available at runtime thereby enabling their
on-the-fly exploitation. The latter would be impossible or would come with excessive

overhead if other techniques, such as instrumentation, were used.

4.3.7 Shared Object Accesses

The profiling of object accesses is rather trivial. However, classifying the profiled
access as shared or thread-local is not because such information is not typically
provided by the VM. Nevertheless, such a classification is important for characterizing
the behavior of an application in the context of NUMA. A considerable amount of
shared accesses indicates data dependencies between the application threads. This is
very likelly to damage the locality of data if the dependent threads are scheduled on
different NUMA nodes.

An object access is considered as shared if the thread that performed the access and
the “owner” thread have different ThreadInventory IDs. Regarding NUMAProfiler,
MaxineVM is modified to store the thread “owner” of each object into the misc word

of the object header, as illustrated in Figure 4.6. As a result, the “owner” is available
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Figure 4.7: The format of the counters|[] [] array.

during the profiling of the access on an object along with the thread that performs the
access. This information is stored to the counters 2-D array of AccessesCounter as
illustrated in Figure 4.7. The vertical dimension index of the counters corresponds
to the object access type, while the horizontal dimension index corresponds to the
“owner” of the accessed object. Considering that each AccessesCounter buffer
instance is dedicated to the thread that performs the access, the example of Figure 4.7
denotes that: the thread A performed X LOCAL_ARRAY_WRITES to objects “owned”
by thread 1, and Y INTERNODE_TUPLE_READS to objects “owned” by thread 2°.

In addition, Figure 4.7 highlights the different object access types (read or write,
tuple or array, local or internode). An object access is characterized as remote in case
the object is placed on a different NUMA node than the thread that performs the access
(according to the VirtualPages Buffer).

Note that, the notion of the “owner” thread is quite abstract (i.e., can be the allocator
thread, the last writer thread, or something else); therefore, it depends on the utilized
context. Current work analyzes shared accesses considering the allocator thread (in
Sections 5.3.1 and 5.4.1) and the last writer thread (in Chapter 6) as the “owner”. The

latter definition seems more reasonable in the context of NUMA.

2Thread A is the thread that this AccessesCounter instance is dedicated to.
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4.3.8 NUMA-awareness

NUMA-awareness is enabled by the implementation of the NUMALib util which
interfaces the MaxineVM with the NUMA library of Linux (libnuma) [ ]. The
utilization of NUMALIb by the NUMAProfiler enables the access to the native system
calls of libnuma, such as numa_move _pages () (can return the NUMA node of a virtual
memory address), numa_node_of_cpu() etc. In the pre-GC phase, NUMAProfiler
finds on which NUMA node each heap virtual memory page resides and stores that
information in the VirtualPageBuffer. Thereafter, the NUMA node of each object
can be found by looking up for the address of the object in the VirtualPageBuffer.
A hash method that obtains the memory page from the object address is used for the
look-up, consequently the NUMA node of an object is found with O(1) complexity.
Such a functionality essentially monitors the object placement of an application across
the NUMA nodes. In addition, the VirtualPageBuffer capabilities are used in order

to characterize an object access as local or remote.

4.3.9 NUMAProfiler’s Accuracy

Table 4.2: NUMAProfiler’s Accuracy.

(a) Allocations (b) Accesses
Benchmark | Difference | Benchmark | Difference Access Type | Difference
avrora 0.28% lusearch -1.62% Read Tuple 2.63%
fop 1.28% pmd 2.04% Read Array 0.03%
h2 -0.21% sunflow 0.00% Write Tuple 0.05%
jython -0.04% | xalan 0.1% Write Array 0.04%
luindex -545% | AVG -0.4% AVG 0.69 %

Table 4.2 presents the accuracy of NUMAProfiler as measured for the current
work. We quantify the accuracy of NUMAProfiler for the two major functionalities:
object allocations and object accesses profiling. The count of object allocations using
NUMAProfiler is compared against AntTracks [ ], a Java profiler for HotSpot
VM using Dacapo 9.12 MR1 benchmarks. AntTracks has been used by [ ] to
measure the object allocations in Dacapo applications. However, it should be noted that
a straightforward comparison against a MaxineVM profiler would be unfair. AntTracks
has been developed for HotSpot VM which supports numerous optimizations related
to object allocations, such as Escape Analysis (EA) and Compressed Object Pointers
(Compressed Oops) while MaxineVM does not. EA allocates objects into the thread
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stack instead of heap in case the object never “escapes” the allocator thread’s scope
resulting in lower object allocation counts. Compressed Oops reduce the application
memory footprint by using less bits to represent the object pointers. Therefore, we
need to rerun the experiments of [ ] by disabling those optimizations in
order to set the same baseline for both platforms. In addition, note that MaxineVM,
as a metacircular VM written in Java, inevitably allocates some internal objects
which HotSpot VM does not. We have excluded those objects from the results to
isolate and validate the functionalities of NUMAProfiler’. The exclusion has been
manually applied in a post-execution manner by removing any allocated object of
any type that belongs to Maxine packages (com.sun.max etc.) from the profiling
output. Table 4.2a presents the difference between the object allocations count of
NUMAProfiler and AntTracks for all Dacapo applications. As can be observed the
difference varies from -5.45% to 2.04%. Those differences are attributed to the
no-deterministic behavior of the applications and/or to the fact that the comparison
takes place between two different profiling implementations on two different VMs.

Nevertheless, NUMAProfiler deviates from AntTracks only by -0.4% on average.

Unfortunately, AntTracks does not support profiling of object accesses; hence
there is no point-of-reference for this functionality. For this reason, we implemented
RWMicroBench, a custom Java benchmark with configurable and predictable count
of object access events. We run RWMicroBench tuned to perform a fixed amount
of object accesses of choice (Read Tuple, Write Array, etc.) on MaxineVM with
NUMAProfiler enabled and compare the results against those expected. Table 4.2b
presents the difference between the expected count of object accesses and the one
reported by NUMAProfiler for each object access type. As can be observed the
difference varies from 0.03% to 2.63%. Note that only Tuple Reads are slightly
different from the expected number. This is attributed to read accesses performed to
MaxineVM-internal objects. On average, NUMAProfiler reports only 0.69% deviation

from the expected number.

3The manual exclusion of MaxineVM objects has been applied only for validation purposes because
such a practice would be improper when the objective shifts towards studying a managed application
hosted by a metacircular JVM. The ever-increasing popularity of metacircularity, as GraalVM and
Truffle adoption denote, implies the significance of such an approach which is arising into a mainstream
alternative. Consequently, unless otherwise stated, from that point onwards no discrimination is made
between Application and JVM-internal objects.
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4.3.10 Overhead Analysis of NUMA Profiler

As can be observed in Figure 4.4, the execution path of NUMAProfiler is injected
into the execution path of the VM via the API calls. Therefore, the utilization of
NUMAProfiler introduces additional overhead to the execution time of the application.
This is an inevitable reality, even though the profiling data structures are thread-
local, and the application threads do need additional synchronization. Upon the hit
of a NUMAProfiler API call by an application thread, the JVM normal execution
path temporarily stops for this thread until the API call returns. As a result, the
more frequent and rapid the utilization of NUMAProfiler functionality is, the more
additional overhead is introduced. The most expensive functionality is the profiling of
object accesses since it occurs almost ~100x more than object allocations. The overall
execution time for Dacapo and Renaissance applications is increased by ~ 5-20x when
NUMAProfiler is enabled. Such a cost highlights the physical constraints of the “Java
object profiling from the Runtime layer” technique. Calling the NUMAProfiler API
calls less frequently, in a sampling manner, could potentially drop the overhead in
lower levels. This is a direction for future work because the current work can tolerate
this profiling overhead since NUMAProfiler is used only to provide the raw profiling
results before the offline analysis of the applications (see Section 5.2). However, it is
clear that currently, NUMAProfiler is not a “best-for-all” tool (i.e. not efficient to drive
online optimizations).

To summarize, the numerous and novel profiling features, the flexibility, the
modular and extendable design, and the programmability that NUMAProfiler offers
suggest this profiler as an easy-to-use research tool. Finally, in case the overhead of
NUMAProfiler would significantly be reduced (i.e., with sampling), this tool could
potentially be utilized also as a testbed for quick optimization prototyping in the
context of NUMA.



Chapter 5

Memory Characterization of Managed

Applications

5.1 Introduction

In this chapter, the memory behavior of the Dacapo and Renaissance applications
is studied. To conduct such a study the PerfUtil and NUMAProfiler tools are
exploited. The study is presented per benchmarking in order to provide a suite-wide
view to the reader. More specifically, Section 5.3 focuses on Dacapo benchmarks
while Section 5.4 focuses on Renaissance. Prior to presenting the study, a detailed
description of the experimental methodology is provided in Section 5.2. It is composed
of the deployed machine characteristics, a brief overview of the utilized benchmarking

suites and applications and, the experimental process.

5.2 Measurement Methodology

This section presents our methodology for studying the memory behavior of a managed
application. The experimental process involves several Java applications executed on

MaxineVM running on a two-socket machine.

5.2.1 Experimental Machine

Table 5.1 highlights the hardware and software setup of the machine, while Table 5.2
describes the utilized configuration. As can be observed, the utilized machine is
essentially a NUMA system (Dell PowerEdge R620) with two nodes. To study the

65
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Table 5.1: Machine Setup

Processor 2 x Intel Xeon E5-2690
Sockets 2
NUMA nodes 2
E Num of Cores 16 (32 threads)
LLC Size 40MB
Memory Controllers 8
DRAM 384GB
OS Ubuntu 16.04
E Kernel Linux 4.15.0-112-generic
JVM MaxineVM 2.9

Table 5.2: Run Configuration

Single Node
Num of CPUs 1
Num of Available Cores 8
Num of Utilized Cores 8
LLC Size (MB) 20
Memory Controllers 4
DRAM Size (GB) 192
Java Heap Size (GB) 100
HyperThreading off
Page migration off

memory behavior of the applications any NUMA-related effect that might influence
performance should be exluded. Therefore, only one socket and its corresponding
DRAMs are deployed (the so-called Single Node configuration). The Single Node
configuration encompass a Uniform Memory Access (UMA) environment; hence
achieves that goal. As a result, the Single Node configuration provides 8 CPU cores
and 192 GB of memory.

The dynamic behavior of the OS scheduler introduces uncertainty regarding an
experimental process that involves performance measurements. Each thread might be
assigned to a different CPU core, thereby affecting i.e., the locality of data in private
caches, prefetching, etc. However, a precise assessment of the OS impact on managed
applications is out of the scope of this thesis. Nevertheless, the metrics presented
in Sections 5.3 and 5.4 and chapter 6 derive by the average of multiple measurements
(see Section 5.2.3) in order to mitigate skewness. In addition, when having a NUMA
machine, the scheduler should be configured appropriately to avoid unintentional

thread migration in remote NUMA nodes. To that extent, the aforementioned Single
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Node run configuration is a necessity. ~ Moreover, HyperThreading is disabled to
prevent additional performance and behavior variations. Similarly, the performance
governor of the ACPI CPU frequency driver has been used to stabilize CPU frequency
at 2.9 GHz to avoid dynamic scaling (Dynamic Voltage and Frequency Scaling -
DVES).

Note that, MaxineVM is utilized with the (default) SemiSpace Garbage Collector.
Garbage Collection typically affects memory behavior because apart from collecting
the “dead” objects in order to reclaim memory space, it moves the “live” objects
around. The SemiSpace collector that is used in this work is a “stop-the-world”
algorithm and the heap is composed by two discrete spaces, the “from” and the “to”
space [ ]. Upon a collection, the live objects are moved from “from” space to
“to” space; therefore such a behavior might affect locality of the application, especially
on a NUMA machine (see Section 1.2). This work focuses on the memory behavior
of the application during mutation and aims to exclude the effect of GC; as a result
the effect of GC on memory behavior should be minimized. For that reason, the VM
is configured with 100 GB of heap size (50 GB for each space) for all applications
as can be seen in Table 5.2. This choice is based on the observation that none of the
utilized applications allocates more than 40 GB of heap space. Consequently, 50 GB
of “from” space will not trigger any implicit collection due to lack of free space during
mutation. Moreover, both spaces fit in one NUMA node; hence even in the inevitable
case of an explicit GC call by an application (System.qgc () ) during mutation the “live”
objects will not be moved to another NUMA node. As a result, the effect of GC on an
application’s locality is minimized while it is assured that no side-effect of the NUMA

system kicks in unintentionally.

5.2.2 Benchmarks Overview

A collection of Dacapo [ ] and Renaissance [ ] benchmarks are
utilized for this study. Dacapo is a traditionally popular and well known benchmarking
suite for Java, introduced in 2006, however it has evolved since then. It intends to
reflect real world workloads that non-trivially exercise memory, thus its contributors
have updated and modernized the included applications throughout the years. We
use the latest pre-built maintenance release version (dacapo 9.12 MR1) [ ] as
provided by its authors. According to the release notes, it introduces lusearch-fix
which comes with a fix in lucene and “dramatically changes the performance” of the

application by “reducing the amount of allocation greatly” [ ].
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Table 5.3: Utilized Applications Overview.

Benchmark Input Size  Iterations Benchmark Input Size Iterations
avrora large (max) 30 lusearch large (max) 30
2 fop default (max) 50 lusearch-fix large (max) 30
8 h2 huge (max) 20 pmd large (max) 30
3 jython large (max) 30 sunflow large (max) 30
luindex default (max) 50 xalan large (max) 30
akka-uct N/A 34 mnemonics N/A 26
reactors N/A 20 par-mnemonics N/A 26
als N/A 40 scrabble N/A 60
g chi-square N/A 70 neo4j-analytics N/A 30
S gauss-mix N/A 50 rx-scrabble N/A 90
£ log-regression N/A 30 dotty N/A 50
g movie-lens N/A 30 scala-doku N/A 20
& naive-bayes N/A 40 scala-kmeans N/A 60
db-shootout N/A 26 philosophers N/A 40
fj-kmeans N/A 40 scala-stm-bench7 N/A 70
future-genetic N/A 60

The Renaissance benchmark suite was introduced in 2019. To the best of our
knowledge, most of the applications in Renaissance have not been a subject of a

memory characterization study yet. It includes concurrent and parallel workloads

hosted by modern Java frameworks, such as Akka [ ], Reactors.IO [ 1,
Apache Spark [ ], Java Fork/Join [ ], Java Streams [ 1,
ScalaSTM | ], and in-memory databases (Neo4j [ ], MapDB [Kot],

ChronicleMap [ ], MvStore [ 1). We use the pre-built 0.11.0 release!.

Unfortunately, some applications from both suites were excluded due to
incopatibility with either the MaxineVM or with a tool. For example, batik is
incompatible with Java 8, ec1ipse spawns more thread instances than NUMAProfiler
is able to support, while t radebeans and t radesoap are timeout-based, hence cannot
run with NUMAProfiler due to the overhead introduced by the latter.

Table 5.3 lists all the utilized applications from both suites along with their run
configurations. Well known practices for selecting the number of iterations for each
application in order to reach a “run-steady” state [ , ] were used as a
guide. The number of iterations that these works report ensures that the performance
variations due to JIT compilation have been eliminated before the n-th iteration
(warm-up). Hence, the application is in a run-steady state during the n-th iteration.

However, the number of iterations used by the current work was augmented by 10 to

Thttps://github.com/renaissance-benchmarks/renaissance/tree/v0.11.0
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Table 5.4: Raw events/metrics collected by PerfUtil and NUMAProfiler.

CPU_CYCLES L1D_WRITES NODE_PREFETCH
RETIRED_INSTRUCTIONS L1D_READ MISSES NODE_PREFETCH_MISSES
" BRANCH_INSTRUCTIONS LID_WRITE_MISSES UNCORE_IMC_0_CPU_0
= | BRANCH.MISSES LLC_READS UNCORE_IMC_1_CPU_0
5 DTLB_READS LLC_WRITES UNCORE_IMC_2_CPU_0
= DTLB_WRITES LLC_READ_MISSES UNCORE_IMC_3_CPU_0
E DTLB_READ_MISSES LLC_WRITE_MISSES UNCORE_IMC_0_CPU_1
E DTLB_.WRITE_MISSES NODE_READ_MISSES UNCORE_IMC_1_CPU_1
L1_READS NODE_WRITE_MISSES UNCORE_IMC_2_CPU_1
L1_WRITES LLC_PREFETCH UNCORE_IMC_3_CPU_1
LID_READS LLC_PREFETCH_MISSES
5 TUPLE_ALLOCATIONS TUPLE_READ_REMOTE ARRAY WRITE_REMOTE
q—g' TUPLE_TOTAL_SIZE TUPLE_WRITE_LOCAL APPLICATION_THREAD_NAME
Q‘: ARRAY_ALLOCATIONS TUPLE_WRITE_REMOTE APPLICATION_THREAD_TYPE
< | ARRAY_TOTAL_SIZE ARRAY_READ_LOCAL APPLICATION_THREAD_START_TIME
§ ARRAY_TOTAL_LENGTH ARRAY_READ_REMOTE APPLICATION_THREAD_END_TIME
Z | TUPLE _READ_LOCAL ARRAY WRITE_LOCAL

include enough run-steady iterations. Moreover, Dacapo applications allow the user
to configure the input size and deployed threads with some exceptions (i.e. avrora)
where thread number is determined by the input size. Renaissance applications have a
“test” (small) and a “jmh” (default/large) input size and most of the benchmarks aim
to automatically deploy worker threads equal to the number of available cores. The

largest input size was used along with 8 threads, wherever possible.

