
Saarland University

Faculty of Mathematics and Computer Science

Department of Computer Science

Towards Principled Dynamic Analysis on Android

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

vorgelegt von
Oliver Schranz

Saarbrücken, 2020

Tag des Kolloquiums: 08.06.2021

Dekan der Fakultät: Prof. Dr. Thomas Schuster

Prüfungsausschuss:
Vorsitzender des Prüfungsausschusses: Prof. Dr. Raimund Seidel
Erstgutachter: Prof. Dr. Michael Backes
Zweitgutachter: Prof. Dr. Christian Rossow
Akademischer Beisitzer: Dr. Robert Künnemann

Abstract

The vast amount of information and services accessible through mobile handsets running
the Android operating system has led to the tight integration of such devices into our
daily routines. However, their capability to capture and operate upon user data provides
an unprecedented insight into our private lives that needs to be properly protected, which
demands for comprehensive analysis and thorough testing. While dynamic analysis
has been applied to these problems in the past, the corresponding literature consists
of scattered work that often specializes on sub-problems and keeps on re-inventing the
wheel, thus lacking a structured approach. To overcome this unsatisfactory situation,
this dissertation introduces two major systems that advance the state-of-the-art of
dynamically analyzing the Android platform. First, we introduce a novel, fine-grained
and non-intrusive compiler-based instrumentation framework that allows for precise
and high-performance modification of Android apps and system components. Second,
we present a unifying dynamic analysis platform with a special focus on Android’s
middleware in order to overcome the common challenges we identified from related work.
Together, these two systems allow for a more principled approach for dynamic analysis
on Android that enables comparability and composability of both existing and future
work.

iii

Zusammenfassung

Die enorme Menge an Informationen und Diensten, die durch mobile Endgeräte mit dem
Android Betriebssystem zugänglich gemacht werden, hat zu einer verstärkten Einbindung
dieser Geräte in unseren Alltag geführt. Gleichzeitig erlauben die dabei verarbeiteten
Benutzerdaten einen beispiellosen Einblick in unser Privatleben. Diese Informationen
müssen adäquat geschützt werden, was umfassender Analysen und gründlicher Prüfung
bedarf. Dynamische Analysetechniken, die in der Vergangenheit hier bereits angewandt
wurden, fokussieren sich oftmals auf Teilprobleme und reimplementieren regelmäßig
bereits existierende Komponenten statt einen strukturierten Ansatz zu verfolgen.
Zur Überwindung dieser unbefriedigenden Situation stellt diese Dissertation zwei Sys-
teme vor, die den Stand der Technik dynamischer Analyse der Android Plattform
erweitern. Zunächst präsentieren wir ein compilerbasiertes, feingranulares und nur
geringfügig eingreifendes Instrumentierungsframework für präzises und performantes
Modifizieren von Android Apps und Systemkomponenten. Anschließend führen wir
eine auf die Android Middleware spezialisierte Plattform zur Vereinheitlichung von
dynamischer Analyse ein, um die aus existierenden Arbeiten extrahierten, gemeinsamen
Herausforderungen in diesem Gebiet zu überwinden. Zusammen erlauben diese beiden
Systeme einen prinzipienorientierten Ansatz zur dynamischen Analyse, welcher den
Vergleich und die Zusammenführung existierender und zukünftiger Arbeiten ermöglicht.

v

Background of this Dissertation

This dissertation is based on the two major papers mentioned in the following, where I
have been the main author.

The ARTist project [P1] evolved from my master thesis (TaintARTist), originally
proposed by Philipp von Styp-Rekowski. TaintARTist introduced basic taint tracking
code into the Android Runtime (ART) compiler and first described the compiler’s
internals. However, it targeted a specially prepared intermediate Android version based
on the current master branch at the time (between Android 5 and 6) and required a
custom kernel to work properly. In contrast, ARTist advances the underlying concept
from a pure taint tracking implementation to a full-fledged instrumentation framework
where taint tracking is only one of multiple use cases. It targets the stable Android
versions 6, 7, and 7.1, and comes with a full ecosystem of tools from module development
to large-scale evaluations. Sebastian Weisgerber, Parthipan Ramesh and Alexander
Fink contributed to the implementation of the prototype and corresponding tools. Sven
Bugiel was involved in general writing tasks. All authors performed reviews of the paper.

The original idea behind Troop to fuzz-test the Android middleware has been discussed
at the Information Security and Cryptography Chair for a while with Sven Bugiel as
the driving force behind it. Since we realized that ARTist solved a major conceptual
challenge (coverage feedback), I bootstrapped this project by retrofitting the evaluation
tool that was built for ARTist to become the foundation of our dynamic analysis
platform. The text in this dissertation goes beyond the paper [P2] insofar that it
additionally contains a more detailed and thorough systematization of related work that
was originally part of an unpublished Systematization of Knowledge paper based on [P2].
Sebastian Weisgerber, Kai Greshake, Jonas Cirotzki, Parthipan Ramesh, and Alexander
Fink contributed to the implementation of the prototype. Erik Derr contributed static
analysis results that are utilized as a part of our dynamic analysis. Sven Bugiel was
involved in general writing tasks. All authors performed reviews of the paper.

Author’s Papers for this Thesis

[P1] Backes, M., Bugiel, S., Schranz, O., Styp-Rekowsky, P. von, and Weisgerber, S.
ARTist: The Android Runtime Instrumentation and Security Toolkit. In: IEEE
EuroS&P’17.

[P2] Schranz, O., Weisgerber, S., Derr, E., Backes, M., and Bugiel, S. Towards a
Principled Approach for Dynamic Analysis of Android’s Middleware. Under
Submission.

Further Contributions of the Author

[S1] Backes, M., Bugiel, S., Hammer, C., Schranz, O., and Styp-Rekowsky, P. von.
Boxify: full-fledged app sandboxing for stock android. In: USENIX SEC’15.

[S2] Backes, M., Bugiel, S., Schranz, O., and Styp-Rekowsky, P. von. Boxify: bringing
full-fledged app sandboxing to stock android. USENIX ; login 41, 2 (2016).

vii

[S3] Huang, J., Schranz, O., Bugiel, S., and Backes, M. The art of app compartmen-
talization: compiler-based library privilege separation on stock android. In: ACM
CCS’17.

Technical Reports of the Author

[T1] Schranz, Oliver. ARTist - A Novel Instrumentation Framework for Reversing
and Analyzing Android Apps and the Middleware. url: https://i.blackhat.
com/us- 18/Thu- August- 9/us- 18- Schranz- ARTist- A- Novel-
Instrumentation - Framework - for - Reversing - and - Analyzing -
Android-Apps-and-the-Middleware-wp.pdf (Accessed: July 3, 2020).

viii

https://i.blackhat.com/us-18/Thu-August-9/us-18-Schranz-ARTist-A-Novel-Instrumentation-Framework-for-Reversing-and-Analyzing-Android-Apps-and-the-Middleware-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Schranz-ARTist-A-Novel-Instrumentation-Framework-for-Reversing-and-Analyzing-Android-Apps-and-the-Middleware-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Schranz-ARTist-A-Novel-Instrumentation-Framework-for-Reversing-and-Analyzing-Android-Apps-and-the-Middleware-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Schranz-ARTist-A-Novel-Instrumentation-Framework-for-Reversing-and-Analyzing-Android-Apps-and-the-Middleware-wp.pdf

Acknowledgments
Pursuing a Ph.D. is never done alone, so I want to thank those people that made all of
this possible and accompanied me on this unique journey.
First, I want to thank my supervisor Michael Backes who introduced me to the topic of
security and gave me the opportunity to concurrently explore both worlds, academia
and industry, which eventually led me on my current path. I am very grateful for the
support and mentoring I received from him since my bachelors so that I could conduct
a Ph.D. at the Information Security & Cryptography group at CISPA together with
so many nice and talented peers. I feel deep gratitude towards the amazing people
at CISPA, in particular in Michael’s group, that I had the chance to share so many
unique experiences with, from traveling to conferences to nightly nerf gun fights before
deadlines, laser tag, bad movie nights, and many more. The unique working atmosphere
to help each other and learn together is one of the major reasons I enjoyed being a Ph.D.
student so much, thank you all for making this possible.
Special thanks go to my very talented and enthusiastic co-authors without whom this
dissertation would not have been possible, namely (in alphabetical order) Sven Bugiel,
Erik Derr, Christian Hammer, Jie Huang, Philipp von Styp-Rekowsky and Sebastian
Weisgerber. I had a lot of fun and learned so much from working with you on Android
security topics and beyond.
I also had the pleasure to share an office with such great "roomies" over the period of
the last 5 years, Sven Bugiel, Milivoj Simeonovski, Sebastian Weisgerber, Philipp von
Styp-Rekowsky, Jie Huang, Tin Nguyen and Yang Zou. Thank you for all the interesting
discussions and off-topic chats that kept me motivated.
A very special thank you goes to Sven Bugiel who has been a constant in my whole
academic life. From supervising my bachelor thesis to helping with every single paper
I ever worked on, he always found the time to share advice and lend a hand. This
dissertation would not have been possible without him.
Also, I want to thank my friends for always being there to make these past years
memorable and enjoyable. Thank you Lukas, Jana, Jana, Jilles, Anna, Hannes, David,
Ben, Julia, Jonas, Sophie, Andi, Johannes, Lisa, Caro, Jenni, Pascal, Maike, Jeanette,
Fabian, Frank, Mich, Franzi, Dominik, Sebastian and Julian.
Another big thank you goes to Johannes, Andi and Claudia for proof-reading the whole
thesis. Moreover, I would like to express my gratitude towards Christian Rossow for
being the second examiner for this dissertation. In the context of my dissertation
defense, I would like to additionally thank Raimund Seidel for chairing the examination
board and Robert Künnemann for writing the protocol.

Last but not least, I want to sincerely thank my family. I am incredibly grateful to
my parents Sabine and Wilhelm who always unconditionally supported me on this path.
Without their help, none of this would have been possible. Also, I want to thank my
grandparents, my brother and sisters, and the whole family that I am so grateful to
have. You always have my back and I am so happy to be a part of this family.
Finally, I want to thank Claudia. Throughout all the setbacks, hurdles and sacrifices
that a Ph.D. comes with, you were always at my side to cheer me up and keep me
running. Thank you for those wonderful 10 years that we have shared already.

ix

Contents

1 Introduction 1

2 Technical Background 7
2.1 Android Background . 9

2.1.1 Software Stack . 9
2.1.2 Inter-Process Communication (IPC) 10
2.1.3 Applications . 11
2.1.4 Permissions . 12

2.2 Dynamic Analysis Primer . 13

3 ARTist 15
3.1 Motivation . 17
3.2 Exploring the Android Runtime’s New Compiler 17

3.2.1 Input File Format . 18
3.2.2 Output File Format . 18
3.2.3 Compilation . 19
3.2.4 Backends . 19
3.2.5 Optimizing: Intermediate Representation 20

3.3 Problem Description . 22
3.4 Contribution . 25
3.5 Design & Architecture . 26

3.5.1 ARTist compiler . 26
3.5.2 Modules . 29
3.5.3 Module SDK . 29
3.5.4 Deployment Strategies . 30

3.6 Case Studies . 32
3.6.1 Inline Reference Monitoring for Dynamic Permission Enforcement 33
3.6.2 Taint Tracking . 33
3.6.3 Outlook: Compartmentalization 38
3.6.4 Further Modules . 39

3.7 Discussion . 39
3.7.1 ARTist . 39
3.7.2 Dynamic Permission Enforcement 44
3.7.3 Taint Tracking . 44

3.8 Conclusion . 47

xi

CONTENTS

4 Troop 49
4.1 Motivation . 51
4.2 Problem Description . 51
4.3 Contributions . 52
4.4 Requirements Analysis & Taxonomy . 54

4.4.1 Target Instance Management . 56
4.4.2 Attack Surface Mapping . 57
4.4.3 Input Generation . 60
4.4.4 Target Communication & Harness 62
4.4.5 Instrumentation & Introspection 63
4.4.6 Verification of Results . 66

4.5 Architecture . 67
4.5.1 Overview . 67
4.5.2 Troop . 67
4.5.3 Result Analyzer . 69
4.5.4 Backend . 69
4.5.5 Workers . 69
4.5.6 Integrated Input Generators . 71
4.5.7 Device Setup . 74

4.6 Case Studies . 76
4.6.1 Vulnerability & Bug Discovery 76
4.6.2 Responsible Disclosure . 80
4.6.3 Permission Mapping . 81
4.6.4 Outlook: Permission Mapping 2.0 83
4.6.5 Further Use Cases . 83

4.7 Future Extensions . 84
4.7.1 Transformational Fuzzing . 84
4.7.2 Test Case Minification . 85
4.7.3 Alternative Input Generators . 85

4.8 Conclusion . 85

5 Conclusion 87

A Tools & Software 91
A.1 ARTist . 91
A.2 Troop . 92
A.3 Ecosystem . 92

B Responsible Disclosure 94
B.1 Title: Repeatedly calling

WindowManagerService.setOverscan soft-bricks the device (boot-
loop, broken SystemUI state) . 94

xii

List of Figures

2.1 Overview of the Android software stack (adapted and simplified from [13]). 9

3.1 A high-level overview of the dex2oat compiler using the Optimizing
backend including the transformation to the IR, optimizations, and
native code generation. 18

3.2 Transformation of Java code to the Optimizing IR. 20
3.3 The code instrumentation points before, during, and after the compilation

for different representations of the app code. Instrumented code is
depicted in black boxes. 23

3.4 Overview of the ARTist ecosystem. 27
3.5 Navigation flow of a user instrumenting a target with a certain set of

modules. 32
3.6 Tracking tainted variable id from the example in Figure 3.2. All discovered

sinks and sources are marked. Solid lines indicate intra-procedural data
flows of tainted variables, dashed lines inter-procedural data flows between
local sink-source pairs. The right-hand side depicts the inlined taint
tracking code to propagate taint tags. 35

3.7 An illustration of the taint propagation, based on an extension of Fig-
ure 3.2. The taint stack is displayed at four points in time (T0-T3). . . 38

3.8 Screenshots of the Chrome Developer Tools connected to an instrumented
target app via our ARTist stetho module. 40

3.9 Excerpt from the trace output when running an instrumented version of
the heise online app [88]. 40

4.1 The typical structure of Systemserver dynamic analysis solutions with
commonly used components. 54

4.2 Overview of the platform’s architecture. 68
4.3 Worker processing an API task. 70
4.4 Inputs generated by AFL from an empty seed. 73
4.5 The full on-device setup from generating inputs to persisting and feeding

back artifacts. 75
4.6 Overlap of mapped permissions for primitive (left) and complex (right)

APIs. 82

A.1 Full ecosystem of tools for dynamically analyzing the Systemserver. . . . 92

xiii

List of Tables

3.1 Comparison of security and deployment features between bytecode rewrit-
ing, compiler-based instrumentation, and binary rewriting. 23

3.2 Robustness evaluation results for the Google Play app store categories.
Note that the Family categories contain apps from other categories as
well. Filtered apps are omitted. 41

3.3 Microbenchmarks averaged over 60.000 runs. The baseline benchmarks
measure the pure execution time of the permission-protected call while the
instrumented benchmarks measure the protected call and the additional
permission check. 44

3.4 Passmark results averaged over 5 runs, higher is better. 45
3.5 Results for the DroidBench taint tracking evaluation. Broken tests and

categories not applicable to our system are omitted. 46

4.1 Overview of existing systemserver dynamic analyses. 55
4.2 Categorization of different API surface mapping approaches in terms of

the used analysis method and resulting API description. 58
4.3 Example of a fully represented method in the Android middleware in-

cluding high-level Java signatures (interface and implementation) and
low-level binder service and transaction ID. 58

4.4 Categorization of evaluated fuzzers by structural awareness and utilization
of coverage feedback. 61

4.5 Performance measurements for time between executions in milliseconds,
averaged over the different APIs using mean and median respectively. . 78

4.6 Measured coverage for different input generators. 79
4.7 Comparing the permissions mapped by different fuzzers. 81

xv

1
Introduction

1

With the introduction of the Android operating system (OS) as an open and extensible
ecosystem, Google revolutionized the mobile market by—for the first time—bringing
together a wide range of stakeholders. All those different actors, from private and
corporate app developers to device manufacturers and hardware vendors, platform
architects, as well as consumers, come with a multitude of requirements. In response
to these diverse use cases, device classes range from cheap feature phones to high-
end flagships that push the boundaries of the smartphone form factors in terms of
performance and new hardware components. At the time of writing, Android dominates
the mobile market with a share of ~74% [103] (July 2020). What started as a specialized
operating system for resource-constrained mobile devices is now being adapted to a
multitude of device families, including smartwatches, TVs, and set-top boxes, Internet-
of-Things (IoT) devices, and soon even automotives. This leap towards new platforms
and form factors was fueled by Android’s modern operating system design and the
underlying principle of appification [8] where functionality is successively subdivided into
specialized applications (apps) that interact with a rich environment provided by the
OS and other apps. It is believed that Android’s feature-rich middleware that exposes
platform capabilities and features in an easily accessible way was a driving factor to
reduce the barrier of entry for participating in this ecosystem. In the context of this
thesis, two implications of these design decisions are particularly relevant.
First, as a consequence of the low barrier of entry, developers created an overwhelming
amount of applications that is made available to end users via app markets (e.g., Google
Play Store). In contrast to iOS that requires membership in Apple’s developer program to
be able to actually deploy apps, and therefore favors corporate development, everybody 1

can upload apps to the Google Play Store, which includes hobby programmers but
also malicious actors. While having completely different motivations, both of the latter
groups regularly increase the attack surface by (accidentally or intentionally) introducing
potential vulnerabilities into end user devices.
Second, exposing such a rich functionality to third-party apps leads to a complex and
ever-growing middleware that needs to balance the increasing demand for new features
with the inherent requirement to properly shield the exposed private information and
other protected resources (e.g., access to hardware sensors). While many of those
security measures are traditionally enforced within the kernel, Android’s platform
design requires to spread those between the underlying Linux kernel and the highly-
privileged middleware running in user-space. One prime example is the enforcement
of Android permissions — a central access control mechanism that guards access to
protected resources — out of which some are enforced in the kernel via user group
membership (e.g., Internet access and writing to external storage) while others are
exclusively represented and checked in the middleware (e.g., broadcast and content
provider permissions). This complexity is further amplified by Android’s fragmentation
problem that stems from the multitude of available Android versions and customizations.
Each new version of the Android Open Source Project (AOSP) comes with changes
and additions to the middleware, ranging from simple bug fixes to the addition of
completely new services that control access to new resources such as built-in hardware.

1At the time of this writing, there is a one-time fee of 25$ to access Google’s developer console [70].
Uploading apps is free afterwards.

3

CHAPTER 1. INTRODUCTION

Vendors further customize these Android versions by including even more functionality,
thereby creating a very heterogeneous device landscape. In addition, the middleware
evolved as a wild technology mix that involves services running in many inter-connected
components written in different programming languages. Altogether, this makes the
Android middleware a notoriously hard target for automated analysis.
The large amount of code that renders manual inspection infeasible, as well as the
inherent need to protect both, the application layer and the middleware supporting it,
fostered two major lines of work in the literature that approach the problem by means
of automated analysis.
The first line of work utilizes static analysis, which has proven to be a valuable tool
for analyzing such complex systems at scale without relying on large amounts of
actual devices. In the literature, it has been applied successfully to problems like
bug and vulnerability discovery [90, 83], detecting inconsistent enforcement of security
measures [123, 84, 6, 4], permission mapping [22, 28, 5], and many more. Further
investigations into this body of literature reveals that most approaches for the app and
middleware layer build upon a common base that is one of two predominant static
analysis frameworks: Soot [131] or Wala [92]. This shared foundation allowed the
community not only to reproduce and compare past results, but also to build on top of
them to avoid re-inventing the wheel and focus their contribution on the new analysis.
The second line of work, which focuses on applying dynamic analysis approaches to
those problems, tries to overcome known disadvantages of static analysis, such as over-
approximation, by rooting analysis results in actual executions. However, in contrast
to the static analysis branch, these works often create highly-customized toolchains
that are optimized for the current use-case only and are not made available openly.
Consequently, the community struggles to re-use or even evaluate those artifacts and
their reported results, which leads to the unsatisfactory situation of duplicate work and
incomparable results. While the employed dynamic analyses are promising approaches,
they cannot realize their full potential due to the lack of a shared foundation. We argue
that a more principled approach is needed to steer the community towards comparable
and reproducible results, created from re-usable components on a shared platform.
This thesis aims at advancing this line of work by introducing two frameworks to realize
dynamic analyses for Android’s middleware and apps.
First, we propose ARTist — the Android Runtime Instrumentation and Security Toolkit
— as a compiler-based instrumentation framework that allows to create dynamic analyses
that can efficiently instrument its targets to, e.g., receive runtime feedback or patch
obstacles in the code. In contrast to existing approaches, ARTist preserves the applica-
tion signature, allows for fine-grained instrumentation in contrast to method hooking,
and is fully automated at the same time.
Second, based on a thorough requirements analysis of existing work in this area, we
introduce Troop as a common framework that can re-instantiate and unify dynamic
analyses of the Android middleware by combining them with the modular solutions we
created to overcome the shared challenges in the literature. Additionally, evaluating these
analyses on a unified platform — for the first time — allows the community to properly
reproduce and compare the corresponding results, and in the next step have a solid
foundation to discuss and move towards optimal solutions for the mentioned challenges.

4

Summary of Contributions:

ARTist

ARTist is an instrumentation framework for Android apps and middleware components
that allows for efficient modifications with instruction-granularity. It is designed to
preserve Android’s application signatures and can be deployed on the application layer
with minimal invasiveness towards the operating system, thereby filling a gap in the
current design space of instrumentation frameworks. It is built as an extension to
the dex2oat ahead-of-time compiler that was introduced with the Android Runtime
in Android 5, and deployed either via a simple app or as a part of a custom Android
fork. Using its module SDK, researchers can use it to, e.g., track information flow (e.g.,
taint tracking), provide coverage information for feedback-driven test generators (i.e.,
fuzzers), enforce fine-grained dynamic permissions, and to reverse-engineer and introspect
applications. We further created a tool to automate large-scale app instrumentation
and testing, which we used to evaluate the ARTist framework itself and two use cases
we implemented. The whole toolchain is open source.

Troop

Troop is a full-fledged dynamic analysis platform for Android’s middleware and apps
that, based on a thorough study of related work, provides primitives to re-instantiate,
evaluate and compare dynamic analyses from the literature. It serves as a common
foundation that allows to solve recurring problems of dynamically analyzing core Android
components in a modular and re-usable way in order to streamline and support research
on this topic. Our platform allowed us to implement two completely different use cases
from related work. The first case study, a large-scale evaluation of vulnerability discovery
using three different fuzzers, led to the discovery of 11 flaws and provides valuable
insights into whether known strategies from other fields can be applied effectively in the
Android middleware scenario. The second case study serves as a proof-of-concept that
dynamic permission mapping, which has been abandoned in favor of static analysis in
the literature, is nonetheless an invaluable tool for coping with the over-approximation
of those static approaches. The whole platform and toolchain will be open sourced to
help establish reproducibility and comparability in this field.

Outline

The remainder of this thesis is structured as follows. In Chapter 2 we introduce the
technical concepts underlying this dissertation. Chapter 3 introduces ARTist, our
compiler-based instrumentation framework for Android. The Troop dynamic analysis
platform is described in Chapter 4. We conclude this dissertation in Chapter 5 and give
an outlook.

5

2
Technical Background

7

2.1. ANDROID BACKGROUND

Apps

Dialer Email Calendar Camera . . .

Linux Kernel

Java Middleware

Content Providers

View System

Services

Activity Location Package Notification

WindowTelephonyResource

Figure 2.1: Overview of the Android software stack (adapted and simplified from [13]).

2.1 Android Background

The Android open source operating system is the center of a large ecosystem that powers
a multitude of smart devices, ranging from smartphones and tablets to wearables, TVs,
cameras, IoT devices, and soon even automotives. In 2020, Android leads the market
for smartphones and other mobiles with a global share of ~74% [103] (July 2020). It is
continuously developed and improved by Google through the Open Handset Alliance
that releases new Android major versions once a year via the Android Open Source
Project (AOSP). At the time of this writing, the most recent version is Android 10,
which corresponds to API level 29. Given its vast popularity in the market and its open
ecosystem, there is a large body of research that focuses on different aspects of security
in the context of Android. This section provides the common technical background
required for both of the following Chapters 3 and 4.

2.1.1 Software Stack

As depicted in Figure 2.1, Android consists of three major layers: the kernel, the
middleware and the application layer. On the lowest level, it utilizes a customized
Linux kernel that handles low-level tasks such as talking to device drivers, handling
inter-process communication (IPC) or managing native Linux users. However, Android’s
core functionality is mostly implemented by the libraries and middleware on top. On
the one hand, the Android Runtime, formerly Dalvik Virtual Machine [61] (DVM),
compiles and executes all Java-based middleware components and apps, which provide
most of the functionality that is exposed to third-party applications, such as access
to location information, telephony services, notifications, and many more. For exam-
ple, ActivityManagerService is handling the complete application lifecycle and

9

CHAPTER 2. TECHNICAL BACKGROUND

PackageManagerService manages their installation process. On the other hand,
the middleware also contains a set of core libraries and natively implemented services
and daemons, such as the media framework. On top of the middleware is the application
layer that consists of system apps as well as third-party apps. These applications
extend the platform’s capabilities to the user by utilizing its APIs to build their own
functionality, thereby forming the primary interaction channel of the user with their
device. Apps are usually installed and updated from central software repositories called
app stores (e.g., Google Play store or Amazon Appstore) but app packages can also be
installed directly from the file system (side-loading).

Systemserver. The so-called Systemserver is a central component of the middleware
that hosts most of the system services exposed to applications (e.g., location, notifi-
cations). During the boot process, it is the first Java-based process that is started
with the runtime. When launched, the Systemserver forms a large process with every
service being instantiated as a thread that exposes its functionality via IPC. Overall, the
Systemserver exposes more than 2000 APIs1. Its utmost importance for the system’s
functionality combined with this large attack surface makes it a prime target for re-
searchers to analyze for potential bugs and vulnerability. A restart of the Systemserver
triggers a so-called soft reboot where the whole application layer is shut down until
the Systemserver process is back online. In order to protect against deadlocks and
other situations that prevent core services from responding properly, it comes with a
dedicated Watchdog thread that connects to all hosted services every 30 seconds and
kills the whole process if one does not answer after a minute.

Mediaserver & Native System Services. Besides the Systemserver, the so-called
mediaserver and other native services support the application and middleware layer
with, e.g., media related functionality such as access to audio, camera, and codecs.
While those have proven to be notorious sources of high-severity vulnerabilities, one
of the more popular examples being the stagefright exploits [82, 81], Google has since
reduced the potential impact of such attacks by sequentially splitting those privileged
entities into smaller processes using increasingly restricted SELinux [76] policies2.

2.1.2 Inter-Process Communication (IPC)

In contrast to stock Linux that provides multiple ways for IPC, Android primarily uses
light-weight and fast IPC via its Binder component. A client can utilize it for remote
procedure calls by directly interfacing with the binder driver via the /dev/binder
device3. The binder driver then copies the payload from client to server and executes
the requested functionality in a thread there. Once the result is ready, it is transmitted
back again via the binder driver so that the client thread receives it. Unless explicitly

1The exact number varies depending on Android version, vendor and whether the device is physical
or emulated.

2The evolution of mediaserver and the corresponding sandboxing efforts are documented in a blog
post [75] from the Android team.

3Starting from Android 8, there are now multiple such endpoints depending on whether the client is
a framework, vendor, or hardware service [62].

10

2.1. ANDROID BACKGROUND

flagged as one-way, this operation blocks the caller until a result is ready, which allows
for synchronous procedure calls across the process boundaries. A central entity called
the service manager is used to register new services and can be queried for all services in
the system that are available via binder. In order to abstract from the binder protocol,
Android system components (e.g., middleware services) provide proxy code that can
be used on the client side to talk to the service manager and specific services without
having to deal with the underlying low-level details of the communication. The Android
Interface Definition Language (AIDL [46]) even automates the generation of client-side
proxies and server-side stubs for Java-based services. Additionally, Android provides
a set of high-level IPC mechanisms on top of binder, such as sending intents, using
messengers, or accessing content providers via the content resolver interface.

2.1.3 Applications

In this appified ecosystem, apps are the primary points of interaction with the user. They
are responsible for implementing new features and functionality, based on Android’s
APIs, that the users interact with using, e.g., graphical user interfaces, notifications, or
voice commands. In order to create apps, developers nowadays either use a combination
of Java, Kotlin, and native compiled code, or employ cross-platform frameworks such as
Flutter [67] or Xamarin [102]. Apps are based on four main components:

Activities implement event-driven interaction with users. On most devices, they
display a graphical interface that drives the execution of the app through user inter-
action, but on display-less platforms, such as Android Things for IoT, they rely on
other interaction mechanisms. Activities are managed by the Systemserver (i.e., the
ActivityManagerService) and follow a strict lifecycle, as depicted in Figure 2.2a.

