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ABSTRACT

RIGHTING WEB DEVELOPMENT

SEPTEMBER 2018

JOHN VILK

B.Sc., WORCESTER POLYTECHNIC INSTITUTE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Emery D. Berger

The web browser is the most important application runtime today, encompassing all

types of applications on practically every Internet-connected device. Browsers power com-

plete office suites, media players, games, and augmented and virtual reality experiences, and

they integrate with cameras, microphones, GPSes, and other sensors available on computing

devices. Many apparently native mobile and desktop applications are secretly hybrid apps

that contain a mix of native and browser code. History has shown that when new devices,

sensors, and experiences appear on the market, the browser will evolve to support them.

Despite the browser’s importance, developing web applications is exceedingly difficult.

Web browsers organically evolved from a document viewer into a ubiquitous program run-

time. The browser’s scripting language for web designers, JavaScript, has grown into the

only universally supported programming language in the browser. Unfortunately, JavaScript

is notoriously difficult to write and debug. The browser’s high-level and event-driven I/O

interfaces make it easy to add simple interactions to webpages, but these same interfaces

lead to nondeterministic bugs and performance issues in larger applications. These bugs

are challenging for developers to reason about and fix.

vii



This dissertation revisits web development and provides developers with a complete set

of development tools with full support for the browser environment. McFly is the first time-

traveling debugger for the browser, and lets developers debug web applications and their

visual state during time-travel; components of this work shipped in Microsoft’s ChakraCore

JavaScript engine. BLeak is the first system for automatically debugging memory leaks

in web applications, and provides developers with a ranked list of memory leaks along

with the source code responsible for them. BCause constructs a causal graph of a web

application’s events, which helps developers understand their code’s behavior. Doppio lets

developers run code written in conventional languages in the browser, and Browsix brings

Unix into the browser to enable unmodified programs expecting a Unix-like environment to

run directly in the browser. Together, these five systems form a solid foundation for web

development.
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INTRODUCTION

A web browser is present on nearly every internet-connected device, making the browser

one of the most important application platforms today. The browser lets developers write

code once and run it nearly literally anywhere. Even many apparently native mobile and

desktop applications are secretly hybrid apps that contain a mix of native and browser code.

Despite its popularity, the browser presents a challenging environment for writing, de-

bugging, and optimizing web applications. Web applications must be written in JavaScript,

which is completely event-driven, designed for concurrency, and extraordinarily dynamic.

As a result, web applications can have complicated behavior that is difficult to debug, opti-

mize, and understand. The browser’s complex high-level runtime environment coupled with

JavaScript’s dynamism makes it easy for developers to accidentally introduce memory leaks

while simultaneously obscuring their root cause. Developers cannot re-use or easily port

code written in traditional programming languages, such as Java and C++, because the

browser exposes unfamiliar and incompatible abstractions for a variety of common tasks.

Existing browser development tools provide little assistance for these issues because they

use techniques designed for conventional runtime environments.

To address these issues, this dissertation presents a complete set of tools that form a

solid foundation for web development. These tools make it easier for developers to write,

debug, optimize, and understand their web applications.

McFly: Time-Travel Debugging for the Web

Time-traveling debuggers offer the promise of simplifying debugging by letting devel-

opers freely step forwards and backwards through a program’s execution. However, web

applications present multiple challenges that make time-travel debugging especially diffi-

cult. A time-traveling debugger for web applications must accurately reproduce all network

interactions, asynchronous events, and visual states observed during the original execu-

tion, both while stepping forwards and backwards at interactive speeds. This dissertation
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presents McFly, the first time-traveling debugger for web applications. McFly departs

from previous approaches by operating on a high-level representation of the browser’s inter-

nal state. This approach lets McFly provide accurate time-travel debugging—maintaining

JavaScript and visual state in sync at all times–at interactive speeds. I have implemented

McFly as an extension to Microsoft Edge, and core parts of McFly have been integrated

into a time-traveling debugger for Microsoft’s ChakraCore JavaScript engine [89].

BLeak: Automatically Debugging Memory Leaks in Web Applications

Web application memory leaks can take many forms, including failing to dispose of un-

needed event listeners, repeatedly injecting iframes and CSS files, and failing to call cleanup

routines in third-party libraries. Leaks degrade responsiveness and can even lead to browser

tab crashes by exhausting available memory. Because previous leak detection approaches

designed for conventional C, C++ or Java applications are ineffective in the browser envi-

ronment, tracking down leaks currently requires intensive manual effort by web developers.

This dissertation introduces BLeak, the first system for automatically debugging mem-

ory leaks in web applications [144]. BLeak’s algorithms leverage the observation that in

modern web applications, users often repeatedly return to the same (approximate) visual

state (e.g., the inbox view in Gmail). Sustained growth between round trips is a strong

indicator of a memory leak. To use BLeak, a developer writes a short script to drive a web

application in round trips to the same visual state. BLeak then automatically generates

a list of leaks found along with their root causes, ranked by return on investment. Guided

by BLeak, I identify and fix over 50 memory leaks in popular libraries and apps including

Airbnb, AngularJS, Google Analytics, Google Maps SDK, and jQuery.

BCause: Causal Program Understanding for Web Applications

It is challenging for developers and automated tools to reason about control flow in

web applications because the browser is notoriously asynchronous. In particular, web ap-

plication execution is completely event-driven, and it is often challenging to reason about

why events occur in the first place. This dissertation introduces BCause, a framework for

understanding the causality of JavaScript events in web applications. During a browsing
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session, BCause constructs a trace of events and web application actions that cause events.

BCause uses the trace to construct a causal graph of the JavaScript events that occur in

an execution, letting developers and automated tools trace events back to their root causes.

Using BCause, I build a tool called AdBlame that uses causal graphs and ad blocker

filter lists to accurately predict the bandwidth consumption of a web application with an

ad blocker enabled.

Doppio: Breaking the Browser Language Barrier

Web applications must be written in JavaScript, the native language of the browser.

Existing code written in traditional programming languages cannot be directly translated to

JavaScript because the browser is missing traditional operating system abstractions required

for that code to run. This dissertation presents Doppio, a runtime system written in

JavaScript that breaks the browser language barrier [143]. Doppio emulates single-process

POSIX abstractions including threads, an extensible file system, outgoing TCP sockets, and

unmanaged memory on top of the unfamiliar resources that the browser already provides. I

demonstrate Doppio’s usefulness with two case studies: I extend Emscripten with Doppio,

letting it run an unmodified C++ application in the browser with full functionality, and

present DoppioJVM, an interpreter that runs unmodified JVM programs directly in the

browser.

Browsix: Bridging the Gap Between Unix and the Browser

Although Doppio lets additional programming languages run on the web with full

functionality, it does not act as an operating system and cannot be used to port multi-process

systems or servers into the browser. This dissertation presents Browsix, a framework

that bridges the considerable gap between conventional operating systems and the browser,

enabling unmodified programs expecting a Unix-like environment to run directly in the

browser [111]. Browsix comprises two core parts: (1) a JavaScript-only system that makes

core Unix features (including pipes, concurrent processes, signals, sockets, and a shared file

system) available to web applications; and (2) extended JavaScript runtimes for C, C++,

Go, and Node.js that support running programs written in these languages as processes in
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the browser. I illustrate Browsix’s capabilities via case studies that demonstrate how it

eases porting legacy applications to the browser and enables new functionality.
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CHAPTER 1

BACKGROUND

Over a period of decades, the browser organically evolved from a static document viewer

into an application runtime with the complexity of an operating system. As shown in

Figure 1.1, a web application’s state is distributed among components including a JavaScript

engine that controls computation and a layout engine that controls the user interface and

other forms of I/O. This chapter briefly documents the browser’s evolution in order to

concretely define web applications, provides an overview of the browser’s architecture and

core features, and describes modern web development tools.

1.1 From Web Pages to Applications

While many still think of web pages in terms of an HTML document located at a specific

URL, many web pages today like YouTube, Weather.com, and Gmail are web applications

that generate their UI inside the browser using JavaScript. It is the latter type of web page

that this dissertation is concerned with.

Figure 1.1: A system diagram of a modern web browser. All major web browsers separate
web application computation (JavaScript engine) from I/O (Layout Engine). The layout
engine is multithreaded, while JavaScript code executes on a single hardware thread.
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1.1.1 Web Pages

When Tim Berners-Lee wrote the first web browser in 1990, web sites were composed

of static hypertext (HTML) documents, or web pages, stored on an HTTP server’s file

system. Beyond clicking hyperlinks to navigate between documents, these web pages were

not interactive, and served only as a vehicle for conveying information to their readers.

A few years later, the common gateway interface (CGI) made it possible to write pro-

grams, known as CGI scripts, that run server-side and generate web pages on the fly [114].

CGI scripts could also process data that users submit via HTML forms, which let developers

add basic interactivity to web sites. However, individual web pages were still completely

static once loaded. Although a user could type text into a form field, the browser itself

processed the key presses and rendered the resulting text. When the user submits a form,

the browser sends data to the server and completely reloads the web page, letting the CGI

script running server-side process the form data and re-generate the web page in response.

Many staples of the early web were built using CGI scripts, including message boards,

guestbooks, visitor counters, and online stores [119].

1.1.2 Web Applications

With the introduction of JavaScript in the mid-90’s, web pages themselves became in-

teractive, leading to a shift from web pages to web applications. JavaScript lets a web page

perform arbitrary computations, respond to user interactions, and change its presentation

at-will without contacting the server or reloading the web page. While the precise definition

of a web application is not universally agreed upon, this dissertation defines a web applica-

tion to be a web page that uses JavaScript to control its presentation and interactions.

Web applications are not only used on websites; many native and mobile applications

are also written completely or partially using HTML, CSS, and JavaScript, and run a web

browser internally. By writing an application in this manner, developers can target multiple

platforms and devices using the same codebase. Beyond the packaging step required to

bundle the application into an executable and a few platform-specific APIs, the process of

developing these applications is identical to that for a traditional web application and faces

many of the same challenges discussed in this dissertation.
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1.2 Browser Architecture and Core Features

The browser provides developers with a feature-rich environment that enables a wide

variety of applications. However, browser engineers retrofit this environment into an ar-

chitecture that was originally designed for viewing documents. This section describes this

architecture, which is also shown in Figure 1.1, along with its defining features and limita-

tions.

1.2.1 Browser Overview

Every major web browser contains a JavaScript engine that performs pure JavaScript

computation (§1.2.2) and a layout engine that interacts with the OS to provide function-

ality such as network requests, timers, and the GUI (§1.2.3): V8 [50] and Blink [27] (for

Chrome), JavaScriptCore [8] and WebKit [10] (for Safari), SpiderMonkey [99] and Gecko [93]

(for Firefox), and Chakra [88] and EdgeHTML [107] (for Edge). The layout engine exposes

this functionality to JavaScript code through a set of JavaScript interfaces, commonly re-

ferred to as the Document Object Model (DOM) [56]. The DOM provides JavaScript code

with the ability to perform various I/O operations (§1.2.4), many of which are asynchronous,

leading to pervasive event-based concurrency (§1.2.5). The layout engine does not provide

JavaScript code with access to shared memory multithreading. Instead, the layout engine

supports shared-nothing worker threads to enable parallel processing, and proposed exten-

sions to the web platform add support for a restricted form of shared memory parallelism

(§1.2.6).

1.2.2 JavaScript Engine

JavaScript code executes within the JavaScript engine, which processes events from

a single-threaded event loop that is controlled by the browser’s layout engine (shown in

Figure 1.1). The layout engine produces JavaScript events in response to external events,

such as timers firing. To subscribe to an event, JavaScript code uses a DOM interface to

provide the layout engine with a function as an event handler. The layout engine places

each JavaScript event into the event queue where it waits to be processed. The JavaScript

thread processes these events and invokes event handlers one at a time.
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While JavaScript code executes, the layout engine locks the UI to prevent concurrent

user input, such as typing into a form field. As a corollary, long-running events degrade

the responsiveness of the webpage. If an event takes too long to execute, the web browser

provides the user with the option of killing the unresponsive web application.

1.2.3 Layout Engine

The layout engine is the heart of the browser, and is responsible for a web application’s

input and output. The layout engine provides JavaScript code with the DOM, which con-

tains high-level interfaces for timers, network requests, GUI manipulation, and more. The

layout engine also processes HTML, CSS, and user input, which impact DOM-visible state

independent from JavaScript execution. DOM interfaces reflect and manipulate state that

the layout engine manages and can update independent of JavaScript execution.

For example, the DOM represents the GUI as a tree of HTML elements. JavaScript code

accesses elements in the tree as JavaScript objects via the document object, but these objects

are purely reflective proxies into layout engine state. Reading the offsetLeft property on a

GUI element triggers a query to the layout engine, which calculates how far left the element

is relative to a parent element.

1.2.4 I/O Abstractions

Unlike conventional program environments, browsers do not provide web applications

with access to traditional operating system resources. Instead, browsers expose a variety

of abstractions for tasks that have organically grown out of the needs of the web. For

example, instead of a file system, browsers include storage interfaces that provide key-value

and object database abstractions. Instead of raw sockets, browsers include an interface that

makes HTTP requests, and an interface that establishes an outgoing full-duplex message-

based WebSocket connection to a server over TCP.

1.2.5 Event-based Concurrency

While JavaScript is single-threaded, Figure 1.1 shows that the layout engine is not.

The layout engine exposes asynchronous APIs in JavaScript that dispatch tasks that run

concurrently with JavaScript execution, such as network requests, timers, and persistent
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storage requests. These tasks communicate with the application via events, which the

layout engine enqueues in parallel with JavaScript execution. Thus, web applications are

actually highly concurrent; given the same application input, events can execute in different

orders across executions.

1.2.6 Worker Threads

In modern browsers, JavaScript code can spawn worker threads that execute within

their own isolated JavaScript context. These worker threads do not share any memory

with the main thread or each other, and can only communicate with their parent through

a bidirectional and asynchronous message passing interface. Worker threads also have no

access to the application’s GUI and have their own separate event queues. Counterintu-

itively, worker threads are a resource provided by the layout engine, which relays messages

between JavaScript contexts.

Upcoming changes to the browser enable a restricted form of shared memory between

JavaScript contexts. With these changes, multiple JavaScript contexts can share a SharedAr-

rayBuffer, which encapsulates a binary buffer of memory. Like the existing ArrayBuffer

interface, these buffers can be interpreted as an array of specific numeric types, such as 8-

bit unsigned integers and 64-bit floating point numbers. In addition, browsers will provide

atomic operations on the contents of SharedArrayBuffer, including futex primitives [26].

1.3 Web Development Tools

Web developers use a variety of tools to write, debug, and optimize their applications.

Some of these tools are integrated with the browser itself to provide deeper support for visual

state that the layout engine manages. These tools are largely adaptations of conventional

software development tools.

1.3.1 Debugging Correctness Issues

When a web application is not behaving in the way the developer intended, web devel-

opers have only a few basic tools at their disposal to help them track down bugs.
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Figure 1.2: A web application running in Microsoft Edge and paused on a breakpoint.
Standard browser debuggers let developers inspect DOM state and view the application’s
GUI at breakpoints.

Console printing: One classic debugging technique is to add print statements to a program

that log potentially informative messages to standard output; this practice is commonly

called printf debugging. Developers can also use this technique in the browser. While web

applications lack access to standard output streams, browsers contain a hidden web console

that web applications can print to using the console JavaScript interface. Developers can

view the console using the browser’s development tools.

Stepping debugger: All modern web browsers contain a conventional stepping debugger

that let developers set breakpoints, single-step through JavaScript execution, and inspect

live application state [9, 16, 90, 94]. The debugger displays application state stored in the

JavaScript engine and the layout engine, and provides a JavaScript REPL for more advanced

queries. Figure 1.2 displays a screenshot of Microsoft Edge’s debugger, which lets the

developer examine the DOM while the application is paused on a breakpoint. This feature

is standard across browser debuggers.
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1.3.2 Debugging Memory Overhead

All of the browser components in Figure 1.1 have state that contributes to a web applica-

tion’s memory footprint. A higher memory footprint reduces application responsiveness and

can even trigger browser tab crashes by exhausting available memory [15, 52, 68, 85, 105].

Browsers contain a few tools that report information about memory usage and memory

allocations.

Heap snapshots: Some browsers contain a heap snapshot tool that collects a graph of the

application’s heap, where objects are nodes and references are edges, and displays it to the

user. In this paragraph, I refer specifically to views in Google Chrome’s heap snapshot tool,

which largely matches the functionality in other browsers. Each snapshot includes state

from both the JavaScript engine and the layout engine. A summary view groups objects by

their type, and displays the total number of objects of that type, their combined shallow size,

and their combined retained size. A containment view displays the application’s garbage

collection roots as trees, letting developers dig down into the application’s state. Two

snapshots can be diffed to show which objects have been allocated inbetween the snapshots.

Memory timeline: In Chrome, the Performance Timeline tool displays basic data associ-

ated with the application’s memory footprint over time [17]. The timeline contains separate

lines for the JavaScript heap size in bytes, the number of active HTML documents, the num-

ber of active DOM nodes, the number of active event listeners, and the amount of GPU

memory in use.

The JavaScript heap line does not differentiate between live and dead heap state, and

merely displays the size of allocated items in the heap. When a garbage collection occurs,

the JavaScript heap line drops to reflect the collected garbage. Typically, the memory

timeline of a web application describes a sawtooth pattern, where the application’s memory

usage quickly grows until the JavaScript engine performs a garbage collection that reduces

the heap to a baseline size. If the baseline size increases over time, the application might

have a leak.

11



Figure 1.3: A 5 second timeline collected with Google Chrome while loading Facebook.

1.3.3 Understanding Program Behavior

The browser environment is pervasively asynchronous, which makes it challenging for

developers to understand their code’s behavior. Most browsers contain a performance time-

line tool, which provides limited insights into a web application’s behavior [7, 17, 86, 98].

Google Chrome’s debugger has support for asynchronous call stacks, which extends call

stacks into preceding JavaScript events.

Performance timeline: Most browsers contain a performance timeline that logs event

schedules from individual executions along with other metadata. These timelines present

a substantial amount of information over a short duration of time; Figure 1.3 displays a

timeline of less than 5 seconds collected while loading a Facebook feed. Timelines do not

display causal information regarding the source of each event, so developers cannot easily

use a timeline to investigate the root causes of asynchronous program behavior.

Asynchronous call stacks: Normally, when a JavaScript debugger is paused on a break-

point, the debugger displays a call stack that ends with the event listener that the browser

invoked to handle the current event. Google Chrome’s asynchronous call stack feature

extends the displayed call stack with the call stack from the JavaScript context that regis-
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tered the event listener in the first place. From there, the call stack continues to previously

recorded asynchronous call stacks.

While asynchronous call stacks provide a causal chain to prior events, they do not sup-

port implicit control flow through the DOM and are limited to displaying a single prior

async call stack. For example, a JavaScript code may create a new script element, assign

a URL to its src property, and insert it into the webpage, which loads a JavaScript file that

initiates a timer. When paused on the timer, the Chrome debugger does not include asyn-

chronous stack traces from the JavaScript code that created the script element, breaking

the causal chain and preventing developers from examining why the script was loaded in

the first place. As a result, asynchronous stack traces provide limited help to developers

that are trying to understand complicated program behavior.

1.3.4 Porting Code to the Browser

JavaScript is the only programming language that all major web browsers support.

Code written in other programming languages can run in the browser via native plugins,

or compilers that translate the code into JavaScript.

Plugins: Historically, browsers have been able to execute code written in Java, C#/Visual

Basic (Silverlight), and ActionScript (Flash) via third-party plugins that execute outside

of the browser sandbox and in a native environment [3, 60, 87]. Due to security concerns,

all major web browsers will completely disable native plugins by 2020 [44,65, 92,117]. The

Java, Silverlight, and Flash plugins will be discontinued by that time [2, 118, 124]. As a

result, plugins are no longer a viable method for bringing programming languages to the

browser.

Compilers: One common way to bring programming languages to a new environment is to

build a compiler that targets the environment. Compilers exist that translate languages like

C and C++ (Emscripten [153]), Java (GWT [51]), and Go (GopherJS [101]) into JavaScript.

However, these compilers only support a subset of each language’s standard libraries and

language features because the browser does not provide direct access to operating system

primitives. Developers must manually modify and port any code that depends on missing

operating system support. In addition, since the browser does not provide a thread-based
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execution environment or blocking I/O primitives, most of these compilers require develop-

ers to refactor code to execute in an asynchronous and event-driven manner. If the code

relies on stack state, developers must manually perform “stack ripping” [4] to convert code

into continuation-passing style.
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CHAPTER 2

CHALLENGES IN WEB DEVELOPMENT

Despite offering a wide variety of conventional development tools, the browser remains a

challenging environment for application development. Conventional techniques do not help

developers overcome the unique challenges of the browser environment.

2.1 Debugging Correctness Issues

Web applications are notoriously frustrating to debug. While browsers contain inte-

grated debuggers, they often provide little assistance to developers. If a bug is the result

of a specific event order (a Heisenbug), the act of debugging can disrupt the event schedule

and prevent the bug from appearing. Even when a bug does recur while debugging, iden-

tifying its root cause can be difficult: in event-driven settings like the web, bug symptoms

can manifest far from their root causes.

There are two widely used approaches to find these bugs: scattering logging statements

around the program (a.k.a. “printf debugging” using console.log), or placing breakpoints

to pause the program at specific statements. Both are laborious and iterative processes.

Poring over logs to identify bugs often reveals the need to rerun the program with new

logging statements in place. Using breakpoints, developers step the program forwards until

the first sign that something has gone wrong. Unfortunately, if the breakpoint does not

precede the root cause of the bug, the developer must reset breakpoints and restart execution

from the beginning. As a result, debugging is currently an arduous and painstaking process

for web developers.

2.2 Memory Leaks

Browsers have an established reputation for consuming significant amounts of mem-

ory [54, 82, 95]. Memory leaks in web applications only exacerbate the situation by further
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1 class Preview extends PureComponent {

2 // Runs when Preview is added to GUI

3 componentDidMount() {

4 const { codeMirror } = this.props.editor;

5 const wrapper = codeMirror.getWrapperElement();

6 codeMirror.on("scroll", this.onScroll);

7 wrapper.addEventListener("mouseover", this._mover);

8 wrapper.addEventListener("mouseup", this._mup);

9 wrapper.addEventListener("mousedown", this._mdown);

10 }

11 }

Figure 2.1: A memory leak in Firefox’s debugger. This code (truncated for readability)
leaks 0.5MB every time a developer opens a source file. Prior approaches, such as leak
detectors that rely on staleness metrics, would fail to find these leaks because the leaked
objects (event listeners) are frequently touched.

increasing browser memory footprints. These leaks happen when the application references

unneeded state, preventing the garbage collector from collecting it. Web application mem-

ory leaks can take many forms, including failing to dispose of unneeded event listeners,

repeatedly injecting iframes and CSS files, and failing to call cleanup routines in third-

party libraries. Leaks are a serious concern for developers since they lead to higher garbage

collection frequency and overhead. They reduce application responsiveness and can even

trigger browser tab crashes by exhausting available memory [15,52,68,85,105].

Prior techniques and existing tools fall short when debugging leaks in web applications.

Figure 2.1 displays a representative memory leak in Firefox’s debugger, which is a pure

HTML5 application that can run as a normal web application in any browser. Lines 6-9

register four event listeners on the debugger’s text editor (codeMirror) and its GUI object

(wrapper) every time the user views a source file. The leak occurs because the code fails to

remove the listeners when the view is closed. Each event listener leaks this, which points

to an instance of Preview.

2.2.1 Prior Automated Techniques

There currently are no effective automated techniques for finding memory leaks in web

applications. Previous effective automated techniques for finding memory leaks operate in

the context of conventional applications written in C, C++, and Java. These techniques

predominantly use a staleness metric to discover [19, 53, 103] or rank [150] memory leaks,
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but the four memory leaks in the Firefox debugger would not be considered stale. These

four listeners continue to execute and touch leaked state every time the user uses the mouse

on the editor, marking that state as “fresh”. In web applications, many leaks are connected

to browser events.

Prior growth-based techniques assume that leaked objects are uniquely owned (domi-

nated) by a single object or that they form strongly connected components in the heap [91,

150]. These assumptions do not hold for the leaked objects in the Firefox debugger because

1) they are owned by four separate leak locations that are only dominated by the global

scope, and 2) they reference the global scope (window) and are thus strongly connected with

nearly the entire heap. These properties are common in web applications.