5.2.3 Experimental Process

The experiments for the memory behavior characterization study were conducted in
a two-step process in order to profile each application with each tool individually
(PerfUtil/NUMAProfiler). This strategy was selected in order to keep the profiling
“noise”, that derives by the tool itself, as low as possible. Note that, a profiling
process that deploys both tools concurrently is also possible, however additional logic
is required in order to correlate the output traces in a time-wise manner. Nevertheless,
the enhanced level of detail of such a feature is not required for the objectives of the
current work (i.e., to measure the total object allocations, the LLC Misses per kilo
Instructions, etc.).

For each step an individual build of MaxineVM equipped only with the
corresponding tool was deployed. This strategy was selected in order to shield the

profiling results, as possible, by the “noise” that each tool inevitably introduces. More
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specifically, the first step of the experimental process deploys a MaxineVM build
equipped with PerfUtil (MaxineVM PerfUtil) to collect multiple microarchitectural
metrics. Note that, by taking advantage of the multiplexing feature of PerfUtil
(see Section 4.2.4) it was possible to concurrently monitor thirty-two (32) individual
Perf events in a single run. The second step deploys another MaxineVM build
equipped with NUMAProfiler (MaxineVM NUMAProfiler) to collect various object-
related metrics.

The collected raw events/metrics are highlighted in Table 5.4. All events/metrics
are measured per thread and per iteration of the application. Note that multiple
NUMA-related events/metrics exist in the table. Most of them are used in Chapter 6;
nevertheless all metrics utilized in this thesis are listed here for consistency. The
most events/metrics are common, and their meaning can be understood from their
name. However, there are some rare and vendor-specific (UNCORE_IMC_<M>_CPU_<N>)
or with ambiguous meaning (NODE_<READ/WRITE>MISSES from PerfUtil or
TUPLE_READ_REMOTE from NUMAProfiler). Moreover, some events with rather clear
naming (such as the LLC_<READ/WRITE>_MISSES) need additional explanation in the
context of NUMA to avoid confusion. A list of those events follows along with an

explanation for each one:

* LLC_<READS/WRITES>: all L2 accesses that missed the L2 and finally served by
LLC.

* LLC_<READ/WRITE>_MISSES: all LLC accesses that missed in any local or remote

LLC and finally served by local or remote memory.

* NODE_<READ/WRITE> MISSES: all LLC misses that missed in any local or remote
LLC and finally served by remote memory.

* LLC_PREFETCH MISSES: all L2 hardware prefetch requests that served by local

or remote memory.

* NODE_PREFETCH_MISSES: all L2 hardware prefetch requests that served by remote

memory.

* UNCORE_IMC_<M>_CPU_<N>: all read and write requests to the integrated memory
controller M of the NUMA node N.

* <TUPLE/ARRAY> <READ/WRITE>_REMOTE: all read/write accesses on tuple objects

or arrays that were placed in the remote NUMA node.
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The collected raw events/metrics are processed offline after the experimental
procedure, in order to calculate the synthetic metrics that are presented
in Sections 5.3 and 5.4, and Chapter 6. Such an example is the LLC MISS RATE =
LLC_READ_MISSES/LLC_READS. Metric values that refer to an application as a whole
(i.e., total object accesses) are calculated in a coarse-grained manner, as the average
result of the ten last run-steady iterations. Metrics presented in a per-thread basis
(i.e., object accesses of thread N) refer only to the last run-steady iteration because the
threads are re-instantiated per iteration in many applications obstructing correlation

across iterations.

5.3 Dacapo

Dacapo” is one of the most popular benchmark suites in the context of managed

applications; and Java in particular. It has been widely used in numerous

workload characterization studies over the years [ , , ]
as well as in validating new profiling tools [ , ] and evaluating
proposed optimizations [ , ].  Similarly, this work has employed

Dacapo applications to validate and measure the accuracy of NUMAProfiler (see
Section 4.3.9).

Throughout the NUMAProfiler validation process, a number of observations have
been found that complement existing works with respect to Dacapo characterization.
For example, [ ] characterizes sunflow as memory intensive when observing
high-level metrics, such as allocation rate and allocation size. However, the current
work finds that this observation does not hold true when cache and physical memory
pressure metrics are taken under consideration, due to low contention and good
data locality sunflow exhibits. Moreover, Kalibera et al. [ ], and Lengauer
et al. [ ] do not assess the latest Dacapo maintenance release (9.12-bach-
MR1) [ ] which is used in this thesis. Therefore, the updated versions of
Dacapo applications along with the addition of lusearch-fix [ ], to the best of
our knowledge, have not been yet characterized in the literature.

This section presents a study over the memory behavior of the Dacapo benchmarks.
PerfUtil and NUMAProfiler are leveraged to conduct this study, while the findings
aim to complement those presented by the current state-of-the-art studies in regard

to the Dacapo benchmark suite [ , , ]. Nevertheless, the

Zhttps://github.com/dacapobench/dacapobench
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proposed methodology can be applied to any application running on the JVM.

Note that in Section 4.3.9, we manually excluded the MaxineVM-internal objects
in order to fairly compare the NUMAProfiler with AntTracks. Therefore, this practice
was leveraged only for validation purposes. The ever-increasing popularity and
adoption of GraalVM and Truffle implies the significance of metacircularity which is
arising into a mainstream alternative. Consequently, when the objective shifts towards
studying a managed application that is executed by a metacircular compiler or VM
the exclusion of component/VM-internal objects would be an improper practice in the
sense that it obfuscates the reality. For that reason no discrimination is made between

objects that belong to the application or to MaxineVM from that point onwards.

5.3.1 Object Metrics

Tables 5.5 and 5.6 outline the object allocation and access characteristics for each
Dacapo application. More specifically, Table 5.5 presents the total number of object
allocations, the allocation sizes in MBs along with the allocation rate in objects and
size per second. In addition, some object layout properties are discussed, such as
the average object size, etc. Table 5.6 presents the total number of object accesses,
the access rate, and Read/Write (R/W) ratio. Moreover, it shows the amount of
shared object accesses for each application as a percentage of the total accesses. An
object access is considered as “shared” in case the “accessor” thread is different from
the thread that allocated the object. The numbers are calculated by averaging the
metrics achieved by ten iterations beyond the warm-up phase (see Section 5.2.2). The

maximum value of each metric is highlighted as bold in both tables.

Object Allocations

H2 allocates the most objects and memory in total, however it is one of the less
allocation-intensive applications based on the allocation rate. This is due to the large
number of instructions (and consequently execution time) that h2 has, as shown in
Table 5.7. Sunflow allocates less and smaller objects but turns out to be the most
allocation intensive application in both terms of objects and memory size. Jython is
the most intensive single-threaded benchmark both in terms of objects and memory
size allocation. Lusearch-fix has been introduced as an update to lusearch bearing

a fix in the lucene platform that reduces object allocations; however, no such difference
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Table 5.5: Object Allocations and Object Layout in Dacapo.

Object Allocations Object Layout
Avg Avg
Application 103 MB 10° MB obj Array Array
sec sec ) Rate [%]
size [b] Length
avrora 9,320 406.7 419.9 18.3 | 458 22.1% 11.2
fop 2,783 158.5 47113 2684 | 59.7 31.8% 19.9
h2 461,524 24,762.6 920.6 494 | 56.3 33.9% 12.5
jython 210,975 16,987.4 45932  369.8 | 84.4 28.0% 57.3
luindex 187 25.8 194.4 268 | 1446 393% 2024
lusearch 30,787  3,876.4 12,718.6 1,601.4 | 132.0 24.8% 118.8
lusearch-fix 30,786  3,876.4 12,730.0 1,602.9 | 132.0 24.8% 118.8
pmd 27,380 1,541.3 3,8869  218.8 | 59.0 23.0% 31.8
sunflow 175,755  7,344.0 43,2489 1,807.2 | 438 2.6% 3.0
xalan 113,709 13,024.8 11,318.1 1,296.4 | 120.1 36.0% 56.9
GEOMEAN | 27474 2,085.7 3,7151 2819 | 79.6 22.6% 34.7

is observed?.

Memory Footprint & Object Layout

Total object allocations do not necessarily reflect the allocation size footprint (per
iteration, in MB). Luindex allocates the largest objects on average, and it contains
the most and longest arrays. However, it is a single-threaded application with the
smallest memory footprint among Dacapos. Lusearch and xalan follow in terms
of average object size showing also higher array rate and average array length than
the geometric mean of Dacapos. Xalan is an application that has large objects, on
average. Even though it performs fewer allocations than sunflow, it ends up having
higher memory footprint. Consequently, such metrics are crucial especially when the
observed memory footprint origin matters (i.e., GC optimizations, an optimization
targeting large objects, heap size tuning and more). Moreover, the Object Layout
metrics reveal additional properties of an application which are very likely to affect
its memory and/or overall behavior. For example, large objects (as in lusearch
and xalan) are more likely to span across two memory pages. Such applications
might stress TLB and page-table more than others. This type of memory pressure
can potentially be a source of inefficiencies and severe overheads in the context of

NUMA [ , ]. For example, lusearch and xalan have been proven

3This issue has been communicated to the authors of Dacapo, and a fix will be issued in the next
release update.
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Table 5.6: Object Accesses in Dacapo.

Object Accesses Sh. Accesses

Application 106 106 R/W R W
sec Ratio

avrora 4,865 219 10:1 | 93% 57%
fop 65 109 9:1 0% 0%
h2 51,518 103 16:1 | 41% 31%
jython 7,518 164 10:1 | 0% 0%
luindex 134 139 13:1 | 0% 0%
lusearch 2,357 974 15:1 | 24% 4%
lusearch-fix 2,362 977 14:1 | 24% 5%
pmd 1,144 162  10:1 | 36% 7%
sunflow 7,504 1,847 30:1 | 84% 0%
xalan 7,433 740 12:11 | 19% 23%
GEOMEAN | 2,378 322 13:1 | 12% 4%

unfriendly to the Page Migration mechanism of Linux [ ] which is tightly
related to the TLB and page-table. Lusearch slows down by ~13% while xalan

gets its remote node accesses increased by ~300% when Page Migration is enabled.

Object Accesses

The object accesses highlight the application-memory relation degree as observed from
the application layer. Table 5.6 presents a collection of object accesses metrics as
well as the percentage of shared accesses. The latter refers to the number of accesses
performed by a different thread rather than the “owner” of the object (see Section 4.3.7)
as a percentage of total object accesses. As can be observed in Table 5.6, h2 performs
the most object accesses in total while, sunflow, xalan, and avrora have more than
2x more accesses than the geomean. Sunflow performs the most object accesses per
second followed by lusearch and xalan. All applications are read-dominated with
sunflow having the most (30) reads per one write. Avrora shows the highest shared
object R/W access rate. Sunflow follows, but it has only shared Read accesses(see last
column of Table 5.6). A high percentage of shared Read accesses is an indication for
the existence of the producer-consumer pattern. Finally, avrora, h2, and xalan show

the highest percentage of shared Writes accesses.
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Object Metrics Summary

To summarize, we group the applications by allocation and access rate and filter out

those below the geometric mean using the heuristic of Equation (5.1):
( Allocation Rate > Geomean ) AND ( Access Rate > Geomean ) (5.1)

Consequently, according only to the object metrics studied so far, the applications that
seem to stress the memory system the most are: lusearch, luserach-fix, sunflow,
and xalan.

The above results confirm the already known trends [ , ] even
though they slightly differ in terms of absolute numbers. This differentiation can be a
result of the “metacircular JVM effect”, the slightly different run configurations, and/or
the different (updated) version of the benchmark suite.

In contrast to the literature [ , ], we observe that although the
above metrics are necessary, they are not sufficient to properly characterize the memory
behavior of a managed application. Those metrics comprise only an application layer
point of view, and thus it is impossible to assess the application’s effect and interaction
with the underlying hardware components, such as the LLC. For that reason, we extend

the study by co-examining some microarchitectural metrics provided by PerfUtil.

5.3.2 Hardware Metrics
Hardware Instructions Overview

Table 5.7 shows the distribution of Arithmetic (integer and floating point), Branch,
and Memory Instructions per benchmark. Furthermore, the collected metrics are also
presented as a percentage over the total number of retired instructions. Such a table
format can reveal the ratio between Memory, Arithmetic, and Branch Instructions as
well as whether an application is potentially dominated by read or write accesses.
PerfUtil is able to count the Total Retired Instructions, L1D Reads, L1D Writes, Branch

Instructions and consequently the number of Arithmetic Instructions is calculated as:
Arithmetic = Total — L1DReads — L1DWrites — Branch (5.2)

Read and write ratios settle towards read operations, since the L1D read instruction

percentage is higher than L1D writes in all applications. It tends to be aligned to
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Table 5.7: HW Instructions Overview - Dacapo

. . L1D L1D  Total .
Application Instructions Reads Writes Mem. Arith. Branch
avrora 57,645,363,283  35% 18% 56% 29% 15%
fop 2,644,295,397 28% 25% 47%  38% 15%
h2 1,292,129,013,772  29% 16% 48%  37% 15%
jython 294,432,673,937 27% 32% 43%  40% 16%
luindex 5,085,147,760  29% 25% 43%  40% 18%
lusearch 72,686,381,316  28% 21% 43%  40% 17%
lusearch-fix 72,517,120,274 28% 21% 43%  40% 17%
pmd 36,072,750,432  28% 22% 46%  38% 16%
sunflow 162,257,371,836 31% 21% 43% 43% 15%
xalan 223,669,834,459 29% 21% 48%  36% 15%
GEOMEAN 67,741,600,233 29% 22% 46% 38% 16 %

Table 5.8: Cache/Memory Locality and Pressure in Dacapo.

. . Accesses PK

Application | CPI I\I/SIII’)I[(JI Misses PKI Miss Rate Object Operation

DTLB L1 L2 LLC | DTLB L1 L2 LLC |LLC Memory
avrora 1.21 | 4.36 1.62 2428 1272 0.13 | 03% 44% 524% 10% | 153 2
fop 0.76 | 1.01 092 1321 585 116 | 02% 28% 443% 19.8% | 233 46
h2 117 | 2.66 1.81 1237 7.16 2.60 | 04% 2.6% 579% 363% | 178 65
jython 054 046 | 044 875 223 098 | 0.1% 2.0% 255% 442% | 82 36
luindex 055| 200 | 037 524 187 013 | 01% 12% 357% 6.8% | 70 6
lusearch 074 | 1.64 120 1629 6.19 091 | 03% 3.8% 38.0% 14.6% | 189 28
lusearch-fix | 0.72 | 1.64 1.18 16.10 6.16 091 | 03% 3.8% 382% 14.8% | 188 28
pmd 0.78 | 1.83 201 1717 736 083 | 04% 3.7% 429% 11.2% | 229 26
sunflow 059| 250 | 054 755 230 072 01% 18% 305% 31.3% | 48 15
xalan 094 | 1.60 1.04 1959 6.17 092 | 02% 4.0% 31.5% 149% | 181 27
GEOMEAN | 0.77 | 1.71 | 096 1283 495 0.68 | 0.21% 2.8% 38.6% 13.8% | 138 19

the R/W Ratio of Table 5.5, i.e. sunflow has the largest gap. However, minor
misalignments are visible probably due to the “noise” introduced by the complex
infrastructure of the VM. Note that, for example, the observed total instructions of a
managed application are essentially a mix of instructions from the application and the
VM itself. Since there is no obvious way to safely estimate and exclude the latter, a co-

interpretation of the results derived from the NUMAProfiler and PerfUltil is necessary.

