
SOFTWARE/HARDWARE
CO-DESIGN AND

CO-SPECIALISATION:
NOVEL SIMULATION TECHNIQUES

AND OPTIMISATIONS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2018

By
Andrey Rodchenko

School of Computer Science

Contents

Abstract 12

Declaration 14

Copyright 15

Acknowledgements 16

1 Introduction 18
1.1 Trends in Integrated Circuits and Processor Technologies 19

1.2 The Evolution of High-Level Language Virtual Machine Technologies 21

1.3 Hardware/Software Co-Specialisation and Co-Design of General-Purpose
CPUs . 23

1.3.1 Specialisation of Hardware to Software 24

1.3.2 Specialisation of Software to Hardware 25

1.3.3 Hardware/Software Co-Design 26

1.4 Research Aims . 27

1.5 Contributions . 28

1.6 Publications . 29

1.7 Thesis Structure . 30

2 Fundamentals of Barrier Synchronisation 33
2.1 What is Barrier Synchronisation? . 33

2.2 Shared and Distributed Memory Architectures 34

2.2.1 Symmetric Shared Memory Architecture 35

2.2.2 Distributed Shared Memory Architecture 35

2.2.3 Distributed Memory Architecture 36

2.3 Cache Coherence Protocols and Memory Consistency 36

2

2.3.1 Cache Coherence Protocols 36

2.3.2 Memory Consistency . 38

2.4 Barrier Synchronisation Algorithms for Shared Memory Architectures 39

2.4.1 Sense-Reversing Centralised Barrier 40

2.4.2 Combining Tree Barrier . 41

2.4.3 Static Tournament Barrier 42

2.4.4 Dynamic Tournament Barrier 44

2.4.5 Dissemination Barrier . 45

2.5 Summary . 48

3 Effective Barrier Synchronisation on Intel Xeon Phi Coprocessor 49
3.1 Introduction . 49

3.2 Intel Xeon Phi 5110P Coprocessor 51

3.3 Barrier Synchronisation Specialisation for Intel Xeon Phi 52

3.3.1 Busy-Waiting Amortisation 52

3.3.2 Streaming Stores . 53

3.3.3 Hybrid Barrier Synchronisation 54

3.4 Experimental Methodology and Results 57

3.4.1 Benchmarks . 57

3.4.2 Naming Convention and Methodology 58

3.4.3 Experimental Data and Discussion 61

3.5 Related Work . 71

3.6 Conclusions . 72

4 Theory and Practice of Managed Runtime Environments 73
4.1 Fundamentals of Managed Runtime Environments 73

4.1.1 VM Emulation Engine . 74

4.1.2 Garbage Collection . 77

4.2 Maxine VM . 78

4.2.1 Baseline Compiler . 78

4.2.2 Optimising Compilers . 79

4.2.3 Heap Allocation and Garbage Collection 79

4.2.4 Comparison With Other JVM Implementations 79

4.3 Summary . 83

3

5 Theory and Practice of Computer Architecture Simulation 84
5.1 Fundamentals of Computer Architecture Simulation 84

5.1.1 Comparison of Simulation with Analytical Modelling 84

5.1.2 Overview of Simulation Techniques 85

5.2 Power and Energy Consumption Modelling Using McPAT 88

5.3 ZSim Simulator . 88

5.3.1 Comparison With Other Research Simulators 89

5.3.2 Validation of Simulating Maxine VM Running the DaCapo
Benchmarks . 89

5.4 Summary . 90

6 MaxSim: A Simulation Platform for Managed Applications 93
6.1 Introduction . 94

6.2 Integration of Platform Components and Novel Simulation Techniques 96

6.2.1 Pointer Tagging . 96

6.2.2 Integration with the McPAT Framework 101

6.2.3 Simulator/VM Co-Operative Address Space Morphing 101

6.3 Use Cases . 105

6.3.1 Characterisation of the DaCapo Benchmarks 105

6.3.2 Evaluation of the HW/SW Co-Designed Optimisation Related
to Array Length Encoding into Array Object Pointers’ Tags . 107

6.4 Related Work . 109

6.5 Conclusions . 110

7 Type Information Elimination from Objects on Architectures with
Tagged Pointers Support 112
7.1 Introduction . 113

7.2 Association of Objects with Class Information in JVMs 115

7.3 Architectural Support for Tagged Pointers 117

7.4 Class Information Handling via Tagged Pointers 118

7.4.1 Considerations on CIP Placement Inside an Object and Reuse
of CIP Location . 118

7.4.2 Encoding CIDs in Tagged Pointers 118

7.4.3 CIPs Retrieval from Tagged Pointers 120

7.4.4 Heap Traversal During Copying GC 121

7.5 Architectural Support . 124

4

7.5.1 CIP Retrieval . 124
7.5.2 Tagged Pointers Compression-Decompression 125
7.5.3 ISA Modifications . 127

7.6 Experimental Platform and Methodology 127
7.6.1 MaxSim Platform . 127
7.6.2 Benchmarks . 131
7.6.3 Experimental Methodology 132

7.7 Experimental Results . 132
7.7.1 Heap Space Savings . 132
7.7.2 Effects of CIP Elimination on GC 134
7.7.3 Effect of CIP Elimination on Execution Time for Configura-

tions Without HW Extensions 136
7.7.4 Effect of CIP Elimination on Execution Time for Configura-

tions with HW Extensions 138
7.7.5 Reduction in Cache Misses 139
7.7.6 Reduction in Dynamic Energy 139

7.8 Related Work . 139
7.9 Conclusions . 142

8 Conclusions and Future Work 144
8.1 Summary and Conclusions . 144
8.2 Future Work . 146

8.2.1 Specialisation of Barrier Synchronisation 146
8.2.2 HW/SW Co-Designed General-Purpose CPUs and MREs . . 147

Bibliography 149

A cbarriers Framework Manual 170
A.1 Dependencies . 170
A.2 Usage . 170

A.2.1 Building, Running Benchmarks, Plotting Results 170
A.2.2 Help Message . 171

A.3 Recipes . 173

B MaxSim Platform Manual 174
B.1 Dependencies . 174
B.2 Required Environment Variables . 174

5

B.3 Usage . 174
B.3.1 Building, Cleaning, Style Checking, and Setting Kernel Pa-

rameters . 175
B.3.2 Running DaCapo-9.12-bach Benchmarks 175
B.3.3 MaxSim Interface and Configuration 176
B.3.4 ZSim MaxSim-Related Configuration Parameters 176
B.3.5 MaxineVM MaxSim-Related Flags 177
B.3.6 Controlling Simulation by Managed Applications 178
B.3.7 Printing Profiling Information in the Textual Format 178
B.3.8 Retrieving Statistics Collected by ZSim 179
B.3.9 Modelling Power and Energy Using McPAT 180

B.4 Recipes . 180

Word Count: 35295

6

List of Tables

3.1 Barrier frequency in NASPB for inputs Y and S. 57
3.2 Intel Xeon Phi software stack components versions. 61

4.1 Research VMs comparison. 80

5.1 ZSim configurations. 89

6.1 ZSim configurations. 105

7.1 Glossary of terminology. 115
7.2 ZSim configurations. 129
7.3 Maxine VM configurations. 131

8.1 Experimental platform with two NUMA nodes. 146

7

List of Listings

2.1 Example allowing to distinguish
SC and TSO memory consistency models. 39

2.2 Sense-reversing centralised barrier. 40
2.3 Combining tree barrier. 42
2.4 Static tournament barrier. 43
2.5 Dynamic tournament barrier. 44
2.6 Dissemination barrier. 46
3.1 Busy-waiting delay. 53
3.2 Utilisation of streaming stores. 53
3.3 Hybrid barrier wait method. 56
6.1 Pin API for tag pointers retrieval and untagging. 98
6.2 Snippet of profiling information textual output. 100
6.3 Example of loop iterations filtering. 103
6.4 Configuration file in the Protocol Buffer format driving fields reorder-

ing transformation simulation. 104
6.5 Array length retrieval with tagged pointers. 107
7.1 CIP retrieval algorithm from tagged pointers. 120

8

List of Figures

1.1 The TIOBE programming community index [TIO] indicating program-
ming language popularity over the last 15 years of the 10 programming
languages with the highest index in March 2017. 22

1.2 Patterns of dependent HW/SW evolution. 23

1.3 Dependencies between the chapters and their classification. 30

2.1 Logical diagram of barrier synchronisation. 34

2.2 Diagrams of barrier synchronisation algorithms via shared memory. . 47

3.1 Architecture of the Intel Xeon Phi 5110P coprocessor. 51

3.2 Hybrid dissemination barrier rationale. 55

3.3 Diagram of the hybrid barrier synchronisation algorithm via shared
memory. 56

3.4 Geometric mean overhead of barrier synchronisation algorithms on
EPCC (the green and red lines represent the selection of the best and
the worst performing algorithm for a given number of threads respec-
tively). 62

3.5 Overhead of the ideal barrier synchronisation meta-algorithm on EPCC. 63

3.6 Dissemination barrier (black boxplots) compared to hybrid dissemina-
tion barrier (red triangles). 64

3.7 Comparison of barrier synchronisation algorithms on the CG kernel of
the NAS Parallel Benchmark. 65

3.8 Comparison of barrier synchronisation algorithms on the MG kernel of
the NAS Parallel Benchmarks. 66

3.9 Comparison of barrier synchronisation algorithms on the direct N-
body simulation kernel. 67

9

3.10 Hybrid dissemination barrier utilising globally ordered streaming stores
(when ARCH_STORE_NR is defined) (black boxplots) compared to hybrid
dissemination barrier refined to utilise non-globally ordered streaming
stores (when ARCH_STORE_NR_NGO_REFINED is defined) (red triangles). . 68

3.11 Impact of non-uniform access time to distributed tag directories for the
centralised sense-reversing barrier. 70

3.12 Diagram of the SIMD barrier synchronisation algorithm [CDM13] via
shared memory. 71

4.1 Managed runtime environment in the context of hardware, software
and developer stack. 74

4.2 Performance of different VM-compiler-version triplets relative to
HotSpot-C2-1.8.0.25 (higher is better). 82

5.1 Validation of different simulated HW configurations *-ZSim against
real system configurations *-Real. The depicted performances are
relative to 4C-Real (higher is better). 91

6.1 Different options for object metadata storage. 97

6.2 Handling of profiling information in MaxSim. 100

6.3 Example of address space morphing in MaxSim. 102

6.4 Characterisation of the DaCapo-9.12-bach benchmarks on MaxSim. . 106

6.5 Extensions to Address Generation Unit (AGU) and Load Store Unit
(LSU) for array length retrieval from tagged pointers. 108

6.6 L1 Data Cache Loads (L1DCL) and Dynamic Energy (DE) Reductions
on the DaCapo-9.12-bach benchmarks after employing the HW/SW
co-designed optimisation related to array length tagging. 109

7.1 Object and class information association in VMs. 116

7.2 Layout of object headers in various 64-bit JVMs. 116

7.3 Scheme of encoding CIDs in tagged pointers and CIP elimination. . . 119

7.4 List of CIDs in the “from-space” during GC representing list of copied
objects in “to-space”. 122

7.5 Extensions to Address Generation Unit (AGU) for CIPs retrieval. . . . 125

7.6 Extensions to Load-Store Unit (LSU) for object pointers decompression.126

7.7 Estimation of heap space savings and mean allocated object size for
different configurations. 133

10

7.8 Changes in GC times and numbers of GC invocations for various con-
figurations. 135

7.9 Relative changes in Execution Times (ET) for various configurations. 137
7.10 Relative reductions in cache misses per kilo-instruction for various

configurations. 140
7.11 Relative reductions in dynamic energy for various configurations. . . . 141

8.1 Diagram of the NUMA-aware dissemination barrier synchronisation
algorithm via shared memory. 146

11

Abstract

SOFTWARE/HARDWARE CO-DESIGN AND CO-SPECIALISATION:
NOVEL SIMULATION TECHNIQUES AND OPTIMISATIONS

Andrey Rodchenko
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2018

Progress in microprocessors has moved towards increasing the number of cores,
heterogeneity, and bitness of computing. Performance, programmability and energy
efficiency of next generations of microprocessors will be highly dependent on ef-
ficient synchronisation, hardware virtualisation, memory subsystem utilisation and
closer synergy between hardware and software. This multidisciplinary work addresses
these challenges by advancing the state-of-the-art in the following three major fields of
computer science: shared-memory synchronisation, computer architecture simulation,
and high-level language computer architecture.

Firstly, this thesis presents a study of the state-of-the-art barrier synchronisation
algorithms specialised for the Intel Xeon Phi architecture. The novel proposed hybrid
barrier synchronisation algorithm exploits the topology, the memory hierarchy, and
other capabilities of the Intel Xeon Phi 5110P coprocessor. The showcased algorithm
achieves a 3.28× lower overhead than the Intel OpenMP barrier implementation (ICC
14.0.0), thus outperforming all other known implementations. The study investigates
design issues of Intel Xeon Phi with respect to barrier synchronisation. Furthermore,
the thesis introduces an extensible parameterised framework for empirical evaluation
of barrier synchronisation algorithms on different systems, and it is released as free
software.

Secondly, a novel open-source simulation platform named MaxSim is introduced.

12

MaxSim facilitates hardware/software co-design of managed runtime environments
and architectures with tagged pointers support. It has an awareness of the managed
runtime environment, supports fast tagged pointers simulation on the x86-64 architec-
ture, allows to model new hardware extensions, to perform microarchitectural profiling
and to model complex software changes via a novel address-space morphing technique.
MaxSim is available as free software.

Finally, the work explores hardware/software co-design opportunities of managed
runtime environments and architectures with tagged pointers support. It is shown how
an array length can be stored in a tagged pointer and efficiently retrieved from it with
the assistance of hardware extenstions in Java Virtual Machine implementations. The
proposed technique resulted in up to 4% and 2% geometric mean dynamic energy re-
duction and up to 14% and 7% geometric mean L1 data cache loads reduction. The
work also researches how tagged pointers can be used for storing type information in
Java Virtual Machine implementations. In addition, novel hardware extensions to the
address generation and load-store units are proposed to achieve low-overhead type in-
formation retrieval and tagged object pointers compression-decompression. The eval-
uation shows up to 26% and 10% geometric mean heap space savings, up to 50% and
12% geometric mean dynamic random-access memory dynamic energy reduction, and
up to 49% and 3% geometric mean execution time reduction.

13

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

14

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=487), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.manchester.
ac.uk/library/aboutus/regulations) and in The University’s policy on pre-
sentation of Theses

15

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

Doing a PhD is a significant time and effort investment, so it is a serious decision
one has to make. Before starting, it is necessary to have clear goals and motivation,
knowledge and interest in the area, support of family and friends. While doing it, it is
important to have guidance and assistance of experienced researchers and have a team
of great colleagues. I am grateful to all people who helped me both to start and to do it
which are very many.

First of all, I would like to thank my supervisor Professor Mikel Lujan for his
guidance and advice. He directed me at every step of this thesis from elaborating
the ideas to presenting them in the papers and conferences. I did not have to worry
about anything rather than doing research: whatever hardware, proprietary software,
attendance of the conferences or symposiums were necessary, everything was provided
and organised fast and efficiently.

During different stages of my PhD, I was also actively supported by my co-supervi-
sor Antoniu Pop and by APT research fellows Andy Nisbet and Christos Kotselidis. I
would like to thank them for productive meetings, writing and presentation support.
I would like to thank every member of the APT team for making it a great place
to do research. Specifically, I would like to thank Paraskevas Yiapanis, Athanasios
Stratikopoulos, Mireya Paredes, Yaman Cakmakci, James Clarkson, Sebastian Werner,
Ioanna Alifieraki, Swapnil Gaikwad, Serhat Gesoglu, Merve Simsek, Seckin Simsek,
Guillermo Callaghan, Amanieu D’Antras, Cosmin Gorgovan, Nikolaos Foutris, Geof-
frey Ndu, Will Toms, and John Mawer for everyday support and fruitful discussions
during this PhD.

In order to start this PhD, many people helped me to gain knowledge and inter-
est in the area. I would like to thank my teachers in the Secondary School No. 3,
Zhukovsky. Specifically, I would like to thank Sima Mikhailovna Bilich, Svetlana Fy-
odorovna Remennikova, Elvira Ivanovna Kapustina, and Nina Georgievna Blokhina.
I would like to thank my lecturers at Moscow Institution of Physics and Technology,

16

and my colleagues at Intel and Optimizing Technologies. Specifically, I would like to
thank Fatima Gyoeva, Andrey Bokhanko, Sergey Novikov, Alexander Drozdov, Pavel
Matveyev, Dmitry Maslennikov, Andrey Dobrov, Valery Perekatov, Arnold Plotkin,
and Boris Babayan.

I would like to thank Microsoft Research and the School of Computer Science at
the University of Manchester for providing financial support via a PhD Scholarship. I
would like to thank Anton Lokhmotov for notifying me about this fully funded PhD
opportunity.

I would like to thank my mother Taisiya Rodchenko, my sister Larisa, her husband
Mikhail, their children Maria and Matvey, all other members of my big family, and
friends for their love and support. I would like to thank my wife Anna Bystranova for
her love, support and being with me in the great city of Manchester.

This thesis is dedicated to my father Victor Rodchenko, who was a reasearcher
in the area of flight dynamics and control of aircrafts. He is and will always be an
inspiration for my work.

17

Chapter 1

Introduction

The steady growth of computing performance is a significant driving force for human
development. Advances in processors technologies follow the path of increasing the
number of cores, their heterogeneity and bitness of computing. From the software side,
one of the trends is a steady development of high-level language virtual machine tech-
nologies. As it will be claimed in this chapter, further performance gains in computing
will be significantly dependent on hardware/software co-specialisation and co-design.

In detail, this chapter discusses:

1. Trends in integrated circuits and processors technologies.

2. The evolution of high-level language virtual machine technologies.

3. A hardware/software co-design and co-specialisation approach
for hardware/software systems development.

4. Aims of this work.

5. Contributions to the areas of hardware/software co-design
and co-specialisation.

6. Published papers stemming from this work.

7. The structure of the thesis.

18

1.1. TRENDS IN INTEGRATED CIRCUITS AND PROCESSOR ... 19

1.1 Trends in Integrated Circuits and
Processor Technologies

In 1965, Gordon Moore made an observation and prediction that the number of tran-
sistors on integrated circuits would double roughly every two years. This trend in
computing is known as Moore’s Law [Moo65]. Indeed, when this work was started in
2013, processors using 22nm technology nodes were shipped to consumers. In 2017,
when this work was completed, 10nm devices were expected to appear in the market.
However, this exponential growth will end at some point in the future due to physical
limitations. The exact time is difficult to predict as it depends on future technological
advancements. The ultimate theoretical quantum limit of miniaturisation of electronic
devices sets the year of 2036 as the upper boundary for Moore’s Law [Pow08]. The
inevitable end of Moore’s Law will require specialisation of integrated circuits to get
further performance improvements.

Prior to the early 2000s, utilisation of the growing transistor budget was mainly
focused on the single-core Central Processing Unit (CPU) domain. Processor perfor-
mance improvements were primarily achieved by the technological improvements and
development in microarchitecture leveraging frequency growth and higher Instruction

Per Clock (IPC) rates. The single-core micro-architecture performance growth fol-
lowed the empirical Pollack’s Rule [Bor07], stating that it is roughly proportional to
the square root of the increase in logic complexity, which is commensurate with the
number of logic transistors. However, in the mid-2000s the microprocessor frequen-
cies reached a plateau in the 3-4 GHz range hitting Thermal Design Power (TDP) and
microarchitectural constraints. Therefore, the increase of IPC stopped as increasing
Instruction-Level Parallelism (ILP) became harder [KS04] combined with relatively
small progress in reducing memory access latency.

Consequently, transistor utilisation is now typically exploited by increasing the
number of processor cores. Multiprocessors allow achieving linearly proportional
performance to the number of cores that can be used simultaneously for independent
non-interfering workloads, in contrast to the square root growth by Pollack’s Rule in
case of the single powerful monolithic core [Bor07]. This fact explains the appear-
ance of commodity off-the-shelf many-core system such as the 60-Core Intel Xeon
Phi 5110P coprocessor. However, moving in a many-core direction introduces numer-
ous challenges. Firstly, future multi-core systems are moving towards heterogeneous
and asymmetric architectures [EBSA+11], [Bor07], which are challenging to program.

20 CHAPTER 1. INTRODUCTION

Secondly, performance scaling of a single application will require extraction of paral-
lelism sufficient to exploit increasing computational resources.

Another trend in computing is the increase of bitness of CPUs. Bitness defines the
typical size of data the CPU can operate with (a word), however sizes of registers, ad-
dress buses and other components can be different. For instance, the first commercially
available microporcessor Intel 4004 had 4-bit data width and 12-bit address width, and
the most recent to date Intel x86-64 microprocessors feature 64-bit data width and 48-
bit address width. 64-bit computing became the norm in server and desktop segments
since the turn of the century, and it is now the norm in the mobile devices segment
since the introduction of the ARMv8 architecture in 2011.

Power dissipation is a major limitation for future generations of many-core sys-
tems [Bor07, EBSA+11, HRSS11]. Specialisation of an integrated circuit for a certain
application is an effective way to improve energy efficiency. If the types of applications
to be executed on a designed many-core system are known in advance, some cores can
be specialised for the dominant types of applications. Thus, instead of having identical
general-purpose cores, many-core systems can contain different specialised cores. The
recent trend is the increase of the degree of heterogeneity of multi-core systems.
Three major categories of specialised integrated circuits are described below:

• Application Specific Integrated Circuits (ASIC) are special-purpose non-reconfi-
gurable circuits designed to run particular applications. It is shown that H.264
encoding is 500× less energy efficient on the 4-core Chip Multi-Processor (CMP)
than on the ASIC [HQW+10].

• Field Programmable Gate Arrays (FPGA) are special-purpose reconfigurable
circuits. FPGAs can be reconfigured fully or partially at runtime in contrast to
design-time specialised ASICs. FPGAs provide higher energy efficiency than
general purpose cores but lower than ASICs for certain workloads [Und04].

• Graphics Processing Units (GPU) are another evolving branch of specialised
integrated circuits. GPUs were originally oriented towards massively parallel
graphics workloads and were later adapted to other Single-Instruction Multiple-

Thread (SIMT) tasks. In this domain, they showed performance superiority over
general purpose cores on a number of applications, for instance, a sparse matrix
conjugate gradient solver and a multigrid solver [BFGS03].

All these categories of specialised circuits can be placed on a single multi-core
chip with general-purpose CPUs. Among the recent solutions featuring an FPGA and

1.2. THE EVOLUTION OF HIGH-LEVEL LANGUAGE VIRTUAL ... 21

a CPU on a single chip are Xilinx Zynq-7000 [MCS14b] and Altera Arriva V FPGA
[MCS14a]. Such chips feature lower delays and higher bandwidth of data movement
between a CPU and an FPGA and reduce the cost of offloading computation from
the former to the latter. Thus, integrated CPU and FPGA chips allow broader classes
of tasks to benefit from offloading and acceleration on an FPGA in comparison with
separate chips. The heterogeneous multi-core chips can also contain different types
of general-purpose CPU cores with different characteristics. A notable example is
the ARM big.LITTLE architecture, featuring "big" high-performance and "LITTLE"
low-power cores implementing the same Instruction Set Architecture (ISA).

1.2 The Evolution of High-Level Language
Virtual Machine Technologies

As Hardware (HW) becomes more diverse, Software (SW) portability and adaptation
for performance become increasingly important. To tackle this problem, applications
may target not an underlying HW directly but an abstract Virtual Machine (VM). The
concept of the High-Level Language (HLL) VM lies in reflecting HLL features in the
Virtual-Instruction Set Architecture (V-ISA) [SN05]. So the HLL VM programs are
initially converted to V-ISA. The process of conversion from HLL code to ISA or V-
ISA code is known as compilation, and it is performed by a SW program called a
compiler. On the execution stage a Managed Runtime Environment (MRE) can inter-
pret code in the V-ISA format instruction by instruction modelling a VM behavior.
Alternatively, an MRE can compile multiple V-ISA instructions to ISA instructions
and execute them on a host. Compilation during runtime is called Just-In-Time (JIT)
compilation.

One of the earliest examples of HLL VMs was the BCPL typeless language and the
OCODE abstract stack machine specifically designed for this language [Ric69]. At the
first stage, programs written in BCPL are compiled to the OCODE abstract machine
format, and at the second stage, they can be either compiled to or interpreted on a target
machine. This design choice is the key to portability of the BCPL compiler. Though
the BCPL language is not in wide use nowadays, the language itself influenced the
widely used C language and its implementation approach influenced the implemen-
tation of the Pascal language. Similiarly to BCPL, at the first stage, programs in the
typed imperative Pascal language are translated to the P-code stack-based virtual ma-
chine [NNJA74], while at the second stage, they are either interpreted on or translated

22 CHAPTER 1. INTRODUCTION
R

at
in

gs
 (

%
)

2002 2004 2006 2008 2010 2012 2014 2016
0

5

10

15

20

25

1. Java 2. C 3. C++ 4. C# 5. Python 6. Visual Basic .NET
7. PHP 8. JavaScript 9. Delphi/Object Pascal 10. Swift

Source: www.tiobe.com

Figure 1.1: The TIOBE programming community index [TIO] indicating
programming language popularity over the last 15 years of the 10 programming

languages with the highest index in March 2017.

to a target machine. This design choice and the features of the language made Pascal
fairly popular.

As it is indicated by the TIOBE programming community index [TIO] shown in
Figure 1.1, the Java language is one of the most popular HLLs over the last 15 years.
Java is a multi-threaded class-based object-oriented language targeting the Java Vir-

tual Machine (JVM) [LYBB14]. It was one of the first languages to define a memory
model; a memory model describes atomicity, visibility and order of memory accesses
made by a thread with respect to other threads. The code is initially compiled to the
V-ISA of the JVM called Java bytecode. Thus, Java applications can be distributed in
the bytecode form, hiding the source code and providing portability. Java bytecode not
only provides portability but also advanced security guarantees via bytecode validation
and runtime checks. The Java runtime system targeted for a specific HW is capable of
executing the bytecode on the target machine. There are a number of runtime environ-
ments for application virtualisation based on the similar principles such as the Common

Language Runtime (CLR) [MWG00] and Android Runtime [Goo15]. As for the JVM
and the CLR, they are not only used to run programs written in Java and C# ranked 1
and 4 respectively in Figure 1.1, but also programs written in other languages that can

1.3. HARDWARE/SOFTWARE CO-SPECIALISATION AND CO-DESIGN ... 23

Figure 1.2: Patterns of dependent HW/SW evolution.

target these virtual machines. Visual Basic .NET applications are executed on the CLR,
and Visual Basic .NET is ranked 6 in Figure 1.1. Python and JavaScript applications
can be executed on the JVM via the Graal compiler [Gra16], and the Truffle [WW12]
self-optimising Abstract Syntax Tree (AST) interpreter. Python and JavaScript are also
among the most popular languages ranked 5 and 8 respectively in Figure 1.1.

To summarise, there is an ongoing trend in using HLL VMs in all domains of com-
puting from Android applications running on Android Runtime on mobile phones to
the Hadoop [Whi12] framework running on JVMs on servers in clouds. The main rea-
sons for the popularity of HLL VMs are that they provide portability and adaptability
of applications as well as certain security guarantees. The aforementioned properties
of MREs make them suitable frameworks to tackle code generation and execution for
future heterogeneous asymmetric many-cores.

1.3 Hardware/Software Co-Specialisation and
Co-Design of General-Purpose CPUs

As it was identified above, HW is becoming more specialised, and one of the areas
for specialisation of general-purpose CPUs can be HLL VMs which are widely used
in modern computing. Below are the patterns of dependent HW/SW evolution that
can be followed if one wishes to specialise a general-purpose CPU for specific SW or
vice versa. These three patterns are schematicaly presented in Figure 1.2. Although
these design patterns are applicable to different types of HW, this section will focus on
general-purpose CPUs only.

24 CHAPTER 1. INTRODUCTION

1.3.1 Specialisation of Hardware to Software

The first pattern of dependent HW/SW evolution presented in Figure 1.2 is speciali-
sation of HW to SW. As a HW design cycle is significantly more resource-consuming
than a SW design cycle in many cases [BH09], this type of specialisation is rational
when a certain SW pattern meets the following criterion:

1. HW specialisation yields significant gains for this SW pattern, and

2. the projected share of the SW pattern executed on the specialised HW during its
lifecycle is significant.

This criterion is qualitatively represented by the Amdahl’s law [Amd67]. By this law,
when the fraction of the workload f is sped up s times and the other fraction of the
workload (1− f) is unchanged, the total speedup of the workload S is presented by the
following formula:

S(f ,s) =
1

(1− f)+ f/s

The same formula can be used to estimate how much less energy is required to run the
workload if s represents how much less energy is required to run the fraction of the
workload f . During a lifecycle of a specialised HW, the share of the SW pattern for
which specialisation is done might change, and the fraction f in the equation above
might change over time. Thus, the projection of the lifetime of the SW pattern and
of possible modifications over time is critical, and possible modifications must be ad-
dressed by sufficient degree of programmability of the specialised HW to be able to
adapt to them.

One of the most notable examples of HW to SW specialisation is the Floating-Point

Unit (FPU) for floating-point arithmetic. Floating-point arithmetic operates with real
numbers represented by a fixed number of bits. As real numbers are uncountable, only
a subset of them can be represented in a floating point format. When making arithmetic
operations on floating-point numbers results need to be approximated by a number
within the representable subset. The arbitrary precision floating-point arithmetic can
be performed in SW using integer numbers. However, floating-point arithmetic can be
performed an order of magnitude more efficiently having an FPU [Int16]. As, floating-
point arithmetic represents a significant share of general purpose computing, and it is
well standardised [Int08], specialisation of modern CPUs by adding FPUs is common.

Among other wide-spread specialisations in general-purpose CPUs induced by SW
are [RDS15]:

1.3. HARDWARE/SOFTWARE CO-SPECIALISATION AND CO-DESIGN ... 25

• Single-Instruction Multiple-Data (SIMD) extensions for vectorisable SW,

• extensions for synchronisation of multi-threaded SW,

• cryptographic extesnions for corresponding algorithms, and

• virtualisation extensions for Virtual Machine Monitors (VMM) allowing effi-
cient simultaneous execution of different Operating Systems (OS) on the same
HW.

1.3.2 Specialisation of Software to Hardware

The second pattern of dependent HW/SW evolution presented in Figure 1.2 is special-
isation of SW to HW. As soon as new HW or its specification is available, SW can be
specialised to take advantage of new features or parameters. There are two major ways
of SW specialisation to new HW that can be applied together:

1. implicit specialisation via SW recompilation,

2. explicit specialisation via SW modification.

If new HW features are supported by a compiler, SW specialisation can happen via
recompilation if the compiler is able to identify such opportunities and utilise new HW
features. In case of floating-point arithmetic described in Section 1.3.1, finding oppor-
tunities for FPU utilisation can be facilitated by the fact that floating-point arithmetic
is directly expressed in a language for which compilation is done. But for instance,
specialisation of a single-threaded program for a multi-core CPU via recompilation is
more challenging as thread-level parallelism is not explicitly expressed in a program
and it needs to be extracted by a compiler. The practical capabilities of a conversion
of a single-threaded program to a parallel multi-threaded code by compilers turned out
to be rather limited [MJCM], so explicit modification of a program to a multi-threaded
form is the main way of SW specialisation in a multi-core direction. Efficiency of SW
specialisation can be quantitatively represented by the Amdhal’s law described above.

If some projections can be done regarding HW modifications in the future, SW can
be parameterised and contain mechanisms to adapt to them by changing parameters.
One example of SW adaptation to possible changes of HW is the Automatically Tuned

Linear Algebra Software (ATLAS) [WD98]. This parameterised SW runs a number
of micro-benchmarks at installation time to determine the best parameters to adapt to

26 CHAPTER 1. INTRODUCTION

different sizes and levels of caches, latencies and other characteristics of CPUs for
better efficiency.

1.3.3 Hardware/Software Co-Design

The final pattern of dependent HW/SW evolution presented in Figure 1.2 is HW/SW
co-design. HW/SW co-design is a process of parallel design and co-specialisation of
HW and SW in a single effort. In comparison with sequential design of SW and HW,
HW/SW co-design reduces the risks of overdesigning or underdesigning both HW and
SW and allows a better synergy between them.

A process of HW/SW co-design is an iterative process involving the following
steps [Tei12]:

1. bi-partitioning of the system functionality between HW and SW,

2. design of the HW model and the SW prototype,

3. evaluation of the SW prototype on the HW model,

4. revision of steps 1 and 2.

One notable example of a HW/SW co-designed general-purpose CPU and an MRE
is the Azul Vega CPU and the Azul JVM [Int17]. The Azul Vega processor features 54
general-purpose cores with additional support to facilitate execution of Java applica-
tions. The co-designed Azul VM was specifically designed to support unique features
of the Azul Vega CPU to achieve better scalability and reduce delays during automatic
memory management in comparison with non co-designed JVMs running on general-
purpose CPUs.

The HW/SW co-design in this area may only partly target MREs and have broader
application. For instance, Harris et al. proposed architectural support for dynamic
filtering which can be successfully applied to both automatic memory management in
MREs and implementations of software transactional memory [HTCU10].

Although the HW/SW co-design approach has been successfully used for sev-
eral decades, its utilisation is projected to emerge in the next decades with the end
of Moore’s law [Tei12]. Firstly, HW and SW will need to be co-designed for extra reli-
ablility and adaptability to faults as HW components with smaller transistors are more
error-prone. Secondly, diminishing returns of technological advances in integrated cir-
cuit technologies will promote co-design of specialised HW and SW.

1.4. RESEARCH AIMS 27

1.4 Research Aims

The general aim of this PhD is to research opportunities for SW specialisation and
HW/SW co-design in the areas of MREs and general-purpose CPUs. After research
space exploration in this broad multidisciplinary area, the general aim was narrowed
down to three sub-aims covering different disciplines. These aims are the following:

1. The first aim is to explore the opportunities and limitations of specialisation of
a SW synchronisation method for a many-core CPU. The selected method of
synchronisation is barrier synchronisation and the selected many-core CPU is a
many-core coprocessor named Intel Xeon Phi 5110P. Barrier synchronisation re-
quires synchronisation of all threads at certain points of program execution and is
provided in MREs via libraries. The aforementioned coprocessor features 60 4-
multi-threaded cores allowing simultaneous execution of 240 threads. Thus, this
synchronisation method and this CPU present an interesting research case to ex-
plore SW specialisation questions related to synchronisation of threads. In 2013,
Java was not supported for programming Intel Xeon Phi[Ree13]. As barrier syn-
chronisation is wide-spread and generic, specialisation of this synchronisation
method can be researched in isolation from MREs. The MRE libraries, such as
the .NET Framework Class Library [.NE17] and the Java Class Library [JCL17],
contain implementations of the barrier synchronisation primitive, so the obtained
results are directly applicable to MREs and any SW using barrier synchronisa-
tion. The practical goal of this research is to minimise time spent in barrier
synchronisation on Intel Xeon Phi 5110P, and the result can be measured quan-
titatively as a speedup over the reference implementation of this method of syn-
chronisation on this platform. This aim was pursued in 2013-2015.

2. The second aim of this work is to explore modelling techniques for HW/SW
co-design in the area of MREs and general-purpose CPUs. These modelling
techniques should be accurate enough to be able to achieve the 3rd aim. If mod-
elling techniques are not satisfactory, the identified limitations should be ad-
dressed with novel modelling techniques. The practical goal of this work is to
build a simulation platform integrating a simulator and a HLL VM implemen-
tation together. The result of this effort can be measured qualitatively in terms
of usefulness of the developed platform by comparing its features against other
state-of-the-art simulation platforms. This aim was pursued in 2014-2016.

28 CHAPTER 1. INTRODUCTION

3. As it was mentioned in Section 1.1, there is a trend in increasing the computing
bitness and utilisation of HLL VMs. On current 64-bit architectures the address
bus width is less than 64-bits, however addresses are operated via 64-bit granu-
larity in registers and memory. Thus, some of the address bits are not carrying
useful information. This fact motivates the exploration of the idea of utilisation
of these unused address bits in the context of HLL VM implementations, as ad-
dresses (in these implementations) are usually associated with objects and can
be used for storing some information associated with them. Thus, the third aim
is to explore opportunities for SW/HW co-design for MREs and CPUs utilising
these unused address bits. The practical goal of this research is to improve mem-
ory utilisation, performance and energy efficiency of HLL VM implementations,
and the result can be measured quantitatively as an improvement in these charac-
teristics for the selected state-of-the-art implementation. This aim was pursued
in 2015-2017.

1.5 Contributions

Research in specialisation of barrier synchronisation algorithms to the Intel Xeon Phi
coprocessor and opportunities of HW/SW co-design in utilisation of tagged pointers in
HLL VMs resulted in the following contributions:

• An open-source multi-target parameterised framework for evaluating different
barrier synchronisation algorithms and a thorough evaluation of the behaviour
of current state-of-the-art barrier synchronisation algorithms specialised for Intel
Xeon Phi.

• A novel hybrid barrier synchronisation algorithm for Intel Xeon Phi applicable
to other multi-hierarchical architectures.

• MaxSim: a simulation platform for managed applications.

• Novel simulation techniques related to pointer tagging and address-space mor-
phing on the x86-64 platforms.

• A method of storing array length in tagged pointers on architectures with tagged
pointers support.

1.6. PUBLICATIONS 29

• Novel hardware extensions to the address generation and load-store units to
achieve low-overhead array length retrieval from tagged object pointers.

• A method of type information elimination from objects on architectures with
tagged pointers support.

• Novel hardware extensions to the address generation and load-store units to
achieve low-overhead type information retrieval and tagged object pointers comp-
ression-decompression.

1.6 Publications

Part of the material in Chapters 2 and 3 was used in the following publication:

• EFFECTIVE BARRIER SYNCHRONIZATION ON INTEL XEON PHI COPROCES-
SOR. Andrey Rodchenko, Andy Nisbet, Antoniu Pop, and Mikel Luján. In
Proceedings of the 21st International Conference on Parallel and Distributed

Computing (Euro-Par), Vienna, Austria, August 2015 [RNPL15].