Services perform long-running tasks either in the foreground (e.g., play music) or in
the background (e.g., download data). These are often used to avoid heavy computation
in Activities that would slow down the user interface. Optionally, services can expose
functionality to other applications by using the same mechanisms and tools (i.e., AIDL)
as services in the Systemserver. The lifecycle of such services is shown in Figure 2.2b.

Content Providers abstract away and shield access to an app’s content, such as
downloaded files, images, databases, or files on disk. They are mostly used to im-
plement create, read, update, and delete (CRUD) operations in a database-like in-
terface. Similarly to services, they can be exposed to other apps as well. Apps can
find system or third-party providers using a centralized content resolver that queries
the ActivityManagerService for matching providers. Android provides support
for fine-grained access control for the data managed by a content provider through
permissions (e.g., on a file or database schema level).

Broadcast Receivers implement listeners and callback handlers for events generated
by the system or other applications. Receivers declare the type of broadcast they
are interested in by means of an intent filter and the system will instantiate them

11

CHAPTER 2. TECHNICAL BACKGROUND

(a) The full lifecycle of Android activities.
Source: [15].

(b) The full lifecycle of a bound service.
Source: [11].

on-demand when a matching broadcast intent is available. Popular examples of system-
wide broadcasts that are consumed by app broadcast receivers are the boot completed
or battery low events.

2.1.4 Permissions

Permissions are an integral part of Android’s security architecture that guard access to
a multitude of protected resources, such as location information, the user’s contacts and
calendar, placing phone calls, or opening network sockets. The enforcement happens
on a Linux user ID basis (UID), which is unique to each app on a device4. At install
time, all permissions that an app wants to use are parsed from its manifest and requests
for permissions that are not part of this initial set are automatically denied. The only
way to add new permissions to an app is to add them to its manifest for the next app
update. A particular set of internal and dangerous permissions, however, is only granted
to system apps that are included in the Android OS image. Before the introduction of
runtime permissions in Android 6, all requested permissions were automatically granted
during the installation process and there was no way for the user to remove them again
without uninstalling the application. Since Android 6, permissions are requested ad
hoc and need to be confirmed by the user via a protected system UI component, and
some can even be revoked at any time through the settings app. While the kernel
enforces lower-level access, such as for sockets, the middleware comes with an own

4With the exception of the sharedUserId feature that was deprecated in API 29 [12].

12

2.2. DYNAMIC ANALYSIS PRIMER

implementation of permissions that is managed by the PackageManagerService,
AppOpsService, and PermissionController, depending on the concrete Android
version. However, there is no centralized enforcement point within the Systemserver.
Exposed service APIs are responsible to enforce their own permissions and while many
follow the fail-early principle of checking permissions in the beginning of the function,
in some cases the enforcement is context- or parameter-sensitive. Currently, no official
mapping from Android APIs to the permissions required to call them is available, hence
the current process of determining the set of required permissions for an application is
based on trial and error during the development phase.

2.2 Dynamic Analysis Primer

Static and dynamic analysis are two techniques that follow a fundamentally different
approach to analyze a target. In general, static analysis refers to techniques that do
not execute the target but inspect it using offline information. Often, this includes
representing the target’s code in a format that allows to reason about, e.g., dependencies
and control flows. It is often used where the execution of targets is either not feasible (i.e.,
because of size, speed, or other limitations) or even dangerous (e.g., dissecting malware).
A key property of such analyses is the over-approximation of findings, since by definition
all possible (and in some cases even impossible) execution paths can be reasoned about.
Dynamic analysis, in contrast, ties its results to actual executions of the target. It
employs introspection techniques to learn about concrete execution traces as they
appear and reasons about them. Compared to static analysis, it trades completeness
for soundness. Under certain assumptions5, results are sound because they actually
manifest in real executions. Completeness, however, would require to generate a set of
inputs that triggers every single part and combination of a target’s functionality in order
to catch all possible edge cases. The latter in particular is the problem underlying many
well-studied challenges for dynamic analysis, such as maximizing coverage measures
while dealing with implementation details of real executions, such as statefulness and
parallelism.
In terms of scalability, static and dynamic analysis suffer for different reasons. While
static analysis can often benefit more from increased computational resources such as
more CPU time, RAM and disk space, the required computation is often based on the
possible states of a target. Since the amount of possible states tends to be exponential
in the target’s code complexity, this is often referred to as the state explosion problem.
Dynamic analysis avoids this by only reasoning about the current state of an execution
trace, but scaling heavily depends on the kind of target under test. In our scenario,
apps and middleware components are heavily depending on the Android system so that
scaling dynamic analysis requires large amounts of devices, either physical or virtual.

5E.g., perfect introspection capabilities that do not change the target’s behavior.

13

3
ARTist

The Android Runtime Instrumentation and Security Toolkit

15

3.1. MOTIVATION

3.1 Motivation

The Android OS has become a popular subject of the security research community over
the last few years. Among the different directions of research on improving Android’s
security, a dedicated line of work has successfully investigated how instrumentation of
the interpreter (i.e., Dalvik virtual machine) can be leveraged for security purposes.
This line of work comprises influencing works such as TaintDroid [49] for analyzing
privacy-relevant data flows within applications, AppFence [89] for protecting the end-
users’ privacy, Moses [116] for domain isolation, or Spandex [39] for password tracking,
just to name a few.
However, with the release of Android 5 Lollipop, Google made a large technological leap
by replacing the interpreter-based runtime with an on-device, ahead-of-time compilation
of app and system code to platform-specific native code that is executed in the new
Android Runtime. While this leap did not affect the app developers, it broke legacy
compliance of all of the previously mentioned security solutions that relied on instrumen-
tation of the DVM and restricts them to Android versions prior to Lollipop. In fact, it
has left the security research community with two choices for carrying on work that relies
on instrumented runtimes: resorting to binary or bytecode rewriting techniques [43, 86]
or adapting to the novel but uncharted on-device compiler infrastructure. While the
former has been studied already in the literature, it comes with a set of disadvantages
on Android, such as breaking the application signature or being platform dependent,
that still leave room for improvement. The latter, however, first and foremost requires
a thorough study of the new runtime’s internals, more specifically of its on-device
compiler dex2oat. Furthermore, these observations raise the question whether the new
runtime can even support the security community beyond what was possible within
the frame of the DVM interpreter. For the first time in the development of Android,
having an on-device compiler allows to draw a connection to existing compiler-based
security literature, which is a dedicated line of work that has been thoroughly studied
on commodity systems but not yet on mobile systems. Therefore, this work also aims at
investigating whether, going forward, we can bring compiler-assisted security solutions
to Android.

3.2 Exploring the Android Runtime’s New Compiler

This section will provide the necessary background on the internals of the Android
Runtime as required for this chapter. The analysis is based on Android 6 Marshmallow
that represents the first major OS version that made the Optimizing backend — our
focus for this work1 — the default. Even though the Android source code is publicly
available as part of the Android Open Source Project, little attention has yet been given
to ART from a security researcher’s perspective. Paul Sabanal had an early look [117] at
the Android Runtime right after its silent introduction as a developer option on Android
4.4 KitKat. Besides providing information on the ART executable file formats, the paper
discusses the idea of hiding rootkits in framework or app code, assuming root access

1Section 3.2.4 explains why we specifically chose to utilize the Optimizing backend.

17

CHAPTER 3. ARTIST

APK
dex code

OATdex2oat
Verify Write ELF

Optimizing Backend

Compile Install

Input Output

dex
code IR native

code
Transform Code

Generation

Optimization

dex code

Figure 3.1: A high-level overview of the dex2oat compiler using the Optimizing backend
including the transformation to the IR, optimizations, and native code generation.

has already been granted. However, especially in its early phase, the Android Runtime
has undergone frequent changes, which, unfortunately, has made the corresponding
documentation outdated by now.2
Android’s new on-device compiler dex2oat, which is of particular interest for this work, is
responsible for the validation of applications and their compilation to native code. It was
designed from scratch to be highly flexible and of modular structure, providing numerous
configuration possibilities, multiple compiler backends, and native code generators for
supported Android platforms.
The general workflow of the compiler suite is depicted in Figure 3.1 and its steps will
be explained in the remainder of this section.
Providing a full technical documentation of the entire compiler suite and all its intricacies
is outside the scope of this work, therefore we only focus on those parts relevant to the
upcoming chapters of this thesis.

3.2.1 Input File Format

As an input format, dex2oat expects the very same dex files that the DVM used
to interpret. This strategical decision ensured that neither developers nor app store
operators needed to adapt their code to ART. Developers still upload their apps as
Android Application Package (APK) files that bundle the app’s code with its resources.
When a new app is installed on the device, dex2oat compiles the app’s dex bytecode
and the ART runtime executes the resulting oat file, which is completely transparent
for the end user. Using this strategy, ART is still compatible with the old Android app
base without enforcing a fallback to interpretation.

3.2.2 Output File Format

oat files are Android’s new file format for compiled code that is loaded and executed
by the Android Runtime. Even though the format was newly created for the Android
platform, technically speaking oat files are specialized ELF shared objects that are

2E.g., there is a large version gap between the documented oat version 45 and the version 64 that
we investigated.

18

3.2. EXPLORING THE ANDROID RUNTIME’S NEW COMPILER

loaded into processes, i.e., loading a compiled app into an application process resembles
loading an (ELF) shared library into the process space of a dynamically linked executable.
Besides the native code generated with dex2oat, oat files contain the complete original
dex code, which is required to, e.g., fall back to interpretation mode during app
debugging. oat files are still not officially documented, but they can be analyzed using
standard ELF tools like readelf and, in more recent Android versions, a tool called
oatdump.

3.2.3 Compilation

Before the actual compilation is performed, each input dex file is checked for validity.
These checks are more extensive and stricter than those implemented in the DVM [78].
The compilation itself is done on a per-method base and can be parallelized. dex2oat
completely delegates the actual compilation to one of its backends and only writes the
results of the compilation to an oat file along with the original dex code. There are
three compilation phases shared between all backends:

Transformation. A graph-based intermediate representation (IR) is created from the
dex code. Depending on the concrete backend, multiple IRs are possible. While nodes
in this graph representation typically resemble dex instructions, they are interlinked
and extended with additional information that aid code analysis.

Optimization. Each backend provides its own set of optimization passes, ranging
from very basic techniques to state-of-the-art algorithms. Given a populated IR graph,
the code is optimized by running a subset of the implemented optimization passes.
These passes require full access to the method graphs since optimizations might involve
rewriting major parts of the code (e.g., inlining, dead code elimination). However, while
these aim to produce more efficient code, the original functionality intended by the
developer and therefore also the semantic consistency between the original dex code
and the code compiled from it needs to be preserved.

Native Code Generation. The IR nodes are transformed to native code using a
code generator for the specific CPU architecture of the current platform, e.g., arm or
x64. Again, there are major differences between the backends, such as the level of
sophistication of the register allocation algorithm, which depends on the versatility of
the underlying IR.

3.2.4 Backends

On an Android stock device running version 5 Lollipop or higher, dex2oat can choose
between two different backends, Quick and Optimizing. Originally, there was a third
backend called Portable that utilized LLVM [26] to lift dex bytecode to LLVM’s bitcode,
but it was discontinued before ever reaching a production-ready state. Although Quick
was dex2oat’s default backend until Android 6, we focus on the newer Optimizing
backend for the remainder of this thesis. This choice is not only motivated by the

19

CHAPTER 3. ARTIST

public String getID() {

 TelephonyManager tm =
 getSystemService(TELEPHONY_SERVICE);

 String id = tm.getDeviceId();

 if(id != null) {
 id = prefixID(id);
 } else {
 id = "N/A";
 }

 return id;
}

public String prefixID(String id) {
 String prefix = "ID: ";
 String result = prefix + id;
 Log.d(TAG, prefix + id); // leak id!
 return id;
}

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

(a) Example code leaking the device’s
phone number.

6: LoadString: 'phone'
12: InvokeVirtual: Activity.getSystemService, args:(6)
15: LoadClass: Landroid/telephony/TelephonyManager
17: CheckCast args:(12, 15)
21: InvokeVirtual: TelephonyManager.getDeviceId, args:(12)
25: Equal, args:(21, null)
26: If, args:(25)

Basic Block 1

36: LoadString: 'N/A'

Basic Block 2

31: InvokeVirtual: prefixID,
 args:(4, 21)

Basic Block 4

43: Phi, args:(31, 36)
35: Return, args:(43)

Basic Block 3

(b) Generated IR in SSA form for the
getID() method.

Figure 3.2: Transformation of Java code to the Optimizing IR.

fact that Optimizing is the default backend since Android 6, but also because Quick
is essentially derived from the DVM’s just-in-time compiler and lacks a sophisticated
IR that can support state-of-the-art optimizations. However, Optimizing was designed
completely from scratch and its internal structure and design are still not officially
documented. In Figure 3.1 the compilation steps of Optimizing are depicted.

3.2.5 Optimizing: Intermediate Representation

Our insights into dex2oat’s Optimizing backend are mainly derived from manual analysis
of the AOSP source code of the ART project. Optimizing’s intermediate representation is
essentially a control flow graph on the method level, which the Android developers denote
as HGraph. The graph is further enriched with structural data about the program and
populated with instruction nodes, denoted as HInstructions. Figure 3.2a presents
an example Java code snipped and Figure 3.2b presents the resulting3 HGraph of the
getID function in the Optimizing IR.

HGraph. The HGraph serves as the single intermediate representation of the app
methods’ code. When the graph is created, dex instructions of every method’s bytecode
are scanned one after another, and the corresponding HInstructions are created as
the graph’s nodes and interlinked with the current basic block and the rest of the graph.
In order to allow for complex optimizations, the graph is transformed into single static

3Presented code is simplified and limited to relevant instructions for the sake of readability.

20

3.2. EXPLORING THE ANDROID RUNTIME’S NEW COMPILER

assignment form (SSA). Pairs of value definitions and usage, so-called def-use-pairs,
are created during a liveness analysis and explicitly interlinked afterwards. To deal
with cases in which the exact value cannot be determined statically, special phi nodes
are inserted. phi represents a pseudo-function that will "decide" which of the inputs
will become the output, thereby providing a useful tool for static analyses to cope with
situations where a variable assignment depends on a decision at runtime (e.g., branching
behavior). Using this workaround, the phi node can be used as a surrogate input to all
operations that depend on this runtime decision.
In this form, the graph is amenable to a multitude of possible optimizations. The
available optimizations include algorithms such as Bounds Check Elimination to remove
redundant bounds checks, Global Value Numbering to remove duplicate assignments,
dead code elimination to delete unreachable code, or loop invariant code motion to
optimize hotspot code in loops. In Section 3.5.1, we show how we can also leverage
this form for security-oriented instrumentation, thus supporting compiler-based security
solutions on Android, such as dynamic taint tracking (see Section 3.6.2).

HInstructions. The graph’s HInstruction nodes roughly correspond to dex instruc-
tions. Besides this transformation, nodes in the HGraph have additional attributes
that have no equivalent in dex bytecode (e.g., an SSA index). The HInstructions
distinguish between arguments and inputs. While the former correspond to the argu-
ments given to an operator or method, the latter encode additional dependencies that
may not be immediately observable given only the underlying dex code. Static method
invocations, for example, additionally have an HLoadClass or HClinit instruction
node as their input, both of which encode auxillary information for the compiler. All
HInstructions share a basic set of information: (Primitive) type, inputs, def-use
relations, id, and further data are attached to each node in order to ease the creation of
and working with the HGraph. Each node is uniquely identified within the graph by its
id that is assigned and incremented continuously during node creation.
In SSA form, every instruction node also represents the value it outputs, i.e., its
return value for a method invocation or the actual value for a constant. This way,
instruction nodes can be provided as inputs for other instruction nodes. Consequently,
HInstruction nodes need to be typed. The attached primitive type can be Void
for methods that have no return value, Not for strings and object types of any kind,
and additionally any Java primitive type (e.g., float, int, long). Since those only
represent primitive types properly, a backreference to the original dex file is required
to obtain the actual object type from a Not-typed instruction. This coupling between
HInstructions and dex instructions as well as the presence of a method local dex
program counter in each node show that the IR is not completely independent of the
original dex file.

Semantic consistency. In addition to the instructions that represent the original
application logic, the HGraph also contains meta-instructions to preserve the semantic
consistency between the original Java code of the developer, the dex bytecode shipped
with APKs, and the compiled code executed by ART. First, additional instructions are
inlined into the graph to support meaningful debugging (e.g., to map from segmentation

21

CHAPTER 3. ARTIST

faults in ART to actual stack traces) and to conduct various forms of runtime checks (e.g.,
type casting, bounds checking, division-by-zero checks, or null pointer exceptions).
Second, instructions to represent so-called suspension points are added, which effectively
subdivide the application code into multiple chunks. Each suspension point between two
chunks acts as a synchronization point between native code and original dex bytecode
in the program execution and also serves as an entry point for garbage collectors or
debuggers. Those chunks may be optimized, but as soon as a suspension point is reached,
several prerequisites need to be fulfilled. First, the thread that is currently executing
the code must be ready to stop its execution. This is important because certain types
of garbage collectors require to hold mutator locks. Second, the suspension points
provide points of memory consistency between the native code and the interpreted
bytecode, so at those points the registers are spilled to the stack for example. Third,
in case a debugger is attached, the next suspension point may mark a transition from
executing the native code to falling back to bytecode interpretation in order to support
breakpoints and other debugging features. Also, at those points dynamic deoptimization
may happen in order to ease debugging for developers.

3.3 Problem Description

A dedicated line of work, including the TaintDroid project [49] and its derivatives, relied
on instrumentation of the now abandoned Dalvik virtual machine. As a consequence,
the research community faces the dilemma on how to continue this line of work and
is left with two choices (see Figure 3.3): Either compensating the missing runtime
instrumentation through app rewriting techniques — dex bytecode (InstrAPK) or binary
(InstrOAT) — or by taking advantage of Android’s new compiler suite (InstrDEX, InstrOPT,
and InstrBIN). Although dex bytecode rewriting is well-established in contexts such as
inline reference monitoring [95, 43, 42, 29] and taint analysis [120], [138], and ART now
supports porting binary rewriting techniques from commodity systems, this work builds
on compiler-based instrumentation to not only re-instantiate previous approaches that
relied on Dalvik VM instrumentation, but also to explore novel security solutions that
leverage the compiler features.
In the following, we analyze the concrete requirements that an instrumentation solution
should provide and discuss, for each of the above approaches (i.e., bytecode rewriting
InstrAPK, binary rewriting InstrOAT, and compiler-based instrumentation), their respec-
tive benefits and shortcomings in fulfilling those requirements. Table 3.1 provides a
summary of our requirements analysis.

R1. Enforceable security policies. Each of the three approaches operates on one of
the different representations of the same app code, i.e., bytecode, IR, or binary. Hence,
all three approaches are identical in their capabilities of instrumenting the code and
none of the solutions addresses any security policy alone.

R2. Strong security boundary. Both rewriting and the compiler-based approach
rely on injecting monitoring code into the app’s process space and can therefore not
provide a strong security boundary between monitoring and (potentially) malicious app

22

3.3. PROBLEM DESCRIPTION

APK
dex code

OAT
Write ELF

dex2oat
Verify

Optimizing Backend

Compile Install

dex
code IR native

code
Transform Code

Generation

Input Output

Optimization

dex
code*InstrDEX

IR*InstrOPT

native
code*InstrBIN

APK
dex code*

OAT*
dex code

InstrAPK InstrOAT

dex code

Figure 3.3: The code instrumentation points before, during, and after the compilation
for different representations of the app code. Instrumented code is depicted in black
boxes.

Bytecode
rewriting

Compiler-
based

Binary
rewriting

R1. Enforceable security policies identical
R2. Strong security boundary 7 7 7

R3. Application layer only 3 3 3

R4. User privilege only 3 (7) (7)
R5. Platform independence 3 3 7

R6. Signature preservation 7 3 3

R7. Robustness against optimization 7 3 3

R8. Integrated approach 7 3 7

R9. Supported versions all 6+ 5+
3= fulfilled; 7= not fulfilled

Table 3.1: Comparison of security and deployment features between bytecode rewrit-
ing, compiler-based instrumentation, and binary rewriting.

code (7), e.g., native code. Thus, all of them can only provide security guarantees for
at most honest-but-curious apps.

R3. Application layer only. All approaches can be implemented purely on the
application layer (3). Deploying bytecode rewriting techniques InstrAPK in the form
of separate apps has been presented in the literature [95, 43, 42, 29]. On Android, a
compiler-based solution can be deployed as a separate app that ships and controls the
security-instrumented compiler suite (see also Section 3.5.4.1). For both the compiler-
based approach and the binary rewriting, the main requirement is access to the storage
location of applications’ oat files, which does not require system modification.

23

CHAPTER 3. ARTIST

R4. User privilege only. While dex code is freely available for non-forward locked
apps4, accessing applications’ oat files makes elevated privileges necessary. However, in
Section 3.7.1.3, we discuss approaches that would allow both binary and compiler-based
rewriting to circumvent this problem without requiring elevated privileges.

R5. Platform independence. Bytecode rewriting InstrAPK (3) and compiler-based
instrumentation (3) can be applied on all platforms supported by Android, since they
modify the code before platform-dependent native code is generated. Binary rewriting
InstrOAT, in contrast, depends on the actual hardware architecture of the platform (7),
thus requiring extra effort to support different hardware platforms.

R6. App signature preservation. App signatures are the foundation of Android’s
same origin model that governs the app update policy and sharing of resources between
apps, like a common process or UID. Consequently, modifying bytecode InstrAPK and the
resulting obligation to resign and repackage apps breaks this same origin model (7). In
contrast, compiler-based instrumentation (3) and binary rewriting InstrOAT (3) do not
modify the original app package and therefore do not invalidate the signature because
the code modification happens outside of the signed APK file.

R7. Robustness against code optimization. The instrumentation point determines
whether any instrumented code will be subject to optimization at compile time. Applying
optimization algorithms to instrumented code has the potential to interfere with the
semantics of the modification through, e.g., instruction reordering, inlining, or similar
techniques of state-of-the-art compilers. On the one hand, current bytecode rewriting
approaches InstrAPK are applied before compilation; thus any instrumentation has to be
robust against optimizations—an aspect not yet further investigated by contemporary
research (7). On the other hand, binary rewriting InstrOAT is restricted to instrumenting
optimized code (3), but misses the chance to reuse the rich optimization frameworks of
modern compilers to also optimize added security code. The sweet spot occupied by
compiler-based instrumentation provides full control over which optimizations are applied
when and in which ordering (3). Furthermore, this enables creating optimizations that
are specifically tailored towards improving the instrumented code by utilizing the static
program information that is present in the compiler.

R8. Integration into toolchain. Integrating an instrumentation system into an
existing toolchain ensures continuous development and maintenance by the community
as well as access to established and well-tested tools and frameworks. In this case,
even though the ART project is open source and therefore open to the community, the
compiler is mostly maintained by Google itself. Consequently, compiler-driven solutions
that do not break with the toolchain’s regular functionality benefit from the continuous
improvements (3). In the case of ARTist, the amount of code that needed to be changed
is minimal and therefore easy to adapt for newer versions of the toolchain. Bytecode

4Section Forward Locking in Android Security Internals [48] explains Android’s copy protection in
more detail.

24

3.4. CONTRIBUTION

rewriting InstrAPK and binary rewriting InstrOAT are developed separately from the
toolchain and do not reap those benefits (7).

R9. Version support. While bytecode instrumentation InstrAPK can be applied to all
Android versions, compiler-based approaches and binary rewriting InstrOAT depend on
ART and therefore can only be applied since Lollipop (5+), where a compiler-based
solution (as presented here) should utilize the Optimizing backend on Android 6+ in
preference to Quick.

Sweet spot. In conclusion, comparing the security and deployment features that the
three available instrumentation approaches provide, following a compiler-based approach
for designing ARTist has very appealing properties and occupies a sweet spot among all
approaches.

3.4 Contribution

In this chapter, we present a compiler-based framework that can be used to study
the feasibility of re-instantiating previous instrumentation-guided approaches such as
dynamic, intra-application taint tracking and dynamic permission enforcement, and
that provides a more robust, reliable, and integrated application layer instrumentation
approach than previously possible. More precisely, we make the following contributions.

Uncovering the Uncharted ART Compiler Suite. Since the novel ART compiler
suite, dex2oat, has still not received much attention in the academic community, we
uncover its applicability for compiler-based security solutions to form expert knowledge
that facilitates independent research on the topic. In particular, we provide a deep-dive
into its most recent backend called Optimizing that became the default in Android
6 Marshmallow, and expose its relevance for ARTist as well as future work in this
area. We envision this to be a first step towards establishing compiler-based security
research on Android, which comprises already a popular line of work outside the mobile
domain (see LLVM [26]).

Compiler-based Instrumentation. We design and implement a novel approach called
ARTist for instrumenting Android components, based on an extended version of ART’s
on-device compiler dex2oat. Our system leverages the compiler’s rich optimization
framework to safely optimize the newly instrumented code. Our system supports
the instrumentation of apps as well as Java-based system components, such as the
Systemserver. The instrumentation process is guided by static analysis that utilizes the
compiler’s intermediate representation of the app’s code as well as its static program
information in order to efficiently determine instrumentation targets. A particular benefit
of our solution, in contrast to alternative application layer solutions (i.e., bytecode
or binary rewriting), is that the application signature is unchanged and therefore
Android’s signature-based same origin model and its central update utility remain intact.
We thoroughly discuss further benefits and drawbacks of security-extended compilers

25

CHAPTER 3. ARTIST

on Android in comparison to bytecode and binary rewriting. Our results provide
compelling arguments for preferring compiler-based instrumentation over alternative
bytecode or binary rewriting approaches. We open sourced and documented ARTist
and its companion tools at https://artist.cispa.saarland. See Appendix A.1
for a list of code repositories.

Feasibility Study for Instrumentation Modules. To demonstrate the benefits of a
solution such as our ARTist, we conduct multiple case studies of instrumentation
modules that have been suggested in the literature. We show that compiler-assisted
instrumentation can be utilized to realize complex dynamic analysis systems, such as
intra-application taint tracking at runtime or inline reference monitoring for dynamic
permission enforcement. We thoroughly evaluated our taint tracking case study by
using microbenchmarks and confirmed its operational capability using an open source
test suite with known ground truth.

Large-scale Evaluation of ARTist. In order to properly benchmark the robustness of
ARTist, we created monkey-troop to automate the instrumentation and evaluation of
apps using ARTist. Our tool automatically downloads and installs apps, instruments
them using ARTist, and exercises their features using Google’s monkey [14] software.
Using monkey-troop, we conduct a large-scale evaluation with top ranked apps from the
Google Play store to show that ARTist can successfully instrument most third-party
applications.

3.5 Design & Architecture

Figure 3.4 provides an overview of the ARTist ecosystem. The main component is a
security-instrumented compiler (sec-compiler) that is deployed either as a part of a
custom ROM or on rooted stock ROMs using a regular Android app (ArtistGui) that
deploys and manages the compiler and modules. Instrumentation logic is encapsulated
by so-called modules that we can create with architecture-specific module SDKs.

3.5.1 ARTist compiler

ARTist’s sec-compiler enhances Android’s dex2oat with additional instrumentation
routines. This section will highlight design challenges and decisions we encountered
while building sec-compiler , such as the placement of our instrumentation code within
the compiler, the modification capabilities of our approach and the inclusion of custom
libraries into target applications.

Choice of instrumentation point. Given dex2oat’s modular design, multiple pos-
sibilities for the placement of app-modifying code are immediately apparent. For
instance, dex2oat’s design would easily allow porting bytecode and binary rewriting
approaches (InstrDEX & InstrBIN) into the compiler infrastructure (see Figure 3.3). Both
techniques, although thoroughly studied in the literature, would benefit from instantia-
tion within the compiler infrastructure by improving upon known shortcomings such

26

https://artist.cispa.saarland

3.5. DESIGN & ARCHITECTURE

Figure 3.4: Overview of the ARTist ecosystem.

27

CHAPTER 3. ARTIST

as the requirement to re-sign modified applications. However, of the different choices,
ARTist’s sec-compiler is explicitly designed to operate on the intermediate represen-
tation of dex2oat’s Optimizing backend (InstrOPT), where the existing optimization
infrastructure and static code information in the Optimizing IR allow for efficient and
precise code modification. More precisely, our app instrumentation code is realized
using the HOptimization class that represents optimization passes over the compiler’s
intermediate representation of the target app. As a consequence, instrumentation passes
created for ARTist properly integrate into the compiler’s optimization framework, in-
cluding automated execution and access to the currently compiled method’s HGraph.
Implanting our instrumentation routines into the optimization workflow additionally
grants us full control over the ordering and execution of optimizations in general, which
opens up the opportunity for arbitrary reordering or even introduction of own opti-
mization passes. Multiple such passes can combine different instrumentation routines
or specifically crafted optimizations can improve the performance of our security code
within target apps.
Generally speaking, the HOptimization interface’s loose coupling allows to integrate
new functionality into the compiler while — at the same time — keeping the effort for
adaption of patches and maintainability to a minimum.