Even though it is clear that memory instructions outweigh branch and arithmetic
instructions in all applications, a deeper examination of metrics related to the memory

hierarchy is needed in order to characterize the memory behavior.
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Data Locality & Cache/Memory Pressure

Although the cache hierarchy aims to fill the latency gap between the CPU and main
memory, the latter often remains a source of delays in a program’s execution. Due to
complex features of modern hardware (e.g., out-of-order execution, multiple cache
levels, shared memory, etc.) such characterization lacks of a strict definition (or
concrete methodology) and can only rely on a multi-aspected profile that comprises
numerous metrics. However, CPI co-examination along with memory hierarchy
and Branch Prediction Unit (BPU) pressure and locality metrics can reveal useful
insights regarding memory behavior. Misses Per Kilo Instructions (MPKI) can
be used as a global metric of “pressure” because it factors in the total retired
instructions [ , ]. On the other hand, miss rate of each memory level
can provide an indication of “data locality”. In addition, LLLC and memory accesses
per Kkilo object operations (allocations + accesses) aim to bridge low with high level
metrics and are quite indicative regarding data locality. Moreover, note that large
pressure on BPU derives from non-predictive control flow, or data-dependent branches,
or both. A non-predictive control flow leads in accessing memory locations in a non-
deterministic manner, thereby influencing the regularity of the memory access pattern.
Additionally, in the case of data-dependent branches, the accessed memory location
cannot be predicted leading to irregular memory access patterns. Therefore, a large
value of BPU MPKI can indicate irregularities in the memory access patterns which in
the case of a memory intensive application will penalize performance. The following
sections discuss the above metrics which are listed in Table 5.8 per application. The

maximum value of each metric is highlighted as bold.

The larger the MPKI value is, the “heavier” the load for the corresponding memory
hierarchy level is. Consequently, this set of “pressure” metrics can be used to assess
the memory-bound degree relatively with other applications. LLC MPKI reveals that
an application’s object allocation and access intensiveness are not necessarily reflected
in main memory pressure which is counter-intuitive. For instance, sunflow is the most
intensive application in terms of object allocations and object accesses; however, the
largest pressure on main memory among the Dacapo benchmarks is caused by h2.
On the contrary, sunflow seems to put the least pressure, among the multithreaded
applications, on the memory hierarchy as the LLC/Memory pressure and CPI metrics.
This is justified to the good spatial and/or temporal locality of sunflow working data.
Sunflow’ s behavior can also be observed in LLC and memory accesses per kilo object

operation ratio which are below the geomean and among the lowest. Consequently,
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the accesses per kilo object operation metrics are quite indicative regarding the
locality of working data by comparing object operations against actual cache/memory
pressure. Fop is the most LLC and main memory intensive among the single-threaded
applications (fop, jython, luindex), which is also confirmed by its CPI. It is notable
that although avrora and pmd are the most LLC intensive applications, they finally
put low pressure on memory denoting that their data set successfully fits into the
larger LLC (compared to L2). After examining LLC and memory pressure metrics,
avrora’s CPI seems to be affected more by BPU, DTLB, and cache rather than main
memory (Table 5.8). High DTLB pressure of lusearch and xalan probably is related

to their large objects.

Summary of Dacapo Memory behavior analysis

Section 5.3.1 has discussed object related metrics while Section 5.3.2 and Section 5.3.2
have discussed hardware related metrics in a top-down manner. Section 5.3.1
concluded that the most memory intensive Dacapo applications are: lusearch,
luserach-fix, sunflow and xalan. However, after co-examining the hardware
related metrics in Section 5.3.2 this conclusion was finally overthrown. More
specifically, sunflow hardly stress the LLC while lusearch and xalan put moderate
pressure to LLC compared to avrora. The latter has among the lowest object
allocation and access rates but turns out to be the most LLC intensive. H2 is the
most main memory intensive Dacapo application along with the single-threaded fop.
H2 is also an example of a memory-bound application. Counter-intuitively, sunflow
turns out to be the least main memory intensive application; therefore stands as an
exceptional example of high and low level metrics co-examination. Another notable

finding is that lusearch-fix does not essentially differ from lusearch.

5.4 Renaissance

This section studies the memory behavior of the recently introduced Renaissance
benchmark suite [ ]. Similarly to the Section 5.3, several high and low-level
memory related metrics derived from the NUMAProfiler and PerfUtil are presented
and discussed in a top-down manner. The study aims to provide the research
community with useful insights for this new benchmark suite which, to the best of
our knowledge, are not yet available. Moreover, this section acts as an intermediate

step before analysing how Renaissance benchmarks behave in the NUMA context.
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Table 5.9: Object Allocations and Object Layout in Renaissance.
Object Allocations Object Layout
Avg Avg
Application 10° MB % % . obj R‘:‘tge[l;o] Array
size [b] Length

akka-uct 1,052,172 56,561 69,027 3,710 56 2 9
reactors 387,087 15,942 6,562 270 43 18 13
als 62,361 2,671 7,666 328 45 5 146
chi-square 105,632 3,474 22,567 742 34 2 42
gauss-mix 457,453 13,180 61,284 1,767 30 1 43
log-regression 11,302 1,068 1,563 148 99 8 545
movie-lens 175,959 12,749 7,535 546 76 22 113
naive-bayes 561,601 12,917 220,859 5,080 24 0.05 96
db-shootout 429,679 36,004 29,539 2,475 88 51 59
fj-kmeans 17,051 18,844 1,311 1,448 | 1,159 64 225
future-genetic 40,305 2,285 6,219 352 59 4 69
mnemonics 260,821 12,709 7,515 366 51 18 17
par-mnemonics 261,017 12,724 9,189 448 51 18 17
scrabble 66,366 2981 23,428 1,052 47 15 6
neodj-analytics 524,089 17,751 29,762 1,008 36 4 12
rx-scrabble 10,877 452 7,199 299 44 5 9
dotty 48,554 1,726 7,076 252 37 6 66
scala-doku 174,394 4,177 17,165 411 25 1 10
scala-kmeans 6,017 194 3,537 114 34 0.11 675
philosophers 68,417 4,115 13,977 841 63 15 19
scala-stm-bench?7 35,024 1,724 11,753 578 52 14 22
GEOMEAN 101,155 5,216 12,271 633 54 5 40

5.4.1 Object Metrics

As already stated, object allocations, accesses, and their rates over time, are quite

indicative of an application’s memory intensiveness; however, they do not always

lead to well-rounded conclusions as shown in the previous section.

Table 5.9

presents metrics related to object allocations and object layout, while Table 5.10

presents metrics related to object accesses for each Renaissance application. The

reported numbers are the average of ten iterations beyond the warm-up phase

(see Section 5.2.2). The maximum value of each metric is highlighted in both tables
(Tables 5.9 and 5.10).
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Object Allocations

Akka-uct, naive-bayes, neod4j-analytics, h2, and gauss-mix allocate the most
objects in total (per iteration). Akka-uct allocates almost double the objects of
naive-bayes which is the second highest allocating application. Mnemonics and

scala-doku are the single-threaded applications with the most total object allocations.

Memory Footprint & Object Layout

The number of total allocations do not necessarily reflect the allocation size footprint
(per iteration, in MB). Fj-kmeans has by far the largest average object size (1.13
kB) while log-regression, db-shootout, and movie-lens follow. It is notable
that although f j-kmeans and db-shootout allocate fewer objects than naive-bayes
or neodj-analytics, they end up with higher memory footprint which is apparently
related with object size. In addition, £ j-kmeans is an array-dominated application with

63.9% of its allocations being arrays while db-shootout, and movie-lens follow.

Object Allocation Rate

The aforementioned metrics indicate how much memory an application allocates,
however, they do not highlight how intense the memory allocation is. The object
count and object size per second metrics should be taken under consideration towards
characterizing the memory intensity of a managed application. An application that
allocates new objects at a high rate is very likely to put excessive pressure on
the memory system. Naive-bayes, akka-uct, gauss-mix, neo4j-analytics,
db-shootout, and scrabble are the most intensive in terms of both object and size

allocation rate.

Object Accesses

Table 5.10 presents a collection of object accesses metrics as well as the percentage of
shared accesses. The latter refers to the number of accesses performed by a different
thread rather than the “owner” of the object (see Section 4.3.7) as a percentage of
total object accesses. Akka-uct, fj-kmeans, reactors, and neo4j-analytics
perform by far the most accesses to their objects. Akka-uct and fj-kmeans show the
highest object access rate along with philosophers, neo4j-analytics, scrabble,

and naive-bayes that follow. All applications are dominated by read accesses, with
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Table 5.10: Object Accesses in Renaissance.

Object Accesses Shared Accesses
. 6 6 R/W
Application 10 % Ratio R Y
akka-uct 23,126 1,517 5:1 | 69% 3%
reactors 10,496 178 6:1 | 77% 56 %
als 1,649 203 2211 | 9% 16%
chi-square 1,000 214 8:1 | 27% 0%
gauss-mix 2,301 308 6:1 | 36% 0%
log-regression 1,984 274 110:1 | 2% 2%
movie-lens 4,391 188 10:1 | 34% 11%
naive-bayes 1,215 478 112:1 | 3% 2%
db-shootout 4,343 299 3:1 | 28% 6%
fj-kmeans 15,668 1,204 120:1 | 59% 1%
future-genetic 2,053 317 18:1 | 37% 5%
mnemonics 4,996 144 71| 0% 0%
par-mnemonics 5,001 176 7:1 | 47% 0%
scrabble 1,411 498 8:1 | 47% 0%
neo4j-analytics 10,151 576 3:1 | 51% 1%
rx-scrabble 201 133 6:1 | 48% 0%
dotty 584 85 13:1 | 0% 0%
scala-doku 1,393 137 71:1 | 0% 0%
scala-kmeans 373 219 2711 | 0% 0%
philosophers 3,802 777 6:1 | 60% 30%
scala-stm-bench?7 894 300 9:1 | 37% 0%
GEOMEAN 2,405 292 13:1 | 14% 0.4%

fj-kmeans having 120 reads per one write. On the other hand, db-shootout and

neodj-analytics have the most balanced R/W ratio.

Many applications show a considerable degree of shared accesses with reactors
having the most shared reads and writes. Even though actor frameworks aim to
guarantee workload concurrency their asynchronous non-blocking message passing
infrastructure inevitably leads to accessing objects “owned” (allocated) by other
threads. Therefore, the degree of shared accesses for reactors and akka-uct is
justified. Nevertheless, as will be discussed in Chapter 6, shared data might essentially
block scalability in a NUMA architecture. On the contrary, als, log-regression,
naive-bayes show negligible shared object accesses, thus potentially denoting data

parallelism.
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akka-uct
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db-shootout fj-kmear!s
scrabble future-genetic

neodj-analytics scala-stm-bench7
philosophers
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Figure 5.1: Memory Intensive Renaissance Applications in terms of Object Allocations
and Accesses.

Object Metrics Summary

Up to this point we have surveyed several high-level memory metrics related to object
allocations and object accesses. To summarize, we group the Renaissance applications
by allocation and accesses rate and filter out those that are below the geometric
mean, using the heuristic described in Equation (5.1). According only to the object-
related metrics, the applications that seem to stress the memory system the most are
depicted in Figure 5.1. The left circle contains applications with object allocation
rate above the geometric mean (object allocation intensive). Similarly, the right circle
contains applications with object access rate above the geometric mean (object access
intensive). The intersection of the two circles highlights the applications that are

intensive both in terms of object allocations and object accesses.

5.4.2 Hardware Metrics
Hardware Instructions OQverview

Table 5.11 shows the distribution of arithmetic, branch and memory instructions
per benchmark. Memory instructions tend to outweigh branch and arithmetic
instructions in the vast majority of the applications, similarly to Dacapo. However,
Renaissance applications show a greater diversity than Dacapo. For instance, als,
chi-square, movie-lens, and naive-bayes (all belong to the Apache Spark family)
are below the percentage of minimum memory instructions observed in Dacapo, while
future-genetic is beyond the maximum one. Nevertheless, the geometric mean of

the memory instruction % is, as expected, ~ 45% and all applications are dominated
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Table 5.11: Hardware Instructions Overview - Renaissance.

83

Instructions LID LI.D Total Mem.  Arith. Branch
Reads Writes

akka-uct 413,031,096,621 29.55% 15.66% 45.21% 36.04% 18.76%
reactors 344,901,909,214 30.71% 21.11% 51.82% 33.10% 15.08%
als 173,577,079,497 2427%  8.80% 33.08% 50.50% 16.43%
chi-square 44,712,182,871 2527% 14.85% 40.13% 4221% 17.66%
gauss-mix 88,927,702,969 26.10% 16.23% 42.33% 40.15% 17.52%
log-regression 66,506,869,326 35.13% 8.43% 43.56% 38.08% 18.36%
movie-lens 255,423,610,313 25.35% 13.83% 39.18% 44.77% 16.05%
naive-bayes 95,767,198,846 27.76%  9.29% 37.05% 44.90% 18.05%
db-shootout 415,462,411,962 26.35% 16.76% 43.11% 41.17% 15.71%
fj-kmeans 16,587,430,766 32.52% 13.92% 46.44% 38.33% 15.23%
future-genetic 50,065,010,991 34.77% 22.75% 57.52% 29.78% 12.70%
mnemonics 167,497,623,059 27.12% 18.73% 45.86% 3840% 15.74%
par-mnemonics 164,897,514,508 27.01% 18.87% 45.87% 38.39% 15.74%
scrabble 44,953,086,743 28.06% 19.48% 47.54% 37.09% 15.38%
neodj-analytics 176,983,336,923 28.52% 15.90% 44.43% 3941% 16.17%
rx-scrabble 6,552,607,394 31.60% 24.72% 56.32% 3093% 12.75%
dotty 19,001,592,728 26.46% 15.72% 42.18% 40.98% 16.83%
scala-doku 48,122,342,431 29.73% 12.10% 41.83% 40.83% 17.34%
scala-kmeans 9,360,648,141 30.52% 17.90% 48.42% 38.50% 13.09%
philosophers 90,682,695,138 31.01% 20.21% 51.22% 33.63% 15.15%
scala-stm-bench7 | 21,856,846,101 28.14% 18.68% 46.83% 38.39% 14.79%
GEOMEAN 72,999,411,837 28.71% 15.76% 44.87 % 38.56% 15.84%

by read accesses.

Data Locality & Cache/Memory Pressure

To further examine memory behavior of the Renaissance benchmarks we need to focus
on Memory and Cache subsystem. Table 5.12 presents the same metrics that are
studied for Dacapo applications as well (see Section 5.3.2). The maximum value of
each metric is highlighted in Table 5.12.

As can be observed, reactors, scrabble, dotty, and scala-stm-bench7 have
high CPI values. Such a fact could imply stalls due to memory and consequently
memory-boundness. However, this observation contradicts with Figure 5.1 where
only scrabble and scala-stm-bench7 seem to be “object allocation and accesses
intensive”. Therefore, it becomes clear again that the assessment of memory intensity
cannot rely only on object-level metrics. An application might turn out to be memory
bound as a result of other reasons (i.e., lack of memory locality), even though it does

not significantly allocate or accesses objects. In particular, reactors shows 2.5x
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Table 5.12: Cache/Memory Locality and Pressure in Renaissance.

BPU Misses PKI Miss Rate Accesses PK

CPI MPKI Object Operation

DTLB Ll L2 LLC|DTLB LI L2 LLC |LLC Memory
akka-uct 076 | 137 | 1.14 2453 684 250 | 026% 552% 27.88% 36.57% | 122 45
reactors 1L02] 122 | 070 17.63 7.18 085 | 0.13% 3.38% 40.74% 11.85% | 251 30
als 041 032 | 006 273 087 026 | 002% 082% 31.80% 29.64% | 98 29
chi-square 062 | 067 | 008 945 232 120 002% 2.32% 2459% 51.53% | 95 49
gauss-mix 049 | 041 | 0.10 1377 421 221 | 002% 322% 3057% 52.46% | 138 7
log-regression | 0.60 | 238 | 0.11 487 1.02 056 | 0.02% 1.11% 20.98% 55.13% | 35 19
movie-lens 061 | 1.17 | 038 888 321 086 0.10% 229% 36.11% 26.85% | 204 55
naive-bayes 047 006 | 007 1276 3.60 2.02 | 0.02% 341% 28.19% 5628% | 197 111
db-shootout 052| 053 | 0.16 876 335 152 004% 2.08% 3820% 45.52% | 293 133
fj-kmeans 075| 122 | 059 896 457 270 | 0.13% 191% 51.07% 58.93% | 5 3
future-genetic | 0.80 | 0.88 | 028 10.03 3.84 070 | 0.05% 1.80% 38.24% 18.29% | 105 19
mnemonics 0.64 | 289 | 064 1460 258 120 | 0.14% 3.14% 17.68% 46.57% | 91 43
par-mnemonics | 0.68 | 3.05 | 0.25 1520 3.05 124 |0.05% 327% 20.06% 40.75% | 105 43
scrabble 146 | 411 | 105 2529 479 1.05|022% 527% 18.93% 21.84% | 162 35
neodj-analytics | 0.73 | 098 | 0.52 1974 3.86 1.81 | 0.12% 4.44% 19.54% 47.02% | 65 31
rx-scrabble 088 | 2.68 | 027 2005 345 1.14|005% 3.52% 17.18% 33.07% | 117 39
dotty 110 | 408 | 224 29.16 934 165 |052% 681% 32.03% 17.64% | 311 55
scala-doku 063 | 1.63 | 057 1532 865 139 |0.14% 3.62% 5647% 16.08% | 295 47
scala-kmeans 055 | 2.11 | 022 385 095 046 | 0.04% 0.78% 24.82% 47.92% | 26 13
philosophers 085| 170 | 0.63 1543 3.63 037 | 013% 3.07% 23.54% 1032% | 92 10
scala-stm-bench7 | 1.07 | 1.61 | 1.07 21.01 7.00 2.10 | 023% 4.54% 33.30% 30.03% | 169 51
GEOMEAN 071 | 1.20 | 034 1234 351 1.12 | 0.08% 2.74% 28.45% 31.92% | 106 34

more LLC accesses per kilo object operations than the geomean which implies lack
of data locality, while dot ty shows very high BPU MPKI which indicates irregularity
in memory access patterns (see Section 5.3.2 that explains how the BPU MPKI is
related to irregular memory access patterns). An additional remark is par-mnemonics
which has been named as memory-bound [ ], however its CPI is way below
1; hence, it turns out that memory is not the most decisive factor for performance of
this application. An interesting finding occurs when focusing on als and movie-lens
which have been classified as compute-bound [ ]. This description is confirmed
for als by the observed CPI value, and by the negligible pressure it puts on any
level of the memory hierarchy. On the contrary, movie-lens lacks locality because
it shows 2x more LLC accesses per kilo object operations than the geomean; hence,

the performance of this application is rather influenced also by memory.