Part of the material in Chapters 4, 5, and 6 was used in the following publications:

• HETEROGENEOUS MANAGED RUNTIME SYSTEMS: A COMPUTER VISION

CASE STUDY. Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy
Nisbet, John Mawer, and Mikel Luján. In Proceedings of the 13th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments

(VEE), Xi’an, China, April 2017 [KCR+17].

• PROJECT BEEHIVE: A HARDWARE/SOFTWARE CO-DESIGNED STACK FOR

RUNTIME AND ARCHITECTURAL RESEARCH. Christos Kotselidis, Andrey
Rodchenko, Colin Barrett, Andy Nisbet, John Mawer, Will Toms, James Clark-
son, Cosmin Gorgovan, Amanieu d’Antras, Yaman Cakmakci, Thanos Stratiko-
poulos, Sebastian Werner, Jim Garside, Javier Navaridas, Antoniu Pop, John
Goodacre, Mikel Luján. In Proceedings of the 10th International Workshop

on Programmability and Architectures for Heterogeneous Multicores (MULTI-

PROG), Vienna, Austria, January 2016 [KRB+16].

• MAXSIM: A SIMULATION PLATFORM FOR MANAGED APPLICATIONS. An-
drey Rodchenko, Christos Kotselidis, Andy Nisbet, Antoniu Pop, and Mikel

30 CHAPTER 1. INTRODUCTION

Luján. In Proceedings of the 2017 IEEE International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS), San Francisco Bay Area,

California, USA, April 2017 (Best Paper Award) [RKN+17].

Part of the material in Chapter 7 was used in the following publication:

• TYPE INFORMATION ELIMINATION FROM OBJECTS ON ARCHITECTURES

WITH TAGGED POINTERS SUPPORT. Andrey Rodchenko, Christos Kotselidis,
Andy Nisbet, Antoniu Pop, and Mikel Luján. In the IEEE Transactions on Com-

puters (TC), January 2018 [RKN+18].

1.7 Thesis Structure

Dependencies between the chapters and their classification are shown in Figure 1.3, so
that the reader interseted in the certain areas of this thesis or having solid knowledge
in some areas can skip certain chapters or parts of them. The chapters presenting the
contribution of this work are finalised with the review of the related work and compar-
ison of the obtained results. In case the reader wants to get familiar with the related
work first, it is located at the end of Chapters 3, 6, and 7 right before conclusions.

Figure 1.3: Dependencies between the chapters and their classification.

The thesis is structured in the following way:

1.7. THESIS STRUCTURE 31

Chapter 2 presents the fundamentals of barrier synchronisation on cache-coherent
shared memory architectures. In addition, it explores various architectural parameters
which are relevant to this type of synchronisation. Finally, it discusses state-of-the-art
barrier synchronisation algorithms and forms an introduction to the work presented in
Chapter 3.

Chapter 3 researches the problem of effective barrier synchronisation on the Intel
Xeon Phi 5110P coprocessor. In addition, it discusses the key specifities of this ar-
chitecture and evaluates the behavior of current state-of-the-art barrier synchronisation
algorithms using the novel parameterised experimental framework. Finally, it proposes
the novel hybrid synchronisation algorithm, that exploits the topology, the memory hi-
erarchy and the streaming stores of the Xeon Phi architecture. The obtained results are
compared with the results of the related barrier synchronisation algortithms specialised
for the Intel Xeon Phi.

Chapter 4 presents the fundamentals of managed runtime environments with the
focus on Java virtual machine implementations. In addition, it discusses the research
Java VM implementation called Maxine as a use case in detail and compares it with
other Java VM implementations.

Chapter 5 presents the fundamentals of computer architecture simulation. In ad-
dition, it discusses the research user-level software-based simulator called ZSim as a
use case in detail and compares it with other simulators of its class.

Chapter 6 describes the platform for simulation of managed workloads called
MaxSim. In addition, it presents novel simulation techniques such as modelling of
tagged pointers on x86-64 architectures leveraging dynamic binary translation and ad-
dress space morphing for modelling different object layouts. The novel platform is
compared with the related platforms.

Chapter 7 researches the problem of handling type information on architectures
with tagged pointers support. In addition, it explores an opportunity of storing class
identifier in an object pointer tag removing a class information pointer from an ob-
ject. Required changes to automatic memory management are proposed. The intial
evaluation of this opportunity motivates proposal of novel extension to address gen-
eration and load-store units. Final evaluations with the proposed hardware extensions
are reported.

Chapter 8 presents overall conclusions of the presented work and targets directions
for future work.

Appendix A describes how to use the cbarriers framework for barrier algorithms

32 CHAPTER 1. INTRODUCTION

evaluation presented in Chapter 3.
Appendix B describes how to use the MaxSim simulation platform presented in

Chapter 6.

Chapter 2

Fundamentals of
Barrier Synchronisation

This chapter presents the fundamentals of barrier synchronisation on cache-coherent
shared memory architectures. It provides a review of the state-of-the-art barrier syn-
chronisation algorithms and explores architectural parameters which are relevant to
such type of synchronisation. This chapter provides necessary background knowledge
for specialisation of barrier synchronisation algorithms on the Intel Xeon Phi 5110P
coprocessor, which will be presented in Chapter 3. Part of the material in this chapter
was published in the Euro-Par 2015 conference proceedings [RNPL15].

2.1 What is Barrier Synchronisation?

Multi- and many-core systems have become the norm, and their efficient exploitation
requires scalable synchronisation mechanisms. Synchronisation barriers are one of the
fundamental synchronisation primitives, underpinning the parallel execution models of
many modern shared-memory parallel programming languages such as Cilk [BJK+96],
OpenCL [EBS17a] or OpenMP [EBS17b], and are one of the main challenges to scal-
ing. A synchronisation barrier is a logical point during a multi-threaded program
execution separating two epochs of computations n and n+ 1 preserving the fol-
lowing property: each thread can proceed to an epochn+1 only when all threads
finished execution of an epochn. A logical diagram of barrier synchronisation is
shown in Figure 2.1, and it consists of two phases: the Registration Phase and the
Notification Phase. Similiar terminology was introduced by Hoefler et al. [HMMR04]
in their survey of barrier synchronisation algorithms. During the Registration Phase

33

34 CHAPTER 2. FUNDAMENTALS OF BARRIER SYNCHRONISATION

Registraion Phase

thread0

thread1

thread...

threadn-1

b
a
r
r
i
e
r

epochn epochn+1

Notification Phase

thread0

thread1

thread...

threadn-1

b
a
r
r
i
e
r

epochn epochn+1

Figure 2.1: Logical diagram of barrier synchronisation.

the arrival of threads is registered, and when the last one arrives, then the Notifica-

tion Phase starts. During the Notification Phase all threads are notified that they can
proceed to an epochn+1 from an epochn.

Although barrier synchronisation can be performed via dedicated HW [SGC+06,
SK10], if a dedicated HW support is not present, barrier synchronisation can be imple-
mented via loading and storing values in memory. The following section will review
major classes of memory architectures of multiprocessors with the emphasis on shared
memory architecture, and this background knowledge is essential to comprehend bar-
rier synchronisation algorithms on shared memory architectures.

2.2 Shared and Distributed Memory Architectures

With the advent of multiprocessors, researchers and engineers faced the problem of
memory distribution between the cores. Memory architectures could be presented by
two major types: shared memory architecture and distributed memory architecture.
Shared memory architecture can be split into two subtypes: symmetric shared memory

architecture and distributed shared memory architecture, the latter being a mixture of
shared and distributed memory architectures. The aforementioned types of memory
architecture are described below in this section, and the next paragraph explains the
basic notions of cache and cache coherence mentioned in the description.

In order to reduce memory access latency and traffic, accessed memory is stored
in multi-level caches. They are smaller in size but are located closer to processors and
can be accessed faster. In multiprocessors, a maintenance of uniformity of shared data
stored in different caches associated and accessed by different cores is called cache

2.2. SHARED AND DISTRIBUTED MEMORY ARCHITECTURES 35

coherence [SHW11], which ensures that data shared and cached by different proces-
sors is read by one processor in correspondence with writes by the other processors.
Cache coherence between caches associated with different processors can be main-
tained manually in SW or automatically in HW through a cache coherence protocol.
Cache coherence protocols can be classified into the two main categories by the type
of its design: directory-based and snooping. Cache coherence and cache coherence
protocols are described in detail in Section 2.3.

2.2.1 Symmetric Shared Memory Architecture

Symmetric shared memory is a type of memory architecture which is addressable by
multiple processors through memory access operations provided by an ISA, and each
processor is connected to a single physical memory by a shared bus [HP06]. Snooping
protocols, described in Section 2.3, dominate on symmetric shared memory architec-
tures because they are able to utilise a shared-memory bus to query the state of the
caches. With respect to the scalability of the many-core systems, it is impractical to
follow a symmetric shared memory architecture design due to bandwidth, delay and
power limitations of a centralised memory bus.

2.2.2 Distributed Shared Memory Architecture

In a distributed shared memory architecture, as the name implies, memory is dis-
tributed across the nodes of a chip and linked by interconnection network, but each
processor has a view of the distributed memory as a whole through the shared memory
abstraction. Thus, all memory nodes are addressable by all processors in the system
by memory access instructions, but the latency of access depends on the disposition
of the memory and accessing processor in the interconnect with regard to interconnect
topology. This phenomenon is called Non-Uniform Memory Access (NUMA), and
programmes executed on distributed shared memory architecture can observe NUMA
latencies. Furthermore, on distributed shared memory many-core architectures the
last level cache can be physically distributed and cache coherence can be maintained
via a distributed directory-based cache coherence protocol, described in Section 2.3.
Programmes executed on such systems can experience not only NUMA but also Non-

Uniform Cache Access (NUCA) latencies. The main concern for NUMA and NUCA

36 CHAPTER 2. FUNDAMENTALS OF BARRIER SYNCHRONISATION

architectures is not only increasing data locality but also reducing congestion on mem-
ory controllers and interconnects [DFF+13] [MG11]. Directory-based cache coher-
ence protocols dominate on NUMA architectures, though some architectures like the
Cray T3D [Ada92] do not provide cache coherence, and so cache coherence needs to
be maintained explicitly in SW.

2.2.3 Distributed Memory Architecture

In a distributed memory architecture memory is fragmented, with the fragments being
privately owned by processing units. Direct addressing of remote memory is not pos-
sible through memory access operations but is performed indirectly through passing
messages to remote processors. Such architectures do not require cache coherence and
are scalable, but require programs to be written following the message passing com-
munication model.

This section presented three types of memory architectures and introduced the no-
tion of cache coherence. The rest of the thesis will focus on cache-coherent shared
memory architectures, and the next section will review cache coherence protocols and
the related notion of memory consistency.

2.3 Cache Coherence Protocols and
Memory Consistency

In the previous section, the notion of cache coherence was introduced. Formally, cache
coherence is the maintenance of the following two coherence invariants [SHW11]:

1. At any point in time when a certain memory location is accessed, either a single
core in a multi-core system can be writing to this memory location or several
cores can be reading from this memory location.

2. The value of a certain memory location read by a core should be equal to the
value of the most recent write to this memory location.

2.3.1 Cache Coherence Protocols

The implementation of cache coherence can be logically described by finite state ma-
chines called coherence controllers [SHW11], associated with a memory location and

2.3. CACHE COHERENCE PROTOCOLS AND MEMORY CONSISTENCY 37

dedicated blocks (also known as lines) in caches. Coherence controllers co-operate
via sending messages to each other. A coherence protocol defines messages and in-
teractions between coherence controllers and changes of their states. Cache coherence
protocols can be classified into the two major categories by the type of its design:

1. Snooping protocol. In this protocol, every coherence controller broadcasts mes-
sages to all other coherence controllers. Thus, every coherence controller in such
a protocol has full awareness of all the other controllers, and it can change its
state with respect to other controllers to preserve cache coherence invariants.

2. Directory-based protocol. In this protocol, one coherence controller also known
as home acts as an arbiter, and all requests are addressed to this home controller.
This home controller maintains a directory giving the name for this class of
protocols. This directory contains information on the states of all the other con-
trollers, so only the home controller has full awareness of all the other controllers
and generated responses to messages received from other controllers.

Both protocols are commonly implemented in a single many-core system to pre-
serve cache coherency at different levels of hierarchy. In this case, a snooping protocol
is usually implemented to preserve cache coherency within groups of caches located
close to each other, while a directory-based protocol is used to preserve cache coher-
ence globally between such groups. Examples of such many-core processors are Intel
Xeon Phi [Int14] and Sparc M7 [Phi14].

The other important feature of cache coherence protocols is a set of logical stable

states at cache controllers [SHW11]. Cache controllers maintain cache coherence by
changing these states for a group of cache lines associated with the same memory
location. One of the widely used sets of cache coherence states is called MESI [PP84],
which is named after the following four states:

• Modified (M): data inside a cache line with this state is different from what is
stored in the memory location, and it is not present in the other caches.

• Exclusive (E): data inside a cache line with this state is the same as in the memory
location, and it is not present in the other caches.

• Shared (S): data inside a cache line with this state is the same as in the memory
location, and it may be present in the other caches.

• Invalid (I): data inside a cache line with this state is not valid.

38 CHAPTER 2. FUNDAMENTALS OF BARRIER SYNCHRONISATION

The Modified state in the MESI protocol enables multiple reads and writes to a memory
location privately used by a single core in a many-core system without the necessity to
write data back to memory on every write operation saving memory bandwidth. Ad-
dition of the 5th Owned (O) state enables sharing of modified data between caches
without writing it back to memory using the MOESI protocol [SS86]. The laten-
cies necessary to change these coherence states incur significant performance penal-
ties [HMN09].

2.3.2 Memory Consistency

Each thread can perform memory access operations during multi-threaded program
execution. The possible behaviour of these memory operations in respect to each other
is defined by a memory consistency model.

The most intuitive consistency model is called Sequential Consistency (SC) model
[Lam79]. This consistency model declares that all memory access operations per-
formed by different threads can be ordered in a single sequence, and in this sequence,
for every read operation the value read from a memory location will be equal to the
value stored by the most recent write to this memory location in the sequence. Al-
though the sequential consistency model is very clear and intuitive for programmers
to write correct multi-threaded programs, its implementation in many-core CPUs can
cause significant delays during memory access operations.

In order to reduce these delays, more relaxed memory consistency models were
proposed. One of such widely used classes of memory consistency models is called
Total Store Order (TSO). The two notable examples of consistency models from this
class are SPARC-TSO and x86-TSO [SSO+10]. TSO has the following relaxation in
comparison with SC model: loads within a thread can be performed before indepen-
dent store operations during execution. This relaxation allows reducing latency of load
operations in CPUs implementing this model as they are not constrained by comple-
tion of independent store operations in case of SC. During multi-threaded execution,
loads-stores reordering allowed by TSO can lead to different valid ways of a program
execution. Listing 2.1 presents two snippets of code executed in parallel by two threads
on different cores. The code snippet on the left is executed by the first thread on the
first core, while the code snippet on the right is executed by the other thread on the
other core. If this code is executed on CPUs implementing TSO memory model, both
threads can print messages that the value of the memory locations a and b are zeros,
although after execution of both sections of code by both threads the values in the

2.4. BARRIER SYNCHRONISATION ALGORITHMS FOR SHARED ... 39

memory locations a and b will be eventually one. When the same code is executed on
a CPU implementing sequential consistency model, the aforementioned behaviour is
prohibited and either one ("a == 0" or "b == 0") or zero messages will be printed.

// initially: a == 0 && b == 0
// two threads are executed in parallel on different cores

// executed by the 1st thread // executed by the 2nd thread
// on the 1st core // on the 2nd core
{ {

a = 1; b = 1;
if (b == 0) { if (a == 0) {
print("b == 0"); print("a == 0");

} }
} }

// if finally both "a == 0" and "b == 0" are printed:
// TSO memory consistency model
// else:
// TSO or SC memory consistency models

Listing 2.1: Example allowing to distinguish
SC and TSO memory consistency models.

Thus, TSO is considered to be a weaker memory model than SC. CPUs with weaker
than SC memory models usually provide explicit instructions called memory barri-

ers or memory fences, which are inserted between two memory access operations for
which memory reordering should be constrained. Alternatively, in some ISAs reorder-
ing constraints can be specified in opcodes of memory access instructions (e.g. IA-64).
There are many other consistency models weaker than TSO, but for the rest of the
thesis, the descriptions of the TSO and sequential memory consistency models are
sufficient.

2.4 Barrier Synchronisation Algorithms for
Shared Memory Architectures

In this section, state-of-the-art barrier synchronisation algorithms are reviewed for
shared memory architectures with TSO memory consistency. Store operations related
to barrier synchronisation will appear as store(<address>, <value>) in all code
listings. The implementation of this function is architecture-dependent, and the de-
fault implementation is a basic store operation available on a given architecture. The

40 CHAPTER 2. FUNDAMENTALS OF BARRIER SYNCHRONISATION

other common function call to appear in the listings is a call to pause() method.
As it will be shown later, barrier synchronisation via shared memory requires periodic
checks of values related to notification of threads to be able to proceed to the next
epoch of computation. In this case, the pause() function can implement control
over when the next notification check is done. The implementation of this function is
architecture-dependent, and the default implementation is an empty method so that the
call to pause() can be completely eliminated in this case. Furthermore, each barrier
implementation relies on shared and thread-private data, passed as arguments to the
barrier <prefix>_wait(...) function. Shared data is accessed through a pointer to
a shared data structure of type <prefix>_Bar_t which contains the appropriate data
fields for each barrier, and thread-private data uses a structure of type tp_t.

2.4.1 Sense-Reversing Centralised Barrier

One of the simplest and least scalable barrier synchronisation algorithms is the sense-

reversing centralised barrier. This algorithm, presented in Listing 2.2, uses two shared
variables, a synchronisation counter bar->count and a flag bar->sense, and one thread-
local variable, tp->sense. The synchronisation counter is initialised with the number
of threads partaking in the barrier, bar->num_threads, the global shared sense is set to
1 and all local flags are set to 0.

void // sense-reversing centralised barrier
sr_wait(sr_Bar_t * bar, // shared data

tp_t * tp) // thread-private data
{
if (!add_and_fetch(& bar->count, -1))
{ // last thread arrives
store(& bar->count, bar->num_threads);
store(& bar->sense, tp->sense);

} else
{ // other threads arive
// threads wait for release notification
while (tp->sense != bar->sense)
pause();

}

// sense is reversed
store(& tp->sense, !tp->sense);

}

Listing 2.2: Sense-reversing centralised barrier.

2.4. BARRIER SYNCHRONISATION ALGORITHMS FOR SHARED ... 41

Upon reaching a barrier, each thread registers its arrival by atomically decrement-
ing the synchronisation counter bar->count, and then waits while the value of the
global flag bar->sense differs from its local flag tp->sense. The last thread to com-
plete the atomic operation, when the counter reaches 0, re-initialises the counter and
reverses the global sense of the barrier. The other threads eventually perceive that the
global sense has changed and they pass the barrier flipping their own flags. This tech-
nique, called sense-reversing, allows the reuse of the same barrier variables for the
next synchronisation round. This is one of the simplest, and least scalable, algorithms.
It relies on an expensive, sequentially consistent, atomic operation and suffers from
contention on accesses to global shared variables.

2.4.2 Combining Tree Barrier

To reduce the contention on shared variables, the combining tree barrier [YTL87] (see
Listing 2.3) organises the participating threads in a tree, using an algorithm similar to
a centralised barrier at each node of the tree: the last thread to decrement the synchro-
nisation counter of a node recursively proceeds to decrement the counter of its parent
node. At each level, threads that do not arrive last all wait on node-level release flags
for notification that the barrier has passed. It is also possible to use a global release
flag, trading a shorter critical path for additional contention on the global release flag.

42 CHAPTER 2. FUNDAMENTALS OF BARRIER SYNCHRONISATION

void // combining tree barrier
ctr_wait(ctr_Bar_t * bar, // shared data

tp_t * tp, // thread-private data
ctr_Node_t * node) // tree node

{
if (!add_and_fetch(& node->count, -1))
{ // last thread arrives
store(& node->count, node->num_threads);

// thread recursively participates at the next level
if (node->parent)
ctr_wait(bar, tp, node->parent);

// thread notifies siblings that the barrier is passed
store(node->sense, tp->sense);

} else
{ // other threads arrive
// threads wait for release notification
while (tp->sense != node->sense)
pause();

// sense is reversed
store(& tp->sense, !tp->sense);

}
}

Listing 2.3: Combining tree barrier.

2.4.3 Static Tournament Barrier

The combining tree barrier, described in Section 2.4.2, is an efficient solution to avoid
contention, yet it still relies on atomically decremented counters. To avoid all atomic
operations, Hensgen et al. proposed the static tournament barrier [HFM88], starting
from the realisation that the atomic operation was, in large part, required to reach a con-
sensus on which thread arrives last, the winner in their terminology, this barrier does
not discriminate between threads based on their arrival order, but relies on a statically
determined thread, defined for each node of the tree, that will automatically progress
to the next round once all other threads, the losers, have arrived. This is illustrated in
Listing 2.4, where each node is initialised with a statically-defined winner. In this way,
it is only necessary to determine whether all threads are accounted for, irrespectively of
their arrival order. Checking for the arrival of threads, however, can be expensive. The

2.4. BARRIER SYNCHRONISATION ALGORITHMS FOR SHARED ... 43

original implementation suggested restricting the arity of the tree to ensure that a sin-
gle load instruction would be sufficient. For example on 32-bit architectures, registra-
tion of a thread arrival register_arrival(<address>, <value>, <thread_id>)

can be implemented with a single 1-byte store instruction writing to a byte in a word
dedicated to the arriving thread, and a check of all threads arrival associated with a
node is_registry_full(<address>, <value>) requires only a 4-byte load of the
dedicated word.

void // static tournament barrier
strn_wait(strn_Bar_t * bar, // shared data

tp_t * tp, // thread-private data
strn_Node_t * node) // tree node

{
if (tp->id == node->winner_id)
{ // winner thread for this node arrives
// thread waits for all threads expected at this node
while (!is_registry_full(& node->arrival_registry, tp->sense))
pause();

// thread recursively partakes at the next tree level
if (node->parent)
strn_wait(bar, tp, node->parent);

// thread sends notification to siblings
store(& node->sense, tp->sense);

} else
{ // loser threads for this node arrive
register_arrival(& node->arrival_registry, tp->sense,

tp->thread_id);

// loser threads wait for release notification
while (tp->sense != node->sense)
pause();

}

// sense is reversed
store(& tp->sense, !tp->sense);

}

Listing 2.4: Static tournament barrier.

The initial version of the algorithm by Hensgen et al. [HFM88] was later improved
by Mellor and Crummey [MCS91] with a tree-based notification phase and sense-
reversing to avoid re-initialising the barrier state; both included in Listing 2.4. As

44 CHAPTER 2. FUNDAMENTALS OF BARRIER SYNCHRONISATION

a generalisation of the static tournament approach, the static f-way tournament was
proposed by Grunwald et al. [GV94] where the number of participants in one round
can be chosen arbitrarily and the initialisation algorithm allows the construction of
more balanced trees.

2.4.4 Dynamic Tournament Barrier

The dynamic f-way tournament barrier [GV94] is an evolution of the static f-way tour-
nament barrier in the sense that the winner of a round is determined dynamically. This
algorithm is presented in Listing 2.5.

void // dynamic tournament barrier
dtrn_wait(dtrn_Bar_t * bar, // shared data

tp_t * tp, // thread-private data
dtrn_Node_t * node) // tree node

{
// all threads register arrival
register_arrival(& node->arrival_registry, tp->sense,

tp->thread_id);

// store-load fence for the TSO memory consistency model
memory_barrier();

if (is_registry_full(& node->arrival_registry, tp->sense))
{ // winner threads for this node arrive
// threads recursively partake at the next tree level
if (node->parent)
dtrn_wait(bar, tp, node->parent);

// threads send notification to siblings
store(& node->sense, tp->sense);

} else
{ // loser threads for this node arrive

// loser threads wait for release notification
while (tp->sense != node->sense)
pause();

}

// sense is reversed
store(& tp->sense, !tp->sense);

}

Listing 2.5: Dynamic tournament barrier.

2.4. BARRIER SYNCHRONISATION ALGORITHMS FOR SHARED ... 45

The winning thread will identify itself as a winner by checking the value of adja-
cent memory locations marked by other threads upon arrival. This solution is more
efficient than a static tournament when a static winner comes early and busy-waits on
a location yet to be set by one or multiple losers. The dynamic tournament approach
comes with two caveats. The first caveat is a possibility to have multiple threads win-
ning at the same node, which would introduce some overhead, but without impacting
the correctness of the synchronisation. The second caveat is that this form of syn-
chronisation requires a memory fence memory_barrier between thread registration
register_arrival(<address>, <value>, <thread_id>) and checking for arrival
status is_registry_full(<address>, <value>) on architectures using the TSO
memory consistency model. Such a fence is necessary to avoid a case where no win-
ner emerges for a node, in the case similar to the one presented in Listing 2.1 when both
threads load the unchanged value. In the case of the sequential memory consistency
model, memory_barrier is not necessary, and it is eliminated.

2.4.5 Dissemination Barrier

A shortcoming shared by all previous algorithms is that they all require two phases: a
Registration Phase where threads reaching the barrier communicate to let others know
that they arrived; and a Notification Phase where once a consensus is reached, the
decision is propagated to all threads. However, these phases can be merged, at the cost
of additional communication, by providing each thread with sufficient information to
locally decide when the barrier can be passed. The first instance of this class of barriers
was the butterfly barrier [Bro86], with the data flow topology similar to that of the Fast

Fourier Transform (FFT). When the number of threads participating in the barrier is
not a power of 2, the dissemination barrier [HFM88] can be a more efficient solution.
This algorithm is presented in Listing 2.6.

In the dissemination barrier, a thread i in round r notifies another thread j =

(i+2r)mod N by writing its local flag, which is sense-reversed, to a dedicated mem-
ory location, where N is the number of threads, i, j ∈ [0,N− 1] and r ∈ [0,blog2 Nc].
Each thread can proceed to the next round as soon as its notification variable is set to
the appropriate value for the current round. In this way, synchronisation is achieved in
dlog2 Ne rounds. The f-way dissemination barrier [HMMR06] is a generalised version,
where each thread can notify f other threads in one round, requiring only dlog f+1 Ne
rounds to complete. For example, a 2-way dissemination barrier can synchronise 9

46 CHAPTER 2. FUNDAMENTALS OF BARRIER SYNCHRONISATION

threads in 2 rounds of communication, while an ordinary (1-way) dissemination bar-
rier will require 4 rounds. If f = N− 1, then it will be a broadcast barrier (all-to-all
communication) requiring N ∗ (N−1) notifications.

void // dissemination barrier
dsmn_wait(dsmn_Bar_t * bar, // shared data

tp_t * tp) // thread-private data
{
int parity = tp->parity;
int sense = tp->sense;

// for each round:
for (int r = 0; r < bar->roundsNum; ++r)
{
// thread notifies its arrival in this round
store(& tp->partnerFlags[parity][r]->data, sense);

// thread waits for release notification in this round
while (tp->myFlags[parity][r]->data != sense)
pause();

}

// sense is reversed if parity is one
if (parity == 1)
store(& tp->sense, !sense);

// parity is reversed
store(& tp->parity, 1 - parity);

}

Listing 2.6: Dissemination barrier.

In respect to data flow topology, the barrier synchronisation algorithms via shared
memory presented in this section are logically shown in Figure 2.2. Reads and writes to
shared memory locations are shown in red (Registration Phase) and green (Notification

Phase), while execution of threads is shown in black.
The operation of the sense-reversing centralised barrier described in Section 2.4.1

can be interpreted using the corresponding diagram in Figure 2.2 as follows. The syn-
chronisation counter bar->count is represented by the red rectangle, and the global
flag bar->sense is depicted by the green rectangle. Upon reaching the barrier, each
thread registers its arrival by atomically decrementing the synchronisation counter
bar->count, and the corresponding memory accesses are shown by the solid red lines.
After decrementing the counter, each thread waits while the value of the global flag

2.4. BARRIER SYNCHRONISATION ALGORITHMS FOR SHARED ... 47

Figure 2.2: Diagrams of barrier synchronisation algorithms via shared memory.

bar->sense differs from its local flag tp->sense, and this busy-waiting is shown by
the vertical dashed black lines. It should be noted that only shared memory locations
are represented by rectangles on these diagrams, thus the local flags and other thread-
private variables are not depicted. The last thread performing the atomic operation is
the rightmost on the diagram, and it re-initialises the counter, and this is depicted by
the solid red line. Then, this thread reverses the global flag of the barrier, and this
is represented by the solid green line. The other threads eventually perceive that the
global flag bar->sense has changed, and this is shown by the dashed green lines. After
reversing the local flags and passing the barrier, all the threads continue execution, and
this is shown by the solid black lines with arrows indicating the direction of execution.
The other barrier synchronisation algorithms can be interpreted using such diagrams
in a similar way.

If latencies of memory access operations are dependent on mutual co-location of
cores on which threads are executed and memory locations used in synchronisation,
such diagrams are useful for reasoning about the mapping of logical variables used in

48 CHAPTER 2. FUNDAMENTALS OF BARRIER SYNCHRONISATION

barrier synchronisation algorithms to physical memory cells on target many-core sys-
tems. On distributed shared memory architectures with NUMA and NUCA latencies,
memory access latencies depend on the aforementioned co-location, so these diagrams
allow to reason how it can affect the total latency of passing a synchronisation barrier.

2.5 Summary

In this chapter, the barrier synchronisation data flow topologies were discussed, and
the state-of-the-art algorithms of barrier synchronisation via shared memory were re-
viewed. It was shown that memory architecture, memory consistency and cache co-
herence protocols are fundamental factors for correctness and efficiency of these al-
gorithms. Specialisation of the discussed state-of-the-art barrier synchronisation algo-
rithms on the Intel Xeon Phi 5110P coprocessor will be presented in the next chapter.

Chapter 3

Effective Barrier Synchronisation on
Intel Xeon Phi Coprocessor

In this chapter, the efficiency of the five barrier synchronisation algorithms described
earlier is evaluated on the Intel Xeon Phi 5110P coprocessor. The practical goal of
this research is to minimise time spent in barrier synchronisation on Intel Xeon Phi
5110P, and the result can be measured quantitatively as a speedup over the reference
implementation of this method of synchronisation on this platform. A novel hybrid
barrier synchronisation algorithm is presented that exploits the topology, the memory
hierarchy and streaming stores of the Xeon Phi architecture to achieve a 3.28× lower
overhead than the Intel OpenMP barrier implementation (ICC 14.0.0), thus outper-
forming all other known implementations for this architecture. Algorithms specialised
for Intel Xeon Phi are evaluated on the CG and MG kernels from the NAS Paral-
lel Benchmarks, the direct N-body simulation kernel and the EPCC barrier OpenMP
microbenchmark. The optimised barriers presented in the chapter are available at
https://github.com/arodchen/cbarriers released as free software. Appendix A
describes how to use the cbarriers framework. Most of the material in this chapter
was presented at the Euro-Par 2015 conference [RNPL15]. The additional material,
not presented in the conference, is related to refined utilisation of non-globally ordered
streaming stores in the hybrid barrier synchronisation algorithm.

3.1 Introduction

The execution time optimisation of software barrier synchronisation has been widely
studied [Bro86, YTL87, HFM88, MCS91, GV94, HMMR06], yet no algorithm has

49

https://github.com/arodchen/cbarriers

50 CHAPTER 3. EFFECTIVE BARRIER SYNCHRONISATION ON INTEL ...

proven to be optimal across the wide variety of parallel architectures. Indeed, each
algorithm comes with its own set of trade-offs with respect to data flow topology,
lengths of the critical paths, and memory consumption. For any given architecture,
the optimal algorithm is largely dependent on factors such as the system’s topology,
the structure of the memory hierarchy, and the characteristics of the cache coherence
protocol.

The focus of this chapter is to analyse the performance of barrier synchronisation
algorithms on the Intel Xeon Phi 5110P coprocessor and to specialise these algorithms
for this coprocessor utilising its advanced features. Based on the Intel Many Integrated

Core (MIC) architecture, that provides a commodity off-the-shelf many-core system,
the Xeon Phi coprocessors of the Knights Corner product line have up to 61 cores, each
4-way multi-threaded, for running a maximum of 244 logical threads. At this scale,
the efficiency of barrier synchronisation is crucial for performance in synchronisation-
intensive workloads.

The first contribution presented in this chapter is a thorough evaluation of the
behaviour of current state-of-the-art barrier algorithms, and an analysis of their trade-
offs for the memory hierarchy of Xeon Phi. It is shown that while the best algorithm
depends on runtime conditions, a single statically chosen algorithm is only marginally
outperformed in a small number of cases. The second contribution is a novel and
more efficient hybrid barrier synchronisation algorithm, mixing different (existing)
barrier algorithms at different levels of granularity of synchronisation, and optimised
with streaming store instructions to write full cache lines, that eliminate a costly read-

for-ownership cache coherency operation, which combines a read of the cache line and
its invalidation in other caches where it is shared. It is shown that the hybrid approach
outperforms in execution time all previous algorithms on the Intel Xeon Phi 5110P
coprocessor.

Section 3.2 presents key features of Xeon Phi. Specialisation of the state-of-the-art
barrier synchronisation algorithms for the Xeon Phi coprocessor and the new hybrid
synchronisation scheme are presented in Section 3.3. Section 3.4 presents the exper-
imental findings. Finally, Section 3.5 discusses previous work on Xeon Phi barrier
synchronisation optimisation and Section 3.6 summarises this chapter. The optimised
barriers presented in this chapter are available at https://github.com/arodchen/
cbarriers released under the Apache v2.0 free software license. This open-source
multi-target parameterised framework for evaluating different barrier synchronisation
algorithms is the third contribution.

https://github.com/arodchen/cbarriers
https://github.com/arodchen/cbarriers

3.2. INTEL XEON PHI 5110P COPROCESSOR 51

3.2 Intel Xeon Phi 5110P Coprocessor

Specialisation of the barrier synchronisation algorithms described in the previous chap-
ter was done for the 60-Core Intel Xeon Phi 5110P coprocessor with a maximum clock
frequency of 1.053GHz. As of 2014, when most of the work presented in this chapter
was done, this coprocessor belonged to the latest generation of the MIC architecture
family, and it was one of the most advanced general-purpose many-core processors
available on the market. Xeon Phi 5110P cores are in-order, and they are connected
using a bidirectional ring interconnect, as shown in Figure 3.1. Each core is 4-way
multi-threaded and has 32 KB of instruction and 32 KB of data caches, as well as 512
KB of the dedicated L2 cache (inclusive of L1 cache). The coherence of the L2 cache
lines on different cores is controlled by the distributed tag directories implementing the
GOLS cache coherence protocol [Int14]. The coherence of L1 and L2 caches within
the core is maintained by a modified MESI cache coherence protocol. However, the
GOLS protocol makes it possible to emulate the Owner state, enabling a MOESI-like
functionality. The Owner state indicates that the cache line is both shared and mod-
ified. 8GB of GDDR5 RAM is accessed through 8 dual channel memory controllers
connected through a ring interconnect interface, as shown in Figure 3.1.

The 512-bit Single-Instruction Multiple-Data (SIMD) instructions were used to
optimise barrier synchronisation in the SIMD barrier [CDM13]. SIMD stores, also
known as streaming stores, use a vector size matching that of a cache line. As a result,
such store instructions do not need to issue a read-for-ownership request in the cache
coherence protocol. Store instructions with the no-read hint can be either globally

ordered, providing the x86-TSO consistency, or non-globally ordered, leading to a

Core

L2 cache

G
D

D
R

 5

G
D

D
R

 5

Core

L2 cache

Tag directory

Tag directory

Tag directory

Tag directory

Core

L2 cache

Core

L2 cache

Figure 3.1: Architecture of the Intel Xeon Phi 5110P coprocessor.

52 CHAPTER 3. EFFECTIVE BARRIER SYNCHRONISATION ON INTEL ...

weaker memory consistency. Thus, the Intel Xeon Phi ISA has the two following
types of streaming stores [Int12]:

• vmovnrap[d/s] - vector store instructions with the no-read hint, globally or-
dered (total store order type consistency).

• vmovnrngoap[d/s] - vector store instructions with the no-read hint, but without
enforcing a global ordering leading to weaker memory consistency, so that stores
executed later in the same threads can be observed before them. A memory fence
operation lock addl $0x0,(%rsp) should be used to prevent re-ordering of
store operations in the cases when x86-TSO consistency is required.

The execution of HW threads can be paused, using the delay r32/r64 instruc-
tion [Int12], which forces the processor to halt the fetch and issue of further instructions
for a parametric number of cycles. This instruction can be used in barrier synchronisa-
tion algorithms during busy-waiting.

3.3 Barrier Synchronisation Specialisation for
Intel Xeon Phi

3.3.1 Busy-Waiting Amortisation

Busy-waiting on the same memory location in the barrier synchronisation algorithms
presented in the previous chapter can have a negative impact on performance because
of the increased memory traffic, leaving less bandwidth to other threads. This effect
was previously noted [AC89]. The appropriate delay in the specialised pause()

method was determined empirically (see Sect. 3.4) to amortise the impact of busy-
waiting while balancing the additional latency this introduces for a thread to perceive a
store operation. On the Intel Xeon Phi 5110P coprocessor, the delay can be introduced
with the _mm_delay_32(<number_of_cycles>) intrinsic, as shown in Listing 3.1,
the parameter DELAY_IN_CYCLES specifies the number of idle cycles.

3.3. BARRIER SYNCHRONISATION SPECIALISATION FOR INTEL ... 53

#define DELAY_IN_CYCLES (...)

inline static void
pause()
{
_mm_delay_32(DELAY_IN_CYCLES);

}

Listing 3.1: Busy-waiting delay.