2.2.2 Manual Leak Debugging via Heap Snapshots

Since there are currently no automated techniques for identifying memory leaks in web

applications, developers are forced to use manual approaches. The current state of the art

is manual processing of heap snapshots. This approach does not effectively identify leaking

objects or provide useful diagnostic information, and it thus does little to help developers

locate and fix memory leaks.

The most popular way to manually debug memory leaks is via the three heap snapshot

technique introduced by the Gmail team [68]. Developers repeat a task twice on a webpage

and examine still-live objects created from the first run of the task. The assumption is that

each run will clear out most of the objects created from the previous run and leave behind

only leaking objects; in practice, it does not.

To apply this technique to Firefox’s debugger, the developer takes a heap snapshot after

loading the debugger, a second snapshot after opening a source file, and a third snapshot

after closing and re-opening a source file. Then, the developer filters the third heap snapshot

to focus only on objects allocated between the first and second.

This filtered view, shown in Figure 2.2a, does not clearly identify a memory leak. Most of

these objects are simply reused from the previous execution of the task and are not actually

leaks, but developers must manually inspect these objects before they can come to that

conclusion. The top item, Array, conflates all arrays in the application under one heading
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(a) A truncated heap snapshot of the Firefox de-
bugger, filtered using the three snapshot tech-
nique. The only relevant item is Preview, which
appears low on the list underneath non-leaking
objects.

(b) The retaining paths for Preview, the primary
leaking object in the Firefox debugger. Finding
the code responsible for leaking this object in-
volves searching the entire production code base
for identifiers in the retaining paths, which are
commonly managed by third-party libraries and
obfuscated via minification.

Figure 2.2: The manual memory leak debugging process. Currently, developers debug leaks
by first examining heap snapshots to find leaking objects. Then, they try to use retaining
paths to locate the code responsible. Unfortunately, these paths have no connection to
code, so developers must search their codebase for identifiers referenced in the paths. This
process can be time consuming and ultimately fruitless.

because JavaScript is dynamically typed. Confusingly, the entry (array) just below it refers

to internal V8 arrays, which are not under the application’s direct control. Developers would

be unlikely to suspect the Preview object, the primary leak, because it both appears low on

the list and has a small retained size.

Even if a developer identifies a leaking object in a snapshot, it remains challenging to

diagnose and fix because the snapshot contains no relation to code. The snapshot only

provides retaining paths in the heap, which are often controlled by a third party library or

the browser itself. As Figure 2.2b shows, the retaining paths for a leaking Preview object

stem from an array and an unidentified DOM object. Locating the code responsible for

a leak using these retaining paths involves grepping through the code for instances of the

identifiers along the path. This task is often further complicated by two factors: (1) the

presence of third-party libraries, which must be manually inspected; and (2) the common

use of minification, which effectively obfuscates code and heap paths by reducing most

variable names and some object properties to single letters.
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2.3 Understanding Program Behavior

Web applications are completely event-driven, which makes it challenging for developers

and automated tools to reason about their behavior. When a web page loads, the HTML and

JavaScript comprising the web application register JavaScript functions with the browser

to listen to specific events. When loading completes, JavaScript code will only run again in

response to listened-for events. This design obscures implicit and asynchronous control flow

edges caused by JavaScript interactions or HTML changes that trigger subsequent events.

Existing browser development tools provide limited assistance for understanding a web

application’s asynchronous behavior. The Chrome debugger’s asynchronous call stacks only

display a single causal chain leading to prior events, and the chain breaks when an event is

caused by a DOM modification. Browser-provided timeline tools log and display a wealth

of performance data, but cannot reason about asynchronous control flow. As a result, de-

velopers that wish to understand a web application’s asynchronous behavior must manually

examine the application’s code and executions to determine implicit control flow edges.

2.4 Porting Code to the Browser

Due to the unique nature of the browser environment, developers are unable to directly

compile or translate code written in conventional programming languages into JavaScript for

use in a web application. Conventional programming languages and their runtime libraries

expect access to primitives for multithreading and synchronous blocking I/O, as well as

access to operating system services like a file system, sockets, and processes. However, the

browser provides a completely different environment:

• Single-threaded Execution: JavaScript is a single-threaded event-driven program-

ming language with no support for interrupts. Events either execute to completion,

or until they are killed by the browser because they took too long to finish.

• Asynchronous-only APIs: Browsers provide web applications with a rich set of

functionality, but emerging APIs are exclusively asynchronous. Due to the limitations

of JavaScript, it is not possible to create synchronous APIs from asynchronous APIs.
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• Missing OS Services: Browsers do not provide applications with access to a file

system, socket, or process abstraction. Instead, they offer a panoply of incompatible

abstractions.

Developers wishing to port existing code to the web must manually restructure and rewrite

the code in JavaScript to adapt to these restrictions.
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CHAPTER 3

MCFLY: TIME-TRAVEL DEBUGGING FOR THE WEB

Web applications are challenging to debug. Time-traveling debuggers offer the promise

of simplifying debugging by letting developers freely step forwards and backwards through

a program’s execution. However, web applications present multiple challenges that make

time-travel debugging especially difficult. A time-traveling debugger for web applications

must accurately reproduce all network interactions, asynchronous events, and visual states

observed during the original execution, both while stepping forwards and backwards. This

must all be done in the context of a complex and highly multithreaded browser runtime. At

the same time, to be practical, a time-traveling debugger must maintain interactive speeds.

This chapter introduces McFly, the first time-traveling debugger for web applica-

tions. McFly departs from previous approaches by operating on a high-level represen-

tation of the browser’s internal state. This approach lets McFly provide accurate time-

travel debugging—maintaining JavaScript and visual state in sync at all times–at interactive

speeds. McFly’s architecture is browser-agnostic, building on web standards supported by

all major browsers. I have implemented McFly as an extension to the Microsoft Edge

browser, and core parts of McFly have been integrated into a time-traveling debugger

product from Microsoft [89].

3.1 McFly

McFly is a prototype time-traveling debugger for web applications. McFly operates

on a high-level representation of a browser’s internal state, letting it provide accurate time-

travel debugging with support for visual state at interactive speeds. This section presents

McFly’s architecture, which is browser-agnostic.

21



3.1.1 Time-Travel Overview

I first provide an overview of how a developer uses McFly to debug a web application,

which structures the remainder of this section.

Reproducing a bug: The developer loads the web application with McFly open, and

interacts with the application until they discover buggy behavior. While this happens,

McFly interacts with the layout engine via a combination of existing DOM interfaces and

custom extensions in order to support visual state during time-travel (§3.1.2). Specifically,

McFly creates checkpoints of the application’s program and visual state (§3.1.3) at a

configurable interval (2 seconds by default), and logs I/O and sources of nondeterminism

(§3.1.4). By regularly capturing checkpoints, McFly makes it possible to quickly time-

travel to an arbitrary point in the web application’s execution.

Debugging: When the developer encounters a bug, they can place and trigger a breakpoint

to begin a debugging session. At this point, the developer can use McFly to step forwards

and backwards through the captured program execution to diagnose the bug. To support

stepping forwards, McFly uses its log to deterministically replay the program execution.

Stepping backwards is more involved (§3.1.5), as McFly must return the application

to a previous state. To go back in time, McFly needs to return the application to a

target JavaScript statement s at a specific execution of the statement (at time t). To track

this information, McFly extends the JavaScript engine with the branch trace store and

timestamp store performance monitors (§3.1.6). McFly uses these performance monitors

to determine s and t.

Time-travel: To time-travel an application to statement s at time t, McFly loads the last

checkpoint taken before t and replays the log. When execution is at the JavaScript event

just prior to t, McFly enables the branch trace store and timestamp store, and places a

conditional breakpoint on s that triggers at time t. Conditional breakpoints are a standard

feature supported by all major JavaScript debuggers; the JavaScript engine will only trigger

the breakpoint if s executes at time t, which completes the time-travel operation.

Time-travel optimization: McFly opportunistically generates checkpoints during replay

to reduce the latency of future time travel operations. In particular, if McFly is time

traveling towards t, and must start from a “far-away” checkpoint (where distance is defined
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in terms of JavaScript events), McFly generates a new checkpoint at the JavaScript event

just prior to t. Thus, a sequence of stepping operations within the same JavaScript event

will use the new checkpoint; this is similar to an optimization by Boothe [20].

3.1.2 Supporting Visual State

McFly supports visual state during debugging by checkpointing and logging changes

to a high-level representation of the layout engine’s visual state. The layout engine already

reveals much of its internal state in a high-level form to the JavaScript engine via the

DOM. However, some of the layout engine’s internal state is not accessible via standard

interfaces, including the state of animations on the web page and lists of active event

listeners. McFly requires access to this state to be able to checkpoint and deterministically

re-execute applications.

McFly extends the layout engine with additional debugger-facing interfaces that pro-

vide read/write access to a high-level representation of internal layout engine state. These

extensions expose the same high-level state described in formal DOM specifications, which

all web browsers adhere to [56]. For example, the DOM specification for HTTP request

objects (XMLHttpRequest) describes network request objects as a state machine; McFly

captures these network requests in terms of the internal state machine. As a result, this

architecture is portable across all major web browsers. Section 4.3 details the specific ex-

tensions that the prototype version of McFly supports, as well as their implementation in

a widely-used browser.

3.1.3 Application Checkpoints

McFly’s web application checkpoints contain the application’s program state (from the

JavaScript engine) and visual state (from the layout engine). As these two types of state

are entangled through cross-references, McFly stores them together inside checkpoints as

a single object graph.

Program State: At a high level, the program state within the JavaScript engine consists

of the heap, the stack, and the program counter. However, the JavaScript engine does not

maintain a stack or a program counter between JavaScript events. In addition, JavaScript
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events are typically short-lived (under a few milliseconds in duration) because JavaScript

execution blocks UI interactions [112]; long-running events give the user the impression

that the application is frozen. This property is enforced by the web browser; if a JavaScript

event runs for too long, the browser crashes the tab or raises an alert.

McFly defers application checkpoints to occur between JavaScript events. This de-

sign constrains where McFly can checkpoint the application, but does not unduly impact

debugging performance since most events complete in under a millisecond.

This design ensures that the only program state that McFly needs to capture is the

JavaScript heap, which all major web browsers can efficiently traverse using existing garbage

collection routines. When the traversal encounters an object in the heap that reflects and

retains visual state in the layout engine, McFly serializes its high-level state. To reinstate

checkpointed program state, McFly uses internal interfaces present in all major JavaScript

engines to reconstruct serialized objects.

Visual State: A web application’s visual state consists of active GUI nodes on the webpage,

inactive GUI nodes stored in the JavaScript heap, active CSS animations, browser-local

persistent storage, the state of the random number generator, event listeners, the number

of bytes consumed by each active HTML parser, and the state of network requests. McFly

serializes a high-level representation of these resources into the checkpoint’s object graph

using a combination of standard web interfaces and the extensions discussed in Section 3.1.2.

3.1.4 I/O and Nondeterminism Log

McFly logs I/O and sources of nondeterminism that it uses to ensure that stepping

operations are deterministic. The log contains different types of entries, which each have a

different logging and replay strategy. I describe each type of log entry below; Section 4.3

details which DOM interfaces use which strategy.

Simple entries correspond to synchronous interactions between JavaScript and the layout

engine, such as querying for the date, that depend on browser-external state. McFly logs

these values during the original execution, and replays them while debugging.

Event entries correspond to JavaScript events. McFly uses these to ensure that JavaScript

events occur in the same order as the developer steps through the program. During the
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original execution, McFly logs a high-level form of each event as it occurs. At debug time,

McFly replays events from the log. This replay strategy reproduces event races observed

during the original execution.

Inter-event visual state updates occur between JavaScript events. While JavaScript is

executing, the layout engine defers certain visual state updates. For example, layout engines

only transition the internal state machine of HTTP request objects in quiescent periods

between events. During the original execution, McFly scans for and logs state changes for

the relevant high-level state before every JavaScript event. During replay, McFly applies

the logged updates before the same event in order to keep the state in sync with JavaScript

execution.

Concurrent visual state updates occur while JavaScript is executing. The layout engine

updates some visual state, such as CSS animations, concurrent with JavaScript execution.

Every time JavaScript code synchronously interacts with the layout engine, McFly scans

for and logs any changes to concurrently updated state. During replay, McFly prevents

the layout engine from concurrently updating state and re-applies the state changes itself

during the same synchronous interaction, which keeps the state in sync with JavaScript

execution.

McFly uses a counter of synchronous interactions to denote a specific synchronous

interaction in the log, and stores the counter value in checkpoints. For example, a log

entry with counter value 60 would be applied during the 60th synchronous layout engine

interaction, which will be identical across deterministic replays. This strategy preserves

any data races between JavaScript code and the layout engine observed during the original

execution.

3.1.5 Debugger Features

McFly provides a full suite of complements to existing debugger features, and exposes

this functionality as an extension to a production JavaScript stepping debugger. I only

discuss step backwards in this section; the remaining features are implemented similarly.

Step backwards complements step forwards, and lets the developer return to the previously-

executed program statement. Given that the debugger is paused at the statement s at logical
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time t = (c, b), where c is the number of times the function has been called since enabling

performance monitoring and b is the number of backwards jumps (loop iterations) executed

in the current function call, the debugger must determine the statement and logical time of

the previously-executed statement, s′ and t′:

• If s is not the entry point of a basic block, then s′ is the previous statement in the

block and t′ = t.

• If s is the entry point of a basic block, then s′ is the source statement of the previously

taken branch.

– If s′ is the current statement in the calling function, then t′ is the logical time

associated with the caller’s call frame.

– Otherwise, s′ is from the same function call as s. If s′ is a loop header (e.g.,

while(someCondition)), then s′ is from a previous loop iteration and t′ = (c, b−1).

Otherwise, t′ = t.

Finally, McFly places a conditional breakpoint on s′ that triggers when the logical time is

t′, and replays the program from the previous checkpoint that is closest to the target logical

time. If the checkpoint is not close to the target time, McFly records a new checkpoint just

before the target JavaScript event in order to speed up subsequent step-back operations.

3.1.6 Performance Monitors

To replay execution to a specific statement at a particular point in time, time-traveling

debuggers need visibility into the current execution. VM-based time-traveling debuggers

typically use performance counters on the processor for this purpose [59, 84], but managed

languages, like JavaScript, lack comparable functionality.

McFly augments the JavaScript engine with two performance monitors. The branch

trace store contains the last branch instruction that was taken by each function that is cur-

rently on the call stack. The timestamp store contains the timestamp of each function on the

call stack. A timestamp is represented as the pair of the function’s call count since enabling

performance monitoring and the number of backwards jumps (loop iterations) executed

thus far in the function call. For example, given the function function a(){while(true){}},
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the timestamp (3, 2) represents the second iteration of the loop during the third call to the

function.

3.1.7 Replay Guarantees

McFly guarantees that replay is identical to the original execution, including the data

returned from supported layout engine interfaces, the sequence of application-observed

JavaScript events, and the pixels on the screen. Animations may not move smoothly dur-

ing replay, as the system fast-forwards animations to each observed state from the original

execution whenever JavaScript code calls into the layout engine, but the JavaScript code

will observe the same values seen in the original execution. In addition, developers can use

existing debugging tools, such as the DOM Explorer shown in Figure 1.2, to inspect the

GUI while debugging.

3.2 Implementation

I have implemented a prototype of McFly in the Microsoft Edge web browser. This

section describes in detail the changes I made to the layout engine to support McFly’s

checkpoints and logs (§3.2.1), the changes to the JavaScript engine to support performance

monitors (§3.2.2), and the security implications of these changes (§3.2.3).

3.2.1 Layout Engine State

Below, I walk through how the prototype implementation of McFly captures the high-

level layout engine state described in Table 3.1. Although the table lists many different

resources, I only need to make a small number of modifications to the layout engine because

standard browser interfaces already make a large amount of high-level state available to the

debugger.

Random numbers: JavaScript applications use Math.random() to generate random num-

bers, but cannot read or write the internal state of the PRNG. I modify the layout engine to

let McFly query and reset the PRNG’s state. McFly stores the PRNG state in program

checkpoints, and reinstates it prior to replaying from a checkpoint.
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Resource Interface High-level
State

Logged Data Log Entries

Random Math.random() PRNG state None

Numbers

Time Date Internal times-
tamps

Current time Simple entries

Timers setTimeout,
setInterval

Active timers Timer IDs Simple entries

Events EventTarget Active event listen-
ers

None

Indirect None Sequence of events Event entries

GUI DOM Live DOM nodes Form changes, Inter-event updates
external resource
loads,

Concurrent updates

HTML parsing
progress

Concurrent updates

CSS Anima-
tions

Animation status Animation advance-
ment

Concurrent updates

Network
Requests

XMLHttpRequest State machine State machine
changes

Inter-event updates

Storage localStorage,
Cookies

Contents of stor-
age

None

Table 3.1: The core browser interfaces that McFly supports. The table above summarizes
the different resources that the browser’s layout engine provides to JavaScript code, the high-
level representation of their internal state, the data that McFly records into its log, and
the types of log entries used. In the “interface” column, Indirect means that a program’s
interactions with the resource are implicit, i.e., the interactions do not use an explicit
JavaScript interface.

Current time: The layout engine contains a Date interface that lets programs observe the

current time as a Date object, which it queries from the OS. I modify the layout engine to

let McFly log and replay date requests. To serialize Date objects into checkpoints, I use

the existing getTime() function on the object to retrieve its timestamp.

Timer status: JavaScript applications create one-shot timers via setTimeout(), and recur-

ring timers via setInterval(). Each timer is assigned a unique ID that the layout engine

arbitrarily determines. The layout engine does not provide an interface for enumerating the

set of active timers or for controlling their IDs. I extend the layout engine to expose the set

of active timers and to let McFly log and replay timer ID assignments. I use the former

28



modification to store active timers in checkpoints, and the latter to deterministically replay

timer IDs. McFly deterministically replays the timer schedule as discussed under sequence

of events.

Events: JavaScript code can register functions as handlers for events. For example, a pro-

gram can register handlers for mouse click events. Applications can register event listeners

in three ways: through properties on HTML tags (e.g., <div onclick="a()">), properties

on the DOM elements (e.g., div.onclick=a;), or through the addEventListener() DOM

interface (e.g., div.addEventListener(’click’,a)). JavaScript code can enumerate event

listeners registered using the first two approaches, since the listeners are reflected as prop-

erties on the associated DOM objects. However, the layout engine does not let JavaScript

code enumerate handlers which were registered via addEventListener(). Furthermore, the

layout engine dispatches events to event handlers in the order in which the handlers were

registered, regardless of the registration technique employed. The layout engine does not

expose this order, which must be recreated at replay time.

All DOM objects that generate events implement the EventTarget interface. I modify the

layout engine to let McFly enumerate all event handler information that is associated with

an EventTarget. McFly uses this extension to store handler orders into checkpoints, and

restore handler orders from checkpoints using the preexisting handler registration interfaces.

Sequence of events: Each JavaScript execution context is single-threaded and completely

event-driven, but the layout engine contains and controls the JavaScript event queue. The

layout engine does not expose the queue to JavaScript code, but events must be replayed

in the same order as the original execution in order to reproduce event races. I extend the

layout engine to let McFly intercept events added to the event queue, which it uses to log

and reproduce the original event order during a debugging session.

GUI: JavaScript code interacts with the GUI through the DOM tree. Each HTML tag on

a web page has a corresponding element object in the tree. Each element object provides

JavaScript code with read and write access to tag-specific state, such as the URL for an

<img> tag or the text in a form field. I use existing JavaScript interfaces to serialize and

deserialize the entirety of the DOM tree into checkpoints.

29



External resources: A web page often includes external objects, e.g., HTML tags which

specify a src attribute and whose content must be fetched from remote servers. The layout

engine loads this content in parallel with JavaScript execution on an I/O thread. When the

content finishes loading, the layout engine silently updates the applicable HTML element

with attributes, such as the height and width of an image. I modify the layout engine to

let McFly log and replay network fetches.

HTML parsing progress: A web page contains one or more HTML documents, with

secondary HTML documents appearing in frames. The browser incrementally loads and

parses HTML documents in parallel with JavaScript execution, which causes new nodes to

appear in the DOM. I extend the layout engine to expose the current byte offset in each

document’s parse stream. McFly logs offset changes during the original execution. During

replay, McFly feeds the network stack the new bytes at the appropriate time (via the

extension discussed in external resources) and waits for the parser to consume them.

CSS animations: The DOM does not expose the CSS animation state of an HTML

tag—that state resides within the layout engine. If McFly cannot read CSS animation

state, then it cannot record an animation’s progress with respect to concurrently executing

JavaScript code; this would prevent McFly from faithfully recreating the behavior. To

enable high-fidelity replays of animations, I modify the layout engine to let McFly read

and write the frame counts corresponding to active CSS animations. Using this interface,

McFly can “seek” to a specific point in the animation, and keep it synchronized with

JavaScript execution.

Connection status: JavaScript applications communicate with remote servers via XMLHttp-

Request objects. Each object encapsulates the state of a single HTTP request. At logging

time, the debugger can observe the state of each request, including the content of the

HTTP response, using existing methods on XMLHttpRequest objects. The debugger needs

a mechanism to recreate logged XMLHttpRequest objects without creating actual network

connections. I extend the layout engine to let the debugger create XMLHttpRequest objects

from scratch, and set their internal state to arbitrary values.

Storage: Web applications manage persistent local data using cookies and the localStorage

interface [55, 56]. Both mechanisms export a key/value API. The layout engine creates a
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separate storage area for each origin, and prevents different origins from accessing each

other’s data. A page’s origin is the 3-tuple of the protocol, hostname, and port in the

page’s URL. Since all of the active origins on a web page execute within the same JavaScript

engine, McFly can pose as any origin and manipulate its storage using the same interfaces

that are exposed to regular applications.

Additional browser features: McFly supports a core set of browser interfaces, which

is sufficient to time-travel many existing web applications. Browsers regularly add new

features, such as WebGL and Web Audio, that McFly does not support. McFly can be

extended to support these features with additional browser modifications to expose their

hidden state.

3.2.2 Performance Monitors

For simplicity, I implement the branch trace store and timestamp store by augmenting

the browser’s JavaScript interpreter. When a performance monitor is enabled, I disable the

browser’s JIT compiler, forcing JavaScript execution to use the interpreter. As I mention

in Section 3.1.1, McFly only requires performance monitoring when a replayed execution

nears a target line of interest, so this design has minimal performance impact.

3.2.3 Security Implications

The layout engine modifications described in §3.2.1 are only exposed to debugging tools.

They are not accessible to web applications via public JavaScript APIs. These modifications

do not affect the security model for web content—at logging time and during replay, browsers

still use the same-origin policy to isolate content.

3.3 Evaluation

I evaluate McFly by running it on a corpus of web applications. The evaluation ad-

dresses the following questions:

• Faithfulness: Does McFly faithfully and deterministically re-execute web applica-

tions?

• Performance: Does McFly support time-travel debugging at interactive speeds?
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• Overhead: Does McFly impose acceptable overhead during normal web application

execution?

I performed the evaluation on a desktop with a quad-core Intel Xeon E5-1620 clocked at

3.6 GHz with 16GB of RAM and a 7200 RPM SATA hard drive.

3.3.1 Applications

There are no established benchmark suites for time-traveling debuggers for web applica-

tions, so I collected one. To perform a controlled evaluation, I chose applications for which

I had source code and that I could run locally in a non-production setting. Conducting

performance experiments on web applications running in production poses severe method-

ological challenges. Every experiment is likely to capture a different version of the web

application, due to updates or A/B testing, and with different content. For example, Face-

book regularly conducts experiments on its users that changes the code and presentation of

the website, and Facebook’s feed contains different advertisements, posts, and third-party

code across visits. While I did not use production applications in this evaluation, I have

verified that McFly works on production websites.

I focus the qualitative and quantitative evaluation on benchmarks that exercise different

components of McFly:

• Delta-Blue, Earley-Boyer, RayTrace, and Splay are from the Octane benchmark

suite [42], and are memory intensive workloads that stress McFly’s checkpoints. I

modify the benchmarks to extend their runtime to ∼10 seconds to isolate McFly

overhead from parsing/JIT warmup overhead. Unlike the other benchmarks, these

programs have no I/O and are deterministic; I exclude these benchmarks from parts

of the performance evaluation that use McFly’s nondeterminism and I/O log.

• RayTrace (GUI) [23] is the RayTrace program from the Octane benchmark suite with

its original HTML GUI, which introduces I/O to the program.