Moreover, akka-uct, gauss-mix, naive-bayes, db-shootout, scrabble,
neo4j-analytics, and philosophers are in the intersection of Figure 5.1; hence
it is expected to be memory intensive applications. Nevertheless, they diversify
because not all put pressure on both the LLC and memory. Akka-uct, gauss-mix,
naive-bayes, db-shootout and neo4j-analytics put significant pressure up to
memory, as expected. On the contrary, scrabble and philosophers put significant

pressure only up to the LLC. It is very likely that scrabble and philosophers
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either benefit from locality in LLC or/and have a smaller working data set that fits
into LLC. Although, we cannot safely estimate the exact reason for each, note that
low LLC and memory accesses per kilo object operation of philosophers indicate
good data locality. On the other hand, scrabble shows high BPU MKPI and as is
described in Chapter 6 it lacks of data locality due to irregular memory access patterns.
In addition, rx-scrabble (that implements the same algorithm as scrabble but
uses an alternative framework), dotty, mnemonics, par-mnemonics, scala—kmeans,
philosophers, and log-regression are candidates for irregular memory patterns
due to their high BPU MPKI. It should be noted that an irregular application might
avoid heavy penalization in a system with unified caches and create an “illusion” of
locality in case the working data fits into the caches or by luck due to cached data co-
location in the same (local) cache. However, its behavior might dramatically change
in an architecture with distributed resources among nodes (such as NUMA) where
not only working data might be spread in local and remote caches, but also cache

coherency mechanisms might cross-invalidate them causing locality breakdown.

A similar diversity is observed in the right section of Figure 5.1 where
the applications are intensive in terms of object accesses. Fj-kmeans and
scala-stm-bench7 put significant pressure on both LLC and memory, while
future-genetic stresses only the LLC. F j-kmeans is a notable case because it is the
second most intensive application in terms of object accesses, it is a read-dominated
application, and according to those data it seems to benefit from data locality since it
has the lowest LLC accesses per kilo object operations. Note that this data locality
may be fragile or not always guaranteed as will be discussed in Chapter 6. The “object
allocations intensive” chi-square and scala-doku do not put significant pressure
neither to LLC nor to Memory, which is expected since object allocation operations

are 3-5 order of magnitude fewer than object accesses.

By comparing the overall geometric mean of Renaissance and Dacapo, it is
observed that the former puts relatively lower pressure to LLC. Nevertheless, such
a fact does not necessarily mean lower main memory pressure in which Renaissance
gets over Dacapo. The data locality of the applications in the LLC is decisive for the

overall memory intensiveness.

Log-regression, naive-bayes, gauss-mix, and chi-square, which are Spark
applications, show greater than 50% LLC Miss Rate. Such a poor data locality
inevitably brings to the spotlight the effect of the Spark engine when co-located

with worker threads over the same limited CPU and cache resources. However,
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only gauss-mix and naive-bayes end up with high memory pressure among the
aforementioned applications. It is notable that akka-uct has lower CPI than reactors
despite the fact that the first accesses main memory almost three times more. This
counter-intuitive observation can be explained by the fact that reactors is more
memory instruction dominated (see Table 5.11), and has 2x more LLC accesses
per kilo object operations than akka-uct. Throughout this comparison, the high
complexity of memory behavior analysis is again highlighted, thereby denoting that

memory overhead might derive literally by any component of the stack.

Key Findings

Section 5.4.1 has discussed object related metrics, while Section 5.4.2 has discussed

hardware related metrics and our key findings are summarized below:

1. The most intensive applications in terms of object allocations and accesses
are: akka-uct, gauss-mix, db-shootout, fj-kmeans, future-genetic,

scrabble, neod4j-analytics, philosophers, and scala-stm-bench7.

2. As derived by Table 5.12, the most LLC intensive applications are: dotty,
scala-doku, akka-uct, reactors, scala-stm-bench7, fj-kmeans, and

scrabble.

3. The most memory intensive applications are: akka-uct, fj-kmeans,
gauss-mix, naive-bayes, scala-stm-bench7, neo4j-analytics, dotty,

and scala-doku.

4. Similarly to the Dacapo applications, the Renaissance applications that present
high number of object allocations and object accesses do not always put the
highest pressure on LL.C and memory. For instance, gauss-mix, db-shootout,
future-genetic, and philosophers put moderate pressure on the LLC; even
below the geometric mean. On the contrary, reactors, dotty, and scala-doku
put relatively high pressure to the LLC, although they are not included in
the aforementioned “object-intensive” application category. Regarding the
pressure on main memory, akka-uct, fj-kmeans, gauss-mix, naive-bayes,
scala-stm-bench7, neodj-analytics, dotty, and db-shootout are the most

intensive.

5. Even though actor frameworks aim to guarantee concurrency and non-blocking

parallelism, the actor applications show a considerable amount of shared data.
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Their actual effect is of significant interest towards studying those applications
in the context of a NUMA architecture where data dependencies might bound

scalability.

6. It is further confirmed that als is a compute-bound application in contrast with

movie-lens which is affected by locality of data.

7. Par-mnemonics and scrabble do not directly confirm their memory-bound

characterization.

5.5 Summary

To summarize, we have augmented the understanding about the memory behavior of
both Dacapo and Renaissance benchmark suites. The two tools that were presented
in Chapter 4 were deployed in order to collect a wide range of metrics. PerfUtil
collected numerous low-level hardware metrics, while NUMAProfiler gathered high-
level Java metrics related to object allocations and accesses (Section 5.2). Those
metrics were utilized in order to study and analyse the memory behavior of 30
managed applications from the Dacapo and Renaissance benchmark suites. The study
of the memory behavior was presented in two parts. Section 5.3 focused on Dacapo
applications, while Section 5.4 focused on Renaissance applications. The findings
from both Sections 5.3 and 5.4 showcase the effectiveness of the hw/sw co-utilization
perspective in the profiling of a managed application. The next chapter (Chapter 6) will
study several application properties towards characterizing the scalability of Dacapo

and Renaissance application in a NUMA system.



Chapter 6

NUMA Scalability Analysis of
Managed Applications

6.1 Introduction

In this chapter, the applications of the Dacapo and Renaissance benchmark suites are
characterized in the context of a NUMA architecture. As explained in Chapter 2
the high latency of the remote memory access in a NUMA system might penalize
performance. At the same time, the interference of cache coherency mechanisms might
lead to cache/memory utilization inefficiencies (i.e., repetitive invalidation of cached
data) due to various reasons, such as data dependencies, and/or inefficient scheduling
decisions.

That being said, memory overheads are not the only concern. As Figure 1.1 shows,
even compute-bound applications (such as als) might also be penalized by a NUMA
system. Therefore, a characterization that also considers further scalability properties
is essential since the performance in a NUMA system is mainly achieved through
scalability (both in terms of threads and memory).

Application properties related to scalability, such as the amount of serial code
sections, contention on shared resources, data locality, and load balancing [ ]
need to be assessed. The notion of “serial code sections” and “load balancing”
is essentially the degree of parallelism that an application exhibits. They can be
quantified by counting the number of exploited threads along with the workload
balance. In case the multithreaded workload is not equally distributed (balanced)
among the deployed threads (i.e., 90% of the load is processed by one thread), the

thread count might be insufficient. Therefore, the thread count, and the balance of the

88
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workload, act as complementary to each other towards characterizing the parallelism
degree of an application.

In addition, the “contention on shared resources” essentially regards the data
dependencies among the working threads. Assuming that an application is as parallel
as needed in order to benefit from a NUMA system and the threads do not migrate
across nodes, the shared data between multiple threads is the only factor that can
potentially lead those threads to contend for the shared LLC slices and memory. Such
a behavior might not only increase contention, but also negatively affect data locality
and subsequently penalize performance or block scalability. Consequently, both data
dependencies and locality is of significant interest towards characterizing the behavior
of an application on a NUMA system.

As a first step, attributes related to parallelism (# of deployed threads, workload
balance) are evaluated in Section 6.2. Thereafer, additional memory-related properties
are also assessed for those applications with parallel workloads. The data dependencies
among the deployed threads are assessed in Section 6.3 by taking under consideration
the shared read and write object accesses. Finally, Section 6.4 empirically characterizes
data locality by comparing the LLC locality between NUMA and non-NUMA
executions of the applications.

As explained above, the next sections gradually assess the Dacapo and Renaissance
applications per property towards a holistic NUMA characterization. Each property
analysis results to a set of homogeneous application groups. Their intersection results
to a NUMA characterization table where each application belongs to a single category.
Such a result not only succeeds in characterizing Dacapo and Renaissance applications,
but also sheds light into the existing application categories and their NUMA behavior.
These research findings aim to augment our understanding regarding the required
properties of managed applications to take advantage of NUMA and draw a conclusion

under which circumstances NUMA can be beneficial.

6.2 Workload Parallelism & Balance

Table 6.1 presents a collection of metrics per application to evaluate parallelism and
memory balance. The threads of each application are classified to “Workers” (those
which process the workload), “Auxiliary” (non-worker threads i.e., timers, finalizers,
etc.), and the “Main” thread. The workload of a thread is quantified as the number of

hardware instructions it retires. The table (Table 6.1) breaks down the workload carried
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Table 6.1: Parallelism and Balance of the Dacapo and Renaissance applications.

Benchmarks Main Aux Workers Imbalance
1% # 1% # Cl[%] 1[%] OA [%]

avrora 1 0 0 26 30 67 92
fop 100 1 0 0 0 0 0
h2 29 1 0 8 2 1 1
jython 100 34 0 0 0 0 0
luindex 85 1-2 15 0 0 0 0
lusearch 7 0 0 8 2 2 0
lusearch-fix 7 0 0 8 2 2 0
pmd 1 1 0 8 65 69 75
sunflow 0 10 0 8 2 2 1
xalan 0 0 0 8 0 1 0
akka-uct 0 12 0 | 184-200 72 118 44
reactors 5 3-4 0 8 26 28 46
als 1 80-84 1 4 6 6 12
chi-square 2 77-79 0 2 1 1 0
gauss-mix 2 75 0 2 1 0 0
log-regression 6 75-80 1 2 0 0 0
movie-lens 8 109-147 4 4-5 21 21 0
naive-bayes 1 75 0 9 25 25 30
db-shootout 0 2-3 0 48 75 88 79
fj-kmeans 1 1 0 | 25-412 106 109 135
future-genetic 0 1 0 10-12 50 48 87
mnemonics 100 1 0 0 0 0 0
par-mnemonics 22 1 0 7-8 265 265 226
scrabble 13 1 0 7 4 2 2
neodj-analytics 0 27-28 0 4 68 67 60
rx-scrabble 3 2 0 8 149 153 222
dotty 100 1 0 0 0 0 0
scala-doku 100 1 0 0 0 0 0
scala-kmeans 100 1 0 0 0 0 0
philosophers 0 1 0 9 34 35 23
scala-stm-bench7 1 1 0 9 56 108 90

out per thread type (Main, Aux, Workers). The workload of each type is expressed as

a percentage over the total retired hardware instructions.

The workload carried out by worker threads is further analyzed under the scope of
balance (last column of Table 6.1). The variables C, I, and OA in the last column
of Table 6.1 refer to the imbalance of CPU cycles, retired hardware instructions,
and object accesses respectively, between the worker threads. For example, the
worker threads of avrora show 30% imbalance in CPU cycles (C), 67% in hardware
instructions (I), and 92% in object accesses (OA). To assess the balance of a variable X

(i.e., the retired hardware instructions) between N threads, the Equation (6.1) is used.
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The Equation (6.1) calculates the imbalance in X between the N threads [ ].
A high number of standard deviation can yield in high imbalance, assuming that the

average value is constant (Imbalance = 0% means “totally balanced”).

stdey (Xthreadl PR XthreadN)
average (Xthreadl PR 7XthreadN)

Imbalance in X = (6.1)

The imbalance of hardware instructions provides an indication regarding the
overall imbalance of the workload. However, complexity and latency vary among
hardware instructions, i.e., a memory instruction might stall the CPU for more cycles
than an arithmetic instruction that uses the ALU. Therefore, it is necessary to also
examine memory imbalance in order to evaluate the contribution of memory operations
to the overall workload imbalance. The imbalance of object accesses is utilized in order
to examine the memory imbalance of an application. The imbalance of object accesses
is indicative regarding the computations-versus-memory heterogeneity of the worker
threads'. Nevertheless, the imbalance of hardware instructions and of object accesses
might not necessarily imply that the workload is performance-wise imbalanced,
because the memory-derived stalls might offset the observed computations-memory
heterogeneity in terms of CPU cycles. For that reason we examine the impact of this
heterogeneity on performance through the imbalance in CPU cycles in order to justify

the actual degree of imbalance for an application.

The following sections characterize the properties of parallelism and balance for
the Dacapo and Renaissance applications by examining the aforementioned metrics
(# of workers, imbalance of hardware instructions, CPU cycles, and object accesses).
This characterization step concludes in five discrete categories: the “Single-Threaded”
(see Section 6.2.1), the “TLP-Bound” (see Section 6.2.2), the “Embarrassingly
Imbalanced” (see Section 6.2.3), the “Imbalanced” (see Section 6.2.4), and the
“Explicitly Parallel” (see Section 6.2.5). Figure 6.1 illustrates an overview of the
aforementioned categories along with the examined metrics as a flow chart. All the
categories, but the “Explicitly Parallel” indicate that the applications do not exhibit the
degree of parallellism that is needed in order to efficiently scale on a NUMA system;

hence are very likely to be parallelism-bound.

!Hereafter, when this thesis refers to the term “computation-memory heterogeneity”, it refers to the
computations-versus-memory heterogeneity.
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Figure 6.1: NUMA Scalability Characterization: Parallelism.

6.2.1 Single-Threaded

Fop, jython, luindex, dotty, mnemonics, scala-doku and scala-kmeans do
not spawn parallel threads; hence thet are unable to scale. The workload of
those applications is either driven exclusively by the main VM thread (fop and
luindex) or by up to two auxiliary threads, such as a Finalizer (dotty), and a

LogManagerCleaner (jython, mnemonics, scala-doku, and scala-kmeans).

6.2.2 TLP-Bound

If the number of deployed threads is lower than the available CPU threads, it is
usually an indication that the Thread Level Parallelism (TLP) is below the capacity
of the system. Hence, the scalability of the application is practically bound as it
cannot effectively exploit the scale-out resources. Als, chi-square, gauss-mix,
log-regression, movie-lens, and neodj-analytics are such examples because
they spawn 2-4 worker threads. Note that the imbalance in hardware instructions of
als and movie-lens is directly reflected to imbalance in CPU cycles (als: C=6%,
1=6%, OA=12%, movie-lens: C=21%, 1=21%, OA=0%). Such a fact indicates that
the memory operations do not significantly affect performance, thereby revealing the

compute-bound nature of those applications.

6.2.3 Embarrassingly Imbalanced

Par-mnemonics and rx—-scrabble show extreme imbalance in hardware instructions.

This fact is justified by the observation that only one worker thread processes the 80%
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of the overall workload (even though that 7-8 workers are spawned). This observation
was revealed by examining the total retired hardware instructions per worker thread.
Additionally, the imbalance in object accesses indicates that the workers of those
applications are imbalanced also in terms of memory. The imbalance of CPU cycles
cross-validates that the worker threads are indeed imbalanced, and they follow the

asymmetric trends of hardware instructions and object accesses.