3.3.2 Streaming Stores

Streaming stores can reduce barrier overhead [KKC+13] when storing notification val-
ues to flags in the Notification Phase or reinitialising counters in the combining tree
or sense-reversing centralised barrier. Listing 3.2 details the implementation of the
store(<address>, <value>) function specialised for the Intel Xeon Phi 5110P co-
processor.

static inline void
store(volatile void *addr, int data)
{
_mm512i siVec = _mm512_set1_epi32(data);

#ifdef ARCH_STORE_NR
// globally ordered streaming store
_mm512_storenr_ps(addr, _mm512_castsi512_ps(siVec));

#endif

#if defined(ARCH_STORE_NR_NGO) || defined(ARCH_STORE_NR_NGO_REFINED)
// non-globally ordered streaming store
_mm512_storenrngo_ps(addr, _mm512_castsi512_ps(siVec));

ifdef ARCH_STORE_NR_NGO
// memory fence
asm volatile("lock; addl $0,(%rsp)\n");

endif
#endif
}

Listing 3.2: Utilisation of streaming stores.

To satisfy the x86-TSO consistency requirements of the algorithms presented in
the previous chapter, the globally ordered version of the streaming stores should be
used (when ARCH_STORE_NR is defined). The second option to satisfy the x86-TSO

54 CHAPTER 3. EFFECTIVE BARRIER SYNCHRONISATION ON INTEL ...

consistency requirements of the described algorithms is to use the non-globally or-
dered version of the streaming stores followed by the memory fence operation (when
ARCH_STORE_NR_NGO is defined). The last option is to use non-globally ordered stream-
ing stores, but in comparison with the previous case, not directly followed by the mem-
ory fence operations (when ARCH_STORE_NR_NGO_REFINED is defined). In this case, the
presented algorithms should be modified via insertion of memory fences. Such a re-
finement will be described for the hybrid barrier synchronisation algorithm presented
below.

3.3.3 Hybrid Barrier Synchronisation

The design of the hybrid barrier originated from the observation that, on systems with
a hierarchical topology, different algorithms can be optimal for different levels in the
hierarchy. As always, the objective is to minimise inter-core communication while
exploiting the low cost of intra-core communication. During the preliminary evalua-
tion, it was observed that the most efficient algorithms were the dissemination barrier
and the combining tree with arity 4. Figure 3.2b shows the data flow topology of a
dissemination barrier. Evidently, each round contains at least one inter-core communi-
cation edge, which will be slower and will consequently determine the critical path for
each round. Therefore, it is proposed to rely on the centralised sense-reversing barrier
(equivalent to the combining tree with arity 4) for the intra-core phase, then revert to
dissemination once a single thread remains per core. A similar approach was discussed
by Cownie [Cow13]. Figure 3.2a and Listing 3.3 show the scheme and pseudocode of
the hybrid algorithm.

When ARCH_STORE_NR_NGO_REFINED is defined and non-globally ordered stores are
used, two memory fences are needed. The first memory fence is used to make the
reinitialised counter visible to other threads before Notification Phase of the sense-
reversing centralised barrier. The second memory fence is used to prevent stores in the
next epoch of computation from being visible before the stores related to the synchroni-
sation barrier, as described by Caballero [Cab] in Listing 6.8 and by Cownie [Cow13].

In respect to data flow topology, the hybrid barrier synchronisation algorithm pre-
sented in this section is schematically presented in Figure 3.3.

3.3. BARRIER SYNCHRONISATION SPECIALISATION FOR INTEL ... 55

(a) Scheme of hybrid dissemination barrier

Core N
Threads

0 1 2 3

Core N+1
Threads

0 1 2 3

Communication
Rounds

Round 0

Round 1

Round 2

(b) Data flow topology of dissemination barrier

Figure 3.2: Hybrid dissemination barrier rationale.

56 CHAPTER 3. EFFECTIVE BARRIER SYNCHRONISATION ON INTEL ...

void // hybrid barrier
hb_wait(hb_Bar_t * bar, // shared data

tp_t * tp) // thread-private data
{
sr_Bar_t * srB = bar->srB[tp->srBId];
int srBC = fetch_and_add(& (srB->count), -1);
int tpsrBS = tp->srBSense;

if (srBC == 1)
{ // last thread inside the core to arrive
// call to dissemination barrier
dsmn_wait(bar->dsmnB, tp);
store(& (srB->count), srB->threadsNum);

#ifdef ARCH_STORE_NR_NGO_REFINED
asm volatile("lock; addl $0,(%rsp)\n");

#endif
store(& (srB->sense), tpsrBS);

} else
{ // non-last thread to arrive
while (tpsrBS != srB->sense)
pause();

}
store(& (tp->srBSense), ! tpsrBS);

#ifdef ARCH_STORE_NR_NGO_REFINED
asm volatile("lock; addl $0,(%rsp)\n");

#endif
}

Listing 3.3: Hybrid barrier wait method.

Figure 3.3: Diagram of the hybrid barrier synchronisation algorithm via shared
memory.

3.4. EXPERIMENTAL METHODOLOGY AND RESULTS 57

3.4 Experimental Methodology and Results

3.4.1 Benchmarks

EPCC OpenMP Microbenchmarks

A part of the Edinburgh Parallel Computing Centre (EPCC) OpenMP microbench-
mark [Bul99] was implemented which allows evaluating the overhead of the standalone
barrier primitive, which will be referred to as EPCC. This benchmark was selected in
order to achieve the highest possible frequency of barrier synchronisation.

NAS Parallel Benchmarks

The Conjugate Gradient (CG) and MultiGrid (MG) kernels were chosen from the C
versions [SJL11] of the National Aeronautics and Space Administration (NASA) Ad-

vanced Supercomputing (NAS) Parallel Benchmarks (NASPB) [NAS] in order to eval-
uate the efficiency of barrier synchronisation. They represent widely-used algorithms
for finding numerical solutions of mathematical problems and were used to evaluate
the efficiency of barrier synchronisation in other works [CDM13, SK10, SPSS08]. As
the original inputs for these benchmarks lead to a low frequency of barrier synchro-
nisation, even using the smallest class S, which makes it difficult to observe barrier
overhead, the input class Y for these 2 NASPB kernels was introduced. The frequen-
cies of barrier synchronisation in both classes S and Y are presented in Table 3.1. Class
Y consists of inputs { na=240; nonzer=2; niter=300; shiftY=5.0 } for CG and { prob-
lem_size=16; nit=800 } for MG. collapse(2) clauses were also added to the relevant
OpenMP parallel loops in the MG kernel, as suggested in [CDM13], to increase the
amount of parallelism. The collapse(<loop_nest_depth>) clause is used to spec-
ify that a loop nest is not only parallel on the first loop construct annotated but also at
a deeper level (parameter of the clause), which allows collapsing multiple loops into a
single loop that is subsequently parallelised.

NAS Parallel Benchmark Kernel CG MG
Input Class S Y S Y
Frequency, 103 barriers per second 6.4 21.6 8.7 12.4

Table 3.1: Barrier frequency in NASPB for inputs Y and S.

58 CHAPTER 3. EFFECTIVE BARRIER SYNCHRONISATION ON INTEL ...

Direct N-body Simulation

A direct N-body simulation kernel was implemented to evaluate the efficiency of bar-
rier synchronisation in the task where synchronisation cannot be relaxed. It was shown
that using more relaxed synchronisation constructs, like phasers, is more efficient than
using barriers for the CG and MG kernels [SPSS08]. In the implemented direct N-body
simulation kernel, each thread calculates the coordinates and velocities of a single par-
ticle, so that the frequency of barriers will be the highest. Coordinates and velocities of
a single particle are stored within a memory location which fit into a single cache line.
Thus, in the implemented kernel, more parallelism cannot be extracted using other
types of inter-thread synchronisation, as computation in each thread consumes data
computed by all the other threads in the previous phase. This kernel will be referenced
as NBODY in the rest of this chapter.

To test the specialised barrier implementations without interfering with the rest of
the OpenMP implementation, each call to the __kmpc_barrier() function, which
is the internal barrier function in the Intel OpenMP library, was replaced with a tram-
poline, barrier_trampoline_(), that calls the function implementing the desired
barrier algorithm. The replacement is done at compile time, so it does not introduce
extra overhead.

The correctness of the implemented barrier synchronisation algorithms was vali-
dated on the CG and MG kernels which contain the checkers which verify the obtained
results. The SANITY kernel was implemented together with the checker of the obtained
results to expand the validation test base. In this kernel, various patterns of inter-thread
dependencies are exercised providing empirical evidence of the correctness of the im-
plemented algorithms.

3.4.2 Naming Convention and Methodology

For the remainder of this chapter, the geometric mean overhead of a barrier (or execu-
tion time per barrier) is measured in the experiments on EPCC as the geometric mean
of its overhead across the different thread counts; so Ogeomean =

N
√

∏
N
i=1 Oni , where N

is the number of different thread counts, ni is the number of threads in element i in
the vector of different thread counts, and On is the barrier overhead for n participat-
ing threads. For CG, MG, and NBODY, execution time of a kernel is used instead of the
overhead of a single barrier. On charts representing the geometric mean overhead (exe-
cution time), horizontal lines show the best (lower green line) and the worst (higher red

3.4. EXPERIMENTAL METHODOLOGY AND RESULTS 59

line) geometric mean overhead respectively, calculated as geometric mean of the best
and the worst barrier overheads for each number of threads amongst all algorithms.

The best geometric mean overhead represents the practical lower bound of syn-

chronisation overhead, which could be achieved given an oracle that predicts the best
possible algorithm for a given number of threads. The performance of this ideal meta-
algorithm shows the loss of performance resulting from using a single algorithm com-
pared to the ideal performance that could (theoretically) be achieved by selecting al-
gorithms dynamically with an oracle.

Individual barrier algorithms on the charts can be identified by their signatures. A
signature uniquely identifies an algorithm by two 3-5 letter abbreviations and a number.

The first abbreviation corresponds to the algorithm and its variations:

• sr - centralised sense-reversing barrier;

• dsmn - dissemination barrier;

• dsmnH - hybrid dissemination barrier described in Section 3.3.3;

• ct - combining tree barrier;

• stn - static tournament barrier;

• dtn - dynamic tournament barrier;

• ls - tree-based notification with local flags;

• gs - broadcast notification using a single global flag;

• omp - Intel OpenMP barrier.

The second part of the signature defines the implementation of the pause()

method:

• pause - the waiting loops contained the 64-cycle delay (which will be discussed
below);

• spin - the waiting loops contained no delay

This part is meaningless for the Intel OpenMP barrier.
The last part is a number corresponding to the arity of the tree for tree algorithms,

the number of ways for a n-way dissemination barrier and meaningless for the cen-
tralised sense-reversing barrier and Intel OpenMP barrier.

60 CHAPTER 3. EFFECTIVE BARRIER SYNCHRONISATION ON INTEL ...

The globally ordered version of the streaming stores was used (when ARCH_STORE_NR

is defined) to identify the best performing barrier synchronisation algorithm on the se-
lected benchmarks. The utilisation of non-globally ordered streaming stores was eval-
uated for the best performing algorithm (when ARCH_STORE_NR or ARCH_STORE_NR_NGO
is defined).

All of the experiments rely on a balanced strategy for thread mapping, mapping
threads to cores with the least load first. This type of thread affinity is enabled in
Intel OpenMP by setting the environment variable KMP_AFFINITY to balanced. The
KMP_LIBRARY and KMP_BLOCKTIME variables were set to turnaround and infinite

respectively to prevent busy-waiting threads from relinquishing the CPU in favour of
other scheduled runnable threads. The number of threads was controlled by setting the
OMP_NUM_THREADS variable.

Each data point was obtained from 10 measurements and represented by a box plot.
Unless otherwise indicated in a figure, the number of threads varies from 8 to 232 in
increments of 8. The arities tested were: 2, 3, 4, 8, 16 and 32 for the combining tree
barrier; 2, 3, 4 and 5 for the static tournament barrier; and 2, 3 and 4 for the dynamic
tournament barrier.

When using Intel Xeon Phi at the highest available frequency of 1.04 GHz, the
power management system (described in [Int14] Section 3) can change the voltage and
frequency dynamically. This dynamic voltage-frequency scaling introduces consider-
able variability in measurements. In order to avoid this variability, the experiments
were performed at 0.84 GHz. The direct way to set the frequency to this value via the
Intel Xeon Phi software stack utilities was not found1. Changing the frequency to 0.84
GHz in an indirect way required performing the following steps:

1. Switching off all the power management configuration parameters:
sudo micctrl --pm=set --cpufreq=off --corec6=off --pc3=off --pc6=off

sudo micctrl --reboot

2. Running a computationally-intensive workload which can lead to heating of the
coprocessor to the level at which the power management system reduces the
frequency to 0.84 GHz: micprun -k dgemm -d 0 -p "--i_num_rep 1000"

When the drop of frequency to 0.84 GHz happens, the workload should be killed.
After this point, the frequency stays at 0.84 GHz.

1The author of the thesis asked this question at https://software.intel.com/en-us/forums/intel-many-
integrated-core/topic/495831 but did not get a concrete answer.

3.4. EXPERIMENTAL METHODOLOGY AND RESULTS 61

MPSS Version 3.1.1
Flash Version 2.1.02.0390
SMC Firmware Version 1.16.5078
SMC Boot Loader Version 1.8.4326
uOS Version 2.6.38.8+mpss3.1.1

Table 3.2: Intel Xeon Phi software stack components versions.

The versions of components of the Intel Xeon Phi software stack used in the exper-
iments are presented in Table 3.2.

3.4.3 Experimental Data and Discussion

Figure 3.4 shows the results for geometric mean overhead of barrier synchronisation
algorithms on EPCC, and Figure 3.5 shows the results of the ideal meta-algorithm on
EPCC.

Global Sense vs Local Sense

The overhead of tree barriers with global notification flag gs is much higher than that
of barriers with a combining tree Notification Phase ls as can be seen on Figure 3.4,
where the fastest gs variant is close to 2× slower than the slowest ls variant.

It can be observed that a combining tree with a global flag in Notification Phase

has higher geometric mean overhead than a centralised sense-reversing barrier, and the
higher the tree arity, the less the overhead. This indicates that another hybrid algorithm
can be investigated: a single global counter for the Registration Phase, like in the
centralised sense-reversing barrier, and a tree-based Notification Phase.

Delayed Busy-Waiting

As it can be seen from Figure 3.4, where the geometric mean overhead for different
algorithms follows an increasing order, the same algorithm with delayed busy-waiting
pause outperforms the undelayed spinning variants spin in the majority of cases. Due
to this fact, undelayed busy-waiting was not considered in the further experiments.

Sizing the Delay for Spinning

To determine a suitable value (number of sleep cycles) to pass as a parameter to the
delay instruction conveniently provided on Xeon Phi, delay values in the range from 0

62 CHAPTER 3. EFFECTIVE BARRIER SYNCHRONISATION ON INTEL ...

Overhead, μs / barrier
0 20 40

dsmnH__pause__1
dsmnH__spin__1

ctrls__spin__4
ctrls__pause__4

dsmn__pause__1
dsmn__spin__1

ctrls__pause__8
ctrls__pause__3

ctrls__spin__8
ctrls__spin__3

stnls__pause__4
stnls__spin__4

ctrls__pause__2
stnls__pause__5

stnls__spin__5
ctrls__spin__2

stnls__pause__3
dtnls__spin__4

dtnls__pause__4
stnls__spin__3

ctrls__pause__16
ctrls__spin__16

dtnls__pause__3
dtnls__spin__3

stnls__pause__2
stnls__spin__2

dtnls__pause__2
dtnls__spin__2

ctrls__pause__32
ctrls__spin__32

sr__pause__1
omp__pause__1

omp__spin__1
sr__spin__1

ctrgs__pause__32
ctrgs__spin__32
ctrgs__spin__16

ctrgs__pause__16
ctrgs__spin__8

ctrgs__pause__8
ctrgs__pause__4

stngs__spin__5
stngs__pause__5

ctrgs__spin__4
dtngs__pause__4
stngs__pause__4

stngs__spin__4
dtngs__spin__4

ctrgs__pause__3
stngs__pause__3
dtngs__pause__3

ctrgs__spin__3
stngs__spin__3
dtngs__spin__3

ctrgs__pause__2
stngs__pause__2
dtngs__pause__2

ctrgs__spin__2
stngs__spin__2
dtngs__spin__2

10 30 50

Figure 3.4: Geometric mean overhead of barrier synchronisation algorithms on EPCC
(the green and red lines represent the selection of the best and the worst performing

algorithm for a given number of threads respectively).

3.4. EXPERIMENTAL METHODOLOGY AND RESULTS 63

to 128 cycles with step 8 were evaluated on EPCC. Above 128 cycles, the performance
starts to degrade as the delay introduces too much latency for waiting threads. The
best performance was obtained with a 64 cycle delay that was used in all subsequent
experiments. In future studies, this parameter can be investigated further as it is likely
to depend on runtime conditions, such as the level of contention on the interconnect.

Hybrid Barrier

Figures 3.4 and 3.5 show that the hybrid dissemination barrier is the closest to the
ideal meta-algorithm on synthetic benchmarks. Indeed, as confirmed by the results
presented in Figure 3.6, the few instances where the hybrid barrier is not the most
efficient in Figure 3.5 only correspond to minor timing variability up to 60 threads,
up to which point the algorithms have similar overhead. Above 72 threads, the hybrid
barrier overhead is considerably lower than that of the dissemination barrier.

0

2

4

6

O
ve

rh
ea

d,
 μ

s
/ b

ar
ri

er

Number of threads

ct
rls

__
pa

us
e_

_3
2

ds
m

n_
_p

au
se

__
1

ct
rls

__
pa

us
e_

_8
ds

m
nH

__
sp

in
__

1
ds

m
n_

_p
au

se
__

1
ds

m
n_

_p
au

se
__

1
ds

m
n_

_p
au

se
__

1
ds

m
n_

_p
au

se
__

1
ds

m
nH

__
pa

us
e_

_1
ds

m
nH

__
pa

us
e_

_1
ds

m
nH

__
pa

us
e_

_1
ds

m
nH

__
pa

us
e_

_1
ds

m
nH

__
sp

in
__

1
ds

m
nH

__
sp

in
__

1
ds

m
nH

__
sp

in
__

1
ds

m
nH

__
pa

us
e_

_1
ds

m
nH

__
sp

in
__

1
ds

m
nH

__
sp

in
__

1
ds

m
nH

__
sp

in
__

1
ds

m
nH

__
pa

us
e_

_1
ds

m
nH

__
sp

in
__

1
ds

m
nH

__
pa

us
e_

_1
ds

m
nH

__
pa

us
e_

_1
ds

m
nH

__
pa

us
e_

_1
ds

m
nH

__
pa

us
e_

_1
ds

m
nH

__
pa

us
e_

_1
ds

m
nH

__
pa

us
e_

_1
ds

m
nH

__
pa

us
e_

_1
ds

m
nH

__
sp

in
__

1

8 40 72 104 136 232200168

Figure 3.5: Overhead of the ideal barrier synchronisation meta-algorithm on EPCC.

64 CHAPTER 3. EFFECTIVE BARRIER SYNCHRONISATION ON INTEL ...

Figure 3.6: Dissemination barrier (black boxplots) compared to hybrid dissemination
barrier (red triangles).

Real-world Kernels

The most efficient barrier algorithms selected above were evaluated on the CG and MG

kernels of the NAS Parallel Benchmarks and direct N-body simulation kernel. The
results are presented in Figures 3.7, 3.8 and 3.9, respectively. Hybrid dissemination
barrier is superior over the other algorithms on CG and NBODY, while combining tree
barrier with arities grater than 2 is slightly better than dissemination barrier on MG. The
superiority of the combining tree barrier on MG may indicate high dispersion of thread
arrival times at the barriers in this benchmark. Indeed, if at least one of the threads
arrives at the barrier when all the other threads have already finished the Registration

Phase, then the best performing barrier synchronisation algorithm will be determined
by the time spent in the Notification Phase. For the dissemination barrier, the Notifica-

tion Phase, in this case, is equivalent to the Notification Phase of the combining tree
barrier with arity 2. Barriers with higher arities of the Notification Phase trees may
perform better due to a shorter critical path for the cases with high dispersion of thread
arrival times.

3.4. EXPERIMENTAL METHODOLOGY AND RESULTS 65

E
xe

cu
ti

on
 ti

m
e,

 s

0.0

0.4
ds

m
nH

__
pa

us
e_

_1
dt

nl
s_

_p
au

se
__

4
dt

nl
s_

_p
au

se
__

3
ct

rls
__

pa
us

e_
_8

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_4
ct

rls
__

pa
us

e_
_3

2
ct

rls
__

pa
us

e_
_3

ds
m

n_
_p

au
se

__
1

st
nl

s_
_p

au
se

__
5

st
nl

s_
_p

au
se

__
4

dt
nl

s_
_p

au
se

__
2

ct
rls

__
pa

us
e_

_2
st

nl
s_

_p
au

se
__

3
st

nl
s_

_p
au

se
__

2
sr

__
pa

us
e_

_1
om

p_
_p

au
se

__
1

0.8

(a) Geometric mean on CG input class Y
(the green and red lines represent the selection of the best and the worst performing

algorithm for a given number of threads respectively)

Number of threads

dt
nl

s_
_p

au
se

__
3

ds
m

nH
__

pa
us

e_
_1

dt
nl

s_
_p

au
se

__
3

ds
m

nH
__

pa
us

e_
_1

dt
nl

s_
_p

au
se

__
4

dt
nl

s_
_p

au
se

__
4

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_3
2

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_3
2

ct
rls

__
pa

us
e_

_1
6

ds
m

nH
__

pa
us

e_
_1

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_8
ct

rls
__

pa
us

e_
_8

ct
rls

__
pa

us
e_

_3
2

0.0

E
xe

cu
ti

on
 ti

m
e,

 s 1.0

0.5

8 40 72 104 136 232200168

(b) Meta-algorithm on CG input class Y

Figure 3.7: Comparison of barrier synchronisation algorithms on
the CG kernel of the NAS Parallel Benchmark.

66 CHAPTER 3. EFFECTIVE BARRIER SYNCHRONISATION ON INTEL ...
E

xe
cu

ti
on

 ti
m

e,
 s

0.0

0.4

ct
rl

s_
_p

au
se

__
16

ct
rl

s_
_p

au
se

__
8

ct
rl

s_
_p

au
se

__
4

ct
rl

s_
_p

au
se

__
32

ct
rl

s_
_p

au
se

__
3

ds
m

n_
_p

au
se

__
1

ds
m

nH
__

pa
us

e_
_1

st
nl

s_
_p

au
se

__
5

st
nl

s_
_p

au
se

__
4

ct
rl

s_
_p

au
se

__
2

dt
nl

s_
_p

au
se

__
4

st
nl

s_
_p

au
se

__
3

dt
nl

s_
_p

au
se

__
3

st
nl

s_
_p

au
se

__
2

dt
nl

s_
_p

au
se

__
2

sr
__

pa
us

e_
_1

om
p_

_p
au

se
__

1

0.8

1.2

(a) Geometric mean on MG input class Y
(the green and red lines represent the selection of the best and the worst performing

algorithm for a given number of threads respectively)

Number of threads

0.0

E
xe

cu
ti

on
 ti

m
e,

 s

0.5

ct
rls

__
pa

us
e_

_3
2

ct
rls

__
pa

us
e_

_4
ct

rls
__

pa
us

e_
_8

ct
rls

__
pa

us
e_

_8
ct

rls
__

pa
us

e_
_8

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_8
ct

rls
__

pa
us

e_
_8

ct
rls

__
pa

us
e_

_8
ct

rls
__

pa
us

e_
_8

ct
rls

__
pa

us
e_

_8
ct

rls
__

pa
us

e_
_1

6
ct

rls
__

pa
us

e_
_1

6
ct

rls
__

pa
us

e_
_1

6
ct

rls
__

pa
us

e_
_8

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_8
ds

m
n_

_p
au

se
__

1
ct

rls
__

pa
us

e_
_1

6
ct

rls
__

pa
us

e_
_3

2
ct

rls
__

pa
us

e_
_8

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_8
ct

rls
__

pa
us

e_
_1

6

1.0

8 40 72 104 136 232200168

(b) Meta-algorithm on MG input class Y

Figure 3.8: Comparison of barrier synchronisation algorithms on
the MG kernel of the NAS Parallel Benchmarks.

3.4. EXPERIMENTAL METHODOLOGY AND RESULTS 67

E
xe

cu
ti

on
 ti

m
e,

 s

0.0

0.5

ds
m

nH
__

pa
us

e_
_1

dt
nl

s_
_p

au
se

__
4

dt
nl

s_
_p

au
se

__
3

ct
rls

__
pa

us
e_

_8

ct
rls

__
pa

us
e_

_1
6

ct
rls

__
pa

us
e_

_4

ct
rls

__
pa

us
e_

_3
2

ct
rls

__
pa

us
e_

_3

ds
m

n_
_p

au
se

__
1

st
nl

s_
_p

au
se

__
5

st
nl

s_
_p

au
se

__
4

dt
nl

s_
_p

au
se

__
2

ct
rls

__
pa

us
e_

_2

st
nl

s_
_p

au
se

__
3

st
nl

s_
_p

au
se

__
2

sr
__

pa
us

e_
_1

om
p_

_p
au

se
__

1

1.0

(a) Geometric mean on NBODY
(the green and red lines represent the selection of the best and the worst performing

algorithm for a given number of threads respectively)

Number of threads

0.00

1.00

E
xe

cu
ti

on
 ti

m
e,

 s

0.75

0.25

0.50

8 40 72 104 136 232200168

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ct
rl

s_
pa

us
e_

32
ds

m
nH

__
pa

us
e_

_1
st

nl
s_

pa
us

e_
5

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ds
m

nH
__

pa
us

e_
_1

ct
rl

s_
pa

us
e_

16

dt
nl

s_
pa

us
e_

3

(b) Meta-algorithm on NBODY

Figure 3.9: Comparison of barrier synchronisation algorithms on
the direct N-body simulation kernel.

68 CHAPTER 3. EFFECTIVE BARRIER SYNCHRONISATION ON INTEL ...

Utilisation of Streaming Stores in Hybrid Barrier

Utilisation of globally ordered streaming stores (when ARCH_STORE_NR is defined) leads
to 5% less overhead compared to ordinary stores for top performing barrier implemen-
tations on EPCC. However, utilisation of non-globally ordered streaming stores results
in additional improvements.

A non-globally ordered streaming store is unordered in respect to other stores,
meaning that other store instructions issued subsequently by the same thread can over-
take it and become visible to other threads earlier. This relaxation of the memory order-
ing constraints makes it tempting to rely on this instruction for implementing barriers,
as suggested by Cownie [Cow13] and shown by Caballero et al. [Cab] in Listing 6.8.

Indeed, 9.5% less overhead in geometric mean for the refined hybrid barrier algo-
rithm implementation was observed on EPCC when using non-globally ordered stream-
ing stores (when ARCH_STORE_NR_NGO_REFINED is defined) over hybrid barrier algorithm
utilising globally ordered streaming stores (when ARCH_STORE_NR is defined) as shown
in Figure 3.10. Utilisation of non-globally ordered streaming stores followed by mem-
ory fence operations (when ARCH_STORE_NR_NGO is defined) resulted in higher hybrid
barrier synchronisation overhead over utilisation of globally ordered streaming stores.

Figure 3.10: Hybrid dissemination barrier utilising globally ordered streaming stores
(when ARCH_STORE_NR is defined) (black boxplots) compared to hybrid dissemination

barrier refined to utilise non-globally ordered streaming stores (when
ARCH_STORE_NR_NGO_REFINED is defined) (red triangles).

3.4. EXPERIMENTAL METHODOLOGY AND RESULTS 69

Effects of the Ring Interconnect

As discussed by Dolbeau [Dol14], the address of the shared memory location used
for communicating among threads has a significant effect on latency, and therefore on
barrier overhead. The same behaviour, induced by the ring interconnect and the dis-
tributed tag directories, was observed on the centralised sense-reversing barrier. Fig-
ures 3.11a, 3.11b, and 3.11c show three sets of performance results obtained on EPCC

for 1 to 60 threads and the estimated positions of the tag directories (in green) re-
sponsible for the provision of cache coherence for the memory locations of the shared
counters. Within each experiment, the data for a given number of threads was ob-
tained in a single execution, containing multiple iterations where the same memory
locations are re-used to store the shared synchronisation variables. The only difference
between the three experiments is the physical memory addresses allocated and used
for the synchronisation variables. It is apparent that the variability of performance re-
sults is negligible within a given set, but it is significant in-between sets. The graph
in Figure 3.11d shows the joint results from the three experiments presented in Fig-
ures 3.11a, 3.11b, and 3.11c.

This variability is explained by the ring topology and the distributed tag directo-
ries. Indeed, in this configuration, each cache line is attributed a tag directory which
is queried whenever a core misses in both L1 and L2 for that specific line, requir-
ing a round-trip from the core to the related tag directory. This means that the delay
of communications between threads during a barrier is dependent on the distances
between threads and the tag directories that are responsible for the cache lines used
in the synchronisation. As threads are mapped to cores in a circular order along
the ring interconnect, the barrier overhead will follow an S-shaped curve as in Fig-
ures 3.11a, 3.11b, and 3.11c. Thus, the estimation of the location of tag directories
responsible for the provision of cache coherence for the shared counter memory lo-
cation is performed by finding the points on the S-shaped curves where the slope of
the tangent line is at the minimum. If the selection of a tag directory tag directory is
equiprobable, then (on average) the overhead of the barrier will increase linearly with
the number of threads, following the average straight line apparent in Figure 3.11d.
Unfortunately, the selection of tag directories is not under explicit user control, which
introduces extra variability in the barrier overhead.

70 CHAPTER 3. EFFECTIVE BARRIER SYNCHRONISATION ON INTEL ...

Core 0

L2 cache

Core 23

L2 cache

Tag directory

Tag directory

Tag directory

Core 47

L2 cache

Core 0

L2 cache

Core 23

L2 cache

Tag directory

Tag directory

Tag directory

Core 47

L2 cache

0

O
ve

rh
ea

d,
 μ

s
/ b

ar
ri

er

Number of threads

15

10

5

6 14 22 30 38 46 54

(a) experiment 1

0

O
ve

rh
ea

d,
 μ

s
/ b

ar
ri

er

Number of threads

15

10

5

6 14 22 30 38 46 54

(b) experiment 2

Core 0

L2 cache

Core 23

L2 cache

Tag directory

Tag directory

Tag directory

Core 47

L2 cache

Core 0

L2 cache

Core 23

L2 cache

Tag directory

Tag directory

Tag directory

Core 47

L2 cache

0

O
ve

rh
ea

d,
 μ

s
/ b

ar
ri

er

Number of threads

15

10

5

6 14 22 30 38 46 54

(c) experiment 3

0

O
ve

rh
ea

d,
 μ

s
/ b

ar
ri

er

Number of threads

15

10

5

6 14 22 30 38 46 54

(d) experiments 1-3

Figure 3.11: Impact of non-uniform access time to distributed tag directories for
the centralised sense-reversing barrier.

3.5. RELATED WORK 71

3.5 Related Work

A barrier using SIMD instructions was proposed by Caballero et al. [CDM13], achiev-
ing a 2.84× lower barrier overhead on EPCC than the Intel OpenMP barrier. In re-
spect to data flow topology, this SIMD barrier synchronisation algorithm is schemat-
ically presented in Figure 3.12. As shown in [CDM13] Figure 4, non-globally or-
dered streaming stores are followed by memory fences. As it was shown by the
author of this thesis [RNPL15], such a replacement of a globally ordered streaming
store with a non-globally ordered streaming store followed by a memory fence (when
ARCH_STORE_NR_NGO is defined) leads to degradation. However, using fewer memory
fences, as it was later shown by Caballero [Cab] in Listing 6.8, can lead to further
performance improvements of synchronisation barriers. The refinement of the hybrid
synchronisation barrier [RNPL15] by using fewer memory fences in a similar way
(when ARCH_STORE_NR_NGO_REFINED is defined) leads to 9.5% less overhead.

Dolbeau [Dol14] showed that address selection is an important factor influencing
barrier overhead due to non-uniform access time to distributed tag directories. Thus,
a combining tree of specific topology and topology-aware memory allocation would
allow lowering the overhead of barrier synchronisation. However, there is no explicit
way to control topological aspects of memory allocation on Intel Xeon Phi systems. A
direct comparison of this barrier against the Intel OpenMP barrier generated an initial
speedup of 2.41×, further showing that address selection leads to an improvement to
2.85×. The technique employed to control memory allocation for this result is based
on a trial-and-error approach for reverse-engineering the hashing function used by the
tag directories.

Figure 3.12: Diagram of the SIMD barrier synchronisation algorithm [CDM13] via
shared memory.

72 CHAPTER 3. EFFECTIVE BARRIER SYNCHRONISATION ON INTEL ...

Finally, Ramos and Hoefler [RH13] proposed a model for dissemination barrier
synchronisation and also compare with the Intel OpenMP barrier. However, the exper-
iments only showed equivalent performance with the Intel implementation.

3.6 Conclusions

The five state-of-the-art barrier synchronisation algorithms were specialised for the
Intel Xeon Phi coprocessor. A novel hybrid specialised variant was presented based
on different algorithms to synchronise at intra-core and inter-core levels. Compar-
ing the hybrid algorithm with previous implementations, lower overheads have been
observed in the experiments on EPCC barrier microbenchmark, and an improved per-
formance has been observed on direct N-body simulation kernel and two NAS Par-
allel Benchmarks, CG and MG. In other words, the fastest known barrier implemen-
tation for Intel Xeon Phi was presented. These optimised barriers are available at
https://github.com/arodchen/cbarriers released as free software.

In addition, the analysis of the impact of the ring interconnect and distributed tag
directories of the Xeon Phi system on barrier synchronisation has been provided. The
inability to have explicit control over tag directories leads to missed optimisation op-
portunities when specialising SW for the Intel Xeon Phi coprocessor.

https://github.com/arodchen/cbarriers

Chapter 4

Theory and Practice of
Managed Runtime Environments

As discussed in Chapter 1, a Managed Runtime Environment (MRE) represents an
implementation of a high-level language Virtual Machine (VM) such as the Common

Language Infrastructure (CLI) [Sta12] or Java VM [LYBB14]. This chapter describes
the fundamentals of MRE internals. It discusses the open-source research JVM im-
plementation called Maxine VM in detail and compares it with other research and
industrial-strength VMs. On the basis of this comparison, Maxine VM was selected
as a component of the MaxSim simulation platform (presented in Chapter 6), that is
designed to achieve part of the research aims of this thesis. Part of the material in this
chapter was published in the MULTIPROG 2016 workshop proceedings [KRB+16],
the VEE 2017 conference proceedings [KCR+17], and the ISPASS 2017 conference
proceedings [RKN+17].

4.1 Fundamentals of Managed Runtime Environments

A Managed Runtime Environment (MRE) is a software layer shown in Figure 4.1 that
provides a Virtual Machine (VM) abstraction to applications via an interface that hides
the implementation details of the underlying layers. State-of-the-art MREs are dy-
namic execution environments, which contain a Just-In-Time (JIT) compiler, a mem-
ory manager with Garbage Collection (GC), in addition to libraries and other compo-
nents. The MRE libraries, such as the .NET Framework Class Library [.NE17] and
the Java Class Library [JCL17], contain implementations of the barrier synchronisa-
tion primitive, so the results obtained in the previous chapter are directly applicable

73

74 CHAPTER 4. THEORY AND PRACTICE OF MANAGED RUNTIME ...

ASICASIC CPUCPU GPUGPU FPGAFPGA

Hardware

Hypervisor

Operating System

Drivers and dynamic modulesDrivers and dynamic modules

Managed Runtime Environment

Application

Developer

Memory ManagerMemory Manager SchedulerScheduler

InterpreterInterpreter

JIT CompilerJIT Compiler

ProfilerProfiler

Garbage CollectorGarbage Collector

ProfilerProfiler
Native InterfaceNative Interface

LibrariesLibraries

SerialSerial ParallelParallel

Languages

C#C# ScalaScalaJavaJava PythonPython

Virtual Machine LayerVirtual Machine Layer

Operating System LayerOperating System Layer

Application LayerApplication Layer

Developer LayerDeveloper Layer

Hardware LayerHardware Layer

Figure 4.1: Managed runtime environment in the context of hardware, software and
developer stack.

to MREs for the Intel Xeon Phi 5110P coprocessor. Unfortunately, Java was not sup-
ported for programming Intel Xeon Phi at the time the work in the previous chapter was
done [Ree13]. The components, mentioned in the subsequent chapters of this thesis,
are discussed in detail below.

4.1.1 VM Emulation Engine

As discussed in Chapter 1, managed code is distributed in a bytecode format target-
ing VM V-ISA [SN05]. Emulation of a VM operation during bytecode execution can
be performed either by (1) interpretation or (2) by compilation to a target’s ISA and
subsequent execution by the underlying HW. Interpretation decodes and emulates the
operation of single instructions one by one according to the control flow of the pro-
gram. In case of compilation, a block of target code is generated for one or several
bytecode instructions. The generated blocks of code can be linked together and opti-
mised across basic block and function call boundaries in correspondence with control
and data dependencies. Interpretation is performed by the module of an MRE called
an interpreter, while runtime compilation, called Just-In-Time (JIT) compilation, is

4.1. FUNDAMENTALS OF MANAGED RUNTIME ENVIRONMENTS 75

performed by an MRE module called a JIT compiler. In contrast to unmanaged static
compilation, JIT compilation can utilise dynamic profiling information for guiding op-
timisations. Dynamic profiling information is a set of counters associated with certain
events happening during execution, such as control transfers or cache misses for ex-
ample. Profiling information facilitates program adaptation to changes in the dynamic
environment by re-optimising code.

Interpretation

Interpretation can be classified into two major groups by the pattern of operation [SN05]:
decode-and-dispatch interpretation and threaded interpretation. Decode-and-dispatch
interpretation happens in a loop, and the body of this loop performs decoding of the
current VM instruction and calls a method responsible for the corresponding V-ISA
operation emulation.