Spotting instrumentation targets. HGraph supports the visitor pattern [57] that
enables us to iterate over, inspect, and modify each single HInstruction of the
app’s code. In contrast to method hooking techniques, we can therefore operate at
the instruction level. We use HGraphVisitors primarily to identify instrumentation
targets and apply the desired modification. However, they can also be utilized to
bootstrap static analysis. We will see concrete implementations using a visitor to collect
instrumentation sites for our dynamic permission enforcement system in Section 3.6.1
and starting points for backward slicing in our taint tracking case study in Section 3.6.2.

Modification capabilities. With full access to a method’s HGraph, ARTist can
arbitrarily modify the target application’s code, e.g., to change inputs, types, or even
remove, add, or replace instructions. ARTist even provides a dedicated API to inject ar-
bitrary method calls into HGraphs, which, combined with the capability to inject whole
libraries (see Section 3.5.4.1), allows to inject arbitrary code into target applications.
Developers simply declare the instrumentation location, the method to be invoked and
the inputs to be passed. An example can be found in Section 3.6.1 where our dynamic
permission enforcement use case module make extensive use of this feature.
All instrumentation routines operate on HInstruction nodes, meaning the dex
frontend and native code generators stay agnostic towards our changes and can therefore
be used as is. The result of this integrated solution is that we still take advantage of the
robustness of Optimizing’s code generators, which are well-tested, constantly improved,
and in productive use on every stock Android phone running version 6 and above.

28

3.5. DESIGN & ARCHITECTURE

3.5.2 Modules

In the ARTist ecosystem, modules represent instrumentation tasks that are executed
by the sec-compiler . They typically combine a code library, which is injected into the
target and represents the runtime logic of the module, with instrumentation logic, which
is utilized by sec-compiler to modify the target at compile-time. Modules are built
using our module SDK and can be loaded and executed independently of each other.

Code Libraries. In order to ease the process of developing instrumentation logic to
a minimum, ARTist modules can embed so-called CodeLibs, full code libraries that
are injected into the target prior to the instrumentation through sec-compiler . While
theoretically, all modifications in the target could be done from within sec-compiler , it
is more efficient to implement the module’s own logic in a Java library5 and use the
actual instrumentation code only to connect the target’s existing functionality with the
injected code. One example is the inline reference monitoring approach that we discuss
in Section 3.6.1, where the whole monitoring and state management is implemented in
such a library and the instrumentation passes are only used to modify the target to call
into this library at well-defined places in the target code. Following this design, we keep
the compiler-dependent code to a minimum, thereby not only increasing the efficiency
of the module developer but also the robustness against changes in the dex2oat compiler
suite.

Instrumentation Passes. A module’s instrumentation pass acts as the thin shim
between the target’s original code and the injected code of the module developer. Its
sole purpose is to either directly modify the target on the instruction level or add
method invocations to the target that call into the injected code library. This glue code
is typically written in C++ and the resulting shared library is loaded into and used
by the sec-compiler . Since module developers can implement the core runtime logic in
a CodeLib, the actual instrumentation code is very focused and kept to a minimum.
ARTist already provides a range of boilerplate functionality, such as a declarative
injection API that allows to specify where to inject which method call. Furthermore,
modules can declare filters that decide on a per-target method basis whether the module
is executed, which allows for pinpointed instrumentation.

Manifest. The manifest carries a module’s meta information and contains fields such
as a unique name, current version, author information, and verbose description. While
this information is currently used for module management and serving a user interface,
we envision a module store where developers can upload modules and users can directly
download them into ARTist.

3.5.3 Module SDK

The integration of instrumentation passes into dex2oat’s optimization framework comes
at the price of strong dependencies on ART code. When developing new instrumentation

5In fact, anything that eventually compiles to dex files is supported (e.g., Kotlin).

29

CHAPTER 3. ARTIST

passes, certain headers and libraries from AOSP need to be present at build time. This,
however, would require potential module developers to work from within a fully built
AOSP source tree, which introduces a major barrier of entry. We overcome this obstacle
by creating the so-called module SDK, an installable (zip, debian, or rpm) package
that bundles all necessary dependencies for building modules locally. After installation,
developers can build and distribute their modules, in particular their instrumentation
passes, with the help of our Makefile-based helper scripts.

SDK Generator. Bundling Android components into our SDKs introduces dependen-
cies on the concretely used AOSP source tree. First, the header files required to interact
with the compiler change over the course of multiple Android version upgrades, hence
we need at least one SDK per Android major release (e.g., Marshmallow, Lollipop).
Second, since native compiled libraries are also part of the SDK, we further introduce
a dependency on the concrete hardware platform (e.g., arm64, x86), so we also need
per-ABI SDKs. This inspired the creation of the SDK Generator , which fully automates
the creation of an SDK from a built AOSP tree by pulling the correct files (i.e., headers
and libraries) and combining them with the correct Makefiles and scripts for deployment.
The result is a tool that creates installable SDKs for specific combinations of Android
versions and hardware platforms.

3.5.4 Deployment Strategies

There are two major ways to apply sec-compiler to app or system targets on an Android
device. Either we run sec-compiler selectively from a management app or we replace
the compiler and its companion libraries as a part of an OS modification (custom ROM)
so that it is automatically executed by Android itself.

3.5.4.1 Application Layer Deployment

In order to avoid modification of system components, we implemented a pure application
layer deployment solution for ARTist. Based on the fact that dex2oat and its libraries
are regular dynamically-linked ELF binaries, we can ship our custom compiler and
its libraries as assets in our app called ArtistGui, the ARTist graphical user interface.
Furthermore, using a regular Android application allows for simple deployment and
updates.

Instrumentation. When executing dex2oat, we utilize LD_LIBRARY_PATH to enforce
the usage of our custom libraries that include the ARTist logic. As an input, we provide
a prepared copy of the target file — app APK or middleware JAR6 — as well as all
modules that the user wants to apply. We denote the output as oat’ (oat prime)
to differentiate between the instrumented and the original compiled file. In order to
complete the instrumentation and make the modified target runnable, it suffices to swap
the original oat with oat’. The changes will take effect after the user either restarts the

6The Systemserver’s code is stored in a JAR file instead of an application APK since it is not shipped
through an app store and therefore requires less meta information.

30

3.5. DESIGN & ARCHITECTURE

app, in case the target was an application, or reboots Android if the target was a system
component. The user stays agnostic to this change since she is still able to interact with
the instrumented target as usual. However, oat files reside at protected locations that
are not accessible by third-party apps such as our ArtistGui. A naïve solution to this
problem would be to require extended privileges for our ArtistGui (e.g., a dedicated
SELinux type or access to the root user) to replace the oat file. We discuss alternatives
to the naïve approach in Section 3.7.1.3, which abstain from extended privileges by
using app virtualization or reference hijacking.

CodeLib Injection. For targeting installed third-party apps, the first problem we face
when injecting arbitrary code libraries before the re-compilation by sec-compiler is that
this breaks the application’s signature that essentially aims to verify that the app’s dex
code is unchanged. However, our approach focuses on replacing the compiled oat file,
not the APK. Our toolchain therefore automatically unpacks the target app’s APK and
creates a copy that additionally includes the custom module CodeLib’s. The resulting
extended APK is then provided as an input to sec-compiler that creates oat’. The
original APK is not modified and therefore its signature remains valid. We additionally
patch checksums and paths in the oat’ header so that they refer to the original APK
instead of the copy.
The second problem we observe is that adding the CodeLib to the target, i.e., injecting
another dex file into the app package, does not make the new symbols (e.g., classes,
methods and strings) available to other parts of the target’s code. Method calls across
dex files require extra information on, e.g., how to locate the invoked method. When
the dex code is initially built, this is automatically done for all interactions between
dex files, but since our CodeLib is added afterwards, we have to manually fix this by
merging symbols of our new functionality into the existing dex files. However, we do
not know which new functionality is invoked from which part of the target code since
the merging of symbols needs to happen before sec-compiler is executed, hence we need
to make all new symbols available to all existing dex files. In our toolchain, we created
a program called Dexterous that extends the original dex symbol merging logic from
the Android SDK, so that the whole merging process is automatically executed before
the instrumentation and from within ArtistGui. Using this approach, sec-compiler
will always be able to inject calls from any part of the target code to any CodeLib
functionality.

Module Management. Another responsibility of ArtistGui is the management of
instrumentation modules. First, it loads, parses and manages module zip files that are
created with our module SDK. Second, it allows the user to select the instrumentation
targets (i.e., apps and system components) and the set of modules that will be used for
the instrumentation. Figure 3.5 depicts the user navigation flow of instrumenting an
application with a subset of installed modules. Since app updates (e.g., via Google Play)
will create new oat files and therefore overwrite our instrumented versions, ArtistGui
can also track these updates and automatically re-instrument the corresponding targets
with the original set of modules to maintain the instrumentation status even while
targets evolve over time.

31

CHAPTER 3. ARTIST

Figure 3.5: Navigation flow of a user instrumenting a target with a certain set of modules.

3.5.4.2 Custom ROM

In addition to an application layer-only approach, ARTist supports a system-centric
deployment model that requires source code access to the AOSP tree and is therefore
only applicable to platform developers that are shipping their own custom Android
ROMs. Instead of tricking the loader at runtime (e.g., as done with LD_LIBRARY_PATH
in ArtistGui), we directly replace the ART repository with our extended version that
incorporates ARTist’s sec-compiler , which ensures that the dex2oat compiler for this
compiled Android version includes the ARTist functionality. Also, this requires to run
the Dexterous tool for symbol merging before the actual instrumentation, which was
taken care of by ArtistGui in the application layer scenario. The result is a custom ROM
that can automatically instrument every single target on the device, which is particularly
useful for dynamic analysis setups where, e.g., we want to instrument all targets to
provide coverage information, allow debug access, or increase the logging verbosity. In
Chapter 4, we will see how this can be applied to instrument the Systemserver to allow
for large-scale dynamic analysis.

3.6 Case Studies

We demonstrate the applicability and usefulness of our system by exemplarily discussing
two use cases implemented as ARTist modules: First, we implemented an Inline
Reference Monitor (IRM) injection module to allow for dynamic permission enforcement.
Second, we conduct a case study on realizing intra-app taint tracking through inlining
of taint tracking code. In addition, we discuss further applications of ARTist and their
implementations.

32

3.6. CASE STUDIES

3.6.1 Inline Reference Monitoring for Dynamic Permission Enforcement

In the literature, Inline Reference Monitoring (IRM) on Android is mostly implemented
by modifying the bytecode before the installation [95, 43] or by hooking into an
application’s method at the caller or callee side at runtime [29]. By utilizing a security-
instrumented compiler, IRM can be implemented without the need to resign and
repackage apps as it is required by established approaches. Moreover, when implemented
with ARTist, IRMs can operate at instruction granularity instead of employing method-
level hooks. Those capabilities are showcased by our IRM injection module that allows
for dynamic permission enforcement, as shown by [29, 95, 137] on Android versions
before Marshmallow.
The module is split into two parts: the code injection routine that will inline permission
enforcement code and the CodeLib that acts as a policy decision point. While the former
directs the instrumentation process at installation time, the latter enforces the user’s
policy at runtime.

Code injection. We first utilize Optimizing’s method graphs to locate the call sites
of permission-protected SDK methods that are defined in a policy configuration file.
Afterwards, ARTist injects additional calls to our companion library right before the
call sites to check whether the critical method invocations should be allowed. This
ensures that the control flow is diverted to our policy decision point before the execution
of permission-protected methods.

Policy decision point. The library that our module injects into targets provides an
API to check the app’s current state of permissions. Based on a policy configuration
file, the library either allows or rejects the execution of a protected SDK method. In
the former case, the app’s execution is continued without further interruptions. In the
latter case, the monitoring code, e.g., logs an alarm, interrupts the app by raising an
exception, or even terminates the app completely to avoid unwanted usage of enforced
permissions. The most straightforward case for such a user permission policy is a
simple list of whitelisted or blacklisted permissions. However, more complex policies
can be enforced by, e.g., restricting the number of allowed permission requests in total,
within a timeframe (e.g., at most five SMS per hour), or even to a certain time of the
day (e.g., block location access during the night). Furthermore, another application
or system component could expose a graphical interface to the user that allows to
fine-tune this behavior, similar to the permission settings in Android versions newer
than Marshmallow, or as observed in related work [29].

3.6.2 Taint Tracking

Established approaches for dynamic taint tracking on Android [49] rely on instrumenting
the now superseded DVM for intra-application taint tracking or directly rewrite bytecode
[120], [138]. In this case study, we explore the applicability of ARTist to re-instantiate
intra-app taint tracking for applications on Android version 6 and higher. Through a
prototypical implementation, we want to investigate whether inlining taint tracking
logic into the application code base with ARTist can be a surrogate for solutions prior

33

CHAPTER 3. ARTIST

to Android version 5. Note that this case study does not aim to be a full replacement
of existing solutions like TaintDroid, but demonstrates a new potential foundation for
future taint-tracking on Android.

3.6.2.1 Module Design

Using tracking logic inlined by a new HOptimization pass via ARTist, we want to
track information as it flows through the code. However, simply assigning a taint tag to
each single value that should be tracked and updating this tag for each single instruction
operating on it would incur a major performance penalty. To minimize the runtime
impact, we split our approach into two phases: analysis and instrumentation. During
the analysis phase, we identify flows of tainted information between sources and sinks.
By restricting ourselves only to those relevant flows of the values we are interested in,
we avoid generating irrelevant but costly taint tracking code for parts of the method
that never actually influence the data that is observed and gain noticeable performance
improvements over more naïve taint tracking. During the instrumentation phase, code
will be inlined that creates, propagates, and checks the taint values along the identified
data flows. Our combined analysis and instrumentation achieves flow-, path-, object-,
and context-sensitive taint tracking. While [120] and [100] also utilize static analysis
to optimize and guide the instrumentation process, both assume a holistic view on the
application in the form of a control or data flow graph. In contrast, the Optimizing
backend and therefore ARTist operate on a per-method level, which leaves inter-method
taint tracking as a major challenge. A naïve solution to this problem would be to
retrofit the compiler suite to provide an application-wide view and instrumentation.
However, our prototype demonstrates how we can still achieve taint tracking for the
whole application while restricting ourselves to a per-method view and instrumentation.
To this end, we introduce in the following a new design for storing and propagating
taint tags, in particular we have to refine the definitions of sink and source.

3.6.2.2 Analysis Phase

In order to optimize the instrumentation with taint tracking code, we exploit the
processing features (e.g., HGraph’s visitor [57] pattern support) of the dex2oat compiler
to detect the data flow sources and sinks, and afterwards use its built-in analysis features
to identify the relevant data flows and the operations along those flows that have to be
instrumented.

Refining Source and Sink Definition. The literature on taint tracking for Android
defines sources and sinks as the API methods that introduce privacy-sensitive information
into the application process (e.g., framework functions that return sensitive data, such as
the location or telephony API) or, respectively, leak privacy-sensitive information from
the application process (e.g., file handles, Internet sockets, or logging facilities). Since
ARTist is operating on a per-method level, we cannot assume that our analysis is able
to always connect a sink and a source (e.g., when they are located in different methods).
To address this problem, we have to connect the data flows of tainted variables across
the different methods while maintaining the per-method analysis.

34

3.6. CASE STUDIES

public String getID() {

 TelephonyManager tm =
 getSystemService(TELEPHONY_SERVICE);

 String id = tm.getDeviceId();

 if(id != null) {
 id = prefixID(id);
 } else {
 id = "N/A";
 }

 return id;
}

public String prefixID(String id) {
 String prefix = "ID: ";
 String result = prefix + id;
 Log.d(TAG, prefix + id);
 return id;
}

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

LSI2
GSI

LSO1
LSI2

LSO2 LSI1

GSO

10: LoadString: 'ID: '
35: LoadString: 'TAG’
60: LoadClass: Landroid/util/Log;
61: ClinitCheck, args:(60)
78: InvokeVirtual: TaintLib.checkLeakage,
 args:(77)
64: InvokeStaticOrDirect: Log.d,
 args:(35, 10, 8, 61)
76: InvokeVirtual: TaintLib.setReturnTaint,
 args:(77)
66: Return args:(8)

prefixID: Basic Block 1

 6: ParameterValue: this
 8: ParameterValue: Ljava/lang/String
77: InvokeVirtual: TaintLib.getArgTaint, args:()

prefixID: Basic Block 0
 6: LoadString: 'phone'
12: InvokeVirtual: Activity.getSystemService, args:(6)
15: LoadClass: Landroid/telephony/TelephonyManager
17: CheckCast args:(12, 15)
21: InvokeVirtual: TelephonyManager.getDeviceId, args:(12)
25: Equal, args:(21, null)
26: If, args:(25)

getID: Basic Block 1

52: InvokeVirtual: TaintLib.
 setArgTaint, args:()
31: InvokeVirtual: prefixID,
 args:(21)
54: InvokeVirtual: TaintLib.
 getReturnTaint, args:()

getID: Basic Block 2

36: LoadString: 'N/A'

getID: Basic Block 4

43: Phi, args:(31, 36)
53: InvokeVirtual: TaintLib.
 setReturnTaint, args:(54)
35: Return, args:(43)

getID: Basic Block 3

1

2

3
4

5

1
2

3

4

5

Figure 3.6: Tracking tainted variable id from the example in Figure 3.2. All discovered
sinks and sources are marked. Solid lines indicate intra-procedural data flows of tainted
variables, dashed lines inter-procedural data flows between local sink-source pairs. The
right-hand side depicts the inlined taint tracking code to propagate taint tags.

To this end, we introduce the concept of method-local sinks/sources in addition to the
global sinks and sources defined in the literature. More precisely, HInstructions that
represent such local sinks and sources form the entry and exit points for inter-procedural
data flows. Thus, global sinks and sources are points of interest for taint tag creation
and checking, respectively, while local sinks and sources are for inter-procedural tag
propagation. For local sinks and sources, we differentiate between three categories each:
Local sources include parameters provided to the current method (LSO1), return values
from method invocations (LSO2), and values read from fields (LSO3). Conversely, local
sinks are method invocations that leak values through their arguments from the current
method (LSI1), return statements of the current method (LSI2), and field setting
instructions (LSI3).

Creating Intra-Procedural Data Flows. For each global and local sink collected in
the current method, we create a backward slice by tracing back the sink’s inputs until a
source or constant is reached. The found sources define which data can potentially leak
through the sink, so our slice is fully defined by a sink and all its influencing sources
appearing in the currently analyzed method. For instance, Figure 3.6 continues the
example code from Figure 3.2. In the Java code on the left-hand side, all sinks have
been identified (i.e., the parameter id passed to function prefixID in line 9 is a local
sink of type LSI1, the return statements in lines 14 and 21 form local sinks of type
LSI2, and in line 20 the call to Log forms a global sink). Using backwards slicing
(solid lines 1 , 3 , and 5) the local sources in lines 17 (LSO1) and 9 (LSO2) as well as
the global source in line 6 (getDeviceID call to retrieve device’s phone number) have
been identified. Each resulting backward slice is defined by its starting point (i.e., the
sink) and all found endpoints (i.e., the sources). Constants cannot be tainted and are
therefore explicitly omitted as sources. Together, those backward slices form the input
for the instrumentation phase.

35

CHAPTER 3. ARTIST

Because the backward slice dictates the targets for the instrumentation phase, high
precision (i.e., avoiding over-approximation) is desirable for improved runtime perfor-
mance, but not strictly necessary. Soundness, however, is crucial since missed data
flows result in false negatives. Consequently, our slicing algorithm over-approximates to
compensate for known shortcomings of static analysis like missing runtime information,
e.g., when encountering phi nodes, reflection, or native method invocations. While
over-approximating phi nodes by tracing back all its inputs is sound, handling, e.g.,
native code is more involved. Our heuristic assumes that all data provided as an
argument to a native function will influence its result, hence the return value taint is the
combined taint of all inputs. However, this is sound for side-effect-free (pure) functions
only. Native code in general, as well as reflection, are limitations we share with similar
approaches as ours.

3.6.2.3 Instrumentation Phase

During the instrumentation phase, we inline code that creates taint tags for global
sources and that checks taints at global sinks at runtime. Additionally, we inline code
that inter-procedurally propagates taints at runtime from a local sink to a local source,
ensuring the data flow of a tainted value across multiple methods correctly propagates
the taints.

TaintLib. Making use of ARTist’s modular design allows us to deploy the taint tracking
logic in form of a CodeLib called TaintLib. TaintLib, in turn, relies on a policy file
that defines the global and local sources/sinks as well as the sources’ taints tags.
TaintLib provides source type-specific taint-get functionality that we inline at source
locations, and sink type-specific taint-set functionality that we inline at sink locations.
By injecting TaintLib method calls instead of concrete taint tracking logic, we decouple
the instrumentation from the taint management code. For global sources, taint-get
retrieves and sets the taint tag according to the policy and taint-set at global sinks
checks7 the taint tag. In contrast, for local sinks taint-set propagates the tag together
with the tainted value to the next local source, where it is retrieved with taint-get. By
instrumenting all methods alike, an implicit contract between all methods is established
and fulfilled: Every time a taint-get tries to obtain the taint value of a method parameter
on the callee side, we know the corresponding taint-set has been executed in the calling
method to provide the taint data. In case the slice contains multiple sources, the
output of their corresponding taint-gets is combined by injecting a call to a merger
TaintLib method that combines the taint tags.
To continue our running example, the right hand side of Figure 3.6 presents the IR of the
code snippet with taint-set and taint-get calls inlined. For instance, the setArgTaint
call for LSI1 in basic block 2 of getID (HInstruction 52) precedes the local
sink in HInstructions 31 that invokes the prefixID function. The setArgTaint
instruction transfers the taint of id inter-procedurally to the getArgTaint instruction
in HInstruction 77 of basic block 0 of prefixID (dashed line 2), from where it is

7While a naïve check halts the program when tainted data is about to leak, invoking a sanitizer as
suggested by [100] is straightforward.

36

3.6. CASE STUDIES

intra-procedurally propagated using the backwards slicing information (solid line 3).
Similarly, the taint is propagated back from prefixID to getID through the return
statement and variable assignment (dashed line 4).

Inter-Procedural Taint Tag Propagation Channel. In the case of parameters (LSO1
and LSI1) and method returns (LSO2 and LSI2), there are always pairs of taint-
sets and taint-gets present at runtime, due to the fact that for each callee method,
there is a caller method that also has been instrumented8. Combining this with the
observation that a caller-callee method pair is always executed in the same thread, the
taint propagation can be realized using thread local storage for a taint stack. At the
caller side, the taint information is pushed onto a per-thread stack and at the callee side
it is popped again, vaguely resembling the x86 calling convention for passing arguments
to methods. Keeping in mind that almost every injected TaintLib method call accesses
the taint information, replacing more straightforward approaches for taint storage (like
a single HashMap) with cheaper stack operations also benefits the overall performance
of our taint tracking solution.
In the case of field operations (LSO3 and LSI3), we can neither assume them to appear
in pairs nor to always be executed on the same thread and therefore employ a thread-safe
mapping in the form of a ConcurrentHashMap. This, however, raises the challenge
of providing easily computable, stable and unique keys. If we consider our taint tags
not to store the taint value of a certain value, but of a certain location, we can compute
stable identifiers for fields and use them as keys. For static class fields, identifying the
specific class and field is sufficient and can be pre-computed during compilation. The
current implementation injects the computed key as a constant into the HGraph and
provides it as an argument to a field taint-set or taint-get. For object fields, we do not
only need to identify classes but concrete objects, which requires runtime information.
In this case, we only inject the field identifier as a constant and provide it together with
the field’s concrete object to a TaintLib function. The returned key is robust to object
aliasing such that we do not lose track of objects in, e.g., collections. Afterwards, we
can use this key in a taint-set or taint-get for the object field. Figure 3.7 provides a
step-by-step example of how taint information is updated on the thread-local taint stack
and the global taint map.
It is important to note that our approach to taint tracking depends not only on the
entity for which we store taints (i.e., variable locations instead of values), but also on
the type of data to which we assign taint values. In our model, we track taints only for
primitive types and the taint tag of objects is transitively given by their field’s tags. In
case of non-primitive fields, the rule applies recursively because eventually all objects
can be decomposed to primitives. This design decision is motivated by the fact that
tracking all taint-set and taint-get operations on fields and on all method invocations is
more fine-grained than storing taint information at the object level.

8While this is true for the majority of cases, some exceptions like event callbacks are also considered
and handled gracefully.

37

CHAPTER 3. ARTIST

public String createID(int dummy, String prefix) {
 TaintLib.getArgTaint();
 TaintLib.getArgTaint();

 TaingLib.setArgTaint();
 String id = prefixID(prefix);
 TaintLib.getReturnTaint();

 this.idField = id;
 TaintLib.setFieldTaint(this, “idField”);

 ClassB.staticId = “constant ID”;
 TaintLib.setFieldTaint(ClassB, “staticId”);

 TaintLib.getFieldTaint(this, “idField”);
 TaintLib.setReturnTaint();
 return this.idField;
}

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

ClassB staticID

Taint Map

Taint Stack, T= 0
dummy: not tainted

pre�x: tainted

Taint Stack, T= 1
pre�x: tainted

Taint Stack, T= 2
return value: tainted

Taint Stack, T= 3
return value: tainted

not tainted

this idField tainted

pop arg
pop arg

push arg

pop argpush retpop ret

push ret

set taint

set taint

get taint

Figure 3.7: An illustration of the taint propagation, based on an extension of Figure 3.2.
The taint stack is displayed at four points in time (T0-T3).

3.6.3 Outlook: Compartmentalization

This outlook refers to the paper The ART of App Compartmentalization: Compiler-
based Library Privilege Separation on Stock Android [S3] that is not a part of this
thesis. This paragraph only serves as a example for a full-fledged system built on
top of ARTist.

An active line of work has identified libraries, in particular those focused on delivering
advertisements, as a major source of vulnerabilities and privacy problems [50, 85, 32,
122, 127, 27]. To cope with this unsatisfactory situation, multiple countermeasures
have been proposed to compartmentalize these libraries to, e.g., selectively revoke
permissions or contain vulnerabilities to reduce the attack surface. While existing
solutions either require modification of the operating system [122, 108, 124, 142] or
violate Android’s same origin model by breaking app signatures [128, 98], we suggest
a new approach that uses ARTist to provide an application layer-only solution that
can preserve target application signatures. Our system called CompARTist instantiates
libraries in dedicated application processes and utilizes an ARTist module to detect
interaction points between the app and advertisement libraries to replace them with
IPC calls to the remote version of the library. CompARTist introduces a lightweight
protocol on top of the binder IPC mechanism to keep the object state in sync and
preserve visual fidelity for advertisements displayed within the app’s user interface
layout. Using this approach, we can effectively carve out an advertisement library, move

38

3.7. DISCUSSION

it to a different process where we can enforce completely independent security policies
(e.g., permissions), and reconnect both transparently. This work showcases how to use
ARTist to create compiler-based security solutions that occupy a sweet spot among
existing systems by tapping into the benefits of ARTist’s app layer deployment model
and its fine-grained instrumentation capabilities.

3.6.4 Further Modules

We will have a quick look at three example modules that inject debugging capabilities
into target apps.

Stetho. Facebook’s Stetho [52] is a debugging library that, when included in an
application, connects this app at runtime to the Chrome Developer Tools [63] running
on a connected desktop PC. Once connected, the Developer Tools allow to inspect and
modify the application’s files, databases, visual layout, and even traffic via a plugin
system. Our stetho module [111] injects the required library into target applications and
inserts function calls to provide a proper setup, including the interception of network
traffic in case the okhttp library is used. Figure 3.8 shows how the connected Chrome
Developer Tools can be used to inspect, e.g., traffic and databases. Both examples show
the execution of the official reddit app [115].

Trace. The trace module is a simple helper that we inject into targets to test their
compatibility with ARTist. All target methods in scope are modified to include a
CodeLib method call in their preamble. In the CodeLib, we use stack inspection to find
and log the name of the calling method. The module logs this information to logcat,
making it easy for an analyst to, first, ensure that ARTist is running properly and,
second, have a first impression of the target’s code, in particular the external code
and libraries used. Figure 3.9 shows an example logcat snippet generated by such an
implementation. A variation of this module is also used for evaluating the robustness of
ARTist in Section 3.7.1.1.

Gunshop (Community Contribution). In order to solve an Android-based CTF
challenge called Gunshop, Alexander Fink created a specialized ARTist module to leak
the AES key used for encryption and intercept HTTPS traffic by bypassing a custom
certificate pinning implemented in the challenge [9].