• ColorGame [62] is an implementation of a test that demonstrates the Stroop ef-

fect [120]. It uses AngularJS and jQuery, which are both complicated and commonly
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used libraries, and result in ColorGame having ∼3× as much code as the next largest

benchmark. AngularJS exercises a wide variety of DOM features, and encodes crucial

application data into the DOM directly. Thus, it is crucial that McFly correctly

support this application’s visual state during debugging sessions.

• CRUD is a standard content management interface that uses jQuery to manage its

user interface. CRUD uses HTML forms to let users create, update, and delete con-

tent, which McFly must correctly support for debugging to be deterministic.

• PacMan [149] is an implementation of the classic Pac-Man game using the HTML5

canvas. It uses timers to update the contents of the canvas every 80ms, and stresses

McFly’s ability to quickly serialize large DOM objects into checkpoints and log fre-

quent events.

Table 3.2 describes the code size of each of these benchmarks, including HTML documents

and JavaScript libraries.

3.3.2 Faithfulness

I evaluated the faithfulness of McFly’s time-travel debugging by using McFly to debug

the benchmark applications. While using breakpoints and McFly’s stepping operations,

I observed each application’s visual and program states, and checked that it matched the

original execution.

I manually verified that, across all of the benchmarks, McFly faithfully and deter-

ministically reproduces the program and visual states observed during the origi-

nal execution. Using McFly, I was able to deterministically step forwards and backwards

through web application executions while visual state updates, including those induced by

CSS animations and network dependencies, remained synchronized with JavaScript execu-

tion.

3.3.3 Performance

In order to be useful, McFly must step through an execution of a web at interac-

tive speeds. While stepping forwards is straightforward and involves deterministic replay,
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Proc. Checkpoint
Program Code Size Create Write Resume Size Gzipped

Color-Game 746 KB 44 MB 0.12 s 0.12 s 0.43 s 3.3 MB 0.9 MB

CRUD 250 KB 28 MB 0.11 s 0.10 s 0.37 s 2.4 MB 0.5 MB

Delta-Blue 36 KB 34 MB 0.09 s 0.17 s 0.36 s 2.1 MB 0.4 MB

Earley-Boyer 244 KB 123 MB 0.09 s 0.11 s 0.30 s 3.3 MB 0.6 MB

PacMan 50 KB 31 MB 0.13 s 0.14 s 0.45 s 2.2 MB 0.5 MB

RayTrace 38 KB 73 MB 0.06 s 0.09 s 0.28 s 2.1 MB 0.4 MB

Splay 17 KB 538 MB 0.08 s 0.10 s 0.33 s 2.3 MB 0.5 MB

Average 197 KB 124 MB 0.10 s 0.12 s 0.36 s 2.5 MB 0.5 MB

Table 3.2: McFly’s checkpoint performance. McFly takes a fraction of a second to create
or restore a checkpoint. Checkpoints are also significantly smaller than the size of the
browser process they capture.

Program Overhead Startup

Color-Game 4% 4.5 s

CRUD 0% 3.2 s

PacMan 6% 4.7 s

RayTrace (GUI) 5% 2.9 s

Average 4% 3.8 s

Table 3.3: McFly’s reverse-debugging overhead. Overall, McFly imposes low overhead
on the benchmark applications (up to 6% w/ checkpoints every 2 seconds) and requires a
short one-time startup cost to initialize efficient reverse-step debugging.

stepping backwards in time involves more costly operations. Specifically, stepping back-

wards involves resuming execution from the nearest checkpoint and playing forwards to

the JavaScript statement of interest. In addition, the first time the developer steps back-

wards, the debugger creates a checkpoint just prior to the JavaScript event that executes

the statement of interest.

McFly’s step backwards overhead has two components:

• Startup Cost: The first time the developer steps backwards, McFly replays the

execution from the nearest checkpoint and creates a new checkpoint just prior to the

JavaScript event of interest.
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• Resuming Execution from Checkpoint: Once the startup cost is paid, the cost of

subsequent step backwards operations within the same JavaScript event is dominated

by the time to resume from the newly created checkpoint.

I drive each benchmark through a fixed series of events using a PowerShell script that

provides application inputs. Each script lasts approximately 10 seconds. I run all bench-

mark programs and checkpoint their state every second for the checkpoint cost evaluation

in order to collect more data points, and every two seconds for the startup cost evaluation

to reflect a more representative value for everyday usage. I calculate the average time to

resume from a checkpoint (from disk), and the time to take the first backwards step from

10 random breakpoints. From the results, I observe the following:

McFly’s stepping operations run at interactive speeds in the common case. After

paying a one-time startup fee, the time to execute a backwards step in McFly is dominated

by the time it takes to resume from the nearest checkpoint (0.36s on average, as shown in

Table 3.2).

McFly imposes an acceptable backwards step startup cost. This startup cost is,

on average, 3.8 seconds on the benchmark applications or roughly twice the checkpoint rate

(Table 3.3).

3.3.4 Overhead

To be usable, McFly must not impose significant time and space overheads during

normal web application execution. The following metrics contribute to McFly’s runtime

and space overheads:

• Log Growth: The growth rate of the nondeterminism and I/O log. Since a fast-

growing log will exhaust disk and memory resources, this metric bounds the practical

duration of program executions that McFly can support.

• Checkpoint Size: The size of application checkpoints, which McFly takes at a

regular and configurable interval during the original execution. If checkpoints are

large, then it will be impractical to take frequent checkpoints, which increases the

35



Program Log Growth

Color-Game 0.6 KB/s

CRUD 0.2 KB/s

PacMan 1.5 KB/s

RayTrace (GUI) 0.9 KB/s

Average 0.8 KB/s

Figure 3.1: McFly’s log overhead. McFly’s uncompressed nondeterminism and I/O log
grows slowly.

initial cost return to a specific point in an execution. The compressed size indicates

the checkpoint’s size on disk when compressed with gzip.

• Checkpoint Creation Time: The amount of time it takes to create a checkpoint.

If it takes a long time to create a checkpoint, then McFly will induce noticeable

slowdowns during the initial execution of the program.

To measure these, I again drive each benchmark through a fixed series of events using

a PowerShell script for approximately 10 seconds. For checkpoint operations, I run each

benchmark in a configuration that takes a checkpoint every second. For log growth, I run

each benchmark without taking any checkpoints, maximizing log size. For overall overhead

during a normal execution, I measure the runtime of each benchmark in a configuration

that takes a checkpoint every two seconds, the default configuration, and compare with the

benchmark’s runtime without McFly.

As Table 3.2 shows, checkpoint creation takes less than an eighth of a second on the

benchmark applications. McFly takes an average of 100 milliseconds to create a checkpoint

and 120 milliseconds to serialize the checkpoint to disk. McFly’s checkpoint operations

are fast enough to support frequent checkpoints with acceptable overhead.

McFly checkpoints compress to less than a megabyte on the benchmark applica-

tions (Table 3.2). McFly checkpoints contain the web application’s complete state as a

lightweight high-level representation that is amenable to compression. Compressed McFly

checkpoints are two orders of magnitude smaller than the browser’s memory footprint at

the process-level.
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McFly’s nondeterminism and I/O log grows at less than 2KB/s (Figure 3.1). The

benchmark with the most nondeterminism, PacMan, has the largest log growth rate of

1.5KB/s. At that rate, McFly could record PacMan’s execution for over 11 years on a

500GB hard drive.

With checkpoints every two seconds, McFly’s overall overhead is 4% on average

on the benchmark applications (Table 3.3). In some cases, such as CRUD, McFly imposes

no overhead because checkpoints occur between JavaScript events, when the application is

waiting for user input. McFly can impose even lower runtime overheads in exchange for

longer step backwards startup costs with a lower checkpoint rate during execution.

3.4 Conclusion

This chapter presented McFly, the first time-traveling debugger for web applications.

McFly provides accurate time-travel debugging that maintains JavaScript and visual state

in sync at all times. I show that McFly lets developers freely step forwards and backwards

through a web application’s execution at interactive speed. Core parts of McFly have been

incorporated into a time-traveling debugger product from Microsoft.
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CHAPTER 4

BLEAK: AUTOMATICALLY DEBUGGING MEMORY LEAKS IN
WEB APPLICATIONS

Despite the presence of garbage collection in managed languages like JavaScript, mem-

ory leaks remain a serious problem. In the context of web applications, these leaks are

especially pervasive and difficult to debug. Web application memory leaks can take many

forms, including failing to dispose of unneeded event listeners, repeatedly injecting iframes

and CSS files, and failing to call cleanup routines in third-party libraries. Leaks degrade

responsiveness by increasing GC frequency and overhead, and can even lead to browser

tab crashes by exhausting available memory. Because previous leak detection approaches

designed for conventional C, C++ or Java applications are ineffective in the browser envi-

ronment, tracking down leaks currently requires intensive manual effort by web developers.

This chapter introduces BLeak (Browser Leak debugger), the first system for auto-

matically debugging memory leaks in web applications. BLeak leverages the following fact:

over a single session, users repeatedly return to the same visual state in modern web sites,

such as Facebook, Airbnb, and Gmail. For example, Facebook users repeatedly return to

the news feed, Airbnb users repeatedly return to the page listing all properties in a given

area, and Gmail users repeatedly return to the inbox view.

I observe that these round trips can be viewed as an oracle to identify leaks. Because

visits to the same (approximate) visual state should consume roughly the same amount of

memory, sustained memory growth between visits is a strong indicator of a memory leak.

BLeak builds directly on this observation to find memory leaks in web applications, which

(as §7.3 shows) are both widespread and severe.

To use BLeak, a developer provides a short script (17–73 LOC on our benchmarks)

to drive a web application in a loop that takes round trips through a specific visual state.

BLeak then proceeds automatically, identifying memory leaks, ranking them, and locating
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their root cause in the source code. BLeak first uses heap differencing to locate locations in

the heap with sustained growth between each round trip, which it identifies as leak roots. To

directly identify the root causes of growth, BLeak employs JavaScript rewriting to target

leak roots and collect stack traces when they grow. Finally, when presenting the results to

the developer, BLeak ranks leak roots by return on investment using a novel metric called

LeakShare that prioritizes memory leaks that free the most memory with the least effort by

dividing the “credit” for retaining a shared leaked object equally among the leak roots that

retain them. This ranking focuses developer effort on the most important memory leaks

first.

Guided by BLeak, I identify and fix over 50 memory leaks in popular JavaScript li-

braries and applications including Airbnb, AngularJS, jQuery, Google Analytics, and the

Google Maps SDK. BLeak has a median precision of 100% (97% on average). Its precise

identification of root causes of leaks makes it relatively straightforward for us to fix nearly

all of the leaks I identify (all but one). Fixing these leaks reduces heap growth by 94%

on average, saving from 0.5 MB to 8 MB per return trip to the same visual state. I have

submitted patches for all of these leaks to the application developers; at the time of writing,

16 have already been accepted and 4 are in the process of code review.

4.1 BLeak Overview

This section presents an overview of the techniques BLeak uses to automatically detect,

rank, and diagnose memory leaks. I illustrate these by showing how to use BLeak to debug

the Firefox memory leak presented in Section 2.2.

Input script: Developers provide BLeak with a simple script that drives a web application

in a loop through specific visual states. A visual state is the resting state of the GUI after

the user takes an action, such as clicking on a link or submitting a form. The developer

specifies the loop as an array of objects, where each object represents a specific visual state,

comprising (1) a check function that checks the preconditions for being in that state, and

(2) a transition function next that interacts with the page to navigate to the next visual

state in the loop. The final visual state in the loop array transitions back to the first,

forming a loop.
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1 exports.loop = [

2 // Open a source document

3 {

4 check: function() {

5 const nodes = $('.node');

6 // No documents are open

7 return $('.source-tab').length === 0 &&

8 // Target doc appears in doc list

9 nodes.length > 1 && nodes[1].innerText === "main.js";

10 },

11 next: function() { $('.node')[1].click(); }

12 },

13 // Close the document after it loads

14 {

15 check: function() {

16 // Contents of main.js are in editor

17 return $('.CodeMirror-line').length > 2 &&

18 // Editor displays tab for main.js

19 $('.source-tab').length === 1 &&

20 // Tab contains a close button

21 $('.close-btn').length === 1;

22 },

23 next: function() { $('.close-btn').click(); }

24 }];

Figure 4.1: BLeak input. This script runs the Firefox debugger in a loop, and is the only
input BLeak requires to automatically locate memory leaks. For brevity, I modify the
script to use jQuery syntax.

Figure 4.1 presents a loop for the Firefox debugger that opens and closes a source file in

the debugger’s text editor. The first visual state occurs when there are no tabs open in the

editor (line 7), and the application has loaded the list of documents in the application it is

debugging (line 9); this is the default state of the debugger when it first loads. Once the

application is in that first visual state, the loop transitions the application to the second

visual state by clicking on main.js in the list of documents to open it in the text editor

(line 11). The application reaches the second visible state once the debugger displays the

contents of main.js (line 17). The loop then closes the tab containing main.js (line 23),

transitioning back to the first visual state.

Locating leaks: From this point, BLeak proceeds entirely automatically. BLeak uses the

developer-provided script to drive the web application in a loop. Because object instances

can change from snapshot to snapshot, BLeak tracks paths instead of objects, letting it

spot leaks even when a variable or object property is regularly updated with a new and
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larger object. For example, history = history.concat(newItems) overwrites history with

a new and larger array.

After each visit to the first visual state in the loop, BLeak takes a heap snapshot and

tracks specific paths from GC roots that are continually growing. BLeak treats a path as

growing if the object identified by that path gains more outgoing references (e.g., when an

array expands or when properties are added to an object).

For the Firefox debugger, BLeak notices four heap paths that are growing each round

trip: (1) an array within the codeMirror object that contains scroll event listeners, and

internal browser event listener lists for (2) mouseover, (3) mouseup, and (4) mousedown events

on the DOM element containing the text editor. Since these objects continue to grow over

multiple loop iterations (the default setting is eight), BLeak marks these items as leak roots

as they appear to be growing without bound.

Ranking leaks: BLeak uses the final heap snapshot and the list of leak roots to rank

leaks by return on investment using a novel but intuitive metric I call LeakShare (§4.2.3)

that prioritizes memory leaks that free the most memory with the least effort. LeakShare

prunes objects in the graph reachable by non-leak roots, and then splits the credit for

remaining objects equally among the leak roots that retain them. Unlike retained size (a

standard metric used by all existing heap snapshot tools), which only considers objects

uniquely owned by leak roots, LeakShare correctly distributes the credit for the leaked

Preview objects among the four different leak roots since they all must be removed to

eliminate the leak.

Diagnosing leaks: BLeak next reloads the application and uses its proxy to transparently

rewrite all of the JavaScript on the page, exposing otherwise-hidden edges in the heap as

object properties. BLeak uses JavaScript reflection to instrument identified leak roots to

capture stack traces when they grow and when they are overwritten (not just where they

were allocated). With this instrumentation in place, BLeak uses the developer-provided

script to run one final iteration of the loop to collect stack traces. These stack traces directly

zero in on the code responsible for leak growth.

Output: Finally, BLeak outputs its diagnostic report: a ranked list of leak roots (ordered

by LeakShare), together with the heap paths that retain them and stack traces responsible
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Figure 4.2: BLeak output. A snippet from BLeak’s memory leak report for the Firefox
debugger. Clicking on a memory leak reveals a list of stack traces, and clicking on a stack
frame navigates the source code viewer to the relevant JavaScript statement. BLeak points
directly to the code in Figure 2.1 responsible for the memory leak.

for their growth. BLeak displays this information interactively to the developer via a web

application; Figure 4.2 displays a screenshot of BLeak’s output for the Firefox debugger,

which points directly to the code responsible for the memory leak from Figure 2.1.

Summary: Using BLeak, the only developer effort required is creating a short script

to drive the web application in a loop. BLeak then locates memory leaks and provides

detailed information pointing to the source code responsible. With this information in hand,

I was able to discover four new memory leaks in the Firefox debugger, and quickly develop

a fix that removes the event listeners when the user closes the document. This fix has been

incorporated in the latest version of the debugger.

4.2 Algorithms

This section formally describes the operation of BLeak’s core algorithms for detecting

(§4.2.1), diagnosing (§4.2.2), and ranking leaks (§4.2.3).
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4.2.1 Memory Leak Detection

The input to BLeak’s memory leak detection algorithm is a set of heap snapshots

collected during the same visual state, and the output is a set of paths from GC roots that

are growing across all snapshots. I call these paths leak roots. BLeak considers a path

to be growing if the object at that path has more outgoing references than it did in the

previous snapshot. To make the algorithm tractable, BLeak only considers the shortest

path to each specific heap item.

Each heap snapshot contains a heap graph G = (N,E) with a set of nodes N that

represent items in the heap, and edges E where each edge (n1, n2, l) ∈ E represents a

reference from node n1 to n2 with label l. A label l is a tuple containing the type and name

of the edge. Each edge’s type is either a closure variable or an object property. An edge’s

name corresponds to the name of the closure variable or object property. For example, the

object O = { foo: 3 } has an edge e from O to the number 3 with label l = (property, “foo”).

A path P is simply a list of edges (e1, e2, . . . , en) where e1 is an edge from the root node

(G.root).1

For the first heap snapshot, BLeak conservatively marks every node as growing. For

subsequent snapshots, BLeak runs PropagateGrowth (Figure 4.3) to propagate the

growth flags from the previous snapshot to the new snapshot, and discards the previous

snapshot. On line 2, PropagateGrowth initializes every node in the new graph to not

growing to prevent spuriously marking new growth as growing in the next run of the al-

gorithm. Since the algorithm only considers paths that are the shortest path to a specific

node, it is able to associate growth information with the terminal node which represents a

specific path in the heap.

PropagateGrowth runs a breadth-first traversal across shared paths in the two

graphs, starting from the root node that contains the global scope (window) and the DOM.

The algorithm marks a node in the new graph as growing if the node at the same path in

the previous graph is both growing and has fewer outgoing edges (line 8). As a result, the

1For simplicity, I describe heap graphs as having a single root.
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PropagateGrowth(G,G′)

1 Q = [(G.root , G′.root)], G′.root .mark = true
2 for each node n ∈ G′.N
3 n.growing = false
4 while |Q| > 0
5 (n, n′) = Dequeue(Q)
6 En = GetOutgoingEdges(G,n)
7 E′

n = GetOutgoingEdges(G′, n′)
8 n′.growing = n.growing ∧ |En| < |E′

n|
9 for each edge (n1, n2, l) ∈ En

10 for each edge (n′
1, n

′
2, l

′) ∈ E′
n

11 if l == l′ and n′
2.mark == false

12 n′
2.mark = true

13 Enqueue((n2, n
′
2))

Figure 4.3: PropagateGrowth algorithm. PropagateGrowth propagates a node’s
growth status (n.growing) between heap snapshots. BLeak considers a path in the heap
to be growing if the node at the path continually increases its number of outgoing edges.

algorithm will only mark a heap path as a leak root if it consistently grows between every

snapshot, and if it has been present since the first snapshot.

PropagateGrowth only visits paths shared between the two graphs (line 11). At a

given path, the algorithm considers an outgoing edge en in the old graph and e′n in the

new graph as equivalent if they have the same label. In other words, the edges have to

correspond to the same property name on the object at that path, or a closure variable

with the same name captured by the function at that path.

After propagating growth flags to the final heap snapshot, BLeak runs FindLeak-

Paths (Figure 4.4) to record growing paths in the heap. This traversal visits edges in

the graph to capture the shortest path to all unique edges that point to growing nodes.

For example, if a growing object O is located at window.O and as variable p in the func-

tion window.L.z, FindLeakPaths will report both paths. This property is important for

diagnosing leaks, as I discuss in Section 4.2.2.

BLeak takes the output of FindLeakPaths and groups it by the terminal node of

each path. Each group corresponds to a specific leak root. This set of leak roots forms the

input to the ranking algorithm.

44



FindLeakPaths(G)

1 Q = [], TGr = {}
2 for each edge e = (n1, n2, l) ∈ G.E where n1 == G.root
3 e.mark = true
4 Enqueue(Q, (nil, e))
5 while |Q| > 0
6 t = Dequeue(Q)
7 (tp, (n1, n2, l)) = t
8 if n2.growing == true
9 TGr = TGr ∪ {t}

10 for each edge e = (n′
1, n

′
2, l

′) ∈ G.E
11 if n′

1 == n2 and e.mark == false
12 e.mark = true
13 Enqueue(Q, (t, e))
14 return TGr

Figure 4.4: FindLeakPaths algorithm. FindLeakPaths returns paths through the heap
to leaking nodes. The algorithm encodes each path as a list of edges formed by tuples (t).

4.2.2 Diagnosing Leaks

Given a list of leak roots and, for each root, a list of heap paths that point to the root,

BLeak diagnoses leaks through hooks that run whenever the application performs any of

the following actions:

• Grows a leak root with a new item. This growth occurs when the application adds a

property to an object, an element to an array, an event listener to an event target, or

a child node to a DOM node. BLeak captures a stack trace, and associates it with

the new item.

• Shrinks a leak root by removing any of the previously-mentioned items. BLeak

removes any stack traces associated with the removed items, as the items are no

longer contributing to the leak root’s growth.

• Assigns a new value to a leak root, which typically occurs when the application copies

the state from an old version of the leaking object into a new version. BLeak re-

moves all previously-collected stack traces for the leak root, collects a new stack trace,
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CalculateLeakShare(G,LR)

1 Q = [G.root ], visitId = 0
2 for each node n ∈ G.N
3 n.mark = −1
4 while |Q| > 0
5 n = Dequeue(Q)
6 if n /∈ LR and n.mark 6= visitId
7 n.mark = visitId
8 for each edge (n1, n2, l) ∈ G.E where n1 == n
9 Enqueue(Q,n2)

10 for each node nroot ∈ LR
11 visitId += 1
12 Q = [nroot]
13 while |Q| > 0
14 n = Dequeue(Q)
15 if n.mark 6= 0 and n.mark 6= visitId
16 n.mark = visitId
17 n.counter = n.counter + 1
18 for each (n1, n2, l) ∈ G.E where n1 == n
19 Enqueue(Q,n2)
20 for each node nroot ∈ LR
21 visitId += 1
22 Q = [nroot]
23 while |Q| > 0
24 n = Dequeue(Q)
25 if n.counter 6= 0 and n.mark 6= visitId
26 n.mark = visitId
27 nroot.LS += n.size/n.counter
28 for each (n1, n2, l) ∈ G.E where n1 == n
29 Enqueue(Q,n2)

Figure 4.5: CalculateLeakShare algorithm. CalculateLeakShare calculates the
LeakShare metric (n.LS ) for a set of leak roots LR.

associates it with all of the items in the new value, and inserts the grow and shrink

hooks into the new value.

BLeak runs one loop iteration of the application with all hooks installed. This process

generates a list of stack traces responsible for growing each leak root.

4.2.3 Leak Root Ranking

BLeak uses a new metric to rank leak roots by return on investment that I call Leak-

Share (Figure 4.5). LeakShare prioritizes memory leaks that free the most memory with
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the least effort by dividing the “credit” for retaining a shared leaked object equally among

the leak roots that retain them.

LeakShare first marks all of the items in the heap that are reachable from non-leaks

via a breadth-first traversal that stops at leak roots (line 4). These nodes are ignored

by subsequent traversals. Then, LeakShare performs a breadth-first traversal from each

leak root that increments a counter on all reachable nodes (line 10). Once this process is

complete, every node has a counter containing the number of leak roots that can reach it.

Finally, the algorithm calculates the LeakShare of each leak root (n.LS ) by adding up the

size of each reachable node divided by its counter, which splits the “credit” for the node

among all leak roots that can reach it (line 20).

4.3 Implementation

Applying BLeak’s algorithms to web applications poses a number of significant engi-

neering challenges:

Leak identification and ranking: BLeak uses heap snapshots to identify and rank leaks,

but many native methods (implemented in C++) do not expose their state to JavaScript

heap snapshots. These native methods can harbor memory leaks and reduce the apparent

severity of leaks that retain native state.

Leak diagnosis: BLeak’s diagnostic strategy assumes that it can collect stack traces when

relevant growth occurs, but the browser hides some state and state updates from JavaScript

reflection. Native methods bypass JavaScript reflection and mutate state. JavaScript re-

flection cannot introspect into function closures, necessitating program transformations to

expose this state. Transforming a web application is difficult because it can load code at any

time from remote servers over HTTP or encrypted HTTPS. In addition, JavaScript contains

dynamic features that are necessary but challenging to support with code transformations,

including eval and with statements.