Threaded interpretation [Kli81] in contrast to decode-and-dispatch interpretation
does not have the main loop. Instead, each method responsible for emulation of a
certain V-ISA operation contains a finalising block of code performing decoding of the
next VM instruction and jumping to an address of the method responsible for emulation
of the subsequent operation. Addresses of emulation methods can be stored in a lookup
table indexed by operation codes – opcodes. Alternatively, each method can be located
at such an address that it can be calculated via pointer arithmetic avoiding a table
lookup.

Profiling

Profiling is the process of collecting information about program execution. It can
be used both for developer insight regarding application behaviour as well as for
guiding compiler optimisations. Profilers can be classified into two major groups:
instrumentation-based and sampling-based.

Instrumentation-based profiling is performed by insertion of a piece of code for
incrementing a counter during execution of an associated point of interest. A basic
example is a counter associated with the first instruction of a method. Such a counter
provides information about the number of times each method was executed and allows
the identification of frequently executed methods – hot spots. Instrumentation can be
done at finer granularity allowing the identification of hot spots within each method.
Instrumentation-based profiling allows precise information to be obtained about pro-
gram execution at the cost of additional execution of code to increment counters. Thus,

76 CHAPTER 4. THEORY AND PRACTICE OF MANAGED RUNTIME ...

this type of profiling can be performed during interpretation to identify (1) hot spots
for optimising JIT compilation, and (2) code that has never been executed for which
optimising compilation can be omitted.

During sampling-based profiling, an application of interest is interrupted periodi-
cally at random points of execution. Counters are associated with these random points
and incremented if an interrupt happens again in the same place. Sampling-based
profiling is less intrusive compared to instrumentation-based profiling as counters are
associated with application interrupt points only. Thus, it enables probabilistic (impre-
cise) information to be obtained about hot spots.

JIT Compilation

JIT compilation is a process of target HW code generation for VM emulation at run-
time. Generated target code is stored in a region of memory called the code cache. JIT
compilers can differ in the level of applied optimisations, and in general, the higher
the level of optimisations the greater time is required for compilation. Thus, there is a
trade-off between performance of generated code and compilation time.

Non-optimising baseline compilation, as the name implies, is performed with-
out any optimisations. Functionally, this kind of compilation represents emitting and
linking methods responsible for emulation of V-ISA operations used for decode-and-
dispatch interpretation. Thus, in contrast to interpretation, decoding of emulated VM
operations is done only once – during compilation. Therefore, performance of VM
code compiled by the baseline compiler is higher than the performance of interpre-
tation of the same VM code given that the same methods are used for emulation of
V-ISA operations.

High-performance VM emulation can be achieved via optimising compilation. In
order to achieve peak performance, aggressive optimising JIT compilers can take ad-
vantage of dynamic profiling information to generate highly optimised code for hot
paths of execution and totally ignoring cold paths that have not been executed before.
If an ignored cold path is taken at runtime then a special action should be taken by an
MRE which is called deoptimisation [HCU92]. During deoptimisation, execution is
transferred from a triggering region of code to a corresponding place of unoptimised
code generated by a baseline compiler or to an interpreter. Profiling information is up-
dated, and optimised code with a speculative assumption which led to deoptimisation
can be recompiled.

4.1. FUNDAMENTALS OF MANAGED RUNTIME ENVIRONMENTS 77

4.1.2 Garbage Collection

Automatic memory management is a set of techniques used in MREs to assist program-
mers with memory allocation and deallocation. The lifetime of a new object starts with
an allocation of a block of memory necessary to accommodate data related to this ob-
ject. New objects are allocated in the region of memory with a limited amount of space
called a heap. The important feature of automatic memory management is that it frees
programmers completely from manual memory deallocation at the end of the lifetime
of an object. Instead, Garbage Collection (GC) identifies memory occupied by objects
that are no longer referenced in the VM representation, so that this memory can be
reallocated. Automatic GC is demand-driven and is usually triggered by memory star-
vation. There are a wide number of algorithms to perform GC, which can be classified
into five major classes [JHM11]: mark-sweep, mark-compact, copying, generational

and reference counting. These classes are described in the small survey below.

Mark-sweep GC traverses all reachable objects by references recursively starting
from root objects and marks them during traversal. Root objects are a set of objects
referenced from VM stacks, VM registers and static VM storage. The marked objects
in the heap are considered to be live objects, and those that are unmarked are consid-
ered to be dead. On the sweep stage, the memory of the dead objects is reclaimed.
Mark-sweep GC leads to free memory fragmentation which makes memory allocation
more complex in comparison with allocation from a single unfragmented region of
memory.

Mark-compact GC tackles the fragmentation problem of the previously described
method by moving live objects to the top or the bottom of the heap after the mark phase,
which leads to release of unfragmented unused space. After the compaction phase,
references to compacted objects are updated with their new addresses. To optimise
the number of references to be updated it is possible to reference an object indirectly
through an associated pointer – handle. Utilisation of handles allows decreasing the
number of reference updates at the expense of extra indirection for every object access.

Copying GC improves the mark-compact method by allowing concurrent opera-
tion of the mark and compact phases. The heap is split into two equal parts, so GC
is initiated when only half of the heap is used. In this case, GC can compactly copy
live objects from one half of the heap to the other whilst performing the mark phase.
Copying GC allows merging mark and compact phases, but at the cost of effective
utilisation of only half of the heap at any time.

Generational GC utilises object lifetime information to increase the probability of

78 CHAPTER 4. THEORY AND PRACTICE OF MANAGED RUNTIME ...

checking liveness of objects that are more likely to be unreferenced and to reduce the
overhead of copying objects with long lifetimes. Thus, the heap can be divided into
several parts containing objects with certain lifetimes only. The lifetime can be defined
empirically, by promoting an object from the younger generation to the older after it
has survived a certain number of GC invocations.

Reference counting GC assigns each object a counter denoting the number of
active references to it. Each time the reference to the object is created its counter is
incremented, and when a reference is overwritten by another object the counter of the
referenced object is decremented. Thus, when a reference counter reaches zero, the
referenced object is considered to be dead.

4.2 Maxine VM

The Maxine VM [WHVDV+13] is the selected JVM to investigate opportunities for
HW/SW co-design and co-specialisation of general-purpose CPUs and MREs in this
thesis. The justification of this choice is presented in Section 4.2.4. Maxine VM is a
meta-circular Java VM written in Java, so it manages not only application execution
but its own execution as well. The primary design goals of Maxine VM are modularity
and increased research productivity. Maxine VM consists of a number of interchange-
able modules that are accessed through module interfaces, which are called schemes.
The schemes describe heap and GC functionalities, multi-level JIT compilation policy,
object layouts, and other aspects of JVM implementation details. In addition, it has a
co-designed integrated debugging support (Maxine Inspector) that allows the binding
of low-level execution entities (such as assembler instructions and memory addresses)
with high-level VM information (such as methods and objects).

4.2.1 Baseline Compiler

Maxine VM utilises only JIT-compilation as the VM emulation engine. It has no inter-
preter and uses the baseline T1X compiler [WHVDV+13] to execute some VM code
for the first time. T1X is a fast template-based compiler, and it emits, initialises, and
links a piece of pre-compiled code (a template) for emulation of every VM instruction.
Thus, T1X compilation generates code very quickly at the expense of lost optimisation
opportunities. The T1X compiler associates a counter with every compiled method,
which is incremented at the first instruction and inside every loop of a method. When

4.2. MAXINE VM 79

a counter reaches some threshold (5000 by default), an associated method is compiled
by an optimising compiler, and all calls to the baseline method are replaced by calls to
the optimised version.

4.2.2 Optimising Compilers

For high-performance VM emulation, the Maxine VM employs two optimising com-
pilers: C1X and Graal. C1X is the default optimising compiler in Maxine VM. It
originated from the Hotspot client compiler C1 [KWM+08], and it has similar archi-
tecture and optimisation phases.

Graal [Gra16] is the most aggressive optimising compiler available in the Maxine
VM. In contrast to C1X, it relies heavily on profiling information to guide specula-
tive optimisations that yield better performance when speculative assumptions are cor-
rect. If speculative assumptions are incorrect, then a deoptimisation mechanism diverts
control flow to the corresponding pieces of code generated by the T1X compiler. In
addition, Graal compiler benefits from the integrated Truffle [WW12] self-optimising
Abstract Syntax Tree (AST) interpreter that enables JavaScript, R, and Ruby applica-
tions to run on top of the Maxine VM.

4.2.3 Heap Allocation and Garbage Collection

Maxine VM implements a heap with two equal semi-spaces, and allocation of objects
happens in only one of the two semi-spaces at the same time. When GC is triggered
by memory starvation, all live objects are copied from one semi-space to the other,
and allocation continues in the other semi-space. The heap is dynamically split into
regions assigned to specific threads, and each thread performs allocation in its own
Thread Local Allocation Buffer (TLAB) in the general case. TLAB allocation happens
by returning and post-incrementing a pointer to free memory space inside a TLAB by
the size of a recently allocated object. Memory reclamation is done by a stop-the-world
flat semi-space collector based on Cheney’s breadth-first copying GC [Che70].

4.2.4 Comparison With Other JVM Implementations

As discussed earlier, MREs are complex SW systems typically consisting of a baseline
compiler and/or an interpreter coupled with an optimising compiler, GC algorithms,
facilities for deoptimisation, and many other functionalities. Ideally, a VM should be

80 CHAPTER 4. THEORY AND PRACTICE OF MANAGED RUNTIME ...

Research VM ISAs Class Libraries Support of Other Languages
Jikes RVM PowerPC, Apache Harmony -

IA-32 GNU Classpath
Maxine VM x86-64, JDK 7 +

ARMv7 (via Graal and Truffle)

Table 4.1: Research VMs comparison.

designed in such a way to allow the plug-in of different modules that can extend opti-
misation capabilities. Unfortunately, this is not always feasible since high performance
and high degrees of modularity are two aspects that counteract each other. In order to
achieve high performance, VMs are optimised across the components sacrificing mod-
ularity.

Consequently, VMs broadly fall into two categories: production-quality and re-
search VMs. Production quality VMs such as the HotSpot JVM [PVC01] can achieve
high performance at the expense of limited experimentation capabilities due to the
lack of modularity. On the contrary, research VMs such as the Jikes RVM [AAC+99]
and Maxine VM [WHVDV+13] offer high degrees of implementation freedom and
research productivity due to their modular design at the cost of lower (worse) perfor-
mance in comparison with HotSpot VM. The comparison of Jikes RVM to Maxine
VM is presented in Table 4.1, and Maxine VM has the following advantages over Jikes
RVM:

1. It supports the widely-adopted x86-64 architecture.

2. It is compatible with the JDK7 Class Libraries and can run the full set of the
DaCapo-9.12-bach [BGH+06], SPECjvm2008 [SPE08], pjbb2005 [PJB05], and
other benchmarks.

3. It supports the Graal [Gra16] optimising compiler, which is the next-generation
optimising compiler of HotSpot JVM.

4. It supports the Truffle [WW12] optimising AST interpreter, that allows the ex-
ecution of other languages, apart from Java, such as JavaScript, R, Ruby, and
others.

4.2. MAXINE VM 81

In order to assess the performance of Maxine VM, it is compared against the
production-quality HotSpot VM. The performance is measured as the reciprocal of
the execution time of a given benchmark. To that end, the recent version of Maxine
VM1 (rev. 8810) with its two optimising compilers, C1X and Graal customised for
Maxine2 (rev.11558), is compared against the production-quality HotSpot VM with
its two optimising compilers, C2 (ver. 1.8.0.25) and Graal3 (rev. 21075). The earlier
version of Maxine VM4 (rev. 8750) and Graal5 customised for Maxine (rev. 11539)
is added for comparison to show the contribution of the author of this thesis to the
Maxine VM research project during his PhD.

The DaCapo [BGH+06] benchmarks are used for performance comparison. The
DaCapo benchmarks are a set of 14 representative open-source Java applications which
are: avrora, batik, eclipse, fop, h2, jython, luindex, lusearch, pmd, sunflow,
tomcat, tradebeans, tradesoap, and xalan. They cover a wide range of domains
from simulation of the microcontrollers to transformation of XML documents into
HTML. These benchmarks are widely used for performance analysis of JVM imple-
mentations and have been utilised for performance evaluation in this and subsequent
chapters.

The performance comparison of the five VM-compiler-version triplets on the
DaCapo-9.12-bach benchmarks6 is presented in Figure 4.2, where performance is rel-
ative to HotSpot-C2-1.8.0.25. Each data point was obtained from 16 measurements.
Whiskers represent 95% confidence intervals. As depicted in Figure 4.2, the perfor-
mance of HotSpot-Graal-21075 is comparable to HotSpot-C2-1.8.0.25, while the
performance of Maxine-Graal-8810.11558 and Maxine-C1X-8810.11558 is 57%
and 53% of HotSpot-C2-1.8.0.25, which is considered to be satisfactory for re-
search purposes [WHVDV+13]. As already mentioned, the Maxine VM has two op-
timising compilers, namely C1X and Graal. Theoretically, if the Maxine VM is opti-
mised across its modules, its peak performance with Graal should be on-par with that
of the HotSpot VM with the same compiler. From the performance results presented
in Figure 4.2 it can be seen that Maxine-Graal-8810.11558 is around 8% faster than
Maxine-C1X-8810.11558 in geometric mean. However, since C1X is much less com-
plex than Graal and has much lower compilation times, C1X has been selected as the

1https://github.com/beehive-lab/Maxine-VM
2https://github.com/beehive-lab/Maxine-Graal
3http://hg.openjdk.java.net/graal/graal-compiler
4See footnote 1.
5See footnote 2.
6eclipse is not present, as it did not pass on Maxine-Graal-8810.11558

https://github.com/beehive-lab/Maxine-VM
https://github.com/beehive-lab/Maxine-Graal
http://hg.openjdk.java.net/graal/graal-compiler

82 CHAPTER 4. THEORY AND PRACTICE OF MANAGED RUNTIME ...

Figure 4.2: Performance of different VM-compiler-version triplets relative to
HotSpot-C2-1.8.0.25 (higher is better).

4.3. SUMMARY 83

optimising compiler for the purposes of this thesis.
The following major changes have been contributed to the Maxine VM by the

author of this thesis during his PhD:

1. Profiling instrumentation in the T1X baseline compiler was implemented.

2. Profile-guided optimisations were enabled in the Graal optimising compiler.

3. Critical math substitutions were enabled.

This work on improving utilisation of the Graal optimising compiler by the Maxine
VM resulted in 1.64× speedup as can be seen in Figure 4.2 by comparing performance
of Maxine-Graal-8750.11539 (before the changes) and Maxine-Graal-8810.11558
(after the changes).

4.3 Summary

In this chapter, the fundamentals of MRE internals were presented, and different im-
plementation options of VM emulation engine and automatic memory manager were
reviewed.

In addition, this chapter discussed the open-source research JVM called Maxine in
detail and compared it with other production-quality and research JVM implementa-
tions. The observed performance difference is less than 2x on the DaCapo-9.12-bach
benchmarks against the state-of-the-art HotSpot VM, which is considered satisfactory
for research purposes. The benefits of using Maxine VM are its modularity and its
powerful co-designed integrated debugging support (Maxine Inspector) leading to re-
search productivity.

Thus, this chapter provides background knowledge for the material of Chapters 6
and 7, which describes a novel simulation platform based on Maxine VM and its ap-
plications.

Chapter 5

Theory and Practice of
Computer Architecture Simulation

As it was discussed in Chapter 1, evaluation of a SW prototype on a HW model is
a key step in the iterative HW/SW co-design process. This chapter presents the fun-
damentals of HW model evaluation by computer architecture simulation. It discusses
the open-source research simulator called ZSim in detail and compares it with other
simulators. On the basis of this comparison and validation, ZSim is selected to simu-
late managed workloads executed on top of Maxine VM, which was described in the
previous chapter. Part of the material in this chapter was published in the ISPASS 2017
conference proceedings [RKN+17].

5.1 Fundamentals of Computer Architecture
Simulation

5.1.1 Comparison of Simulation with Analytical Modelling

Evaluation of SW executed on a HW model enables quantification of the execution
by providing runtime characteristics such as execution time, power consumption, and
memory access behaviour. There are two major classes of evaluation methods of SW
execution on HW models. Simulation is the most straightforward and wide-spread
evaluation method, while the other major option is analytical modelling [Eec10]. The
former method utilises the functional and physical models of HW and simulates SW
execution instruction by instruction, while the latter method is based on building a
high-level analytical model of HW described by a mathematical formula taking some

84

5.1. FUNDAMENTALS OF COMPUTER ARCHITECTURE SIMULATION 85

characteristics of SW execution as an input. Thus, simulation is usually a more precise
method, while analytical modelling is a faster method [Eec10]. These properties define
the rationale for applicability of these methods: while analytical models provide a fast
first-order approximation and narrowing down of the subspace of interest, simulation
may be used for increasing the accuracy of quantification in that subspace.

As it was mentioned in Chapter 1, one of the aims of this work is specialisation of
general-purpose CPUs via novel microarchitectural extensions and their utilisation in
MREs. Although analytical modelling can be considered for evaluation of HW exten-
sions, another important requirement of the research described in the subsequent chap-
ters is verification of functional correctness of the proposed extensions. Such a verifi-
cation can be performed via modelling of program execution at the ISA level without
evaluation of any other characteristics, such as execution time, consumed power end
energy. Such ISA-level modelling is called functional simulation. Thus, simulation in
contrast to analytical modelling can meet both requirements simultaneously which are
functional verification and power/performance evaluation.

5.1.2 Overview of Simulation Techniques

Microarchitectural simulation presents a number of challenges that define trade-offs
between the following four characteristics [Eec10]: (1) simulation speed, (2) simula-
tion accuracy, (3) design complexity affecting engineering efforts required to modify
or implement new HW models, and (4) simulation coverage, which is a consideration
to simulate only selected parts of a HW model. While engineering a simulator, an
implementor has to make a number of design decisions which will be described below.

Methods of Operation

Simulators can be classified into two groups by the method of operation: execution-

driven and trace-driven. Execution-driven simulators, as the name implies, (1) ex-
ecute programs of interest via functional simulation and (2) feed calculated data to
timing and other models. Thus, this method of operation contains two stages. Data
fed to models can be stored in trace files, and trace-driven simulators use such trace
files directly as input. The advantages of trace-driven simulation in comparison with
execution-driven simulation are determinism, since the same trace file is used, and

86 CHAPTER 5. THEORY AND PRACTICE OF COMPUTER ...

faster operation due to the absence of the functional simulation stage. However, execution-
driven simulation is a more flexible method of operation as execution can be depen-
dent on timing and other models, and a trace-driven simulator is not able to account
for such dependencies and models a single scenario of execution stored in a trace
file. The two examples of timing-dependent instruction execution are (1) control-
and data-speculative execution of a single-threaded code and (2) dependent execu-
tion of multiple threads. As dependent multi-threaded execution is typical for MREs,
execution-driven simulation is a preferable option for the studies presented in the next
two chapters.

FPGA-Accelerated and Non-Accelerated Simulation

Simulators can also be classified by the type of integrated circuits that are used to run
the simulation. The two major classes of integrated circuits used for simulation are
FPGAs and CPUs.

An FPGA-accelerated (or FPGA-based) simulator is an FPGA circuit configured
by loading synthesised HW description of a HW model. FPGA-based simulators can
achieve higher simulation speed in comparison to non-accelerated simulators, but their
implementation or extension requires substantial engineering efforts due to the greater
complexity of programming FPGAs compared to CPUs. Due to this reason, FPGA-
based simulators are not considered for the studies presented in the next two chapters.
The example of FPGA-based research simulators, infrastructures and methodologies
are HAsim [PAK+11], Arete [KVBWA12], FAST [CSK+07], ProtoFlex [CPN+09],
and MAST [MPG+17].

Non-accelerated simulators are programs targeting general-purpose CPUs, and
they are easier to maintain than FPGA-based simulators. Such simulators can be
subdivided into two groups by the type of execution engine: emulation and binary

translation. In the case of emulation, each instruction, one by one, is decoded and
modelled, while in the case of binary translation, after the instruction decoding step, a
simulator generates a block of code which performs modelling. These blocks of code
can be linked together and optimised across their boundaries for adjacently simulated
instructions [Haz11]. Thus, during the subsequent modelling of the same instructions,
the decoding step can be omitted. Therefore, an execution engine based on binary
translation can be faster in case the same code is simulated frequently. An execution
engine based on binary translation can be particularly efficient for functional simula-
tion in case the simulated ISA is equivalent to or kindred to the ISA of the CPU used

5.1. FUNDAMENTALS OF COMPUTER ARCHITECTURE SIMULATION 87

for simulation [LCM+05, GdL16].

Simulation Parallelisation

Moving in a many-core direction raises a problem of parallel simulation of multi-
threaded code on many-core processors. Even when two independent applications are
executed on different cores, they can interfere with each other due to sharing resources
of the processors, for instance, due to shared last level cache [CMB+13]. Thus, ac-
curate simulation of multiple threads running on several cores can require accounting
for inter-core dependencies. In fact, these dependencies can be pretty fine-grained.
Preserving all such dependencies can cause significant synchronisation delays out-
weighing all the benefits of simulation parallelisation. To get speedups, some parallel
simulators, such as Graphite [MKK+10] and ZSim [SK13], allow violation of precise
dependencies while simulating cores in parallel for a configurable number of cycles.
After parallel simulation of cores with relaxed inter-core dependencies, contentions for
shared resources are modelled using queuing theory models in Graphite [MKK+10]
and using the bound-weave algorithm in ZSim [SK13].

Full-System and User-Level Simulation

Simulators can be subdivided into two groups: full-system and user-level. Full-system
simulators model the whole computer system including input/output devices and oper-
ating system code. On the contrary, user-level simulators, as the name implies, model
only user-level code omitting invocations of operating system code and input-output
activities at all or partially.

The state-of-the-art full-system simulators are more complex and, typically, slower
(higher simulation times) than user-level ones. The benefit of using a full-system sim-
ulation is the extra accuracy achieved since more components of the computing stack
are simulated. However, for workloads1 that spend the vast majority of their time in
user-level code, this is not the case. The two primary examples of the open-source
full-system simulators are gem5 [BBB+11] and MARSS [PACG11].

The user-level non-accelerated simulators, sacrificing the ability to simulate the
kernel code, provide the best research trade-offs in terms of accuracy, simulation
speed, and engineering effort for the purposes of the studies presented in this the-
sis. The examples of research simulators of this type are Sniper [CHE11, CHE+14],

1As it will be shown in Section 5.3.2, the DaCapo benchmarks with the exception of avrora are
such an example.

88 CHAPTER 5. THEORY AND PRACTICE OF COMPUTER ...

ZSim [SK13], and Graphite [MKK+10]. From the currently available open-source
user-level simulators, only ZSim allows the execution of arbitrary managed workloads
via lightweight user-level virtualisation.

5.2 Power and Energy Consumption Modelling Using
McPAT

As mentioned in Chapter 1, power dissipation is one of the major design limitations
for future generations of many-core systems. Thus, power dissipation is an important
characteristic while evaluating new HW models. The dissipated energy is a depen-
dent characteristic, and it is equal to the integral of consumed power over time. Total
consumed power can be represented as a sum of dynamic and static power. Dynamic
power consumption is caused by switching circuit states. Static power is consumed
due to leakage current, and it is dissipated even when a circuit is idle.

McPAT [LAS+13] is a parameterised framework for modelling power, area, and
timing of multi-core and many-core processors. It requires (1) specification of mi-
croarchitectural parameters of a modelled processor and (2) microarchitectural events
of a modelled program execution as input. Both inputs are passed in the XML-based
format, so that microarchitectural simulators can collect required microarchitectural
events and pass them to McPAT for power modelling. Using the provided events,
McPAT can evaluate dynamic and static power consumption for each component of a
modelled microarchitecture. The examples of the microarchitectural simulators cou-
pled with McPAT are Sniper [HSC+12], gem5 [BBB+11], and Graphite [MKK+10].

5.3 ZSim Simulator

ZSim [SK13] is the simulator of choice to research opportunities for HW/SW co-
design and co-specialisation of general-purpose CPUs and MREs. ZSim is an execution-
driven (instruction-driven) simulator with the binary translation execution engine based
on the Pin [LCM+05] dynamic binary instrumentation and modification tool. This op-
timised execution engine allows achieving simulation speeds of 20 Mega-Instruction

Per Second (MIPS) for Out-Of-Order (OOO) core models on conventional CPUs. The
most advanced OOO core that it can model is Intel Nehalem. One of the design goals
of this simulator is scalability, which is achieved via the “bound-weave" simulation

5.3. ZSIM SIMULATOR 89

Name 1C 2C 4C 1CQ

Cores
type x86-64 Nehalem OOO core at 2.66 GHz
total 4 1

enabled 1 2 4 1
Prefetchers disabled
L1I caches 32KB, 4-way, LRU, 3-cycle latency
L1D caches 32KB, 8-way, LRU, 4-cycle latency
L2 caches 256KB, 8-way, LRU, 6-cycle latency

L3 cache
type 16-way, hashed, 30-cycle latency
size 8MB 2MB

Memory controller 1, 3 DDR3 channels, 47-cycle latency
DRAM 3GB, DDR3-1066, 1GB DIMM per channel

Table 5.1: ZSim configurations.

parallelisation technique. Another feature, required for the research purposes of this
thesis, is the ability to model execution of managed workloads fast and accurately.

5.3.1 Comparison With Other Research Simulators

A detailed comparison of ZSim with other non-accelerated simulators mentioned in
this chapter is presented in [SK13]. The other simulators capable of running managed
applications are gem5, MARSS, and Sniper. Sniper can simulate managed applications
executed on top of Jikes RVM only [Jik14, SHB+14]. The validation and comparative
analysis [AS16] of gem5, MARSS, Sniper, and ZSim on MiBench [GRE+01] and
SPEC CPU 2006 [SPE06] benchmarks showed that Sniper and ZSim have the two least
and similar simulation errors on configurations with two and four cores. The study also
revealed that ZSim is the fastest simulator among the four compared simulators. These
facts justified the selection of ZSim for the research purposes of this thesis.

5.3.2 Validation of Simulating Maxine VM Running the DaCapo
Benchmarks

With minor modifications to its user-level virtualisation and scheduling techniques2,
ZSim was able to simulate the full set of the DaCapo [BGH+06] benchmarks, dis-
cussed in Chapter 4, executed by the Maxine VM with the C1X optimising compiler.
The parameters of the simulated systems used for validation are described in Table 5.1.

2https://github.com/arodchen/zsim rev.102

https://github.com/arodchen/zsim

90 CHAPTER 5. THEORY AND PRACTICE OF COMPUTER ...

The configurations 1C, 2C, and 4C represent the Intel Nehalem microarchitecture with
1, 2, and 4 enabled cores respectively. Furthermore, 1CQ represents the 1-core CPU
with just a Quarter of the 8MB Last Level Cache (LLC). This configuration is used in
the next chapter in order to simulate the case when only a quarter of the available 4C

resources is available to the workload (if the LLC could be partitioned, which is not
possible on the Intel Nehalem microarchitecture).

ZSim was validated against a real system with the results presented in Figure 5.1.
The performance of the simulated models 1C-ZSim, 2C-ZSim, 4C-ZSim is validated
against the performance of the real systems 1C-Real, 2C-Real, 4C-Real respectively,
where Real represents an Intel Core i7 920 (Bloomfield) CPU based on the Nehalem
microarchitecture. The performance shown is relative to the 4C-Real configuration.
The performance is measured as the reciprocal of the execution time of a given bench-
mark. Whiskers represent 95% confidence intervals. It can be seen that the difference
in geomean execution times between the real platform and the simulated models is
from 8% to 12%, which is in alignment with the ZSim original validation [SK13].
Furthermore, the performance scalability pattern (from 1 core to 4 cores) of the sim-
ulated models is consistent with the real system. However, two major inconsistencies
were observed. Firstly, the execution times of eclipse and tradesoap on the one-
core model 1C-ZSim were more than two times greater than the real system 1C-Real.
This is due to the different thread scheduling algorithms used: on the real system a
Completely Fair Scheduling (CFS) [CFS14] scheme is employed while on ZSim a
simple round-robin scheduling is used. Secondly, the avrora test on the Maxine VM
spends more than half of its execution time in the Linux kernel on *-Real configu-
rations. However, ZSim is capable of simulating only user-level code, significantly
over-estimating avrora’s performance. These limitations should be taken into consid-
eration when using the presented platform.

5.4 Summary

In this chapter, the fundamentals of computer architecture simulation were presented,
and various simulation techniques and their design trade-offs were described. The
examples of simulators implementing mentioned techniques were provided.

In addition, this chapter discussed the open-source research simulator called ZSim
in detail and compared it with other simulators. On the basis of this comparison and
validation, ZSim is selected to simulate managed workloads executed on top of Maxine

5.4. SUMMARY 91

Figure 5.1: Validation of different simulated HW configurations *-ZSim against real
system configurations *-Real. The depicted performances are relative to 4C-Real

(higher is better).

92 CHAPTER 5. THEORY AND PRACTICE OF COMPUTER ...

VM, which was described in the previous chapter.
Thus, this chapter provides background knowledge for the material of the next two

chapters, which describe a novel simulation platform for productive research in the
areas of HW/SW co-design of general-purpose CPUs and MREs and its use cases.

Chapter 6

MaxSim: A Simulation Platform for
Managed Applications

Managed applications, written in programming languages such as Java, C# and others,
represent a significant share of workloads in the mobile, desktop, and server domains.
Microarchitectural timing simulation of such workloads is useful for characterisation
and performance analysis, of both hardware and software, as well as for research and
development of novel hardware extensions.

This chapter introduces MaxSim, a novel simulation platform based on the Maxine
VM, the ZSim simulator, and the McPAT modelling framework. MaxSim is able to
simulate fast and accurately managed workloads running on top of Maxine VM and
its capabilities are showcased with novel simulation techniques for: (1) low-intrusive
microarchitectural profiling via pointer tagging on the x86-64 platforms, (2) modelling
of hardware extensions related, but not limited to, tagged pointers, and (3) modelling
of complex software changes via address space morphing.

Low-intrusive microarchitectural profiling is achieved by utilising tagged pointers
to collect type- and allocation-site- related hardware events. Furthermore, MaxSim
allows, through a novel technique called address space morphing, the easy modelling
of complex object layout transformations. Finally, through the co-designed capabilities
of MaxSim, novel hardware extensions can be implemented and evaluated.

MaxSim’s capabilities are showcased by simulating the whole set of the DaCapo-
9.12-bach benchmarks in less than a day while performing an up-to-date microarchi-
tectural power and performance characterisation. Furthermore, a hardware/software
co-designed optimisation is demonstrated that performs dynamic load elimination for
array length retrieval achieving up to 14% and 7% geometric mean L1 data cache loads

93

94 CHAPTER 6. MAXSIM: A SIMULATION PLATFORM FOR MANAGED ...

reduction and up to 4% and 2% geometric mean dynamic energy reduction.

MaxSim is available at https://github.com/arodchen/MaxSim released as free
software. Appendix B describes how to use the MaxSim platform. The material in this
chapter was presented at the ISPASS 2017 conference [RKN+17].

The practical goal of the work described in this chapter is to build a simulation
platform integrating a simulator and a HLL VM implementation together in order to
achieve the 3rd research aim of the work described in Chapter 1. The result of this
effort can be measured qualitatively in terms of usefulness of the developed platform
by comparing its features against other state-of-the-art simulation platforms.

6.1 Introduction

Managed runtime environments (MRE) have been widely adopted in a variety of com-
puting domains ranging from mobile phones to enterprise servers. Managed languages,
and Java, in particular, have been utilised not only in application and middleware do-
mains but also in system programming for the development of research prototypes such
as the Maxine Virtual Machine (VM) [WHVDV+13], Jikes RVM [AAC+99], the Sin-
gularity operating system [LH10], the Graal compiler [Gra16], and the Truffle [WW12]
Abstract Syntax Tree (AST) interpreter.

The end of single-core scaling [Moo65, DGR+74] makes the achievement of fur-
ther energy and performance improvements, solely by enhancements in Hardware

(HW), an extremely challenging task. A way to address this challenge is to design
domain-specific HW extensions for certain Software (SW) tasks in general, and for
managed workloads in particular. In order to design HW extensions that address dis-
tinctive features of managed workloads, such as object orientation and Garbage Col-

lection (GC), a specialised simulation platform is needed to improve research produc-
tivity. Such a platform must enable close integration of a fast and accurate microarchi-
tectural simulator and a modern MRE while providing a feedback loop between these
two components. In this chapter, MaxSim is presented which is a simulation platform
targeting managed applications.

MaxSim, in contrast to previous efforts described in Section 6.4, allows fast, ac-
curate, and low-intrusive performance analysis of managed workloads by employing
a novel pointer tagging scheme. Fast, accurate, and low-intrusive performance analy-
sis is typically performed by utilisation of HW counters [SHC+04, HSDH04], which
has three main limitations. First, the frequent accesses to HW counters can introduce

https://github.com/arodchen/MaxSim

6.1. INTRODUCTION 95

performance overheads. Second, the association of collected events with high-level
information related to managed workloads can be limited [GBEDB04]. Finally, HW
counters are not always portable between architectures and may not be complete for
arbitrary purposes. Also in MaxSim, the simulator has an awareness of the VM, so it is
able to distinguish what code is being executed (GC, non-GC) and what data is being
accessed (thread local storage, stack, heap, code cache, native).

In detail, the work documented in this chapter contributes the following:

• MaxSim – a novel experimental platform for HW/SW co-design exploration
on the basis of the state-of-the-art Maxine VM, the ZSim microarchitectural
simulator [SK13], and the McPAT power, area, and timing modelling frame-
work [LAS+13].

• A novel pointer tagging scheme in x86-64 architectures that is based on Dy-

namic Binary Translation (DBT) that: (1) allows the fast, accurate, and low-
intrusive fine-grain microarchitectural profiling of managed workloads, and (2)
enables the implementation of HW/SW co-designed optimisations, such as HW-
assisted retrieval of array lengths encoded in object pointers. In addition, the
collected profiling information can be also loaded back to the Maxine VM, cre-
ating a full feedback loop between the simulator and the VM.

• A novel address space morphing technique for simulating complex software
changes regarding object layout transformations such as fields expansion, con-
traction and reordering.

The techniques, implemented in MaxSim and described in this chapter, are appli-
cable to other simulators and runtime systems. However, the selection of the state-
of-the-art Maxine VM and ZSim simulator provides a unique combination of research
productivity, accuracy and speed of simulation.

The chapter is organised as follows: Section 6.2 describes the MaxSim platform
and introduces the novel simulation and optimisation techniques. Section 6.3 presents
the use cases of the proposed platform. Finally, Section 6.4 presents the related work,
while Section 6.5 summarises this chapter. The experimental platform presented in
this chapter is available at https://github.com/arodchen/MaxSim released under
the GPLv2 free software license.

https://github.com/arodchen/MaxSim

96 CHAPTER 6. MAXSIM: A SIMULATION PLATFORM FOR MANAGED ...

6.2 Integration of Platform Components and
Novel Simulation Techniques

In this section, the novel features of MaxSim along with its capabilities are described in
detail. These features are: (1) pointer tagging that can be used for light-weight object-
based microarchitectural profiling and/or HW/SW co-designed optimisations, (2) inte-
gration with the McPAT framework for power and energy estimations, and (3) the ad-
dress space morphing technique allowing the easy modelling and performance/power
estimation of complex object layout transformations. The implementation details and
the log of changes are available at https://github.com/arodchen/MaxSim.

6.2.1 Pointer Tagging

A pointer tag is a number of bits of an address which are ignored during memory
access operations. In general, the main use cases of tagged pointers are: (1) capability-
based addressing [Fab74, Lev84] and security [DKK07, CC04, Poi17], which can also
require tagged memory, and (2) storage of type information [Org73, Bab00, HSH81].
The shift from 32-bit to 64-bit architectures enables 16 exabytes of memory to be ad-
dressable, a number which significantly exceeds the amount of memory needed for
applications targeting these architectures. This fact motivated the support for tagged
pointers in the modern commodity widely used architectures: AArch64 with 8-bit
pointer tags [ARM15] and Sparc M7 with up to 32-bit pointer tags [Phi14].

Although x86-64 architectures do not currently support tagged pointers (see Sect.
3.3.7.1 in [Int11]), the virtual addressing is currently limited to 48 bits1 with the high
16 bits replicating bit 47. MaxSim exploits these high 16 bits on x86-64 architectures,
to encode extra information that can be interpreted during simulation for various pur-
poses. The main use case is the assignment of extra information to an object via its
pointer. This extra information can regard either associations with high-level language
features (Section 6.2.1) or other metadata for HW/SW co-designed optimisations (Sec-
tion 6.2.1).

Typically, associating extra information with objects poses a trade-off between ex-
tra required memory and access time. Figure 6.1 presents three options for the storage
of object metadata. The first option is “in object storage”, where the metadata is stored
inside an object in an intrusive manner which also increases memory footprint. The

1In the upcoming version of the architecture, the virtual addressing will be extended to 57
bits [5-L16].

https://github.com/arodchen/MaxSim

6.2. INTEGRATION OF PLATFORM COMPONENTS AND NOVEL ... 97

1: In object storage.

2: Associative array storage.

pointer tag object

pointer tag object

pointer tag
metadata

pointer tag object
3: Pointer tag storage.

Figure 6.1: Different options for object metadata storage.

second option is “associative array storage” which requires both extra space and lookup
time to retrieve metadata. To that end, if metadata is accessed read-mainly and fre-
quently (on every memory access operation) and the amount of metadata to be stored
can fit in 16 bits, “pointer tag storage” is preferable which is the third option. Encoding
metadata into the available 16 bits of an object’s address saves memory bandwidth and
reduces access latency.

To enable tagged pointers support in MaxSim, the following three invariants must
be preserved in Maxine VM:

1. All pointers to the same object must be tagged with the same tag.

2. When a field inside an object is accessed, [tag:base + (index * scale) +

disp] addressing mode must be used, where base points to the beginning of the
object and (index * scale) + disp represents an offset (later on, this will
be referred to as [tag:base + offset]).

3. An object pointer tag is immutable between any following adjacent points in an
object’s lifetime: object allocation, initialisation, and evacuation during GC.