3.7 Discussion

This section evaluates ARTist and its modules in terms of robustness, performance,
inherent and implementation-specific limitations, and discusses ideas for future work.

3.7.1 ARTist

We first evaluate ARTist in terms of its robustness and discuss general limitations of
the approach that are inherited by all modules.

39

CHAPTER 3. ARTIST

(a) Example for traffic inspection.

(b) Example for database access and modification capabilities.

Figure 3.8: Screenshots of the Chrome Developer Tools connected to an instrumented
target app via our ARTist stetho module.

Figure 3.9: Excerpt from the trace output when running an instrumented version of the
heise online app [88].

40

3.7. DISCUSSION

Category Tested Success Percentage
Books And Reference 44 39 88.64%
Business 37 33 89.19%
Comics 44 41 93.18%
Communication 45 38 84.44%
Education 38 35 92.11%
Entertainment 34 32 94.12%
Family 30 28 93.33%
Family?age=age Range1 41 40 97.56%
Family?age=age Range2 40 39 97.5%
Family?age=age Range3 29 27 93.1%
Family Action 33 31 93.94%
Family Braingames 43 43 100.0%
Family Create 47 44 93.62%
Family Education 46 45 97.83%
Family Musicvideo 52 49 94.23%
Family Pretend 40 38 95.0%
Finance 37 30 81.08%
Game Action 34 32 94.12%
Game Adventure 25 23 92.0%
Game Arcade 31 29 93.55%
Game Board 48 47 97.92%
Game Card 38 33 86.84%
Game Casino 25 22 88.0%
Game Casual 25 25 100.0%
Game Educational 36 34 94.44%
Game Music 41 37 90.24%

Category Tested Success Percentage
Game Puzzle 31 30 96.77%
Game Racing 32 30 93.75%
Game Role Playing 20 19 95.0%
Game Simulation 21 21 100.0%
Game Sports 40 40 100.0%
Game Strategy 25 23 92.0%
Game Trivia 42 38 90.48%
Game Word 50 46 92.0%
Health And Fitness 36 31 86.11%
Libraries And Demo 20 18 90.0%
Lifestyle 42 41 97.62%
Media And Video 36 33 91.67%
Medical 42 41 97.62%
Music And Audio 40 32 80.0%
News And Magazines 43 38 88.37%
Personalization 47 44 93.62%
Photography 44 38 86.36%
Productivity 34 31 91.18%
Shopping 39 34 87.18%
Social 33 25 75.76%
Sports 32 30 93.75%
Tools 48 44 91.67%
Transportation 49 46 93.88%
Travel And Local 41 36 87.8%
Weather 41 38 92.68%

51 Categories 1911 1761 92.15%

Table 3.2: Robustness evaluation results for the Google Play app store categories. Note
that the Family categories contain apps from other categories as well. Filtered apps
are omitted.

3.7.1.1 Robustness

In order to prove its applicability, we conducted an evaluation on top apps from the
Google Play Store to show that ARTist-based instrumentation does not incur major
impairments in the target app’s robustness.

Evaluation Infrastructure. In order to scale our evaluation to thousands of apps,
we created a dynamic app testing infrastructure called monkey-troop. It allows us to
automatically test apps with ARTist modules on an arbitrary number of connected
devices in parallel, thereby heavily reducing the time required for large-scale evaluations.
The pipeline works as follows:

1. Setup. Before we start the actual testing, all devices need to be prepared for the
evaluation. This, in particular, requires a working installation of ArtistGui as well as
our special ARTist evaluation module that is based on trace.

2. Filter. In order to restrict ourselves to only test meaningful targets and avoid spoiling
the evaluation results, we employ a pre-filtering on target application candidates. Some
apps, even though they are in our list, could not be downloaded9 and are therefore
removed from the test set. The remaining ones that could also be installed are then
tested using the monkey UI exerciser tool [14] before we apply our instrumentation.

9There is no official API for automatically downloading massive amounts of APKs from the Google
Play Store and the current workarounds fail in some edge cases.

41

CHAPTER 3. ARTIST

This way, we can rule out apps that are already crashing without any modification from
our side.

3. Test. We apply the instrumentation by recompiling the target applications. Af-
terwards, we test them again using the monkey UI test automation tool and monitor
the execution. Using the same monkey seed during filtering and testing, we can ensure
that the app is tested with identical inputs during both phases. The module we are
using is a customized version of trace that, instead of naïvely instrumenting all methods
of the target, places the logging calls into certain well-defined event callbacks that
have a high probability of being called by the Android OS when the application starts
(e.g., onCreate methods of all Activities). This approach increases the chance of
instrumented code being executed without requiring any knowledge of the target app’s
semantics. Consequently, if the application does not crash while being exercised by
monkey, we count a success.

4. Collect. We collect and store all data generated by the testing scripts, as well as
logcat dumps from the device to allow for further analyses after the evaluation.

Evaluation. We used monkey-troop to test the robustness of ARTist-based instrumen-
tation on the most popular apps from the Google Play Store categories. As automated
app testing with high coverage is still an open problem, the ARTist module created
for the evaluation ensures the execution of our custom code by injecting it into each
single onCreate method in any developer-written class. Thus, starting an application
through its launcher activity (as done by monkey) always triggers our injected code.
The injected tracking code implements method-call tracing by utilizing stack inspection
to print the current method’s name to the log. Using this setup, we can evaluate
the robustness of our instrumentation on real-world applications. The significant
performance overhead incurred by the expensive stack inspection routine is only of
secondary interest since we solely focus on robustness testing here. Table 3.2 shows
the results of our evaluation. Out of 1911 tested apps, 1761 (92.15%) were successfully
instrumented and tested, clearly showing the robustness of ARTist’s instrumentation
capabilities.
We conducted a manual investigation on the remaining applications in order to find
the root cause of their failure during the evaluation. We detected that a lot of errors
are seemingly not a result of our instrumentation but false positives. Even though
monkey delivers the same touch events to the app before and after instrumentation,
there are still unexpected errors that are seemingly unrelated to our modifications.
For example, we encountered apps failing with a SecurityException because of
missing permissions or IllegalStateException because the application is already
initialized. We can rule out deviating behavior caused by statefulness since we make
a clean install of the app before instrumenting it, thus removing any state potentially
created during the first monkey test. While we expected our filtering approach to catch
most of these cases, there are environmental factors such as relying on randomness or
other kinds of non-determinism that are inherently hard to account for. Our findings
therefore indicate that the filtering failed in those cases.

42

3.7. DISCUSSION

We conclude that our large-scale evaluation approach meets its purpose by providing
an estimation on the robustness of instrumenting real-life applications. However, the
degree of automation and the lack of a more sophisticated UI testing tool for Android
apps introduces a certain imprecision that needs to be taken into account when working
with those results.

3.7.1.2 Performance

The actual runtime overhead induced for apps instrumented with ARTist largely depends
on the concrete module, e.g., taint tracking requires more injected code than permission
enforcement. Therefore, we provide concrete measurements for instrumented applications
in the context of our implemented use case modules in Sections 3.7.2.1 and 3.7.3.1.

3.7.1.3 Limitations

Native Code Support. Optimizing operates by design on dex input only. Targets’
bundled native libraries (e.g., compiled from C/C++) that are connected via JNI are
not compiled on the device and therefore neither instrumented nor inspected by ARTist.
Native code components are a not only a limitation of the attacker model for our concept
but are indeed an open challenge for most of the solutions in the Android security
research community, e.g., code analysis as well as IRM solutions in particular. However,
ARTist can be combined with existing binary instrumentation approaches [125, 56, 94,
106] to fill this gap.

Fallback to Dex. The oat files produced by dex2oat still contain the original dex
byte code of the app to allow fallback to interpretation mode. Naturally, fallback to
interpretation would render our instrumentation of the compiled dex byte code futile.
Android 7 Nougat introduced profile-guided compilation that allows for a mixture
of just-in-time compilation, interpretation, and ahead-of-time compilation based on
which parts of the app are used more often (i.e., hot code paths). These profiles are
even bootstrapped by delivering generic per-app profiles via Google Play that are
based on averaged results from past users of the application (see Google Play cloud
profiles [73]). However, our experiments confirm that, as explained in the official ART
documentation [72], if there is an oat file available, it will be used for execution because
it implies that the app was at some point explicitly compiled (e.g., because many hot
code paths occurred or the device was idle and enough space was available). For ARTist,
this means that we can still enforce the execution of our instrumented oat’ files by
placing them in the correct location, thereby completely bypassing the profile-guided
compilation approach.

Deployment strategy. In order to create a pure application layer solution to avoid
OS-level modifications, our prototype currently relies on the naïve approach of requesting
elevated privileges to replace the installed app oat file with the instrumented version.
We can eliminate this requirement by integrating ARTist with an application layer-only
sandboxing solution that provides file system virtualization, such as Boxify [S1] or
NJAS [30], or by resetting the execution environment and replacing loaded libraries

43

CHAPTER 3. ARTIST

Tested Method Permission Baseline Instrumented Penalty

WifiManager.getConfiguredNetworks() ACCESS_WIFI_STATE 0.681 ms 0.742 ms 8.89%
WifiManager.isWifiEnabled() ACCESS_WIFI_STATE 0.071 ms 0.072 ms 1.18%
WifiManager.getScanResults() ACCESS_COARSE_LOCATION 0.452 ms 0.591 ms 30.65%
BluetoothAdapter.startDiscovery() BLUETOOTH_ADMIN 0.910 ms 0.940 ms 3.32%

Table 3.3: Microbenchmarks averaged over 60.000 runs. The baseline benchmarks mea-
sure the pure execution time of the permission-protected call while the instrumented
benchmarks measure the protected call and the additional permission check.

using reference hijacking [138]. Both approaches enable the manipulation of file paths
from the original to the instrumented oat’ file at application startup time.

3.7.2 Dynamic Permission Enforcement

We briefly evaluate the performance impact of our dynamic permission module and
discuss limitations.

3.7.2.1 Evaluation

The additional security checks by our module are only inserted before permission-
protected SDK method calls. Thus, we cannot rely on benchmark apps because they
rarely trigger the injected extra functionality. Therefore, we evaluate the performance
impact of our permission-checking code using custom microbenchmarks. Table 3.3
depicts the results of our measurements for calls that are protected by three distinct
permissions. The overhead encountered in the microbenchmarks ranges between 1.18%
and 30.65%, showing the feasibility of our prototype if we consider that only permission-
protected method calls suffer from this overhead.

3.7.2.2 Limitations

Restriction to Synchronous Calls. In order to demonstrate the straightforward
implementation of an ARTist module, we opted for a simple instrumentation strategy
that only covers synchronous permission-protected method calls. As a result, the current
prototype does not support callbacks or asynchronicity, and its implementation should
therefore be considered a proof-of-concept only.

Best Effort Permission Map. In order to direct our module to the instrumentation
targets, i.e., the application’s permission-protected method calls, we utilize the method
call to permission mapping provided by the state-of-the-art tool Axplorer [28]. However,
as stated on their website [51], the map is incomplete because many permission checks
are not covered by their current analysis technique. Our module inherits this limitation
from the used permission map.

3.7.3 Taint Tracking

We evaluate our taint tracking module in terms of feasibility, performance, and the
limitations of its current prototypical implementation.

44

3.7. DISCUSSION

Test Baseline Taint-Aware Penalty

CPU 32521 22526 30.73%
Disk 24893 20777 16.53%
Memory 3627 3346 7.74%

Table 3.4: Passmark results averaged over 5 runs, higher is better.

3.7.3.1 Evaluation

Runtime Overhead. We leverage an Android microbenchmark application to evaluate
the performance of our prototype. Since our taint-instrumentation only affects the
performance of Java code, we specifically chose the Passmark benchmark, which does
not contain native libraries and implements all benchmarks in Java. Table 3.4 compares
the results of the baseline benchmark with a non-instrumented Passmark app to those
of an instrumented and taint-aware version. The results show an overhead ranging
between 7.74% and 30.73%, which is within an acceptable range for a taint tracking
approach that is not fully tuned for performance. This result is also roughly comparable
to microbenchmark results of TaintDroid’s interpreter-based approach, but in our
case without relying on system modifications. However, as stated in contemporary
literature [99], microbenchmarks are not very representative in user-driven scenarios
such as Android apps. Hence, we take this result with a grain of salt.
Overall performance could be enhanced by introducing custom optimizations specifically
tailored towards improving taint tracking code. One approach would be to eliminate
taint-sets and taint-gets that are based on stack operations and cancel each other out,
e.g., alternating pushs and pops of the same tag as seen for methods that return the
return value of a method invocation. Moreover, the analysis phase allows to abstain
from instrumenting apps that do not contain any global taint sinks in order to not
impact performance at all in this case.

Functional Evaluation. We conducted this case study to investigate whether intra-
application taint tracking can be achieved with ARTist; thus our functional evaluation
focuses on detecting different kinds of data leaks in apps. However, to the best of
our knowledge, there is no standardized test suite specifically tailored towards evalu-
ating dynamic taint tracking systems for Android apps, and testing real applications
is not feasible because they lack the required ground truth. In order to overcome
this unsatisfactory situation, we decided to leverage an open-source suite called Droid-
Bench [20, 121] that was initially created to benchmark static taint tracking systems.
Even though this does not immediately apply to a dynamic system such as ours, we
can still leverage the fact that it provides us with an assortment of applications with
different but well-defined leakage behavior. Table 3.5 summarizes our module’s results
for those tests and categories within scope. Tests for implicit flows, inter-component
communication, and reflection are omitted because they currently exceed the scope of
our proof-of-concept taint tracking. As we are abusing the benchmark suite, we need
to be careful which conclusions we draw from the test results. The first insight we
gain, however, is that our case study succeeded in showing that intra-app taint tracking

45

CHAPTER 3. ARTIST

Category Successful Tests Ratio

Callbacks 14/15 93%
Lifecycle 13/14 92.9%
General Java 14/20 70%
Aliasing 1/1 100%
Android Specifics 5/9 55.6%
Field & Object Sensitivity 7/7 100%

Overall 54/66 81.8%

Table 3.5: Results for the DroidBench taint tracking evaluation. Broken tests and cate-
gories not applicable to our system are omitted.

can be implemented as a pure application layer solution with ARTist. The second
insight we derive is that, as indicated by lower results such as those for the Android
Specifics category, our proof-of-concept does not yet catch up with previous works such
as TaintDroid. Nonetheless, our work shows the feasibility of the approach and thereby
lays the foundation for creating a full-fledged taint tracking system for Android versions
above Android 6 Marshmallow that utilizes compiler-based instrumentation and does
not require operating system modification.

3.7.3.2 Limitations

No Tracking of Implicit Flows. Like TaintDroid, our system currently does not track
implicit flows (i.e., data leakage using control flow dependencies) and malevolent apps
could exfiltrate data in a way that is unnoticeable by our prototype. As the TaintDroid
authors discuss, mitigating leakage through control flows would require static analysis
and access to the app’s source code — both of which TaintDroid could not provide.
ARTist, however, is already provided with the full app code and we expect interesting
results to be yielded by investigations to which extent the structural program information
of the IR and analytical features of the compiler backend (i.e., Optimizing) can help to
remedy the limitations of customary taint tracking solutions on Android.

Taint Tracking Boundaries. The compiler is restricted to the app’s codebase, which
introduces imprecision when leaking information through SDK methods, where a taint-
set at the caller side (developer code) but not the taint-get at the callee side (SDK) can
be inlined. In particular, and in contrast to object types, storing primitives or strings
in collections or sharing them across threads are corner cases where the taints will not
be propagated appropriately. This shortcoming can be solved by using pre-computed
control-flow models for framework methods [35] to generate corresponding taint-set and
taint-get pairs that model the transition of data through the framework. A preferable
technical solution in the future is the instrumentation of the core.oat image, a pre-
compiled oat file of the framework classes that is pre-loaded into every application
process. Such an approach could remove the potential over-approximations of SDK
internal states in control-flow models, which could be of interest beyond taint tracking.
Since the core image is created with dex2oat during the device startup once after each

46

3.8. CONCLUSION

system update, it can be instrumented using sec-compiler . However, in either case and
as in the original TaintDroid, data that already left the phone (e.g., through a network
socket) cannot be tracked.

Inter-Application Communication. Our prototype is currently limited to intra-
application tracking and lacks support for inter-application tracking, for instance,
through the file system or Binder IPC. This opens the possibility of confused deputy [53,
41] or collusion attacks [118, 33] to exfiltrate data. Assuming that all installed apps are
instrumented, a fix to this problem would be the instrumentation of the I/O method
calls in order to write out taints together with the data (e.g., into a file or Binder parcel)
and restore taints at the receiver side. When abandoning the requirement for a pure
application layer solution, our system could also be complemented with the original
TaintDroid file system and IPC infrastructure, which is unaffected by the loss of the
DVM, or deploy ARTist’s sec-compiler as the system’s compiler in order to track taints
across applications.

3.8 Conclusion

In this chapter, we presented ARTist, a dex2oat compiler-based instrumentation solution
for Android that does not require system modifications. In order to be able to design
and implement ARTist, we first and foremost had to thoroughly study the yet uncharted
internals of the new compiler suite and in particular of its Optimizing backend. A deeper
understanding of this compiler suite and the new ART runtime is of interest for the
security community insofar as ART and dex2oat replaced the interpreter-based runtime
(DVM) of OS versions prior to Android 5 Lollipop and hence also voided applicability
of any security solution that relies on interpreter instrumentation (e.g., TaintDroid [49]
and its derivatives [89, 80]). We studied the feasibility of our approach by implementing
two distinct use cases. Furthermore, our case study highlights the capability of a
compiler-based instrumentation framework to re-instantiate basic taint tracking for
Android apps at the application layer. In general, our results provide compelling
arguments such as higher robustness and better integration for preferring compiler-
based instrumentation over alternative bytecode or binary rewriting approaches. We
open sourced and documented the results of this work [19, 112] to allow for independent
research on the topic.

47

4
Troop

Towards a Common Platform for Principled Dynamic

Analysis of the Android Middleware

49

4.1. MOTIVATION

4.1 Motivation

The Android ecosystem consists of a multitude of customized Android versions (ROMs)
that are all based on the official releases of the Android Open Source Project maintained
by Google. This not only includes official vendor ROMs, such as those running on
Android devices from, e.g., Samsung or HTC, but also ROMs that ship without the
full line of services from Google (i.e, building upon the Google Play Services [71]),
such as Lineage OS [130], Copperhead/GrapheneOS [37, 40], or Amazon’s FireOS [10].
In consequence, Android is quickly growing due to the addition of new features for
developers and users, thereby increasing the size and complexity of the system code
base with every new release. This also affects Android’s middleware and in particular
one of its core components, the Systemserver, an always-running, privileged process
that is crucial to Android’s security and robustness. The Systemserver implements the
bulk of Android’s application framework, which provides core functionality to apps via
a set of APIs, such as package management or location services. Between Android 4.1
(released 2012) and Android 10 (released 2019) the number of middleware services has
more than doubled from 65 to 166, most of them being hosted by the Systemserver. As
a consequence, the growing code complexity also increases the system’s attack surface
by adding more highly-privileged code and APIs while simultaneously raising the bar for
holistic analysis of the whole code base. Over the last years, research has identified new
flaws and vulnerabilities in the Systemserver and other middleware components that
allow apps to elevate privileges [60] or mount denial-of-service (DoS) attacks due to,
e.g., input validation errors [133, 54], concurrency bugs [90], or inconsistent permission
enforcement [5, 123, 136, 83, 84]. Given its central role in the Android software stack,
the increasing amount of discovered problems emphasizes the need for a more thorough
robustness and security testing. However, a number of Android-specific problems and
the corresponding high barrier of entry for this field have yet precluded the community
from establishing a line of research that particularly aims at alleviating those problems.

4.2 Problem Description

Static and dynamic analysis have both been successfully applied to this problem domain
because they come with complementary advantages and disadvantages. Static analysis
provides better scalability and more formal guarantees by considering all possible
execution traces, but suffers from an increased false positive rate because it considers
hard-to-reach or even impossible code paths. Dynamic analysis avoids false positives by
tying its results to actual execution traces, which, however, leads to scalability issues and
requires a thorough code coverage of the test subject. Hybrid approaches exist where
either static analysis pre-filters interesting candidates to restrict the amount of test
subjects for dynamic analysis, or dynamic analysis is used to verify potential findings
from static analysis. Despite the shown efficacy of both kinds of analysis in certain
cases, there is a major asymmetry in the literature in terms of reproducibility and
comparability. On the one hand, most static analyses on Android build upon a set of
common base frameworks, such as Soot [131] or Wala [92], which allows related work to
compare against and build upon each other. Or in other words: there exists a principled

51

CHAPTER 4. TROOP

approach to statically analyzing Android’s middleware. On the other hand, dynamic
analysis is lacking such a common foundation. Instead, work on dynamically analyzing
Android’s middleware created a large set of mostly incompatible and highly specialized
solutions. While they succeeded in implementing a multitude of analyses, such as
vulnerability detection and permission mapping, their results are hard to compare
or reproduce, and their solutions to shared challenges cannot be re-used as building
blocks for future analyses. As a consequence, without a more principled approach to
dynamically analyzing the Android system, it is unnecessarily hard to learn from those
prior results, to identify more promising solutions and strategies, or to find and address
shared challenges.
We believe that the driving factor for this discrepancy is the particular set of hurdles
that comes with dynamically analyzing the middleware. In particular, the complex
interdependencies with other Android core components prevent restarting or resetting
the Systemserver in isolation. This is exacerbated by its statefulness and asynchronous
lifecycle design that make it hard to isolate execution traces and requires frequent
restarts and cleanups. As a result, existing off-the-shelf components from related fields,
such as fuzzers or instrumentation frameworks, are often not directly applicable to
testing Android’s middleware, which leads to the creation of the custom toolchains that
fragment this research area.

4.3 Contributions

In order to base these efforts on a common foundation, we propose a more principled
approach to dynamic analysis on Android that favors reproducible results and inter-
operable solutions that allow other researchers to build their solutions on top of each
other and compare with prior work. To make an important step in this direction, we
propose a full-fledged dynamic analysis platform for Android’s middleware that allows
to combine and implement modular solutions to the challenges we identified from related
work. This further removes the burden for future dynamic analyses of implementing
the surrounding infrastructure and instead allows to focus on the actual analysis part.
We showcase the benefits of our platform by implementing two use cases from related
work, vulnerability detection and permission mapping, which we utilize to study and
evaluate different strategies. In our comparative evaluation, we find that our more
generic building blocks already uncover vulnerabilities from multiple cases that were
targeted only by specialized approaches in the past. For permission mapping, we find
that proven strategies, such as coverage-guided fuzzing, fail to deliver superior results in
comparison to much simpler black-box alternatives. In summary, we make the following
contributions:

Requirements Analysis. First and foremost, we conduct a thorough study of related
work to deduce a set of requirements for a shared foundation for dynamically analyzing
Android’s middleware. Our results indicate that prior work repeatedly restricts itself to
particular sub-areas and solves the corresponding problems in a mostly non-reusable
way. While they succeed to fulfill their particular goals, e.g., detect vulnerabilities of a
certain kind, often their results and toolchains do not generalize to become a foundation

52

4.3. CONTRIBUTIONS

for subsequent research on this matter. In order to avoid these problems in the future,
we compile a list of shared challenges that occur for the majority of dynamic analysis
approaches, discuss available and potential solutions, and show how to solve them in a
re-usable way.

Common Platform for Dynamic Analysis. Based on the requirements analysis, we
propose a common platform for implementing dynamic analyses on top of re-usable
building blocks for the identified challenges. We strive to create a framework that
allows to evaluate different approaches against each other, which makes it possible to
find canonical solutions instead of repeatedly solving the same problems. Furthermore,
this approach can steer the community towards more reproducible results that allow
future research to refer to and base upon each other. As a first step in this direction,
we implemented said platform and will open source the whole ecosystem around it,
currently consisting of 15 projects (see Appendix A.2 for the full list).

Case Study: Vulnerability Discovery. Following the example of prior work [91, 38,
133, 90, 60, 54, 34, 87, 97], we implemented a vulnerability discovery case study on
top of our platform. We show how modular building blocks aid the creation of a
full-fledged dynamic analysis-based vulnerability detection system by abstracting away
many Android-specific challenges and allowing to focus on the analysis task at hand.
While prior work often specialized on detecting particular classes of bugs, we succeed
in implementing a more generic approach that can find instances of these bugs from
multiple of those categories. We responsibly disclosed our findings to Google (see 4.6.2).

Case Study: Permission Mapping. Creating a complete mapping from Android
APIs to the set of permissions required to use them is still an active area of research
in the Android community. After the initial work of Felt et al. [110] that utilizes a
test generator to dynamically create such a permission map, subsequent approaches
primarily turned to static analysis [22, 28, 5] to alleviate many of the problems we
have identified in our requirement analysis, such as the need to map the target device’s
attack surface or scale to thousands of APIs. However, these approaches suffered from
the drawbacks of static analysis, such as the general over-approximation due to missing
runtime information that, on Android, is often exacerbated by the prevalent use of
statefulness and asynchronous programming patterns within the middleware.
In this case study, we show how our platform aids to alleviate those problems to an
extent that—for the first time—we can properly scale dynamic analysis to the Android
middleware and make an important step towards continuous and holistic testing of
this crucial component of Android’s architecture. Considering the advantages and
disadvantages of both, static and dynamic analysis, we do not aim to replace static
analysis but rather envision to combine it with dynamic components to, e.g., confirm
the results of prior work and extend them.

53

CHAPTER 4. TROOP

Figure 4.1: The typical structure of Systemserver dynamic analysis solutions with com-
monly used components.

4.4 Requirements Analysis & Taxonomy

As a first step towards a more principled approach to dynamic analysis of the middleware,
we need to understand the core challenges that are shared among related work. We are in
particular studying the crucial Systemserver component because certain characteristics
make it a hard target for dynamic analysis. For example, the Systemserver hosts
multiple inter-connected services within a single process in contrast to many single-
process services in the middleware. Furthermore, a Systemserver crash triggers a
soft-reboot of the device, hence re-starting is an inherently slow operation. Therefore,
our work primarily focuses on overcoming the particular challenges of the Systemserver
and only discusses other parts of the middleware if necessary.
Based on our survey of existing work, we extracted the critical components that are
utilized to build dynamic analysis systems for the Systemserver. Figure 4.1 depicts the
resulting generalized structure that can be mapped to concrete solutions by instantiating
a subset of the Analysis components. Numbers 1© to 6© mark different key parts that
come with a particular set of challenges, which we will discuss in the corresponding
Sections 4.4.1 to 4.4.6. We found that major design decisions underlying existing work
in this field can be explained and categorized through examining their concrete design
choices regarding these building blocks. In this section, we will introduce these six key
components in more detail, compare their implementation in existing work, and discuss
whether the underlying problem is solved already or still an open issue. Table 4.1 gives
an overview of both academic and industry work and details a subset of their design
decisions, which we will refer to in the upcoming discussions.

54

4.4. REQUIREMENTS ANALYSIS & TAXONOMY
Ta

b
le

4.
1:

O
ve

rv
ie

w
o

fe
xi

st
in

g
sy

st
e

m
se

rv
e

rd
yn

a
m

ic
a

n
a

ly
se

s.

A
na

ly
si
s
D
ev
ic
es

Fr
es
hn

es
s

M
ap

pi
ng

In
pu

t
H
ar
ne

ss
C
ov
er
ag
e

C
ra
sh

T
ra
ns
fo
rm

at
io
ns

A
ut
o-

E
xp

lo
it

D
et
ec
ti
on

V
er
ifi
ca
ti
on

G
en

er
at
io
n

C
hi
zp
ur
fle

(B
B
)
[9
1,

38
]

V
D

ph
ys
ic
al

7
SM

,R
E

cu
st
om

Ja
va

C
LI

to
ol

7
LC

,B
D

7
7

7

C
hi
zp
ur
fle

(E
vo

)
[9
1,

38
]

V
D

ph
ys
ic
al

7
SM

,R
E

cu
st
om

Ja
va

C
LI

to
ol

3
LC

,B
D

co
ve
ra
ge

7
7

Ex
H
un

te
r
[1
33
]

V
D

ph
ys
ic
al

7
SM

,R
E

cu
st
om

A
pp

(P
ar
ce
ls)

7
LC

,R
D

7
3

3

A
SV

H
un

te
r*

[9
0]

V
F

ph
ys
ic
al

-
SA

on
ly

re
pl
ay

A
pp

7
?

m
an

ua
l:

ad
d
lo
gg
in
g
to

B
in
de
r

7
3

G
on

g
[6
0]

V
D

ph
ys
ic
al

7
SM

(n
at
iv
e)

cu
st
om

B
in
ar
y
(B

in
de
r)

7
?

7
7

3

St
ow

aw
ay
*
[1
10
]

PE
?

7
SM

,R
E

R
an

do
op

[2
5]

A
pp

7
-

m
an

ua
l:

lo
g
pe

rm
iss

io
ns

7
-

B
in
de
rC

ra
ck
er

(B
B
)
[5
4]

V
D

ph
ys
ic
al

7
SM

(n
at
iv
e)

cu
st
om

A
pp

7
?