BLeak consists of three main components that work together to overcome these chal-

lenges (see Figure 4.6): (1) a driver program orchestrates the leak debugging process

(§4.3.1); (2) a proxy transparently performs code rewriting on-the-fly on the target web
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Figure 4.6: BLeak implementation overview. BLeak consists of a driver program that
orchestrates the leak detection process (§4.3.1), a proxy that transparently rewrites the
target web application’s JavaScript during leak diagnosis (§4.3.2), and an agent script em-
bedded in the application that hooks into relevant web APIs and leak roots (§4.3.3). Given
a short developer-provided configuration script, BLeak automatically produces a leak re-
port. White rectangles are BLeak components, gray items are automatically rewritten by
the proxy during leak diagnosis, and black items are unmodified.

application and eval-ed strings (§4.3.2); and (3) an agent script embedded within the appli-

cation exposes hidden state for leak detection and growth events for leak diagnosis (§4.3.3).

4.3.1 BLeak Driver

The BLeak driver is responsible for orchestrating the leak debugging process. To initi-

ate leak debugging, the driver launches BLeak’s proxy and a standard version of the Google

Chrome browser with an empty cache, a fresh user profile, and a configuration that uses

the BLeak proxy. The driver connects to the browser via the standard Chrome DevTools

Protocol [47], navigates to the target web application, and uses the developer-provided

configuration file to drive the application in a loop. After each repeated visit to the first

visual state in the loop, the driver takes a heap snapshot via the remote debugging protocol,

and runs PropagateGrowth (Figure 4.3) to propagate growth information between heap

snapshots. Prior to taking a heap snapshot, the driver calls a method in the BLeak agent

embedded in the web application that prepares the DOM for snapshotting (§4.3.3.2).
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At the end of a configurable number of loop iterations (the default is 8), the driver shifts

into diagnostic mode. The driver runs FindLeakPaths to locate all of the paths to all

of the leak roots (Figure 4.4), configures the proxy to perform code rewriting for diagnosis

(§4.3.2), and reloads the page to pull in the transformed version of the web application.

The driver runs the application in a single loop iteration before triggering the BLeak

agent to insert diagnostic hooks that collect stack traces at all of the paths reported by

FindLeakPaths (§4.3.3.1). Then, the driver runs the application in a final loop before

retrieving the collected stack traces from the agent. Finally, the driver runs LeakShare

(Figure 4.5) to rank the leak roots and generates a memory leak report.

4.3.2 BLeak Proxy

The BLeak proxy uses mitmproxy [31] to transparently intercept all HTTP and HTTPS

traffic between the web application and the network. The proxy rewrites the web appli-

cation’s JavaScript during leak diagnosis to move closure variables into explicit scope ob-

jects, chains scope objects together to enable scope lookup at runtime, and exposes an

HTTP endpoint for transforming eval-ed code. The proxy also injects the BLeak agent

and developer-provided configuration file into the application, uses Babel [11] to trans-

late emerging JavaScript features into code that BLeak can understand, and supports the

JavaScript with statement. Due to space constraints I do not discuss these features further.

Exposing closure variables for diagnosis: During leak diagnosis, the BLeak proxy

rewrites the JavaScript on the webpage, including JavaScript inlined into HTML, to make it

possible for the BLeak agent to instrument closure variables. Since this process distorts the

application’s memory footprint, BLeak does not use this process during leak detection and

ranking. This code transformation moves local variables into JavaScript “scope” objects

(Imagen uses a similar procedure to implement JavaScript heap snapshots [74]). Scope

objects are ordinary JavaScript objects where property foo refers to the local variable foo;

the browser-provided window object functions as a global scope object, and works identically.

BLeak adds a scope property to all JavaScript Function objects that refer to that

function’s defining scope, and rewrites all variable reads and writes to refer to properties in
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the scope object. With this transformation, the BLeak agent can capture variable updates

in the transformed program in the same manner as object properties.

As an optimization, BLeak performs a conservative escape analysis to avoid transform-

ing variables that are not captured by any function closures. However, if the program calls

eval or uses the with statement, then BLeak assumes that all reachable variables escape.

The scope object transformation treats function arguments differently than local vari-

ables. A function’s arguments are reflected in an implicit array-like object called arguments,

and updates to an argument also update the corresponding element in arguments.2 To pre-

serve this behavior, BLeak rewrites updates to arguments so that it simultaneously updates

the property in the scope object and the original argument variable.

Runtime scope lookup: The JavaScript transformation knows statically which scope

objects contain which variables, but the BLeak agent needs this information at runtime

to instrument the correct scope object for a given variable. One solution would be to reify

scope information into runtime metadata objects that the agent can query, but this would

add further runtime and memory overhead. Instead, the proxy uses a simpler design that

uses JavaScript’s built-in prototype inheritance to naturally encode scope chains. Each

scope object inherits from its parent, and the outermost scope object inherits from the

browser-provided window object. To perform scope lookup, the BLeak agent uses JavaScript

reflection to find the first scope object in the chain that defines a property corresponding

to the variable.

eval support: eval evaluates a string as code within the context of the call site, posing two

key challenges: (1) the string may not be known statically, and (2) the string may refer to

outer variables that the code transformation moved into scope objects. The proxy overcomes

these challenges by cooperating with the BLeak agent. The proxy transforms all references

to eval into references to a BLeak agent-provided function that sends the program text

synchronously to the proxy for transformation via an HTTP POST. The proxy transforms

eval-ed code so that references to variables not explicitly defined in the new code refer

2This behavior does not occur in “strict mode”, but many prominent libraries do not opt into “strict
mode”.
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to a single scope object, and then returns the transformed code to the agent. The agent

creates the single scope object as an ECMAScript 2015 Proxy object [100] that interposes

on property reads and writes to relay them to the appropriate scope object using runtime

scope lookup (Proxy objects are available in modern versions of all major browsers). Finally,

the agent calls eval on the transformed code. Since this code transformation is independent

of calling context, the BLeak agent can cache and re-use transformed code strings.

4.3.3 BLeak Agent

The BLeak agent is a JavaScript file that BLeak automatically embeds in the web

application; it exposes globally-accessible functions that the BLeak driver can invoke via

the Chrome DevTools Protocol. The agent is responsible for installing diagnostic hooks

that collect stack traces for growth events. The agent also exposes hidden state in the

browser’s native methods so that PropagateGrowth (Figure 4.3) can find leaks within

or accessible through this state.

4.3.3.1 Diagnostic Hooks

To diagnose memory leaks as described in Section 4.2.2, the BLeak agent needs to

interpose on leak root growth, shrinkage, and assignment events. Although all leak roots

are JavaScript objects, some types of objects have native browser methods that implicitly

grow, shrink, or assign to properties on the object, necessitating interface-specific hooks:

Object hooks: BLeak uses Proxy objects to detect when objects gain and lose properties.

These Proxy objects wrap JavaScript objects and expose hooks for various object operations,

including when the application adds, deletes, reads, or writes properties on the object.

Proxy objects do not automatically take the place of the object they wrap in the heap,

so the BLeak agent must replace all references to the object with the proxy to completely

capture all growth/shrinkage events. If the agent fails to replace a reference, then it will not

capture any object updates that occur through that reference. BLeak can miss a reference

if it does not appear in the heap snapshot used for FindLeakPaths (Figure 4.4). This

could happen if the heap path to the reference is determined by some external factor, such

as the clock, a random number, or the amount of time spent on the page. This behavior
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appears to be rare; in our evaluation, BLeak reports all but one of the relevant stack traces

for all of the true leaks it finds.

Proxy objects are semantically equivalent to the original object except that programs can

observe that Proxy(O) 6= O. Since BLeak cannot guarantee that it replaces all references

to O with Proxy(O), a program could run incorrectly if it directly compared these two

objects. To preserve correctness, the BLeak proxy also transforms the binary operations

==, ===, !=, !== into calls to an agent function that treats Proxy(O) as equal to O. The

BLeak agent also reimplements the functions Array.indexOf and Array.lastIndexOf, which

report the index of a particular item in an array, so that calls with Proxy objects function

appropriately.

Array hooks: JavaScript arrays contain a number of built-in functions that mutate the

array without invoking Proxy hooks. The agent wraps Array’s push, pop, unshift, shift,

and splice functions to appropriately capture growth / shrinkage / assignment events.

DOM node hooks: Applications can add and remove nodes from the DOM tree via

browser-provided interfaces; these operations are not captured via Proxy objects. In order

to capture relevant events on DOM nodes, the agent must wrap a number of functions

and special properties. On Node objects, it wraps textContent, appendChild, insertBefore,

normalize, removeChild, and replaceChild. On Element objects, it wraps innerHTML, outer-

HTML, insertAdjacentElement, insertAdjacentHTML, insertAdjacentText, and remove.

Leak root assignment hooks: Given a path P = (e1, . . . , en) to a leak root, the agent

instruments all edges e ∈ P to capture when the program overwrites any objects or variables

in the path from the GC root to the leak root. For example, given the path window.foo.bar,

the program can overwrite bar by assigning a new value to foo or bar. When a leak root

gets overwritten with a new value, the agent also wraps that value in a Proxy object.

To interpose on these edges, the agent uses JavaScript reflection to replace object prop-

erties with getters and setters that interpose on its modification. Since the BLeak proxy

rewrites closure variables into properties on scope objects (§4.3.2), this approach works for

all edges in the heap graph.
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Figure 4.7: Impact of fixing memory leaks found with BLeak. Graphs display live heap
size over round trips; error bars indicate the 95% confidence interval. Fixing the reported
leaks eliminates an average of 93% of all heap growth.

4.3.3.2 Exposing Hidden State

Some of the browser’s native methods hide state from heap snapshots, preventing BLeak

from accurately identifying and ranking memory leaks involving this state. To overcome this

limitation, the agent builds a mirror of hidden state using JavaScript objects. Using these

mirrors, BLeak can locate and diagnose memory leaks that are in or accessible through

DOM nodes, event listeners, and partially applied functions.

DOM nodes: The agent builds a mirror of the DOM tree as JavaScript objects before the

BLeak driver takes a heap snapshot, and installs it at the global variable $$$DOM$$$. Each

node in the tree contains the array childNodes that contains a JavaScript array of (mirror)

nodes, and a property root that points to the original native DOM node.

Event listeners: The agent overwrites addEventListener and removeEventListener to ea-

gerly maintain an object containing all of the installed listeners. Because this object is

maintained eagerly, ordinary object and array hooks capture event listener list growth.

Function.bind: The bind function provides native support for partial application, and im-

plicitly retains the arguments passed to it. The agent overwrites this function with a pure

JavaScript version that retains the arguments as ordinary JavaScript closure variables.

4.4 Evaluation

I evaluate BLeak by running it on production web applications. The evaluation ad-

dresses the following questions:

• Precision: How precise is BLeak’s memory leak detection? (§4.4.2)

53



• Accuracy of diagnoses: Does BLeak accurately locate the code responsible for mem-

ory leaks? (§4.4.2)

• Overhead: Does BLeak impose acceptable overhead? (§4.4.2)

• Impact of discovered leaks: How impactful are the memory leaks that BLeak finds?

(§4.4.3)

• Utility of ranking: Is LeakShare an effective metric for ranking the severity of memory

leaks? (§4.4.4)

• Staleness vs. growth: How does BLeak compare to a staleness-based leak detector?

(§4.4.5)

The evaluation finds 59 distinct memory leaks across five web applications, all of which

were unknown to application developers. Of these, 27 corresponded to known-but-unfixed

memory leaks in JavaScript library dependencies, of which only 6 were independently diag-

nosed and had pending fixes. I reported all 32 new memory leaks to the relevant developers

along with my fixes; 16 are now fixed, and 4 have fixes in code review. I found new leaks in

popular applications and libraries including Airbnb, Angular JS (1.x), Google Maps SDK,

Google Tag Manager, and Google Analytics. Appendix A lists each of these memory leaks,

the application or library responsible, and links to bug reports with fixes.

I run BLeak on each web application for 8 round trips through specific visual states

to produce a BLeak leak report, as in Figure 4.2. I describe these loops using only 17–73

LOC; Appendix B contains the code for each loop. This process takes less than 15 minutes

per application on the evaluation machine, a MacBook Pro with a 2.9 GHz Intel Core i5

and 16GB of RAM. For each application, I analyze the reported leaks, write a fix for each

true leak, measure the impact of fixing the leaks, and compare LeakShare with alternative

ranking metrics.

4.4.1 Applications

Because there is no existing corpus of benchmarks for web application memory leak

detection, I created one. The corpus consists of five popular web applications that both
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Loop Leak False Distinct Stale Growth

Program LOC Roots Pos. Leaks Leaks Prec. Reduction

Airbnb 17 32 2 32 4 94% 1.04 MB (81.0%)

Piwik 32 17 0 11 4 100% 8.14 MB (99.3%)

Loomio 73 10 1 9 4 90% 2.83 MB (98.3%)

Mailpile 37 4 0 3 1 100% 0.80 MB (91.8%)

Firefox Debugger 17 4 0 4 0 100% 0.47 MB (98.2%)

Total / mean: 35 67 3 59 13 96.8% 2.66 MB (93.7%)

Table 4.1: BLeak precision and accuracy results. On average, BLeak finds these leaks
with over 95% precision, and fixing them eliminates over 90% of all heap growth. 77% of
these leaks would not be found with a staleness metric (§4.4.5).

comprise large code bases and whose overall memory usage appeared to be growing over

time. I primarily focus on open source web applications because it is easier to develop

fixes for the original source code; this represents the normal use case for developers. I also

include a single closed-source website, Airbnb, to demonstrate BLeak’s ability to diagnose

websites in production. I present each web application, highlight a selection of the libraries

they use, and describe the loop of visual states we use in the evaluation:

Airbnb [5]: A website offering short-term rentals and other services, Airbnb uses React,

Google Maps SDK, Google Analytics, the Criteo OneTag Loader, and Google Tag Manager.

BLeak loops between the pages /s/all, which lists all services offered on Airbnb, and

/s/homes, which lists only homes and rooms for rent.

Piwik 3.0.2 [109]: A widely-used open-source analytics platform; I run BLeak on its

in-browser dashboard that displays analytics results. The dashboard primarily uses jQuery

and AngularJS. BLeak repeatedly visits the main dashboard page, which displays a grid

of widgets.

Loomio 1.8.66 [75]: An open-source collaborative platform for group decision-making.

Loomio uses AngularJS, LokiJS, and Google Tag Manager. BLeak runs Loomio in a loop

between a group page, which lists all of the threads in that group, and the first thread listed

on that page.
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Mailpile v1.0.0 [77]: An open-source mail client. Mailpile uses jQuery. BLeak runs

Mailpile’s demo [76] in a loop that visits the inbox and the first four emails in the inbox

(revisiting the inbox in-between emails).

Firefox Debugger (commit 91f5c63) [38]: An open-source JavaScript debugger written

in React that runs in any web browser. I run the debugger while it is attached to a Firefox

instance running Mozilla’s SensorWeb [97]. BLeak runs the debugger in a loop that opens

and closes SensorWeb’s main.js in the debugger’s text editor.

4.4.2 Precision, Accuracy, and Overhead

To determine BLeak’s leak detection precision and the accuracy of its diagnoses, I

manually check each BLeak-reported leak in the final report to confirm (1) that it is

growing without bound and (2) that the stack traces correctly report the code responsible

for the growth. To determine BLeak’s overhead, I log the runtime of the following specific

operations during automatic leak debugging: BLeak’s three core algorithms from §4.2

(Algs), proxy transformations from §4.3.2 (Proxy), and receiving and parsing heap snapshots

from Google Chrome (Snapshot). I was unable to gather overhead information for Airbnb,

the only closed-source application, because the company fixed the leaks I reported prior

to this experiment. Table 4.1 summarizes precision and accuracy results, and Table 4.2

summarizes overhead results.

BLeak has an average precision of 96.8%, and a median precision of 100%

on the evaluation applications. There are only three false positives. All point to an object

that continuously grows until some threshold or timeout occurs; developers using BLeak

can avoid these false positives by increasing the number of round trips. Two of the three

false positives are actually the same object located in the Google Tag Manager JavaScript

library.

With one exception, BLeak accurately identifies the code responsible for all

of the true leaks. BLeak reports stack traces that directly identifies the code responsible

for each leak. In cases where multiple independent source locations grow the same leak

root, BLeak reports all relevant source locations. For one specific memory leak, BLeak

fails to record a stack trace. Guided by BLeak’s leak reports, I was able to fix
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Runtime

Program Total Algs Proxy Snapshot

Piwik 224 s 7.1% 4.7% 50.3%

Loomio 149 s 3.7% 6.2% 37.9%

Mailpile 388 s 0.4% 1.0% 4.0%

Firefox Debugger 214 s 2.3% 37.9% 33.6%

Mean: 243.8 s 3.4% 12.5% 31.4%

Table 4.2: BLeak overhead results. BLeak takes less than 7 minutes to locate, rank, and
diagnose memory leaks in each open-source evaluation application.

every memory leak. Fixing each memory leak took approximately 15 minutes. Most

fixes involve adding simple cleanup hooks to remove unneeded references or logic to avoid

duplicating state every round trip.

BLeak locates, ranks, and diagnoses memory leaks in less than 7 minutes on

the open-source evaluation applications. BLeak’s core algorithms (PropagateGrowth,

FindLeakPaths, CalculateLeakShare) contribute less than 8% to that runtime. The

primary contribution to overhead on all benchmarks, with one exception, is receiving and

parsing Chrome’s JSON-based heap snapshots. The Firefox Debugger spends more time in

the proxy because it uses new JavaScript features that BLeak supports by invoking the

Babel compiler, which dominates proxy runtime for that application [11].

4.4.3 Leak Impact

To determine the impact of the memory leaks that BLeak reports, I measure each

application’s live heap size over 10 loop iterations with and without my fixes. I use BLeak’s

HTTP/HTTPS proxy to directly inject memory leak fixes into the application, which lets

us test fixes on closed-source websites like Airbnb. I run each application except Airbnb 5

times in each configuration (I run Airbnb only once per configuration for reasons discussed

in §4.4.4).

To calculate the leaks’ combined impact on overall heap growth, I calculate the average

live heap growth between loop iterations with and without the fixes in place, and take the

difference (Growth Reduction). For this metric, I ignore the first five loop iterations because

these are noisy due to application startup. Figure 4.7 and Table 4.1 present the results.
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Growth Reduction for Top Leaks Fixed

Program Metric 25% 50% 75%

Airbnb

LeakShare 0K 111K 462K

Retained Size 0K 0K 105K

Trans. Closure Size 0K 196K 393K

Loomio

LeakShare 0K 1083K 2878K

Retained Size 64K 186K 2898K

Trans. Closure Size 59K 67K 2398K

Mailpile

LeakShare 613K 817K 820K

Retained Size 613K 817K 820K

Trans. Closure Size 0K 0K 201K

Piwik

LeakShare 8003K 8104K 8306K

Retained Size 2073K 7969K 8235K

Trans. Closure Size 103K 110K 374K

Table 4.3: Performance of memory leak ranking metrics. The table displays growth reduc-
tion by metric after fixing quartiles of top ranked leaks. Bold indicates greatest reduction
(±1%). I omit Firefox because it has only four leaks which must all be fixed (see §2.2).
LeakShare generally outperforms or matches other metrics.

On average, fixing the memory leaks that BLeak reports eliminates over 93%

of all heap growth on the evaluation applications (median: 98.2%). These results suggest

that BLeak does not miss any significantly impactful leaks.

4.4.4 LeakShare Effectiveness

I compare LeakShare against two alternative ranking metrics: retained size and transi-

tive closure size. Retained size corresponds to the amount of memory the garbage collector

would reclaim if the leak root were removed from the heap graph, and is the metric that

standard heap snapshot viewers display to the developer [64,85,96,105]. The transitive clo-

sure size of a leak root is the size of all objects reachable from the leak root; Xu et al. use

this metric along with staleness to rank Java container memory leaks [150]. Since JavaScript

heaps are highly connected and frequently contain references to the global scope, I expect

this metric to report similar values for most leaks.

I measure the effectiveness of each ranking metric by calculating the growth reduction

(as in §4.4.3) over the application with no fixes after fixing each memory leak in ranked

order. I then calculate the quartiles of this data, indicating how much heap growth is
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eliminated after fixing the top 25%, 50%, and 75% of memory leaks reported ranked by a

given metric. I sought to write patches for each evaluation application that fix a single leak

root at a time, but this is not feasible in all cases. Specifically, one Airbnb patch fixes two

leak roots; one Mailpile patch (a jQuery bug) fixes two leak roots; and one Piwik patch,

which targeted a loop, fixes nine leak roots. In these cases, I apply the patch during a

ranking for the first relevant leak root reported.

I run each application except Airbnb for ten loop iterations over five runs for each unique

combination of metric and number of top-ranked leak roots to fix. I avoid running duplicate

configurations when multiple metrics report the same ranking. Airbnb is challenging to

evaluate because it has 30 leak roots, randomly performs A/B tests between runs, and

periodically updates its minified codebase in ways that break my memory leak fixes. As a

result, I was only able to gather one run of data for Airbnb for each unique configuration.

Table 4.3 displays the results.

In most cases, LeakShare outperforms or ties the other metrics. LeakShare

initially is outperformed by other metrics on Airbnb and Loomio because it prioritizes leak

roots that share significant state with other leak roots. Retained size always prioritizes leak

roots that uniquely own the most state, which provide the most growth reduction in the

short term. LeakShare eventually surpasses the other metrics on these two applications as

it fixes the final leak roots holding on to shared state.

4.4.5 Leak Staleness

I manually analyzed the leaks BLeak finds to determine whether they would also be

found using a staleness-based technique. I assume that, to avoid falsely reporting most

event listeners as stale, a staleness-based technique would exercise each event listener on

the page that could be triggered via normal user interaction. In this case, no memory

leaks stemming from event listener lists would be found by a staleness-based tool. Leaks in

internal application arrays and objects that emulate event listener lists for user-triggered

events would also not be found. Finally, I assume that active DOM elements in the DOM

tree would not be marked stale, since they are clearly in use by the webpage. Memory leaks

stemming from node lists in the DOM would also not be found by a staleness-based tech-
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nique. Of the memory leaks BLeak finds, at least 77% would not be found with

a staleness-based approach. Table 4.1 presents results per application (see Appendix A

for individual leaks).

4.5 Conclusion

This chapter presented BLeak, the first effective system for debugging client-side mem-

ory leaks in web applications. I show that BLeak has high precision and finds numerous

previously-unknown memory leaks in production web applications and libraries. BLeak is

open source [145], and is available for download at http://bleak-detector.org/.
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CHAPTER 5

BCAUSE: CAUSAL PROGRAM UNDERSTANDING FOR WEB
APPLICATIONS

Web applications are challenging to understand because they are pervasively asyn-

chronous. After a web application initializes, JavaScript code only executes in response

to browser events, which break application execution across thousands of short-duration

periods. It is challenging to track a web application’s control flow through these events, as

each event’s root causes are not always apparent.

This chapter introduces BCause, a framework for understanding asynchronous control

flow in web applications. During a browsing session, BCause records a trace of JavaScript

events and implicit control flow edges between JavaScript events. Once collected, BCause

can use the trace to reason about web application behavior and construct a causal graph of

the events in the execution. The causal graph is a weakly connected directed graph; every

node in the graph, which correspond to JavaScript events, can be reached from the root

node, which corresponds to the root HTML document of the web application, via edges

that correspond to asynchronous control flow edges. Thus, BCause can reason about the

root causes of every event in the execution by tracing a path back to the root node.

I demonstrate the accuracy and utility of BCause’s graphs by building AdBlame,

which uses the causal graph to predict the bandwidth consumption of a web application with

ad blocking enabled to within 2.2% of the ground truth. AdBlame uses BCause’s tracing

infrastructure to log program actions that may initiate network requests, and analyzes the

resulting causal graph to filter out requests that depend on blocked scripts and HTML

documents. On a corpus of production websites, I show that AdBlame is significantly

more accurate at predicting bandwidth savings than directly applying ad blocker filter rules

to a network traffic log.
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Figure 5.1: Snippet from the HTML5 standard that describes events on Image objects [146].
Setting the src property on an Image object causes the browser to download the image; if
the download succeeds, then the browser triggers load and loadend events. All JavaScript
events are specified informally in standards documents like this one.

5.1 Challenges

There are two primary challenges to building a causal graph of a web application’s

events: 1) determining the program actions that precede specific events, and 2) collecting

sufficient information from a program’s execution to construct the graph.