6.2.4 Imbalanced

Considerable but lower imbalance in hardware instructions is observed also in other
parallel applications, such as avrora, pmd, akka-uct, reactors, naive-bayes,
db-shootout, fj-kmeans, future-genetic, philosophers, and stm-bench?.
There is a strong positive linear correlation (0.8) between the imbalance in hardware
instructions and the imbalance in CPU cycles even though there are two outliers:
avrora and scala-stm-bench7. However, the correlation is lower (0.66) between the
imbalance in CPU cycles and the imbalance in object accesses. This lower correlation
denotes that the effect of memory in the imbalance of CPU cycles varies across the
applications.

Towards assessing the imbalance effect, we also take under consideration some
key characteristics of the applications in order to conclude whether the observed
computational and/or memory imbalance is actually harmful.

For example, avrora is composed of 11 individual workloads that are processed
in parallel. The first 4 workloads utilize 7, 3, 7 and 2 threads respectively, while the
remaining 7 deploy only one thread; hence, they are single-threaded (26 worker threads
in total). This discrepancy between the different workloads can explain the observed
computation-memory heterogeneity of worker threads. The imbalance of CPU cycles
which is lower than the imbalance of hardware instructions and object accesses,
denotes that the computation-memory heterogeneity has little effect on performance
probably due to good memory locality.

Pmd analyzes multiple source code files in an imbalanced manner due to the
unequal sizes of the input files [ ]. This fact probably causes the observed
computation-memory heterogeneity of worker threads. In contrast to avrora, the
computation-memory heterogeneity of worker threads in pmd is directly reflected to the
imbalance of CPU cycles. Moreover, it is noteworthy that the work-stealing strategy
that pmd deploys to maintain workload balance, fails to effectively counterbalance

small and large jobs.
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Akka-uct implements the Unbalanced Cobwebbed Tree (UCT) algorithm [ ]
in the Akka actors framework. UCT processes a tree of tasks with variable size
which are assigned to workers by the Akka dispatchers via a shared task queue
structure | ]. Rosa et al. [ ] report non-uniform task distribution across
actors which is also confirmed by the imbalance in hardware instructions of the
worker threads (see Table 6.1). Lower imbalance in object accesses (compared to
hardware instructions) seems to counterbalance performance, thereby leading to milder

imbalance in CPU cycles.

Reactors incorporates ten individual message passing Savina [ ] benchmarks
that are implemented into the Reactors.IO framework [ ]. They are of diverse
message passing counts, processed sequentially by an eight-worker fork-join pool and
all are single-threaded but two. This workload discrepancy can explain the observed
imbalance of object accesses; however, it is notable that this gap is diminished in

respect to hardware instructions and CPU cycles imbalance.

The workload of naive-bayes is equally distributed to eight out of the nine
deployed workers. This fact denotes that one thread has a different role than the rest.
However, the workload is dominated by the eight homogeneous workers because the
imbalance is maintained in low levels. Therefore, this application is an exception and
fits better to the “Explicitly Parallel” category.

Philosophers includes one special thread (“camera”) along with eight balanced
workers. This diversity in the roles of the deployed threads can explain the observed
imbalance similarly to the naive-bayes case; hence, this application also falls into to
the “Explicitly Parallel” category.

Db-shootout incorporates three synthetic Lmdb workloads. They are implemented
in the MapDB, ChronicleMap, and MvStore frameworks and are executed sequentially.
Although each workload deploys eight workers and performs the same amount of DB
operations (500k reads + 500k writes), they differ regarding the amount of object
accesses that each one performs. This results in the observed imbalance of hardware
instructions and object accesses because each sub-workload itself is quite balanced
(MapDB - 5%, ChronicleMap - 25%, MvStore 36%). Consequently, the observed
imbalance of db-shootout is illusional, hence this application fits better to the

“Explicitly Parallel” category.
Fj-kmeans implements the kmeans algorithm using an 8-worker Fork-Join thread
pool. The observed imbalance in CPU cycles that is also reported by Rosales et

al. [ ] probably denotes either computation-memory heterogeneous sub-tasks
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Table 6.2: Root cause.

Root cause Applications
Non-uniform workload distribution avrora, pmd,
across the deployed workers akka-uct, fj-kmeans

Dominant single-threaded/serial algorithm/code sections

. . . . ) reactors, scala-stm-bench?7
along with minor explicitly parallel sections

avrora, reactors
db-shootout
naive-bayes,
philosophers

Synthetic incorporation of different workloads

Outlier special-cause threads among balanced workers

or/and sub-tasks of unequal size. The imbalance in hardware instructions and object
accesses in Table 6.1 indicate both. Sub-tasks of unequal size and the ineffectiveness
of the work stealing in preserving the balance are rather counter-intuitive findings for
a Fork-Join application.

Scala-stm-bench7 is single-threaded for ~ 80% of the execution time. FEight
balanced workers are deployed only for the remaining 20% of the total execution
time. This explains the low imbalance of CPU cycles in comparison to the hardware
instructions. Consequently, this application can be split into two phases: a) single-
threaded alike, and b) explicitly parallel.

The above analysis of the “Imbalanced” applications reveals that the observed
imbalance is caused by various reasons and root causes. Table 6.2 summarizes the
different root causes along the applications. Note that, the last two root causes might

indicate that the application is not “Imbalanced”.

6.2.5 Explicitly Parallel

Applications that deploy multiple (equal or greater than the available CPU cores) and
balanced workers are considered as “Explicitly Parallel”. H2, lusearch, sunflow,
xalan, and scrabble fullfill both critera thus, they belong to the “Explicitly Parallel”
category. However, it should be noted that the h2 has extensively serial phases. Even
though all the deployed worker threads of this application are balanced, almost the

30% of its workload is carried out by the main thread.

6.2.6 Summary of Parallelism & Balance Characterization

This section has characterized the studied applications regarding parallelism and

balance. The characterization along with the examined criteria are summarized
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in Figure 6.1. Five discrete application classes seem to exist: the “Single-Threaded”,
the “TLP-Bound”, the “Embarrassingly Imbalanced”, the “Imbalanced”, and the
“Explicitly Parallel”. The “Single-Threaded”, “TLP-Bound”, and “Embarrassingly
Imbalanced” applications are a priori unable to scale in a NUMA system because
they lack of Thread-Level Parallelism. Therefore, they cannot effectively exploit
scale-out NUMA resources. In addition, the “Imbalanced” applications bear several
inefficiencies such as, unequal task distribution, serial algorithm/code sections, and/or
memory imbalance, which are very likely to prevent them from effectively exploiting
scaled out NUMA hardware resources. Moreover, such patterns lead to imbalanced
resource utilization which might create contention to the interconnect and finally
block scalability [ ]. On the contrary, the “Explicitly Parallel” applications
effectively exhibit parallelism and balance. Hence, they are strong candidates for
sufficient scaling on a NUMA system. Finally, the studied application set contains
some ostensibly “Imbalanced” benchmarks that essentially are “Explicitly Parallel”.
This happens because they either concatenate multiple parallel and balanced workloads
(i.e., db-shootout), or there is one “special” thread among many balanced worker

threads (i.e., naive-bayes, philosophers).

6.3 Data Dependencies

Section 6.2 has classified the studied applications in terms of the exhibited parallelism
and workload balance. However, parallelism and workload balance, though necessary,
they are not sufficient conditions for NUMA scalability. The effect of factors related
to memory can lead to substantial inefficiencies that also affect overall performance,
and finally either offset scalability gains or even lead to performance degradation. The
dependencies of data among the working threads is such a critical factor because it can
potentially undermine the distribution of workload across the NUMA system. Ideally,
the multiple worker threads that are spread across NUMA nodes should process
their “own” data without sharing any data with other workers; especially with those
running on a remote NUMA node. As will be explained in the following sections,
an object that is being written by multiple threads that run on remote nodes will not
only result in increasing the expensive remote node accesses but also in additional
cache invalidations. Both results tend to increase the pressure on main memory and
the interconnect traffic. This section evaluates the degree of data sharing between

worker threads by examining the metric of shared object accesses that is provided by
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Figure 6.2: Effect of Write Object Access in NUMA.

NUMAProfiler for each application.

The amount of shared accesses of the Dacapo and Renaissance applications has
been presented in Sections 5.3 and 5.4. These sections define the “owner” of an
object as the thread that allocated the object. Nevertheless, such a heuristic would
be insufficient in the context of a NUMA architecture. Figure 6.2 illustrates how write
accesses are handled by a typical cache coherent NUMA system that implements the
MESIF protocol. The Subfigure (a) shows the Obj2 (object 2) that is allocated by TO
(thread 0) on NUMA node 0 while, Subfigures (b) and (c) illustrate two different cases

of 4 consecutive object writes. More specifically:

» Subfigure (b): four “shared” writes are performed by T1 which is running on
NUMA node 1 (remote). Following the steps shown in parentheses, the first
write operation triggers a remote node access to fetch the data from the LLC of
node 0. According to the MESIF cache coherency protocol, the LLC entry of
node O is then invalidated thus a write-back to main memory follows. Finally,
the four write operations are ready to be performed by writing and updating the
data into the LLC of node 1.

 Subfigure (¢): T1 onnode 1 and TO on node 0 are about to perform 2 writes each,
in a ping-pong manner (T1-TO-T1-T0). T1’s writes are considered as “shared”
according to our initial definition while TO’s writes are “thread-local”. Even

though the “shared” writes are fewer compared to case (b), the ping-pong pattern
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Table 6.3: Shared Accesses. “Owner’”’ = Last Writer.

TLP-Bound Embarrassingly Imbalanced
ShR ShWw ShR ShWw
als 7.7% 0.1% | par-mnemonics | 47.9% 0%
chi-square 27.1% 0% | rx-scrabble 48.2% 0%
gauss-mix 35.8% 0%
log-regression 1.7% 0.2%
novie-lens 299% 0.4%
neo4j-analytics | 38.1% 0%
Imbalanced Explicitly Parallel
ShR ShWw ShR ShWwW
avrora 62.3% 2.5% | h2 36.5% 1.7%
pmd 349% 0.2% | lusearch 228% 0.2%
akka-uct 67.2% 0.9% | sunflow 83.8% 0%
reactors 571% 5.3% | xalan 159% 3.1%
fj-kmeans 59% 0.1% | naive-bayes 32% 0.2%
future-genetic | 35.3% 0.9% | db-shootout 229% 2.0%
stm-bench7 35% 0% | scrabble 47.2% 0%
philosophers 51.5% 2.5%

of (¢) is proved much more expensive than (b) since it results in four remote
node accesses, four memory write-backs and consequently heavier load on the

interconnect.

The expensive case (c) results in counting two shared writes while, (b) counts four.
However, by considering the last thread that wrote/updated the object as the “owner”
(last writer), the case (b) counts one shared write access, while the expensive case
(c) counts four shared write accesses. Therefore, it turns out that the “owner” should
be the last writer thread because using this heuristic can detect the expensive cases
more accuratelly. As a result, this section redefines the classification heuristic for the
shared object accesses. Hereafer, the last writer thread of an object is considered as the
“owner”.

Table 6.3 lists the amount of shared accesses as percentage over total object
accesses per parallelism category (excluding “Single-Threaded”) considering the last
writer thread as the “owner”. A high amount of shared reads or writes strongly
indicates that an application contains shared resources; however, it is not a proof of
contention. Three major categories are observed: the “Data Parallel”, the “Read &
Write Dependencies”, and the “Read-Only Dependencies”. The following sections

discuss each category.
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6.3.1 Data Parallel

Log-regression and naive-bayes fall into the “Data Parallel” category. Having
neither considerable shared reads nor shared writes, this category denotes that probably
is free of data dependencies. The absence of shared data among threads is a sufficient
condition for maintaining locality of data even if threads are naively scheduled to run
across NUMA nodes. The scalability of those applications on a NUMA system is not
affected by data dependencies.

6.3.2 Read & Write Dependencies

Avrora, h2, xalan, akka-uct, reactors, do-shootout, and philosophers belong
to the category of “Read & Write Dependencies”. Those applications have a
considerable amount of shared read and shared write accesses. Such a fact indicates
strong dependencies among the working data. Objects updated by multiple worker
threads in a NUMA system harms locality in case those threads are naively scheduled
on different NUMA nodes. Such a phenomenon, inevitably increase the pressure
on LLC/Memory, and the interconnect traffic. Consequently, this kind of data
dependencies is very likely to prevent those applications from scaling.

6.3.3 Read-Only Dependencies

Lusearch, pmd, sunflow, als, chi-square, gauss-mix, movie-lens, fj-kmeans,
future-genetic, par-mnemonics, rx-scrabble, scrabble, neod4j-analytics,
and scala-stm-bench?7 are placed into the category of “Read-Only Dependencies”.
A considerable amount of shared reads with negligible or even zero shared writes
indicates the existence of shared data and/or data structures. However, such a fact
might not lead to increased pressure on the LLC/memory and the interconnect;
thus, might not essentially prevent scalability. The F state of the MESIF cache
coherency protocol is an optimization to mitigate contention for shared read data
(see Section 2.2.1). It essentially allows a clean/unmodified cache line to be shared for
reads among the nodes by providing a “copy” to the requesting node avoiding accesses
to main memory [ ]. However, write accesses performed by object-owner threads
can still invalidate cached data and retain contention. More specifically, in case the
object-owner thread writes an object that is read by other threads, the cache line of the

reader is invalidated. Moreover, the updated value is cached in the node of the writer,
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Figure 6.3: NUMA Scalability Characterization: Data Dependencies.

potentially by overwriting other cache lines, thereby leading to more capacity cache

misses. We name the above situation as a “write conflict” hereafter.

6.3.4 Summary of Data Dependencies Characterization

Figure 6.3 summarizes the aforementioned examined criteria towards characterizing
the assessed applications regarding data dependencies. Three discrete classes of
applications seem to exist: “Data Parallel”, “Read & Write Dependencies” and “Read-
Only Dependencies”. Strong dependencies borne by the working data of an application
with “Read & Write Dependencies” might cause cache invalidations, remote node
accesses and interconnect congestion. All the above undermine the scalability of the
application on a NUMA system. On the contrary, “Data Parallel” applications do
not have data-dependencies and subsequently, have no such limitations. Finally, an
application with “Read-Only Dependencies” might behave either like “Data Parallel”
or like having “Read & Write Dependencies”. This depends on the extent of the
“write-conflicts” effect. The ambiguity borne by the above findings leads to the
inevitable correlation between data dependencies and data locality. As a result, the

last characterization step focuses on data locality and aims to merge all previous steps.

6.4 Locality

The degree of temporal/spatial regularity in memory accesses is the major factor
of interest in non-NUMA architectures because only irregular memory accesses or
capacity misses can harm data locality and consequently performance. However,
in a NUMA system, the LLC is shared across the nodes.  Consequently,

the data dependencies might dramatically hurt locality due to “write-conflicts”
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Table 6.4: Single vs Dual Node Run Configurations.

Single Node | Dual Node
Num of CPUs 1 2
Num of Available Cores 8 16
Num of Utilized Cores 8 8
LLC Size (MB) 20 40
Memory Controllers 4 8
DRAM Size (GB) 192 384
Java Heap Size (GB) 100 100

(see Section 6.3). As a result, the evaluation of data locality with regards to both
regularity of memory access patterns and data dependencies is of outmost importance.
Such an assessment, is a challenging task due to the multiple aspects and factors

involved, especially in the context of NUMA architectures.

6.4.1 Methodology

A direct approach would require to monitor the accessed memory addresses per
thread in order to create a detailed map of memory regions that each thread access.
This approach can provide a detailed profile of memory access patterns for each
thread in order to evaluate the inter-thread data dependencies and the degree of
regularity/irregularity of the memory access patterns. However, such an approach
would lead to lengthy traces able to provide useful information only during a heavy
post-execution phase; thus being incompatible with a flexible runtime approach.
Therefore, an empirical methodology is employed as a means to retain flexibility. The
assessment of data locality for an application is performed by observing the difference
in LLC miss rate between a NUMA and a non-NUMA configuration. The “Single
Node” run configuration (see Section 5.2) is used as the non-NUMA configuration
while, the “Dual Node” configuration is introduced for NUMA. The characteristics of
the Single Node and Dual Node configurations are highlighted in Table 6.4. As can
be seen, the Dual Node configuration deploys two NUMA nodes but it has the same
number of cores with Single Node configuration. The utilization of equal number
of cores by both configurations simplifies the observation of memory behavior and
data locality by excluding the potential scalability effects. Therefore, the comparison
between the Dual Node configuration and the Single Node configuration isolates the
effect of NUMA on the memory behavior of the application. More specifically, the aim

of this approach is to reveal how the memory behavior of an application is affected by
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Table 6.5: LLC Miss Rate comparison per Parallelism and Data Dependencies
Category.