7
7

7

B
in
de
rC

ra
ck
er

(C
tx
*)

[5
4]

V
D

ph
ys
ic
al

7
SM

(n
at
iv
e)

cu
st
om

A
pp

7
?

m
an

ua
l:

lo
g
bi
nd

er
tr
an

sa
ct
io
ns

7
7

B
uz
ze
r
[3
4]

V
D

?
7

SM
(n
at
iv
e)

cu
st
om

A
pp

+
na

tiv
e

7
LC

in
cl
ud

e
hi
dd

en
SD

K
A
PI

s
7

7

H
e
[8
7]

V
D

?
7

SP
,I
D
A

(s
ta
tic

)
cu
st
om

na
tiv

e
(?
)

7
?

bi
nd

er
pa

rc
el

in
te
rc
ep
tio

n
7

3

FA
N
S
[9
7]

1
V
D

ph
ys
ic
al

7
SP

ow
n

B
in
ar
y
(B

in
de
r)

7
LC

,T
S

A
Sa

n
[1
7]

7
?

O
ur

C
as
e
St
ud

y
P
ro
to
ty
pe

s

Vu
ln
er
ab

ili
ty

&
B
ug

H
un

tin
g

V
D

em
u

pe
r
A
PI

SM
(n
at
iv
e)
,R

E,
SA

A
FL

[1
39
],G

on
g*

[6
0]
,B

in
ar
y
(B

in
de
r)
,

3
LC

,P
M
,IN

co
ve
ra
ge
,c

ra
sh

de
te
ct
io
n

3
3

C
hi
zp
ur
fle

[9
1,

38
]

Ja
va

C
LI

to
ol

Pe
rm

iss
io
n
M
ap

pi
ng

PE
/V

F
em

u
pe

r
A
PI

SM
(n
at
iv
e)
,R

E,
SA

C
hi
zp
ur
fle

[9
1,

38
]

Ja
va

C
LI

to
ol

3
LC

,P
M
,IN

co
ve
ra
ge
,l
og

pe
rm

iss
io
ns

3
3

Le
g

e
nd

:
A

n
a

ly
sis

:
V

D
:v

ul
n

e
ra

b
ilit

y
d

e
te

c
tio

n
,V

F:
ve

rifi
c

a
tio

n
,P

E
:p

e
rm

iss
io

n
m

a
p

p
in

g
Fr

e
sh

n
e

ss
:

H
o

w
fr

e
q

ue
n

tly
d

e
vi

c
e

st
a

te
is

re
se

t
to

a
vo

id
in

flu
e

n
c

in
g

th
e

te
st

in
g

o
fa

n
o

th
e

rt
a

rg
e

t.
M

a
p

p
in

g
:

SM
:S

e
rv

ic
e

M
a

n
a

g
e

r,
R

E
:R

e
fle

c
tio

n
,S

A
:s

ta
tic

a
n

a
ly

sis
,S

P
:s

o
ur

c
e

p
a

rs
in

g
,I

D
A

:I
D

A
Py

th
o

n
p

lu
g

in
C

o
ve

ra
g

e
:

W
h

e
th

e
rc

o
ve

ra
g

e
fe

e
d

b
a

c
k

is
ut

iliz
e

d
.

C
ra

sh
D

e
te

c
tio

n
:L

C
:L

o
g

c
a

tp
a

rs
in

g
,B

D
:b

in
d

e
rd

e
a

th
n

o
tifi

c
a

tio
n

s,
R

D
:a

p
p

-b
a

se
d

re
b

o
o

td
e

te
c

tio
n

,P
M

:p
ro

c
e

ss
m

o
n

ito
rin

g
,I

N
:i

n
st

ru
m

e
n

ta
tio

n
,T

S:
To

m
b

st
o

n
e

m
o

n
ito

rin
g

1
FA

N
S
ex
pl
ic
itl
y
ta
rg
et
s
na

tiv
e
se
rv
ic
es

on
ly

bu
t
sh
ar
es

m
an

y
pr
ob

le
m
s
w
ith

Sy
st
em

se
rv
er

dy
na

m
ic

an
al
ys
es
.

55

CHAPTER 4. TROOP

4.4.1 Target Instance Management

One of the aspects that sets Android apart from other platforms is the requirement
for proper target instance management. In the domain of binary analysis, dynamic
approaches, such as concolic execution or fuzzing, are most efficient when aiming at
targets that adhere to a basic set of properties:

1. Re-starting the binary, which is required to keep executions independent, needs to
be fast.

2. The binary should be stateless to avoid dependencies between different inputs.

3. The execution should be synchronous to avoid code being executed because of an
old input while a new input is processed.

4. Running the binary multiple times in parallel should be supported to speed up
the process.

Even if these properties do not apply, previous work has shown how to overcome these
problems, e.g., by running the binary in a restricted environment [119], such as an
emulator, that can be reset quickly, or forcing the execution environment to behave
more deterministically [59].
Android’s Systemserver, in contrast, does not fulfill these requirements. First, it cannot
be started independently because of complicated interdependencies to other Android
components. It can only run on an actual device or full emulator, therefore restarting
it requires to reboot large parts of the Android software stack. Second, because the
Systemserver keeps a lot of state to ensure the proper functioning of the whole application
layer (e.g., state of app components like Activities or Services), cleaning the
current state requires a whole reset of the device or emulator. Third, the Systemserver
makes heavy use of asynchronous communication patterns [28], which complicates
isolating single executions. And fourth, running multiple instances of the Systemserver
only scales with more physical devices or emulators where available, which results in
poor performance in comparison to running multiple copies of a binary. Therefore,
managing the Systemserver as a target for dynamic analysis requires specialized solutions.
With these differences in mind, we notice that working with the Systemserver roughly
resembles API testing with multiple entry points (see also Section 4.4.4) where target
re-starts are slow, executions are asynchronous, and tracking the state in order to reset
it requires involved and dedicated analyses.

4.4.1.1 Existing Work

To the best of our knowledge, all existing work in Table 4.1 uses physical Android
devices for their evaluations (column Devices). Our survey of existing works indicates
two main reasons why the authors could not use emulators despite superior scalability:
First, Chizpurfle [91, 38] explicitly targets vendor ROMs that typically do not run on
emulators because of vendor-specific closed-source patches. Second, ASVHunter [90],
Stowaway [110], BinderCracker [54] and Buzzer [34] require manual AOSP patches to
work properly, hence only open-source ROMs are supported. While those could have

56

4.4. REQUIREMENTS ANALYSIS & TAXONOMY

been launched in custom emulators, we speculate that the lack of a tool for cloning
and managing emulators built from AOSP might be the driving force behind relying
on physical devices in this scenario. Furthermore, the column Freshness in Table 4.1
shows that no previous work isolates test cases from each other by cleaning the device
or even discusses state management, which can be implemented completely independent
of the actual analysis. The FANS paper [97] even reports cases where the testing was
interrupted by a bricked device so that the authors had to factory reset the OS and
restart the experiments.

Our Assessment

The current state-of-the-art fully relies on physical devices for testing. While these are
indispensable for analyzing vendor-specific code, we strongly recommend to additionally
support emulators, if only for testing the common AOSP code base. Emulators directly
scale with computational power so properly equipped servers can run 30 or more instances
in parallel (see Section 4.6.1.2). Using emulators that are based on QEMU [113] further
allows for convenient and fully automated resets of the Systemserver’s state so that
we can force a reboot with a clean filesystem. Resetting a physical device in contrast
requires a time-consuming factory reset.
In order to automate the management of emulators, i.e., creating Android images from
built AOSP trees, creating clones with these images, and resetting them to a clean state,
we created a tool called avd-tool that will be open sourced as a part of our evaluation
platform (see Appendix A.2). For newer Android versions2, however, Google created
the cuttlefish [65] emulator that runs images created from AOSP trees. Our platform
supports both types of emulators, classical as well as cuttlefish.

To cover different use cases, our platform supports both, physical and virtual devices,
and exposes their configuration via APIs (e.g., number of instances, frequency of
refreshs).

4.4.2 Attack Surface Mapping

The concrete attack surface exposed by the middleware completely depends on the
currently running ROM. There are at least two dimensions to consider: First, in addition
to AOSPs base set of system services and APIs that are required for Android to work
properly (enforced by Google through their Compatibility Test Suite [64]), vendors
further extend Android with new services and APIs, which led to an increase in flaws
and vulnerabilities [134, 143] in the past. Second, the number of system services of
AOSP increases steadily with the introduction of new major Android releases. For
this reason, dynamic analyses of the middleware requires a mapping of which APIs are
accessible for the ROM under test to decide which ones to target.

57

CHAPTER 4. TROOP

Table 4.2: Categorization of different API surface mapping approaches in terms of the
used analysis method and resulting API description.

Transaction IDs Method Signatures

Dynamic Native Service Manager Java Service Manager
[60, 54, 34] [91, 38, 133, 110]

Static Source Code Parsing Class Hierarchy Analysis
[87, 97] [90, 97]

Table 4.3: Example of a fully represented method in the Android middleware including
high-level Java signatures (interface and implementation) and low-level binder service
and transaction ID.

Identifier Example
Interface android.webkit.IWebViewUpdateService
Implementation com.android.server.webkit.WebViewUpdateService$BinderService
Method changeProviderAndSetting
Parameters java.lang.String
Binder Service webviewupdate
Transaction ID 3

Existing Work

The rowMapping in Table 4.1 lists the different approaches to API mapping by existing
work. Table 4.2 further categorizes these approaches by two dimensions: the collected
method identifier (Transaction IDs and Method Signatures) and the required kind
of analysis to obtain these identifiers (Dynamic and Static). In addition, Table 4.3
shows all representations of an example method in the Systemserver.

1. Native Service Manager. Gong [60], BinderCracker and Buzzer bootstrap their
service discovery by first acquiring a handle for the global service manager—the central
system service registry—and querying it for the list of all currently registered system
services. The returned list contains binder service names and, if present, an interface
descriptor. Based on this information, it is now possible to collect the list of all eligible
low-level transaction IDs (i.e., for all accessible APIs on the device) that are required
when directly talking to the binder driver in order to invoke the target API. However,
neither the Java method signature including parameters nor the implementing class are
known at this abstraction level.

2. Java Service Manager. Similarly to the native approach, Chizpurfle, ExHunter [133],
and Stowaway make use of the service manager, this time in the Java domain. The
obtained list of service interfaces is utilized to enumerate all API methods and their
fully-qualified signatures. In contrast to the native service manager approach, we do

2The declared goal is to support all API levels after 28 [65].

58

4.4. REQUIREMENTS ANALYSIS & TAXONOMY

not need transaction IDs because we can directly issue remote procedure calls to service
methods using reflection.

3. Source Code Parsing. He [87] shows how to heuristically find the correct source
code files that implement system services and parse them for transaction IDs. In a
quick experiment (see transaction-id-mapper tool in Appendix A.2), we were able to
replicate this with a simple python script that derives the name and path of the AIDL-
generated [46] stub code from the interface name. While this works great for Java-based
services, native services require different heuristics, but the online material from He
does not provide any details on this. Unfortunately, this part would be most beneficial
since the native service manager can only provide transaction IDs but no method names
or parameters. FANS solves this problem with a Clang [23] plugin that analyzes the
code of native services at compile time to derive the transaction IDs. However, the
mapping is restricted to native services and therefore excludes services hosted by the
Systemserver.

4. Class Hierarchy Analysis. ASVHunter uses the Soot framework to statically analyze
the Systemserver’s bytecode and enumerate exposed methods of system services including
fully-qualified signatures, which has been demonstrated before in the literature [22, 28,
84]. FANS’ Clang plugin uses a similar approach to find the full signatures of native
non-Systemserver APIs.

Our Assessment

We compare the four established strategies by two aspects: which method representation
they are collecting and under which circumstances they are applicable.
The low-level binder representation is typically used by native tools that directly talk
to the binder IPC driver and is available for Java-based and native system services.
However, at this level all typing information is lost, causing a semantic gap between the
transaction IDs and their corresponding service API signatures, which leaves these tools
either with blindly creating byte streams or requiring auxiliary information about the
structure of their target. Java method signatures, in contrast, come with full package
names and typing information that can be utilized to create structured inputs, but are
only available for Java-backed system services.
This higher semantic insight further allows to use the signature information with, e.g.,
instrumentation tools, and to invoke Systemserver Java APIs via reflection. Applicability
of these mapping approaches, however, depends on whether dynamic or static analysis is
used to gather the API methods. The dynamic approaches Native Service Manager
and Java Service Manager are always available because they utilize APIs that are
used by the Android system itself and therefore guaranteed to be present on every
Android device through the Compatibility Test Suite [64]. ASVHunter’s approach
to statically analyze the Systemserver for entry points (Class Hierarchy Analysis),
which is also used in other Systemserver-related work [22, 28, 84], is broadly applicable
because it operates on compiled bytecode, which is also available on Android by default,
but it can only cover Java-based APIs. He’s Source Code Parsing approach is

59

CHAPTER 4. TROOP

only feasible if the code is available, so it is restricted to AOSP versions and its open
source derivatives, which explicitly excludes vendor ROMs like those employed by, e.g.,
Samsung or Huawei. In cases where it is applicable, however, it can also provide higher
semantic insight by mapping transaction IDs to method signatures.
In conclusion, the high-level approaches Java Service Manager and Class Hier-
archy Analysis work equally well for analyses targeting only Java APIs and the
low-level approach Native Service Manager is only suitable when directly talking to
binder. The approach Source Code Parsing could in theory provide both, but only
heuristically and for open source ROMs.

We provide both mappings, reflection-based high-level signatures and low-level
binder transaction codes, to support tools on the Java and the native layer.

4.4.3 Input Generation

Input generators are an integral component of dynamic analyses because they generate
the test input that drives the actual executions. We examine existing work with a focus
on two particular aspects: First, we want to determine possible goals for middleware
dynamic analysis to pursue. Second, we are interested in which input generation
strategies are most beneficial for these goals.

Existing Work

According to column Analysis in Table 4.1 existing work is partitioned into three
groups: vulnerability detection, dynamic verification, and permission mapping.

1. Vulnerability Detection. The largest group with nine different solutions from
existing work focuses on detecting bugs and vulnerabilities. We notice that all systems
rely on generating and detecting crashes in order to trigger abnormal behavior. Gong,
both versions of BinderCracker, Buzzer, He, and FANS target APIs that are backed
by native code, which is prone to a large set of low-level flaws that can lead to severe
vulnerabilities as demonstrated by the amount of CVEs in this area [132]. ExHunter
and both versions of Chizpurfle, however, focus on Java-based APIs, where most crashes
rather lead to denial-of-service flaws due to Java’s memory safety. As depicted in column
Input in Table 4.1, all vulnerability detection analyses ship their own custom fuzzers
as input generators, which we categorize in two dimensions as depicted in Table 4.4.
The first dimension, structural awareness, describes whether an input is generated
according to certain structural information about the target API. Typical examples are
grammar-based fuzzers, where grammars are either generated automatically or encode
expert knowledge. The second dimension describes whether the generator utilizes a
feedback loop. Coverage-guided greybox fuzzers, for example, are commonly built by
measuring code coverage at runtime and feeding it back to the fuzzer that can base
the generation of new inputs on how successful previous ones uncovered yet unknown
code segments. Black box fuzzers, in contrast, do not utilize feedback such as coverage
information from the program, so the generation of new inputs is independent of the
success of previous ones.

60

4.4. REQUIREMENTS ANALYSIS & TAXONOMY

Table 4.4: Categorization of evaluated fuzzers by structural awareness and utilization of
coverage feedback.

structure-aware structure-unaware
coverage-guided Chizpurfle Evo AFL Evo

black box Chizpurfle BB Gong/RandFuzz, AFL BB

2. Dynamic Verification. ASVHunter utilizes static analysis to produce a set of
candidate findings that are subsequently verified dynamically. Static analysis is often
prone to generating false positives because it resorts to over-approximation when runtime
information is required3, so a dynamic complement is created to test whether these
candidate inputs are actually triggering the expected behavior. In contrast to utilizing
fuzzers, there is no need for massively generating inputs as we are working with a known
set of candidate inputs from static analysis.

3. Permission Mapping. Permission mapping, as done by Stowaway, focuses on
triggering as many permission checks as possible to be able to enumerate and map them.
Their approach of using a test generator is comparable to employing a fuzzer. However,
while vulnerability detection aims for deep coverage of the target under test, permission
checks are often placed at the beginning of API methods (fail early principle) [5], so
thorough code coverage is not required. Even though Stowaway opened this line of
research by following a dynamic approach, follow-up work [22, 28, 5] was exclusively
conducted using static analysis.

Our Assessment

Goals. When comparing Systemserver dynamic and static analysis, we notice a large
discrepancy between the set of pursued goals. While we found three dominant use
cases for dynamic analysis in the literature, static analysis covers a much broader scope.
Goals of Systemserver static analysis also include, e.g., detecting confused deputies in
the codebase [83] and inconsistent policy enforcement [123, 84, 6, 4]. Besides one case
where dynamic components are added to complement the static analysis [90], hybrid
or pure dynamic analyses have not been applied to those topics yet. In the future, we
hope to see more of these use cases also pursued using dynamic analysis.

Strategies. Related work in Table 4.1 that focuses on vulnerability discovery exclusively
employs fuzzers as their input generators. They are easy to implement and experience
has shown that they work well for producing crashes in other fields [125, 126, 119,
21, 114, 96]. However, there are no prior studies on whether fuzzers are superior to
alternative input generation approaches for analyzing the Android middleware, or which
strategies or design decision are the best fit for certain goals.
Whether more advanced strategies or completely different input generators can provide
major benefits is an open but promising research question that has not yet been explored

3E.g., in case of the asynchronous Handler pattern in the Systemserver [28, 83].

61

CHAPTER 4. TROOP

in depth. However, a common platform would allow future work to evaluate these
approaches under the same conditions in order to produce comparable and reproducible
results.

To satisfy different analyses’ input generation requirements, we integrated multi-
ple kinds of input generators into our platform as re-usable building blocks (see
Section 4.5.6) and provide APIs to integrate more.

4.4.4 Target Communication & Harness

In other domains, such as binary testing, dynamic analysis systems directly feed input
to a target by providing command line arguments, setting environment variables, using
stdin, or executing code from within the target’s context. However, step 4© in Figure 4.1
illustrates that in the middleware analysis scenario we have to resort to techniques from
API testing to combine input generators with so-called test harnesses. These harnesses
have to match inputs to the API’s required format and are responsible to bridge
the process boundary between input generators and actual targets by transparently
forwarding all generated inputs.

Related Work

Similarly to the problem of mapping the attack surface in Section 4.4.2, there are
approaches on at least four different abstraction levels:

1. Native Binder Interfaces. Gong, Buzzer, He and FANS directly talk to the binder
driver through the exposed native binder interface and therefore the test generator can
immediately feed marshaled parameter structures to the API under test. While this
approach provides superior performance because many abstraction layers are simply
skipped, the semantic insight is rather low because auxiliary information such as types
and structure of the target API’s expected parameters are unknown.

2. Android SDK Managers. App developers usually interact with the middleware
by using SDK managers that provide stable APIs while handling communication with
the corresponding system services in the background. This abstraction allows to input
actual Java objects instead of marshaled byte buffers at the cost of additional marshaling
of these inputs. The main caveats, however, are that the SDK implements client-side
checks that prevent apps from common mistakes, which can be bypassed by directly
talking to the system services, and that the APIs exposed by the SDK do not necessarily
match those of the corresponding system services. Therefore, the SDK API does not
reflect the actual attack surface of the underlying system services and should therefore
be avoided in most scenarios.

3. Reflection on Service Binders. Similar to the native binder interface, there are
also Java-based APIs that allow to query for all registered binder services in the system
and interact with them. Chizpurfle, BinderCracker, Stowaway, and ExHunter use the
resulting service binders in order to operate on the semantic level of Java objects, which,

62

4.4. REQUIREMENTS ANALYSIS & TAXONOMY

however, adds the increased complexity and overhead of reflection and is only supported
for Java-backed services. Using reflection bypasses the above mentioned SDK managers
and allows to directly talk to the system services while transparently handling the
inter-process communication.

4. Intra-Process Communication. Communicating with middleware services without
going through an IPC protocol requires to run the input generator in the target’s process
space. This is the fastest alternative since it completely skips the marshaling procedures
on both ends of IPC calls. However, it comes with robustness issues (generator crashes
with target), needs invasive changes to the OS to be deployed, and might incur an
increased false positive rate because there is no guarantee that candidate inputs that
expose unexpected behavior would have made it through the marshaling step.

Our Assessment

Utilizing native binder interfaces and reflecting on binder objects have both been
implemented by existing work. With respect to the discussed problem of additional
checks and a different attack surface, the SDK should not be used for communicating
with system services. Reflecting on service binders avoids these problems and is therefore
better suited for testing the actual attack surface. Intra-process communication could be
implemented by, e.g., integrating Libfuzzer [24] into the middleware by either changing
the source code4 or injecting it using an instrumentation framework. However, it
might be required to collect and feed back the coverage information by unusual means
because Libfuzzer’s default way of collecting coverage — recompiling the target with
the LLVM [26] compiler infrastructure — is not always possible here.

Since related work operates on the native and the Java layer, we implement harnesses
for our integrated input generators to support both layers.

4.4.5 Instrumentation & Introspection

Dynamic analysis is typically supported by instrumentation or introspection tools, e.g.,
to provide coverage feedback, detect crashes, patch out obstacles, or any other code
transformations that improve analysis results or performance. Often, these tools are
used to compensate for shortcomings of dynamic analysis, such as non-determinism when
executing code paths with randomness or dependency on accurate coverage information.
In order to provide this functionality when targeting involved systems, such as the
Systemserver, the following requirements need to be fulfilled:

1. Low overhead. Maintaining a certain level of performance ensures that transfor-
mations are not considerably slowing down the testing process. Fuzzers, in particular,
are optimized for high throughput of inputs and most transformations incur extra costs
per execution trace.

4There is restricted support for building parts of AOSP with Libfuzzer support [68].

63

CHAPTER 4. TROOP

2. Fine granularity. Some instrumentation frameworks allow for surgical changes
instead of replacing whole blocks of code. In contrast, popular hooking frameworks, such
as XPosed [135], can only redirect method calls to custom functions. This approach falls
short in case we want to change a minor detail in a targeted method, such as inverting
a single condition or changing a constant. Those use cases require more fine-grained
instrumentation capabilities.

3. Scalability. When working with a large codebase, scalability is a major issue
because many frameworks are mainly used for instrumenting single applications or
smaller binaries. Instrumentation and introspection systems need to scale to the
Systemserver without drastically reducing robustness or performance.

Existing Work

To which extent instrumentation and introspection capabilities are used by prior work
is visible from the columns Crash Detection, Coverage, and Transformations in
Table 4.1.

Crash Detection. Any dynamic analysis that specifically targets vulnerabilities and
other robustness issues requires solid crash detection mechanisms to be able to observe
potentially interesting behavior. Chizpurfle uses the binder death notification mecha-
nism [101] to receive notice as soon as its currently targeted system service crashes so
that the offending input can be flagged accordingly.
An alternative approach to detecting crashes and other unwanted behavior is to parse
Android’s logcat output, as done by Chizpurfle, ExHunter, and Buzzer. The logcat
facility can be accessed directly from on-device code or from the outside by using
the Android Debug Bridge (adb) [45]. While it is simple to implement and, when
done outside of apps, robust to Systemserver crashes, it requires heuristics for parsing
potentially interesting log output and is incomplete because it misses silent failures that
do not produce log entries.
Furthermore, FANS uses the ASan support of more recent AOSP versions [17] to detect
crashes in native services and ExHunter uses an installed application to detect reboots
as communicated through a system-wide broadcast, which indicates a past Systemserver
crash.

Coverage Feedback. Chizpurfle uses the Frida [106] instrumentation framework to
deploy its patches. Frida’s stalker component [107] is utilized to implement coverage
tracking for each produced input and the resulting execution trace by rewriting code
blocks at runtime. The injected code reports all basic blocks and branches taken by the
last input back to Chizpurfle where the information is used for generating new inputs.
The capability to deploy code instrumentation at runtime allows to run Chizpurfle on
arbitrary rooted Android versions and devices, but it also incurs a heavy slowdown of
1291% [91, 38].

64

4.4. REQUIREMENTS ANALYSIS & TAXONOMY

Further Introspection. There is a whole category of code transformations for intro-
spection that are applied to assist dynamic analysis. Most existing works have resorted
to patching AOSP by hand to obtain the runtime information required for their analyses
to function. ASVHunter, BinderCracker, and He patch the binder framework code to
intercept IPC messages to allow for logging and mutation. Stowaway modified AOSP
to record checked permissions in order to create a permission mapping and Buzzer
re-compiled the SDK to include APIs normally hidden from developers. The major
problem with hardcoding changes into AOSP by hand is that it explicitly ties every
solution built on top to a particular Android version that additionally needs to be open
source. Porting this to newer versions results in additional work and closed source
vendor ROMs cannot be supported at all.

Our Assessment

Given the large range of transformations seen in other fields of dynamic analyses (in
particular binaries), such as transformational fuzzing [109] or de-randomization [126,
59], related work in the field of Systemserver analysis has barely scratched the surface
of the current state-of-the-art. While coverage-guided input generation and greybox
fuzzing are well-established in the binary domain, most existing work in our scenario
uses black box approaches with the only exception being Chizpurfle, which comes with
a significant performance overhead. We see a lot of potential in this field if we are able
to reduce the technological gap to the state-of-the-art on other platforms. The major
blocker we identified is the lack of an easy-to-use, well-established introspection and
instrumentation framework that allows to implement the above mentioned transforma-
tions. In the binary domain, there are multiple well-known frameworks that support
these kinds of instrumentations, such as LLVM at compile-time, angr patcherex [125],
pwntools [56], and many others for static code patching, or Intel PIN [94] for dynamic
instrumentation. On Android, a lot of tools have focused on in-process method hooking
to support inline reference monitors for apps, such as Dr. Android & Mr. Hide [95],
I-ARM-Droid [43], retroskeleton [42] or AppGuard [29], but these do not fulfill the
granularity requirement. Another popular option on Android is to transform bytecode
to the so-called smali representation with a tool called ApkTool [93] where a human
analyst can manually change bytecode instructions to a certain extent, which does not
fulfill the scalability requirement. To the best of our knowledge, the only frameworks
that scale to the Systemserver and at least to some extent support fine-grained instru-
mentation capabilities are Frida and ARTist (see Chapter 3). While the former’s main
advantage is its support for native code, which ARTist does not cover at all, robustness
issues and the large performance overhead make it a less-then-optimal alternative for
implementing performance intensive tasks, such as computing code coverage. Since
instrumentation support is crucial for a common platform because systems such as
Chizpurfle and AFL [139] depend on it, and in an effort to reduce the gap to other
ecosystems, we implemented the following two-fold approach: First, we make use of
ARTist’s Systemserver instrumentation support (see Chapter 3) to provide low-overhead
modification and introspection capabilities. Second, we designed, implemented, and
evaluated multiple re-usable instrumentation and introspection modules commonly used
by existing work for our platform (see Section 4.5.5.2). Similarly to how angr [125]

65

CHAPTER 4. TROOP

provided a unified platform to implement binary analyses, future work on Systemserver
dynamic analysis can be built on top of our platform to re-use existing solutions to
known problems, thereby reducing the barrier to entry and duplication of effort.

Our platform provides a set of re-usable introspection modules that cover a large
set of requirements from related work, and additionally integrates with ARTist for
more specialized requirements.

4.4.6 Verification of Results

In contrast to static analysis that argues about every possible execution trace, dynamic
analysis derives its results from actual executions and is therefore less prone to false
positives due to impossible code paths. However, often false positives cannot be avoided
completely when working with concrete execution traces in real-world environments.
Typically, dynamic analysis tends to report false positives when the environment is highly
dynamic and non-deterministic, which includes the usage of randomness, other actors
within the same system (e.g., other apps changing state in the middleware), or occasional
background operations being triggered automatically. In order to pre-filter results for
human analysts or to even achieve fully autonomous analysis systems, a set of solutions
has been proposed to programmatically deal with these problems. Typical examples are
automated confirmations for crashes found by fuzzers through systematically replaying
previous inputs and applying test case minification (as done by, e.g., AFL). While this
has been well-studied for robustness testing and vulnerability detection, other dynamic
analyses have more specialized requirements for such automated verification systems.
We examined existing work to learn whether such techniques are currently used for
Android middleware dynamic analysis and how far these could be automated.

Existing Work

As depicted in the column Auto-Verification in Table 4.1, most related work describes
their result verification process as manual, with two notable exceptions. ExHunter
fully automates the process of finding so-called UncaughtException denial-of-service
attacks [133] against the Systemserver by detecting device reboots and replaying the
offending input to verify if the system reboots again, thereby creating proof-of-concept
exploits for these inputs. Similarly, the dynamic part of ASVHunter focuses on verifying
potential denial-of-service flaws by triggering the candidate input and observing the
result.