Specifying happens-before relations: In order to build a causal graph of a web ap-

plication’s events, it is necessary to understand what program actions may initiate (and

happen-before) specific JavaScript events. If event E1 performs program action A, and A

happens-before event E2, then there should be a link in the causal graph between E1 and

E2. For example, setting the src property on an image object initiates a network request to

fetch the image, which causes a load event to occur. In addition, before the web application

can observe the load event, it must register a JavaScript function to listen for the event

via addEventListener or the onload property. Thus, setting src and registering an event

listener on an image happen-before load.

Unfortunately, these happens-before relations are only informally specified in plain-

English standards documents. Figure 5.1 displays a snippet from the HTML5 standard

that describes when the load event occurs on Image objects. Previous systems that require

knowledge of event causality, including JavaScript race detectors [106, 113] and tools for

understanding program behavior [6,72,73], manually encode every happens-before relation

needed to support their use cases. As discussed further in Section 8.3, these systems miss
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many happens-before relations. For example, these systems do not recognize that setting

the src property on an Image object causes the load event to occur, but do recognize that

the program must register an event listener for load.

Collecting execution traces: Constructing a causal graph also requires collecting suffi-

cient information about a program’s execution. Many previous systems that reason about

event causality modify the web browser itself to collect this information [72,106,113], which

reduces the overhead of logging but limits portability across browsers and browser versions.

Other systems require no browser modifications, and instead use JavaScript reflection to

interpose on select browser interfaces [6,73]. All of these systems contain manually written

logging logic for each of the happens-before relations that they support, which is a fragile

and error-prone approach.

5.2 BCause Overview

This section provides an overview of how BCause supports identifying happens-before

relations between program actions and events, collects an execution trace, and uses the

trace to produce a causal graph.

Specifying happens-before relations: While previous systems rely on fragile hand writ-

ten happens-before logic, BCause takes a novel approach that automates the process of

inferring happens-before rules and generating logging code. BCause automatically classifies

browser interfaces into five distinct categories (§5.3) using WebIDL (§5.4.3) [81]. BCause

uses this classification to automatically infer most happens-before relations and to generate

JavaScript code that runs alongside the web application and logs causal information for each

type of interface. Since modern web browsers use WebIDL to generate bindings between

their native C++ codebases and JavaScript, BCause can rely upon browser implementa-

tions of web standards matching the interface specification. Using browser-supplied WebIDL

files, BCause will automatically support new web interfaces as browsers implement them.

When a happens-before relation is not evident from static type information, such as the

relation between the src property of an Image and the load event, I manually annotate

the relevant WebIDL file with the relation. Annotations are a well-supported feature of
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WebIDL, and browsers use them to inform code generation. BCause uses these happens-

before annotations to automatically generate the required logging logic.

Collecting a trace: To collect a trace, the developer opens a web browser configured to

use BCause, and navigates to their web application. While the developer interacts with

the web application, BCause logs important web application actions to disk, including:

• The start and end of every JavaScript event.

• The start and end of HTML and JavaScript initialization.

• Program actions that may initiate (and happen before) JavaScript events, HTML ini-

tialization, and JavaScript initialization. These program actions include event listener

registrations and HTML/JavaScript code that cause events to occur. Each program

action includes a stack trace that points to the JavaScript statements responsible for

the action.

Since JavaScript execution is single-threaded (i.e., triggered events wait for prior events

to finish executing), these trace entries are totally ordered by the sequence in which they

occur. BCause ends the trace when the developer closes the browser or navigates to a

different URL.

Constructing a causal graph: Given a trace file, BCause can construct a causal graph

of a web application’s events. Each node in the graph represents a JavaScript event or the

initialization of an HTML document. An edge from node A to node B indicates a program

action that happened during node A that caused node B to later occur, and contains a

stack trace pointing to the JavaScript code that caused the action to occur.

Using this graph, developers and automated tools can determine why a program is

performing certain actions, even when control flow edges are obscured by DOM interactions.

Figure 5.2 displays a subgraph of eBay’s behavior collected with BCause. The graph

displays the chain of activities that cause eBay to create an IFrame containing HTML from

the advertising service stags.bluekai.com:

1. The HTML of https://www.ebay.com/ contains an inline script on line 288. Inline

scripts execute in order as the HTML document loads.
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Figure 5.2: A subgraph of eBay.com’s causal graph collected with BCause. The graph
displays the chain of program actions that causes eBay to create an IFrame that points to
stags.bluekai.com, an advertising service.

2. The inline script adds an event listener on the HTML document’s load event, which

executes once the HTML document and its resources finish loading.

3. The event listener inserts a script element into the DOM via appendChild, and points

it to https://srv.main.ebayrtm.com/rtm by writing the src attribute. This action

causes the browser to fetch and execute the JavaScript code at that URL.

4. When rtm initializes, it injects a string containing HTML into the DOM via in-

sertAdjacentHTML, which contains an IFrame. The code then points the IFrame to

https://stags.bluekai.com/site/20093 by writing the src attribute. The browser

then fetches and executes the HTML at that URL.

Since each edge contains a full stack trace, BCause points developers directly to the lines

of code responsible for each event.
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5.3 Trace Entries

In order to build a causal graph, BCause collects a trace of web application actions

at runtime. The trace comprises start and end entries for JavaScript events and HTML

initializations, along with program actions that may cause future events to occur. BCause

needs to be able to associate each JavaScript event, HTML initialization, and JavaScript

initialization with the one or more program actions that caused it. Accordingly, trace entries

refer to a specific JavaScript event or initialization event using unique identifiers that are

tied to specific objects or browser API invocations. This section describes how BCause

trace entries refer to each type of major program event. Later, Section 5.4.3 describes how

BCause uses WebIDL to automatically recognize browser interfaces that correspond to

each major program event and generate appropriate logging logic.

5.3.1 DOM Events

Certain DOM objects are event targets that emit named DOM events. For example,

DOM nodes emit user interaction events including “click”, “keydown”, and “scroll”. A web

application can register a JavaScript function as an event listener for one or more of these

events via addEventListener or event handler properties that begin with on. The browser

will invoke the event listener when the listened-for events occur.

BCause associates each event target object with a unique ID, and each event listener

registration with a unique ID. Subtly, a JavaScript function registered as an event listener

multiple times will have a unique ID for each registration. At the beginning and end of

an event listener’s execution, BCause creates a trace entry that contains both IDs along

with the name of the event. BCause also creates a trace entry with the same identifying

information when event listeners are registered and unregistered, which appear as incoming

edges to event listener execution nodes in the causal graph.

When the program performs an action that may cause a DOM event on an event target,

BCause creates a log entry that contains the tuple of the event target ID and event name.

These log entries do not refer to specific event listeners, as each program action precedes

the execution of any event listener for a specific event on a specific object. For example,

if the web application sets the src property of an HTML script element, the browser will
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Object Type Properties Action Causes

Element scroll{, To, By} Call scroll

Element scroll{Top, Left} Set scroll

FileReader readAs{ArrayBuffer,
BinaryString, Text,
DataURL}

Call error, load{, start, end},
progress

FileReader abort Call abort

FileWriter write, truncate Call error, progress, write{, end,
start}

FileWriter abort Call abort

HTMLElement focus Call selectionchange (on
this.ownerDocument)

HTMLIFrameElement src, srcdoc Set error, load, HTML init.

HTMLIFrameElement N/A Add to DOM HTML init.

HTMLImageElement src Set error, load, loadend

HTMLLinkElement href Set error, load

HTMLMediaElement src Set error, load{, start, end}
HTMLScriptElement src Set error, load, JavaScript init.

HTMLScriptElement text Set JavaScript init.

HTMLScriptElement N/A Add to DOM JavaScript init.

WebSocket constructor Construct close, error, message, open

WebSocket close Call close

Window scroll{ , To, By} Call scroll (on this.document)

XMLHttpRequest send Call error, load{, end, start},
progress, timeout, upload
(on this and this.upload);
readystatechange (on this)

Table 5.1: Hand-annotated happens-before relations for standard web APIs. All additional
relations are automatically derived from browser-supplied WebIDL files. Causes contains
the set of events that the action may cause. Some properties on element object types,
such as src, are reflected as HTML attributes; BCause tracks both HTML attribute and
JavaScript property changes. For space reasons, the table excludes annotations on nine
interfaces related to the IndexedDB object database.
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(a) Causal graph of a program that calls the
callback API requestAnimationFrame.

(b) Causal graph of a program that calls the
Promise API Navigator.getBattery.

Figure 5.3: Causal graphs of programs that invoke different types of asynchronous operation
APIs. BCause accurately captures causal graphs for both callback-based and Promise-
based asynchronous operations.

either emit a load event or an error event on the script element depending on if it could

load the script. If event listeners for either event executes after this occurs, then BCause

knows to draw a link in the causal graph between the node that performed the action and

nodes corresponding to each event listener execution. I manually identified these special

program actions, as the connection between events and specific program actions are only

described informally in web standards documents. Table 5.1 contains a listing of manually

identified program actions that precede or cause events.

5.3.2 Asynchronous Operations

Some browser APIs correspond to asynchronous operations that the browser performs

on behalf of the web application. The web application provides the API with JavaScript

functions, which the browser invokes once the operation completes or fails. The browser

contains two different types of asynchronous operation APIs: callback-based and Promise-

based.

Callbacks: Callback APIs accept one or more JavaScript functions as arguments, which are

later invoked zero or more times as an operation proceeds. Timers created via setTimeout

and setInterval fall under this category, as does requestAnimationFrame, which invokes

a callback before the next time the GUI is repainted.

BCause associates each invocation of a callback API with a unique invocation ID.

When the web application invokes a callback API, BCause logs a trace entry containing
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this invocation ID. When the browser later invokes a function passed to the callback API,

BCause logs start and end trace entries that refer to the original invocation of the callback

API by its invocation ID. With this information, BCause constructs a link in the causal

graph between the graph node that invoked the callback API and nodes corresponding to

invocations of functions passed to the API. Figure 5.3a displays an example causal graph

for a program that calls requestAnimationFrame.

Promises: Emerging asynchronous browser APIs return a Promise object. A Promise

object encapsulates the state and result of an asynchronous operation. Promises are a

recent addition to the browser, and were only standardized in ECMAScript 2015. Web

applications can use methods on the Promise object to register JavaScript functions that

run when the Promise resolves successfully or is rejected with an error message. Promises

can also be chained together so that values and errors flow through multiple Promise objects,

which obscures the causal links between program actions and Promise events.

To support Promises without directly tracking their complicated internal control flow,

BCause wraps each browser-provided Promise in a pure JavaScript implementation of a

Promise. BCause traces the JavaScript Promise implementation alongside the application,

which ensures that BCause’s causal graphs properly track causal links through Promise

objects without any special Promise support. When the web application invokes an API

that returns a Promise, BCause logs a trace entry with a unique ID corresponding to the

API invocation. When the browser resolves or rejects the Promise, BCause logs a trace

entry with the same ID, which forms an edge in the causal graph between the node that

invoked the API and the JavaScript functions that the resolved or rejected Promise invokes.

Figure 5.3b displays an example causal graph for a program that calls the Promise-based

API Navigator.getBattery.

5.3.3 Cross-document Messages

Using the postMessage interface on Window and MessagePort objects, JavaScript code

can send messages and certain types of objects to other documents within the web applica-

tion. BCause modifies each message to contain a unique ID, which it logs to track the event

that created the message. When the web application processes a message event, BCause

69



reads the ID from the message and includes it in a trace entry that marks the start and

end of a message event. It then removes the ID from the message before sending it on to

the application.

5.3.4 JavaScript Initialization

A web application can include JavaScript code via script HTML elements in the DOM.

This code executes asynchronously when its contents load. JavaScript initialization occurs

when a script element’s JavaScript code executes for the first time. Before a script element

can initialize JavaScript code, it must be inserted into the DOM tree, and it must either

contain inline JavaScript source code or its src property must refer to a URL containing

JavaScript.

BCause associates each script element with a unique ID, and logs a trace entry con-

taining the ID when any precondition to script initialization occurs (see Table 5.1). At the

start and end of JavaScript initialization, BCause logs a trace entry referring to the same

ID, along with a second trace entry specifying that the current initialization precedes a

load DOM event on the script element. Figure 5.2 shows a causal graph of eBay.com that

contains JavaScript initialization for https://srv.main.ebayrtm.com/rtm.

5.3.5 HTML Initialization

A web application’s execution begins with the browser loading and initializing a root

HTML document specified in the browser’s address bar. It is necessary to track HTML

initialization as it directly influences JavaScript execution. HTML can contain inline

JavaScript event listeners, HTML attributes that initiate JavaScript events (correspond-

ing to some properties in Table 5.1), script elements that initialize JavaScript code, and

iframe elements that embed other HTML documents.

BCause log entries identify the root HTML document by a unique ID associated with

the root document object, and subdocuments by a unique ID associated with each IFrame

object. BCause creates a log entry that refers to this ID every time the web application

creates an IFrame object or changes its source document, which forms an incoming edge to

the document’s HTML initialization node in the causal graph. When an HTML document
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initializes, BCause emits trace entries for any HTML content that may initiate subsequent

events bookended by trace entries indicating the start and end of trace entries associated

with this specific HTML document’s initialization.

JavaScript code can inject additional HTML snippets into the webpage as a string via

interfaces like innerHTML and document.write. BCause does not emit start and end events

for snippets, but does emit log entries for any injected HTML content that may initiate

JavaScript events. In the causal graph, these log entries appear as outgoing edges from the

node that injected the HTML.

5.4 Implementation

As shown in Figure 5.4, BCause comprises four components: 1) the BCause proxy

injects the agent and initialization hooks into JavaScript and HTML files, 2) the BCause

server collects traces, 3) the BCause hook generator automatically generates JavaScript

code that intercepts web application interactions with the browser, and 4) the BCause

agent runs alongside the web application and sends trace events to the server. During

trace generation, the developer uses an unmodified Google Chrome web browser that is

configured to use the BCause proxy. To facilitate JavaScript hooks into privileged browser

APIs, BCause disables several browser security features with command line arguments,

including the same origin policy and origin isolation within separate processes. BCause

could operate around these security restrictions with further browser integration. BCause

also disables service workers, which can perform application-specific caching services by

interposing on network requests. BCause could be extended to support service workers by

tracking happens-before relations through requests processed by the worker.

5.4.1 BCause Proxy

The BCause proxy uses mitmproxy [31] to transparently intercept all HTTP and

HTTPS traffic between the web application and the network. The proxy rewrites HTML

and JavaScript documents to inject the BCause agent into the application, and to call

into the agent to create trace entries that log the start and end of HTML and JavaScript

initialization.
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Figure 5.4: BCause implementation overview. BCause consists of a proxy that rewrites
HTML and JavaScript (§5.4.1), a server that stores trace files (§5.4.2), a hook generator
that automatically generates shims that intercept web application interactions with browser
APIs (§5.4.3), and an agent that monitors the DOM for changes and sends trace events to
the server (§5.4.4). These components work together to trace a web application’s execution
in an unmodified Chrome browser.

5.4.2 BCause Server

The BCause server accepts WebSocket connections from the BCause agent. Each

WebSocket connection corresponds to a single trace; the server pipes all messages from the

BCause agent into a gzipped trace file on disk.

5.4.3 BCause Hook Generator

Web standards documents use WebIDL, or Web Interface Description Language, to

define new interfaces between JavaScript and the browser. Many modern web browsers use

WebIDL to generate bindings between their native C++ codebases and JavaScript; this

process ensures that their implementations of web APIs hew closely to the standard.

I annotate WebIDL files from Chromium’s source code with the happens-before relations

listed in Table 5.1. The BCause hook generator parses these annotated WebIDL files

using the webidl2 library [147], and generates a JavaScript file that installs hooks into the

browser environment. Each hook replaces a browser-provided method or object property

with a version that calls into the BCause agent to produce the trace entries described in

Section 5.3.

72



The hook generator automatically infers the remaining hooks using information already

present in Chromium’s WebIDL files:

Asynchronous operations and DOM events: Since WebIDL is statically typed, the

hook generator automatically finds and generates hooks for asynchronous operations and

event listener properties (e.g., onclick on HTMLElement objects). Callback-based asyn-

chronous operations accept a function as an argument, promise-based asynchronous opera-

tions return a Promise object, and event listener properties are of type EventHandler.

Reflected HTML attributes: Some JavaScript properties from Table 5.1 are actively

reflected as HTML attributes; the web application can change the property’s value via

JavaScript and HTML. For example, a web application can set the src property on an

HTMLScriptElement in the following ways: 1) as a JavaScript property (script.src

= newSrc), 2) as an HTML attribute (script.setAttribute("src", newSrc)), and 3)

within an HTML document (<script src="newSrc"></script>). BCause must support

all three variants in order to accurately track event causality.

Chromium’s WebIDL files annotate JavaScript properties that reflect an HTML at-

tribute with the Reflect WebIDL attribute. The BCause hook generator uses this infor-

mation to determine which HTML attributes to monitor using the BCause agent.

Cross-document messages: Web applications can send messages across documents via

the postMessage function on Window and MessagePort objects. Chromium’s WebIDL files

contain a PostMessage annotation on these functions, which guides BCause to this type

of function.

5.4.4 BCause Agent

The BCause agent runs alongside the web application and has four primary duties:

1) sending trace entries to the BCause server, 2) exposing hooks that monitor for DOM

changes, 3) hiding BCause’s modifications to the web application’s HTML and JavaScript

code from JavaScript reflection APIs, and 4) rewriting dynamically injected HTML and

JavaScript. Since every HTML document maintains a separate copy of the browser’s APIs,

the root document and every subdocument within an iframe contain a copy of the agent.
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Excluding library dependencies and autogenerated hooks, the source code to the BCause

agent is approximately 1.6 KLOC.

Sending trace entries: The BCause agent contains functions that send different types

of trace entries to the BCause server. The hooks generated by the hook generator call into

these functions to log trace entries. These functions assign or look up the unique IDs for

the trace entries described in Section 5.3 and send the entry to the BCause server via a

WebSocket connection. All of the BCause agents on the webpage share a single WebSocket

connection; BCause agents contained within IFrames send their trace entries to the root

agent for forwarding to the server. Thus, trace entries are stored in the order in which they

occurred at runtime.

DOM hooks: The BCause agent instruments the DOM APIs responsible for manipulating

HTML elements, and exposes a set of hooks for monitoring for changed attributes and

inserted HTML elements. The BCause hook generator uses these DOM hooks to log trace

entries for attribute changes and element insertions that may initiate JavaScript events or

register JavaScript event handlers.

Hiding code modifications: Web applications sometimes make assumptions about the

content of the HTML and JavaScript on the webpage. BCause’s HTML and JavaScript

modifications may invalidate some of these assumptions, causing application errors. For

example, AngularJS [46] applications encode HTML templates directly into the HTML of

the document, and dynamically fill in each template with information at runtime. Some

applications also inject script elements containing objects in JavaScript Object Notation

(JSON) format that the application later reads and parses from the DOM.

The BCause agent instruments core DOM APIs to hide any HTML and JavaScript

modifications that it or the proxy makes. When the application queries the DOM for a list

of HTML elements, BCause returns a modified list that does not contain any BCause-

injected elements. When the application serializes HTML via APIs like innerHTML, BCause

parses the HTML, removes BCause modifications, and serializes the result as a string. If

the application reads the code contained within a script element, the BCause agent re-

moves any injected calls to the agent. The BCause agent also removes changes to HTML

and JavaScript documents when the web application manually downloads them via Xml-
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HttpRequest or fetch, as the proxy blindly rewrites all HTML and JavaScript documents.

As a result, web applications executing under BCause can continue to make assumptions

about the content of their HTML and JavaScript code.

Rewriting dynamically injected content: Although the BCause proxy rewrites Java-

Script and HTML files requested from the network, it is unable to rewrite dynamically

generated JavaScript and HTML content. Web applications can create and inject new

script and iframe elements with JavaScript or HTML code specified as a string or encoded

within a data: URL, causing new initialization events that BCause needs to track.

The BCause agent performs the same rewriting actions as the BCause proxy on dy-

namically generated HTML and JavaScript. The agent uses the same rewriting code as the

proxy, since the proxy is also written in JavaScript.

5.5 Evaluation

In this section, I evaluate BCause in two dimensions:

• Accuracy: As a case study to measure BCause’s accuracy, I build a tool called

AdBlame that uses BCause’s causal graphs to predict the impact of ad blocking on

a web application’s bandwidth consumption.

• Overhead: I measure BCause’s runtime overhead on Speedometer 2.0 [21], a browser

benchmark suite comprised of GUI-driven web applications.

5.5.1 Accuracy

There is no established benchmark suite for web application event causality, and, since

happens-before relations are only informally specified, there is no way to automatically

determine ground truth. Thus, it is infeasible to directly calculate the accuracy of BCause’s

causal graphs. Instead, I indirectly measure BCause’s accuracy by building a tool for which

ground truth is available and then calculating its accuracy.

Specifically, I build a tool called AdBlame that uses BCause’s causal graph to predict

a web application’s bandwidth consumption with ad blocking enabled. Ad blockers contain

comprehensive community-maintained filter lists that determine which network requests
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Object Type Properties Action Notes

HTMLElement style Set Contains CSS as text; scans for
uses of URL()

HTMLIFrameElement src Set
HTMLImageElement src Set
HTMLImageElement srcset Set Contains list of images
HTMLLinkElement href Set Uses proxy to intercept and scan

CSS contents for uses of URL()
HTMLMediaElement N/A Add to DOM URL read via currentSrc or src
HTMLScriptElement src Set
HTMLStyleElement N/A Add to DOM Contains CSS as text; scans for

uses of URL()
Window fetch Call
XMLHttpRequest send Call

Table 5.2: Program actions that initiate network requests. AdBlame uses BCause’s ex-
isting hook infrastructure to log when these program actions occur. While this list is not
exhaustive, it is sufficient to accurately predict the bandwidth consumption of production
websites. Using BCause, AdBlame can easily install additional hooks to support addi-
tional interfaces.

should be blocked. AdBlame uses BCause’s causal graph and these filter lists to determine

which network requests depend on blocked content. In order to track network requests,

AdBlame augments BCause’s traces with network request entries that log program actions

that trigger network requests. AdBlame uses BCause’s existing hook infrastructure to

intercept the program actions listed in Table 5.2 that may initiate network requests, and

to associate them with nodes in the causal graph. It then combines the causal graph with

a network log from the proxy, which contains the time and size of each network request on

the wire, to estimate the bandwidth consumption of a web application execution with ad

blocking enabled.

To measure the utility of the causal information for this particular application, I compare

AdBlame against an approach that runs the filter list directly on the network log. I expect

that this straightforward approach will not work well; filter lists are intended to block

advertising network scripts that the page directly embeds, and not all URLs that serve

advertising content. In addition, rules in a filter list can depend on the context of a network

request, such as whether it is a script element, subdocument (IFrame), or CSS stylesheet.
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Bandwidth Prediction (% Difference)
Website Ads No Ads AdBlame Network Filter

CNN.com 4749 KB 3379 KB 3304 KB (2.2%) 4606 KB (36.3%)

Dictionary.com 1904 KB 515 KB 515 KB (0.0%) 1024 KB (98.8%)

Weather.com 5159 KB 3789 KB 3868 KB (2.1%) 4428 KB (16.9%)

Table 5.3: AdBlame’s accuracy on our benchmark web sites. AdBlame’s predictions are
within 2.2% of the ground truth. In contrast, directly applying the filter list to the network
log of each visit is significantly less accurate.

I infer the context as best I can with the network log using the MIME type specified in

the header of each HTTP response, although I note that servers do not always specify the

correct MIME type. I map HTML MIME types to subdocuments, JavaScript MIME types

to scripts, CSS MIME types to stylesheet, image MIME types to image, and the rest to no

particular context.

To measure the ground truth, I load each webpage in Chrome with uBlock Origin and use

Chrome’s built-in developer tools to record bandwidth consumption [41]. I configure uBlock,

BCause, and the baseline approach to use two community maintained filter lists, EasyList

and EasyPrivacy [36], as they are comprehensive and portable across ad blockers and filter

list parsers. For benchmarks, I chose three major websites that contain a significant number

of advertisements: CNN.com, Dictionary.com, and Weather.com. I visit the front page of

each site twice, with BCause and with uBlock, and wait for all graphical content within

the browser viewport to finish loading. Both predictions and the bandwidth consumption

of the web page with ads are derived from data collected during BCause’s run. Table 5.3

contains the results of this experiment.