TLP R W Embarrasingly R w
Bound S D S D Imbalanced S D S D
als 6 19 44 50 | par-mnemonics 8 9 55 55
chi-square 10 13 60 59 | rx-scrabble 4 7 59 61
Z | gauss-mix 3 3 60 60
movie-lens 4 9 51 54
neodj-analytics 24 23 63 61
E log-regression 54 56 57 57
R W Explicitly R A\
Imbalanced = =, 5 p Parallel S D S D
pmd 2 2 58 56 | lusearch 0 2 54 56
a | fi-kmeans 70 71 44 63 | sunflow 2 2 64 62
& | future-genetic 0 14 48 58 | scrabble 2 22 33 72
stm-bench7 16 31 68 63
avrora 0 9 6 34|h2 35 36 48 49
8 | akka-uct 21 32 59 64 | xalan 0 4 47 51
E reactors 3 23 29 47 | db-shootout 10 29 60 o4
philosophers 0 21 28 50
E naive-bayes 17 22 59 58

the remote LL.C and memory. Moreover, the prior characterization steps (Sections 6.2
and 6.3) provide a stable ground for the characterization of data locality by eliminating
other affecting factors. Although this comparison methodology is currently applied
in a post-execution phase, it has the potential to be applied online in a low overhead
manner by the JVM runtime.

The practices that are described in Section 5.2 regarding the experimental process
and the extraction of the results (i.e., the amount of run iterations, the results are
the average of the 10 last iterations, etc.) are also applied for the Dual Node run
configuration.

Table 6.5 presents the Read (R) and Write (W) LLC Miss Rate (%) per
application in the Single (S) and Dual Node (D) configurations. Its objective is to
highlight the effect of NUMA on data locality by observing the difference in the
LLC Miss Rate between the Single Node and Dual Node configurations. The layout
of Table 6.5 groups the applications in the categories introduced by Sections 6.2

and 6.3. The horizontal axis hosts the four categories of Parallelism (“TLP-Bound”,
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Figure 6.4: Percentage of Read & Write LLC Misses that are served by Remote Node
Memory.

“Embarrassingly Imbalanced”, “Imbalanced”, “Explicitly Parallel”). Note that the
“Single-Threaded” applications are excluded. The vertical axis hosts the three
categories of Data Dependencies (‘“‘Data Parallel” - DP, “Read & Write Dependencies”
- RWD, “Read-Only Dependencies” - RD). Empty spaces denote that none of the
studied applications belongs to this category. In addition, Figure 6.4 illustrates the
percentage of Read & Write LLC misses that are served by remote node memory
for each application’. Such a metric can potentially be indicative whether the
observed difference in the LLC Miss rate is related to “write-conflicts”. The following
paragraphs discuss the observations regarding data locality in accordance with the
already discussed categories in order to place the observations that are related to data

locality in the appropriate context.

6.4.2 TLP-Bound

The data locality of “TLP-Bound” applications is negligibly affected by NUMA. Such
an observation is expected since the “TLP-Bound” applications usually deploy very
few workers, consequently the Linux kerner that aims to maintain the locality of data
is very likely to reside the threads and the working data in the same NUMA node
Nevertheless, some counter-intuitive cases exist. For example, the als and
movie-lens with a considerable increase (+13%, +5% accordingly) in the observed
LLC read miss rate and neo4 j-analytics with a slight decrease in LLC read misses (-
1%). Those three applications deploy four workers each, along with multiple auxiliary

threads of the Spark and Neo4j engines respectively (Table 6.1). As a result, this

2Memory from local or remote node is accessed upon the occurrence of an LLC miss
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amount of threads can force the OS to spread the threads in multiple NUMA nodes.
The percentage of remote memory reads that those applications show is the highest
among the “TLP-bound” (57%, 59%, and 52%) and indicates that the worker threads
were indeed scheduled to run on both NUMA nodes of the system. In addition, the
“Read-Only Dependencies” that these applications have (Section 6.3) imply that the
spread threads communicate and share data. However, those applications differentiate
regarding the data locality from Single to Dual Node. The fact that the many remote
memory reads are acompanied by more LLC read misses in Dual Node for als and
movie-lens but not for neodj-analytics implies that the latter does not suffer
from “write-conflicts”, while als and movie-lens do. More specifically, the als
and movie-1lens apparently have objects that are repetitively read by threads that run
on a remote node, writen/updated by the owner thread and inevitably lead to more
LLC misses. On the other hand, neo4j-analytics does not suffer from that effect.
This observation confirms the intuitive expectation that the “Read-Only Dependencies”
can behave either like “Data Parallel” (as in the case of neo4j-analytics) or like
having “Read & Write Dependencies” (as in the case of als, and movie-lens)
due to the effect of “write conflicts”. Moreover, it is notable that the als and
movie-lens show the greatest performance degradation among all “TLP-Bound”
(see Figure 1.1). Als, especially, is a notable case because it is a compute-bound
application (see Section 5.4.2) which turns out to be memory-bound when run in a

NUMA system due to the data dependencies that harm locality.

6.4.3 Embarrassingly Imbalanced

The negligible difference in the LLC Miss Rate and the number of memory accesses to
the remote node reveal the main characteristics of the applications in this category.
The multiple workers that “Embarrassingly Imbalanced” applications spawn are
not concurrently active, hence those applications behave similarly to the “Single-
Threaded” applications. As a result, the OS settles up the application on only one
NUMA node and no significant difference is observed in the locality of data and
performance. Therefore, the offering of multiple NUMA nodes in an “Embarrassingly

Imbalanced” application even though it is not harmful, it is not likely to be beneficial.
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Figure 6.5: Memory pattern irregularity of the fj-kmeans application.

6.4.4 Imbalanced

Future-genetic and scala-stm-bench7 show a considerable increase in the LLC
Miss Rate of read operations, probably due to the number of “write conflicts” over
the shared read objects (similarly to als and movie-lens). These applications deploy
enough workers in order to force the OS to schedule them in across the NUMA nodes

but contain only read dependencies.

Pmd is not bound by data locality since its LLC Miss Rate is not affected. Such
an observation is expected considering that each worker processes an individual file.
Note that, pmd is one more example of an application with “Read-Only Dependencies”
which behaves as being “Data Parallel”.

The LLC Write Miss Rate of fj-kmeans is heavily affected in Dual Node, but
data locality of Reads is not. However, it is notable that the LLC Read Miss Rate of
fj-kmeans is already high (70%) even in the Single configuration. This fact indicates
that locality is harmed due to limited LLC capacity and/or irregular memory access

patterns which is attributed to the application implementation. More specifically, the
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fj-kmeans recursively splits the working data (data points) into smaller chunks until
a chunk of desired size is (randomly) assigned to the first available worker from a
Fork/Join thread pool in order to perfrom the centroid calculations. As Figure 6.5
illustrates, the data chunks are distributed to workers on a random and upredictable
order. Therefore, each worker processes non “neighbouring” data chunks, hence it
cannot benefit from spatial locality and hardware prefetching. This essentially is an
irregular data pattern because a worker can process data chunks from any segment of
the working dataset. This practice can explain the very high LL.C Read Miss Rate, even
in Single Node. The increase in LLC Read Miss Rate for Dual Node is avoided though
due to the read-only nature of this phase. Moreover, the k-means algorithm updates
the calculated centroids after processing all forked subtasks. Therefore, the LLC write
miss rate increase in Dual Node (+19%) can be attributed to this update phase due to
the fact that the workers are spread in both NUMA nodes and repetitively invalidate
already cached data which is about to be written/updated. As a result, it is clear that

the data locality bounds the scalability of f j-kmeans on a NUMA machine.

The applications in the “Imbalanced” category with “Read & Write Dependencies”
(avrora, akka-uct, reactors) show high increase in LLC Miss Rate for both reads
and writes. Such an observation is expected because those applications deploy enough
workers in order to force the OS scheduler to spread them in all NUMA nodes, while
also they show strong read and write dependencies between the workers. For example,
the Miss Rates of avrora in the Single Node configuration (R =0.1%, W = 6%) imply
that this application has good data locality and does not suffer from capacity misses
even in the smaller LLC of the Single Node. As a result, the observed increase of
the LLC Miss Rates in Dual Node is attributed only to the data dependencies between
the workers that run in both NUMA nodes. This conclusion is also supported by the
number of remote node memory accesses (R = 58%, W = 81%) and the increase in
LLC Miss Rates (R: +9%, W: +28%). It becomes apparent that spreading the workers
of this application across NUMA nodes without considering the dependencies of data
breaks the locality by invalidating the already cached data, and consequently leads to
more LLC Misses.

The akka-uct seems to be affected mostly by write-conflicts over shared read data

(similarly to future-genetic and scala-stm-bench?7).

Finally, a notable case is the reactors application. It has the highest percentage of
shared write object accesses (5.3%, see Table 6.3) among all applications. The shared

writes imply that the workers write/update objects that are owned by other workers. In



6.4. LOCALITY 107

case the writer resides in a different NUMA node than the object, a remote node access
occurs, the data is updated and transfered in the LLC of the node of the writer, and the
cached data (if any) of any other node is invalidated (see Figure 6.2). Therefore, this
situation will lead in additional remote node accesses upon the occurance of any read
or write operation by a remote node worker. Moreover, it will lead to more cache
misses because the transfer will overwrite already cached data. The latter is confirmed
by the observed increase in LLC Miss Rates (R: +20%, W: +18%). Consequently, the

shared write dependencies seem to harm data locality of reactors.

6.4.5 Explicitly Parallel

The data locality of db-shootout and philosophers seems to be affected the most
among the “Explicitly Parallel” applications with “Read & Write Dependencies”.
Philosophers is a notable case because the LLC Miss Rates for reads and writes are
significantly increased from Single to Dual Node (R: +21%, W: +22%). However,
this application has a considerable amount of shared writes (2.5%) and the dining
philosophers algorithm it implements is a well known synchronization problem over
shared resources [ ]. Consequently, the lack of data locality in Dual Node for this
application is attributed to the data dependencies.

On the contrary, h2 and xalan maintain locality in Dual Node, thereby indicating
that the observed data dependencies probably do not concern the same objects.

The data locality of the applications with “Read-Only Dependencies” is less likely
to be harmed in NUMA compared to those that have “Read & Write Dependencies”.
However, there are such cases: For instance, scrabble shows considerable increase
in the LLC Miss Rate (R: +20%, W: +38%), denoting clearly that its locality
is heavily harmed by NUMA. In addition, it has one of the highest BPU Miss
Rate (see Section 5.4.2). Such a fact along with the observed LLC Miss Rate
increase in Dual node is very likely to reflect irregularities in the memory access
pattern. Scrabble is structured around a centralized HashSet which acts as reference
dictionary for the scrabble game. Consecutive read and/or write operations on
a HashSet can create irregular memory access patterns because two semantically
neighbor buckets do not necessarily neighbor into the HashSet. Moreover, bucket
manipulation does not require serial traversal of the data structure, hence a typical
HashSet cannot benefit from cache and prefetching mechanisms. As a result,
scrabble is very likely to get its buckets accessed in a random order. To verify

this assumption, we replaced the HashSet data structure with an ArrayList and
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observed mild increase in LLC Read Miss Rate (S:14%, D:19%) and decrease in
LLC Write Misses (S:69%, D:63%)3. Consequently, it is clear that scrabble suffers
from irregular memory access patterns that are related to the HashSet. As a result,
the irregularity in memory access patterns heavily damages data locality and can also
explain the heavy performance degradation observed in Figure 1.1.

Naive-bayes is the only application that belongs to the “Explicitly Parallel” and
“Data Parallel” categories. The data locality of this application is negligibly affected
which is expected because it belongs to a category without data dependencies. The
only potential menace regarding data locality for applications that belong to these
categories (“Explicitly Parallel” and “Data Parallel”) is the irregular memory access
pattern. Naive-bayes does not exhibit such a pattern since no extreme increase in
LLC Miss Rate is observed. However, such a corner-case application would be an

interesting addition to the benchmark suites.

6.4.6 Summary of Data Locality Characterization

Fj-kmeans and scrabble have properties that inevitably bound the locality of data in
NUMA due to either direct or indirect irregular memory access patterns. Even though
the NUMA configuration impacts the data locality of many applications, this is not
necessarily attributed to locality properties of the application itself. Such examples are
the avrora, reactors, and philosophers in which the data locality is damaged in
Dual Node due to the data dependencies. Consequently, the data dependencies should
be also considered as a rather critical factor towards preserving locality while trying to

scale on a NUMA system.

6.5 Conclusion of the Scalability Characterization

This chapter evaluated the NUMA scalability properties of the Dacapo & Renaissance
applications and revealed several categories that a managed application can belong to.
Towards that goal, several high and low level metrics were utilized, such as the high-
level imbalance of object accesses, and the amount of shared object accesses as well

as, the imbalance in hardware instructions, the LLC Miss Rate, etc.

3Even though the ArrayList is a locality friendly data structure, it is more resource-consuming than
the HashSet. For example, the ArrayList version of scrabble executes 124x more instructions and
120x more L1 accesses than the HashSet version, thereby leading to a trade-of between data locality
and performance.
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Section 6.2 studied several metrics relative to parallelism and balance and
concluded that five discrete application classes seem to exist: the “Single-Threaded”,
the “TLP-Bound”, the “Embarrassingly Imbalanced”, the “Imbalanced”, and the
“Explicitly Parallel”. Section 6.3 revealed that three discrete classes of applications
exist: “Data Parallel”, “Read & Write Dependencies” and “Read-Only Dependencies”
by examining the amount of shared object accesses for each application. Finally,
Section 6.4 examined the LLC Miss Rate on the Single and Dual Node configurations

in order to assess the data locality of the applications in a NUMA system.

To summarize the characterization of the Dacapo and Renaissance applications, the
Table 6.6 incorporates all the above categories. In addition, in order to cross-validate
the findings of this chapter the perfromance of the Dacapo and Renaissance application
is measured when those applications are free to scale on both NUMA nodes. The
applications were run on 2 NUMA Nodes with 16 CPU Cores. This run configuration
is refered as “All Nodes” hereafter. The measured performance of “All Nodes”
configuration is compared against the baseline “Single Node” configuration (1 Node,
8 Cores). Moreover, all applications were run with 16 threads (wherever possible)
in both configurations. The measured performance of each application is presented
in Table 6.6. The most scalable applications are among the “Explicitly Parallel”
applications without “Read-Only Dependencies” or “Data Parallel”. This observation
is expected because most of those applications are not bound by data dependencies
that damage the locality of data. Consequently, the application threads can run
on any node and exploit scale-out resources without drawbacks. Exception is the
scrabble application which contains irregular memory access patterns as explained
in Section 6.4. This case along with the fj-kmeans, suggest that applications with
irregural memory access patterns cannot take advantage of a NUMA system even
though they exhibit parallelism and balance.

Another observation is that none of the “Imbalanced” applications is able to scale.
This fact validates the impact of data dependencies on data locality and the impact of
low parallelism/balance on NUMA scalability.

The observed performance of “TLP-Bound” and Embarrassingly ‘“Imbalanced”
applications suggests that fypically those applications are incapable of taking
advantage of the scale-out resources due to the lack of thread-level parallelism.
Therefore, scaling those applications in multiple NUMA nodes should be avoided
in order to avoid performance losses. Nevertheless, it should be noted that, an

application with limited thread-level parallelism can still benefit from a NUMA system
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Table 6.6: NUMA Characterization of Dacapo & Renaissance Applications.

BTO{';: d Perf. ETIE;;Ii:;Scl:gly Perf. | Imbalanced Perf. E;;):;cl;zlly Perf.

als 0.87x | par-mnemonics  0.89x | pmd 0.96x | lusearch 1.29x

chi-square 1.01x | rx-scrabble 0.98x  fj-kmeans 0.64x | sunflow 1.87x

a gauss-mix 1.01x future-genetic  0.83x | scrabble 0.39x
movie-lens 0.86x stm-bench7 0.90x g
neodj-analytics  0.93x =5
avrora 0.86x | h2 0.83x | <
8 akka-uct 0.85x | xalan 1.62x | &
E reactors 0.79x | db-shootout  0.73x §_

philosophers  0.59x

o, | log-regression  1.00x naive-bayes  1.86x

Q

for memory-related reasons (i.e., due to larger LLC/memory capacity). Unfortunately,

none such case is included in the application set that is studied by the current thesis.