Our Assessment

We again observe a gap between the state-of-the-art in other ecosystems and our
middleware scenario. Currently, the more advanced techniques, such as minification,
bug triaging, or exploitability analysis, and the straightforward result verification
technique of directly replaying candidate inputs are only deployed in two systems.

66

4.5. ARCHITECTURE

We argue that a common platform to implement and share those building blocks
could improve the current situation by facilitating the integration of automated
verification into dynamic analyses, which would be beneficial in terms of repro-
ducibility. Therefore, our platform provides out-of-the-box support for reproducing
interesting behavior by persisting all generated inputs and automatically replaying
them on fresh Android instances.

4.5 Architecture

Given the outlined challenges and the (partial) solutions provided by related work, we
base the design of our dynamic analysis platform on these observations and show how to
overcome the corresponding challenges in a modular and reusable way. This allows us
to directly compare different building blocks and their strategies. We can then answer
questions, such as whether the approach used by related work was the best-possible
one, or if re-using off-the-shelf components like AFL, which gave outstanding results for
binary analysis, will provide similar results in the domain of Systemserver analysis.

4.5.1 Overview

Figure 4.2 gives an overview of our platform. The clients request tasks 1© (in this case
sets of APIs to be analyzed) from a backend component and distribute them among their
workers. An arbitrary number of clients running on different machines with varying
amounts of workers attached to them are supported so that computational resources
can be added and removed easily. The client’s core is the manager component called
Troop that distributes the work to locally running worker processes and takes care of
monitoring all workers and exposing information about their current state 2©. Each
worker is associated with one task that is analyzed at a time. In our current design, each
worker is responsible for exactly one (emulated or physical) device instance where it
performs the analysis task at hand 3© and creates corresponding artifacts and results 4©.
Additionally, a result analyzer component can interpret the worker’s artifacts to detect
findings, compute success rates, and provide further insights 5©. The whole system is
specifically designed for modularity, because its components are loosely coupled, and a
high degree of automation to ensure scalability.

4.5.2 Troop

Troop, the namesake of the overall platform, is the central entity that runs on each
client and takes care of bootstrapping the whole process. Troop functions as a central
observer that spawns all worker processes, continuously feeds them with new work from
the backend, monitors their execution, and takes care of other issues, such as logging
and management of generated test artifacts. The live data collected from its workers
are exposed via a simple flask-based [55] webserver that describes the workers’ current
states in both a human-readable HTML format and a machine-readable JSON dump.
The management code is decoupled from the actual worker implementation that is used

67

CHAPTER 4. TROOP

Figure 4.2: Overview of the platform’s architecture.

68

4.5. ARCHITECTURE

for the current evaluation, so Troop operates independently of whether its workers are
fuzzing their targets, confirming bug candidates, or performing any other analysis task.

4.5.3 Result Analyzer

Our framework ships with a set of result analysis components that can be used and
extended to reason about the current state of dynamic analysis evaluations and their
results. Our result analyzer modules scan through the artifacts generated by workers to
produce summaries of the results. These analyses can be invoked from the command
line to get an idea about the current state of the evaluation but they are also used by
Troop and the workers themselves for decision making. Typically, during the design
of a new evaluation, interesting observations and bugs are encoded as new analyzer
commands to track them as the system evolves. All results presented in Section 4.6 are
based on those result analyzer outputs.

4.5.4 Backend

The backend is a small web server that exposes the list of tasks stored in its database
via a REST API. The most common cases are clients requesting new tasks for their
workers to test. The backend remembers tasks currently under test (i.e., which ones
have been finished) and a list of open tasks, thereby serving two main purposes:

1. Synchronizing all existing clients and workers so that we can ensure no task is
executed by multiple workers at the same time (unless we explicitly want that).

2. Controlling the actual definition of a task, i.e., deciding on the subset of middleware
APIs that are tested at a time by a single worker. This could be a single API or
all APIs of a particular service.

4.5.5 Workers

Workers implement the central logic of an evaluation because they directly perform the
required analysis tasks. After being started by Troop, they continuously consume tasks
from their input queues and, depending on the kind of task, execute their functionality.
There are no restrictions imposed by the framework on what kind of analysis or testing
can be applied, so whether the worker runs a fuzzer, replays input, or uses a completely
different input generator, is up to the concrete evaluation at hand. Workers alleviate
the test case isolation and statefulness problems from Section 4.4.1 by launching fresh
instances of prepared emulators and managing their lifecycle including setup and
teardown, so dynamic analyses only need to decide how often to reset the testing
environment, e.g., for each new tested API or after a fixed time budget is exhausted.

4.5.5.1 Workflow

Figure 4.3 depicts the typical worker pipeline for an input generator-driven analysis,
in this example a fuzzer. The worker starts by launching a fresh emulator instance 1©.
After the system booted successfully, the input generator is launched to continuously

69

CHAPTER 4. TROOP

Figure 4.3: Worker processing an API task.

send inputs to the current API5 on the emulator 2© while the worker regularly checks
the status of all involved parties 3©, e.g., if the input generator is still running and
the system is behaving as expected. Furthermore, it keeps pulling snapshots of the
current state of all platform components running on the emulator. After a predefined
timeout or as soon as we detect a potential finding, a snapshot is pulled and the whole
emulator is shut down 4©. In the next step, we try to verify the potential problem
on vanilla emulators 5©. Since our goal is to confirm whether the collected input list
reliably reproduces the observed behavior, we minimize changes to this emulator by
only using non-intrusive monitors (e.g., off-device monitors). The list of previously
generated inputs is replayed 6© and the system observes the emulator to decide whether
the behavior is reproducible or a false positive 7©. Our verification workflow immediately
outputs test cases that reproduce the finding. Finally, emulators are closed 8©, files are
backed-up, a report is written 9©, and the worker starts all over with the next API.

4.5.5.2 Monitoring

In order to fulfill the requirements from Section 4.4.5, we employ a set of introspection
modules for monitoring the system’s current state to, e.g., detect crashes or collect
coverage information. These modules check for interesting behavior as the result of the
currently executed dynamic analysis and confirm that all framework components are
still alive. To this end, we use five different techniques:

1. Logcat is constantly parsed for crashes, stack traces, and other markers of
unwanted behavior.

2. Binder death notifications are utilized to stay informed about dying system
services.

3. Checking the list of running processes ensures we see crashes of critical
Android services and platform components.

5For the sake of simplicity we analyze one API at a time for now.

70

4.5. ARCHITECTURE

4. Uncaught exception handlers for all vital Systemserver threads are injected
via instrumentation.

5. Coverage tracking is implemented by instrumenting target methods to compute
basic block and edge coverage6.

These five monitors effectively ensure that we can keep track of the target’s current
state to reason about the dynamic analysis’ progress.

4.5.6 Integrated Input Generators

In Section 4.4.3 we learned that most middleware dynamic analyses from related work
use custom fuzzers tailored to their particular case. This not only leads to duplicate
work but also misses out on utilizing improvements from the active community that has
formed around advancing and optimizing general-purpose fuzzers (see Section 4.4.3).
Therefore, we decided to utilize the modularity of our platform to integrate a collection
of different fuzzers that can be used in dynamic analyses, effectively freeing future work
from re-inventing the wheel over and over again. This particularly allows to compare
the fuzzer’s performance in different dynamic analysis scenarios to be able to pick the
best-fitted input generator. In the following, we will discuss the three different fuzzers
and how they are integrated into our platform.

4.5.6.1 Chizpurfle

We decided to integrate Chizpurfle into our platform because it not only implements
a single specialized fuzzer but intends to be a generic boilerplate for experimenting
with different fuzzing techniques, such as black box or evolutionary algorithms. Since it
already targets Systemserver APIs, we do not need a harness and can directly instruct
it to test particular APIs.

Coverage Channel Chizpurfle utilizes the Frida framework to trace executed code
at runtime and provide coverage feedback to the fuzzer. However, we decided to use a
more lightweight instrumentation framework instead for two reasons: First, the authors
report an overhead of 1291% introduced by Frida [91, 38], which tremendously slows
down the fuzzer. Second, in our experiments, we could not make Chizpurfle’s Frida code
run on the x64 emulators we are utilizing, hence running the original version would
restrict us to real ARM devices in contrast to a large number of emulators that we can
run in parallel (see evaluations in Section 4.6.1.2). Since our coverage monitor from
Section 4.5.5.2 is implemented using the ARTist instrumentation framework, we extend
our ARTist module by additionally opening a local socket that the fuzzer can connect
to and re-implement Chizpurfle’s protocol to establish compatibility. The feedback
channel is then used to transparently send the collected coverage back to the fuzzer in
the expected format.

6Implementing other coverage metrics discussed in the literature (e.g., path sensitive [58]) is also
straightforward.

71

CHAPTER 4. TROOP

4.5.6.2 RandFuzz (Gong*)

With Chizpurfle as an example of a feedback-directed greybox fuzzer operating on the
Java layer, we decided to also integrate a low-level fuzzer that sends marshaled input
parcels via native binder APIs. This allows to not only target Systemserver’s Java APIs
but also other middleware services that are created from native code. Under the name
RandFuzz, we chose to re-implement Gong’s approach of a random black box fuzzer
based on the information from [60].

Implementation & Integration From the available information, we implemented
RandFuzz to first list all accessible services by querying the native service manager (see
Section 4.4.2). RandFuzz will then generate random payloads for binder transactions to
those services. The fuzzer is executed by providing the target services and transaction
IDs.

4.5.6.3 American Fuzzy Lop (AFL)

In Section 4.4.3 we learned that, with the exception of Stowaway, no related work makes
use of existing input generators but instead creates their own fuzzer from scratch. In
order to showcase how to utilize state-of-the-art tools for analyzing the middleware, we
integrate the well-known American Fuzzy Lop (AFL) into the platform and describe
the necessary steps to adapt it to our domain.

Bridging the Process Gap AFL is a typical example for the challenges described in
Section 4.4.4: It forwards generated inputs directly to its targets using stdin. However,
the middleware contains always-running services that expose multiple APIs running
in remote processes, so we need to bridge the process gap to forward inputs to target
APIs. In our case, the fuzzing harness that we implemented 7 takes the target service,
transaction ID and input data, and crafts valid binder transactions that it transmits to
the middleware API. The forkserver that AFL usually employs to have multiple instances
of its target running in parallel, in this case its harness, is deactivated for our purposes.
All running harness instances are still backed by a single running target process so
parallel executions are not improving performance but they increase complexity in terms
of isolating executions of generated inputs.

Input Generation AFL typically outputs byte buffers that need to be structured
according to the input format of the subject under test. To that end, we translate the
argument type list of each targeted API into the harness’ input encoding, initialize
the argument types with default values, and use them as seeds for AFL. For instance,
we extract the parameter types from the VoiceInteractionManagerService API
getKeyphraseSoundModel(int, java.lang.String) and use the correspond-
ing type’s default values to generate a zero integer and an empty string as a seed input.
Figure 4.4 depicts the initial seed and an excerpt of the inputs generated from it for the
getKeyphraseSoundModel API. We abstain from leveraging AFL for fuzzing APIs

7We extended Android’s service tool accordingly.

72

4.5. ARCHITECTURE

Seed:
i64 0 s16 ""

AFL generated inputs:
...
i64 150 s16
i64 0 s16 f6
i64 0 s16 tgEcs
i64 0 s16 08
i64 0 s16 zk8vF
i64 0 s16 5,n
i64 0 s16 6BQm
i64 0 s16 WxXU
i64 0 s16 OIlk
i64 0 s16 IYpuM
i64 0 s16 9pAq0
i64 0 s16 Cihm
i64 0 s16 3uuI
i64 0 s16 Dkm
i64 0 s16 tqb9Rq
i64 0 s16 ??7454
i64 0 s16 LLpH
i64 0 s16 FBn5
i64 0 s16 xAbJ6pIO
i64 0 s16 gy6qez
i64 -1061126006 s16
i64 -2122252032 s16 ja
i64 -2122252032 s16 MSTv
i64 -530563011 s16

i64 -2122252032 s16 1,3
i64 -2122252032 s16 2oU
i64 -2122252032 s16 QFlC
i64 -1061126005 s16
i64 50463252 s16
i64 -2122252032 s16 hO3W
i64 -2122252032 s16 x7W,
i64 -2122252032 s16 D.j
i64 -2122252032 s16 VsH
i64 -2122252032 s16 oPA
i64 -2122252032 s16 we
i64 -2122252032 s16 L7p
i64 -2122252032 s16 r6x’TI
i64 -2122252032 s16 ,Qn3
i64 201852916 s16
i64 -2122252032 s16 #Oqb
i64 -2122252032 s16 K9u
i64 -2122252032 s16 cOyHFF
i64 -2122252032 s16 ’U
i64 -2122252032 s16 p3yB
i64 -2122252032 s16 lit2G0’
i64 -2122252032 s16 5LUzI
i64 -2122252032 s16 uWjN
i64 -2122252032 s16 wc
i64 -2122252032 s16 sa
i64 100926444 s16
i64 -2122252032 s16 lSjs
i64 -2122252032 s16 nJTdb!
...

Figure 4.4: Inputs generated by AFL from an empty seed.

73

CHAPTER 4. TROOP

with complex types for now, as this requires careful object modeling in order to reach
the target API and to not extensively fuzz the un-/marshaling logic.

Coverage Channel By default, AFL compiles a binary using a customized LLVM to
insert feedback instructions into the code such that control-flow information of reachable
code is written to a shared feedback buffer of fixed size. This raises two concerns: First,
we need to share a memory buffer between the target process and AFL. Second, AFL
cannot compile the target, i.e., the Systemserver, so we need another way to write
feedback to the shared buffer.
We solve the shared buffer problem by introducing an on-device component called
Uplink. Once executed, Uplink uses Android’s shared memory system (ashmem) to
create AFL’s shared buffer. Uplink then launches a publicly available service for sharing
the corresponding file descriptor so that the shared memory region can be accessed from
its clients’ process spaces as well. The first client is the Java-based library that ARTist
injects into the Systemserver to ensure we obtain a file descriptor for writing coverage
feedback. The second client is AFL, which reads coverage feedback from the shared
buffer.
Concerning the second problem, we note that LLVM-based instrumentation is not
always feasible (e.g., code unavailable, complicated dependencies) and therefore AFL
supports a mode of operation where it skips the LLVM-based instrumentation process
and just relies on an external tool to write feedback to the shared buffer. Similarly to
our integration of Chizpurfle (see Section 4.5.6.1), we can use the coverage monitoring
ARTist module to push the collected coverage information back to the fuzzer, this time
by writing it to the shared buffer we obtained from Uplink.

4.5.7 Device Setup

Combining all aforementioned tools and modules, we obtain the device setup depicted in
Figure 4.5. At boot time, ARTist executes our modules that instrument the Systemserver
for crash detection and coverage feedback 1©. After Android booted successfully, the
chosen input generator is started with the current API target 2© and generates inputs 3©
that are transparently sent to the Systemserver via binder IPC 4©. On the server side,
the API is executed and the code injected by our coverage module notifies the injected
Java library about each basic block that is visited 5©. Coverage and crash information is
persisted 6© and coverage feedback is provided back to the input generator if needed 7©.
The generation of new inputs is guided by the feedback received from the coverage
module, hence executions discovering new basic blocks directly influence the generation
of new inputs. Off-device the responsible worker periodically checks the health of all
involved components (e.g., Systemserver, input generator, monitors), collects logcat
messages, pulls system tombstones (Android crash dumps), and persists the collected
artifacts 8©.

74

4.5. ARCHITECTURE

Figure 4.5: The full on-device setup from generating inputs to persisting and feeding
back artifacts.

75

CHAPTER 4. TROOP

4.6 Case Studies

In this section, we study how to use our platform to approach dynamic analysis tasks
from related work in a more principled way. The two case studies we conduct show how
our platform can be utilized to explore different design decisions and strategies, which
we exemplify by comparing the impact of input generation strategies, such as the choice
of fuzzers and whether to utilize coverage feedback. Our results indicate that there are
still lots of open questions in order to find optimal components for the different dynamic
analyses.

4.6.1 Vulnerability & Bug Discovery

Vulnerability and bug hunting is often perceived as a dark art driven by intuition and gut
feeling. As evident from Table 4.1, there has been a multitude of approaches for hunting
bugs in the Android domain, in particular focusing on the Systemserver and other
middleware components. While they succeeded in uncovering different kinds of flaws,
they rely on customized toolchains that are mostly incompatible and incomparable. This
raises questions such as whether the implemented strategies are the most beneficial ones,
or where we can still improve in those areas. While these questions currently cannot be
answered for the Android domain, there has been a lot of work in related fields recently
that focuses on properly comparing and evaluating dynamic analysis approaches and
their central components (e.g., input generators) to create benchmarks and evaluation
criteria [96, 125, 47]. For dynamically analyzing the middleware, however, we are lacking
such a principled approach that places related work and their results on firm ground.
We conduct a case study on vulnerability and bug hunting on top of our platform to
answer questions such as whether coverage-guided approaches outperform black-box
approaches and how the required instrumentation impacts performance.

4.6.1.1 Design

We replicate the vulnerability detection scenario of related work from Table 4.1 by
designing our case study to search for crashes in the middleware that lead to, e.g.,
interrupting users by rebooting the device (potentially in a loop). To be able to replace
and compare components easily, we fully utilize all existing building blocks: The three
integrated fuzzers (Section 4.5.6) are generating inputs, the monitors (Section 4.5.5.2)
feed back coverage and crash information, and Troop (Section 4.5.2) parallelizes the
testing across multiple emulators. As soon as a monitor detects a crash and all
information is pulled form the device, we use the auto-verification support to replay the
collected inputs on a clean vanilla emulator. The input replaying component together
with the list of inputs thereby form a proof-of-concept exploit. This platform-driven
approach for the first time allows us to conduct a comparative evaluation to assess the
impact of different design decisions.

76

4.6. CASE STUDIES

4.6.1.2 Comparative Evaluation

The platform’s modular design enables us to evaluate different components under the
same conditions while leaving all other components fixed between tests. Since most
related work employ fuzzers to drive their concrete executions, we create seven different
setups based on our integrated fuzzers to study their impact in terms of performance
and coverage.

Setup. All experiments are executed with 30 parallel workers analyzing each target
API for 5 minutes. The emulators run a custom AOSP 7.1 image that includes additional
tooling required for the evaluation. We compute the target APIs for the experiments by
first enumerating all methods from the 89 Java-backed system services. Out of the 2,090
interface-method-pairs, we were able to map 2,005 APIs to concrete implementations
and generated coverage information for 1,867 (89%) of them, where we only consider
those 1,637 (78%) with a non-empty list of parameters. Subsequently we divide our
experiments into two groups based on the APIs they are targeting. The first group
contains all 433 target APIs that are currently supported by AFL in black box (BB)
and evolutionary (Evo) mode, as well as RandFuzz because all their parameters have
primitive or string types and we have binder transaction IDs available, hence we call this
group the primitive APIs. The second group, which contains all 1,637 APIs, is called the
complex APIs. It can only be fully tested by input generators that support the creation
of complex objects, which is in our case Chizpurfle in black box and evolutionary mode.
Running all five fuzzer variants on the primitive APIs as well as both Chizpurfle variants
on the complex APIs results in seven setups in total.

Performance. First, we measure the raw performance of all fuzzers by computing
the time between executions for generated inputs to evaluate their trade-off between
more complex generation heuristics and sheer throughput of inputs. Second, we use
the fuzzers to measure the overhead introduced by our instrumentation modules for
coverage tracking.
Table 4.5 depicts the results of our measurements. The first observation is AFL’s low
number of executions per second (between 30-150 as computed from the execution
times) compared to the over 500 suggested by the AFL manual [140], which is expected
because of the additional overhead added for the IPC round-trip and the execution of
harness code. The second insight is that, as expected, RandFuzz is the fastest fuzzer
because generating purely random values is magnitudes faster than the complex input
generation logic of AFL.
Third, as expected, the black box variant of Chizpurfle is faster than the evolutionary
variant. While we would have expected similar results for AFL, we found large outliers in
the measurements for the black box variant of AFL (with and without ARTist activated)
that can explain the unexpectedly high execution time.
The fourth information conveyed by the table is the acceptable overhead imposed by
our instrumentation for the fuzzers. Table 4.5 indicates that our coverage tracking
instrumentation is magnitudes faster than the Chizpurfle Frida module’s reported 13-fold
overhead. However, we take this comparison with a grain of salt because, first, we could

77

CHAPTER 4. TROOP

Table 4.5: Performance measurements for time between executions in milliseconds,
averaged over the different APIs using mean and median respectively.

Input Generator Per-API Means Per-API Medians
Mean Median Mean Median

Complex APIs

Chizpurfle Evo 387.97 22.95 374.24 20.88
Chizpurfle BB 99.15 8.88 101.61 7.68
Chizpurfle BB (no ARTist) 75.92 9.05 60.10 7.79

Primitive APIs

Chizpurfle Evo 170.47 23.30 166.99 20.98
Chizpurfle BB 15.57 8.74 13.98 7.52
Chizpurfle BB (no ARTist) 15.69 8.84 13.96 7.62

AFL Evo 9.64 7.81 8.33 7.44
AFL BB 32.36 12.10 7.54 7.05
AFL BB (no ARTist) 21.51 8.35 7.21 6.63

RandFuzz 0.42 0.08 0.34 0.07
RandFuzz (no ARTist) 0.36 0.09 0.26 0.08

not evaluate Frida ourselves on our platform, and second, it was not explicitly stated in
the papers [91, 38] whether the overhead was an end-to-end measurement.

Coverage. Table 4.6 depicts the results of our evaluation that compares different
input generators running in the same environment with identical time budget.
In other domains, coverage-guided greybox fuzzers are commonly known to generate
higher coverage than their black box equivalents so we want to evaluate whether this
holds in our domain as well. The surprising result of our experiments is that this does
not seem to hold in our evaluated scenario. As evident from Table 4.6, both setups that
utilize evolutionary fuzzers, AFL (Evo) and Chizpurfle (Evo), fail to provide substantial
benefits over their black box equivalents and the pure random RandFuzz in terms
of achieved coverage during the testing. This finding again reinforces that thorough
analysis is needed to make principled decisions about the design of dynamic analyses
for the Android system.

4.6.1.3 Discovered Bugs & Crashes

We also evaluated whether the fuzzers were able to uncover bugs similar to what related
work targeted. Our results indicate that, in contrast to related work that created
specialized toolchains to aim at particular kinds of flaws, integrating available fuzzers
with our common platform already finds instances of the same kinds without the need
for specialization. In the following, we will discuss the different categories of flaws that
were detected by our system and relate them to those from related work.

78

4.6. CASE STUDIES

Table 4.6: Measured coverage for different input generators.

Input Generator coverage mean coverage median

Complex APIs

Chizpurfle Evo 28.31% 21.66%
Chizpurfle BB 28.53% 21.88%

Primitive APIs

Chizpurfle Evo 36.63% 36.36%
Chizpurfle BB 35.65% 33.33%
AFL Evo 34.61% 33.33%
AFL BB 34.50% 29.73%
RandFuzz 33.08% 29.79%

Exception-based Crashes (UncaughtException). Similar to ExHunter, our sys-
tem was able to find multiple UncaughtException flaws, which crash the Systemserver
and force a soft-reboot. However, our system found these flaws without requiring any
kind of specialization and — because it is built on top of Troop — goes the extra mile of
confirming and reproducing it automatically. The most surprising results of our evalua-
tion, however, are three vulnerable Statusbar and PackageManagerService APIs
that lead to crashes of the SystemUI app. Given the focus of our analysis, we mainly
expected exceptions and native crashes in system services. However, because many
problems are not known beforehand, we also created commands for our result analyzer
that heuristically checks the generated test artifacts for other interesting behavior by,
e.g., collecting crash notifications from logcat, which led to the detection of these three
SystemUI crashes. This discovery exemplifies how a more modular approach can lead
to new insights, even beyond what was originally targeted.

Systemserver Freeze (ASV) & Bootloop. While ASVHunter was particularly designed
to locate Android Stroke Vulnerabilities (ASVs), our prototype was able to uncover
an instance of this flaw category in a generic way for the setOverscan API in the
WindowManagerService (see Appendix B.1). Furthermore, the flaw we discovered
not only reboots the Systemserver once but permanently soft-bricks the whole device,
which no existing work claims to have found.

Resource Exhaustion. We detected the vulnerable API getSharedAccountsAsUser
in the AccountManagerService that, when hammered with fake user IDs for a pe-
riod of less than a minute, opens a large number of SQLite database connections until
the file descriptor limit of 1024 is reached and the system crashes. Judging from the
limited information that is available about prior work, none of the proposed approaches
seems to have found an instance of this flaw category.

Native Crashes. During our evaluation, we surfaced a set of Java APIs that immedi-
ately forward all inputs they receive to their corresponding native counterparts via JNI.

79

CHAPTER 4. TROOP

We then often saw a native Systemserver crash generated by a tool called CheckJNI [66]
that prevents, e.g., de-referencing null pointers provided as inputs where complex Java
objects are expected. While it is straightforward to misuse these as denial-of-service
attacks for crashing the Systemserver and soft-rebooting the device, we believe that
these natively implemented methods expose a completely uncharted attack surface that
might lead to more serious vulnerabilities (e.g., memory corruption flaws), which we
discuss in more detail in Section 4.6.5.2.

Exploitability. The 11 detected flaws require permissions that cannot be obtained
by regular apps, thus our attacker model not only considers malicious third-party
apps but in addition misused vendor apps. This is motivated by prior research that
has shown that, in the past, vendors decreased platform security in their ROMs by,
e.g., accidentally exposing a system shell [105], lowering protection levels of system
permissions to dangerous or normal [7], or introducing confused deputy components
that expose their privileges [134]. Additionally, Xing et al. [136] reported a so-called
permission upgrade attack where apps could elevate custom permissions to system
permissions due to name clashes. These scenarios illustrate that this type of flaw can
still be triggered by regular apps from the Google Play store in situations where the
AOSP code is modified by vendors in an insecure way.

4.6.2 Responsible Disclosure

We responsibly disclosed the issues uncovered during our vulnerability case study to
Google. While earlier works received CVEs for their findings, according to the wayback
machine [79], Google in the meanwhile changed their guidelines on what is considered for
their vulnerability disclosure program. The new guidelines explicitly remove application-
triggered DoS attacks on the middleware from the scope of the bug bounty program
without further notice. In particular, related work, if published today, would also not
receive CVEs for their findings according to Google’s new guidelines. While the flaws
will not be fixed as a part of the security bulletin, the reported issues are still passed on
internally to the corresponding Android teams. However, given the crucial role of the
Systemserver and the middleware in general, we still see the discovery of these kinds of
bugs as an important contribution to the system’s overall stability and security.

4.6.2.1 Towards Principled Vulnerability & Bug Discovery

By exploiting the platform’s modularity, we were able to compare different input
generation strategies in terms of their performance, findings and generated coverage
already. Our work provides valuable insights for future iterations of bug hunting dynamic
analyses, such as to not focus on a single flaw category alone or to re-use existing building
blocks. Furthermore, the modular integration provides additional functionality, such
as automated post-analysis of results (e.g., auto-verification or identification of novel
bug classes) or execution under different privilege levels for free. There are many more
aspects to be considered in the future, such as whether completely different input
generators, such as concolic executors, can provide substantial benefits over fuzzers.
However, our case study successfully highlights how a more structured approach allows

80

4.6. CASE STUDIES

Table 4.7: Comparing the permissions mapped by different fuzzers.

Axplorer [28] Arcade [5]
New Confirmed New Confirmed

Complex APIs

Chizpurfle Evo 132 515 (42.08%) 287 360 (41.67%)
Chizpurfle BB 144 557 (45.51%) 307 394 (45.60%)

Primitive APIs

Chizpurfle Evo 52 206 (64.78%) 110 148 (65.78%)
Chizpurfle BB 56 225 (70.75%) 116 165 (73.33%)
AFL Evo 50 229 (72.01%) 113 166 (73.78%)
AFL BB 50 230 (72.32%) 112 168 (74.67%)
RandFuzz 56 230 (72.33%) 118 168 (74.67%)

to, for the first time in the field of Android middleware dynamic analysis, compare
strategies from related work in a common testbed.

4.6.3 Permission Mapping

Our second case study focuses on dynamically creating a mapping of Systemserver APIs
to their sets of enforced permissions, which Stowaway implemented by instrumenting
the Systemserver to log permission checks and using the Randoop [25] test generator
to create inputs. In this case study, we investigate alternative strategies for dynamic
permission mapping by using existing fuzzers and comparing the results to state-of-the-
art permission maps.