The first invariant allows the comparison of tagged pointers without extensive VM
modifications, while the second invariant allows an accessed object’s class field to be
identified using this canonical form. The third invariant implies that the pointer tag
can only be changed in certain places, where all pointers to an object to be tagged are
accessible without a full scan of all objects. All live objects are untagged during a stop-
the-world VM operation when switching to the ZSim fast forwarding mode [SK13].
During the ZSim fast forwarding mode, execution happens without simulation and
extensive binary modification/instrumentation at near-native speed until entering the
next Region Of Interest (ROI) for simulation. Untagged object pointers are tagged back

98 CHAPTER 6. MAXSIM: A SIMULATION PLATFORM FOR MANAGED ...

during the stop-the-world VM operation when entering the next ROI and switching
back from the fast forwarding to the normal simulation mode.

// Returns true if instruction operand is a memory reference.

BOOL
INS_OperandIsMemory(INS ins, UINT32 n);

// Returns base register (address = base + disp + index * scale) .

REG
INS_OperandMemoryBaseReg(INS ins, UINT32 n);

// Returns index register (address = base + disp + index * scale) .

REG
INS_OperandMemoryIndexReg(INS ins, UINT32 n);

// Returns scale (address = base + disp + index * scale) .

UINT32
INS_OperandMemoryScale(INS ins, UINT32 n);

// Returns displacement (address = base + disp + index * scale) .

INT64
INS_OperandMemoryDisplacement(INS ins, UINT32 n);

// Rewrites memory operand to reference the other memory location.

VOID
INS_RewriteMemoryOperand(INS ins, UINT32 memIndex, REG reg);

Listing 6.1: Pin API for tag pointers retrieval and untagging.

Finally, ZSim simulation is based on the Pin dynamic binary instrumentation and
modification tool, and pointers’ tag detection and untagging is performed via the API
shown in Listing 6.1. To summarise, pointer tagging allows to: (1) perform light-
weight object-based microarchitectural profiling and, (2) perform a number of HW/SW
co-designed optimisations by encoding data in tagged pointers.

Light-weight Object-based Microarchitectural Profiling

Simulation-based profiling, an important technique in performance analysis, is one of
the key features of MaxSim. In order to enable this functionality, it is essential to

6.2. INTEGRATION OF PLATFORM COMPONENTS AND NOVEL ... 99

bind microarchitectural events with high-level language information. This binding is
achieved via the pointer tagging mechanism described in the previous section.

The Maxine VM assigns a tag to a pointer, and ZSim collects events related to
this tag during memory access operations. MaxSim currently supports several imple-
mentations of language information association with object pointers among which are:
ClassIdTagging and AllocationSiteIdTagging. ClassIdTagging assigns object
class IDs to all object pointers allowing the association of microarchitectural events
per class. A class ID is a compact unsigned integer representing the class of an object
and is usually stored in the class information object which is accessible via a pointer
stored in an object’s header. By storing class ID in the pointer tag, it is possible to save
two load operations at the expense of untagging and tag retrieval, which are two and
one shift operations, respectively. AllocationSiteIdTagging assigns allocation site
IDs to object pointers. An allocation site ID is a compact unsigned integer represent-
ing a pair of an allocation site estimation of an object and a class ID. Allocation site
IDs are requested from ZSim via magic NOP operations [MSB+05], which have NOP
semantics during non-simulated execution. On each allocation site ID request, ZSim
returns a compact ID, which is associated with an allocated object’s class ID and an
allocation site estimation using stack trace estimation in ZSim. Stack trace estimation
is performed using per-thread circular buffers by pushing return addresses on function
calls and popping them on function returns.

The state-of-the-art techniques to associate allocation sites with objects usually
require either hashing [OOK+10] or storage of extra information in or adjacent to ob-
jects [CPST15]. Such techniques introduce noticeable overheads and interference with
a normal workload execution. In comparison with the aforementioned techniques, the
proposed technique is much less intrusive, as it takes just a few lightweight operations
during an object allocation to set a tag.

Figure 6.2 shows the integration scheme of MaxSim and the flow of profiling in-
formation between its components. The profiling information is stored in the Proto-
col Buffers format [Pro14], and it consists of two parts. The first part, stored in the
ZSimProf.db file, contains microarchitectural events collected by ZSim. Examples of
such events (memory accesses and cache misses) related to a class field are shown in
Figure 6.2. The second part, stored in the MaxineInfo.db file, contains information
necessary to bind collected events to high-level language information. In Figure 6.2,
for example, field information (name, class ID, offset) is represented. In case there
are several ROIs during the same simulation, several ZSimProf.db files and a single

100 CHAPTER 6. MAXSIM: A SIMULATION PLATFORM FOR MANAGED ...

(8 cores)

ZSim (C++) Maxine VM (Java + C)
Pin

OOO Core Model

Profiling
Data

Protocol
Buffers

Code Cache

Heap
p:[tag(16b):base(48b)]
(tagged pointers);

xchg rcx, rcx (magic NOPs);
ld / st [tag:base + offset];

profGen profUse MaxineInfoGen

ZSimProf.db MaxineInfo.db

MaxSim

...
/*
 * Field profile.
 */
message FieldProf {
 required int32 offset = 1;
 required int64 readCount = 2;
 required int64 writeCount = 3;
 repeated int64 cacheMissCount = 4;
}
...

...
/*
 * Field information.
 */
message FieldInfo {
 required string name = 1;
 required int32 classId = 2;
 required int32 offset = 3;
 ...
}
...

Figure 6.2: Handling of profiling information in MaxSim.

MaxineInfo.db file will be generated.

The profiling is performed during memory access operations, and collected events
are associated with triplets of an instruction pointer, a pointer tag, and a memory ad-
dress offset. Allocation site IDs are reported from ZSim to Maxine via magic NOPs
with an allocation site ID stored in the rcx register by ZSim.

// Memory access profiling.
java.util.HashMap$Entry[](...)@

[java.util.HashMap.<init>(...)+354(...)]
(asi:0 mf:2976(s:152(19) s:88(1)) ac:983 ... l3rm:11 l3wm:7):

(o:80 r:33 w:9 ... l3rm:9 l3wm:0)

// L3 cache miss reads profiling.
[java.util.HashMap.put(Object, Object)+107(...)]

(m:9 asi:0 ol:80 oh:80)

Listing 6.2: Snippet of profiling information textual output.

The detailed collected information can later be uploaded to Maxine VM to guide

6.2. INTEGRATION OF PLATFORM COMPONENTS AND NOVEL ... 101

optimisations, or it can be printed in a textual format. The snippet of the textual output
is presented in Listing 6.2. In this example, AllocationSiteIdTagging was active,
and the profiling information is shown for objects of HashMap$Entry[] class allo-
cated during a call to HashMap.<init> method at offset 354 (in the constructor of
HashMap). In total, 1 object of 88 bytes and 19 objects of 152 bytes were allocated
reaching a total allocation footprint of 2976 bytes. Furthermore, 983 memory accesses
were performed with 11 L3 cache read misses and 7 L3 cache write misses. At offset
80, 33 reads and 9 writes were performed with 9 L3 cache read misses. Finally, all
9 misses at offset 80 occurred at offset 107 of method HashMap.put. The presented
tagged-based profiling scheme is especially useful for profiling object-oriented SW
in which objects can be relocated (e.g. copying garbage collection), as pointer tags
preserve objects’ identities for profiling.

HW/SW Co-designed Optimisations Enabled by Tagged Pointers

The presence of available bits, when tagged pointers are enabled, creates a number
of HW/SW co-designed optimisation opportunities. It is possible to encode some in-
formation related to an object in a pointer tag and to extend functionality of memory
access operations via a tag for performance/power optimisations or security enhance-
ments. An example of such an optimisation is related to array length encoding in tags
and is one of the use-cases of this chapter. Its evaluation is presented in Section 6.3.2.

6.2.2 Integration with the McPAT Framework

To be able to perform energy estimations, the energy estimation model (which uses
McPAT) from the Sniper simulator [HSC+12] for the same microarchitecture simu-
lated by ZSim was integrated . Conversion of microarchitectural events from the ZSim
to Sniper format was adopted from the ZSim-NVMain simulator [ACU15]. The mod-
elling tool required the collection of a number of extra microarchitectural events in
ZSim such as the number of predicted branches and floating point microoperations.

6.2.3 Simulator/VM Co-Operative Address Space Morphing

For many managed languages in general, and for Java in particular, layouts of objects
in memory are not specified and depend on the VM implementation. Changing layouts
of objects can improve cache locality and decrease memory footprint. However, such

102 CHAPTER 6. MAXSIM: A SIMULATION PLATFORM FOR MANAGED ...

Figure 6.3: Example of address space morphing in MaxSim.

transformations are difficult to implement without adding extra complexity or break-
ing the modularity of a VM. MaxSim implements a novel address space morphing
technique to perform simulation of complex object layout transformations, specifically
fields expansion, contraction, and reordering.

As shown in Figure 6.3, the proposed technique is a co-operative multi-stage ob-
ject layout transformation. Furthermore, it leverages the flexibility of Maxine VM to
expand object fields and the ability of ZSim to remap memory addresses during simu-
lation. Thus, in order to perform fields reordering and contraction by a factor of N, the
following three stages are performed: (1) all fields except those to be contracted are
expanded by a factor of N by Maxine VM, (2) ZSim contracts the heap by a factor of N
via address space remapping, and (3) ZSim remaps the offsets of the fields according
to the provided reordering map.

In the example of Figure 6.3, the original object layout has two reference fields,
ref.0 and ref.2, and two primitive fields, prim.1 and prim.3 (the leftmost object
layout). During simulation, it is morphed in three stages to the new layout (the right-
most object layout) which results in its fields being reordered, as described by the
mo reordering map, and its references being contracted by a factor of 2. In order to
perform such transformations, four parameters to three bijections are provided. The

6.2. INTEGRATION OF PLATFORM COMPONENTS AND NOVEL ... 103

first bijection fe from the Original to the Expanded space takes two arguments: 1 -
expansion factor for references, 2 - expansion factor for primitives. The transforma-
tion defined by this bijection is performed via changing layouts of objects in Maxine
VM. The fields reordering map mo is also modified according to this bijection. The
second bijection fc from the Expanded to the Contracted space takes the contrac-
tion factor as its argument. This transformation is performed in ZSim by dividing by
2 bases and offsets of memory access operations to objects. Furthermore, the fields
reordering map me is modified by dividing by 2 all to-offsets. The third bijection fr

from the Contracted to the Reordered space takes the reordering map mc from the
Contracted stage and performs fields reordering according to this map resulting in
the simulation of the desired layout. Heap and thread-local allocation buffer sizes are
also doubled in Maxine VM on the Expanded stage.

Another issue that should be considered during simulator/VM co-operative address
space morphing is expanded objects copying and initialisation. After expanding prim-
itives twice in Maxine VM, it will take twice as many dynamic instructions to perform
copying or initialisation than it would take in the case of the final layout presented
in the example. This issue is handled via filtering during simulation of execution of
object copying and initialisation which happens in a loop. In this loop, every second it-
eration is omitted from the timing simulation. The indication that loop filtering should
be enabled or disabled is performed by the VM via magic NOP operation in the loop’s
prologue and epilogue respectively. An example of such loop, with filtered iterations,
is shown in Listing 6.3.

// Sets value v for n words at pointer p.

void
setWords(Pointer p, int n, Word v) {

// loop prologue

zsimMagicOp(FILTER_LOOP_BEGIN, p);

for (int i = 0; i < n; i++) {

writeWord(p, i * WORD_SIZE, v);

}

// loop epilogue

zsimMagicOp(FILER_LOOP_END);

}

Listing 6.3: Example of loop iterations filtering.

In order to validate the proposed address space morphing simulation technique, the

104 CHAPTER 6. MAXSIM: A SIMULATION PLATFORM FOR MANAGED ...

following experiment was performed. Both references and primitives of heap objects
were expanded twice in the Maxine VM via the bijection fe(2,2). During simulation
in ZSim, memory accesses to expanded fields are projected back to original unex-
panded address space (by contracting twice) via the bijection fc(2), thus simulating
the original object layout. No fields reordering is performed via the bijection fr(∅).
The execution times were compared to the simulation of the original object layout,
and the measured execution time geometric mean difference was less than 1% for the
DaCapo benchmarks validating the proposed technique.

The simulation of objects’ fields reordering transformation via address space mor-
phing is driven by a configuration file passed to MaxSim in the Protocol Buffers for-
mat, presented in Listing 6.4. Fields reordering is described by the type descriptor
typeDesc to be simulated having a different layout. The objects to be simulated
as having an alternative layout are tagged by a transTag. On memory accesses to
objects tagged by a transTag, address remapping is done during simulation by us-
ing an associative array represented by fieldOffsetRemapPairs, replacing matching
fromOffset by toOffset during simulation. This technique allows fast experimenta-
tion with various objects layouts. It also allows having different layouts of objects of a
superclass and its subclasses so that the same field can have different offsets in them.

// Fields offset remapping pair.

message FieldOffsetRemapPair {

required int32 fromOffset = 1;

required int32 toOffset = 2;

}

// Data transformation information.

message DataTransInfo {

required string typeDesc = 1;

required int32 transTag = 2;

repeated FieldOffsetRemapPair fieldOffsetRemapPairs = 3;

}

Listing 6.4: Configuration file in the Protocol Buffer format driving fields reordering
transformation simulation.

Expansion and contraction of references and primitives via address space morph-
ing allow simulating ordinary object pointers compression [ATBC+04] in MaxSim.
Compression of object pointers [ATBC+04] can lead to significant improvements in

6.3. USE CASES 105

Name 4C 1CQ

Cores
type x86-64 Nehalem OOO core at 2.66 GHz
total 4 1

Prefetchers disabled
L1I caches 32KB, 4-way, LRU, 3-cycle latency
L1D caches 32KB, 8-way, LRU, 4-cycle latency
L2 caches 256KB, 8-way, LRU, 6-cycle latency

L3 cache
type 16-way, hashed, 30-cycle latency
size 8MB 2MB

Memory controller 1, 3 DDR3 channels, 47-cycle latency
DRAM 3GB, DDR3-1066, 1GB DIMM per channel

Table 6.1: ZSim configurations.

memory utilisation, and it is used in the 64-bit JVM implementations [Ope17]. An
example of another transformation which could be implemented and simulated via the
presented technique is a replacement of precisions and sizes of certain fields to differ-
ent ones (long to int or double to float). To summarise, address space morphing allows
to evaluate the performance impact of changing the order and/or size of fields.

6.3 Use Cases

This section will present two use cases of MaxSim. The first one regards the microar-
chitectural characterisation of the DaCapo benchmarks. The second use-case show-
cases simulation of the architectural extensions related to the retrieval of array lengths
stored in pointer tags.

The parameters of the simulated systems referenced in the use cases are described
in Table 6.1. The 4C configuration represents the Intel quad-core Nehalem microarchi-
tecture. Furthermore, the 1CQ configuration represents the single-core CPU with just a
Quarter of the 8MB Last Level Cache (LLC). The 1CQ configuration was used in order
to simulate the case when only a quarter of the available 4C resources is available to
the workload (if the LLC could be partitioned).

6.3.1 Characterisation of the DaCapo Benchmarks

Workload characterisation is crucial for performance analysis of both HW and SW.
MaxSim was able to simulate the whole set of the DaCapo-9.12-bach benchmarks in
less than a day, with the results depicted in Figures 6.4a and 6.4b. Figure 6.4a shows the

106 CHAPTER 6. MAXSIM: A SIMULATION PLATFORM FOR MANAGED ...

(a) L2 and L3 Load Cache Misses Per Kilo
Instruction (LCMPKI)

(b) Instructions Per Clock (IPC) and
Consumed Power (CP)

Figure 6.4: Characterisation of the DaCapo-9.12-bach benchmarks on MaxSim.

6.3. USE CASES 107

L2 and L3 Load Cache Misses Per Kilo Instruction (LCMPKI) for both configurations.
As shown, the majority of the DaCapo benchmarks are not cache-miss-intensive, which
corresponds with the previous findings [IN12]. Figure 6.4b contains the information on
Instructions Per Clock (IPC) and Consumed Power (CP). The geometric mean IPC is
close to 1.4, while the CP is between 10 and 60 watts depending on the configuration.
Hatched parts of the bars in Figures 6.4a and 6.4b represent parts of the presented
metrics related to Garbage Collection (GC).

6.3.2 Evaluation of the HW/SW Co-Designed Optimisation Related
to Array Length Encoding into Array Object Pointers’ Tags

Implementations of managed languages associate array lengths with array objects al-
lowing them to perform array bound checks at runtime. Moreover, outside the scope of
managed languages, SW-based integrity checking packages may retrieve array lengths
before memory access operations to verify that the accessed addresses are within array
bounds. A common way of storing an array length is inside an array object at some
constant offset from a base pointer. In Maxine VM, array lengths are stored at offset
0x10 of an array object and can be in the range of [0;231−1].

Having 16-bit pointer tags, it is possible to store a range of array lengths [0;216−2].
The value 216−1 serves as a Not an Array Length (NaAL) indicator. The retrieval of
an array length can be performed via the method shown in Listing 6.5. This code can
be emitted in 5 instructions of 19 bytes size with an average execution height of 4.5
instructions. On the contrary, the baseline scheme utilises just one instruction of four
bytes size (load by objectAddress at offset 0x10).

// Retrieving array length. // ! x86-64 GNU Assembler

inline int // ! %rdi = objectAddress

retrieveArrayLength(Address_t objectAddress) { // movq %rdi, %rax

TAG_t tag = extractTAG(objectAddress) ; // shrq $48, %rax

if (tag != NaAL) { // cmpq $65535, %rax

return (int) tag ; // jne .L1

} //

return * ((int *) (objectAddress + 0x10)) ; // movq 16(%rdi), %rax

} // .L1:

// ! array length in %rax

Listing 6.5: Array length retrieval with tagged pointers.

108 CHAPTER 6. MAXSIM: A SIMULATION PLATFORM FOR MANAGED ...

Base

Offset

AGU

!= NaAL
&

== 0x10
isAL

tagBits

1

1

1

addressBits

offBits

AL addressBits

AGU-LSU
Extensions

AL

Part
of
LSU

Data
Bus

dataBits

Loaded
Value32

32 M
U
L
T
I
P
L
E
X
E
R

32
0x0

Figure 6.5: Extensions to Address Generation Unit (AGU) and Load Store Unit
(LSU) for array length retrieval from tagged pointers.

In order to perform the whole code snippet in just one instruction, corresponding
to the load instruction preceding the return statement in Listing 6.5, the HW extension
shown in Figure 6.5 is proposed. The presented HW extension relies on the invariant,
preserved by the VM, that the array length field of an array object is always accessed
via a [tag:base+offset] addressing mode. Furthermore, the ArrayLengthTagging
scheme has to be enabled. In this scheme, all non-array objects and arrays with lengths
greater than 216−2 are tagged with the NaAL tag, while all the other array objects are
tagged with their lengths. Thus, when an array length is accessed, the aforementioned
tagged address pattern can be identified by the Address Generation Unit (AGU) in the
proposed HW extension. Upon detecting an access to an array length field, which is
also encoded in a pointer tag, the isAL signal is set. Consequently, the value AL from
the tag bypasses the Load-Store Unit (LSU) on its way to a consumer.

The values of the matching offset (0x10) and the matching tag (NaAL) for the pre-
sented AGU extension can be fixed or variable. In the latter case, these values can be
set via a control register, making this scheme more general. If an array length is loaded
from a pointer tag then one cycle latency is assumed, which is modelled in the ZSim
simulator.

The proposed HW/SW co-designed optimisation is evaluated on the DaCapo-9.12-
bach benchmarks on the 1CQ and 4C ZSim models of Table 6.1. Figure 6.6 presents the
results for L1 Data Cache Loads (L1DCL) and Dynamic Energy (DE) reductions. The
proposed extensions to the AGU and the LSU were not added in the power estimation
model as the energy overhead of these functional units extensions is significantly less

6.4. RELATED WORK 109

Figure 6.6: L1 Data Cache Loads (L1DCL) and Dynamic Energy (DE) Reductions on
the DaCapo-9.12-bach benchmarks after employing the HW/SW co-designed

optimisation related to array length tagging.

than the energy savings from the reduction of memory traffic. Although no significant
performance gains were observed, the proposed technique resulted in up to 4% and 2%
geometric mean dynamic energy reduction, and up to 14% and 7% geometric mean L1
data cache loads reduction.

6.4 Related Work

The closest platform [Jik14] allowing user-level simulation of managed workloads is
based on the Sniper multi-core simulator [CHE11] and the Jikes RVM [AAC+99]. The
main limitation of this platform against MaxSim, is that it only supports 32-bit Jikes
RVM and is not capable of running the full set of the DaCapo benchmarks. Regarding
the simulator, Sniper uses the instruction-window centric Out-Of-Order (OOO) core
model [CHE+14] with an average relative error of 11% for single-core and 21% for
eight-core simulations on the SPLASH-2 benchmarks [WOT+95]. It is very close to
ZSim’s average relative error, which on a selection of tests from PARSEC [BKSL08],
SPLASH-2, and SPEC OMP2001 [ADE+01] is 10% for single-core and 11% for six-
core simulations. The tandem of Sniper and Jikes was used to explore a number of
HW/SW co-designed techniques. These techniques improve memory bandwidth and
reduce power and energy consumption by preventing write backs of cache lines con-
taining parts of dead objects and by preventing fetches-on-writes while initialising
cache lines containing parts of newly allocated objects with zeros [SHB+14].

The platform described in [WMGW06] is based on the Hotspot JVM and the full-
system Simics simulator [MCE+02]. It does not require any changes to the Hotspot

110 CHAPTER 6. MAXSIM: A SIMULATION PLATFORM FOR MANAGED ...

JVM and it can be very helpful in non-disruptive simulation-based performance anal-
ysis. It has high visibility of the Java high-level information (with the exception of
thread and stack state). The design goal of that platform was to decouple it as much
as possible from the concrete JVM implementation via a clear interface. The MaxSim
platform, on the contrary, followed the co-design approach of the VM and the simula-
tor development to facilitate extra functionality.

The ZSim simulator is written in C++, and communication of high-level informa-
tion with the Maxine VM happens via Protocol Buffers. If the simulator was written
in Java, the communication between the two components could have happened via re-
flection. The simulator called Tejas [SKK+15] is written in Java and can run on any
platform the Java VM can execute. However, it has two limitations: firstly, it is a
trace-driven simulator, and secondly, it uses an intermediate virtual ISA, which can
introduce inaccuracy.

The Virtual Performance Analyzer (VPA) framework [THC+14] follows the ap-
proach of partial selective simulation of HW-SW interaction. In this framework, a
cycle-approximate model is used. The motivation of this approach is the observation
that I/O operations are sensitive to delays, and a simulation speed above 10 MIPS
should be preserved not to alter the behaviour of the program. The ZSim simulator
solves this problem via the lightweight user-level virtualisation technique, achieving
for the OOO model an average simulation speed of 12 MIPS (in the experiments car-
ried out for this chapter).

Introspection of target agnostic JIT compilation in the Smalltalk VM on top of
gem5 [Shi15] was shown to be useful for debugging and power/performance analysis.
However, gem5 has a low simulation speed of 200 KIPS. Moreover, with Graal [Gra16]
and Truffle [WW12], it could be possible to run Smalltalk and other managed lan-
guages on the presented platform in future.

6.5 Conclusions

In this chapter, the MaxSim platform was presented. It is a novel and open-source ex-
perimental platform for HW/SW co-design research and characterisation of managed
workloads. MaxSim is based on the state-of-the-art Maxine VM, the ZSim microar-
chitectural simulator, and the McPAT power, area, and timing modelling framework.
MaxSim features the simulation of 16-bit-tagged pointers, which are utilised for: (1)

6.5. CONCLUSIONS 111

low-intrusive memory access profiling, (2) tagged pointers modelling on x86-64 ar-
chitectures, and (3) experimenting with novel HW/SW co-designed optimisations by
extending the semantics of memory access operations via pointer tagging. In addi-
tion, the address-space morphing technique was presented, which allows modelling
and simulation of complex software changes, such as compressed object pointers op-
timisation and other data layout transformations. MaxSim’s capabilities were show-
cased by: (1) performing an up-to-date microarchitectural characterisation of the full
set of the DaCapo benchmarks in less than a day, and (2) presenting a novel HW/SW
co-designed optimisation that performs dynamic load elimination for array length re-
trieval achieving up to 14% and 7% geometric mean L1 data cache loads reduction and
up to 4% and 2% geometric mean dynamic energy reduction. MaxSim is available at
https://github.com/arodchen/MaxSim released as free software. This platform is
used in the next chapter to explore opportunities for type information elimination from
objects on architectures with tagged pointers support.

https://github.com/arodchen/MaxSim

Chapter 7

Type Information Elimination from
Objects on Architectures with
Tagged Pointers Support

Implementations of object-oriented programming languages associate type informa-
tion with each object to perform various runtime tasks such as dynamic dispatch, type
introspection, and reflection. A common means of storing such relation is by insert-
ing a pointer to the associated type information into every object. Such an approach,
however, introduces memory and performance overheads when compared with non-
object-oriented languages.

Recent 64-bit computer architectures have added support for tagged pointers by ig-
noring a number of bits – tag – of memory addresses during memory access operations
and utilise them for other purposes; mainly security. This chapter presents the first in-
vestigation into how this hardware support can be exploited by a Java Virtual Machine
to remove type information from objects. In addition, novel hardware extensions are
proposed to the address generation and load-store units to achieve low-overhead type
information retrieval and tagged object pointers compression-decompression.

The evaluation has been conducted using the MaxSim platform presented in the
previous chapter. The results, across all the DaCapo benchmark suite, SLAMBench,
pseudo-SPECjbb2005 and GraphChi-PR executed to completion, show up to 26% and
10% geometric mean heap space savings, up to 50% and 12% geometric mean dy-
namic DRAM energy reduction, and up to 49% and 3% geometric mean execution
time reduction with no significant performance regressions. It is also observed that
utilisation of eight-bit tags provides 99% of the achievable heap space savings.

112

7.1. INTRODUCTION 113

The practical goal of this research is to improve memory utilisation, performance
and energy efficiency of HLL VM implementations, and the result can be measured
quantitatively as an improvement in these characteristics. The material in this chapter
was published in the IEEE Transaction of Computers 2017 journal [RKN+18].

7.1 Introduction

Managed runtime environments are extensively used in many computing domains
ranging from mobile devices to cloud servers. Managed object-oriented languages
have been employed not only in application and middleware domains but also in system
programming for the development of research prototypes such as the Maxine Virtual

Machine (VM) [WHVDV+13, KCR+17], Jikes RVM [AAC+99], and the Singularity
OS [LH10].

Implementations of managed object-oriented languages associate object type infor-
mation with each object by inserting a pointer to type information into every object as
part of its object header. However such an approach, prevalent for most object-oriented
languages, increases memory utilisation (and can introduce performance overheads)
when compared with non-object-oriented languages.

At the same time, modern 64-bit computer architectures have added support for
tagged pointers. In such architectures, a number of bits – tag – of memory addresses
are ignored during memory access operations and utilised for other purposes; mainly
security. Furthermore, they provide less than 64-bit addressable memory space, leaving
a number of bits in object pointers for useful purposes.

In this chapter, the first investigation is presented into how tagged pointers in 64-bit
architectures can be exploited by an object-oriented language implementation to re-
move a pointer to type information from objects. Besides, novel hardware extensions
to the address generation and load-store units are proposed to achieve low-overhead
type information retrieval and tagged object pointers compression-decompression, re-
spectively. In other words, a Hardware (HW)/Software (SW) co-designed technique
is explored in the context of the Java programming language, although the proposed
technique is applicable to other managed and unmanaged object-oriented languages.

The key contributions of the work described in this chapter are:

• A technique of type information elimination from object headers on architec-
tures with tagged pointers support. Two options are explored which are (1) a

114 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...

SW-only specialisation and (2) a HW/SW co-designed solution that yields the
best results.

• Novel backward-compatible HW extensions (1) to the Address Generation

Unit (AGU) to efficiently retrieve type information for objects with type infor-
mation elimination enabled (optimised) and for objects without (un-optimised),
and (2) to the Load-Store Unit (LSU) to efficiently handle compression and de-
compression of tagged object pointers.

• Demonstration of the MaxSim experimental platform for HW/SW co-design
space exploration on the basis of the ZSim [SK13] microarchitectural simulator,
the Maxine VM, and the McPAT [LAS+13] power, area, and timing modelling
framework.

• The evaluation of the proposed technique in the context of the MaxSim plat-
form against the DaCapo-9.12-bach [BGH+06] benchmark suite, SLAMBench
[NBZ+15], pseudo-SPECjbb2005 [PJB05] and GraphChi-PR [KBG12] on sev-
eral HW models achieving up to 26% and 10% geometric mean heap space sav-
ings, up to 50% and 12% geometric mean Dynamic Random-Access Memory

(DRAM) dynamic energy reduction, and up to 49% and 3% geometric mean
execution time reduction with no significant regressions in these characteristics.

The chapter is organised as follows: Sections 7.2 and 7.3 present a survey of how
type information is associated with objects in modern Java Virtual Machine (JVM)
implementations, as well as how tagged pointer support works in modern architectures.
Section 7.4 details the proposed technique along with the accompanying changes to
the JVM implementation. Section 7.5 describes the proposed architectural support for
retrieval of type information with extensions to the AGU and for tagged pointers load-
decompression and store-compression with extensions to the LSU. Section 7.6 and 7.7
describe the experimental framework and methodology used in this work along with
the obtained results, respectively. Finally, Section 7.8 discusses previous work on type
information elimination, while Section 7.9 summarises this chapter.

7.2. ASSOCIATION OF OBJECTS WITH CLASS INFORMATION IN JVMS 115

Acronym Full name Description
CI Class The entity that entails the type information of an object.

Information CI normally contains some metadata for:
(1) dynamic dispatch (virtual method table),
(2) classification (pointer to supertype),
(3) object layout description (size, fields information),
and (4) other implementation-dependent metadata.

CIP Class A raw pointer to (address of) the CI. Typically stored in
Information extra words preserved for each object before its content.
Pointer

CID Class A compact non-negative integer identifier of a CI.
Identifier

Table 7.1: Glossary of terminology.

7.2 Association of Objects with Class Information in
JVMs

In this section, it is explained how type information is typically associated with objects
in a number of modern industrial-strength and research JVMs. Although the focus of
this chapter is on type information elimination from object headers in the context of
the JVM implementation and the Java language, it is important to mention that the
proposed ideas are applicable to C++ and other non-managed and managed object-
oriented languages with runtime type information associated with objects. Hereafter,
the terms Class Information (CI), Class Information Pointer (CIP), and Class Identifier

(CID) will be used, whose descriptions are presented in Table 7.1.

Figure 7.1 presents the relationship between an object, its pointer, and its associated
CI. When a new object is allocated on the heap, its pointer is stored on the stack. When
an object tests if it is an instance of some class, type introspection happens via data
stored in the associated CI, which is referenced by the CIP stored in the object. Aside
from the CIP and the fields of the object’s class, an object reserves some extra space for
special miscellaneous data (MISC) that can be associated with it during its lifetime.

The small survey below concerns only 64-bit JVMs since, to the best of the author’s
knowledge, there are no modern 32-bit systems that support tagged pointers. The
layouts of object headers, to be discussed below, are presented in Figure 7.2.

HotSpot. On 64-bit systems, the first eight bytes of an object are dedicated to the
“mark word”. This word is multi-purpose and is currently used for hashing, locking,
and Garbage Collection (GC) information. The second eight bytes of an object contain

116 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...}}Object pointer Object Class information
obj CIP MISC foo

Object obj = new Foo();
...
if (obj instanceof Foo) { ... }

class Foo {
 public long foo;
}

Stack: Heap:Stack:

Source code:

CI}}
pointer miscellaneous

mixed
Classes of data:

primitive

Figure 7.1: Object and class information association in VMs.

HotSpot

HotSpot CIPMISC

(-XX:+UseCompressedClassPointers)

CIP MISCZing

Jikes, Maxine CIP MISC

MISC CIP

offset 0 4 8 12 16

pointer
miscellaneous

Classes of data:

Figure 7.2: Layout of object headers in various 64-bit JVMs.

the “klass pointer” (essentially a CIP), which can be reduced to four bytes when the
flag -XX:+UseCompressedClassPointers is used (enabled by default in OpenJDK
8 [Ope17]).

Zing. Azul’s Zing uses only eight bytes as an object header, four of which are
dedicated to a compressed CIP [Cli10].

Maxine. The meta-circular research Maxine VM, written mostly in Java, uses two
words as an object header in the default object layout scheme. The first eight bytes
contain the reference to the “hub” (essentially a CIP) or a forwarding pointer during
copying GC. The second eight bytes are dedicated to the MISC word responsible for
object locking and hashing.

Jikes. The meta-circular 64-bit Jikes RVM (which is also written mostly in Java),
like Maxine, has a two-word object header layout. The main difference is that a for-
warding pointer is stored in the second word.

From the JVM descriptions, it can be noticed that the majority of production-
quality JVMs use CIP compression in order to minimise the memory footprint of
objects. Fields of objects in the described VMs are located at positive offsets after
their headers (by default). Although it is possible to lay out an object in memory in

7.3. ARCHITECTURAL SUPPORT FOR TAGGED POINTERS 117

fragments [CDL99], in all other sections, without loss of generality, it is assumed that
objects are allocated in contiguous blocks of memory.

7.3 Architectural Support for Tagged Pointers

This section provides an overview of the latest computer architectures that support
tagged pointers and succinctly how they implement this support. The shift from 32-bit
computing to 64-bit has started from server and desktop deployments and continued
to embedded computing after the introduction of the ARM 64-bit processor family.
Current 64-bit architectures, normally, provide less than 64-bit addressable memory
space leaving a number of bits of an address unused. Dealing with these unused bits
is architecture-dependent, and the following paragraphs describe how several modern
architectures handle them.

AArch64. ARM’s latest 64-bit AArch64 architecture provides support for tagged
pointers. Virtual address tagging in AArch64 is enabled by setting the Top Byte

Ignore field in the TCR_ELn control register. In this case, the high eight bits are ig-
nored during addressing and can be utilised by the developers in an unmandated way.
However, hints for exploitation in object-oriented languages are given in the associated
programmer’s guide [ARM15]. The most recent ARMv8.3-A version of the architec-
ture [Bra16] features pointer authentication to prevent unauthorised memory accesses
and associated exploits [Poi17].

Sparc M7. Oracle’s Sparc M7 architecture also provides tagged pointers support.
Sparc M7 supports virtual address masking, allowing the use of 8, 16, 24 or 32-bit
metadata. This metadata is, consequently, ignored by the underlying HW during ad-
dressing [Phi14, AJK+15].

x86-64. In current Intel’s and AMD’s x86-64 architectures virtual addressing is
limited to 48 bits, while the high 16 bits of the virtual address are required to replicate
bit 47. Consequently, tagged addressing is not supported on such architectures [Int11]
(Sect. 3.3.7.1). However, the property that 16 bits are not effectively used can be
utilised during simulation, which was showcased in the previous chapter. In future
generations of processors, virtual addressing will be limited to 57 bits [5-L16].

From the architectural descriptions, it can be noticed that modern off-the-shelf
CPUs offer tagged pointer support. Tagged pointers are ideal candidates for storing
CIDs in tags, thus eliminating CIPs from frequently allocated objects.

118 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...

7.4 Class Information Handling via Tagged Pointers

This section describes how tagged pointers can be utilised to associate object pointers
with CIs, what additional data structures are required in a VM, and how objects with
eliminated CIPs can be handled by a VM.

7.4.1 Considerations on CIP Placement Inside an Object and Reuse
of CIP Location

The main benefit of CIP elimination from objects is memory space saving, so any reuse
of the CIP location should be disabled to take advantage of CIP elimination. Among
the VMs described in Section 7.2, only the Maxine VM reuses it, as a forwarding
pointer is stored in the CIP location of an object during GC. The way to disable the
reuse of the CIP location in the Maxine VM will be described in Section 7.6.1.

The other important factor for benefiting from CIP elimination is CIP placement
inside the object and the memory management mechanism used in the VM. If free
memory chunks are managed in the way of linked lists of fixed-size blocks and utilisa-
tion of memory blocks of the size of CIP is high, then the technique can be oblivious
to CIP placement. However, if objects are allocated in thread-local allocation buffers
by returning and post-incrementing a pointer to free memory space by the size of a
recently allocated object1, then a CIP should be placed on the boundary of the allo-
cated block of memory for an object. Among the VMs described in Section 7.2, only
the HotSpot VM does not meet this requirement. However, as the implementations
of other VMs show, there are no fundamental restrictions on the CIP placement, and
it can be placed at the beginning of the allocated block of memory for an object. In
all other sections, without loss of generality, it is assumed that CIP is located at the
beginning of the allocated block of memory for an object.

7.4.2 Encoding CIDs in Tagged Pointers

The number of CIDs that can be encoded in a tagged pointer depends on the number of
bits dedicated for that purpose. The proposed technique can utilise a variable number
of tag bits from 0 to n. If all tag bits are used for security or addressing purposes and
no bits are left for encoding CIDs, a VM, implementing the proposed technique, does

1This technique is also known as a bump pointer allocation, and it is widely used in JVM implemen-
tations.

7.4. CLASS INFORMATION HANDLING VIA TAGGED POINTERS 119

CIPn+1 MISCi Fieldsi

CIPn

MISCi+1 Fieldsi+1

Objects }} }}Tagged object pointers Pi 0x0

CIPArray

Pi+1 CIDn

CIP1 CIPn-1 CIPnCIP2
...

CIs CI1 CIn

non-eliminated parts
eliminated parts

...

...

pointer miscellaneous
mixed

Classes of data:
eliminated

Objecti
Objecti+1

Figure 7.3: Scheme of encoding CIDs in tagged pointers and CIP elimination.

not have to be re-implemented. In other words, the proposed technique can be added
to existing VMs without breaking backwards compatibility.