Chapter 7

NUMA Optimizations for Managed
Workloads

7.1 Introduction

The previous chapters have presented new tools and they have augmented
the understanding of readers of Dacapo and Renaissance applications. More
specifically, Chapter 4 introduced two new tools which can both obtain useful hardware
and application metrics at runtime. In addition, Chapter 5 studied the memory
behavior of the deployed applications (i.e., Dacapo, Renaissance), while Chapter 6
characterized those applications as per their NUMA scalability by examining several
related properties. On that ground, this chapter aims to address one final question: “To
what extent the aforementioned research findings and tooling arsenal can be practically
utilized towards improving the performance of a managed application on a NUMA
system?”. This chapter aims to exploit those findings as a guide to prototype novel,
application-agnostic techniques for the JVM towards improving the performance of a

managed application on a NUMA machine.

7.2 Overview

Chapter 6 has classified the managed applications into groups as per their NUMA
scalability properties. It has not only concluded to several application categories,
but also it cross-validated those categories by measuring the performance of each
application when running on a NUMA system (Table 6.6). This table essentially

validates that the applications within the same category are homogeneous because
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most of the applications follow the same trends. Leveraging this knowledge, the
problem of poor scalability (or even performance degradation) on a NUMA system
can be approached per category rather than per application. Therefore, an optimization
approach for each group can be designed that would increase performance on a NUMA
system (if applied) or at least avoid the presence of existing overheads when running
with unoptimized/naive conditions (see Chapter 1). The classification of Chapter 6
provides awareness whether a NUMA system can benefit a managed application or not,
in a beforehand manner. Considering the scenario of having a managed application
which should be executed on a NUMA machine, we can conclude to the following

guidelines, based on the findings of Table 6.6:

* (G1) The application is very likely to be penalized by the NUMA system in case
the former belongs to the “Single-Threaded”, “TLP-Bound”, or “Embarrassingly
Imbalanced”. As a result, the application should be bound to only one node.

(“Single Node” run configuration, see Section 5.2).

* (G2) On the other hand, in case the application is either “Imbalanced” or
“Explicitly Parallel”, it is uncertain whether it is worthwhile to let it scale
(“All Nodes” run configuration, see Section 6.5), or not. For example, even
an “Explicitly Parallel” application might lose performance in the “All Nodes”
configuration, in case it bears irregular memory access patterns (like scrabble)
or malicious data dependencies (like db-shootout and philosophers). In
addition, the same applies for the “Imbalanced” applications like fj-kmeans
which has irregular memory access patterns, and avrora, akka-uct, and
reactors which have restrictive data dependencies. Consequently, in case an
application is either “Imbalanced” or “Explicitly Parallel” it is not totally clear
whether it should scale, or not. Hence, an effective distinction between the

different cases is needed.

Considering the above guidelines it is clear that optimizing performance in
an application-agnostic manner is a challenging task. The “grey areas” of the
“Imbalanced” and “Explicitly Parallel” applications inevitably require an online
analysis of the running application in order to conclude whether the “Single Node”
or the “All Nodes” run configurations should be used. However, the more detailed
profiling is deployed, the more overhead is going to be paid. For example, if
all the NUMA scalability properties (Parallelism, Data Dependencies and Locality,

see Chapter 6) are taken under consideration, an ultra-high profiling overhead price
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should be paid mostly due to NUMAProfiler (see Section 4.3.10).

An alternative less overhead-prone approach would be: to deploy only PerfUtil in
exchange for a low-overhead, but less detailed profiling and cover the missing profiling
information by spending some time in running the application in both configurations
in order to observe its performance. Such a “trial-and-error” approach can enable
a decision-making mechanism that is driven by real-time observations instead of
predictions. Therefore, it can conclude to reasonable decisions and avoid the extensive
penalization of the application due to profiling.

In this chapter, the above guidelines are utilized as a roadmap towards
implementing a decision-making component in MaxineVM in order to dynamically
apply the appropriate run configuration in an application-agnostic manner. Moreover,
the primary priority of such an approach should inevitably be the low overhead. As a

result, two major conditions arise as the key-prerequisites:

* (P1) Dynamic decision-making at runtime with low overhead.

* (P2) Profiling data available at runtime with low overhead.

The deployment of PerfUtil is rather a one-way for P2 due to the low overhead
utilization of the Hardware Performance Counters it offers. P1 is up to the creativity
of the JVM developer.

To summarize, we have discussed the new opportunities that derive as a product of
the earlier research findings of this thesis. It is clear that the Memory Characterization
(Chapter 5) and the NUMA Scalability Characterization (Chapter 6) studies have
created the conditions for novel dynamic approaches towards improving performance
of a managed application on a NUMA system in an application-agnostic manner. In
addition, we have briefly highlighted the key-prerequisites to seize those opportunities
and the role of PerfUtil, one of the two new tools for MaxineVM introduced by this
thesis.

The following sections present the design and implementation of an application-
agnostic dynamic decision-making mechanism at run-time that periodically monitors
the execution and applies the most propriate run configuration towards improving
performance of a managed application on a NUMA machine. The P1 and P2
key-prerequisites are further discussed along with the design and implementation
challenges they imply. Finally, the introduced overhead and the experimental results

of the mechanism are assessed and presented.
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Sleep Process
<N> msec Data

Figure 7.1: Overview of the Awareness Thread actions.
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7.3 Mechanism

A background thread monitoring design was selected in order to meet the requirements
of P2. More specifically, a new VM-internal thread runs in parallel with the application
threads (in the background). The new thread should be a daemon that is dedicated
to, and dynamically coordinates, the process of profiling and decision-making. The
experience obtained from building new tools in the scope of this thesis has taught
us that excessive overhead is introduced in case additional duties are assigned to the
application threads (see Section 4.3.10). As a result, the choice of a new dedicated
daemon thread aims to overcome this bottleneck by isolating the application threads
from distractive functionalities and consequently preserve performance with minimal
obstructions. Nevertheless, the obstructions are inevitable due to the extra context
switches that are expected to be paid by deploying an additional thread because the
computing resources are limited. However, this price is expected to be negligible,
especially in comparison to the expected performance gains.

The core component of the optimization mechanism is the “Awareness Thread”.
The actions of the Awareness Thread are briefly illustrated in Figure 7.1. The goal of
the mechanism is to successfully detect in which category (“Single-Threaded”, “TLP-
Bound”, “Embarrassingly Imbalanced”, “Imbalanced”, “Explicitly Parallel”’) a running
application belongs to, and to apply the corresponding configuration afterwards. It
is initialized along with the rest VM-internal threads (main, VmOperations etc.)
during the STARTING phase of MaxineVM. After initialization, the Awareness Thread
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Figure 7.2: Overview of the Optimization Mechanism.

becomes a daemon, iterates over a set of actions that are depicted in Figure 7.1 (Sleep,
Collect Data, Process Data, Decide, Act), periodically assesses the running application
state, and acts accordingly in order to achieve the best possible performance. The
optimization mechanism can be enabled with the -XX: +NUMAOpt s MaxineVM option.
The optimization mechanism is illustrated in Figure 7.2. The following sections
present each action of the Awareness Thread along with the corresponding part of

the mechanism.

7.3.1 Sleep

Any iteration of the Awareness Thread starts after a sleep time interval. The
sleep period length is timed in milliseconds and controlled by the user with the
-XX:NUMAOpt Interval MaxineVM option. This time interval essentially regulates
the operation frequency of the Awareness Thread and subsequently how often a new

decision is taken. The time interval is set to 200ms after experimentation.

7.3.2 Collect Data

As explained earlier, we aim to exploit the profiling capabilities of MaxineVM while
keeping the overhead low. More specifically, it is possible to meet the requirements
of P2 by utilizing PerfUtil because it comes with very low overhead. However, a
trade-off between simplicity and potential capabilities arise. Note that the goal of the

current work is to showcase the potential practical opportunities towards improving
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performance on a NUMA machine by prototyping a dynamic mechanism into the JVM
runtime. To that extent, we monitor the retired hardware instructions and CPU elapsed
cycles per thread in order to obtain an approximate but clear image of the workload
and performance. MaxineVM has been modified so that each new thread instance
notifies PerfUtil to enable the corresponding Hardware Performance Counters for itself
during its initialization. During the “Collect Data” step the Awareness Thread calls the
HWCountersHandler to collect the monitored events’ values for all active application
threads. The HWiCountersHandler stores the collected values in the ProfilingData
buffer in order to be available for the next step of processing. The buffer organizes
the data per thread as DataBucket objects and stores them in an ArrayList. A
DataBucket object stores the following fields: threadld, tid, threadName, count of
retired hw instructions, percentage of hw instructions over total, elapsed CPU cycles
and CPI.

7.3.3 Process Data

The purpose of this action is to process the collected data in order to calculate all the
required key-metrics to support the decision-making step.

The key-metrics are:

1. the percentage of main thread instructions over total retired instructions,
2. the number of worker threads,
3. the worker threads instructions imbalance, and

4. the Cycles per Instruction (CPI).

Based on empirical observations an application thread can be considered as a worker
in case it retires more than 4% of total hardware instructions. Using this number all
worker threads are succesfully detected along with negligible false-positives (auxiliary
threads that are mistakenly considered as workers). However, the false positives last
only for a short period of time and only in applications with very few threads, hence

they negligibly affect the mechanism.

7.3.4 Decide

The decision-making algorithm is abstractly highlighted in Algorithm 1. The goal of

this action is to decide in which state the application currently is. The state is stored in
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Algorithm 1 Decision-making algorithm

if mainT hread HW InstructionsPercentage > 80 then
state <— SINGLE THREADED

else if numO fWorkers < NUM_OF SINGLE _NODE _CORES then
state <— TLP_BOUND

else if workerInstructionsImbalance > 90 then
state < EMBARRASSINGLY IMBALANCED

else
if singleNodeCPI = 0 then > parallel for the first time
state <— PARALLEL_ON _SINGLE _NODE > run on single node
else
cpiMargin < singleNodeCPI - marginFactor
if (allNodeCPI =0)V (allNodeCPI < (singleNodeCPI +cpiMargin)) then
state < PARALLEL ON_ALL_ NODES > run on all nodes
else
state < PARALLEL ON _SINGLE _NODE > back to single node
end if
end if
end if

the state variable of NUMAState. The state variable is an enum of type STATE and its
possible values are: SINGLE_THREADED, TLP_BOUND, EMBARRASSINGLY IMBALANCED,
PARALLEL_ON_SINGLE_NODE, and PARALLEL_ON_ALL_NODES. The first three conditions
check whether the application fits into one of the “Single-threaded”, “TLP-Bound”,
or “Embarrassingly Imbalanced” categories. An application is considered as “Single-
Threaded” if the main thread significantly dominates the retired hardware instructions
(>80%). If the application is not “Single-Threaded”, but it deploys equal or
fewer workers than the number of available cores it is considered as “TLP-Bound”.
The degree of imbalance in hardware instructions equal to 90% of the worker
threads has been found as adequate to successfully detect the “Embarrassingly
Imbalanced” category. Note that, the specific values of the metrics that are utilized
for detecting the “Single-Threaded” and “Embarrassingly Imbalanced” applications
(main thread retired hardware instructions percentage = 80%, and imbalance in
hardware instructions of worker threads = 90% respectively) were determined based
on experimentation with the profiling data.

In case an application has not fallen into one of the aforementioned categories, it
is considered as “Parallel” (“Imbalanced” or “Explicitly Parallel”) and a conservative
strategy is followed afterwards. As explained in G2, the decision is critical at this

point because it can affect performance either positively or even negatively. The
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mechanism evaluates the performance of the application in two transitional steps
and then it decides if it should let the application scale or not. As a first step, the
application is forced to remain on a single NUMA node (PARALLEL_ON_SINGLE_NODE
state) for one time interval. At the next interval the application is forced to run on
all NUMA nodes (PARALLEL_ON_ALL_NODES state). After those two time intervals, the
mechanism has measured the singleNodeCPI and the allNodeCPI. The frequency
of the system is fixed (see Section 5.2), therefore the CPI value is directly related
to performance. Consequently, a reasonable decision can be taken by comparing the
two CPI values. The application is allowed to continue running on all NUMA nodes
if the al1lNodeCPI is lower (better) or equal to the singleNodeCPI + cpiMargin.

Otherwise, the application should settle back to single node.

The cpiMargin is a synthetic value that makes the decision-making mechanism
more tolerant regarding false-negative decisions. The empirical observations have
revealed that a strict comparison between singleNodeCPI and allNodeCPI often
results in false-negative decisions (return to single node while it should be scaling).
These wrong decisions were significantly mitigated by adding the cpiMargin to the
singleNodeCPI that essentially increases the latter by N%. To find the value of
N, we compared the CPI of all “Parallel” applications in “Single Node” (1 NUMA
node, 8 cores) and “All Nodes” (2 NUMA nodes, 16 cores) configurations. We
observed that the scalable applications had at least 15% lower (better) al1NodeCPI
than singleNodeCPI; thus, we define N = 15%.

7.3.5 Act

This is the last action of the Awareness Thread cycle before it sleeps again. The
act step succeeds the decision-making, consequently the mechanism is already aware
of the current state of the application. The STATE enum contains an abstract act ()
method; hence each enum value should implement its own act () method. The
Awareness Thread calls the act () method of the state variable and consequently the
corresponding action is taken through the NUMAConfigurations. The latter interfaces
with the native system calls of Linux libnuma via the NUMALib utility of MaxineVM
and the substrate. As illustrated in Figure 7.2 the act () of PARALLEL_ON_ALL_NODES
state leads to the “All-Nodes” configuration while the rest to the “Single-Node” one.
Note that, the aforementioned workflow was designed with the aim of being easily

extensible towards further and more complex NUMA configurations.
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Figure 7.3: Mechanism Overhead

7.4 Optimization Mechanism Overhead

Prior to evaluating the impact of the mechanism on performance, an overhead
assessment is required. We use an unmodified build of MaxineVM as the baseline
(MaxineVM_vanilla) which is explicitly pinned (with taskset) to the Single Node. We
compare the MaxineVM_vanilla against MaxineVM_fakeOpts, another MaxineVM
build which is equipped with a modified version of the proposed mechanism.
The MaxineVM_fakeOpts build aims to isolate the mechanism functionalities and
effectively measure their overhead by excluding the effect of NUMA scaling. More
specifically, the PARALLEL_ON_ALL_NODES state can be reached as usual, however it
points to the “Single Node” configuration. This way, the mechanism is fully functional
while at the same time the execution time is not affected by NUMA-related factors that
cause performance variations. In addition, the applications were run with 16 threads,
wherever possible, in both configurations. The average execution time from five runs
of the MaxineVM_fakeOpts is compared against the average execution time from five

runs of MaxineVM vanilla. The results are presented in Figure 7.3. The applications
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are grouped per parallelism category in subfigures. The values in Figure 7.3 refer to the
average execution time of MaxineVM_fakeOpts normalized to the average execution
time of MaxineVM vanilla. As can be observed the overhead of the mechanism varies,
however it is low (geometric mean = 0.84%). The highest overhead is observed in
avrora (6.74%) and the lower in naive-bayes (-1.49%). Regarding the negative
overhead values (in log-regression, rx-scrabble, scala-stm-bench7, sunflow,
naive-bayes, and philosophers) the absolute difference of the execution times
ranges from 3-92ms. Consequently, the negative values are very low and are attributed
to the error margin. Considering that the mechanism is invoked in the same rate for all
applications and any NUMA-related effect is excluded, the variation and the negative

overhead values are attributed to:
1. the additional context switches caused by the mechanism,
2. the dynamic features of Java (JIT compilation, Garbage Collection), and

3. the background dynamic activity of the system (kernel, services, and other

processes).

7.5 Performance Evaluation

To measure the effect of the optimization mechanism, the MaxineVM vanilla in the
“All Nodes” configuration (2 NUMA nodes, 16 CPU cores) is considered as the
baseline. Consequently, such a comparison highlights the effect of the optimization
mechanism over naive performance of each application on a NUMA system. The
effect of the optimization mechanism on each application and the geometric mean
are presented in Figure 7.4. Each value is the average of five executions. As can be
observed from the Figure 7.4, in general, the optimization improves performance by
8% (geometric mean 1.08x). In addition, the optimization benefits some applications
(i.e., scrabble, fj-kmeans, reactors, do-shootout and more), while others are
penalized (i.e., naive-bayes, sunflow, scala-stm-bench7).