AdBlame’s predictions are within 2.2% of the ground truth. The difference from

ground truth can be explained by natural deviations in the content of each web application

between visits, network requests initiated by program actions not included in Table 5.2,

and slight differences in web application behavior between the two runs caused by disabled

browser features like ServiceWorkers. In contrast, directly applying the filter lists to the

network log results in predictions that are, on average, within 50% of the ground truth.
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These results suggest that BCause’s causal graphs are accurate, as they were necessary to

produce accurate bandwidth consumption predictions.

5.5.2 Overhead

To evaluate the runtime overhead of our BCause prototype, I run the Speedometer 2.0

benchmark suite in the Chromium browser with and without BCause [21]. Speedometer

repeatedly loads different to-do list implementations in an iframe. This behavior is nearly

a worst-case scenario for BCause, as each iframe reload causes a new BCause agent to

instantiate and install hooks for the new document. I also note that I have not spent any

time optimizing BCause to improve performance, as our primary goal is producing accurate

models of web application behavior. I run the experiment in Chromium 68.0.3419.0 on an

2015 MacBook Pro with a 2.9 GHz Intel Core i5 and 16GB of RAM.

Overall, BCause imposes a 2.58X slowdown on Speedometer 2.0. Much of

this overhead is due to initialization overhead. I believe this is acceptable overhead for a

debugging tool.

5.6 Conclusion

This chapter presented BCause, a framework for understanding a web application’s

asynchronous behavior. BCause produces a trace of a web application’s execution, and uses

that trace to build a causal graph of its events. BCause requires no browser changes, and

uses existing WebIDL files to automatically determine most causal links between events. I

demonstrate the accuracy of BCause’s causal graphs by building AdBlame, which predicts

the impact of ad blocking policies on bandwidth consumption to within 2.2% on a suite of

production web applications.
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CHAPTER 6

DOPPIO: BREAKING THE BROWSER LANGUAGE BARRIER

Developers are unable to reuse code written in conventional programming languages

in the browser because the browser does not provide the environment that these languages

expect. The browser lacks synchronous blocking I/O, multiple threads of execution, and tra-

ditional operating system services. As a result, directly translating the code into JavaScript

is not generally possible.

This chapter identifies and describes how to resolve the impedance mismatch between

the browser and the native environment that conventional programming languages expect.

I present Doppio, a runtime system that makes it possible to execute unmodified applica-

tions written in conventional programming languages inside the browser [143]. Its execu-

tion environment overcomes the limitations of the JavaScript single-threaded event-driven

runtime model by providing language implementations with emulated threads that sup-

port suspending and resuming execution to enable blocking I/O and multithreading in the

source language. To support standard library and language features, Doppio provides com-

mon POSIX-like operating system abstractions including a file system abstraction, network

sockets, and an unmanaged heap for dynamic memory allocation.

I demonstrate the feasibility of using Doppio through two case studies. I present the

DoppioJVM, a prototype yet robust implementation of a Java Virtual Machine interpreter

on top of Doppio that can run complex unmodified JVM programs in the browser without

plugin support. I show that the combination of Doppio and the DoppioJVM makes

it possible to run full, unmodified JVM applications inside a wide range of browsers. I

also demonstrate Doppio’s generality by augmenting an existing C/C++ to JavaScript

compiler, Emscripten [153], with Doppio and present a case study of porting a C++ game

to the browser.
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Figure 6.1: A diagram of the Doppio runtime system. The Doppio runtime system makes
it possible for existing programs to execute in an unmodified browser via its virtualized ex-
ecution environment and operating system abstractions. This diagram displays the various
components of Doppio at a high level, and illustrates how language implementations, such
as DoppioJVM, rely on them.

6.1 Execution Environment

In this section, I describe how Doppio’s entirely JavaScript-based execution environ-

ment automatically segments existing programs into finite-duration events to keep the web

page responsive, emulates synchronous APIs in the source language in terms of asynchronous

JavaScript APIs, and implements multithreading.

6.1.1 Automatic Event Segmentation

To cope with the browser’s execution model, Doppio must break up the execution of

existing programs into finite-duration events. To perform this task, Doppio’s execution

environment contains a mechanism called suspend-and-resume that allows an executing

program to suspend itself to the heap to be resumed later, letting other events in the browser

event queue like user input execute. Because this mechanism is not natively available in

JavaScript, languages implemented using Doppio must satisfy two properties:

The call stack must be explicitly stored in JavaScript objects. JavaScript lacks

comprehensive introspection APIs and has no mechanism for saving stack state. As a result,
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programs executing in Doppio can only reliably use the JavaScript stack for transient state

that will not be needed for program resumption.

The program must be augmented to periodically check if it should suspend.

JavaScript lacks preemption: once an event starts executing, it will continue executing

until it completes or is killed by the browser. As a result, a language implemented using

Doppio must call the execution environment periodically to check if it should suspend

execution to free up the JavaScript thread.

With an explicit call stack representation in hand, the Doppio execution environment

can suspend a program for later resumption. To do so, it first creates an anonymous

function—the resumption callback— that captures the call stack in a closure and that con-

tains the logic needed to resume the program. It then passes the function to an asynchronous

browser mechanism such as setImmediate that will invoke it later. Finally, it notifies the

language implementation that it should halt execution, with a promise that it will handle

resuming the program from that point later.

To prevent applications from executing for too long, Doppio uses a counter to determine

when an application needs to suspend. Each suspend check initiated by the language

implementation decrements the counter by 1; when the counter reaches 0, the application

needs to suspend. Doppio resets the counter to an appropriate value calculated using a

cumulative moving average of how often the program checks the counter.

6.1.2 Emulating Blocking with Asynchronous APIs

Using a variant of suspend-and-resume, Doppio makes it possible to emulate a syn-

chronous API in the source language in terms of an asynchronous JavaScript API. When it

wishes to invoke an asynchronous JavaScript function, the language implementation must

craft a callback function that encapsulates the logic for migrating the data provided through

the asynchronous API into items that the language can understand. Doppio wraps this

callback in a variation of the resumption callback, and then calls the asynchronous API

with the modified callback function. When the browser triggers the resumption callback,

the program executing in Doppio resumes as if it had just received data synchronously

from a regular function call in its language.
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6.1.3 Multithreading Support

Doppio implements multithreading by exploiting the fact that programs executing

in Doppio maintain an explicit representation of their stack. Since JavaScript lacks a

mechanism for preempting execution, multithreading is necessarily cooperative from the

JavaScript point of view. However, as language implementations must voluntarily specify

valid context switches to Doppio, the semantics of multithreading may be preemptive in

the source language.

Doppio provides language implementations with a mechanism for switching threads,

which is a variation of the suspend-and-resume functionality. Doppio maintains a “thread

pool” – essentially an array of call stacks. When the language implementation determines

that it is time for a context switch, Doppio saves the call stack of the currently running

thread into this array, and chooses another thread to resume. Language implementations

can provide a scheduling function that determines which thread to resume. By default,

Doppio uses a weighted round robin scheduling policy.

6.2 OS Services

The web browser lacks a number of core operating system features that existing programs

depend on, such as the file system, access to unmanaged memory, and network sockets. As

a result, these abstractions must be implemented in terms of the resources available in the

browser so that arbitrary programs can run in the web environment. This section outlines

how Doppio implements these abstractions.

6.2.1 File System

Browsers provide a hodgepodge of persistent storage mechanisms with different storage

formats, restrictions, compatibility across browsers, and intended use cases. Many do not

expose synchronous interfaces, making it impossible to implement a blocking file system on

top of them.

However, by combining Doppio’s thread emulation with a unified asynchronous file-

based storage abstraction, Doppio can provide existing programs with the synchronous file

system semantics they expect, with high compatibility across browsers. Doppio’s filesystem
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has two primary components: (1) an implementation of the Node.js file system API, which

is a light JavaScript wrapper around POSIX-like file system calls, and (2) a backend API

for defining different “file system” backends for each persistent storage solution. Doppio

contains backends for six separate file storage mechanisms, including browser-local storage,

zip files, and Dropbox cloud storage.

6.2.2 Unmanaged Heap

Programs use the unmanaged heap either to perform unsafe memory operations (in

managed languages), or as the source of dynamically allocated memory (in unmanaged

languages). Doppio emulates the unmanaged heap using a straightforward first-fit memory

allocator that operates on JavaScript arrays. Data stored to and read from Doppio’s heap

are actually copied; updates must be kept in sync according to the language’s semantics.

6.2.3 TCP Sockets

For security reasons, browsers do not provide JavaScript applications with direct access

to network sockets. Instead, browsers provide a feature called WebSockets that enable

JavaScript applications to make outgoing full-duplex TCP connections with WebSocket

servers. JavaScript applications cannot accept incoming WebSocket connections.

WebSocket connections use a custom handshake and data frame format. However,

existing socket-based servers and clients expect a standard TCP handshake and the ability

to define custom application-layer data frame formats. As a result, they will not be able to

send or receive WebSocket connections out of the box.

Resolving this problem requires a solution for clients running in the browser that make

outgoing socket connections, and servers running on native hardware that expect incoming

socket connections. Doppio resolves the client side of the issue by emulating a Unix socket

API in terms of WebSocket functionality. The freely-available Websockify program provides

a solution for the server end of the problem; it wraps unmodified programs, and translates

incoming WebSocket connections into normal TCP connections [78].
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6.3 DoppioJVM

To demonstrate Doppio’s suitability as a full-featured operating environment for execut-

ing unaltered applications written in conventional programming languages, I built Doppi-

oJVM. DoppioJVM is a robust prototype Java Virtual Machine (JVM) interpreter that

operates entirely in JavaScript. This section describes a number of DoppioJVM’s key

features, and how they rely on support provided by Doppio.

6.3.1 Segmented Execution

Due to the JavaScript execution model, DoppioJVM must execute as finite-duration

events to prevent the browser from stopping its execution. DoppioJVM uses Doppio’s

suspend-and-resume functionality to achieve this. However, it must satisfy the requirements

outlined in Section 6.1.1 before it can use this mechanism.

DoppioJVM contains a straightforward JavaScript representation of the JVM call

stack. Each stack frame contains an operand stack and an array of local variables. The call

stack is simply an array of these stack frame objects. To ensure that execution suspends in

a timely fashion, DoppioJVM checks at each backwards jump and function call whether

it should suspend.

6.3.2 Multithreading

DoppioJVM uses Doppio’s “thread pool” to emulate multiple JVM threads. Doppio-

JVM checks for waiting threads at fixed context switch points, such as JVM monitor checks,

atomic operations, any other form of lock-checking, and each time Doppio suspends-and-

resumes execution.

6.3.3 Native Methods

The Java Class Library exposes JVM interfaces to a wide variety of native functionality,

such as the file system, unsafe memory operations, and network connections. These methods

cannot be implemented using JVM bytecodes, and are marked as “native”. DoppioJVM

implements these native methods directly in JavaScript to interact with Doppio’s operating

system services.
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6.3.4 Class Loading

The DoppioJVM class loader uses the Doppio file system to lazily download and parse

JVM class files and JAR files. Using the file system, DoppioJVM makes the entire Java

Class Library available in the browser.

6.3.5 Exceptions

The JVM is natively aware of exceptions and exception-handling logic. However, because

DoppioJVM uses Doppio to execute as finite-length events, it cannot use JavaScript’s

native exception mechanisms to emulate JVM exceptions. Instead, DoppioJVM emulates

JVM exception handling semantics by iterating through its virtual stack representation

until it finds a stack frame with an applicable exception handler, or until it empties the

stack and exits with an error.

6.3.6 JVM Objects and Arrays

DoppioJVM maps JVM objects to JavaScript objects, where each object contains a

reference to its class and a dictionary that contains all of its fields keyed on their names.

JVM arrays are a special type of JVM object; these are mapped to a JavaScript object

that contains an array of values and a reference to the special array class that the JVM

constructs according to the array’s component type. DoppioJVM takes full advantage of

the JavaScript garbage collector, which automatically collects JVM objects when they fall

out of scope.

6.4 Evaluation

6.4.1 Case Study 1: DoppioJVM

I evaluate DoppioJVM’s completeness and performance on a set of real and unmodi-

fied complex JVM programs across a wide variety of browsers. I compare DoppioJVM’s

performance to Oracle’s HotSpot JVM interpreter provided with OpenJDK.

The benchmarks and their respective workloads are as follows: javap (4KLOC) is the

Java disassembler from OpenJDK 6, which I run on the 491 compiled class files of javac.

javac (44KLOC) is the Java compiler from OpenJDK 6, which I run on the 19 source
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Figure 6.2: DoppioJVM’s performance on the benchmark applications relative to the
HotSpot JVM interpreter bundled with Java 6. DoppioJVM runs between 24× and 42×
slower (geometric mean: 32×) than the HotSpot interpreter in Google Chrome. Note that
javap’s poor performance in Safari is due to a browser bug.

files of javap. Rhino 1.7 (57KLOC) is an implementation of the JavaScript language on

the JVM, which I run on the recursive and binary-trees programs from the SunSpider

0.9.1 benchmark suite. Kawa-Scheme 1.13 (121KLOC) is an implementation of the Scheme

language on the JVM, which I evaluate on the nqueens algorithm with input 8.

The benchmark computer is a Mac Mini running OS X 10.8.4 with a 4-core 2GHz

Intel Core i7 processor and 8GB of 1333 MHz DDR3 RAM. I evaluate DoppioJVM in

Chrome 28.0, Firefox 22.0, Safari 6.0.5, Opera 12.16, and Internet Explorer 10, with Internet

Explorer 10 running in a Windows 8 virtual machine using the Parallels 8 software.

DoppioJVM is able to successfully execute all of these applications to completion; I

did not need to make any modifications to these applications. Figure 6.2 presents execution

times across various browsers versus Oracle’s HotSpot interpreter. DoppioJVM achieves

its highest performance on Chrome: compared to the HotSpot interpreter, DoppioJVM

runs between 24× and 42× slower (geometric mean: 32×). This performance degradation is

explained by two facts: first, DoppioJVM is largely untuned; second, it pays the price for

executing on top of JavaScript and inside the browser. By contrast, the HotSpot interpreter

is a highly tuned native executable.
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While running the javap benchmark, I discovered a bug in Safari that causes significant

performance degradation. I have reported this issue to Apple, and it has since been fixed.1

6.4.2 Case Study 2: Doppio and C++

To further demonstrate Doppio’s utility and generality, I combined Doppio with Em-

scripten, extending its ability to port C++ applications to the browser. As a case study,

I used it to to run the C++ game Me and My Shadow in the browser. The Emscripten

developers previously ported the core of this game to the web, but the port was incomplete:

because Emscripten does not support synchronous dynamic file loading and does not back

files to a persistent storage mechanism, the Emscripten demo needs to load all of the games

assets into memory prior to execution and does not support game saving.

I modified Emscripten to use the Doppio file system, which is able to download the static

game assets synchronously as the game requires them, and back the game’s configuration

folder to localStorage. I did not need to modify the game in order to do this; I took

the same source code that the Emscripten developers used to make their demo, compiled it

with an augmented version of Emscripten, and configured the Doppio file system to mount

the game’s resources and the browser’s persistent storage at appropriate folders in the file

system hierarchy. The resulting demo does not preload any files, and is able to write to the

file system to save game progress and settings.

6.5 Conclusion

While web browsers have become ubiquitous and so are an attractive target for appli-

cation developers, they support just one programming language—JavaScript—and offer an

idiosyncratic execution environment that lacks many of the features that most programs

require, including file systems, blocking I/O, and multiple threads. They also are incredibly

diverse, further complicating the task of programming web-based applications.

This chapter presented Doppio, a runtime system for the browser that breaks the

browser language barrier. Doppio addresses the challenges needed to execute programs

1See https://bugs.webkit.org/show_bug.cgi?id=119049
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written in general-purpose languages inside the browser by providing key system services and

runtime support that abstracts away the many differences across browsers. Using Doppio, I

built DoppioJVM, a proof-of-concept complete implementation of a Java Virtual Machine

in JavaScript. DoppioJVM makes it possible for the first time to run unmodified, off-

the-shelf applications written in a conventional programming language directly inside the

browser. DoppioJVM is already deployed as the compilation and execution engine for the

educational website CodeMoo.com, which teaches students how to program in Java [126].

I further demonstrate Doppio’s utility by combining it with Emscripten, extending its

ability to port C++ applications to the browser. Tens of millions of visitors to the Internet

Archive have used Doppio and Emscripten to run historical software, such as The Oregon

Trail and Windows 3.1, directly in their browsers [122]. Doppio is available for download

at http://www.doppiojvm.org/.
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CHAPTER 7

BROWSIX: BRIDGING THE GAP BETWEEN UNIX AND THE
BROWSER

The previous chapter described Doppio, a POSIX-like runtime system for single process

applications. While Doppio makes it significantly easier to re-use code written in conven-

tional languages in the browser, it can only run a single process at a time and provides

limited support for sockets and synchronous I/O at the JavaScript level.

To overcome these limitations, I introduce Browsix, a framework that brings Unix

abstractions to the browser through a shared kernel and common system-call conventions,

bridging the gap between conventional operating systems and the browser [111]. Browsix

consists of two core components: (1) a JavaScript-only operating system that exposes a

wide array of OS services that applications expect (including pipes, concurrent processes,

signals, sockets, and a shared file system); and (2) extended JavaScript runtimes for C, C++,

Go, and Node.js that let unmodified programs written in these languages and compiled to

JavaScript run directly in the browser.

7.1 Browsix OS Support

The core of Browsix’s OS support is a kernel that controls access to shared Unix

services. Unix services, including the shared file system, pipes, sockets, and task struc-

tures, live inside the kernel, which runs as a JavaScript library in the main browser thread.

Processes run separately and in parallel inside Web Workers, and access Browsix kernel

services through a system call abstraction.

7.1.1 Kernel

The kernel lives in the main JavaScript context alongside the web application and acts as

the intermediary between processes and loosely coupled Unix subsystems. Processes issue
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Class System calls

Process Management fork, spawn, pipe2, wait4, exit

Process Metadata chdir, getcwd, getpid

Sockets socket, bind, getsockname listen, accept, connect

Directory IO readdir, getdents, rmdir, mkdir

File IO open, close, unlink, llseek, pread, pwrite

File Metadata access, fstat, lstat, stat, readlink, utimes

Table 7.1: A representative list of the system calls implemented by the Browsix kernel.
fork is only supported for C and C++ programs.

system calls to the kernel to access shared resources, the kernel routes these requests to the

appropriate subsystem, and the subsystems relay responses back to the relevant processes.

The kernel also dispatches signals to processes. Table 7.1 presents a partial list of the system

calls that the kernel currently supports.

7.1.2 System Calls

The Browsix kernel supports two types of system calls: asynchronous and synchronous.

Asynchronous system calls work in all modern browsers, but impose a high performance

penalty on C and C++ programs. Synchronous system calls enable higher performance for

C and C++ programs, but use newly proposed browser features that are not yet available

in some browsers.

Asynchronous System Calls: Browsix implements asynchronous system calls in a

continuation-passing style (CPS). A process initiates a system call by sending a message to

the kernel with a process-specific unique ID, the system call number, and arguments. The

process is then required to suspend its execution, à la Doppio. When the kernel sends a

response, the Web Worker process executes the continuation (or callback) with response

values, resuming the process’s execution.

Synchronous System Calls: Synchronous system calls work by sharing a view of a pro-

cess’s address space between the kernel and the process, similar to a traditional operating

system kernel like Linux. Synchronous system calls reduce copying overhead and do not

90



require processes to suspend their execution. This feature uses the experimental SharedAr-

rayBuffer interface that will eventually become available in all browsers.

A process invokes a synchronous system call by sending a message as in the asynchronous

case, but with arguments limited to integers and integer offsets (representing pointers) into

the shared memory array. Then, the process performs a blocking wait on a specific offset

into the SharedArrayBuffer and is awakened when the system call has completed or a signal

is received.

7.1.3 Processes

Browsix relies on Web Workers as the foundation for emulating Unix processes. Each

Browsix process has an associated task structure in the kernel that contains its process

ID, parent’s process ID, Web Worker object, current working directory, and map of open

file descriptors. Processes can share state via the file system, send signals to one another,

spawn sub-processes to perform tasks in parallel, and connect processes together using pipes.

Below, I describe how Browsix maps familiar OS interfaces onto Web Workers.

spawn: spawn lets a process construct a new process from a specified executable on the

file system. In Browsix, executables are JavaScript files or files beginning with a shebang

line. When a process invokes spawn, Browsix creates a new task structure with the

specified resources and working directory, and creates a new Web Worker that runs the

target executable or interpreter.

fork: The fork system call creates a new process containing a copy of the current address

space and call stack. Fork returns twice – first with a value of zero in the new process, and

with the PID of the new process in the original. Web Workers do not expose a cloning API,

and JavaScript lacks the reflection primitives required to serialize a context’s entire state

into a snapshot. Thus, Browsix only supports fork when a language runtime is able to

completely enumerate and serialize its own state.

wait4: The wait4 system call reaps child processes that have finished executing. It returns

immediately if the specified child has already exited, or the WNOHANG option is specified.

Waiting requires that the kernel not immediately free task structures, and required us to

implement the zombie task state for children that have not yet been waited upon. The C
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library used by Emscripten, musl, uses the wait4 system call to implement the C library

functions wait, wait3, and waitpid.

exit: Language runtimes with Browsix-support are required to explicitly issue an exit

system call when they are done executing, as the containing Web Worker context has

no way to know that the process has finished. This is due to the event-based nature of

JavaScript environments – even if there are no pending events in the Worker’s queue, the

main JavaScript context could, from the perspective of the browser, send the Worker a

message at any time.

7.1.4 Pipes

Browsix pipes are implemented as in-memory buffers with wait queues. If there is no

data to be read when a process issues a read system call, Browsix enqueues the callback

encapsulating the system call response which it invokes when data is written to the pipe.

Similarly, if there is not enough free space in a pipe’s internal buffer for a write request,

Browsix waits until enough space frees up in the buffer from read requests to complete

the write.

7.1.5 Sockets

Browsix implements a subset of the BSD/POSIX socket API, with support for SOCK-

STREAM (TCP) sockets for communicating between Browsix processes. These sockets

enable servers that bind, listen and then accept new connections on a socket, along with

clients that connect to a socket server, with both client and server reading and writing

from the connected file descriptor. Sockets are sequenced, reliable, bi-directional streams.

7.1.6 Shared File System

Browsix uses and extends Doppio’s file system to support multiple processes. Browsix’s

file system adds locking operations to the filesystem to prevent operations from different

processes from interleaving, which may cause the filesystem to enter a bad state. In addi-

tion, child processes inherit open file descriptors from their parents, and processes may end

without closing file descriptors. Browsix uses reference counting to appropriately close

open file descriptors.
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7.2 Browsix Runtime Support

Applications invoke Browsix system calls indirectly through their runtime systems.

This section describes the runtime support added to GopherJS, Emscripten, and Node.js

along with the APIs exposed to web applications so they can execute programs in Browsix.

7.2.1 Browser Environment Extensions

Web applications run alongside the Browsix kernel in the main browser context, and

have access to Browsix features through several global APIs. Browsix exposes new APIs

for process creation, file access, and socket notifications, and an XMLHttpRequest-like

interface to send HTTP requests to Browsix processes. Using these interfaces, developers

can easily integrate Browsix processes into their web applications.

7.2.2 Runtime-specific Integration

For many programming languages, existing language runtimes targeted for the browser

must bridge the impedance mismatch between synchronous APIs present on Unix-like sys-

tems and the asynchronous world of the browser. DoppioJVM uses Doppio’s execution

environment to bridge this gap in a general manner, while compile-to-JavaScript systems

like Emscripten and GopherJS employ different approaches. Since Browsix supports both

synchronous and asynchronous system calls, language runtimes can choose the system call

convention most appropriate for their implementation.

This section describes the runtime support added to language runtimes for Go, C/C++,

and Node.js. Extending Browsix support to additional language runtimes remains as

future work.

Go: Supporting Go involves extending the existing GopherJS compiler and runtime to sup-

port issuing and waiting for system calls under Browsix. In particular, the modifications

change the existing syscall.RawSyscall function to invoke Browsix system calls.

C and C++: Supporting C/C++ involves modifying Emscripten, a C and C++ compiler

that targets JavaScript, to implement stubbed out system calls in its runtime. Browsix-

enhanced Emscripten supports two modes - synchronous system calls and asynchronous

system calls, one of which is selected at compile time. Asynchronous system calls require
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use of Emscripten’s interpreter mode (named the “Emterpreter”) to save and restore the

C stack à la Doppio. With synchronous system calls, Emscripten can compile the entire

application to asm.js, an extremely optimizable subset of JavaScript.

