
The Larch Environment - Python programs as
visual, interactive literature

G. W. French

A Thesis submitted for the degree of Master of Science

School of Computing Science

University of East Anglia

January 2013



Contents

1 Introduction 1

2 Background 5
2.1 Presentation systems . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Document mark-up systems . . . . . . . . . . . . . . . . . 5
2.1.2 User interface tool kits . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Combinatorial APIs . . . . . . . . . . . . . . . . . . . . . 6

2.2 Object presentation . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Model View Controller (MVC) architecture . . . . . . . . 7
2.2.2 Editing environments . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Programming environments . . . . . . . . . . . . . . . . . 8

2.3 Structured source code editors . . . . . . . . . . . . . . . . . . . 9
2.3.1 Syntax directed editors . . . . . . . . . . . . . . . . . . . 9
2.3.2 Syntax recognising editors . . . . . . . . . . . . . . . . . . 9

2.4 Active documents . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Live programming environments . . . . . . . . . . . . . . . . . . 12
2.6 Visual source code extensions . . . . . . . . . . . . . . . . . . . . 13
2.7 Visual programming languages . . . . . . . . . . . . . . . . . . . 13
2.8 Domain specific languages . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Canvas based development environments . . . . . . . . . . . . . . 15

3 Presentation system 16
3.1 Presentation tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Presentation combinators and style sheets . . . . . . . . . . . . . 17
3.3 GUI controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Incremental modification . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Event handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5.1 User input . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5.2 Application events . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Structured document support . . . . . . . . . . . . . . . . . . . . 19
3.7 Targets, selections and regions . . . . . . . . . . . . . . . . . . . 19
3.8 Caret behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9 Editable text elements . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.10.1 Presentation combinators . . . . . . . . . . . . . . . . . . 21
3.10.2 Style sheets . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.11 Comparison to existing work . . . . . . . . . . . . . . . . . . . . 22

i



4 Type coercion based object presentation 24
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Implicit type coercion . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Incremental consistency maintenance . . . . . . . . . . . . . . . . 25
4.4 Dynamic incremental computation system . . . . . . . . . . . . . 26
4.5 Live values and functions . . . . . . . . . . . . . . . . . . . . . . 26
4.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7 Functional and compositional approach to GUI development . . . 28
4.8 Caret behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.9 Browser navigation; subjects and locations . . . . . . . . . . . . . 29
4.10 Change history . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.11 Clipboard behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.12 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.12.1 Presentation combinator integration . . . . . . . . . . . . 30
4.12.2 Presentation process . . . . . . . . . . . . . . . . . . . . . 31

4.13 Comparison to related work . . . . . . . . . . . . . . . . . . . . . 31

5 Rich content editing 34
5.1 Structured source code editing system . . . . . . . . . . . . . . . 34

5.1.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.3 Implementing a structured source code editor . . . . . . . 37
5.1.4 Structured source code editors; evaluation . . . . . . . . . 37
5.1.5 Comparison to related work . . . . . . . . . . . . . . . . . 38

5.2 Rich text editors . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Table editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Programming environment 42
6.1 Python editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Python console . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Worksheet active document system . . . . . . . . . . . . . . . . . 43

6.3.1 Building and editing a worksheet . . . . . . . . . . . . . . 44
6.3.2 Viewing a worksheet . . . . . . . . . . . . . . . . . . . . . 45

6.4 Project system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.1 Special pages . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.5 Introspection tools . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5.1 Data model dragging . . . . . . . . . . . . . . . . . . . . . 47
6.5.2 Fragment inspector . . . . . . . . . . . . . . . . . . . . . . 47
6.5.3 Inspector perspective . . . . . . . . . . . . . . . . . . . . . 47
6.5.4 Element tree explorer . . . . . . . . . . . . . . . . . . . . 48

6.6 Comparison to related work . . . . . . . . . . . . . . . . . . . . . 48

7 Partially visual programming with embedded objects 49
7.1 Embedded object protocol . . . . . . . . . . . . . . . . . . . . . . 50
7.2 Performance impact . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.3.1 Within Larch . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3.2 Within other environments . . . . . . . . . . . . . . . . . 53

7.4 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5 Isolation Serialisation System . . . . . . . . . . . . . . . . . . . . 54

ii



7.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.7 Comparison to related work . . . . . . . . . . . . . . . . . . . . . 57