For n bits dedicated for storing CIDs in a tag, the range of CIDs is [0;2n−1] where
UNSPECIFIED_CID = 0 represents any CI. When an object is allocated, the pointer is
tagged by its respective CID. If the CID is not equal to UNSPECIFIED_CID, its CIP is
not stored alongside the object (i.e. in the heap). Instead, the CID is directly encoded
in the object pointer. The CI for specified CIDs can be stored directly in an array
with a fixed element size, or alternatively, CIPs can be stored in the array. The sec-
ond option is used because CIs have variable sizes while the cost of performing array
modifications with CIPs is lower than in the first option.

The scheme of encoding CIDs in tagged pointers and enabling CIP elimination
is depicted in Figure 7.3. There are two tagged object pointers in Figure 7.3: Pi and
Pi+1 pointing to Ob jecti and Ob jecti+1, respectively. Pointer Pi has UNSPECIFIED_CID
(0x0) in the tag indicating that CIPn+1 is stored in the object, while pointer Pi+1 has
CIDn in the tag indicating that CIPn is stored in CIPArray, and so it is eliminated from
Ob jecti+1. In this case, Pi+1 points to the memory location where the beginning of the
object would have been if CIPn was not eliminated. Thus, the offsets to the same fields
in objects of the same class (or superclass) with and without eliminated CIPs will stay
the same.

120 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...

7.4.3 CIPs Retrieval from Tagged Pointers

From the above description, the retrieval of a CIP from a given tagged object pointer
(objectAddress) can be performed via the method retrieveCIP shown in List-
ing 7.1. Depending on the available bit extraction instructions of a given architecture
and whether the available bits are contiguous, the method extractCID can result in a
different number of instructions. For the rest of the chapter, it is assumed that CID bits
are contiguous high-order bits of the tag, and tag bits are contiguous high-order bits of
the tagged pointer. So, one shift instruction for the method extractCID can be used.

A check of whether the extracted CID is unspecified is performed. If cid is un-
specified, CIP is loaded by an object address at a constant offset CIP_OFFSET in one
instruction. Else, if cid is specified, the CIP is loaded from CIPArray with one instruc-
tion. In this work, CIP_OFFSET = 0 was used. On architectures without predication,
two jumps (conditional and unconditional) will be emitted.

The code in Listing 7.1 is compiled to seven static instructions of 25 bytes size with
an average dynamic execution height of 5.5 instructions on x86-64. By contrast, the
JVMs described in Section 7.2 utilise just one instruction (load by objectAddress at
offset CIP_OFFSET) of three bytes size on x86-64 to retrieve a CIP. Regarding storing
a CIP in an object, the similar code snippet is used with the exception of omitting the
store to CIPArray if cid is not unspecified.

// Array of Class Information Pointers // ! x86-64 GNU Assembler

CIP_t CIPArray[1 « CID_BITS_NUM]; //

//

// Retrieving CIP // ! %rdi = objectAddress

CIP_t retrieveCIP(Address_t objectAddress) { // movq %rdi, %rax

CID_t cid = extractCID(objectAddress) ; // shrq $48, %rax

CIP_t res ; // testw %ax, %ax

if (cid == UNSPECIFIED_CID) { // jne .L1

res = * ((CIP_t *) // movq (%rdi) , %rax

(objectAddress + CIP_OFFSET)); // jmp .L2

} else { // .L1:

res = CIPArray[cid]; // movq CIPArray(,%rax,8) , %rax

} // .L2:

return res ; // ! res = %rax

} //

Listing 7.1: CIP retrieval algorithm from tagged pointers.

7.4. CLASS INFORMATION HANDLING VIA TAGGED POINTERS 121

7.4.4 Heap Traversal During Copying GC

When CIPs are eliminated from objects, certain changes to the copying GC schemes
have to be applied. The problem is that traversal of copied objects in the copying
GC schemes is performed via pointer arithmetic (untagged pointers), and CIPs in the
objects are used to find the references inside the copied objects and their sizes. Thus,
when CIPs are eliminated, the association of copied objects with their CIs should be
maintained via an additional data structure. It is important to note that the proposed
changes to the copying GC schemes do not require additional memory allocation.

The necessary changes are introduced in the context of the serial stop-the-world
semi-space copying GC which employs Cheney’s algorithm [Che70]. Modern genera-
tional GC algorithms employ a copying scheme based on Cheney’s breadth-first copy-
ing GC scheme for frequent young generation collections, and the proposed changes
can be applied to a wider spectrum of copying collectors (including parallel).

Cheney’s Scheme Overview and Its Reliance on CI

Overview. In Cheney’s scheme, objects are allocated in the “from-space”, and upon
a GC invocation, live objects are copied to the “to-space”. Upon completion, the two
spaces are swapped, and allocation continues in the “from-space”. During a GC invo-
cation, all threads stop at a safepoint where an initial set of live heap references can
be retrieved. The initial set of live objects (typically includes objects whose references
reside on the stack, in thread-local variables, etc.) is known as root set. When objects
from the root set are copied to the “to-space”, the GC threads start traversing the ob-
jects in the “to-space” in order to copy all the objects referenced by them. This iterative
process is repeated until all live objects are copied from the “from-space”. Essentially
it is a breadth-first traversal of all live objects.

Reliance on CI. As the GC thread starts scanning the copied objects of the “to-
space”, it usually uses the CIs in order to find both the reference maps of the processed
objects as well as their sizes in order to continue its traversal on subsequent objects.
In the proposed CIP elimination scheme, the GC thread which traverses the “to-space”
objects does not have CIPs in order to extract CIs during execution. Hence, a mecha-
nism to maintain the mapping between copied objects and their CIs is required.

Proposed Changes

Overview. A scheme is proposed in which CIDs of the copied objects are stored in the

122 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...

Next pointer0

Forwarding pointer0

...
...

...... ...

...

“from-space”

...

Forwarding pointer1

CIDn+1

CID0CID1

CIDn

Tag0

Next pointer1

 Container0

 Container1

Tag1

CIDn-1

“to-space”

MISC1

Fields1

MISCn-1

Fieldsn-1

MISCn

Fieldsn

MISCn+1

Fieldsn+1

...

(scale)

...

(scale)

 Object0

 Object1

 Objectn-1

 Objectn

 Objectn+1

CIP0

CIP1

MISC0

CIPn-1

CIPn

CIPn+1

Fields0

...

... ...

...

...

...
...

...

Containers
non-eliminated

parts
eliminated

parts

pointer miscellaneous
mixed

Classes of data:
eliminated

Live objects
(cells of memory which contained

copied live objects)

Figure 7.4: List of CIDs in the “from-space” during GC
representing list of copied objects in “to-space”.

“dead space” created upon the evacuation of live objects from the “from-space”. The
cells of memory in the “from-space” which contained copied live objects will be re-
ferred to as containers. The outline of the proposed scheme is depicted in Figure 7.42.

Copying objects from the “from-space”. When objects are copied from the
“from-space” to the “to-space”, a tagged forwarding pointer is installed in the MISC
words of the evacuated objects in the “from-space”. The role of the forwarding pointer
during GC is to indicate whether the object has been evacuated and where its new loca-
tion is. Containers are used to store CIDs of evacuated objects until they are full (e.g.

[CID0;CIDn] in Container0), forming a singly linked list (e.g. Container0[CID0;CIDn]→
Container1[CIDn+1; ...]→ ...). Furthermore, the space from an evacuated object should
meet a minimum necessary container size requirement to be used in the list: the space
should be enough to accommodate a tagged forwarding pointer, an untagged pointer
to the next container, and at least one CID.

Traversing objects in the “to-space”. When GC roots are copied from the “from-
space” to the “to-space”, the GC thread starts traversing linearly the objects that have
just been copied there. As described before, the pointers to these objects are calculated

2Scales of “from-space” and “to-space” are different, so the sizes of Container0 and Ob ject0 are
equal.

7.4. CLASS INFORMATION HANDLING VIA TAGGED POINTERS 123

via pointer arithmetic during traversal and, therefore, the GC thread has to retrieve their
CIs by reading the CIDs from the list of CIDs in the “from-space”. In order to achieve
that, the GC thread maintains a CID list iterator, which consists of an address to the
current container and an offset inside it. When a GC thread traverses an object in the
“to-space”, it reads its CID using this iterator. By iterating the objects of the “to-space”
and the list of CIDs synchronously currently traversed objects and their CIDs can be
associated.

Traversing the list of CIDs in the “from-space”. The containers are traversed
with untagged pointers. Initially, when the first container (Container0) is traversed,
the offset of the iterator is reset to the size of the container minus the size of the CID.
The size of the container can be found by using the CID extracted from Tag0. After
the initial offset is set to the offset of CID0, the iterator will start traversing the CIDs
backwards by decrementing the offset every time by CID size. When the CID list
iterator points to CIDn−1, which is a constant offset from the beginning of a container,
it is known that the point is reached where there is only one CIDn left in the container.
Therefore, when Ob jectn is traversed, the iterator offset will be set to the offset of
CIDn. Since the next container pointer Next pointer0 is untagged, space is left to
save CIDn. When Ob jectn+1 is traversed, the iterator pointer is set to Container1, as
well as the iterator offset is set to the offset of CIDn+1, and the process is repeated for
that container.

Special cases. Regarding the first container, when GC is triggered, the free space
from the “from-space” is used, if it is equal to or greater than the minimum necessary
container size. In order to guarantee that there will be enough space to store the list
of CIDs, the space needed conservatively for GC is accounted for during allocation.
Small objects, not meeting the minimum necessary container size requirement, are
counted during allocation, and their total number multiplied by the CID size is sub-
tracted from the maximum heap space occupied before triggering a GC. Such small
objects are quite rare in practice and do not reduce significantly the effective heap us-
age. For instance, in 64-bit VMs in which objects are 8-byte aligned and the size of
the MISC word is 8 bytes (all the VMs described in Section 7.2 with the exception of
Zing), only objects that contain just one MISC word do not meet the minimum neces-
sary container size requirement (e.g. objects of class java.lang.Object).

To summarise, the benefits of the proposed scheme are: (1) re-use of existing “dead

124 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...

space” requiring no off-heap memory allocation to save CIDs, (2) exploitation of tem-
poral locality of cache lines related to dead objects, (3) low-overhead traversal, by
employing a light-weight heuristic during object evacuation which utilises only large
evacuated objects for containers.

7.5 Architectural Support

7.5.1 CIP Retrieval

In Section 7.4 the CIP retrieval from tagged pointers has been described (Listing 7.1).
As shown in Section 7.7, the SW-only scheme of CIP retrieval from tagged pointers can
lead to degradation of the execution time due to the extra latency introduced and code
footprint increase. Novel architectural support to accelerate CIP retrieval is proposed
to avoid performance regressions, as well as to minimise the modifications needed to
adopt the CIP elimination scheme in existing VMs.

The scheme relies on the property that memory accesses to object fields are per-
formed by using a two-or-more operand addressing mode (in the form of [Base +

Offset]) 3. Consequently, CIPs should always be accessed by addresses in the form
of [objectAddress + CIP_OFFSET]. If more than two operands are used during ad-
dressing, one of them should represent the base address while the rest should represent
the offset. This pattern, assuming it is preserved by the VM, can be identified by HW
and handled accordingly depending on the CID value encoded in the tag.

The goal of the HW extension is to perform the CIP retrieval presented in List-
ing 7.1 simply by executing a single load instruction at an object address plus a constant
offset CIP_OFFSET, as it happens in the VMs described in Section 7.2. The aforemen-
tioned address pattern can be identified by the Address Generation Unit (AGU) in the
proposed AGU extension functionality presented in Figure 7.5. In this scheme, the
functional block of an AGU of a given processor is presented, similarly to [MAKB03].
The input to the AGU is represented by two operands: Base and Offset. The extended
AGU has an extra operand, Class Information Pointer Array Address (CIPAA), which is
stored in a non-frequently changed control register. The control register has the same
value for all AGUs, in case a core has several AGUs. The CIPAA control register holds
the address of CIPArray and it is defined by the VM. Furthermore, it is required to be
aligned to its size (= 2n) in order to calculate the effective address of the retrieved CIP

3This addressing mode is supported by the majority of architectures, and this property has to be
preserved by the VM.

7.5. ARCHITECTURAL SUPPORT 125

Base

Offset

AGU

CIPAA

M
U
L
T
I
P
L
E
X
E
R

!= 0x0

!= 0x0

&== 0x0

Address

isCIPAA

cidBits

1

1

1

1

addressBits

offBits

cipaaBits

CID

addressBits
0x0

AGU
Extensions

Figure 7.5: Extensions to Address Generation Unit (AGU) for CIPs retrieval.

location just by combining the CID at an offset shifted by log2(sizeof(CIP_t)) bits
and with zeros before this offset.

The output address depends on the “is Class Information Pointer Array Access”

(isCIPAA) signal. Since both addresses from the AGU block and the extension (com-
biner) can be generated in parallel, the proposed scheme adds no significant delays to
the address generation. The CIPAA is stored in a special purpose control register and
can be read only by the AGU. When the CIPAA is zero, the extended address generation
can be fully deactivated. When the CID is equal to UNSPECIFIED_CID or the Offset

is different from CIP_OFFSET, then generation happens in the unextended way. Both
UNSPECIFIED_CID and CIP_OFFSET are represented by all zeroes in the scheme for
AGU extension simplicity, although they can be set by the control register as well.

7.5.2 Tagged Pointers Compression-Decompression

To reduce the memory footprint of objects, 64-bit VMs apply the object pointers com-
pression optimisation [ATBC+04]. Depending on the heap size and object alignment,
the possible values of object pointers can be represented by 32 or fewer bits, and in this
case any 64-bit object pointer can be stored in a 32-bit location. An untagged object
pointer compression and decompression can require shift and/or add operations or no
extra operations depending on the heap size and base address of the heap. However,
tagged pointers compression can require extra bit manipulation instructions to gather
and scatter tag and non-tag object pointer bits. To avoid this overhead, the following
Load-Store Unit (LSU) extension is proposed.

126 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...

M
U
L
T
I
P
L
E
X
E
R

64

64

64

64

64

30
2

28
4

26
6

64

Part of
LSU

Loaded
Value

Sign-Zero
Ext. Unit

Data
Bus

OPC.CD

CDS

32

2

1

dataBits

LSU
Extensions

split(30:2) CID

split(28:4) CID

split(26:6) CID

0x0

0x0
0x0

0x0

0x0

0x0

0x0

0x0

Figure 7.6: Extensions to Load-Store Unit (LSU) for object pointers decompression.

The goal of the proposed LSU extension is to perform scattering of 32 loaded bits
of a compressed tagged object pointer during load operation to a 64-bit register and
gathering them during reverse store operation in a limited number of ways efficiently.
Figure 7.6 presents the necessary extensions to the LSU for load-decompress opera-
tion and the part of the LSU responsible for the sign-zero extension. The proposed
LSU extension is activated by an opcode of the memory access instruction (OPC.CD)
indicating that compression-decompression should be performed.

The extended LSU has an extra operand, Compression-Decompression Selector

(CDS), which is a non-frequently changed control register. The CDS defines which
bits are compressed-decompressed and it can have four states (s0-s3) depending on
the heap sizes and used tag bits. In the scheme, these states are: (s0) 32GB and 0
bits, (s1) 8GB and 2 bits, (s2) 2GB and 4 bits, and (s3) 512MB and 6 bits. In the
presented scheme, addresses of objects are required to be 8-byte aligned. State (s0) is
needed to be able to reach the maximum heap size without code recompilation when
compressed pointers are used. Before changing the CDS state to another state with
fewer tag bits in use, objects, whose pointers are utilising the bits which will no longer
fit into compressed pointers, must be handled to release them. This handling means
restoring the eliminated CIPs of such objects and untagging their pointers. A larger
number of states and different object alignments can be supported by extending the
CDS and the scheme. The reverse store-compress operation is performed likewise but
is not shown in the scheme for simplicity.

7.6. EXPERIMENTAL PLATFORM AND METHODOLOGY 127

7.5.3 ISA Modifications

The control of the proposed AGU extension can be performed by the introduction
and modification of a dedicated control register CRn. If CRn is set to zero, the extra
functionality of the AGU will be switched off. The functionality is enabled when CRn

is set to a valid aligned CIPAA. When a tagged address in the form of [CID:Base +

CIP_OFFSET] is passed to the extended AGU, the generated memory access will be
[CIPAA | (CID << log2(sizeof(CIP_t)))]. If such an address is generated during a
store operation, it will be executed as a NOP instruction. The CIPAA stored in CRn

should be maintained by the VM and new CIPs should be stored in CIPArray. If CID
is unspecified or the offset is different from CIP_OFFSET, then the address generation
will happen in the unextended way.

The control of the proposed LSU extension can be performed by the introduction
and modification of a 2-bit dedicated control register CRn+1 to support 4 compression-
decompression ways as described above. If the instruction set provides load-pointer
and store-pointer instructions, LSU extensions can be activated by them and no ex-
tra instructions are necessary; for instance, PowerPC has such instructions to sup-
port Technology Independent Machine Interface [SN05]. However, if load-pointer and
store-pointer instructions are not available, the extension can be activated by extra op-
codes for memory-access operations:

ld32.cd Reg64, [Base + Offset]; // load-decompress

st32.cd [Base + Offset], Reg64; // store -compress

7.6 Experimental Platform and Methodology

As described in Section 7.3, architectures with tagged pointers support may have dif-
ferent tag sizes, cache hierarchies, and other parameters. Moreover, these architectures
are not supported by state-of-the-art research JVMs. To make the study more general,
and to utilise research JVMs while evaluating the proposed HW-assisted CIP elimina-
tion technique, it was decided to opt for a simulation-based approach.

7.6.1 MaxSim Platform

MaxSim platform, described in Chapter 6, is the experimental platform of choice since
it provides high accuracy and fast simulation speed (≈ 10 MIPS in the experiments

128 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...

presented in this chapter). It was designed to run managed workloads and required
minor modifications to research CIP elimination from objects on architectures with
tagged pointers support. Alternative options, such as the Sniper [CHE11, CHE+14]
simulator that runs with JikesRVM, or the full-system gem5 [BBB+11] simulator, were
considered but abandoned due to a number of limitations. Regarding the Jikes RVM
running on top of the Sniper simulator [Jik14, SHB+14], it is only possible to run it in
a 32-bit mode, while gem5 has a relatively low simulation speed.

ZSim Suitability

ZSim, being a simulator in the MaxSim platform, has a number of declared ideali-
sations and limitations, among which are: not fully supported prefetchers, an ideal
branch target buffer, not supported loop stream detector, micro-sequenced instructions
and other components of the microarchitecture (described in [SK13]). With the excep-
tion of prefetchers, these limitations and idealisations do not directly affect the eval-
uation of the proposed CIP elimination technique. However as shown in [CMB+13],
the impact of the not modelled HW prefetchers on the performance of the DaCapo
benchmarks, which are used in this work, is insignificant.

ZSim Extensions

When memory accesses with tagged addresses are simulated by ZSim, they are un-
tagged and executed in an ordinary way during Pin [LCM+05] translation. However,
the tags are delegated to the core simulation model making it possible to simulate
tagged pointers and evaluate the proposed AGU extensions. Setting the CRn is per-
formed via a magic NOP instruction. The proposed AGU extensions are functionally
modelled, as described in Section 7.5, assuming there is no extra latency overhead
introduced by them.

Maxine VM, being a JVM in the MaxSim platform, does not support compressed
object pointers, so the address space morphing technique, described in the previous
chapter, was used to model them. The following bijections in the address space morph-
ing technique are used to model compressed object pointers: fe(2,2), fc(2), fr(∅).
With this technique, no other changes in the simulator were made to simulate LSU
extensions, as it is assumed that: (1) load-decompress and store-compress operations
do not introduce extra overhead in comparison to ordinary load and store operations;
(2) introducing two extra opcodes does not significantly change the code footprint; (3)
Compression-Decompression Selector changes infrequently.

7.6. EXPERIMENTAL PLATFORM AND METHODOLOGY 129

Name 4C 4CA 4CAL 1C 1CA 1CAL

Cores
type x86-64 Nehalem OOO core at 2.66 GHz
total 4 1

AGU Ext. - + + - + +
LSU Ext. - - + - - +

L1I caches 32KB, 4-way, LRU, 3-cycle latency
L1D caches 32KB, 8-way, LRU, 4-cycle latency
L2 caches 256KB, 8-way, LRU, 6-cycle latency

L3 cache
type 16-way, hashed, 30-cycle latency
size 8MB 2MB

Memory controller 1, 3 DDR3 channels, 47-cycle latency
DRAM 3GB, DDR3-1066, 1GB DIMM per channel

Table 7.2: ZSim configurations.

The power and energy estimation model using McPAT is performed as described
in the previous chapter. The proposed extensions to the AGU and the LSU were not
added in the power estimation model as the energy overhead of these functional units
extensions is significantly less than the energy savings from the reduction of memory
traffic to DRAM and Last-Level Cache (LLC).

ZSim Configurations

Table 7.2 details the seven hardware configurations used for the evaluation. The la-
tencies associated with the levels of the memory hierarchy in the table do not include
latencies associated with the lower levels, so, for instance, L2 data hit will be (4+6 =)

10 cycles. The memory controller latency is in core clocks.

Configuration 4C models a 4-core Intel Nehalem CPU. Configuration 1C models
a 1-core Intel Nehalem CPU with a quarter of the available LLC. Configurations 4CA
and 1CA represent the proposed extensions to the AGU of configurations 4C and 1C

respectively. Configurations 4CAL and 1CAL represent the proposed extensions to both
the AGU and the LSU of configurations 4C and 1C respectively. Configurations 1C, 1CA
and 1CAL were selected to simulate the scenario when only a quarter of the available
resources is available to the workload (if LLC could be partitioned, adding pressure to
the caches). Finally, all configurations support 16-bit pointer tags.

Maxine VM Suitability

The main direct effect of the proposed CIP elimination technique is the reduction of

130 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...

the memory footprint of the objects. In all VMs supporting the same object layout, the
memory space savings related to the reduced memory footprint of objects are expected
to be the same as in Maxine VM.

In the experiments presented in this chapter, a non-generational semi-space heap
scheme of a constant 2GB size with a stop-the-world copying GC is used, which is
described in Section 7.4. This is the default and stable GC scheme in the Maxine VM.
In the context of the single-core configurations that is used, this scheme can be optimal
for throughput. Finally, modern generational GC algorithms employ a copying scheme
based on Cheney’s breadth-first copying GC scheme for frequent young generation
collections, and the proposed changes can be applied to a wider spectrum of copying
collectors.

Maxine VM Extensions

A tagging scheme is used which assigns CIDs to tags of object pointers in the VM,
which is described in the previous chapter. CIP elimination from object headers in the
heap was implemented by modifying object memory allocation and GC as discussed
in Section 7.4.

Originally, during GC, a forwarding pointer was stored in the CIP word of an object
in Maxine VM. Maxine VM was modified to store the forwarding pointers in the MISC
words instead of the eliminated CIP words. Furthermore, bit 47 of the MISC word is
reserved for forwarding pointer indication (when it is set to one), constraining the range
of heap addresses to have bit 47 set to zero. The decision to reserve bit 47 of the MISC
word has been taken after considering the least collateral effect to the VM functionality.
In this case, the result is a 2× reduction of the possible concurrent threads from 216 to
215 used in thin locking [BKMS98].

Originally, in Maxine VM, a null pointer check is performed by loading the value
of the CIP (object pointer plus offset zero). If the pointer is null, an exception will be
raised, otherwise the CIP would be loaded. If the CIP is stored alongside the object,
a null check can have a positive prefetching effect. In a case of CIP elimination from
object headers, CIPs would be loaded from CIPArray. It was decided to change the
offset of the null pointer check to eight, which points to the MISC word, which is the
first word in the object when CIP is eliminated. Thus, positive prefetching effects of
null checks are preserved.

7.6. EXPERIMENTAL PLATFORM AND METHODOLOGY 131

Name Description
B Baseline Maxine VM.
E B with CIP Elimination for ZSim configurations without extra HW

support.
EA B with CIP Elimination using 16-bit CIDs in tagged pointers for

ZSim configurations with AGU extensions.
C B with Compressed object pointers.
EAL C with CIP Elimination using static profile and 4-bit CIDs in tagged

pointers for ZSim configurations with AGU and LSU extensions.

Table 7.3: Maxine VM configurations.

Maxine VM Configurations

The experiments were carried out with five Maxine VM configurations described in
Table 7.3. Later in the chapter, pairs of ZSim and Maxine VM configurations will be
used in order to evaluate the combinations of different configurations (e.g. 4C-B).

As a constant 2GB heap size is used, Compression-Decompression Selector is in
state (s2), when compressed object pointers optimisation is enabled. In this state, a
loaded 32-bit compressed pointer value is split into 28 and 4 bits, the former shifted by
3 bits and the latter placed in the high-order bits of the 64-bit register as CID.

7.6.2 Benchmarks

Two widely acknowledged and two emerging benchmarks were used in this study:

• DaCapo-9.12-bach [BGH+06] suite covers a representative number of server
and desktop applications.

• pjbb2005 [PJB05] is a version of the SPECjbb2005 [SPE05] benchmark with a
fixed workload.

• GraphChi-PR [KBG12] is a PageRank algorithm [PBMW98] running on top
of the disk-based system for graph analytics GraphChi.

• SLAMBench [NBZ+15] is a Java version of computer vision benchmark for
simultaneous localisation and mapping which implements the KinectFusion al-
gorithm [NIH+11].

132 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...

7.6.3 Experimental Methodology

In the experiments presented in this chapter, a constant heap size of 2GB was used,
where only 1GB is used in the semi-space scheme. Although VMs can support variable
heap sizes, the variable heap size will only directly affect the amount of GC and heap
resize work. Separate evaluations of execution times of GC were done, as one of the
positive effects of the proposed technique is the reduction in the amount of GC work
to be performed. Thus, the presented data allow making analytical estimations of the
proposed technique for other heap sizes.

Each experiment has been run 10 times, and whiskers represent 95% confidence
intervals. The variance for some of the tests can be up to 5% due to the dynamic
nature of the VM or related to nondeterminism aspects in GC, JIT compilation, threads
scheduling, and other factors. ZSim is a DBT-based execution-driven simulator, so
the simulation is not deterministic. Assuming normal distribution, when the whisker
crosses zero in a chart showing relative changes, there is less than 95% confidence
whether a result is positive or negative.

7.7 Experimental Results

7.7.1 Heap Space Savings

The main benefit of CIP elimination from object headers is heap space savings. Since
the number of tag bits can vary on different architectures, and some of the bits can be
utilised for other purposes, it is important to explore how much heap space savings can
be achieved per available tag bits for CIDs storage. Heap Space Savings (HSS) per
available tag bits are estimated on the two baseline configurations, 1C-B and 1C-C, by
collecting profiling information on the number of all Allocated Objects (AO) for each
class AO(c), where c is class, and on the total allocated Heap Space Volume (HSV).
AO(c) is sorted in decreasing order and the Sorted Allocated Objects SAO(i) sequence
is obtained. Finally, it is estimated how much HSSC(n) can be gained for configuration
C using n tag bits available for CIDs storage by using the following formula:

HSSC(n) =
HSVC−sizeof(CIP_t)∗∑

2n−2
i=0 SAOC(i)

HSV1C-B
∗100%.

In this estimation, it is assumed that the AO(c) distribution can be perfectly predicted
dynamically or it is known statically from previous runs. Estimated heap space savings

7.7. EXPERIMENTAL RESULTS 133

(a) Estimation of Heap Space Savings (HSS)
per available tag bits for CIDs storage

(b) Mean Allocated Object Size
(MAOS)

Figure 7.7: Estimation of heap space savings and mean allocated object size for
different configurations.

134 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...

per tag bits for 1C-B (bottom dark grey bar segments) and 1C-C (full stacked bars)
configurations are presented in Figure 7.7a. As depicted in the figure, the number of
bits for CIP elimination required to reach heap space savings close to maximum can
vary for different workloads, and 8 bits are sufficient to gain 99% of possible heap
space savings on selected benchmarks, while 11 bits are enough to gain 100%. These
savings can lead to a proportional reduction in GC times and cache misses due to a
reduced memory footprint. Heap space savings inversely correlate with mean allocated

object size as can be seen in Figure 7.7b. Mean allocated object size is shown for two
configurations: 1C-B (left full stacked bar) and 1C-C (right full stacked bar). Thus,
the bottom segments represent mean sizes of the primitive parts of the objects, the two
upper segments represent mean sizes of the pointers in the objects, and the uppermost
segments represent mean sizes of the CIPs that can be eliminated from the objects with
the technique proposed in this chapter. On configurations with CIP elimination and
proposed HW extensions, 1CA-EA and 1CAL-EAL, it is possible to achieve up to 26%
(SLAMBench) and 10% geometric mean heap space savings. It can be also observed in
Figure 7.7a that the effect of object pointers compression on heap space savings (the
first bar for each test) is more significant than the effect of CIP elimination (the last
dark grey bottom segment for each test) for all tests with the exception of sunflow,
GraphChi-PR, and SLAMBench.

7.7.2 Effects of CIP Elimination on GC

First, it is examined how much time is spent in GC invocations relative to the execution
time for configurations with and without CIP elimination. Relative GC times to exe-
cution times are presented in Figure 7.8a. Since GC never happens on avrora, batik,
fop, and luindex on the tested configurations, the results for these tests are not shown
in the figure. When no space is left in the “from-space”, a Garbage Collection Invoca-

tion (GCI) occurs that copies live objects to the “to-space”. The number of GCIs during
execution of each benchmark for each configuration is shown left of each bar. Config-
urations with (*-E*) and without (*-B, *-C) CIP elimination are depicted adjacently.
The evaluation is done pairwise 4CA-EA against 4C-B, 4CAL-EAL against 4C-C, etc.
The following notation will be used hereafter: 4CA-EA/4C-B means 4CA-EA compared
against 4C-B. It can be seen that CIP elimination leads to reduction in the number of
GC invocations and relative GC times to execution times for jython (*CAL-EAL/*C-C),
lusearch (*CA-EA/*C-B), tradesoap (*CA-EA/*C-B, 1CAL-EAL/1C-C), xalan (*CAL
-EAL/*C-C), pjbb2005 (*CAL-EAL/*C-C), SLAMBench (*CA-EA/*C-B, *CAL-EAL/*C-C).

7.7. EXPERIMENTAL RESULTS 135

(a) Relative Garbage Collection Times (GCT) to
Execution Times (ET) and numbers of Garbage
Collection Invocations (GCI) (left of the bars)

(b) Relative reductions in
Garbage Collection Times

(GCT)

Figure 7.8: Changes in GC times and numbers of GC invocations for various
configurations.

136 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...

For all subsequent figures, the deltas in garbage collection invocations for compared
configurations (4GCI) not equal to zeros will be shown left of the bars.

Secondly, it is investigated how GC time is affected as a result of CIP elimination.
The relative reductions in GC times are presented in Figure 7.8b. When the number
of garbage collection invocations is reduced as a result of CIPs elimination, the GC
times reductions are above 16% (lusearch 1CA-EA/1C-B). When 4GCI is zero, the
GC times are reduced for the majority of tests with no increases above 3% (tradesoap
4CAL-EAL/4C-C). In two cases (GraphChi-PR *CAL-EAL/*C-C), the reduction in GC
time is approximately 50%, which is explained by the high dynamism in the number
of live objects, as was shown by Nguyen et al. in Figure 2 [NFX+16].

The presented data provide evidence that the maintenance and traversal of the list
of CIDs during copying GC (described in Section 7.4) do not introduce significant
overhead and do not overweigh the performance gains. Provided that the set of live
objects is the same during copying GC, the gains are due to less memory footprint of
the copied objects.

7.7.3 Effect of CIP Elimination on Execution Time for
Configurations Without HW Extensions

In this experiment, the effect of the SW-only CIP elimination, without the proposed
HW extensions, on execution time is investigated. The following configurations are
evaluated: 4C-E/4C-B, and 1C-E/1C-B. 0% and 1% geometric mean execution time
degradations are observed for the aforementioned configurations respectively, which
are shown in Figure 7.9a (the first two series). Execution time reductions when4GCI

is zero are observed for pjbb2005 and SLAMBench. On pjbb2005 reductions are 1.7%
for 4C-E/4C-B and 1.6% for 1C-E/1C-B, and on SLAMBench reductions are 6.5% for
4C-E/4C-B and 6.8% for 1C-E/1C-B. These observations correspond with the fact,
that pjbb2005 was classified as “cache-miss-intensive”, while DaCapo-9.12 as “non-
cache-miss-intensive” by Inoue and Nakatani [IN12]. The performance degradation
for DaCapo-9.12 is observed because the performance overhead during the SW-only
CIP retrieval from tagged pointers is not covered by the gains due to cache miss reduc-
tions.

This hypothesis is validated by measuring the percentage of CIP Loads Per Kilo-

Instruction (CIPLPKI) on the 1C-B configuration, which is shown as the fifth (the
last) series in Figure 7.9a with a geometric mean value of 5.4 CIPLPKI. As discussed

7.7. EXPERIMENTAL RESULTS 137

(a) Relative reductions in Execution Times
(ET) for various configurations and CIP

Loads Per Kilo-Instr. (CIPLPKI) for 1C-B

(b) Relative reductions in
Execution Times (ET) for

various configurations

Figure 7.9: Relative changes in Execution Times (ET) for various configurations.

138 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...

in Section 7.4, SW-only CIP retrieval from tagged pointers has the dynamic execu-
tion height of 5.5 instructions in the proposed implementation. Thus, the estimated
overhead of CIP access on the 1C-E configuration will be 24.3 extra instructions per
kilo-instruction. This estimation is tested by evaluating configurations with enabled
CIP elimination with the proposed AGU extensions against the SW-only CIP elimi-
nation: 4CA-EA/4C-E, and 1CA-EA/1C-E, which are the third and the fourth series in
Figure 7.9a. The relative geometric mean execution time reductions for these config-
urations are 3.1% and 2.8% respectively, which are consistent with the estimation and
motivate the usage of the AGU extension.

The data for the SW-only CIP elimination for configurations with compressed
pointers is not presented in this chapter. The reason behind that is the high estimated
performance overhead, since loads of compressed object pointers happen approxi-
mately 6 times more frequently than CIP loads in geometric mean for 1C-C config-
uration, with the geometric mean rate of 32.4 loads of compressed object pointers per
kilo-instruction. A few modern architectures, like Intel Haswell and AMD Excavator,
provide advanced instructions for bit manipulation, such as PDEP and PEXT [Int11],
that can be used for tagged pointers compression and decompression in one instruction.
However, these instructions have a high latency of 3 cycles [Fog16]. It is estimated that
the overhead of compressed pointers decompression using these instructions is 32.4
extra instructions and 97.2 extra execution cycles per kilo-instruction. This significant
overhead motivates the usage of the LSU extension.

7.7.4 Effect of CIP Elimination on Execution Time for
Configurations with HW Extensions

In this experiment, the effect of CIP elimination is investigated for configurations with
the proposed AGU and LSU extensions. The following configurations are compared:
4CA-EA/4C-B, 4CAL-EAL/4C-C, 1CA-EA/1C-B, and 1CAL-EAL/1C-C. The relative re-
ductions in execution time for these configurations are shown in Figure 7.9b, with
geometric mean values of 2.9%, 5.0%, 1.4%, and 2.8% respectively. The maximum
reductions are 13.6%, 49.1%, 6.9%, and 22.6% respectively, with no degradations on
single tests below 4%.

7.8. RELATED WORK 139

7.7.5 Reduction in Cache Misses

When the CIPs are eliminated from the object headers, they are densely located in
CIPArray, and the memory footprint of the allocated objects in the heap is smaller.
Both factors lead to a decrease in cache misses. This hypothesis is tested by com-
paring the following configurations: 4CA-EA/4C-B, 4CAL-EAL/4C-C, 1CA-EA/1C-B,
and 1CAL-EAL/1C-C. Significant relative reductions in L3 Cache Misses Per Kilo-

Instruction (L3CMPKI) were observed which are shown in Figure 7.10b, with geo-
metric mean values of 12.7%, 10.0%, 12.4%, and 9.2% respectively. These values are
correlated with the heap space savings estimations presented in Figure 7.7a, which are
13.3% for 1C-B(11 bits)/1C-B(0 bits) and 7.2% for 1C-C(4 bits)/1C-C(0 bits).

Relative reductions in L2 Cache Misses Per Kilo-Instruction (L2CMPKI) are more
moderate compared to L3CMPKI. As shown in Figure 7.10a, the geometric mean val-
ues are 8.2%, 4.4%, 8.5%, and 5.8% for respective configurations. The relative in-
crease in L2CMPKI in pjbb2005 for 4CAL-EAL/4C-C and 1CAL-EAL/1C-C configura-
tions is related to the complete elimination of GC invocations on configurations with
CIP elimination, 4CAL-EAL and 1CAL-EAL. Furthermore, GC can have different cache
miss characteristics from the workload and can have a positive effect on the locality of
copied objects.

7.7.6 Reduction in Dynamic Energy

Reduction in cache misses leads to less DRAM and L3 cache traffic which is con-
sequently translated to Dynamic Energy (DE) reductions in these components. This
hypothesis is tested on the same configurations as before. The relative reductions in
DRAM Dynamic Energy (DRAMDE) are shown in Figure 7.11b. The geometric mean
values of 12.9%, 11.1%, 12.3%, and 10.6% are correlated with L3CMPKI reductions
for the respective configurations. Maximum relative DRAMDE reductions reach up to
27.6%, 50.1%, 27.0%, 41.5% respectively.

Finally, relative reductions in L3 Dynamic Energy (L3DE) are shown in Figure 7.11a,
with geometric mean values of 8.6%, 5.3%, 9.3%, and 7.6% respectively.

7.8 Related Work

From a historical perspective, Steele [Ste77] proposed using contiguous memory re-
gions for LISP, so that only variables of a certain data type can be in a given region.

140 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...

(a) Relative reductions in L2 Cache Misses
Per Kilo-Instruction (L2CMPKI) for various

configurations

(b) Relative reductions in L3 Cache Misses
Per Kilo-Instruction (L3CMPKI) for various

configurations

Figure 7.10: Relative reductions in cache misses per kilo-instruction for various
configurations.