4.6.3.1 Design

The design is driven by the idea of re-instantiating the approach of Stowaway to exploit
the capabilities of our platform. We explore alternative input generation strategies
by using the built-in fuzzers to test single APIs. Instead of hooking the permission
enforcement points, which were manually picked and modified in the original work, we
automatically parse the exceptions thrown back to the fuzzer for enforced permissions.
The number of observed permission checks is further increased by running the fuzzer
from within the context of a zero-permission app.

4.6.3.2 Comparative Evaluation

Since Stowaway is not available for newer Android versions, we have to compare our
results to the Axplorer [28] and Arcade [5] state-of-the-art static analysis permission
mappings. As an example of how a common platform can help evaluate different
design decisions, we ran the permission mapping experiment in all available fuzzer
configurations. Table 4.7 depicts the results of our evaluation. While our prototype is
already able to uncover new permission mappings missed by related work, it cannot

81

CHAPTER 4. TROOP

Figure 4.6: Overlap of mapped permissions for primitive (left) and complex (right) APIs.

confirm all previous results. Figure 4.6 allows to further explore how the results relate
to each other.

Surprisingly, the fuzzers produce similar results despite their different input generation
strategies (i.e., coverage-driven versus black box) and levels of sophistication. In our
evaluation, coverage feedback as employed by Chizpurfle (Evo) and AFL (Evo) did not
lead to consistently superior results as evident from Table 4.7 and Figure 4.6, which
might be a distinctive factor of this particular problem domain.

4.6.3.3 Towards Principled Permission Mapping

These findings are indicators that a principled approach to comparing and evaluating
dynamic analyses down to their building blocks is required to challenge common
beliefs and identify optimal strategies. For example, coverage feedback as employed
by Chizpurfle (Evo) and AFL did not lead to consistently superior results, as evident
from Table 4.7 and Figure 4.6, which might be a distinctive factor of this particular
problem domain. We thereby show that further research is required to identify the
optimal strategy for permission mapping by first understanding and then combining the
underlying design decisions of different fuzzers that contribute to the vastly deviating
results. Eventually, implementing such an optimal strategy as a core component into
different input generators might be able to push the majority of results towards the
center of the Venn diagram.

82

4.6. CASE STUDIES

4.6.4 Outlook: Permission Mapping 2.0

This outlook refers to the concurrently developed paper Bringing Balance to
the Force: Dynamic Analysis of the Android Application Framework [44] (under
submission) that is not a part of this thesis. However, it follows a principled
approach to permission mapping as suggested by our work and therefore acts as an
external use case example.

While our case study in Section 4.6.3 outlines a naïve design for a dynamic analysis-based
permission mapping, it suffers from a set of limitations, such as missing detection of non-
permission based access control mechanisms (e.g., UID based) or second-level permission
checks that are only observed when passing the first-level checks. The follow-up paper
Bringing Balance to the Force: Dynamic Analysis of the Android Application Framework
improves upon this by, e.g., using selective instrumentation of middleware code to rotate
the calling UID of requests, which allows to test for combinations of permission and
UID checks.

4.6.5 Further Use Cases

Besides the two use cases we implemented as case studies, there is a large set of possible
dynamic analyses that can benefit from being instantiated on top of our platform, out
of which we discuss a subset here.

4.6.5.1 Differential Analysis

Given the strong fragmentation of the Android ecosystem due to vendor patches and
the resulting risk of introducing vulnerabilities in the process [105, 134, 7], differential
analysis allows to argue about differences introduced to security-critical components
like the Android middleware. Here, our common platform can be used to analyze
multiple ROMs based on the same major Android release and check for differences and
inconsistencies, such as removed permission checks or adaption of the core logic of APIs.
This can also be used for patch verification, i.e., confirming that an introduced change
actually prevents the vulnerability.

4.6.5.2 Targeting Systemserver Native Code

Below the Systemserver lies a set of native libraries that is utilized via JNI, which in
contrast to app-facing native code (e.g., libstagefright) does not directly consume
input from untrusted code and therefore has not been thoroughly studied. However,
these libraries are an essential part of Android’s application framework and might
contain critical bugs and vulnerabilities. In our vulnerability detection case study, we
already identified several APIs that are candidates for deeper analysis. Manual analysis
of those candidates revealed that this approach indeed seems promising and we consider
it highly interesting future work to further explore this. With a three-step approach, one
would first need to automatically identify native libraries loaded by the Systemserver
and reconstruct all connections between Java code and JNI-accessed native methods.
Second, these libraries could be directly analyzed to generate a set of possible candidate

83

CHAPTER 4. TROOP

defects. In the third step, one could utilize techniques, such as directed greybox fuzzing
or concolic execution, to search for paths leading from publicly accessible Systemserver
APIs down to the libraries via JNI. While static analysis might help to implement step
one, our platform allows to properly implement steps two and three. Troop already
provides many core components for this analysis, such as instance management, monitors,
and auto-verification. Furthermore, integrating, e.g., a directed greybox fuzzer into the
platform will allow to compare it against existing input generators to find the best fit
for this particular task.

4.6.5.3 Confirming Static Analysis Results

Static analysis of the Systemserver is prone to false positives as a result of Android’s
asynchronous communication capabilities and complicated lifecycle. However, as im-
plemented for the evaluation of the permission mapping use case in Section 4.6.3.2,
dynamic analysis methods can be utilized to either confirm or refute preliminary results
by anchoring them in real execution traces. Our platform provides the testbed to evalu-
ate which combinations of input generators and target patches (e.g., disable permissions,
enforce particular system state, directly jump to code locations) is beneficial for this
kind of analysis.

4.6.5.4 Analyzing Other Android Components

For the purpose of this paper, our platform is specifically designed to support analyses
that target Android’s middleware and in particular the Systemserver. However, its
infrastructure can also be utilized to test other components of the Android ecosystem.
For example, we can re-use building blocks, such as instance management and monitors,
to automate dynamic application testing, which has partially been done with the monkey-
troop tool (see Section 3.7.1.1). Given that the platform evolved from monkey-troop,
re-introducing the app analysis capabilities is a straightforward task for future work.

4.7 Future Extensions

We can exploit the platform’s modularity to integrate more approaches from related
work in the future to make them not only available to all existing analyses built on top
but also bring more complex dynamic analyses within reach.

4.7.1 Transformational Fuzzing

Transformational fuzzing, as applied in T-Fuzz [109], proposes to uncover new execution
paths by skipping program conditions like sanity checks or environmental checks using an
instrumentation framework. Fuzzing such a program can efficiently generate a candidate
set of program execution traces, which, however, is not guaranteed to trigger the same
functionality in the original, non-transformed program. Therefore, symbolic execution is
subsequently used to confirm whether there are inputs that generate the candidate traces
in the unmodified program. In contrast to hybrid fuzzers like Driller [126] that repeatedly

84

4.8. CONCLUSION

switch between fuzzing and symbolic execution, the idea behind transformational fuzzing
is to reduce the usage of costly symbolic execution to candidate verification only.
Implementing this idea within our framework could tremendously boost the achieved
coverage for all currently integrated input generators because it circumvents many of the
checks that are hard to avoid by regular fuzzers, such as privilege checks or assumptions
on the runtime environment. Using ARTist and Frida for instrumenting Java and
native code respectively, this approach could be implemented for different parts of the
middleware. In general, this approach is well suited for dynamic analyses that require a
deep analysis of the code.

4.7.2 Test Case Minification

Test case minification (also test case reduction, delta debugging) is a known tech-
nique [141] in the software testing community to produce minimal and hence more
efficient versions of test cases without reducing their utility, e.g., coverage or triggered
faults. Similarly to how we implemented the automated verification of candidate inputs,
our platform could incorporate standard techniques from this field to ensure the repro-
duction test cases are as small as possible with respect to size and runtime. Having a
shared platform thereby allows to immediately apply this to all the different analyses
that could be implemented within our framework.

4.7.3 Alternative Input Generators

While we first focused on the integration of fuzzers into our platform, alternative input
generators could be implemented as well. In particular, it would be interesting to
combine our platform with frameworks such as angr [125] or DeepState [31] that already
implement multiple input generation strategies, i.e., fuzzing and concolic execution, in a
unified framework. This would allow dynamic analyses to pick their strategy according
to the needs of their concrete use case.

4.7.3.1 Continuous Analysis

While OSS-Fuzz [69] automates the continuous testing of popular projects that can be
built with Libfuzzer [24] support, we envision a similar paradigm for our platform that
allows us to plug-in arbitrary fuzzers (and even other dynamic testing approaches) and
have them automatically executed on the middleware and other Android components.
Once set up, this approach could be applied to test, e.g., patches or new versions
of critical components without manual intervention to further improve the platform
robustness and security.

4.8 Conclusion

In this chapter, we systematically analyzed common requirements and challenges for
dynamically analyzing Android’s crucial middleware component with a special focus
on the Systemserver as the host of many integral services of the Android OS. Based
on our observations, we implement a common platform as a first step towards more

85

CHAPTER 4. TROOP

generic solutions that allow to integrate, compare, and enhance existing but also novel
approaches in this area. We conducted two case studies that instantiate common
analyses from related work where we utilized our platform’s modularity to evaluate
and discuss different implementation strategies and design decisions. We responsibly
disclosed our findings and are going to open source the whole platform including both
case studies, as well as all underlying modules and supporting tools in a way that
allows for reproduction and independent evaluation. We hope that, going forward, our
platform allows for a more principled way of approaching new interesting research ideas
in the area of dynamically analyzing Android’s middleware.

86

5
Conclusion

87

In this dissertation, we presented two projects that advance the state-of-the-art of
dynamic analysis on Android and provide an important step towards a more principled
approach for future research in this area.
Dynamic analysis of the application and middleware layer has been an active area of
research on Android. Existing approaches have focused on detecting a multitude of flaws
in applications and system components, such as over-permissioning, information leakage,
or code execution vulnerabilities. While this prior related work succeeded in pointing
out new interesting behaviors, they lack a common foundation to properly compare the
results and evaluate the corresponding artifacts, which in addition are often not publicly
available. This resulted in the unsatisfactory situation that building upon existing
work is often not possible and therefore already solved problems, such as managing
target devices to scale up analyses, or implementing certain building blocks for the
Android ecosystem, have to be solved again from scratch. The static analysis literature
for Android, in contrast, provides a different picture that emphasizes re-usability and
comparability by relying on a small set of common base frameworks. Consequently, we
see a lot of literature utilizing techniques discovered and published by prior work in
order to advance the current state-of-the-art in that direction. Learning from this major
asymmetry, the focus and contribution of this dissertation is to provide an important
step towards bridging the gap between dynamic and static analysis by providing a
common platform to instantiate, evaluate, reproduce, and compare dynamic analyses
that target the Android ecosystem. More precisely, our work spreads across two major
publications that form the integral building blocks of our approach:

ARTist. With ARTist, we identified and occupied a gap in the design space of instru-
mentation frameworks for Android. In contrast to existing frameworks, ARTist supports
application layer-only as well as system-centric deployment, operates on instruction
granularity, and is independent of the hardware architecture at the same time. We
provide a module SDK that facilitates the creation of instrumentation modules that
can change the behavior of target apps or services arbitrarily. Given the deprecation
of the DVM and subsequently those works from the community that depend on it,
ARTist provides a novel approach to re-instantiate these on Android versions that build
on the Android Runtime. Furthermore, introducing a compiler-based instrumentation
framework, for the first time on Android, provides the opportunity to learn from and
integrate advances from the compiler-based security community that independently
evolved in related fields outside of Android. Using this important building block, we can
efficiently implement surgical as well as large scale changes to Java-based components
on Android (i.e., apps and system services) to support dynamic analyses.

Troop. Based on a thorough requirements analysis of related work in the area of
Android middleware dynamic analysis, we designed Troop to provide the community
with a unified platform to instantiate dynamic analyses without having to re-invent the
wheel over and over again. We implemented and integrated often used building blocks
from prior work and provide the platform to compare and evaluate them in order to
find the best strategies for certain dynamic analysis tasks. For example, we integrated
own and existing fuzzers, both from academia and industry, to evaluate the impact of

89

CHAPTER 5. CONCLUSION

their particular design decisions, such as coverage feedback-driven input generation. We
envision our system to provide a modular starting ground for dynamic analyses that
allows researchers to focus on the analysis task at hand and easily share the results and
artifacts in an effort to advance open and reproducible research.

Future Research Directions. We learned that, while bug and vulnerability discovery
are popular topics among related work that targets Android’s application and middleware
layer, the field still lacks behind the state-of-the-art of related research areas, such as
binary analysis. We see it as an interesting research question to identify whether this gap
is originating from the particularities of the underlying platform (i.e., Android versus
commodity Linux) or might stem from, e.g., disjoint research communities following
similar goals independently, and subsequently how to bridge this gap to fully exploit
the results of neighboring areas and bring their research to the Android platform.
Studying static analysis, we also see a body of research that focuses on analyses that do
not necessarily involve the detection of typical bugs but rather focus on, e.g., auditing
and making policies visible, such as permission mapping, or uncovering possible access
control re-delegation, such as confused deputy analysis. Exploring whether analyses
beyond bug hunting can benefit from pure dynamic analysis or in combination with
static analysis is an interesting line of research that is yet uncharted.
Another problem we often see in the literature is the lack of a cross-layer approach
when it comes to mixed Java and native code targets. Besides a few exceptions, most
analyses either stop at the border and declare analysis of the other parts as out of scope,
thereby creating specialized tools for either Java or native code analysis. Our platform
can, to a certain extent, already support the dynamic analysis of mixed environments,
such as Systemserver-based Java services, JNI bridges, and fully native services, by
providing different building blocks for, e.g., instrumentation (ARTist for Java, Frida for
native), or input generation (Chizpurfle for Java, RandFuzz for native). However, in
the future we would like to further resolve this border by investigating joint analyses
that can handle both worlds in a shared environment.
Furthermore, our evaluation results challenged the common belief that feedback-driven
input generators are superior to black box alternatives in the context of Android
middleware analysis. Building on this insight and utilizing Troop as an evaluation
platform, we see a whole line of research that investigates and establishes optimal
strategies in this particular scenario and investigates which of those insights from other
fields carry over to the Android domain and why. This research will be particularly
useful to steer this field towards a more principled approach where analysis strategies
are based on empirical research instead of anecdotal evidence.

90

A
Tools & Software

For ARTist (see Chapter 3) and Troop (see Chapter 4) we created a whole ecosystem
that eases dynamic analysis on Android. Figure A.1 gives an impression on how they
fit into the overall picture. This Appendix additionally serves as a full list for the tools,
software, and other repositories created for and with these two research projects.

A.1 ARTist

Name Description Type Languages Forked
Framework

ARTist Instrumentation Framework C++ new
art ARTist Dependency Runtime C++ AOSP/art[77]

ArtistGui App-level Deployment App Java new
module-sdk-gen Module SDK Generator Script Python new
monkey-troop ARTist Evaluation Framework Python new
codelib-gen Codelib Helper Script Python new

Modules

template-module Template Module Module C++ new
template-codelib Template Codelib Library Java new
trace-module Method Tracing Module Module C++ new
trace-codelib Method Tracing Codelib Library Java new
stetho-module Stetho Injection Module Module C++ new
stetho-codelib Method Tracing Codelib Library Java new

logtimization-module Simple Test Module Module C++ new

91

A.2 Troop

Name Description Type Languages Forked
Host-level

troop Orchestrator Framework Python monkey-troop[104]
db-backend Task Backend Server Python new
avd-tool Emulator Management Script Python new

transaction-id-mapper API to Binder IDs Script Python new

On-Device

Chizpurfle Customized Fuzzer Java Executable Java chizpurfle [129]
android-afl AFL for Android Binary C andorid-afl[3]
rand-fuzz random fuzzer Binary C++ new
libuplink Ashmem FD Sharing Service & Lib C++ new
Servitor Test Harness Binary C++ AOSP/Service[18]

FuzzWatch Ashmem Visualization Binary C++ new
Fuzzing Codelib Injected Code Host Library Java CodeLib[36]
Replay App Verification App Java new

AOSP Build Support

fuzzing-scripts Automation Scripts Bash new
build Extension Makefile Text AOSP/build[16]

build_fuzzing Extension Makefile Text new

A.3 Ecosystem

Figure A.1: Full ecosystem of tools for dynamically analyzing the Systemserver.

A.3. ECOSYSTEM

93

B
Responsible Disclosure

In order to responsibly disclose the issues we found during the Troop evaluations (see
Section 4.6.1), we created reports for each flaw that we submitted via Google’s official
issue tracker [74]. We exemplarily display one of those reports in the following section.

B.1 Title: Repeatedly calling
WindowManagerService.setOverscan soft-bricks the
device (bootloop, broken SystemUI state)

TL;DR:
The API com.android.server.wm.WindowManagerService.setOverscan
(int,int,int,int,int) can be abused by a privileged application/system compo-
nent to send the device into an unstable state where the UI is unusable and there is
nothing left but restarting the device. However, a restart triggers an infinite bootloop
where the SystemUI cannot properly be instantiated (unusable for the user) and shortly
afterwards Watchdog kills the systemserver and everything repeats. We could only
reclaim the device after deleting the userdata image via fastboot (~ reset). The
described vulnerability was automatically detected by our systemserver dynamic analy-
sis system and manually confirmed afterwards on a Google Pixel running Android 7.1
(rooted, otherwise stock ROM).

Fingerprint:
google/sailfish/sailfish:7.1.1/NOF27D/3757586:user/release-keys

Description:
The setOverscan API can be trivially abused to deny the user access to their device
by setting an overscan value that effectively moves all content outside the visible area.

94

B.1. TITLE: REPEATEDLY CALLING
WINDOWMANAGERSERVICE.SETOVERSCAN SOFT-BRICKS THE DEVICE (BOOTLOOP,

BROKEN SYSTEMUI STATE)

Additionally, if we keep on sending these requests in a loop, the window manager service
lock is taken for too long so Watchdog cannot execute its checker on the foreground
thread, hence killing the systemserver. Now the system reboots but the SystemUI
is broken, i.e. only the navigation bar is displayed but unusable. In particular, the
sensorservice that died earlier does not restart but the service manager needs to
wait for it:

I ServiceManager: Waiting for service sensorservice...
E slim_daemon: [NDK] bindNDKSensors: Sensor server is unavailable.
I ServiceManager: Waiting for service sensorservice...
E slim_daemon: [NDK] bindNDKSensors: Sensor server is unavailable.
I ServiceManager: Waiting for service sensorservice...
E slim_daemon: [NDK] bindNDKSensors: Sensor server is unavailable.
E slim_daemon: [NDK] bindNDKSensors: Sensor server is unavailable.
I ServiceManager: Waiting for service sensorservice...
E slim_daemon: [NDK] bindNDKSensors: Sensor server is unavailable.
I ServiceManager: Waiting for service sensorservice...
E slim_daemon: [NDK] bindNDKSensors: Sensor server is unavailable.
I ServiceManager: Waiting for service sensorservice...
E slim_daemon: [NDK] bindNDKSensors: Sensor server is unavailable.
I ServiceManager: Waiting for service sensorservice...
E slim_daemon: [NDK] bindNDKSensors: Sensor server is unavailable.
I ServiceManager: Waiting for service sensorservice...
E slim_daemon: [NDK] bindNDKSensors: Sensor server is unavailable.
E slim_daemon: [NDK] bindNDKSensors: Sensor server is unavailable.

From now on, the only thing the user can do is press the power button until the device
restarts. However, now the device is kept in a boot loop because Watchdog detects
unresponsiveness:
W Watchdog: *** WATCHDOG KILLING SYSTEM PROCESS: Blocked in monitor com.android.server.wm.WindowManagerService on
foreground thread (android.fg), Blocked in handler on ui thread (android.ui), Blocked in handler on display
thread (android.display)
W Watchdog: foreground thread stack trace:
W Watchdog: at com.android.server.wm.WindowManagerService.monitor(WindowManagerService.java:11041)
W Watchdog: at com.android.server.Watchdog$HandlerChecker.run(Watchdog.java:179)
W Watchdog: at android.os.Handler.handleCallback(Handler.java:751)
W Watchdog: at android.os.Handler.dispatchMessage(Handler.java:95)
W Watchdog: at android.os.Looper.loop(Looper.java:154)
W Watchdog: at android.os.HandlerThread.run(HandlerThread.java:61)
Watchdog: at com.android.server.ServiceThread.run(ServiceThread.java:46)
Watchdog: ui thread stack trace:
W Watchdog: at com.android.server.wm.WindowManagerService$LocalService.waitForAllWindowsDrawn(WindowManagerService
.java:11663)
W Watchdog: at com.android.server.policy.PhoneWindowManager.finishKeyguardDrawn(PhoneWindowManager.java:6385)
W Watchdog: at com.android.server.policy.PhoneWindowManager.-wrap8(PhoneWindowManager.java)
W Watchdog: at com.android.server.policy.PhoneWindowManager$PolicyHandler.handleMessage(PhoneWindowManager.java:773)
W Watchdog: at android.os.Handler.dispatchMessage(Handler.java:102)
W Watchdog: at android.os.Looper.loop(Looper.java:154)
W Watchdog: at android.os.HandlerThread.run(HandlerThread.java:61)
W Watchdog: at com.android.server.ServiceThread.run(ServiceThread.java:46)
W Watchdog: display thread stack trace:
W Watchdog: at com.android.server.wm.WindowManagerService$H.handleMessage(WindowManagerService.java:8850)
W Watchdog: at android.os.Handler.dispatchMessage(Handler.java:102)
W Watchdog: at android.os.Looper.loop(Looper.java:154)
W Watchdog: at android.os.HandlerThread.run(HandlerThread.java:61)
W Watchdog: at com.android.server.ServiceThread.run(ServiceThread.java:46)
W Watchdog: *** GOODBYE!

Full logcat dumps are attached.

Proof-of-Concept:
Our framework uses a version of the service tool that forwards requests to the Sys-
temserver via Binder IPC. In order to confirm a potential issue, we simply replay the

95

APPENDIX B. RESPONSIBLE DISCLOSURE

generated inputs using a script that repeatedly invokes service with these inputs.
The script and the inputs that trigger this behavior are attached. For reproduction
we currently use the adb shell b/c an app cannot obtain the required permission for
changing the overscan, hence our attacker model is a misbehaving or buggy system
app/component (potentially from a third-party vendor). While this attacker model
is strictly weaker than considering regular apps, e.g., from the play store, research
has shown [1,2,3] that misbehaving vendor components including confused deputies
existed in the past and that in some circumstances it is possible for regular apps to
obtain system privileges. Note: We did not (yet) investigate whether there are eligible
apps in AOSP or other ROMs that could be misused for the attack vector presented here.

Contact:
Please feel free to contact us for any questions that might come up for this issue, we are
happy to provide further information, receive feedback and engage in discussions.

Attachments:

• script to reproduce findings via adb shell

• input list that triggers the flaw

• logcat dumps: During attack & after first reboot

[1] http://www.sh4ka.fr/Android_OEM_applications_insecurity_and_backdoors_without_permission.pdf
[2] Paper: Harvesting Inconsistent Security Configurations in Custom Android ROMs via Differential
Analysis (https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_aafer.pdf)
[3] Paper: The Impact of Vendor Customizations on Android Security
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.687.360&rep=rep1&type=pdf)

96

Bibliography

Author’s Papers for this Thesis

[P1] Backes, M., Bugiel, S., Schranz, O., Styp-Rekowsky, P. von, and Weisgerber, S.
ARTist: The Android Runtime Instrumentation and Security Toolkit. In: IEEE
EuroS&P’17.

[P2] Schranz, O., Weisgerber, S., Derr, E., Backes, M., and Bugiel, S. Towards a
Principled Approach for Dynamic Analysis of Android’s Middleware. Under
Submission.

Other Papers of the Author

[S1] Backes, M., Bugiel, S., Hammer, C., Schranz, O., and Styp-Rekowsky, P. von.
Boxify: full-fledged app sandboxing for stock android. In: USENIX SEC’15.

[S2] Backes, M., Bugiel, S., Schranz, O., and Styp-Rekowsky, P. von. Boxify: bringing
full-fledged app sandboxing to stock android. USENIX ; login 41, 2 (2016).

[S3] Huang, J., Schranz, O., Bugiel, S., and Backes, M. The art of app compartmen-
talization: compiler-based library privilege separation on stock android. In: ACM
CCS’17.

Author’s Tech Reports

[T1] Schranz, Oliver. ARTist - A Novel Instrumentation Framework for Reversing
and Analyzing Android Apps and the Middleware. url: https://i.blackhat.
com/us- 18/Thu- August- 9/us- 18- Schranz- ARTist- A- Novel-
Instrumentation - Framework - for - Reversing - and - Analyzing -
Android-Apps-and-the-Middleware-wp.pdf (Accessed: July 3, 2020).

97

https://i.blackhat.com/us-18/Thu-August-9/us-18-Schranz-ARTist-A-Novel-Instrumentation-Framework-for-Reversing-and-Analyzing-Android-Apps-and-the-Middleware-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Schranz-ARTist-A-Novel-Instrumentation-Framework-for-Reversing-and-Analyzing-Android-Apps-and-the-Middleware-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Schranz-ARTist-A-Novel-Instrumentation-Framework-for-Reversing-and-Analyzing-Android-Apps-and-the-Middleware-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Schranz-ARTist-A-Novel-Instrumentation-Framework-for-Reversing-and-Analyzing-Android-Apps-and-the-Middleware-wp.pdf

BIBLIOGRAPHY

Other references

[3] (GitHub user), ele7enxxh. Fuzzing Android program with american fuzzy lop
(AFL). url: https://github.com/ele7enxxh/android-afl (Accessed:
July 3, 2020).

[4] Aafer, Y., Huang, J., Sun, Y., Zhang, X., Li, N., and Tian, C. Acedroid: nor-
malizing diverse android access control checks for inconsistency detection. In:
NDSS’18.

[5] Aafer, Y., Tao, G., Huang, J., Zhang, X., and Li, N. Precise Android API
Protection Mapping Derivation and Reasoning. In: ACM CCS’18.

[6] Aafer, Y., Zhang, X., and Du, W. Harvesting inconsistent security configurations
in custom android roms via differential analysis. In: USENIX SEC’16.

[7] Aafer, Y., Zhang, X., and Du, W. Harvesting Inconsistent Security Configurations
in Custom Android ROMs via Differential Analysis. In: USENIX SEC’16.

[8] Acar, Y., Backes, M., Bugiel, S., Fahl, S., McDaniel, P., and Smith, M. Sok:
lessons learned from android security research for appified software platforms.
In: IEEE S&P’16.

[9] alfink. GitHub - ASIS CTF 2018 Finals - Gunshop Module. url: https://
github.com/alfink/asisfinals2018- gunshop- module (Accessed:
July 3, 2020).

[10] Amazon. Fire OS Overview. url: https://developer.amazon.com/docs/
fire-tv/fire-os-overview.html (Accessed: July 3, 2020).

[11] Android Developer Documentation. Bound services overview. url: https:
//developer.android.com/guide/components/bound-services
(Accessed: July 3, 2020).

[12] Android Developer Documentation. Manifest: sharedUserId. url: https://
developer.android.com/guide/topics/manifest/manifest-element#
uid (Accessed: July 3, 2020).

[13] Android Developer Documentation. Platform Architecture. url: https://
developer.android.com/guide/platform (Accessed: July 3, 2020).

[14] Android Developer Documentation. UI/Application Exerciser Monkey. url:
https://developer.android.com/studio/test/monkey (Accessed:
July 3, 2020).

[15] Android Developer Documentation. Understand the Activity Lifecycle. url:
https://developer.android.com/guide/components/activities/
activity-lifecycle (Accessed: July 3, 2020).

[16] android/platform/build/nougat-release. url: https://android.googlesource.
com/platform/build/+/nougat-release (Accessed: July 3, 2020).

[17] AOSP. AddressSanitizer. url: https://source.android.com/devices/
tech/debug/asan (Accessed: July 3, 2020).

98

https://github.com/ele7enxxh/android-afl
https://github.com/alfink/asisfinals2018-gunshop-module
https://github.com/alfink/asisfinals2018-gunshop-module
https://developer.amazon.com/docs/fire-tv/fire-os-overview.html
https://developer.amazon.com/docs/fire-tv/fire-os-overview.html
https://developer.android.com/guide/components/bound-services
https://developer.android.com/guide/components/bound-services
https://developer.android.com/guide/topics/manifest/manifest-element#uid
https://developer.android.com/guide/topics/manifest/manifest-element#uid
https://developer.android.com/guide/topics/manifest/manifest-element#uid
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://developer.android.com/studio/test/monkey
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://android.googlesource.com/platform/build/+/nougat-release
https://android.googlesource.com/platform/build/+/nougat-release
https://source.android.com/devices/tech/debug/asan
https://source.android.com/devices/tech/debug/asan

OTHER REFERENCES

[18] AOSP. android/platform/frameworks/native/nougat-release/./cmds/service. url:
https://android.googlesource.com/platform/frameworks/native/
+/refs/heads/nougat-release/cmds/service/ (Accessed: July 3,
2020).

[19] ARTist - The Android Runtime instrumentation and security toolkit. url: https:
//github.com/Project-ARTist/ARTist (Accessed: July 3, 2020).