The most benefited applications by the optimization mechanism (i.e., scrabble,
fj-kmeans, etc.) are those which are heavily penalized by a NUMA system when
running on a NUMA-unaware manner (see Table 6.6). Therefore, the results confirm
that the optimization mechanism is able to detect such a performance degradation. This
is achieved by initially pinning the application on one NUMA node and afterwards

letting the application to scale but only for a limited amount of time (optimization
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fop 1.00 x
jython 0.99 x
luindex 1.01x
mnemonics 1.00 x
dotty 1.01x
scala-doku 1.00 x
scala-kmeans 1.01x
als 1.13x
chi-square 1.02 x
gauss-mix 1.02x
log-regression 1.01x
movie-lens 1.10x
neodj-analytics 1.00 x
par-mnemonics 1.14x
rx-scrabble 1.03 x
avrora 1.12x
pmd 1.03 x
akka-uct 1.15x
reactors 1.23x
fi-kmeans 2.55x
future-genetic 1.15x
scala-stm-bench7 0.87 x
h2 1.03 x
lusearch 0.96 x
sunflow 0.72x
xalan 0.81x
naive-bayes 0.66 x
db-shootout 117 x
scrabble 3.30x
philosophers 1.15x
GEOMEAN 1.08 x
1.11x
0.0x 1.0x 2.0x 3.0x 4.0x

Optimization vs MaxineVM_vanilla in All Nodes

Figure 7.4: Performance evaluation of the optimization mechanism in comparison to
the performance of the MaxineVM_vanilla in the “All Nodes” configuration.

interval). During those steps, the optimization mechanism monitors the CPI, and
therefore, it decides which configuration should be applied for the remaining of the
running application. Consequently, the larger the penalization of NUMA, the most

accurate the optimization mechanism is, with regard to those cases.

On the contrary, most of the applications that are penalized by the optimization
mechanism (i.e., naive-bayes, sunflow, etc.) are those which are able to effectively
scale on a NUMA system when running on a NUMA-unaware manner (see Table 6.6).
This observation is not only counter-intuitive, but it also reveals the existance of one

inefficiency that is discussed in the following section.
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7.5.1 Cold Effect

The optimization mechanism is expected to achieve similar - to Table 6.6 - speedups
for the scalable applications (i.e., for naive-bayes that shows 1.86x speedup
in Table 6.6). However, this is not the case. As explained before, the initial
configuration of the optimization mechanism is to pin the application in one NUMA
node. This strategy, inevitably leaves the other NUMA node unutilized. Therefore, the
caches of the unutilized NUMA node will be “‘cold” when the optimization mechanism
lets the application to run on both NUMA nodes. As a result, this effect (is refered
as “cold effect” hereafter) might lead the optimization mechanism to a false-negative
decision. In that occasion, the decision of utilizing all NUMA nodes which benefits a
scalable application will be delayed (for at least one decision interval) or even never
taken. This inefficient situation inevitably penalizes the execution time because the
scalable application utilizes only one NUMA node instead of two.

In addition, the cold effect undermines performance even if the mechanism avoids
the false-negative decision and finally utilizes both NUMA nodes. The application
threads that migrate to the cold NUMA node will be facing remote node accesses and
even cache misses because their working data is already cached in the initial NUMA
node, thereby increasing the “All Node” CPI. Consequently, the mechanism might be
influenced (at the next decision interval) to move again the application threads back to
one NUMA node. Even though, the migration cost is a price that needs to be paid in
exchange for long-term performance improvement, it turns out to a bottleneck if it is
paid in an inefficient and often manner.

To that end, it is clear that the optimization mechanism comprises the cost of
migration as an additional overhead quantity due to the cold effect. Unfortunately, this
quantity cannot be measured in a direct manner because it depends on several dynamic
and low-level factors such as the state of the caches. However, it can be approached by
counting the migrations caused by the mechanism, correlate them with performance

observations, and potentially mitigate their cost by avoiding those unecessary.

7.5.2 Optimization-S

Motivated by the revealing of the cold effect, we measure the migrations caused by the
optimization mechanism with the aim of correlating them with performance. The two

following cases are considered as migrations:

1. “SingleNode” — “AllNodes”
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Table 7.1: Default Opt. Mechanism Table 7.2: Modified Opt. Mechanism

Application # of Migrations Application # of Migrations
avrora 35 avrora 32
pmd 0 pmd 0
akka-uct 192 akka-uct 122
reactors 0 reactors 0
fj-kmeans 3 fj-kmeans 2
future-genetic 718 future-genetic 689
scala-stm-bench?7 71 scala-stm-bench?7 72
h2 115 h2 24
lusearch 30 lusearch 22
sunflow 31 sunflow 7
xalan 28 xalan 3
naive-bayes 42 naive-bayes 1
db-shootout 177 db-shootout 21
scrabble 62 scrabble 3
philosophers 41 philosophers 3

2. “AllNodes” — “SingleNode”

Table 7.1 presents the number of migrations for all “Parallel” applications. The
numbers refer to all migrations happened across the execution of each application
(end-to-end) and are the average of five executions. To effectively assess the effect
of migrations, we slightly modify the optimization mechanism as follows. As long
as the mechanism takes the same decision for a “Parallel” application, the operation
frequency of the mechanism is gradually reduced. More specifically, if the current
decision is the same with the previous one, the optimization interval is increased by
200ms. This modification aims to “stabilize” the decision mechanism in order to avoid
unneccessary interruptions and ineffective migrations. Essentially, it is based on the
heuristic that a repetitive decision is less likely to be a coincidence. In addition, in case
the decision of the mechanism alters at any point, the optimization interval is reset to
its initial value (200ms). As a result, the mechanism is still able to adapt in case the
established decision is no longer beneficial. The number of migrations caused by the
modified optimization mechanism are presented in Table 7.2. In addition, Figure 7.5
evaluates the performance of the modified optimization mechanism (OptS) against the
MaxineVM_vanilla in the “All Nodes” configuration (2 NUMA nodes, 16 CPU cores).

By comparing the performance of the penalized applications of Figure 7.4
with the same of Figure 7.5, (naive-bayes: 0.66x, sunflow: 0.72x, xalan:

0.81x, scala-stm-bench7: 0.87x, lusearch: 0.96x), it can be observed that the
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fop 1.00 x
jython 1.00 x
luindex 1.01 x
mnemonics 1.00 x
dotty 1.01x
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log-regression 1.01x
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reactors 1.24x
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scala-stm-bench7 0.86 x
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lusearch 0.97 x
sunflow 0.98 x
xalan 0.66 x
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scrabble 3.29 x
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Optimization-S vs MaxineVM_vanilla in All Nodes

Figure 7.5: Performance evaluation of the modified optimization mechanism in
comparison to the in comparison to the performance of the MaxineVM vanilla in the
“All Nodes” configuration.

modification benefits the naive-bayes (1.01x) and sunflow (0.98x), does not affect
lusearch (0.97x) and scala-stm-bench7 (0.86x), while it further penalizes xalan
(0.66x). Moreover, this performance differentiation is reflected to the migrations.
More specifically, the modification of the mechanism reduces the migrations for the
benefited naive-bayes and sunflow (from 42 to 1, and from 31 to 7 respectively),
while it has no significant impact on the migrations of the unaffected lusearch and
scala-stm-bench7. However, the migrations are also reduced for the penalized
xalan (from 28 to 3) which is counter-intuitive. These observations lead to the
following conclusion. The scalability of naive-bayes and sunflow is indeed
penalized by frequent migrations. By reducing the frequency that the mechanism

operates, the migrations are avoided, hence those applications can benefit from the
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utilization of two NUMA nodes. Nevertheless, this does not apply to all applications.
The example of xalan suggests that some applications are not benefited by infrequent
decisions, thereby indicating that the behavior of those applications needs a more
precise management. A cause for that differentiation can be the fact that some
applications do not have uniform behavior (i.e., their algorithm has multiple and
different phases). Such an example is the scala-stm-bench7 which is driven by a
single thread for ~ 80% and is multithreaded for the remaining ~ 20%. Consequently,
a trade-off between potential scalability benefits and precise decisions arises. Finally, it
should be noted that the geometric mean of all applications confirms that the modified

optimization outperforms the initial optimization in general (1.11x from 1.08x).

7.6 Summary

This chapter has presented a dynamic, and application-agnostic mechanism that
improves the performance of a managed application by 11% on average. This
mechanism is implemented into the runtime of MaxineVM, hence it operates during
the execution. It assists the VM to decide whether a running application should be
pinned on one NUMA node (“Single Node” run configuration) or should expand to run
on the two NUMA nodes of the system (“All Nodes” run configuration). The decision
is driven by online profiling data that are provided by the PerfUtil with low overhead
(geometric mean = 0.84%). The proposed optimization mechanism loops over a set of
actions in order to coordinate the collection of the profiling data, the processing of the
profiling data, the decision-making algorithm, and the application of the decided run
configuration.

The evaluation of performance has revealed several inefficiencies that may be
occurring while migrating from one to two NUMA nodes and vice-versa. To tackle
those inefficiencies, the mechanism was modified (“Optimization-S”) in order to
gradually reduce its frequency of operation and avoid unoptimal migrations. Even
though the modification improved the overall performance (from 1.08x to 1.11x), it

also highlighted that some applications require even more fine-grained management.



Chapter 8

Conclusions and Future Research

Directions

The ever-expanding amount of data that is processed by modern software has increased
the demand for compute and memory resources. NUMA designs have been introduced
to provide sufficient resources by aggregating excessive amount of CPU cores and
DRAM. However, the effective scalability of software on NUMA hardware has turned
out to a non-trivial task due to the particularities of those designs. On that ground,
managed applications struggle even more to scale due to the additional layer of the
MRE. As a result, research interest has been shifted towards the study and the efficient
exploitation of NUMA hardware by MREs.

This thesis is involved to the above research field by studying the memory behavior,
and the scalability bottlenecks of several managed applications. Moreover, it proposes
two new tools and a dynamic mechanism for MaxineVM towards improving the
performance of a managed application on a NUMA machine.

Section 8.1 summarizes the work conducted in the context of this thesis
while Section 8.2 proposes several future research directions that can further evolve

the findings of this work.

8.1 Thesis Summary

The work conducted by this thesis is articulated as follows:
Chapter 2 outlines the topics related with the thesis and discusses all the
prerequisites aspects to enable the understanding of this thesis. More specifically,

it briefly discusses the major concepts of the MREs, explains how a JVM works,

126
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and introduces the reader to MaxineVM and metacircularity. Moreover, it describes
the advent of the Non-Uniform Memory Access (NUMA) architectures and how
remote memory affects performance. In addition, it introduces the reader to Hardware
Performance Counters. Note that, this chapter unfolds various sub-topics within the
aforementioned areas, such as metacircularity in the JVM, the MESIF cache coherency

protocol and more, which are necessary for the readers’ better understanding.

Chapter 3 discusses several challenges in regard to MREs in the context of the
NUMA architectures, outlines, and reviews the related research works from the

literature.

Chapter 4 briefly presents a novel approach that aims to effectively correlate
the application properties with hardware behavior, in order to achieve a better
understanding of the behavior of managed applications when deployed on a NUMA
system. Essentially, this chapter introduces two new tools for MaxineVM, that
compose the research platform that is proposed and utilized by this thesis. It describes
in detail the two profiling tools of the proposed research platform and discusses the
challenges faced and the key design choices taken. More specifically, the two tools
are: the PerfUtil, a low-level microarchitectural profiler, and the NUMAProfiler, a
high-level application-layer profiler. In particular, PerfUtil monitors the hardware
performance counters, while NUMAProfiler probes the runtime layer of MaxineVM

and monitors object-related metrics.

Chapter 5 presents a study on the memory behavior of the Dacapo and Renaissance
applications. Towards that objective, the PerfUtil and NUMAProfiler tools are utilized.
The study is presented per benchmark suite in order to provide a suite-wide view to the
reader. The study comprises a high-level and a low-level point-of-view profiling. The
co-utilization of the above, augment the understanding of the Research Community
regarding the popular Dacapo and Renaissance benchmarking suites for managed
runtimes. In addition, it provides a solid foundation towards analysing the behavior

of those applications in the context of a NUMA architecture.

Chapter 6 presents a NUMA scalability characterization for the Dacapo and
Renaissance benchmark suites in order to demystify the necessary and sufficient
conditions under which NUMA architecture can be beneficial for an application.
This chapter gradually assess several NUMA scalability-related properties, such
as parallelism, balance, data dependencies, and data locality for each application.
Each property assessment results to a set of homogeneous application groups. The

intersection of the groups formalizes a NUMA characterization table where each
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application belongs to a single category. This study not only succeeds in characterizing
the Dacapo and Renaissance applications, but also sheds light into the existing
application categories and their behavior in a NUMA system. The findings of this
chapter augment the understanding regarding the properties that are required by a
managed application in order to take advantage of NUMA hardware.

Chapter 7 describes and demonstrates a dynamic, and application-agnostic
mechanism that improves the performance of a managed application on a NUMA
system. This mechanism is implemented into the runtime of MaxineVM and operates
online during execution. It assists the VM to decide whether the application should be
pinned on one NUMA node or should expand to the two NUMA nodes of the system.
The decision is based on online profiling data that are provided by the PerfUtil with low
overhead (geomean is 0.84%). The mechanism iterates over a set of actions in order
to coordinate the collection of the profiling data, the processing of the profiling data,
the decision-making algorithm, and the application of the decided run configuration.
It is demonstrated that the performance of a managed application is improved by 11%

when this dynamic mechanism operates and assists the execution.

8.2 Future Research Directions

Towards improving the performance of a managed application in a NUMA system,
this thesis has resulted in several research findings. The two tools, the memory
behavior study, the NUMA scalability study, as well as the dynamic optimization
mechanism can be leveraged as an effective foundation for future research. Moreover,
it should be noted that even though this work focuses on Java applications and utilizes
MaxineVM, it is neither language nor VM-specific. All presented tools, techniques and
research approaches are applicable to any VM. In addition, the working principles of
the optimization mechanism can be adopted by any VM. More specifically, regarding
the JVMs, the implementation of the optimization mechanism is orthogonal and acts
complementary to any JIT compiler (i.e., Graal) or GC implementation (i.e., G1).
The optimization mechanism is driven by performance observations that derive by the
Hardware Performance Counters while it relies on the OS scheduling; hence it does not
interfere with the aforementioned performance-critical components of a JVM. The G1
collector and -XX:+UseNUMA especially, can seamlesly cooperate with the presented
mechanism since the latter will detect the need for spreading the threads across the

NUMA nodes and will allow them to take advantage of the fragmented heap spaces of
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G1. The following list articulates potential research directions that can derive from

the current work:

* Larger-scale and asymmetric NUMA machines: This thesis studied the
effect of NUMA architecture on managed application, in the simplest form
of this architecture (i.e., a two-node NUMA manchine). Such a choice was
a result of the ever-increasing complications of NUMA architectures as more
nodes are utilized. The resulted complexity of the current work justifies this
choice without ignoring any substantial principle of the NUMA architecture.
Nonetheless, a wide variety of NUMA systems exists. Consequently, the
research methodology and the optimization mechanism presented by this thesis
could be applied and be extended for different and potentially larger-scale
NUMA systems. Some notable examples of such systems are the NUMAScale
systems, and the asymmetric NUMA systems. A NUMAScale system takes
advantage of the NumaConnect technology to aggregate multiple server blades
to a single system with shared memory and cache coherency [Rus]. Approaching
the scalability of managed application on a NUMAScale system additional
challenges such as, the even higher memory access latency across the different
blades, are introduced. In addition, the so-called “asymmetric” NUMA systems
connect the aggregated NUMA nodes with links of different (asymmetric)
bandwidth [ ]. Therefore, it is clear that additional challenges need to be

tackled by an MRE towards exploiting the NUMA scalability of such a system.

* Towards more efficient and sophisticated profiling techniques: The profiling
of a managed application is not a trivial task. As shown in the case of
NUMAProfiler, collecting a high-level profiling from the runtime layer is
overhead-prone and can reduce the profitability of the approach. A high-level
Java profiler with low-overhead can enable even more sophisticated optimization
approaches (i.e., thread-grouping based on data dependencies and dynamic
NUMA-aware scheduling). Therefore, novel techniques are a necessity in order
to improve the efficiency of the new and the already existing Java profilers and
prototype novel optimization techniques. For example, sampling techniques can
be utilized in order to effectively reduce the profiling overhead. A low-overhead
profiler can then adopt sophisticated approaches for accurate online analysis
of memory access patterns and locality like Stat-cache [ ]. In addition, a
profiling tool such as PerfUtil, can be improved by enabling the monitoring of

additional hardware events. The plethora of hardware events that is provided by
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Hardware Performance Counters can enable plenty and even more sophisticated

profiling opportunities.

Increase Inteligence of the optimization mechanism: The dynamic
optimization mechanism that was presented in Chapter 7 has provided a solid
foundation for online dynamic NUMA optimizations in the VM. However,
the drawbacks of the current state of the mechanism point towards numerous
research opportunities. For example, the intelligence of that mechanism can
be improved in order to dynamically adapt in accordance with the behavior
of the application in a more effective way. The performance evaluation has
shown that some applications (i.e., xalan) are not benefited even by mitigating
the number of ineffective migrations probably due to different phases that their
algorithm comprise. Consequently, the ability of the mechanism to precisely
detect the application phases (if any) and dynamically parametrize itself (i.e.,

the optimization interval) can potentially improve overall performance.
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