7.8. RELATED WORK 141

(a) Relative reductions in
L3 Dynamic Energy (L3DE) for

various configurations

(b) Relative reductions in DRAM Dynamic
Energy (DRAMDE) for various

configurations

Figure 7.11: Relative reductions in dynamic energy for various configurations.

142 CHAPTER 7. TYPE INFORMATION ELIMINATION FROM OBJECTS ...

Using segmentation and enforcing data structures alignment, Dybvig et al. [DEB94]
investigated a hybrid technique utilising also the least significant bits of the address for
implicit typing for the Scheme language. Continuing taking advantage of the contigu-
ous virtual addresses for implicit typing, Bacon et al. [BFG02] used this technique for
compression of object headers in the context of 32-bit Jikes RVM. They gained most
of the space savings by eliminating the thin lock word. The implicit typing scheme
via virtual addressing was later explored in the context of the 64-bit Jikes RVM on
PowerPC by Venstermans et al. [VEDB07a] to remove the object header completely.

In contrast to these related systems, the presented approach using object typing
via tagged pointers does not bind objects to contiguous memory regions. Thus, the
proposed technique can facilitate additional optimisations such as data transformations
and object fusing [WM10] and objects alignment and collocation as proposed by Inoue
and Nakatani [IN12].

Using tags for storing type information has been used in many computer sys-
tems [Org73, Bab00, HSH81]. However, the main use case of tagged pointers is
capability-based security which also requires tagged memory. A generalised hardware
support for tag processing has been recently proposed by Dhawan et al. [DHR+15],
which can be extended for performance purposes by the HW extensions introduced
in this work. The other use case of tagged memory is the association of application-
specific metadata with specific memory locations. Hardware support for tag processing
related to software transactional memory was proposed by Stipic et al. [STZ+12].

7.9 Conclusions

In this chapter, the MaxSim platform for HW/SW co-design research, introduced in
the previous chapter, has been demonstrated. By using this platform, a proposed tech-
nique of CIP elimination by encoding CIDs in tagged pointers has been thoroughly
evaluated. Although this technique significantly reduces memory footprint, it has been
shown that retrieving CIPs from object pointer tags without extra HW support can de-
grade performance. To address performance issues, novel hardware extensions have
been proposed. These extensions are related to the AGU removing the performance
degradations associated with CIP retrieval from tagged pointers and to the LSU for
efficient load-decompression and store-compression of tagged object pointers.

7.9. CONCLUSIONS 143

In addition, the experimental results for the proposed HW/SW co-designed tech-
nique achieve significant heap space savings, dynamic energy reductions, and perfor-
mance improvements without significant regressions. Although the proposed tech-
nique has been researched in the context of a research JVM implementation, it can be
widely applicable to other object-oriented languages and managed runtimes.

Chapter 8

Conclusions and Future Work

8.1 Summary and Conclusions

As discussed in Chapter 1, progress in microprocessors has moved towards increas-
ing the number of cores, heterogeneity and bitness of computing. Performance, pro-
grammability and energy efficiency of next generations of microprocessors will be
highly dependent on efficient synchronisation, hardware virtualisation, memory sub-
system utilisation and closer synergy between hardware and software. Multidisci-
plinary work presented in this thesis addressed these challenges by advancing the state-
of-the-art in the following three major fields of computer science: shared-memory
synchronisation, computer architecture simulation, and high-level language computer
architecture. Chapters 2, 4, and 5 provided the background in these areas for the three
chapters presenting the contributions of this work. The contributions of this work to
the state-of-the-art are summarised in the subsequent three paragraphs.

Chapter 3 explored specialisation of the five state-of-the-art barrier synchronisation
algorithms for the Intel Xeon Phi coprocessor. A novel hybrid specialised variant was
presented based on different algorithms to synchronise at intra-core and inter-core lev-
els. Comparing the hybrid algorithm with previously proposed algorithms, lower over-
heads have been observed in the experiments on EPCC barrier microbenchmark, and
an improved performance has been observed on direct N-body simulation kernel and
two NAS Parallel Benchmarks, CG and MG. In other words, the fastest known barrier
implementation for Intel Xeon Phi was presented, achieving a 3.28× lower overhead
than the Intel OpenMP barrier implementation (ICC 14.0.0). These optimised barriers
are available at https://github.com/arodchen/cbarriers released as free soft-
ware. In addition, the analysis of the impact of the ring interconnect and distributed

144

https://github.com/arodchen/cbarriers

8.1. SUMMARY AND CONCLUSIONS 145

tag directories of the Xeon Phi system on barrier synchronisation has been provided. It
was found that the inability to have explicit control over tag directories leads to missed
optimisation opportunities when specialising SW for the Intel Xeon Phi coprocessor.

Chapter 6 presented the MaxSim platform. It is a novel and open-source exper-
imental platform for HW/SW co-design research and characterisation of managed
workloads. MaxSim is based on the state-of-the-art Maxine VM, the ZSim microar-
chitectural simulator, and the McPAT power, area, and timing modelling framework.
MaxSim features the simulation of 16-bit-tagged pointers, which can be utilised for:
(1) low-intrusive memory access profiling, (2) tagged pointers modelling on x86-64
architectures, and (3) experimenting with novel HW/SW co-designed optimisations by
extending the semantics of memory access operations via pointer tagging. In addition,
the address-space morphing technique was presented. This technique allows modelling
of complex software changes, such as compressed object pointers optimisation and
other data layout transformations. MaxSim’s capabilities were showcased by: (1) per-
forming an up-to-date microarchitectural characterisation of the full set of the DaCapo
benchmarks in less than a day, and (2) presenting a novel HW/SW co-designed optimi-
sation that performs dynamic load elimination for array length retrieval achieving up to
14% L1 data cache loads reduction and up to 4% dynamic energy reduction. MaxSim
is available at https://github.com/arodchen/MaxSim released as free software.

In Chapter 7, the MaxSim platform was demonstrated by exploring opportunities
for type information elimination from objects on architectures with tagged pointers
support. Although this technique significantly reduces memory footprint, it has been
shown that retrieving type information from object pointer tags without extra HW
support can degrade performance. To address performance issues, novel hardware
extensions have been proposed. These extensions are related to the address genera-
tion unit removing the performance degradations associated with CIP retrieval from
tagged pointers, and to the load-store unit for efficient load-decompression and store-
compression of tagged object pointers. The experimental results for the proposed
HW/SW co-designed technique, across all the DaCapo benchmark suite, SLAMBench,
pseudo-SPECjbb2005 and GraphChi-PR executed to completion, show up to 26% and
10% geometric mean heap space savings, up to 50% and 12% geometric mean dynamic
DRAM energy reduction, and up to 49% and 3% geometric mean execution time re-
duction with no significant performance regressions. Although the proposed technique
has been researched in the context of a research Java virtual machine implementation,
it can be widely applicable to other object-oriented languages and managed runtimes.

https://github.com/arodchen/MaxSim

146 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2 Future Work

8.2.1 Specialisation of Barrier Synchronisation

Exploration on Other Architectures

The extensible parameterised cbarriers framework for empirical evaluation of barrier
synchronisation algorithms used in Chapter 3 can be further exploited to research bar-
rier synchronisation on other multi- and many-core systems. One of the possible topics
in this research directions is research of NUMA-aware barrier synchronisation. The
cbarriers framework was parameterised so that locations of the shared variables of the
barrier synchronisation algorithms can be in either the nodes which mainly write or
read them. Some preliminary experiments in this direction were carried out on the
platform presented in Table 8.1 featuring two NUMA nodes. On this platform, it was
found that the overhead of the dissemination barrier synchronisation algorithm is 22%
less when synchronisation variables are located in the writing NUMA nodes as shown
in Figure 8.1a compared to the case when synchronisation variables are located in the
reading NUMA nodes as shown in Figure 8.1b. Similar experiments and observations

Name Intel Xeon CPU E5-2620
Microarchitecture Sandy Bridge
Number of sockets 2
Number of cores 12

Number of SMT threads 24
Number of NUMA nodes 2

Table 8.1: Experimental platform with two NUMA nodes.

Figure 8.1: Diagram of the NUMA-aware dissemination barrier synchronisation
algorithm via shared memory.

8.2. FUTURE WORK 147

were conducted and explained by Dice [Dic12].

Furthermore, the hybrid barrier approach presented in Chapter 3 has applications
outside the scope of the Intel Xeon Phi 5110P coprocessor. In fact, it can be applied to
any many-core system, where threads can be grouped is such a way, so that the latency
of inter-group communication is significantly higher than the latency of intra-group
communication between two threads. So, for instance, on the platform presented in
Table 8.1, it may be beneficial to use the hybrid barrier which uses one of the tree
barriers for synchronisation inside the NUMA node and the dissemination barrier for
the inter-node synchronisation.

Dynamic Adaptation

Figures 3.7b and 3.8b, presented in Chapter 3, show that the best performance barrier
synchronisation algorithm is dependent on the level of parallelism and the workload.
Thus dynamic adaptation of barrier synchronisation algorithm can be researched to
improve performance and energy efficiency. The area of the adaptive barrier synchro-
nisation appears to be an underinvestigated research topic. One of the relevant works
in this area concerns adaptive backoff barrier synchronisation to reduce memory traf-
fic via reducing the access rate to synchronisation variables [AC89]. However, the
problem of adaptive switching to a more optimal synchronisation algorithm at runtime
remains open.

8.2.2 HW/SW Co-Designed General-Purpose CPUs and MREs

Object-Relative Addressing of Final References via Tagged Pointers

Venstermans et al. [VEDB07b] showed that object-relative addressing is an efficient
way of improving memory utilisation in the context of 64-bit JVMs. The general
idea of this technique is that references inside objects can be encoded as offsets from
the base addresses of the referencing objects to the base addresses of the referenced
objects. In case the address distance between the referencing and referenced objects
meets certain requirements, the reference can be encoded as an offset in 32 bits instead
of 64 bits of the ordinary addressing scheme.

Similarly, as future work, it is suggested to research an opportunity to encode final
references inside objects via object-relative addressing in tagged pointers; a final ref-
erence in Java terminology is such a reference inside an object that is set during object
initialisation and cannot be changed during the lifetime of an object. As a first step, it

148 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

is suggested that final references, encoded in the tags, are not completely eliminated
from objects as in the technique of type information elimination from object headers
described in Chapter 7. Rather, it is proposed to apply object-relative addressing via
tagged pointers in the way similar to array length encoding assisted by HW extensions
described in Chapter 6 to benefit from eliminated loads but not space savings. How-
ever, in contrast to array length tagging, object-relative addressing via tagged pointers
should account for two additional challenges: (1) different possible offsets of final
references inside objects, and (2) updates of the tags encoding final references via
object-relative addressing during garbage collection.

Continuous HW-Assisted Data Layout Transformation

The MaxSim platform, presented in Chapter 6, features the address space morphing
technique. One of the capabilities of this technique is the ability to perform fields re-
ordering inside objects depending on object pointer tags and provided fields reordering
maps. One of the possible future research directions is an exploration of the ability to
perform such a remapping in HW to facilitate continuous data layout transformation
in MREs. For continuous (non-stop-the-world) data transformation, objects of trans-
formed and original layouts can be distinguished by different tags assigned to object
pointers. In the same fashion, emitted memory access instructions in generated code
can be labelled with corresponding tags. In case tags of a memory access instruction
and an accessed object pointer do not match during memory access operation execu-
tion, a remapping HW mechanism can recalculate an offset so that a correct field is
accessed using a dedicated HW buffer, which stores a mapping between original and
transformed object layouts. When at some point of execution (which is projected to
be garbage collection) an MRE can prove that all the live objects of the same type
have a single layout, tagging can be cleared for both memory access instructions in
generated code and object pointers. In contrast to applying data layout transformation
to all live objects at once, which incurs significant pause time, the proposed technique
is projected to increase utilisation of memory subsystem by applying object layout
transformation gradually.

Bibliography

[5-L16] 5-level paging and 5-level EPT white paper. https://software.

intel.com/sites/default/files/managed/2b/80/5-

level_paging_white_paper.pdf, 2016. [Online; last accessed 27
June 2017].

[AAC+99] Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber,
Stephen Smith, Ton Ngo, John J. Barton, Susan Flynn Hummel, Jan-
ice C. Sheperd, and Mark Mergen. Implementing Jalapeño in Java.
In Proceedings of the 14th ACM SIGPLAN Conference on Object-

oriented Programming, Systems, Languages, and Applications (OOP-

SLA), pages 314–324, 1999.

[AC89] A. Agarwal and M. Cherian. Adaptive backoff synchronization tech-
niques. In Proceedings of the 16th Annual International Symposium

on Computer Architecture (ISCA), pages 396–406, 1989.

[ACU15] Adria Armejach, Adrian Cristal, and Osman S. Unsal. Tidy cache: Im-
proving data placement in die-stacked DRAM caches. In Proceedings

of the 2015 27th International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD), pages 65–73, 2015.

[Ada92] Don Adams. CRAY T3D system architecture overview manual.
ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_

Over/T3D.overview.html, 1992. [Online; last accessed 27 June
2017].

[ADE+01] Vishal Aslot, Max J. Domeika, Rudolf Eigenmann, Greg Gaertner,
Wesley B. Jones, and Bodo Parady. SPEComp: A new benchmark
suite for measuring parallel computer performance. In Proceedings

of the International Workshop on OpenMP Applications and Tools:

149

https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.overview.html
ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.overview.html

150 BIBLIOGRAPHY

OpenMP Shared Memory Parallel Programming (WOMPAT), pages
1–10, 2001.

[AJK+15] K. Aingaran, S. Jairath, G. Konstadinidis, S. Leung, P. Loewen-
stein, C. McAllister, S. Phillips, Z. Radovic, R. Sivaramakrishnan,
D. Smentek, and T. Wicki. M7: Oracle’s next-generation Sparc pro-
cessor. IEEE Micro, 35(2):36–45, March 2015.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achiev-
ing large scale computing capabilities. In Proceedings of the April

18-20, 1967, Spring Joint Computer Conference (AFIPS), pages 483–
485, 1967.

[ARM15] ARM Cortex-A series programmer’s guide for ARMv8-A.
http://infocenter.arm.com/help/topic/com.arm.doc.

den0024a/DEN0024A_v8_architecture_PG.pdf, 2015. [Online;
last accessed 27 June 2017].

[AS16] Ayaz Akram and Lina Sawalha. A comparison of x86 computer
architecture simulators. http://sc16.supercomputing.org/sc-

archive/tech_poster/tech_poster_pages/post233.html,
2016. [Online; last accessed 27 June 2017].

[ATBC+04] A. R. Adl-Tabatabai, Jay Bharadwaj, M. Cierniak, M. Eng, J. Fang,
B. T. Lewis, B. R. Murphy, and J. M. Stichnoth. Improving 64-bit Java
IPF performance by compressing heap references. In Proceedings of

the International Symposium on Code Generation and Optimization

(CGO), pages 100–110, 2004.

[Bab00] Boris Babayan. E2K technology and implementation. In Proceedings

of the 6th International Euro-Par Conference on Parallel Processing

(Euro-Par), pages 18–21, 2000.

[BBB+11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
The gem5 simulator. ACM SIGARCH Computer Architecture News,
39(2):1–7, August 2011.

http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf
http://sc16.supercomputing.org/sc-archive/tech_poster/tech_poster_pages/post233.html
http://sc16.supercomputing.org/sc-archive/tech_poster/tech_poster_pages/post233.html

BIBLIOGRAPHY 151

[BFG02] David F. Bacon, Stephen J. Fink, and David Grove. Space- and time-
efficient implementation of the Java object model. In Proceedings

of the 16th European Conference on Object-Oriented Programming

(ECOOP), pages 111–132, 2002.

[BFGS03] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. Sparse
matrix solvers on the GPU: Conjugate gradients and multigrid. ACM

Transactions on Graphics, 22(3):917–924, July 2003.

[BGH+06] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M.
Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and
Ben Wiedermann. The DaCapo benchmarks: Java benchmarking de-
velopment and analysis. In Proceedings of the 21st Annual ACM SIG-

PLAN Conference on Object-oriented Programming Systems, Lan-

guages, and Applications (OOPSLA), pages 169–190, 2006.

[BH09] Luiz Andre Barroso and Urs Hoelzle. The Datacenter As a Computer:

An Introduction to the Design of Warehouse-Scale Machines. Morgan
& Claypool Publishers, 1st edition, 2009.

[BJK+96] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An
efficient multithreaded runtime system. Journal of Parallel and Dis-

tributed Computing, 37(1):55–69, 1996.

[BKMS98] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano.
Thin locks: Featherweight synchronization for Java. In Proceedings

of the ACM SIGPLAN 1998 Conference on Programming Language

Design and Implementation (PLDI), pages 258–268, 1998.

[BKSL08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The PARSEC benchmark suite: Characterization and architectural im-
plications. In Proceedings of the 17th International Conference on

Parallel Architectures and Compilation Techniques (PACT), pages 72–
81, 2008.

152 BIBLIOGRAPHY

[Bor07] Shekhar Borkar. Thousand core chips: A technology perspective.
In Proceedings of the 44th Annual Design Automation Conference

(DAC), pages 746–749, 2007.

[Bra16] David Brash. ARMv8-A architecture – 2016 additions.
https://community.arm.com/groups/processors/blog/

2016/10/27/armv8-a-architecture-2016-additions, 2016.
[Online; last accessed 27 June 2017].

[Bro86] Eugene D. Brooks, III. The butterfly barrier. International Journal of

Parallel Programming, 15(4):295–307, 1986.

[Bul99] J. M. Bull. Measuring synchronisation and scheduling overheads in
OpenMP. In Proceedings of the First European Workshop on OpenMP

(EWOMP), pages 99–105, 1999.

[Cab] Diego Caballero. SIMD@OpenMP: A programming model approach
to leverage SIMD features. PhD Dissertation. https://upcommons.

upc.edu/bitstream/handle/2117/96011/TDLCdG1de1.pdf.
[Online; last accessed 27 June 2017].

[CC04] Jedidiah R. Crandall and Frederic T. Chong. Minos: Control data at-
tack prevention orthogonal to memory model. In Proceedings of the

37th Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO), pages 221–232, 2004.

[CDL99] Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-
conscious structure definition. In Proceedings of the ACM SIGPLAN

1999 Conference on Programming Language Design and Implemen-

tation (PLDI), pages 13–24, 1999.

[CDM13] Diego Caballero, Alejandro Duran, and Xavier Martorell. An
OpenMP barrier using SIMD instructions for Intel® Xeon Phi copro-
cessor. In Proceedings of the 9th International Workshop on OpenMP

(IWOMP), pages 99–113. 2013.

[CFS14] CFS scheduler. https://www.kernel.org/doc/Documentation/

scheduler/sched-design-CFS.txt, 2014. [Online; last accessed
27 June 2017].

https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
https://upcommons.upc.edu/bitstream/handle/2117/96011/TDLCdG1de1.pdf
https://upcommons.upc.edu/bitstream/handle/2117/96011/TDLCdG1de1.pdf
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt

BIBLIOGRAPHY 153

[Che70] C. J. Cheney. A nonrecursive list compacting algorithm. Communica-

tions of the ACM, 13(11):677–678, November 1970.

[CHE11] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Ex-
ploring the level of abstraction for scalable and accurate parallel multi-
core simulation. In Proceedings of 2011 International Conference

for High Performance Computing, Networking, Storage and Analysis

(SC), pages 52:1–52:12, 2011.

[CHE+14] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and
Lieven Eeckhout. An evaluation of high-level mechanistic core
models. ACM Transactions on Architecture and Code Optimization

(TACO), 11(3):28:1–28:25, August 2014.

[Cli10] Cliff Click. Cliff Click’s blog: Biased locking. http://www.cliffc.
org/blog/2010/01/09/biased-locking/, 2010. [Online; last ac-
cessed 27 June 2017].

[CMB+13] Henry Cook, Miquel Moreto, Sarah Bird, Khanh Dao, David A. Pat-
terson, and Krste Asanovic. A hardware evaluation of cache parti-
tioning to improve utilization and energy-efficiency while preserving
responsiveness. In Proceedings of the 40th Annual International Sym-

posium on Computer Architecture (ISCA), pages 308–319, 2013.

[Cow13] James Cownie. Fastest possible barrier (Intel developer zone fo-
rum discussion). http://software.intel.com/en-us/forums/

topic/392587, 2013. [Online; last accessed 27 June 2017].

[CPN+09] Eric S. Chung, Michael K. Papamichael, Eriko Nurvitadhi, James C.
Hoe, Ken Mai, and Babak Falsafi. ProtoFlex: Towards scalable,
full-system multiprocessor simulations using FPGAs. ACM Transac-

tions on Reconfigurable Technology and Systems (TRETS), 2(2):15:1–
15:32, June 2009.

[CPST15] Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L. Titzer.
Memento mori: Dynamic allocation-site-based optimizations. In Pro-

ceedings of the 2015 International Symposium on Memory Manage-

ment (ISMM), pages 105–117, 2015.

http://www.cliffc.org/blog/2010/01/09/biased-locking/
http://www.cliffc.org/blog/2010/01/09/biased-locking/
http://software.intel.com/en-us/forums/topic/392587
http://software.intel.com/en-us/forums/topic/392587

154 BIBLIOGRAPHY

[CSK+07] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Patil, William
Reinhart, Darrel Eric Johnson, Jebediah Keefe, and Hari Angepat.
FPGA-accelerated simulation technologies (FAST): Fast, full-system,
cycle-accurate simulators. In Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 249–261, 2007.

[DEB94] R. Kent Dybvig, David Eby, and Carl Bruggeman. Don’t stop the
BIBOP: Flexible and efficient storage management for dynamically-
typed languages. Technical report, 1994.

[DFF+13] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien
Gaud, Renaud Lachaize, Baptiste Lepers, Vivien Quema, and Mark
Roth. Traffic management: A holistic approach to memory placement
on NUMA systems. In Proceedings of the 18th International Confer-

ence on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS), pages 381–394, 2013.

[DGR+74] R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R.
LeBlanc. Design of ion-implanted MOSFET’s with very small phys-
ical dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268,
Oct 1974.

[DHR+15] Udit Dhawan, Catalin Hritcu, Raphael Rubin, Nikos Vasilakis, Silviu
Chiricescu, Jonathan M. Smith, Thomas F. Knight, Jr., Benjamin C.
Pierce, and Andre DeHon. Architectural support for software-defined
metadata processing. In Proceedings of the 20th International Confer-

ence on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS), pages 487–502, 2015.

[Dic12] Dave Dice. NUMA-aware placement of communication variables.
https://blogs.oracle.com/dave/numa-aware-placement-of-

communication-variables, 2012. [Online; last accessed 27 June
2017].

[DKK07] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: A
flexible information flow architecture for software security. In Pro-

ceedings of the 34th Annual International Symposium on Computer

Architecture (ISCA), pages 482–493, 2007.

https://blogs.oracle.com/dave/numa-aware-placement-of-communication-variables
https://blogs.oracle.com/dave/numa-aware-placement-of-communication-variables

BIBLIOGRAPHY 155

[Dol14] Romain Dolbeau. Address selection for efficient barriers on the Intel
Xeon Phi. http://www.dolbeau.name/dolbeau/publications/

barrierphi.pdf, 2014. [Online; last accessed 27 June 2017].

[EBS17a] OpenCL overview. https://www.khronos.org/opencl/, 2017.
[Online; last accessed 27 June 2017].

[EBS17b] The OpenMP API specification for parallel programming. http://

openmp.org, 2017. [Online; last accessed 27 June 2017].

[EBSA+11] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. Dark silicon and the end of multi-
core scaling. In Proceedings of the 38th Annual International Sympo-

sium on Computer Architecture (ISCA), pages 365–376, 2011.

[Eec10] Lieven Eeckhout. Computer Architecture Performance Evaluation

Methods. Morgan & Claypool Publishers, 1st edition, 2010.

[Fab74] R. S. Fabry. Capability-based addressing. Communications of the

ACM, 17(7):403–412, July 1974.

[Fog16] Agner Fog. Instruction tables: Lists of instruction latencies, through-
puts and micro-operation breakdowns for Intel, AMD and VIA
CPUs. http://www.agner.org/optimize/instruction_tables.
pdf, 2016. [Online; last accessed 27 June 2017].

[GBEDB04] Andy Georges, Dries Buytaert, Lieven Eeckhout, and Koen De Boss-
chere. Method-level phase behavior in Java workloads. In Pro-

ceedings of the 19th Annual ACM SIGPLAN Conference on Object-

oriented Programming, Systems, Languages, and Applications (OOP-

SLA), pages 270–287, 2004.

[GdL16] Cosmin Gorgovan, Amanieu d’Antras, and Mikel Luján. MAMBO:
A low-overhead dynamic binary modification tool for ARM. ACM

Transactions on Architecture and Code Optimization (TACO),
13(1):14:1–14:26, April 2016.

[Goo15] Google. ART and Dalvik. https://source.android.com/

devices/tech/dalvik/index.html, 2015. [Online; last accessed
27 June 2017].

http://www.dolbeau.name/dolbeau/publications/barrierphi.pdf
http://www.dolbeau.name/dolbeau/publications/barrierphi.pdf
https://www.khronos.org/opencl/
http://openmp.org
http://openmp.org
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://source.android.com/devices/tech/dalvik/index.html
https://source.android.com/devices/tech/dalvik/index.html

156 BIBLIOGRAPHY

[Gra16] OpenJDK: Graal project. http://openjdk.java.net/projects/

graal/, 2016. [Online; last accessed 27 June 2017].

[GRE+01] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. MiBench: A free, commercially representative em-
bedded benchmark suite. In Proceedings of the 2001 IEEE Interna-

tional Workshop on Workload Characterization (WWC), pages 3–14,
2001.

[GV94] D. Grunwald and S. Vajracharya. Efficient barriers for distributed
shared memory computers. In Proceedings of the 8th International

Parallel Processing Symposium (IPPS), pages 604–608, 1994.

[Haz11] Kim Hazelwood. Dynamic Binary Modification. Morgan & Claypool
Publishers, 1st edition, 2011.

[HCU92] Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized
code with dynamic deoptimization. In Proceedings of the ACM SIG-

PLAN 1992 Conference on Programming Language Design and Im-

plementation (PLDI), pages 32–43, 1992.

[HFM88] Debra Hensgen, Raphael Finkel, and Udi Manber. Two algorithms for
barrier synchronization. International Journal of Parallel Program-

ming, 17(1):1–17, 1988.

[HMMR04] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm. A survey of barrier
algorithms for coarse grained supercomputers. Chemnitzer Informatik

Berichte, 2004.

[HMMR06] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm. Fast barrier synchro-
nization for InfiniBand. In Proceedings of the 20th International Par-

allel and Distributed Processing Symposium (IPDPS), CAC’06 Work-

shop, 2006.

[HMN09] Daniel Hackenberg, Daniel Molka, and Wolfgang E. Nagel. Compar-
ing cache architectures and coherency protocols on x86-64 multicore
SMP systems. In Proceedings of the 42nd Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO), pages 413–422,
2009.

http://openjdk.java.net/projects/graal/
http://openjdk.java.net/projects/graal/

BIBLIOGRAPHY 157

[HP06] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann Publishers Inc., 4th edi-
tion, 2006.

[HQW+10] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex
Solomatnikov, Benjamin C. Lee, Stephen Richardson, Christos
Kozyrakis, and Mark Horowitz. Understanding sources of inefficiency
in general-purpose chips. In Proceedings of the 37th Annual Inter-

national Symposium on Computer Architecture (ISCA), pages 37–47,
2010.

[HRSS11] Wei Huang, K. Rajamani, M.R. Stan, and K. Skadron. Scaling with
design constraints: Predicting the future of big chips. IEEE Micro,
31(4):16–29, July 2011.

[HSC+12] Wim Heirman, Souradip Sarkar, Trevor E. Carlson, Ibrahim Hur, and
Lieven Eeckhout. Power-aware multi-core simulation for early design
stage hardware/software co-optimization. In Proceedings of the 21st

International Conference on Parallel Architectures and Compilation

Techniques (PACT), pages 3–12, 2012.

[HSDH04] Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and Michael
Hind. Vertical profiling: Understanding the behavior of object-
oriented applications. In Proceedings of the 19th Annual ACM SIG-

PLAN Conference on Object-oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA), pages 251–269, 2004.

[HSH81] Merle E. Houdek, Frank G. Soltis, and Roy L. Hoffman. IBM Sys-
tem/38 support for capability-based addressing. In Proceedings of the

8th Annual Symposium on Computer Architecture (ISCA), pages 341–
348, 1981.

[HTCU10] Tim Harris, Sasa Tomic, Adrian Cristal, and Osman S. Unsal. Dy-
namic filtering: multi-purpose architecture support for language run-
time systems. In Proceedings of the 15th International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 39–52, 2010.

158 BIBLIOGRAPHY

[IN12] Hiroshi Inoue and Toshio Nakatani. Identifying the sources of cache
misses in Java programs without relying on hardware counters. In
Proceedings of the 2012 International Symposium on Memory Man-

agement (ISMM), pages 133–142, 2012.

[Int08] 754-2008 - IEEE standard for floating-point arithmetic. IEEE Std 754-

2008, pages 1–70, Aug 2008.

[Int11] Intel® 64 and IA-32 architectures software developer’s manual. vol-
ume 1: Basic architecture. http://download.intel.com/design/
processor/manuals/253665.pdf, 2011. [Online; last accessed 27
June 2017].

[Int12] Intel® Xeon Phi™ coprocessor instruction set architecture reference
manual. https://software.intel.com/sites/default/files/

forum/278102/327364001en.pdf, 2012. [Online; last accessed 27
June 2017].

[Int14] Intel® Xeon Phi™ coprocessor system software developers
guide. https://software.intel.com/sites/default/files/

managed/09/07/xeon-phi-coprocessor-system-software-

developers-guide.pdf, 2014. [Online; last accessed 27 June
2017].

[Int16] Floating point unit demonstration on STM32 microcontrollers.
www.st.com/resource/en/application_note/dm00047230.pdf,
2016. [Online; last accessed 27 June 2017].

[Int17] Vega 3 compute appliances. https://www.azul.com/products/

vega/vega-3-compute-appliances/, 2017. [Online; last accessed
27 June 2017].

[JCL17] Java™ platform, standard edition 7 API specification.
https://docs.oracle.com/javase/7/docs/api/overview-

summary.html, 2017. [Online; last accessed 27 June 2017].

[JHM11] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Col-

lection Handbook: The Art of Automatic Memory Management. Chap-
man & Hall/CRC, 1st edition, 2011.

http://download.intel.com/design/processor/manuals/253665.pdf
http://download.intel.com/design/processor/manuals/253665.pdf
https://software.intel.com/sites/default/files/forum/278102/327364001en.pdf
https://software.intel.com/sites/default/files/forum/278102/327364001en.pdf
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
www.st.com/resource/en/application_note/dm00047230.pdf
https://www.azul.com/products/vega/vega-3-compute-appliances/
https://www.azul.com/products/vega/vega-3-compute-appliances/
https://docs.oracle.com/javase/7/docs/api/overview-summary.html
https://docs.oracle.com/javase/7/docs/api/overview-summary.html

BIBLIOGRAPHY 159

[Jik14] Jikes–Sniper page in Sniper online documentation. http://

snipersim.org/w/Jikes, 2014. [Online; last accessed 27 June
2017].

[KBG12] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. GraphChi: Large-
scale graph computation on just a PC. In Proceedings of the 10th

USENIX Conference on Operating Systems Design and Implementa-

tion (OSDI), pages 31–46, 2012.

[KCR+17] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nis-
bet, John Mawer, and Mikel Luján. Heterogeneous managed runtime
systems: A computer vision case study. In Proceedings of the 13th

ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-

tion Environments (VEE), pages 74–82, 2017.

[KKC+13] R. Krishnaiyer, E. Kultursay, P. Chawla, S. Preis, A. Zvezdin, and
H. Saito. Compiler-based data prefetching and streaming non-
temporal store generation for the Intel® Xeon Phi™ coprocessor. In
Proceedings of the 2013 IEEE International Symposium on Parallel

and Distributed Processing, Workshops and PhD Forum (IPDPSW),
pages 1575–1586, 2013.

[Kli81] Paul Klint. Interpretation techniques. Software Practice and Experi-

ence, 11(9):963–973, 1981.

[KRB+16] Christos Kotselidis, Andrey Rodchenko, Colin Barrett, Andy Nis-
bet, John Mawer, Will Toms, James Clarkson, Cosmin Gorgovan,
Amanieu d’Antras, Yaman Cakmakci, Thanos Stratikopoulos, Sebas-
tian Werner, Jim D. Garside, Javier Navaridas, Antoniu Pop, John
Goodacre, and Mikel Luján. Project Beehive: A hardware/software
co-designed stack for runtime and architectural research. In Proceed-

ings of the 10th International Workshop on Programmability and Ar-

chitectures for Heterogeneous Multicores (MULTIPROG), 2016.

[KS04] Tejas S. Karkhanis and James E. Smith. A first-order superscalar pro-
cessor model. In Proceedings of the 31st Annual International Sym-

posium on Computer Architecture (ISCA), pages 338–349, 2004.

http://snipersim.org/w/Jikes
http://snipersim.org/w/Jikes

160 BIBLIOGRAPHY

[KVBWA12] Asif Khan, Muralidaran Vijayaraghavan, Silas Boyd-Wickizer, and
Arvind. Fast and cycle-accurate modeling of a multicore processor.
In Proceedings of the 2012 IEEE International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS), pages 178–187,
2012.

[KWM+08] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck,
Thomas Rodriguez, Kenneth Russell, and David Cox. Design of the
Java HotSpot™ client compiler for Java 6. ACM Transactions on Ar-

chitecture and Code Optimization (TACO), 5(1):7:1–7:32, May 2008.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers,
C-28(9):690–691, September 1979.

[LAS+13] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman,
Dean M. Tullsen, and Norman P. Jouppi. The McPAT framework
for multicore and manycore architectures: Simultaneously modeling
power, area, and timing. ACM Transactions on Architecture and Code

Optimization (TACO), 10(1):5:1–5:29, April 2013.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: Building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation

(PLDI), pages 190–200, 2005.

[Lev84] Henry M. Levy. Capability-Based Computer Systems. Butterworth-
Heinemann, 1984.

[LH10] James Larus and Galen Hunt. The Singularity system. Communica-

tions of the ACM, 53(8):72–79, August 2010.

[LYBB14] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The

Java Virtual Machine Specification, Java SE 8 Edition. Addison-
Wesley Professional, 1st edition, 2014.

BIBLIOGRAPHY 161

[MAKB03] S. Mathew, M. Anders, R. K. Krishnamurthy, and S. Borkar. A 4-GHz
130-nm address generation unit with 32-bit sparse-tree adder core.
IEEE Journal of Solid-State Circuits, 38(5):689–695, May 2003.

[MCE+02] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel
Forsgren, Gustav Hållberg, Johan Högberg, Fredrik Larsson, Andreas
Moestedt, and Bengt Werner. Simics: A full system simulation plat-
form. Computer, 35(2):50–58, February 2002.

[MCS91] John M Mellor-Crummey and Michael L Scott. Algorithms for scal-
able synchronization on shared-memory multiprocessors. ACM Trans-

actions on Computer Systems (TOCS), 9(1):21–65, February 1991.

[MCS14a] Altera SoC FPGA. http://www.arm.com/products/tools/

altera-soc-fpga.php, 2014. [Online; last accessed 27 June 2017].

[MCS14b] Zynq-7000 all programmable SoC. http://www.xilinx.com/

products/silicon-devices/soc/zynq-7000/, 2014. [Online;
last accessed 27 June 2017].

[MG11] Zoltan Majo and Thomas R. Gross. Memory system performance in
a NUMA multicore multiprocessor. In Proceedings of the 4th Annual

International Conference on Systems and Storage (SYSTOR), pages
12:1–12:10, 2011.

[MJCM] Niall Murphy, Timothy Jones, Simone Campanoni, and Robert
Mullins. Limits of dependence analysis for automatic parallelization.

[MKK+10] Jason E. Miller, Harshad Kasture, George Kurian, Charles Gruenwald,
Nathan Beckmann, Christopher Celio, Jonathan Eastep, and Anant
Agarwal. Graphite: A distributed parallel simulator for multicores.
In Proceedings of the 16th IEEE International Symposium on High

Performance Computer Architecture (HPCA), pages 1–12, 2010.

[Moo65] Gordon E. Moore. Cramming more components onto integrated cir-
cuits. Electronics, 38(8):114–117, April 1965.

[MPG+17] John Mawer, Oscar Palomar, Cosmin Gorgovan, Andrey Rodchenko,
Andy Nisbet, Will Toms, and Mikel Luján. The potential of dy-
namic binary modification and CPU-FPGA SoCs for simulation. In

http://www.arm.com/products/tools/altera-soc-fpga.php
http://www.arm.com/products/tools/altera-soc-fpga.php
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/

162 BIBLIOGRAPHY

Proceedings of the 25th IEEE International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2017.

[MSB+05] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann,
Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore,
Mark D. Hill, and David A. Wood. Multifacet’s general execution-
driven multiprocessor simulator (GEMS) toolset. ACM SIGARCH

Computer Architecture News, 33(4):92–99, November 2005.

[MWG00] Erik Meijer, Redmond Wa, and John Gough. Technical overview of
the Common Language Runtime, 2000.

[NAS] NAS parallel benchmarks. http://www.nas.nasa.gov/

publications/npb.html. [Online; last accessed 27 June 2017].

[NBZ+15] Luigi Nardi, Bruno Bodin, M. Zeeshan Zia, John Mawer, Andy Nis-
bet, Paul H. J. Kelly, Andrew J. Davison, Mikel Luján, Michael F. P.
O’Boyle, Graham Riley, Nigel Topham, and Steve Furber. Introducing
SLAMBench, a performance and accuracy benchmarking methodol-
ogy for SLAM. In Proceedings of the 2015 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 5783–5790, 2015.

[.NE17] .NET framework class library. https://msdn.microsoft.com/en-
us/library/gg145045(v=vs.110).aspx, 2017. [Online; last ac-
cessed 27 June 2017].