Node.js: Node.js (a.k.a. “Node”) is a platform for building servers and command line tools

with JavaScript, implemented in C, C++ and JavaScript on top of the V8 JavaScript engine.

Node.js APIs are JavaScript modules that are loaded into the current JavaScript context.

These high-level APIs are implemented in platform-agnostic JavaScript and call into lower-

level C++ bindings, which in turn invoke operating system interfaces like filesystem IO,

TCP sockets, and child process management. Browsix replaces these C++ bindings with

pure JavaScript replacements that invoke Browsix system calls.

7.3 Evaluation

The evaluation answers the following questions: (1) Does bringing Unix abstractions

into the browser enable compelling use cases? (2) Is the performance impact of running

programs under Browsix acceptable?

7.3.1 Case Studies

This section evaluates the applicability and advantages of bringing Unix abstractions

into the browser with three case studies: a LATEX editor, a meme generator with server that

can run in-browser or in the cloud, and a Unix terminal backed by dash, a widely-used

POSIX shell.

7.3.1.1 LATEX Editor

The editor presents a split-screen view to the user, with the document’s LATEX source

on the left, and generated PDF preview on the right. The editor’s UI is a standard web

application, and represents the only new code. When the user clicks on the “Build PDF”

button, the editor uses Browsix to invoke GNU Make in a Browsix process, which rebuilds

the PDF. Make then runs pdflatex and bibtex, depending on whether the user has updated

the references file. Once all steps have completed, the editor reads the PDF from Browsix’s

file system and displays it to the user.
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(a) Meme creator running without Browsix

(b) Meme creator running with Browsix

Figure 7.1: System diagram of the meme generator application with and without Browsix,
demonstrating how the client and server interact with one another. With Browsix, the
server runs in the browser without code modifications.

7.3.1.2 Meme Generator

The meme generator lets users create memes consisting of images with (nominally)

humorous overlaid text. Existing services, such as MemeGenerator.net, perform meme

generation server-side. Moving meme creation into the browser would reduce server load and

reduce latency when the network is overloaded or unreliable, but doing so would normally

present a significant engineering challenge. The meme generation server uses sockets to

communicate with the browser over HTTP and reads meme templates from the file system.

Before Browsix, the client and server code would need to be re-architected and rewritten

to run together in the browser.

To demonstrate Browsix’s ability to quickly port code from the server to the web, the

meme creator is implemented as a traditional client/server web application; Figure 7.1a

contains a system diagram. The client is implemented in HTML5 and JavaScript, and the

server is written in Go. The server reads base images and font files from the filesystem,

and uses off-the-shelf third-party Go libraries for image manipulation and font rendering
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to produce memes [39]. The server also uses Go’s built-in http module to run its web

server. This server is stateless, following best practices [80]; porting a stateful server would

naturally require more care.

To port the server code to Browsix, I recompile it in GopherJS with Browsix runtime

extensions. I add a policy to the web application the dynamically routes meme generation

requests to a server running in Browsix when running on a desktop or to the cloud when

not. Figure 7.1b displays a system diagram of the modified meme generator.

7.3.1.3 The Browsix Terminal

To make it easy for developers to interact with and test programs in Browsix, I im-

plement an in-browser Unix terminal that exposes a POSIX shell. The terminal uses the

Debian Almquist shell (dash), the default shell of Debian and Ubuntu. I compile dash to

JavaScript using Browsix-enhanced Emscripten, and run it in a Browsix process.

Since the Browsix terminal uses a standard shell, developers can use it to run ex-

isting and new shell scripts in Browsix. Developers can pipe programs together (e.g.

cat file.txt | grep apple > apples.txt), execute programs in a subshell in the back-

ground with &, run shell scripts, and change environment variables. Developers can also

execute Go, C/C++, and Node.js programs from the shell as expected.

7.3.2 Performance

I evaluate the performance overhead of Browsix on two of the case studies. All exper-

iments were performed on a late-2013 Macbook Pro with an Intel i7-4558U CPU and 16

GB of RAM, running Linux 4.8. Safari performance numbers are from the same machine

running macOS Sierra.

LATEX Editor: Running pdflatex under Browsix imposes an order of magnitude slow-

down, as shown in Table 7.2. A native execution of pdflatex under Linux takes around

86 milliseconds on a single page document with a bibliography. When using synchronous

system calls, the same document builds in Browsix in between 0.79 and 2.6 seconds, a

slowdown of between 9× and 31×. Due to a limitation in Firefox, using a SharedArray-
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Platform Runtime

Linux 0.086s
Chrome Beta 56 2.0s (24×)
Firefox Nightly 54 2.6s (31×)
Firefox Nightly 54* 0.79s (9×)
Safari Tech Preview 22 1.8s (21×)

Table 7.2: Execution times for compiling a single-page document with a bibliography with
pdflatex from TeX Live 2015. Times reported are the mean of 10 executions. (* Indi-
cates Firefox was built with an 8-line patch enabling asm.js validation with the use of
SharedArrayBuffers.)

Buffer disables certain asm.js optimizations in the JavaScript JIT.1 The modified Firefox

results show that if the rules for asm.js are slightly relaxed to allow SharedArrayBuffers

for the heap, performance is improved by over 3×. Building pdflatex with asynchronous

system calls and the Emterpreter for broader compatibility with today’s browsers increases

runtime to around 12 seconds.

Meme Generator: The meme generator performs two types of HTTP requests to the

server: requests for a list of available background images, and requests to generate a meme.

I benchmark the performance of the meme generator server running natively and running

in Browsix in both Google Chrome 52 and Mozilla Firefox 48. Times reported are the mean

of 100 runs following a 20-run warmup.

On average, a request for a list of background images takes 1.7 milliseconds natively,

9 ms in Chrome, and 6 ms in Firefox. A request to generate a meme in Browsix takes

approximately two seconds, compared to 200 ms when running server-side. The former

request is faster than a typical server request once roundtrip latencies are factored in, but

the latter is slower, likely due to the lack of native 64-bit integers in the web platform. I

expect performance to improve when future browsers support native access to 64-bit integers

through WebAssembly.

1https://bugzilla.mozilla.org/show_bug.cgi?id=1334941
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7.4 Conclusion

This chapter introduced Browsix, a framework that brings the essence of Unix to

the browser. Browsix makes it almost trivial to build complex web applications from

components written in a variety of languages without modifying any code, and promises

to significantly reduce the effort required to build highly sophisticated web applications.

Browsix is open source, and is freely available at https://browsix.org.
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CHAPTER 8

RELATED WORK

This section describes related work on time-travel debugging and deterministic replay,

memory leak debugging, understanding program behavior, and porting existing code to the

browser.

8.1 Time-Travel Debugging and Deterministic Replay

Although McFly is the first time-traveling debugger for web applications, time-traveling

debuggers exist in several other non-graphical settings (§8.1.1). Plain record-and-replay

systems exist for GUI applications, but these are unable to support time-travel debugging

at interactive speeds because they cannot checkpoint and roll back program and visual

state (§8.1.2). Table 8.1 summarizes prior work that supports replaying web application

executions.

8.1.1 Time-Travel Debugging

McFly is the first time-traveling debugger for web applications. Previous time-traveling

debuggers for other settings fall into three main categories: application-level debuggers,

VM-level debuggers, and omniscient debuggers.

Application-level: Tardis [13], Jardis [14], UndoDB [125], Boothe [20], and RR [104]

record and replay program interactions with a well-defined interface to an external envi-

ronment, but do not recreate state in the external environment during debugging. In other

words, these debuggers do not recreate a GUI application’s visual state. Tardis and Jardis

debug .NET CLR and Node.js programs respectively, and replays interactions with native

(C/C++) methods. UndoDB, RR, and Boothe debug the user space of processes, and

replay interactions with the kernel and hardware. Boothe and RR use a similar optimiza-

tion as McFly to recreate checkpoints during replay to amortize time-travel cost. RR can
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Program GUI Debugs Step-backward

System Replay Support Web Apps Support

Record and replay systems:

Timelapse [22] 3 3∗ 3

Mugshot [83] 3 3∗ 3

Jalangi [116] 3 3

Time-traveling debuggers:

RR [104] 3 3

Jardis [14] 3 3

McFly 3 3 3 3

Table 8.1: Comparison of prior time-traveling debuggers and record and replay systems.
McFly is the first time-traveling debugger for web applications. No prior debugger is able
to support step-backward debugger commands with GUI support at interactive speed. *
indicates that the system does not correctly reproduce data races between the layout engine
and JavaScript.

step forwards and backwards through a Firefox execution, but it is designed to debug the

browser itself rather than web applications and imposes single-threaded browser execution

at all times.

VM-level: VM-level hypervisors like XenTT [24], ReVirt [34, 35], ReTrace [151], and

TTVM [67] can time-travel entire virtual machines, but at the expense of large program

traces and slow time-travel. Reverse-step debugging, like that provided by McFly, requires

time-travel at interactive speeds to be practical.

Omniscient: Omniscient debuggers provide time-traveling features by recording program

state changes after every instruction, which produces large program traces and imposes

high overhead during execution. Examples of omniscient debuggers include Chronon [28],

TOD [110], ODB [71], and Tralfamadore [69].

8.1.2 Deterministic Replay

Pure deterministic replay systems can record and replay an application’s execution,

but do not support periodic checkpoints or reverse debugging. As a result, these systems

are unable to support backwards stepping operations at interactive speeds. I center the

discussion on three different runtime environments.
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Browser: Mugshot [83] and Timelapse [22] deterministically replay web application exe-

cutions by recording and replaying the event schedule and I/O operations; I compare these

systems to McFly in Table 8.1. To accomplish this goal, Mugshot uses program rewrit-

ing and JavaScript reflection while Timelapse modifies the WebKit layout engine. While

McFly also modifies the layout engine, Timelapse’s “hypervisor-like record/replay strat-

egy relies on the layered architecture of WebKit” and is not portable to other browsers;

in contrast, McFly’s architecture builds on web standards that are supported across all

major browsers. Neither system is able to provide step-backward debugger commands at

interactive speeds because they are unable to capture application checkpoints. Furthermore,

Mugshot and Timelapse do not support layout engine operations that mutate visual state

in parallel with JavaScript execution, such as CSS animations, which can cause divergent

application replays.

Jalangi [116] supports selectively recording and replaying a subset of a program’s code in

support of dynamic analyses. On the user-selected subset of code, Jalangi logs and replays

interactions with the browser’s native functions with considerable overhead (26X during

recording and 30x during replay), and does not support visual state during replay.

Android: The Android runtime environment is similar to the browser environment in

that applications are event-driven and use a single thread to update the GUI. Valera [58]

and ReRan [40] interpose on the interface between Android applications and the Android

platform to capture nondeterministic event schedules and I/O operations.

JVM: JVM applications communicate with the environment and internal JVM compo-

nents via native methods. Existing record-and-replay systems for the JVM treat state

below the native methods, such as visual state, as external to replay. DejaVu assumes

all native methods are deterministic, preventing applications from using nondeterministic

APIs [25]. ORDER records and replays select nondeterministic APIs, preventing developers

from inspecting or observing JVM-external state, like the GUI, during replay [152].

101



8.2 Memory Leak Debugging

BLeak is the first system for automatically debugging memory leaks in web applications.

Prior techniques in this space are inapplicable or ineffective for memory leaks found on the

web.

8.2.1 Web Application Memory Leak Detectors

BLeak automatically debugs memory leaks in modern web applications; past work in

this space is ineffective, out of date, or not sufficiently general. LeakSpot locates JavaScript

allocation and reference sites that produce and retain increasing numbers of objects over

time, and uses staleness as a heuristic to refine its output [115]. On real web applications,

LeakSpot typically reports over 50 different allocation and reference sites that developers

must manually inspect to identify and diagnose memory leaks. AjaxScope dynamically

detects leaks due to a bug in web browsers that has now been fixed [66]. JSWhiz stati-

cally analyzes code written with Google Closure type annotations to detect specific leak

patterns [108].

8.2.2 Web Application Memory Debugging

Some tools help web developers debug memory usage and present diagnostic information

that the developer must manually interpret to locate leaks (Section 2.2 describes Google

Chrome’s Development Tools). MemInsight summarizes and displays information about

the JavaScript heap, including per-object-type staleness information, the allocation site of

individual objects, and retaining paths in the heap [61]. Unlike BLeak, these tools do not

directly identify memory as leaking or identify the code responsible for leaks.

8.2.3 Growth-based Memory Leak Detection

LeakBot looks for patterns in the heap graphs of Java applications to find memory

leaks [91]. LeakBot assumes that leak roots own all of their leaking objects, but leaked

objects in web applications frequently have multiple owners. BLeak does not rely on

specific patterns, and uses round trips to the same visual state to identify leaking objects.

Cork uses static type information available in the JVM to locate types that appear to be
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No Browser Event Listener Implicit Async. DOM IFrame

System Modifications Registrations Causality Ops Support Support

Program understanding:

JSGraph [72] 3 † 3 3

Clematis [6] 3 3 †
Domino [73] 3 3 3

Race detection:

WebRacer [106] 3 † 3 3

EventRacer [113] 3 † 3 3

BCause 3 3 3 3 3 3

Table 8.2: Feature comparison of systems that reason about the causality of JavaScript
events. Implicit Causality refers to the ability to understand program actions that trigger
events (Table 5.1) and DOM Support refers to the ability to track causality through HTML
elements in the DOM (excluding event listener registrations). A † in Async. Ops indicates
that that system does not support Promises.

the source of memory leaks. [63]. Cork is not applicable to dynamically typed languages

like JavaScript.

8.2.4 Staleness-based Memory Leak Detection

SWAT (C/C++), Sleigh (JVM), and Hound (C/C++) find leaking objects using a

staleness metric derived from the last time an object was accessed, and identify the call

site responsible for allocating them [19,53,103]. Leakpoint (C/C++) also identifies the last

point in the execution that referenced a leaking memory location [29]. As I show (§4.4.5),

staleness is ineffective for at least 77% of the memory leaks BLeak identifies .

8.2.5 Hybrid Leak Detection Approaches

Xu et al. identify leaks stemming from Java collections using a hybrid approach that

targets containers that grow in size over time and contain stale items. The vast majority

of memory leaks found by BLeak would not be considered stale (§4.4.5).

8.3 Causal Program Understanding for Web Applications

BCause is the first system to track the causality of all JavaScript events in an un-

modified web browser. Table 8.2 summarizes prior work that reason about the causality
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of JavaScript events, which provide uneven support for tracking event causality through

specific browser features.

JavaScript event causality: JSGraph [72] modifies the Chromium web browser to track

DOM modifications and JavaScript execution in order to reconstruct web attacks. Clema-

tis [6] and Domino [73] use JavaScript reflection to track event listener registrations, callback-

based asynchronous operations, and DOM event execution. Neither Clematis nor Domino

support tracking causality through IFrame elements or DOM mutations, which severely

limits their applicability to production web applications with advertisements. Although

Clematis logs DOM modifications to aid developers with debugging, it does not use this

information to track event causality. Unlike prior systems, BCause supports complex pro-

duction web applications containing numerous IFrames with no browser modifications.

JavaScript race detection: WebRacer [106] and EventRacer [113] build a happens-

before graph of JavaScript events to find data races. Neither system supports tracking the

happens-before relations in Table 5.1, and both require a modified WebKit-based browser.

InitRacer [1] detects specific types of data races that occur during web application initial-

ization. InitRacer does not build a happens-before graph or reason about event causality;

instead, it eagerly invokes event handlers after registration and monitors the web application

for uncaught exceptions.

Fine-grained data flow tracking: Scout [102] logs fine-grained data flows across the

JavaScript heap and the DOM, and has been used to determine dependencies among network

requests in order to improve page loading. It may be possible to extract event causality

from Scout’s detailed logs, which capture every DOM interaction and JavaScript event.

However, these logs are captured using heavyweight program instrumentation. Specifically,

Scout replaces all objects transitively accessible from the global scope with Proxy objects,

and logs all reads and writes to them. In contrast, BCause uses WebIDL to surgically

interpose only on the browser-provided interfaces related to event causality.

8.4 Porting Code to the Browser

Browsix and Doppio significantly extend past efforts to bring traditional APIs and

general-purpose languages to the browser; Table 8.3 provides a comparison. Doppio pro-
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Environments:

Browsix 3 3 3 3 3 3

Doppio † † †
asm.js

WebAssembly

Language runtimes:

Emscripten (C/C++) † † †
GopherJS (Go) †
Browsix + Emscripten 3 3 3 3 3 3

Browsix + GopherJS † 3 3 3 3 3 3

Table 8.3: Feature comparison of JavaScript execution environments and language runtimes
for programs compiled to JavaScript. † indicates that the feature is only accessible by a
single running process. Browsix provides multi-process support for all of its features. Both
asm.js and WebAssembly are pure computational environments and as such don’t provide
any of the OS features listed.

vides single-process POSIX abstractions, while Browsix provides Unix abstractions and

builds on Doppio’s file system to support multiple processes.

There are many projects that compile specific programming languages to JavaScript,

but provide limited or no emulation of operating system services. To name a few, Em-

scripten [153] compiles LLVM bytecode to JavaScript, GopherJS compiles Go to JavaScript [101],

and GWT statically compiles Java to JavaScript [51]. Doppio and Browsix are designed

to provide these types of projects with the POSIX and Unix abstractions existing code

expects.

Xax is a browser plugin model designed to ease porting legacy code to the web [33]. It

shares a similar focus on OS independence and legacy support along with an asynchronous

system-call ABI, but runs native code in a hardware-isolated picoprocess. The Xax model

requires developers to compile and host binaries for all architectures an end user might

use, while Browsix and Doppio leverage the cross-platform nature of JavaScript and

WebAssembly to enable a compile-once, run-everywhere development workflow.
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The Illinois Browser Operating System (IBOS) makes key browser APIs like HTTP

requests and cookie storage OS primitives, removing library and OS code not necessary for

those APIs from the trusted computing base [121]. Embassies refactors the web browser

to separate the client execution interface from the developer programming interface [57].

Embassies models the client as a pico-datacenter, running each tenant (web page) in a

separate VM. In addition to providing improved isolation and security for traditional web

pages, Embassies enables safely executing arbitrary native code on the client in addition

to a traditional WebKit HTML stack. Browsix and Doppio provide OS abstractions on

top of browser APIs, and could be run in IBOS or Embassies for improved isolation and

security.
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CHAPTER 9

CONCLUSION

Although the browser is arguably the most widespread application runtime today, it

remains challenging to develop web applications. Web applications must be written in

JavaScript, an extraordinarily dynamic language that is designed for event-driven concur-

rency. JavaScript execution is tightly interwoven with the browser’s GUI interface, the

DOM, which obscures control flow among JavaScript events. Due to dynamism, concur-

rency, and the DOM, web applications exhibit complicated behavior that is difficult to

debug, optimize, and understand. Developers are also unable to directly translate exist-

ing code written in C, C++, and Java into JavaScript because the browser provides an

incompatible runtime environment that lacks common operating system features. Existing

web development tools use techniques intended for conventional runtime environments, and

provide limited assistance to developers facing these issues.

This dissertation introduces a complete set of development tools with full support for

the browser environment. McFly lets developers step forwards and backwards through a

program’s execution, enabling them to trace a bug’s symptom back to its root cause. BLeak

automatically guides developers to code that is responsible for significant memory leaks.

BCause creates a causal graph of a web application’s events and forms a solid foundation

for next generation browser development tools that can reason about asynchronous behavior.

Doppio and Browsix enable developers to re-use well tested code written in conventional

languages in the browser by bridging the gap between POSIX and Unix, respectively, and

the browser. These tools make it easier for developers to write, debug, optimize, and

understand their web applications.
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APPENDIX A

LEAKS FOUND BY BLEAK

In the next few pages, I document all 59 memory leaks found by BLeak in a separate

table per evaluation application. Each memory leak corresponds to a specific source code

location that causes unbounded growth; in some cases, multiple memory leaks grow the same

leak root or a single memory leak grows multiple leak roots. For each bug, I report the leak

root, the type of the leak root, the library responsible for the unbounded growth (Culprit),

whether or not the memory leak was previously known (New), if the leaked objects would

be considered stale under the assumptions discussed in Section 4.4.5 (Stale), a link to the

bug report (Bug), and whether or not the bug has been fixed. A � in the “Bug” column

indicates that I reported the bug to the culprit in an email, since the problematic code is

not open source. A † in the “Fixed” column indicates that a fix is currently under code

review, whereas 3 indicates that a fix has already been merged into the codebase. A † in the

“New” column indicates that the memory leak was unknown to the application developers,

whereas a 3 indicates that the memory leak was unknown to the developers of the culprit

library/application.
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# Leak Root Type Culprit New Stale Bug Fixed

1 document.body.childNodes DOM loadCSS [37] 3 [70] †
2 ‘blur’ listeners on window EL Google Maps [48] † [43]

3 ‘blur’ listeners on window EL Airbnb 3 �

4 ‘resize’ listeners on window EL Google Maps † [43]

5 ‘click’ listeners on document EL Google Maps † [43]

6 ‘scroll’ listeners on window EL Google Maps † [43]

7 ‘scroll’ listeners on window EL Airbnb 3 �

8 ‘keydown’ listeners on document EL Google Maps † [43]

9 ‘keypress’ listeners on document EL Google Maps † [43]

10 document. e3 [‘keydown’] Obj. Google Maps † [43]

11 ‘keyup’ listeners on document EL Google Maps † [43]

12 e3 [‘resize’] Obj. Google Maps † [43]

13 document. e3 [‘keyup’] Obj. Google Maps † [43]

14 document. e3 [‘click’] Obj. Google Maps † [43]

15 e3 [‘blur’] Obj. Google Maps † [43]

16 document. e3 [‘keypress’] Obj. Google Maps † [43]

17 ‘MSFullscreenChange’ listeners on
document

EL Google Maps † [43]

18 ‘fullscreenchange’ listeners on document EL Google Maps † [43]

19 ‘mozfullscreenchange’ listeners on
document

EL Google Maps † [43]

20 ‘webkitfullscreenchange’ listeners on
document

EL Google Maps † [43]

21 document. e3

[‘fullscreenchange’]

Obj. Google Maps † [43]

22 document. e3

[‘mozfullscreenchange’]

Obj. Google Maps † [43]

23 document. e3

[‘webkitfullscreenchange’]

Obj. Google Maps † [43]

24 document. e3

[‘MSFullscreenChange’]

Obj. Google Maps † [43]

25 document.head.childNodes DOM GTM [49] 3 [135]

26 xdc Obj. Google Maps 3 3 [141] 3

27 ‘focus’ listeners on window EL Airbnb 3 �

28 ga.h.t0.b.data.keys Array G. Analytics [45] 3 3 [140]

29 document.body.

childNodes[126].childNodes

DOM Criteo One-
Tag [32]

3 � †

30 e.extraData in closure of
criteo q.push

Array Criteo OneTag 3 3 � †

31 A in closure of inner property on the
second ‘popstate’ listener of window

Array Airbnb 3 3 �

32 n[‘5v9T’].exports. events

[’header:search’] within closure
of webpackJsonp

Array Airbnb 3 �

Table A.1: Memory leaks in Airbnb found by BLeak
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# Leak Root Type Culprit New Stale Bug Fixed

33 jQuery223056319336220622061

.events.resize

Array Piwik 3 [130] 3

34 jQuery223056319336220622061

.events.resize

Array Piwik 3 [130] 3

35 jQuery223056319336220622061

.events.resize

Array Piwik 3 [131] 3

36 bb in closure of Raphael Obj. Raphael.js [12] 3 3 [129] †
37 body.jQuery223056319336220622061

.events.mouseup in closure of
$widgetContent. proto .mwheelIntent

Array Piwik 3 [130] 3

38 document.body.childNodes DOM Piwik 3 [131] 3

39 allRequests in closure of
a.piwikApi.withTokenInUrl in closure of
Ea.jQuery223056319336220622062.$injector

.invoke in closure of jQuery

Piwik Array 3 3 [139] 3

40 $widgetContent[‘0’]

.jQuery223056319336220622062.$scope

.$$listeners.$destroy

Array Piwik 3 3 [134]

41 jQuery223056319336220622061

.events.click

Array Materialize [79] 3 [137] 3

42 piwik.UI.UIControl. controls Array Piwik 3 3 [132] 3

43 Property jQuery223056319336220622061

.events.click on all div children of
#columnPreview

Array Piwik 3 [133] 3

Table A.2: Memory leaks in Piwik found by BLeak
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# Leak Root Type Culprit New Stale Bug Fixed

44 angular.element.cache[3]

.events[‘resize’]

Array Ment.io [30] † [148] †

45 angular.element.cache[2]

.events[‘click’]

Array Ment.io † [148] †

46 angular.element.cache[2]

.events[‘paste’]

Array Ment.io † [148] †

47 angular.element.cache[2]

.events[‘keypress’]

Array Ment.io † [148] †

48 angular.element.cache[2]

.events[‘keydown’]

Array Ment.io † [148] †

49 Loomio.records.discussions.collection

.DynamicViews

Array Loomio 3 3 [138] 3

50 angular.element.cache[4].data.$scope

.$parent.$$listeners

.$translateChangeSuccess

Array AngularJS
(1.x) [46]

3 3 [142] 3

51 Loomio.records.stanceChoices

.collection.DynamicViews

Array Loomio 3 3 [138] 3

52 Loomio.records.versions.collection

.DynamicViews

Array Loomio 3 3 [138] 3

Table A.3: Memory leaks in Loomio found by BLeak

# Leak Root Type Culprit New Stale Bug Fixed

53 list in closure of tuples[0][3].add in clo-
sure of $.ready.then, and list in clo-
sure of tuples[2][3].add in closure of
$.ready.then

Array jQuery [123] † 3 [18] †

54 EventLog.eventbindings Array Mailpile 3 [127] 3

55 document.body.childNodes[3]

.childNodes[3].childNodes

DOM Mailpile 3 [128] 3

Table A.4: Memory leaks in Mailpile found by BLeak

# Leak Root Type Culprit New Stale Bug Fixed

56 ‘mouseover’ listeners on
cm.display.wrapper

EL Firefox debugger 3 [136] 3

57 ‘mouseup’ listeners on
cm.display.wrapper

EL Firefox debugger 3 [136] 3

58 ‘mousedown’ listeners on
cm.display.wrapper

EL Firefox debugger 3 [136] 3

59 cm. handlers.scroll Array Firefox debugger 3 [136] 3

Table A.5: Memory leaks in the Firefox debugger found by BLeak
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APPENDIX B

BLEAK EVALUATION APPLICATION LOOPS

This section lists the code for all of the loops used in the evaluation (§7.3). These scripts

are the only input BLeak needs to automatically locate, rank, and debug the memory leaks

from the evaluation. Note that the line counts reported in Figure 4.1 ignore comment lines.