[20] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., and McDaniel, P. FlowDroid: precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. In: ACM PLDI
’14.

[21] Aschermann, C., Schumilo, S., Blazytko, T., Gawlik, R., and Holz, T. Redqueen:
fuzzing with input-to-state correspondence. In: NDSS’19.

[22] Au, K. W. Y., Zhou, Y. F., Huang, Z., and Lie, D. Pscout: analyzing the android
permission specification. In: ACM CCS’12.

[27] Backes, M., Bugiel, S., and Derr, E. Reliable third-party library detection in
android and its security applications. In: ACM CCS’16.

[28] Backes, M., Bugiel, S., Derr, E., McDaniel, P., Octeau, D., and Weisgerber, S. On
demystifying the android application framework: re-visiting android permission
specification analysis. In: USENIX SEC’16.

[29] Backes, M., Gerling, S., Hammer, C., Maffei, M., and Styp-Rekowsky, P. von.
Appguard–enforcing user requirements on android apps. In: TACAS’13.

[30] Bianchi, A., Fratantonio, Y., Kruegel, C., and Vigna, G. Njas: sandboxing
unmodified applications in non-rooted devices running stock android. In: ACM
CCS SPSM’15.

[31] Bits, T. of. DeepState. url: https://github.com/trailofbits/deepstate
(Accessed: July 3, 2020).

[32] Book, T., Pridgen, A., and Wallach, D. S. Longitudinal analysis of android ad
library permissions. arXiv preprint arXiv:1303.0857 (2013).

[33] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., and Shastry, B.
Towards Taming Privilege-Escalation Attacks on Android. In: NDSS’12.

[34] Cao, C., Gao, N., Liu, P., and Xiang, J. Towards Analyzing the Input Validation
Vulnerabilities Associated with Android System Services. In: ACM ACSAC’15.

[35] Cao, Y., Fratantonio, Y., Bianchi, A., Egele, M., Kruegel, C., Vigna, G., and
Chen, Y. EdgeMiner: automatically detecting implicit control flow transitions
through the android framework. In: NDSS’15.

[36] Codelib. url: https : / / github . com / Project - ARTist / template -
codelib (Accessed: July 3, 2020).

[37] Copperhead. CopperheadOS - A security and privacy focused mobile operating sys-
tem compatible with Android apps. url: https://copperhead.co/android/
(Accessed: July 3, 2020).

99

https://android.googlesource.com/platform/frameworks/native/+/refs/heads/nougat-release/cmds/service/
https://android.googlesource.com/platform/frameworks/native/+/refs/heads/nougat-release/cmds/service/
https://github.com/Project-ARTist/ARTist
https://github.com/Project-ARTist/ARTist
https://github.com/trailofbits/deepstate
https://github.com/Project-ARTist/template-codelib
https://github.com/Project-ARTist/template-codelib
https://copperhead.co/android/

BIBLIOGRAPHY

[38] Cotroneo, D., Iannillo, A. K., and Natella, R. Evolutionary fuzzing of Android
OS vendor system services. Empirical Software Engineering (2019).

[39] Cox, L. P., Gilbert, P., Lawler, G., Pistol, V., Razeen, A., Wu, B., and Cheemala-
pati, S. Spandex: secure password tracking for android. In: USENIX SEC’14.

[40] Daniel Micay. GrapheneOS. url: https://grapheneos.org/ (Accessed:
July 3, 2020).

[41] Davi, L., Dmitrienko, A., Sadeghi, A.-R., and Winandy, M. Privilege escalation
attacks on android. In: ISC’10.

[42] Davis, B. and Chen, H. Retroskeleton: retrofitting android apps. In: ACM
MobiSys’13.

[43] Davis, B., Sanders, B., Khodaverdian, A., and Chen, H. I-ARM-Droid: A Rewrit-
ing Framework for In-App Reference Monitors for Android Applications. In:
IEEE MoST’12.

[44] Dawoud, A. and Bugiel, S. Bringing Balance to the Force: Dynamic Analysis of
the Android Application Framework. Under Submission.

[45] Documentation, A. D. Android Debug Bridge (adb). url: https://developer.
android.com/studio/command-line/adb (Accessed: July 3, 2020).

[46] Documentation, A. D. Android Interface Definition Language (AIDL). url:
https://developer.android.com/guide/components/aidl (Ac-
cessed: July 3, 2020).

[47] Dolan-Gavitt, B., Hulin, P., Kirda, E., Leek, T., Mambretti, A., Robertson, W.,
Ulrich, F., and Whelan, R. Lava: large-scale automated vulnerability addition.
In: IEEE S&P’16.

[48] Elenkov, N. Android security internals: An in-depth guide to Android’s security
architecture. No Starch Press, 2014.

[49] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L. P., Jung, J.,
McDaniel, P., and Sheth, A. N. Taintdroid: an information-flow tracking system
for realtime privacy monitoring on smartphones. ACM TOCS 32, 2 (2014).

[50] Enck, W., Octeau, D., McDaniel, P. D., and Chaudhuri, S. A study of android
application security. In: USENIX SEC’11.

[51] Erik Derr (reddr. GitHub - axplorer/permissions/. url: https://github.
com/reddr/axplorer/tree/master/permissions (Accessed: July 3,
2020).

[52] Facebook. Stetho - A debug bridge for Android applications. url: https://
facebook.github.io/stetho/ (Accessed: July 3, 2020).

[53] Felt, A. P., Wang, H. J., Moshchuk, A., Hanna, S., and Chin, E. Permission
re-delegation: attacks and defenses. In: USENIX SEC’11.

[54] Feng, H. and Shin, K. G. BinderCracker: Assessing the Robustness of Android
System Services. arXiv preprint arXiv:1604.06964 (2016).

[55] Flask. url: http://flask.pocoo.org/ (Accessed: July 3, 2020).

100

https://grapheneos.org/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/guide/components/aidl
https://github.com/reddr/axplorer/tree/master/permissions
https://github.com/reddr/axplorer/tree/master/permissions
https://facebook.github.io/stetho/
https://facebook.github.io/stetho/
http://flask.pocoo.org/

OTHER REFERENCES

[56] Gallopsled. pwntools. url: http://docs.pwntools.com/en/stable/
(Accessed: July 3, 2020).

[57] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements
of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., 1995.

[58] Gan, S., Zhang, C., Qin, X., Tu, X., Li, K., Pei, Z., and Chen, Z. Collafl: path
sensitive fuzzing. In: IEEE S&P’18.

[59] GitHub - preeny. url: https://github.com/zardus/preeny (Accessed:
July 3, 2020).

[60] Gong, G. Slides: Fuzzing Android System Services by Binder Call to Escalate
Privilege. url: https://www.blackhat.com/docs/us-15/materials/
us- 15- Gong- Fuzzing- Android- System- Services- By- Binder-
Call-To-Escalate-Privilege.pdf (Accessed: July 3, 2020).

[61] Google. Android Runtime (ART) and Dalvik. url: https://source.android.
com/devices/tech/dalvik (Accessed: July 3, 2020).

[62] Google. Changes to binder driver. url: https://source.android.com/
devices/architecture/hidl/binder-ipc?hl=en (Accessed: July 3,
2020).

[63] Google. Chrome DevTools. url: https://developers.google.com/web/
tools/chrome-devtools (Accessed: July 3, 2020).

[64] Google. Compatibility Test Suite. url: https://source.android.com/
compatibility/cts (Accessed: July 3, 2020).

[65] Google. Cuttlefish Virtual Android Devices. url: https://source.android.
com/setup/create/cuttlefish (Accessed: July 3, 2020).

[66] Google. Debugging Android JNI with CheckJNI. url: https://android-
developers.googleblog.com/2011/07/debugging-android-jni-
with-checkjni.html (Accessed: July 3, 2020).

[67] Google. Flutter. url: https://flutter.dev/ (Accessed: July 3, 2020).
[68] Google. Fuzzing with libFuzzer. url: https://source.android.com/

devices/tech/debug/libfuzzer (Accessed: July 3, 2020).
[69] Google. GitHub: OSS-Fuzz - Trophies. url: https://github.com/google/

oss-fuzz#trophies (Accessed: July 3, 2020).
[70] Google. Google Play Console. url: https://play.google.com/apps/

publish/signup/ (Accessed: July 3, 2020).
[71] Google. Google Play Store - Google Play services. url: https://play.google.

com/store/apps/details?id=com.google.android.gms&hl=de
(Accessed: July 3, 2020).

[72] Google. Implementing ART Just-In-Time (JIT) Compiler. url: https://
source.android.com/devices/tech/dalvik/jit-compiler (Ac-
cessed: July 3, 2020).

101

http://docs.pwntools.com/en/stable/
https://github.com/zardus/preeny
https://www.blackhat.com/docs/us-15/materials/us-15-Gong-Fuzzing-Android-System-Services-By-Binder-Call-To-Escalate-Privilege.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Gong-Fuzzing-Android-System-Services-By-Binder-Call-To-Escalate-Privilege.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Gong-Fuzzing-Android-System-Services-By-Binder-Call-To-Escalate-Privilege.pdf
https://source.android.com/devices/tech/dalvik
https://source.android.com/devices/tech/dalvik
https://source.android.com/devices/architecture/hidl/binder-ipc?hl=en
https://source.android.com/devices/architecture/hidl/binder-ipc?hl=en
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://source.android.com/compatibility/cts
https://source.android.com/compatibility/cts
https://source.android.com/setup/create/cuttlefish
https://source.android.com/setup/create/cuttlefish
https://android-developers.googleblog.com/2011/07/debugging-android-jni-with-checkjni.html
https://android-developers.googleblog.com/2011/07/debugging-android-jni-with-checkjni.html
https://android-developers.googleblog.com/2011/07/debugging-android-jni-with-checkjni.html
https://flutter.dev/
https://source.android.com/devices/tech/debug/libfuzzer
https://source.android.com/devices/tech/debug/libfuzzer
https://github.com/google/oss-fuzz#trophies
https://github.com/google/oss-fuzz#trophies
https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
https://play.google.com/store/apps/details?id=com.google.android.gms&hl=de
https://play.google.com/store/apps/details?id=com.google.android.gms&hl=de
https://source.android.com/devices/tech/dalvik/jit-compiler
https://source.android.com/devices/tech/dalvik/jit-compiler

BIBLIOGRAPHY

[73] Google. Improving app performance with ART optimizing profiles in the cloud.
url: https://android- developers.googleblog.com/2019/04/
improving-app-performance-with-art.html (Accessed: July 3, 2020).

[74] Google. IssueTracker. url: https://issuetracker.google.com (Ac-
cessed: July 3, 2020).

[75] Google.Queue the Hardening Enhancements. url: https://android-developers.
googleblog.com/2019/05/queue-hardening-enhancements.html
(Accessed: July 3, 2020).

[76] Google. Security-Enhanced Linux in Android. url: https://source.android.
com/security/selinux (Accessed: July 3, 2020).

[77] Google. The Android Open Source Project. url: https://source.android.
com/ (Accessed: July 3, 2020).

[78] Google. Verifying app behavior on the Android runtime (ART). url: https:
//developer.android.com/guide/practices/verifying-apps-
art (Accessed: July 3, 2020).

[79] Google Bughunter University. Wayback Machine - Bugs with no security impact.
url: https://web.archive.org/web/20170110154209/https://
sites.google.com/site/bughunteruniversity/android/invalid-
bugs (Accessed: July 3, 2020).

[80] Google Code: Droidbox. url: https://code.google.com/p/droidbox/
(Accessed: July 3, 2020).

[81] Google Project Zero. Return to libstagefright: exploiting libutils on Android. url:
https://googleprojectzero.blogspot.com/2016/09/return-to-
libstagefright-exploiting.html (Accessed: July 3, 2020).

[82] Google Project Zero. Stagefrightened? url: https://googleprojectzero.
blogspot.com/2015/09/stagefrightened.html (Accessed: July 3,
2020).

[84] Gorski, S. A., Andow, B., Nadkarni, A., Manandhar, S., Enck, W., Bodden,
E., and Bartel, A. Acminer: extraction and analysis of authorization checks in
android’s middleware. In: CODASPY’19.

[83] Gorski, S. A. and Enck, W. Arf: identifying re-delegation vulnerabilities in
android system services. In: ACM WiSec’19.

[85] Grace, M. C., Zhou, W., Jiang, X., and Sadeghi, A.-R. Unsafe exposure analysis
of mobile in-app advertisements. In: ACM WiSec’12.

[86] Hao, H., Singh, V., and Du, W. On the Effectiveness of API-level Access Control
Using Bytecode Rewriting in Android. In: ACM ASIACCS’13.

[87] He, Q. Slides: Hey your parcel looks bad - fuzzing and exploiting parceliza-
tion vulnerabilities in Android. url: https://www.blackhat.com/docs/
asia-16/materials/asia-16-He-Hey-Your-Parcel-Looks-Bad-
Fuzzing-And-Exploiting-Parcelization-Vulnerabilities-In-
Android-wp.pdf (Accessed: July 3, 2020).

102

https://android-developers.googleblog.com/2019/04/improving-app-performance-with-art.html
https://android-developers.googleblog.com/2019/04/improving-app-performance-with-art.html
https://issuetracker.google.com
https://android-developers.googleblog.com/2019/05/queue-hardening-enhancements.html
https://android-developers.googleblog.com/2019/05/queue-hardening-enhancements.html
https://source.android.com/security/selinux
https://source.android.com/security/selinux
https://source.android.com/
https://source.android.com/
https://developer.android.com/guide/practices/verifying-apps-art
https://developer.android.com/guide/practices/verifying-apps-art
https://developer.android.com/guide/practices/verifying-apps-art
https://web.archive.org/web/20170110154209/https://sites.google.com/site/bughunteruniversity/android/invalid-bugs
https://web.archive.org/web/20170110154209/https://sites.google.com/site/bughunteruniversity/android/invalid-bugs
https://web.archive.org/web/20170110154209/https://sites.google.com/site/bughunteruniversity/android/invalid-bugs
https://code.google.com/p/droidbox/
https://googleprojectzero.blogspot.com/2016/09/return-to-libstagefright-exploiting.html
https://googleprojectzero.blogspot.com/2016/09/return-to-libstagefright-exploiting.html
https://googleprojectzero.blogspot.com/2015/09/stagefrightened.html
https://googleprojectzero.blogspot.com/2015/09/stagefrightened.html
https://www.blackhat.com/docs/asia-16/materials/asia-16-He-Hey-Your-Parcel-Looks-Bad-Fuzzing-And-Exploiting-Parcelization-Vulnerabilities-In-Android-wp.pdf
https://www.blackhat.com/docs/asia-16/materials/asia-16-He-Hey-Your-Parcel-Looks-Bad-Fuzzing-And-Exploiting-Parcelization-Vulnerabilities-In-Android-wp.pdf
https://www.blackhat.com/docs/asia-16/materials/asia-16-He-Hey-Your-Parcel-Looks-Bad-Fuzzing-And-Exploiting-Parcelization-Vulnerabilities-In-Android-wp.pdf
https://www.blackhat.com/docs/asia-16/materials/asia-16-He-Hey-Your-Parcel-Looks-Bad-Fuzzing-And-Exploiting-Parcelization-Vulnerabilities-In-Android-wp.pdf

OTHER REFERENCES

[88] Heise Medien GmbH & Co. KG. Google Play Store - heise online - News. url:
https://play.google.com/store/apps/details?id=de.heise.
android.heiseonlineapp (Accessed: July 3, 2020).

[89] Hornyack, P., Han, S., Jung, J., Schechter, S., and Wetherall, D. These aren’t
the droids you’re looking for: retrofitting android to protect data from imperious
applications. In: ACM CCS’11.

[90] Huang, H., Zhu, S., Chen, K., and Liu, P. From system services freezing to
system server shutdown in android: all you need is a loop in an app. In: ACM
CCS’15.

[91] Iannillo, A. K., Natella, R., Cotroneo, D., and Nita-Rotaru, C. Chizpurfle: A
gray-box android fuzzer for vendor service customizations. In: IEEE ISSRE’17.

[92] IBM.Wala - T.J. Watson Libraries for Analysis. url: http://wala.sourceforge.
net/wiki/index.php/Main_Page (Accessed: July 3, 2020).

[93] ibotpeaches. A tool for reverse engineering Android apk files. (Accessed: July 3,
2020).

[94] Intel. Pin - A Dynamic Binary Instrumentation Tool. url: https://software.
intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-
tool (Accessed: July 3, 2020).

[95] Jeon, J., Micinski, K. K., Vaughan, J. A., Fogel, A., Reddy, N., Foster, J. S.,
and Millstein, T. Dr. Android and Mr. Hide: Fine-grained Security Policies on
Unmodified Android. In: ACM SPSM’12.

[96] Klees, G., Ruef, A., Cooper, B., Wei, S., and Hicks, M. Evaluating fuzz testing.
In: ACM CCS’18.

[97] Liu, B., Zhang, C., Gong, G., Zeng, Y., Ruan, H., and Zhuge, J. FANS: fuzzing
android native system services via automated interface analysis. In: USENIX
SEC’20.

[98] Liu, B., Liu, B., Jin, H., and Govindan, R. Efficient privilege de-escalation for
ad libraries in mobile apps. In: MobiSys’19.

[99] Livshits, B. Dynamic taint tracking in managed runtimes. Tech. rep. Microsoft
Research.

[100] Livshits, B. and Chong, S. Towards fully automatic placement of security sani-
tizers and declassifiers. In: ACM SIGPLAN’13.

[101] Lockwood, A. Binder & Death Recipients. url: https://www.androiddesignpatterns.
com/2013/08/binders-death-recipients.html (Accessed: July 3,
2020).

[102] Microsoft. Xamarin. url: https : / / dotnet . microsoft . com / apps /
xamarin (Accessed: July 3, 2020).

[103] Mobile Operating System Market Share Worldwide - July 2020. url: http://gs.
statcounter.com/os-market-share/mobile/worldwide (Accessed:
July 3, 2020).

103

https://play.google.com/store/apps/details?id=de.heise.android.heiseonlineapp
https://play.google.com/store/apps/details?id=de.heise.android.heiseonlineapp
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://www.androiddesignpatterns.com/2013/08/binders-death-recipients.html
https://www.androiddesignpatterns.com/2013/08/binders-death-recipients.html
https://dotnet.microsoft.com/apps/xamarin
https://dotnet.microsoft.com/apps/xamarin
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide

BIBLIOGRAPHY

[104] Monkey Troop - ARTist’s evaluation tool. url: https://github.com/
Project-ARTist/monkey-troop (Accessed: July 3, 2020).

[105] Moulu, A. Slides: Android OEM’s applications (in)security and backdoors without
permission. url: http://www.sh4ka.fr/Android_OEM_applications_
insecurity_and_backdoors_without_permission.pdf (Accessed:
July 3, 2020).

[106] Now Secure. Frida - Dynamic instrumentation toolkit for developers, reverse-
engineers, and security researchers. url: https://frida.re (Accessed: July 3,
2020).

[107] Now Secure. Stalker. url: https://www.frida.re/docs/javascript-
api/#stalker (Accessed: July 3, 2020).

[108] Pearce, P., Felt, A. P., Nunez, G., and Wagner, D. Addroid: privilege separation
for applications and advertisers in android. In: ACM CCS’12.

[109] Peng, H., Shoshitaishvili, Y., and Payer, M. T-fuzz: fuzzing by program transfor-
mation. In: IEEE S&P’18.

[110] Porter Felt, A., Chin, E., Hanna, S., Song, D., and Wagner, D. Android permis-
sions demystified. In: ACM CCS’11.

[111] Project-ARTist. GitHub - Stetho Module. url: https://github.com/
Project-ARTist/stetho-module (Accessed: July 3, 2020).

[112] Projekt ARTist Team. Welcome to the ARTist Project. url: https://artist.
cispa.saarland (Accessed: July 3, 2020).

[113] QEMU. url: https://www.qemu.org/ (Accessed: July 3, 2020).
[114] Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., and Bos, H. Vuzzer:

application-aware evolutionary fuzzing. In: NDSS’17.
[115] reddit inc. Google Play Store - Reddit. url: https://play.google.com/

store/apps/details?id=com.reddit.frontpage&hl=de (Accessed:
July 3, 2020).

[116] Russello, G., Conti, M., Crispo, B., and Fernandes, E. Moses: supporting operation
modes on smartphones. In: ACM SACMAT’12.

[117] Sabanal, P. Hiding behind ART. 2015. url: https://www.blackhat.com/
docs/asia-15/materials/asia-15-Sabanal-Hiding-Behind-ART-
wp.pdf (Accessed: July 3, 2020).

[118] Schlegel, R., Zhang, K., Zhou, X., Intwala, M., Kapadia, A., and Wang, X.
Soundcomber: a stealthy and context-aware sound trojan for smartphones. In:
NDSS’11.

[119] Schumilo, S., Aschermann, C., Gawlik, R., Schinzel, S., and Holz, T. kAFL:
Hardware-Assisted Feedback Fuzzing for OS Kernels. In: USENIX SEC’17.

[120] Schütte, J., Titze, D., and De Fuentes, J. AppCaulk: data leak prevention by
injecting targeted taint tracking into android apps. In: TrustCom14.

104

https://github.com/Project-ARTist/monkey-troop
https://github.com/Project-ARTist/monkey-troop
http://www.sh4ka.fr/Android_OEM_applications_insecurity_and_backdoors_without_permission.pdf
http://www.sh4ka.fr/Android_OEM_applications_insecurity_and_backdoors_without_permission.pdf
https://frida.re
https://www.frida.re/docs/javascript-api/#stalker
https://www.frida.re/docs/javascript-api/#stalker
https://github.com/Project-ARTist/stetho-module
https://github.com/Project-ARTist/stetho-module
https://artist.cispa.saarland
https://artist.cispa.saarland
https://www.qemu.org/
https://play.google.com/store/apps/details?id=com.reddit.frontpage&hl=de
https://play.google.com/store/apps/details?id=com.reddit.frontpage&hl=de
https://www.blackhat.com/docs/asia-15/materials/asia-15-Sabanal-Hiding-Behind-ART-wp.pdf
https://www.blackhat.com/docs/asia-15/materials/asia-15-Sabanal-Hiding-Behind-ART-wp.pdf
https://www.blackhat.com/docs/asia-15/materials/asia-15-Sabanal-Hiding-Behind-ART-wp.pdf

OTHER REFERENCES

[121] Secure Software Engineering Group - Paderborn University. GitHub - DroidBench
2.0. url: https://github.com/secure- software- engineering/
DroidBench (Accessed: July 3, 2020).

[122] Seo, J., Kim, D., Cho, D., Shin, I., and Kim, T. FLEXDROID: Enforcing In-App
Privilege Separation in Android. In: NDSS’16.

[123] Shao, Y., Ott, J., Chen, Q. A., Qian, Z., and Mao, Z. M. Kratos: Discover-
ing Inconsistent Security Policy Enforcement in the Android Framework. In:
NDSS’16.

[124] Shekhar, S., Dietz, M., and Wallach, D. S. Adsplit: separating smartphone
advertising from applications. In: USENIX SEC’12.

[125] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., and Vigna, G. SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis. In: IEEE S&P’16.

[126] Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshi-
taishvili, Y., Kruegel, C., and Vigna, G. Driller: augmenting fuzzing through
selective symbolic execution. In: NDSS’16.

[127] Stevens, R., Gibler, C., Crussell, J., Erickson, J., and Chen, H. Investigating user
privacy in android ad libraries. In: IEEE MoST’12.

[128] Sun, M. and Tan, G. Nativeguard: protecting android applications from third-
party native libraries. In: ACM WiSec’14.

[129] The Fantastic Beasts Framework for the Android OS. url: https://github.
com/dessertlab/fantastic_beasts (Accessed: July 3, 2020).

[130] The LineageOS Project. LineageOS Android Distribution. url: https://
lineageos.org/ (Accessed: July 3, 2020).

[131] Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., and Sundaresan, V.
Soot: a java bytecode optimization framework. In: CASCON First Decade High
Impact Papers’10.

[23] Various Authors. Clang: a C language family frontend for LLVM. url: https:
//clang.llvm.org/ (Accessed: July 3, 2020).

[24] Various Authors. libFuzzer - A library for coverage-guided fuzz testing. url:
https://llvm.org/docs/LibFuzzer.html (Accessed: July 3, 2020).

[25] Various Authors. Randoop - Automatic unit test generation for Java. url: https:
//randoop.github.io/randoop/ (Accessed: July 3, 2020).

[26] Various Authors. The LLVM compiler infrastructure. url: https://llvm.
org/ (Accessed: July 3, 2020).

[132] Wu, D., Gao, D., Cheng, E. K. T., Cao, Y., Jiang, J., and Deng, R. H. Towards
understanding android system vulnerabilities: techniques and insights. In: ACM
ASIA CCS’19.

[133] Wu, J., Liu, S., Ji, S., Yang, M., Luo, T., Wu, Y., and Wang, Y. Exception Beyond
Exception: Crashing Android System by Trapping in "uncaughtException". In:
ACM/IEEE ICSE’17.

105

https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://github.com/dessertlab/fantastic_beasts
https://github.com/dessertlab/fantastic_beasts
https://lineageos.org/
https://lineageos.org/
https://clang.llvm.org/
https://clang.llvm.org/
https://llvm.org/docs/LibFuzzer.html
https://randoop.github.io/randoop/
https://randoop.github.io/randoop/
https://llvm.org/
https://llvm.org/

BIBLIOGRAPHY

[134] Wu, L., Grace, M., Zhou, Y., Wu, C., and Jiang, X. The Impact of Vendor
Customizations on Android Security. In: ACM CCS’13.

[135] XDA-Developers. Xposed Framework Hub. url: https://www.xda-developers.
com/xposed-framework-hub/ (Accessed: July 3, 2020).

[136] Xing, L., Pan, X., Wang, R., Yuan, K., and Wang, X. Upgrading Your Android,
Elevating My Malware: Privilege Escalation Through Mobile OS Updating. In:
IEEE S&P’14.

[137] Xu, R., Saïdi, H., and Anderson, R. Aurasium – Practical Policy Enforcement
for Android Applications. In: USENIX SEC’12.

[138] You, W., Liang, B., Shi, W., Zhu, S., Wang, P., Xie, S., and Zhang, X. Reference
hijacking: patching, protecting and analyzing on unmodified and non-rooted
android devices. In: ICSE’16.

[139] Zalewski, M. american fuzzy lop. url: http://lcamtuf.coredump.cx/afl/
(Accessed: July 3, 2020).

[140] Zalewski, M. AFL - Understanding the status screen. url: http://lcamtuf.
coredump.cx/afl/status_screen.txt (Accessed: July 3, 2020).

[141] Zeller, A. Isolating Cause-effect Chains from Computer Programs. In: ACM
SIGSOFT SFE’02.

[142] Zhang, X., Ahlawat, A., and Du, W. Aframe: isolating advertisements from
mobile applications in android. In: ACSAC’13.

[143] Zhou, X., Lee, Y., Zhang, N., Naveed, M., and Wang, X. The peril of frag-
mentation: security hazards in android device driver customizations. In: IEEE
S&P’14.

106

https://www.xda-developers.com/xposed-framework-hub/
https://www.xda-developers.com/xposed-framework-hub/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/status_screen.txt
http://lcamtuf.coredump.cx/afl/status_screen.txt

	Introduction
	Technical Background
	Android Background
	Software Stack
	Inter-Process Communication (IPC)
	Applications
	Permissions

	Dynamic Analysis Primer

	ARTist
	Motivation
	Exploring the Android Runtime's New Compiler
	Input File Format
	Output File Format
	Compilation
	Backends
	Optimizing: Intermediate Representation

	Problem Description
	Contribution
	Design & Architecture
	ARTist compiler
	Modules
	Module SDK
	Deployment Strategies

	Case Studies
	Inline Reference Monitoring for Dynamic Permission Enforcement
	Taint Tracking
	Outlook: Compartmentalization
	Further Modules

	Discussion
	ARTist
	Dynamic Permission Enforcement
	Taint Tracking

	Conclusion

	Troop
	Motivation
	Problem Description
	Contributions
	Requirements Analysis & Taxonomy
	Target Instance Management
	Attack Surface Mapping
	Input Generation
	Target Communication & Harness
	Instrumentation & Introspection
	Verification of Results

	Architecture
	Overview
	Troop
	Result Analyzer
	Backend
	Workers
	Integrated Input Generators
	Device Setup

	Case Studies
	Vulnerability & Bug Discovery
	Responsible Disclosure
	Permission Mapping
	Outlook: Permission Mapping 2.0
	Further Use Cases

	Future Extensions
	Transformational Fuzzing
	Test Case Minification
	Alternative Input Generators

	Conclusion

	Conclusion
	Tools & Software
	ARTist
	Troop
	Ecosystem

	Responsible Disclosure
	Title: Repeatedly calling WindowManagerService.setOverscan soft-bricks the device (bootloop, broken SystemUI state)