[NFX+16] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu,
Sanazsadat Alamian, and Onur Mutlu. Yak: A high-performance
big-data-friendly garbage collector. In Proceedings of the 12th

USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI), pages 349–365, 2016.

[NIH+11] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, and Andrew Fitzgibbon. KinectFusion: Real-
time dense surface mapping and tracking. In Proceedings of the 2011

10th IEEE International Symposium on Mixed and Augmented Reality

(ISMAR), pages 127–136, 2011.

http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
https://msdn.microsoft.com/en-us/library/gg145045(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/gg145045(v=vs.110).aspx

BIBLIOGRAPHY 163

[NNJA74] Kesav V. Nori, H.H. Naegeli, Kurt Jensen, and Urs Ammann. The
PASCAL (P) compiler : implementation notes. Technical report,
1974.

[OOK+10] Rei Odaira, Kazunori Ogata, Kiyokuni Kawachiya, Tamiya Onodera,
and Toshio Nakatani. Efficient runtime tracking of allocation sites
in Java. In Proceedings of the 6th ACM SIGPLAN/SIGOPS Interna-

tional Conference on Virtual Execution Environments (VEE), pages
109–120, 2010.

[Ope17] OpenJDK. http://openjdk.java.net, 2017. [Online; last accessed
27 June 2017].

[Org73] Elliott Irving Organick. Computer System Organization: The

B5700/B6700 Series (ACM Monograph Series). Academic Press, Inc.,
1973.

[PACG11] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. MARSS:
A full system simulator for multicore x86 CPUs. In Proceedings of the

48th Design Automation Conference (DAC), pages 1050–1055, 2011.

[PAK+11] Michael Pellauer, Michael Adler, Michel A. Kinsy, Angshuman
Parashar, and Joel S. Emer. HAsim: FPGA-based high-detail mul-
ticore simulation using time-division multiplexing. In Proceedings of

the 17th IEEE International Symposium on High Performance Com-

puter Architecture (HPCA), pages 406–417, 2011.

[PBMW98] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank cita-
tion ranking: Bringing order to the web. In Proceedings of the 7th

International World Wide Web Conference (WWW), pages 161–172,
1998.

[Phi14] Stephen Phillips. M7: Next generation SPARC. http://www.

oracle.com/us/products/servers-storage/servers/sparc-

enterprise/migration/m7-next-gen-sparc-presentation-

2326292.html, 2014. [Online; last accessed 27 June 2017].

[PJB05] pjbb2005. http://users.cecs.anu.edu.au/~steveb/research/
research-infrastructure/pjbb2005, 2005. [Online; last ac-
cessed 27 June 2017].

http://openjdk.java.net
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/migration/m7-next-gen-sparc-presentation-2326292.html
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/migration/m7-next-gen-sparc-presentation-2326292.html
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/migration/m7-next-gen-sparc-presentation-2326292.html
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/migration/m7-next-gen-sparc-presentation-2326292.html
http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005
http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005

164 BIBLIOGRAPHY

[Poi17] Pointer authentication on ARMv8.3. https://www.qualcomm.

com/media/documents/files/whitepaper-pointer-

authentication-on-armv8-3.pdf, 2017. [Online; last accessed
27 June 2017].

[Pow08] J. R. Powell. The quantum limit to Moore’s Law. Proceedings of the

IEEE, 96(8):1247–1248, August 2008.

[PP84] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence
solution for multiprocessors with private cache memories. In Pro-

ceedings of the 11th Annual International Symposium on Computer

Architecture (ISCA), pages 348–354, 1984.

[Pro14] Protocol Buffers - Google’s data interchange format (ver. 2.6.1).
https://developers.google.com/protocol-buffers/, 2014.
[Online; last accessed 27 June 2017].

[PVC01] Michael Paleczny, Christopher Vick, and Cliff Click. The Java
Hotspot™ server compiler. In Proceedings of the 1st Java Virtual

Machine Research and Technology Symposium, pages 1–12, 2001.

[RDS15] Ravi Rajwar, Martin Dixon, and Ronak Singhal. Specialized evolu-
tion of the general purpose CPU. In Proceedings of the 7th Biennial

Conference on Innovative Data Systems Research (CIDR), 2015.

[Ree13] Robert Reed. Intel® Xeon Phi™ coprocessor February developer
webinar Q&A responses. https://software.intel.com/en-

us/articles/intelr-xeon-phitm-coprocessor-february-

developer-webinar-qa-responses, 2013. [Online; last accessed
27 June 2017].

[RH13] Sabela Ramos and Torsten Hoefler. Modeling communication in
cache-coherent SMP systems: A case-study with Xeon Phi. In Pro-

ceedings of the 22nd International Symposium on High-Performance

Parallel and Distributed Computing (HPDC), pages 97–108, 2013.

[Ric69] Martin Richards. BCPL: A tool for compiler writing and system pro-
gramming. In Proceedings of the AFIPS Spring Joint Computer Con-

ference, pages 557–566, 1969.

https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://developers.google.com/protocol-buffers/
https://software.intel.com/en-us/articles/intelr-xeon-phitm-coprocessor-february-developer-webinar-qa-responses
https://software.intel.com/en-us/articles/intelr-xeon-phitm-coprocessor-february-developer-webinar-qa-responses
https://software.intel.com/en-us/articles/intelr-xeon-phitm-coprocessor-february-developer-webinar-qa-responses

BIBLIOGRAPHY 165

[RKN+17] Andrey Rodchenko, Christos Kotselidis, Andy Nisbet, Antoniu Pop,
and Mikel Luján. MaxSim: A simulation platform for managed appli-
cations. In Proceedings of the 2017 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), pages 141–
151, 2017.

[RKN+18] Andrey Rodchenko, Christos Kotselidis, Andy Nisbet, Antoniu Pop,
and Mikel Luján. Type information elimination from objects on archi-
tectures with tagged pointers support. IEEE Transactions on Comput-

ers, 67(1):130–143, Jan 2018.

[RNPL15] Andrey Rodchenko, Andy Nisbet, Antoniu Pop, and Mikel Luján. Ef-
fective barrier synchronization on Intel Xeon Phi coprocessor. In Pro-

ceedings of the 21st International European Conference on Parallel

and Distributed Computing (Euro-Par), pages 588–600, 2015.

[SGC+06] J. Sampson, R. Gonzalez, J. F. Collard, N. P. Jouppi, M. Schlansker,
and B. Calder. Exploiting fine-grained data parallelism with chip
multiprocessors and fast barriers. In Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 235–246, 2006.

[SHB+14] Jennifer B. Sartor, Wim Heirman, Stephen M. Blackburn, Lieven
Eeckhout, and Kathryn S. McKinley. Cooperative cache scrubbing.
In Proceedings of the 23rd International Conference on Parallel Ar-

chitectures and Compilation (PACT), pages 15–26, 2014.

[SHC+04] Peter F. Sweeney, Matthias Hauswirth, Brendon Cahoon, Perry
Cheng, Amer Diwan, David Grove, and Michael Hind. Using hard-
ware performance monitors to understand the behavior of Java appli-
cations. In Proceedings of the 3rd Conference on Virtual Machine

Research And Technology Symposium, page 5, 2004.

[Shi15] Boris Shingarov. Live introspection of target-agnostic JIT in simu-
lation. In Proceedings of the International Workshop on Smalltalk

Technologies (IWST), pages 5:1–5:9, 2015.

166 BIBLIOGRAPHY

[SHW11] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Mem-

ory Consistency and Cache Coherence. Morgan & Claypool Publish-
ers, 1st edition, 2011.

[SJL11] Sangmin Seo, Gangwon Jo, and Jaejin Lee. Performance characteri-
zation of the NAS parallel benchmarks in OpenCL. In Proceedings of

the 2011 IEEE International Symposium on Workload Characteriza-

tion (IISWC), pages 137–148, 2011.

[SK10] John Sartori and Rakesh Kumar. Low-overhead, high-speed multi-
core barrier synchronization. In Proceedings of the 5th International

Conference on High Performance and Embedded Architecture and

Compilation (HiPEAC), pages 18–34, 2010.

[SK13] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and accurate mi-
croarchitectural simulation of thousand-core systems. In Proceedings

of the 40th Annual International Symposium on Computer Architec-

ture (ISCA), pages 475–486, 2013.

[SKK+15] S. R. Sarangi, R. Kalayappan, P. Kallurkar, S. Goel, and E. Peter.
Tejas: A java based versatile micro-architectural simulator. In 25th

International Workshop on Power and Timing Modeling, Optimization

and Simulation (PATMOS), pages 47–54, Sept 2015.

[SN05] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for

Systems and Processes. Morgan Kaufmann Publishers Inc., 2005.

[SPE05] SPECjbb2005. http://www.spec.org/jbb2005/, 2005. [Online;
last accessed 27 June 2017].

[SPE06] SPEC CPU® 2006. http://www.spec.org/cpu2006/, 2006. [On-
line; last accessed 27 June 2017].

[SPE08] SPECjvm2008 benchmarks. http://www.spec.org/jvm2008,
2008. [Online; last accessed 27 June 2017].

[SPSS08] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N.
Scherer. Phasers: A unified deadlock-free construct for collective and
point-to-point synchronization. In Proceedings of the 22nd Annual

http://www.spec.org/jbb2005/
http://www.spec.org/cpu2006/
http://www.spec.org/jvm2008

BIBLIOGRAPHY 167

International Conference on Supercomputing (ICS), pages 277–288,
2008.

[SS86] P. Sweazey and A. J. Smith. A class of compatible cache consistency
protocols and their support by the IEEE Futurebus. In Proceedings of

the 13th Annual International Symposium on Computer Architecture

(ISCA), pages 414–423, 1986.

[SSO+10] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O. Myreen. x86-TSO: A rigorous and usable program-
mer’s model for x86 multiprocessors. Communications of the ACM,
53(7):89–97, July 2010.

[Sta12] Standard ECMA-335, Common Language Infrastructure (CLI).
https://www.ecma-international.org/publications/

standards/Ecma-335.htm, 2012. [Online; last accessed 27
June 2017].

[Ste77] G.L. Steele. Data Representation in PDP-10 MacLISP. Artificial
intelligence memo. Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, 1977.

[STZ+12] S. Stipic, S. Tomic, F. Zyulkyarov, A. Cristal, O. Unsal, and M. Valero.
TagTM - accelerating STMs with hardware tags for fast meta-data ac-
cess. In Proceedings of the 2012 Design, Automation, and Test in Eu-

rope Conference and Exhibition (DATE), pages 39–44, March 2012.

[Tei12] J. Teich. Hardware/software codesign: The past, the present, and pre-
dicting the future. Proceedings of the IEEE, 100(Special Centennial
Issue):1411–1430, May 2012.

[THC+14] Chia-Heng Tu, Hui-Hsin Hsu, Jen-Hao Chen, Chun-Han Chen, and
Shih-Hao Hung. Performance and power profiling for emulated An-
droid systems. ACM Transactions on Design Automation of Electronic

Systems, 19(2):10:1–10:25, March 2014.

[TIO] TIOBE programming community index. https://www.tiobe.com/
tiobe-index/. [Online; last accessed 27 June 2017].

https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

168 BIBLIOGRAPHY

[Und04] Keith Underwood. FPGAs vs. CPUs: Trends in peak floating-point
performance. In Proceedings of the 2004 ACM/SIGDA 12th Interna-

tional Symposium on Field Programmable Gate Arrays, pages 171–
180, 2004.

[VEDB07a] Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere. Java
object header elimination for reduced memory consumption in 64-
bit virtual machines. ACM Transactions on Architecture and Code

Optimization (TACO), 4(3):17:1–17:30, September 2007.

[VEDB07b] Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere. Object-
relative addressing: Compressed pointers in 64-bit java virtual ma-
chines. In Proceedings of the 21st European Conference on Object-

Oriented Programming (ECOOP), pages 79–100, 2007.

[WD98] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear
algebra software. In Proceedings of the 1998 ACM/IEEE Conference

on Supercomputing (SC), pages 1–27, 1998.

[Whi12] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc.,
2012.

[WHVDV+13] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick
Jordan, Laurent Daynès, and Douglas Simon. Maxine: An approach-
able virtual machine for, and in, Java. ACM Transactions on Architec-

ture and Code Optimization (TACO), 9(4):30:1–20:24, January 2013.

[WM10] Christian Wimmer and Hanspeter Mössenbösck. Automatic feedback-
directed object fusing. ACM Transactions on Architecture and Code

Optimization (TACO), 7(2):7:1–7:35, October 2010.

[WMGW06] Greg Wright, Phil McGachey, Erika Gunadi, and Mario Wolczko. In-
trospection of a Java™ virtual machine under simulation. Technical
report, 2006.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The SPLASH-2 programs: Characteriza-
tion and methodological considerations. In Proceedings of the 22nd

Annual International Symposium on Computer Architecture (ISCA),
pages 24–36, 1995.

BIBLIOGRAPHY 169

[WW12] Christian Wimmer and Thomas Würthinger. Truffle: A self-
optimizing runtime system. In Proceedings of the 3rd Annual Con-

ference on Systems, Programming, and Applications: Software for

Humanity (SPLASH), pages 13–14, 2012.

[YTL87] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distribut-
ing hot-spot addressing in large-scale multiprocessors. IEEE Trans-

actions on Computers, C-36(4):388–395, 1987.

Appendix A

cbarriers Framework Manual

The cbarriers framework used in Chapter 3 for evaluation of different barrier syn-
chronisation algorithms is located at https://github.com/arodchen/cbarriers
under the Apache v2.0 free software license. This appendix provides a brief descrip-
tion how to use this framework and what other packages it relies on. Furthermore,
it contains the command that was used to run the EPCC and NBODY benchmarks de-
scribed in Chapter 3 on Intel Xeon Phi 5110P. Part of this description was published at
https://github.com/arodchen/cbarriers/blob/master/README.md.

A.1 Dependencies

The framework requires the following packages to be installed:
make, gcc, r-base, r-cran-gplots, data.table package in R

A.2 Usage

The cbarriers framework operation is described in the makefile and is carried out by
the make utility.

A.2.1 Building, Running Benchmarks, Plotting Results

make build - builds barrier evaluation framework.

make test - runs tests.

make db - creates data base needed for plotting.

170

https://github.com/arodchen/cbarriers
https://github.com/arodchen/cbarriers/blob/master/README.md

A.2. USAGE 171

make plot - plots charts in pdf.

make all - does all mentioned above.

make help - prints help message.

A.2.2 Help Message

Usage: make [target] [arguments]

Available targets: help
build cleanbuild
test cleantest
db cleandb
plot cleanplot
all cleanall

Available arguments [name={valid values} (default value) - description]:

EXTRACFLAGS={...} () - extra CFLAGS
EXTRALDFLAGS={...} () - extra LDFLAGS

TEST_RUNNER={...} () - test runner
TEST_RUNNER_PASS_ARG_BEG={...} () - option to begin passing arguments to

test runner
TEST_RUNNER_PASS_ARG_END={...} () - option to end passing arguments to

test runner
TEST_RUNNER_INIT={...} () - option to initialise test runner
TEST_RUNNER_FINI={...} () - option to finalise test runner

CPUS_NUM={1..N} (shell nproc) - number of available CPUs
THREADS_SURPLUS={(1-CPUS_NUM)..N} (0) - difference between the number

of threads and CPUs
THREADS_MAX_NUM={1..N} (CPUS_NUM + THREADS_SURPLUS) -

maximum number of threads (THREADS_SURPLUS has priority over
THREADS_MAX_NUM if both are defined)

172 APPENDIX A. CBARRIERS FRAMEWORK MANUAL

THREADS_MIN_NUM={1..THREADS_MAX_NUM} (1) - minimum number of
threads

BARRIERS_NUM={1..N} (1000000) - number of barriers in the experiment
EXPERIMENTS_NUM={1..N} (10) - number of experiments
CCL_SIZE={1..N} (128) - cache coherency line size
ARCH={x86_64|mic|armv7l} (shell arch) - target architecture
HOST_NAME={...} (shell hostname) - target hostname
CPU_MAP_PRIORITY_DELTA={1..CPUS_NUM} (1) - priority delta for mapping

threads to CPUs
THREADS_INC={+=1,*=2,...} (+= 1) - compound assignment operator for the

increment of the number of threads
RADIX_INC={+=1,*=2,...} (+= 1) - compound assignment operator for the

increment of radix
RADIX_MAX={2..THREADS_MAX_NUM} (THREADS_MAX_NUM) -

maximum radix
OMP_IMPL={gnu,intel} (gnu) - OMP library implementation
INTERPOLATE_RADIX={yes,no} (no) - when number of threads participating in

barrier is less than radix then the result is taken from experiment when number of
threads participating in a barrier is equal to radix

PRINT_SYNCH_UNSYNCH_PHASE_TIME={yes,no} (yes) - printing
synchronised and unsynchronised phase execution time, where the phase is an
interval by two adjacent barriers

TOPOLOGY_AWARE_MAPPING={yes,no} (yes) - use topology information
while mapping threads to nodes of the barrier

TOPOLOGY_NUMA_AWARE_ALLOC={yes,no} (yes) - use topology
information while allocating memory for barriers on NUMA machines

USER_DEFINED_ACTIVE_PUS_SELECTION={yes,no} (no) - user defined
active PUs selection controlled by CPU_MAP_PRIORITY_DELTA

CHARTS_IGNORE_BARRIERS={sr,...,pthread} () - comma-separated list of
barriers to ignore on charts

CHARTS_SUR_ONLY_SPINNINGS={ptyield,...,hwyield} () - comma-separated
list of spinning to be used on surplused charts

A.3. RECIPES 173

A.3 Recipes

The following command runs tests on Intel Xeon Phi 5110P:

make test TEST_RUNNER='ssh mic0 "ulimit -s unlimited; export KMP_LIBRARY=
turnaround; export KMP_BLOCKTIME=infinite;'
TEST_RUNNER_PASS_ARG_END='"' HOST_NAME=mic0
TEST_RUNNER_INIT='scp -r bin mic0:' TEST_RUNNER_FINI='ssh mic0 "rm
-rf bin"' CC=icc CPUS_NUM=232 EXTRACFLAGS="-mmic"
BARRIERS_NUM=10000 ARCH=mic
TOPOLOGY_NUMA_AWARE_ALLOC=no THREADS_MIN_NUM=8
THREADS_INC=+=8 RADIX_INC=*=2 EXPERIMENTS_NUM=10

Appendix B

MaxSim Platform Manual

The MaxSim platform for simulation of managed applications presented in Chapter 6 is
located at https://github.com/arodchen/MaxSim under the GPLv2 free software
license. This appendix provides a brief description how to use this platform and what
other packages it relies on. This description was published at https://github.com/
arodchen/MaxSim/blob/master/README.md.

B.1 Dependencies

The platform requires the following dependencies to be satisfied and the following
packages to be installed:
Maxine VM 2.0.5 dependencies, Oracle JDK 7u25 for Linux x64,

ZSim dependencies, McPAT 1.0 dependencies, timelimit, protobuf-2.6.1

B.2 Required Environment Variables

Setting of the following environmental variables is required to find the tools necessary
for the MaxSim platform operation:
Maxine VM 2.0.5, ZSim, McPAT 1.0 required environment variables

PROTOBUFPATH=<protobuf-2.6.1 install path>

MCPATPATH=<McPAT 1.0 bin path>

B.3 Usage

174

https://github.com/arodchen/MaxSim
https://github.com/arodchen/MaxSim/blob/master/README.md
https://github.com/arodchen/MaxSim/blob/master/README.md

B.3. USAGE 175

B.3.1 Building, Cleaning, Style Checking, and Setting Kernel
Parameters

./scripts/generateMaxSimInterface.sh - generates MaxSim interface.

./scripts/setZSimKernelParameters.sh - sets ZSim kernel parameters (requires sudo).

./scripts/buildMaxine<Debug|Product>.sh - builds Maxine VM (and re-generates
MaxSim interface).

./scripts/buildImageC1X<Debug|Product>.sh - builds Maxine VM image.

./scripts/buildZSim<Debug|Product>.sh - builds ZSim (and re-generates MaxSim
interface).

./scripts/buildMaxSim<Debug|Product>.sh - builds MaxSim (does all mentioned
above).

./scripts/cleanMaxine.sh - cleans Maxine VM.

./scripts/cleanZSim.sh - cleans ZSim.

./scripts/cleanMaxSim.sh - cleans Maxine VM and ZSim.

./scripts/checkStyle.sh - checks style in Maxine VM.

B.3.2 Running DaCapo-9.12-bach Benchmarks

Command:

./scripts/runMaxSimDacapo.sh <output directory> <ZSim template configuration>
<number of runs>

Arguments:

<output directory> - existing output directory where results are stored (overwrites
existing results in the directory)

<ZSim template configuration> - ZSim template configuration in which
COMMAND_TEMPLATE is replaced by actual command to be executed by
ZSim (e.g. ./zsim/tests/*.tmpl)

<number of runs> - number of runs of each benchmark
EXTRA_MAXINE_FLAGS - environment variable used to pass extra flags to

Maxine VM

176 APPENDIX B. MAXSIM PLATFORM MANUAL

B.3.3 MaxSim Interface and Configuration

MaxSim interface is defined using Protocol Buffers 2.6.1 in the following file:

./maxine/com.oracle.max.vm/src/com/sun/max/vm/maxsim/MaxSimInterface.proto

Default values of message MaxSimConfig define a build-time MaxSim configuration.

isMaxSimEnabled indicates whether Maxine and ZSim are configured to work in tan-
dem (true) or separately (false).

pointerTaggingType indicates a type of active pointer tagging. Three types of pointer
tagging are available: NO_TAGGING - native x86-64 tagging (sign-extension of the 47th
bit), CLASS_ID_TAGGING - objects tagging by their class IDs, ALLOC_SITE_ID_TAGGING -
objects tagging by IDs of allocation sites.

layoutScaleFactor and layoutScaleRefFactor are parameters of two bijections of
the address space morphing scheme described in Chapter 6. layoutScaleFactor is the
second parameter of fe and the first parameter of fc bijection. layoutScaleRefFactor
is the first parameter of fe bijection.

B.3.4 ZSim MaxSim-Related Configuration Parameters

The pointerTagging simulation parameter indicates whether pointer tagging simula-
tion is enabled in ZSim.

The MAProfCacheGroupId compact ID can be assigned to a cache. When MaxSim
profiling is active, the event related to a specific cache will be aggregated in the corre-
sponding MAProfCacheGroup. MAProfCacheGroupNames parameter is associated with
caches, and it defines names of MAProfCacheGroups delimited by | symbol (e.g.

./zsim/tests/*.tmpl).

Note. When working in tandem with Maxine VM startFastForwarded Maxine VM
process parameter should be set to true. Exiting fast forwarding should be performed
explicitly in Maxine VM.

B.3. USAGE 177

B.3.5 MaxineVM MaxSim-Related Flags

-XX:-MaxSimEnterFFOnVMExit - makes MaxSim enter fast forwarding mode on VM
exit (default: false).

-XX:-MaxSimExitFFOnVMEnter - makes MaxSim exit fast forwarding mode on VM en-
ter (default: false).

-XX:MaxSimMaxineInfoFileName=<value> - MaxSim Maxine information file name
(default: maxine-info.db).

-XX:-MaxSimPrintProfileOnVMExit - makes MaxSim print profiling information on
VM exit (default: false).

-XX:-MaxSimProfiling - enables MaxSim profiling (default: false).

-XX:MaxSimZSimProfileFileName=<value> - MaxSim ZSim profile file name (default:
zsim-prof.db).

-XX:-TraceMaxSimTagging - traces MaxSim tagging.

-XX:MaxSimDataTransDB=<value> - MaxSim data transformation database for address
space morphing.

Note. All the flags, related to collecting and printing profiling information, have
effect only when either pointerTaggingType [default = ALLOC_SITE_ID_TAGGING]

or pointerTaggingType [default = CLASS_ID_TAGGING]. -XX:MaxSimDataTransDB=

accepts DataTransDB message with DataTransInfos having FieldOffsetRemapPairs
representing me reordering map described in Chapter 6. -XX:MaxSimDataTransDB= has
effect only when pointerTaggingType [default = CLASS_ID_TAGGING].

178 APPENDIX B. MAXSIM PLATFORM MANUAL

B.3.6 Controlling Simulation by Managed Applications

MaxSim simulation can be controlled by applications by setting MaxSim.Command prop-
erty (via a call to System.setProperty("MaxSim.Command", <value>)) the following
values:
"ROI_BEGIN()" - exits fast-forwarding mode and starts simulation of a region of inter-
est.

"ROI_END()" - enters fast-forwarding mode and stops simulation of a region of interest.

"PRINT_PROFILE_TO_FILE(<file name>)" - prints profile to a file with a specified name.

"RESET_PROFILE_COLLECTION()" - resets profile collection.

Note. All the commands, related to collecting and printing profiling information,
have effect only when either pointerTaggingType [default = CLASS_ID_TAGGING] or
pointerTaggingType [default = ALLOC_SITE_ID_TAGGING], and when, at the same
time, -XX:+MaxSimProfiling flag is passed to Maxine VM.

B.3.7 Printing Profiling Information in the Textual Format

Command:

cd maxine
../graal/mxtool/mx maxsimprofprint <flags>

Flags:

-MaxineInfoDB=<arg>
Location of the file containing Maxine information database.

-ZSimProfileDB=<arg>
Location of the file containing ZSim profile database.

-help[=true|false, t|f, y|n] (default: false)
Show help message and exit.

-o=<arg> (default: maxsim-prof.txt)
Output file name.

B.3. USAGE 179

B.3.8 Retrieving Statistics Collected by ZSim

Command:

./scripts/retrieveZSimStat.py <ZSim stat dir> <Maxine VM oper modes>
<characteristic> (<cahe name>)

Arguments:

<ZSim stat dir> - directory containing ZSim stat files (zsim-ev.h5)
<Maxine VM oper modes> - comma-separated numerical list of Maxine VM

operation modes for which statistics is retrieved. Operation modes are listed in
MaxineVMOperationMode in MaxSimInterface.proto

<characteristic> - retrieved characteristic. Supported characteristics are:
C - cycles
I - instructions
IPC - instructions per clock
C[H|M|A][LD|ST|LDST](PKI) - cache characteristics

[..|..] - required alternatives
(..|..) - optional alternatives
H - hits
M - misses
A - accesses
LD - loads
ST - stores
LDST - loads and stores
PKI - per kilo instruction

<cahe name> - cache name required only for cache characteristics listed above

Note. The parts of this script were obtained from the ZSim-NVMain [ACU15] simu-
lator.

180 APPENDIX B. MAXSIM PLATFORM MANUAL

B.3.9 Modelling Power and Energy Using McPAT

Command:

./scripts/runMcPAT.py <flags>

Flags:

[-h (help)]
[-z <zsim-stat-dir>] - directory containing ZSim stat files (zsim-ev.h5)
[-e <maxine-op-modes>] - comma-separated numerical list of Maxine VM

operation modes for which statistics is retrieved. Operation modes are listed in
MaxineVMOperationMode in MaxSimInterface.proto

[-d <resultsdir (default: .)>]
[-t <type: total|dynamic|static|peak|peakdynamic|area>]
[-o <output-file (power{.png,.txt,.py})>]

Note. The parts of this script were obtained from the Sniper [HSC+12] simulator under
the MIT License.

B.4 Recipes

Profiles simple ./maxine/com.oracle.max.tests/src/test/output/HelloWorld.java
application using 4C ZSim configuration described in Chapter 6:

Changes pointerTaggingType default type to CLASS_ID_TAGGING
sed -i 's/pointerTaggingType = 2 \[default = NO_TAGGING/

pointerTaggingType = 2 \[default = CLASS_ID_TAGGING/' ./maxine/com.
oracle.max.vm/src/com/sun/max/vm/maxsim/MaxSimInterface.proto

Builds MaxSim
./scripts/buildMaxSimProduct.sh

Simulates HelloWorld application and produces ZSim profile and Maxine
information files (zsim-prof.db and maxine-info.db)

./zsim/build/release/zsim ./zsim/tests/Nehalem-4C_MaxineHelloWorld.cfg

B.4. RECIPES 181

Prints profile to maxsim-prof.txt
pushd maxine
../graal/mxtool/mx maxsimprofprint -MaxineInfoDB=../maxine-info.db

-ZSimProfileDB=../zsim-prof.db -o=../maxsim-prof.txt
popd

Changes back pointerTaggingType to NO_TAGGING
sed -i 's/pointerTaggingType = 2 \[default = CLASS_ID_TAGGING/

pointerTaggingType = 2 \[default = NO_TAGGING/' ./maxine/com.oracle.max.
vm/src/com/sun/max/vm/maxsim/MaxSimInterface.proto

Profiles a simple application performing various operations with a singly linked list
./maxine/com.oracle.max.tests/src/test/output/MaxSimSingleLinkedList.java

using 1CQ ZSim configuration described in Chapter 6:

Changes pointerTaggingType default type to CLASS_ID_TAGGING
sed -i 's/pointerTaggingType = 2 \[default = NO_TAGGING/

pointerTaggingType = 2 \[default = CLASS_ID_TAGGING/' ./maxine/com.
oracle.max.vm/src/com/sun/max/vm/maxsim/MaxSimInterface.proto

Builds MaxSim
./scripts/buildMaxSimProduct.sh

Simulates MaxSimSingleLinkedList application and produces three ZSim profile
and one Maxine information files

./zsim/build/release/zsim ./zsim/tests/Nehalem-1CQ_MaxSimSingleLinkedList.cfg

Changes back pointerTaggingType to NO_TAGGING
sed -i 's/pointerTaggingType = 2 \[default = CLASS_ID_TAGGING/

pointerTaggingType = 2 \[default = NO_TAGGING/' ./maxine/com.oracle.max.
vm/src/com/sun/max/vm/maxsim/MaxSimInterface.proto

182 APPENDIX B. MAXSIM PLATFORM MANUAL

Characterises and profiles DaCapo-9.12-bach using 1CQ ZSim configuration described
in Chapter 6:

Changes pointerTaggingType default type to ALLOC_SITE_ID_TAGGING
sed -i 's/pointerTaggingType = 2 \[default = NO_TAGGING/

pointerTaggingType = 2 \[default = ALLOC_SITE_ID_TAGGING/' ./maxine/
com.oracle.max.vm/src/com/sun/max/vm/maxsim/MaxSimInterface.proto

Simulates DaCapo-9.12-bach benchmarks and produces ZSim profile files
mkdir dacapo_characterization
EXTRA_MAXINE_FLAGS="-XX:+MaxSimProfiling

-XX:+MaxSimPrintProfileOnVMExit" ./scripts/runMaxSimDacapo.sh
dacapo_characterization ./zsim/tests/Nehalem-1CQ.tmpl 1

Changes back pointerTaggingType to NO_TAGGING
sed -i 's/pointerTaggingType = 2 \[default = ALLOC_SITE_ID_TAGGING/

pointerTaggingType = 2 \[default = NO_TAGGING/' ./maxine/com.oracle.max.
vm/src/com/sun/max/vm/maxsim/MaxSimInterface.proto

Retrieves L3 Cache Misses per Kilo Instruction:

./scripts/retrieveZSimStat.py
./dacapo_characterization/zsim/DaCapo-9.12-bach_eclipse_product_0 1,2
CMLDPKI l3

Models energy spent in the Garbage Collection (GC) part of the workload:

./scripts/runMcPAT.py
-z ./dacapo_characterization/zsim/DaCapo-9.12-bach_eclipse_product_0 -e 2

Models energy spent in the non-GC part of the workload:

./scripts/runMcPAT.py
-z ./dacapo_characterization/zsim/DaCapo-9.12-bach_eclipse_product_0 -e 1

B.4. RECIPES 183

Profiles simple ./maxine/com.oracle.max.tests/src/test/output/HelloWorld.java
application using 1CQ ZSim configuration and models compressed object pointers op-
timisation and String objects’ fields reordering as depicted in Figure 6.3 in Chapter 6
using reordering map ./misc/DataTrans/HelloWorldCompPointDataTrans.db:

Changes pointerTaggingType default type to CLASS_ID_TAGGING and
layoutScaleFactor to 2

sed -i 's/pointerTaggingType = 2 \[default = NO_TAGGING/
pointerTaggingType = 2 \[default = CLASS_ID_TAGGING/' ./maxine/com.
oracle.max.vm/src/com/sun/max/vm/maxsim/MaxSimInterface.proto

sed -i 's/layoutScaleFactor = 3 \[default = 1/
layoutScaleFactor = 3 \[default = 2/' maxine/com.oracle.max.vm/src/com/sun/
max/vm/maxsim/MaxSimInterface.proto

Builds MaxSim
./scripts/buildMaxSimProduct.sh

Simulates HelloWorld application and produces ZSim profile and Maxine
information files (zsim-prof.db and maxine-info.db)

./zsim/build/release/zsim
./zsim/tests/Nehalem-1CQ_MaxineHelloWorldCompPointDataTrans.cfg

Prints profile to maxsim-prof.txt
pushd maxine
../graal/mxtool/mx maxsimprofprint -MaxineInfoDB=../maxine-info.db

-ZSimProfileDB=../zsim-prof.db -o=../maxsim-prof.txt
popd

Changes back pointerTaggingType to NO_TAGGING and layoutScaleFactor to 1
sed -i 's/pointerTaggingType = 2 \[default = CLASS_ID_TAGGING/

pointerTaggingType = 2 \[default = NO_TAGGING/' ./maxine/com.oracle.max.
vm/src/com/sun/max/vm/maxsim/MaxSimInterface.proto

sed -i 's/layoutScaleFactor = 3 \[default = 2/layoutScaleFactor = 3 \[default = 1/'
maxine/com.oracle.max.vm/src/com/sun/max/vm/maxsim/MaxSimInterface.
proto

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Trends in Integrated Circuits and Processor Technologies
	The Evolution of High-Level Language Virtual Machine Technologies
	Hardware/Software Co-Specialisation and Co-Design of General-Purpose CPUs
	Specialisation of Hardware to Software
	Specialisation of Software to Hardware
	Hardware/Software Co-Design

	Research Aims
	Contributions
	Publications
	Thesis Structure

	Fundamentals of Barrier Synchronisation
	What is Barrier Synchronisation?
	Shared and Distributed Memory Architectures
	Symmetric Shared Memory Architecture
	Distributed Shared Memory Architecture
	Distributed Memory Architecture

	Cache Coherence Protocols and Memory Consistency
	Cache Coherence Protocols
	Memory Consistency

	Barrier Synchronisation Algorithms for Shared Memory Architectures
	Sense-Reversing Centralised Barrier
	Combining Tree Barrier
	Static Tournament Barrier
	Dynamic Tournament Barrier
	Dissemination Barrier

	Summary

	Effective Barrier Synchronisation on Intel Xeon Phi Coprocessor
	Introduction
	Intel Xeon Phi 5110P Coprocessor
	Barrier Synchronisation Specialisation for Intel Xeon Phi
	Busy-Waiting Amortisation
	Streaming Stores
	Hybrid Barrier Synchronisation

	Experimental Methodology and Results
	Benchmarks
	Naming Convention and Methodology
	Experimental Data and Discussion

	Related Work
	Conclusions

	Theory and Practice of Managed Runtime Environments
	Fundamentals of Managed Runtime Environments
	VM Emulation Engine
	Garbage Collection

	Maxine VM
	Baseline Compiler
	Optimising Compilers
	Heap Allocation and Garbage Collection
	Comparison With Other JVM Implementations

	Summary

	Theory and Practice of Computer Architecture Simulation
	Fundamentals of Computer Architecture Simulation
	Comparison of Simulation with Analytical Modelling
	Overview of Simulation Techniques

	Power and Energy Consumption Modelling Using McPAT
	ZSim Simulator
	Comparison With Other Research Simulators
	Validation of Simulating Maxine VM Running the DaCapo Benchmarks

	Summary

	MaxSim: A Simulation Platform for Managed Applications
	Introduction
	Integration of Platform Components and Novel Simulation Techniques
	Pointer Tagging
	Integration with the McPAT Framework
	Simulator/VM Co-Operative Address Space Morphing

	Use Cases
	Characterisation of the DaCapo Benchmarks
	Evaluation of the HW/SW Co-Designed Optimisation Related to Array Length Encoding into Array Object Pointers' Tags

	Related Work
	Conclusions

	Type Information Elimination from Objects on Architectures with Tagged Pointers Support
	Introduction
	Association of Objects with Class Information in JVMs
	Architectural Support for Tagged Pointers
	Class Information Handling via Tagged Pointers
	Considerations on CIP Placement Inside an Object and Reuse of CIP Location
	Encoding CIDs in Tagged Pointers
	CIPs Retrieval from Tagged Pointers
	Heap Traversal During Copying GC

	Architectural Support
	CIP Retrieval
	Tagged Pointers Compression-Decompression
	ISA Modifications

	Experimental Platform and Methodology
	MaxSim Platform
	Benchmarks
	Experimental Methodology

	Experimental Results
	Heap Space Savings
	Effects of CIP Elimination on GC
	Effect of CIP Elimination on Execution Time for Configurations Without HW Extensions
	Effect of CIP Elimination on Execution Time for Configurations with HW Extensions
	Reduction in Cache Misses
	Reduction in Dynamic Energy

	Related Work
	Conclusions

	Conclusions and Future Work
	Summary and Conclusions
	Future Work
	Specialisation of Barrier Synchronisation
	HW/SW Co-Designed General-Purpose CPUs and MREs

	Bibliography
	cbarriers Framework Manual
	Dependencies
	Usage
	Building, Running Benchmarks, Plotting Results
	Help Message

	Recipes

	MaxSim Platform Manual
	Dependencies
	Required Environment Variables
	Usage
	Building, Cleaning, Style Checking, and Setting Kernel Parameters
	Running DaCapo-9.12-bach Benchmarks
	MaxSim Interface and Configuration
	ZSim MaxSim-Related Configuration Parameters
	MaxineVM MaxSim-Related Flags
	Controlling Simulation by Managed Applications
	Printing Profiling Information in the Textual Format
	Retrieving Statistics Collected by ZSim
	Modelling Power and Energy Using McPAT

	Recipes