1 exports.loop = [{

2 check: function() {

3 const buttons = document.getElementsByTagName('button');

4 return document.getElementsByTagName('a')[4].getAttribute('aria-selected') ===

'true';↪→

5 },

6 next: function() {

7 document.getElementsByTagName('a')[5].click();

8 }

9 }, {

10 check: function() {

11 const buttons = document.getElementsByTagName('button');

12 return document.getElementsByTagName('a')[5].getAttribute('aria-selected') ===

'true' && buttons.length > 11 && buttons[11].innerText.trim() === "Room type"↪→

13 },

14 next: function() {

15 document.getElementsByTagName('a')[4].click();

16 }

17 }];

Table B.1: Airbnb’s loop.
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1 exports.login = [

2 {

3 check: function() {

4 const input = document.getElementsByTagName('input');

5 const username = input[0];

6 const password = input[2];

7 const submit = document.getElementsByClassName('submit')[0];

8 return !!(username && password && submit);

9 },

10 next: function() {

11 const input = document.getElementsByTagName('input');

12 const username = input[0];

13 const password = input[2];

14 const submit = document.getElementsByClassName('submit')[0];

15 username.value = "bleak";

16 password.value = "bleakpldi";

17 submit.click();

18 }

19 }

20 ];

21 exports.loop = [

22 {

23 check: function() {

24 const svg = document.getElementsByTagName('svg');

25 const canvas = document.getElementsByTagName('canvas');

26 return svg.length === 1 && canvas.length === 42;

27 },

28 next: function() {

29 document.getElementsByClassName('item')[1].click();

30 }

31 }

32 ];

Table B.2: Piwik’s loop.
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1 exports.login = [{

2 check: function() {

3 const emailField = document c
.getElementsByTagName('input')[1];↪→

4 if (emailField) {

5 return emailField.getAttribute('name')

=== 'email';↪→
6 }

7 return false;

8 },

9 next: function() {

10 const emailField = document c
.getElementsByTagName('input')[1];↪→

11 emailField.value = 'default@loomio.org';

12 // Notify Angular code of change.

13 emailField.dispatchEvent(new

Event("change"));↪→
14 const submitBtn = document c

.getElementsByTagName('button')[2];↪→
15 submitBtn.click();

16 }

17 }, {

18 check: function() {

19 const pswdField = document c
.getElementsByTagName('input')[1];↪→

20 const modalHeader = document c
.getElementsByTagName('h2')[3];↪→

21 const submitBtn = document c
.getElementsByTagName('button')[3];↪→

22 return submitBtn && pswdField &&

pswdField.name === "password" &&

modalHeader &&

modalHeader.innerText === "Welcome

back, default@loomio.org!" &&

submitBtn.innerText === "SIGN IN";

↪→
↪→
↪→
↪→
↪→

23 },

24 next: function() {

25 const pswdField = document c
.getElementsByTagName('input')[1];↪→

26 pswdField.value = 'b0eb3a48';

27 pswdField.dispatchEvent(new

Event("change"));↪→
28 const submitBtn = document c

.getElementsByTagName('button')[3];↪→
29 submitBtn.click();

30 }

31 }];

32 exports.setup = [{

33 check: function() {

34 const tp = document c
.getElementsByClassName('thread-preview');↪→

35 if (tp.length > 0) {

36 const thread = tp[0];

37 return thread.childNodes.length > 0 &&

thread.childNodes[0].tagName ===

"A" && thread.childNodes[0] c
.getAttribute('href') ===

"/d/6jZ4c8FL/how-to-use-loomio";

↪→
↪→
↪→
↪→

38 }

39 return false;

40 },

41 next: function() {

42 document c
.getElementsByTagName('md_icon_button')[0] c
.click();

↪→
↪→

43 }

44 }];

45 exports.loop = [{

46 check: function() {

47 const span = document c
.getElementsByTagName('span')[6];↪→

48 return !!span && span.innerText === "Fun

Group 1";↪→
49 },

50 next: function() {

51 document c
.getElementsByTagName('span')[6] c
.click();

↪→
↪→

52 }

53 }, {

54 check: function() {

55 const tp = document c
.getElementsByClassName('thread-preview');↪→

56 if (tp.length > 0) {

57 const thread = tp[0];

58 return thread.childNodes.length > 0 &&

thread.childNodes[0].tagName ===

"A" && thread.childNodes[0] c
.getAttribute('href') ===

"/d/6jZ4c8FL/how-to-use-loomio";

↪→
↪→
↪→
↪→

59 }

60 return false;

61 },

62 next: function() {

63 document c
.getElementsByClassName('thread-preview')[0] c
.childNodes[0].click();

↪→
↪→

64 }

65 }, {

66 check: function() {

67 const paragraphs =

document.getElementsByTagName('p');↪→
68 const h3 = document c

.getElementsByTagName('h3')[3];↪→
69 return paragraphs.length > 6 && h3 &&

h3.innerText.indexOf("Loomio Helper

Bot started a proposal") === 0 &&

paragraphs[5].innerText ===

"Welcome to Loomio, an online place

to make decisions together.";

↪→
↪→
↪→
↪→
↪→

70 },

71 next: function() {

72 // Opens menu w/ logout.

73 document c
.getElementsByTagName('md_icon_button')[0] c
.click();

↪→
↪→

74 }

75 }];

Table B.3: Loomio’s loop.
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1 const emailSubjects = [ "YO DAWG", "Icelandic Banana", "Demo ipsum",

2 "CRYPTO-GRAM, January 15, 2014"];

3 function returnToInbox() {

4 document.getElementById('sidebar-tag-b').children[0].click();

5 }

6 function itemSteps(i) {

7 let lastCheck = 0;

8 function inboxCheck() {

9 return document.getElementsByClassName('message-subject').length === 0 &&

document.getElementsByClassName('item-subject').length > 0;↪→

10 }

11 function inboxClick() {

12 document.getElementsByClassName('item-subject')[i].click()

13 }

14 return [{

15 check: inboxCheck,

16 next: inboxClick

17 }, {

18 check: function() {

19 const ms = document.getElementsByClassName('message-subject');

20 const rv = ms.length === 1 && ms[0].innerText === emailSubjects[i];

21 const now = Date.now();

22 // Mailpile's server fails a *lot*, requiring multiple clicks to get through.

23 // This is a hack to get around what I consider to be a bug.

24 if (!rv && inboxCheck() && (now - lastCheck) > 1000) {

25 inboxClick();

26 }

27 lastCheck = now;

28 return rv;

29 },

30 next: function() {

31 lastCheck = 0;

32 returnToInbox();

33 }

34 }];

35 }

36 exports.loop = [];

37 for (let i = 0; i < emailSubjects.length; i++) {

38 exports.loop.push.apply(exports.loop, itemSteps(i));

39 }

Table B.4: Mailpile’s loop.
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1 exports.loop = [{

2 check: function() {

3 const nodes = document.getElementsByClassName('node');

4 const sourceTabs = document.getElementsByClassName('source-tab');

5 return sourceTabs.length === 0 && nodes.length > 1 && nodes[1].innerText ===

"main.js";↪→

6 },

7 next: function() {

8 document.getElementsByClassName('node')[1].click();

9 }

10 }, {

11 check: function() {

12 // code mirror must be open, tab must be added, etc.

13 return document.getElementsByClassName('CodeMirror-line').length > 2 &&

document.getElementsByClassName('source-tab').length === 1 &&

document.getElementsByClassName('close-btn').length === 1;

↪→

↪→

14 },

15 next: function() {

16 document.getElementsByClassName('close-btn')[0].click();

17 }

18 }];

Table B.5: Firefox Debugger’s loop.
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In Proceedings of the 22nd Annual Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (2007), pp. 535–552.

[111] Powers, Bobby, Vilk, John, and Berger, Emery D. Browsix: Bridging the Gap Between
Unix and the Browser. In Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating Systems (2017),
pp. 253–266.

124

https://developer.mozilla.org/en-US/docs/Tools/Performance
https://developer.mozilla.org/en-US/docs/Tools/Performance
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://github.com/gopherjs/gopherjs
https://webkit.org/blog/6425/memory-debugging-with-web-inspector/
https://webkit.org/blog/6425/memory-debugging-with-web-inspector/
https://blogs.windows.com/msedgedev/2015/11/16/introducing-edgehtml-13-our-first-platform-update-for-microsoft-edge
https://blogs.windows.com/msedgedev/2015/11/16/introducing-edgehtml-13-our-first-platform-update-for-microsoft-edge
https://piwik.org/


[112] Ratanaworabhan, Paruj, Livshits, Benjamin, and Zorn, Benjamin G. JSMeter: Com-
paring the Behavior of JavaScript Benchmarks with Real Web Applications. In
USENIX Conference on Web Application Development (2010).

[113] Raychev, Veselin, Vechev, Martin T., and Sridharan, Manu. Effective race detection
for event-driven programs. In Proceedings of the 2013 International Conference on
Object Oriented Programming Systems Languages & Applications (2013), pp. 151–166.

[114] Robinson, D., and Coar, K. The Common Gateway Interface (CGI) Version 1.1. RFC
3875, RFC Editor, October 2004. http://www.rfc-editor.org/rfc/rfc3875.txt.

[115] Rudafshani, Masoomeh, and Ward, Paul A. S. LeakSpot: Detection and diagnosis
of memory leaks in JavaScript applications. Software: Practice and Experience 47, 1
(2017), 97–123.

[116] Sen, Koushik, Kalasapur, Swaroop, Brutch, Tasneem G., and Gibbs, Simon. Jalangi:
A selective record-replay and dynamic analysis framework for JavaScript. In Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (2013), pp. 488–498.

[117] Smedberg, Benjamin. NPAPI Plugins in Firefox. https://blog.mozilla.org/

futurereleases/2015/10/08/npapi-plugins-in-firefox/, 2015. [Online; ac-
cessed 16-July-2018].

[118] Smith, Jerry. Moving to HTML5 Premium Media. https://blogs.windows.com/

msedgedev/2015/07/02/moving-to-html5-premium-media/, 2015. [Online; ac-
cessed 16-July-2018].

[119] Stevenson, Michael. Perl and the birth of the dynamic web. https://opensource.

com/life/16/11/perl-and-birth-dynamic-web, 2018. [Online; accessed 10-
August-2018].

[120] Stroop, John Ridley. Studies of interference in serial verbal reactions. Journal of
Experimental Psychology 18, 6 (1935).

[121] Tang, Shuo, Mai, Haohui, and King, Samuel T. Trust and Protection in the Illi-
nois Browser Operating System. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation (2010), pp. 17–31.

[122] The Internet Archive. The Internet Archive Software Collection. https://archive.
org/details/software, 2018. [Online; accessed 18-July-2018].

[123] The jQuery Foundation. jQuery. https://jquery.com/. [Online; accessed 30-April-
2017].

[124] Topic, Dalibor. Moving to a Plugin-Free Web. https://blogs.oracle.com/

java-platform-group/moving-to-a-plugin-free-web, 2016. [Online; accessed 16-
July-2018].

[125] Undo. Reversible Debugging Tools for C/C++ on Linux and Android. http://undo.
io/. [Online; accessed 30-April-2017].

125

http://www.rfc-editor.org/rfc/rfc3875.txt
https://blog.mozilla.org/futurereleases/2015/10/08/npapi-plugins-in-firefox/
https://blog.mozilla.org/futurereleases/2015/10/08/npapi-plugins-in-firefox/
https://blogs.windows.com/msedgedev/2015/07/02/moving-to-html5-premium-media/
https://blogs.windows.com/msedgedev/2015/07/02/moving-to-html5-premium-media/
https://opensource.com/life/16/11/perl-and-birth-dynamic-web
https://opensource.com/life/16/11/perl-and-birth-dynamic-web
https://archive.org/details/software
https://archive.org/details/software
https://jquery.com/
https://blogs.oracle.com/java-platform-group/moving-to-a-plugin-free-web
https://blogs.oracle.com/java-platform-group/moving-to-a-plugin-free-web
http://undo.io/
http://undo.io/


[126] University of Illinois. Code Moo – A playful way to learn programming. http:

//www.codemoo.com/, 2015. [Online; accessed 18-July-2018].

[127] Vilk, John. [Browser Client] Minor memory leak: “.mail source” event resubscriptions.
https://github.com/mailpile/Mailpile/issues/1911, 2017. [Online; accessed 8-
November-2017].

[128] Vilk, John. [Browser Client] Minor memory leak: Text nodes in notification area.
https://github.com/mailpile/Mailpile/issues/1931, 2017. [Online; accessed 8-
November-2017].

[129] Vilk, John. Fix memory leak in Element.removeData(). https://github.com/

DmitryBaranovskiy/raphael/pull/1077, 2017. [Online; accessed 8-November-
2017].

[130] Vilk, John. Fix memory leaks in data table / jqplot. https://github.com/piwik/

piwik/pull/11354, 2017. [Online; accessed 8-November-2017].

[131] Vilk, John. Fix multiple memory leaks in UserCountryMap. https://github.com/

piwik/piwik/pull/11350, 2017. [Online; accessed 8-November-2017].

[132] Vilk, John. Fix UIControl memory leak. https://github.com/piwik/piwik/pull/
11362, 2017. [Online; accessed 8-November-2017].

[133] Vilk, John. JavaScript Memory Leak: #columnPreview click handlers. https:

//github.com/piwik/piwik/issues/12058, 2017. [Online; accessed 8-November-
2017].

[134] Vilk, John. JavaScript Memory Leak: widgetContent $destroy handlers. https:

//github.com/piwik/piwik/issues/12059, 2017. [Online; accessed 8-November-
2017].

[135] Vilk, John. Memory Leak: gtm.js repeatedly appends conversion async.js to head
when pushing to dataLayer. https://goo.gl/WFPt4M, 2017. [Online; accessed 6-
November-2017].

[136] Vilk, John. Memory Leak in Preview Component. https://github.com/

devtools-html/debugger.html/issues/3822, 2017. [Online; accessed 8-November-
2017].

[137] Vilk, John. Memory Leak: material select never removes global click handlers.
https://github.com/Dogfalo/materialize/issues/4266, 2017. [Online; accessed
8-November-2017].

[138] Vilk, John. Minor frontend memory leaks due to unremoved LokiJS dynamic
views. https://github.com/loomio/loomio/issues/4248, 2017. [Online; accessed
8-November-2017].

[139] Vilk, John. Minor JavaScript Memory Leak: piwikApiService allRequests ar-
ray. https://github.com/piwik/piwik/issues/12105, 2017. [Online; accessed 8-
November-2017].

126

http://www.codemoo.com/
http://www.codemoo.com/
https://github.com/mailpile/Mailpile/issues/1911
https://github.com/mailpile/Mailpile/issues/1931
https://github.com/DmitryBaranovskiy/raphael/pull/1077
https://github.com/DmitryBaranovskiy/raphael/pull/1077
https://github.com/piwik/piwik/pull/11354
https://github.com/piwik/piwik/pull/11354
https://github.com/piwik/piwik/pull/11350
https://github.com/piwik/piwik/pull/11350
https://github.com/piwik/piwik/pull/11362
https://github.com/piwik/piwik/pull/11362
https://github.com/piwik/piwik/issues/12058
https://github.com/piwik/piwik/issues/12058
https://github.com/piwik/piwik/issues/12059
https://github.com/piwik/piwik/issues/12059
https://goo.gl/WFPt4M
https://github.com/devtools-html/debugger.html/issues/3822
https://github.com/devtools-html/debugger.html/issues/3822
https://github.com/Dogfalo/materialize/issues/4266
https://github.com/loomio/loomio/issues/4248
https://github.com/piwik/piwik/issues/12105


[140] Vilk, John. Small Memory Leak and Correctness Bug in analytics.js. https://

issuetracker.google.com/issues/66525724, 2017. [Online; accessed 6-November-
2017].

[141] Vilk, John. Small memory leak: Callbacks added to window. xdc are never cleared.
https://issuetracker.google.com/issues/66529186, 2017. [Online; accessed 6-
November-2017].

[142] Vilk, John. Small Memory Leak in $rootScope.$on. https://github.com/angular/
angular.js/issues/16135, 2017. [Online; accessed 8-November-2017].

[143] Vilk, John, and Berger, Emery D. Doppio: Breaking the Browser Language Barrier. In
ACM SIGPLAN Conference on Programming Language Design and Implementation
(2014), pp. 508–518.

[144] Vilk, John, and Berger, Emery D. BLeak: Automatically Debugging Memory Leaks
in Web Applications. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (2018), pp. 15–29.

[145] Vilk, John, and Berger, Emery D. BLeak repository. https://github.com/

plasma-umass/bleak, 2018. [Online; accessed 20-March-2018].

[146] W3C. HTML5 Standard. https://www.w3.org/TR/html50/, 2014. [Online; accessed
27-August-2018].

[147] W3C. w3c/webidl2.js: WebIDL parser. https://github.com/w3c/webidl2.js,
2018. [Online; accessed 24-July-2018].

[148] Wheeldon, Brent. Unbind events to prevent memory leaks. https://github.com/

jeff-collins/ment.io/pull/138, 2017. [Online; accessed 8-November-2017].

[149] Xia, Bingying. PacMan. https://github.com/bxia/Javascript-Pacman, 2013.
[Online; accessed 30-April-2017].

[150] Xu, Guoqing (Harry), and Rountev, Atanas. Precise memory leak detection for Java
software using container profiling. ACM Transactions on Software Engineering and
Methodology 22, 3 (2013), 17:1–17:28.

[151] Xu, Min, Malyugin, Vyacheslav, Sheldon, Jeffrey, Venkitachalam, Ganesh, and Weiss-
man, Boris. Retrace: Collecting execution trace with virtual machine deterministic
replay. In Workshop on Modeling, Benchmarking and Simulation (2007).

[152] Yang, Zhemin, Yang, Min, Xu, Lvcai, Chen, Haibo, and Zang, Binyu. ORDER:
Object centRic DEterministic Replay for Java. In Proceedings of the 2011 USENIX
Annual Technical Conference (2011).

[153] Zakai, Alon. Emscripten: an LLVM-to-JavaScript compiler. In OOPSLA Companion
(2011), pp. 301–312.

127

https://issuetracker.google.com/issues/66525724
https://issuetracker.google.com/issues/66525724
https://issuetracker.google.com/issues/66529186
https://github.com/angular/angular.js/issues/16135
https://github.com/angular/angular.js/issues/16135
https://github.com/plasma-umass/bleak
https://github.com/plasma-umass/bleak
https://www.w3.org/TR/html50/
https://github.com/w3c/webidl2.js
https://github.com/jeff-collins/ment.io/pull/138
https://github.com/jeff-collins/ment.io/pull/138
https://github.com/bxia/Javascript-Pacman

	Righting Web Development
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Background
	From Web Pages to Applications
	Web Pages
	Web Applications

	Browser Architecture and Core Features
	Browser Overview
	JavaScript Engine
	Layout Engine
	I/O Abstractions
	Event-based Concurrency
	Worker Threads

	Web Development Tools
	Debugging Correctness Issues
	Debugging Memory Overhead
	Understanding Program Behavior
	Porting Code to the Browser


	Challenges in Web Development
	Debugging Correctness Issues
	Memory Leaks
	Prior Automated Techniques
	Manual Leak Debugging via Heap Snapshots

	Understanding Program Behavior
	Porting Code to the Browser

	McFly: Time-Travel Debugging for the Web
	McFly
	Time-Travel Overview
	Supporting Visual State
	Application Checkpoints
	I/O and Nondeterminism Log
	Debugger Features
	Performance Monitors
	Replay Guarantees

	Implementation
	Layout Engine State
	Performance Monitors
	Security Implications

	Evaluation
	Applications
	Faithfulness
	Performance
	Overhead

	Conclusion

	BLeak: Automatically Debugging Memory Leaks in Web Applications
	BLeak Overview
	Algorithms
	Memory Leak Detection
	Diagnosing Leaks
	Leak Root Ranking

	Implementation
	BLeak Driver
	BLeak Proxy
	BLeak Agent
	Diagnostic Hooks
	Exposing Hidden State


	Evaluation
	Applications
	Precision, Accuracy, and Overhead
	Leak Impact
	LeakShare Effectiveness
	Leak Staleness

	Conclusion

	BCause: Causal Program Understanding for Web Applications
	Challenges
	BCause Overview
	Trace Entries
	DOM Events
	Asynchronous Operations
	Cross-document Messages
	JavaScript Initialization
	HTML Initialization

	Implementation
	BCause Proxy
	BCause Server
	BCause Hook Generator
	BCause Agent

	Evaluation
	Accuracy
	Overhead

	Conclusion

	Doppio: Breaking the Browser Language Barrier
	Execution Environment
	Automatic Event Segmentation
	Emulating Blocking with Asynchronous APIs
	Multithreading Support

	OS Services
	File System
	Unmanaged Heap
	TCP Sockets

	DoppioJVM
	Segmented Execution
	Multithreading
	Native Methods
	Class Loading
	Exceptions
	JVM Objects and Arrays

	Evaluation
	Case Study 1: DoppioJVM
	Case Study 2: Doppio and C++

	Conclusion

	Browsix: Bridging the Gap Between Unix and the Browser
	Browsix OS Support
	Kernel
	System Calls
	Processes
	Pipes
	Sockets
	Shared File System

	Browsix Runtime Support
	Browser Environment Extensions
	Runtime-specific Integration

	Evaluation
	Case Studies
	LaTeX Editor
	Meme Generator
	The Browsix Terminal

	Performance

	Conclusion

	Related Work
	Time-Travel Debugging and Deterministic Replay
	Time-Travel Debugging
	Deterministic Replay

	Memory Leak Debugging
	Web Application Memory Leak Detectors
	Web Application Memory Debugging
	Growth-based Memory Leak Detection
	Staleness-based Memory Leak Detection
	Hybrid Leak Detection Approaches

	Causal Program Understanding for Web Applications
	Porting Code to the Browser

	Conclusion
	Leaks Found By BLeak
	BLeak Evaluation Application Loops
	Bibliography