7.7.1 Visual languages and DMPEs . . . . . . . . . . . . . . . . 57
7.7.2 Visual source code extensions . . . . . . . . . . . . . . . . 58
7.7.3 Domain specific languages . . . . . . . . . . . . . . . . . . 58

8 Evaluation 59
8.1 Proof of concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.1.1 Interactive explorable documents; embedded editable values 59
8.1.2 Simplified interactive literate programming . . . . . . . . 62
8.1.3 In-line console . . . . . . . . . . . . . . . . . . . . . . . . 63
8.1.4 Simple static software visualisation; program trace visu-

alisation tool . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.1.5 Language extensions and domain specific programming tools 66
8.1.6 Visual regular expression editor. . . . . . . . . . . . . . . 67
8.1.7 Table based unit tests . . . . . . . . . . . . . . . . . . . . 69
8.1.8 Live API Documentation . . . . . . . . . . . . . . . . . . 72

8.2 Programming environment performance . . . . . . . . . . . . . . 74
8.3 A discussion of Cognitive Dimensions . . . . . . . . . . . . . . . . 76

9 Conclusions 77
9.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9.1.1 Visual object presentation . . . . . . . . . . . . . . . . . . 77
9.1.2 Programming environment . . . . . . . . . . . . . . . . . 78
9.1.3 Partially visual programming . . . . . . . . . . . . . . . . 78

9.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

iii



List of Figures

1.1 Larch system conceptual overview . . . . . . . . . . . . . . . . . 4

3.1 Presentation combinator and style sheet API example . . . . . . 18
3.2 Fraction presentation example . . . . . . . . . . . . . . . . . . . . 20

4.1 Python list containing Java BufferedImage objects, displayed in
a Larch console . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Image collection implementation and example. . . . . . . . . . . 32

5.1 A simple solar system table definition and example . . . . . . . . 41

6.1 Python visual enhancements, contrasting the Larch Python edi-
tor with plain text . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Interactive virtual machine in a worksheet . . . . . . . . . . . . . 44
6.3 Worksheet developer mode context menu . . . . . . . . . . . . . 45
6.4 Project editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 A fragment inspector . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.6 An object inspector . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.1 Code generation with embedded objects. . . . . . . . . . . . . . . 50
7.2 An interactive polygon embedded within source code . . . . . . . 51
7.3 Motivation for isolation serialisation system . . . . . . . . . . . . 55
7.4 Isolation serialization system - partitioning. . . . . . . . . . . . . 56

8.1 Square function with embedded editable value . . . . . . . . . . . 60
8.2 Separable Gaussian blur using embedded editable values . . . . . 60
8.3 Separable Gaussian blur implementation . . . . . . . . . . . . . . 61
8.4 An in-line console . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.5 A program trace visualisation of the LZW compression algorithm 65
8.6 A program trace visualisation of a recursive algorithm . . . . . . 66
8.7 MIPS simulator instruction set, shown as an editable table . . . 68
8.8 Visual regular expression editor, with textual form above for com-

parison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.9 Regular expression tester . . . . . . . . . . . . . . . . . . . . . . 69
8.10 Regular expression tester implementation . . . . . . . . . . . . . 70
8.11 Parser unit test in textual and tabular form . . . . . . . . . . . . 71
8.12 Live API documentation for LSpace . . . . . . . . . . . . . . . . 73
8.13 Performance measurements . . . . . . . . . . . . . . . . . . . . . 74

iv



List of Tables

8.1 Performance measurements in numeric form . . . . . . . . . . . . 75

v



Acknowledgements

I would like to thank my supervisory team, Dr. Richard Kennaway, and Prof.
Andy Day for their support, advice, and help throughout this project.

I would like to thank Jim Huginin, Frank Wierzbicki, and all other Jython
project contributors. Jython [70] is a Java implementation of the Python lan-
guage. Without Jython, our work would have been very difficult. Our system
utilises Martin Jericho’s ’Jericho’ HTML parsing library, and Mark McKay’s
’svgSalamander’ library.

I would like to thank Dr. Joost Noppen his advice positioning and contex-
tualising our work.

Special thanks to Dr. Gregory V. Wilson, whose ACM Queue article [84]
provided the initial inspiration for our project.

vi



Abstract

’The Larch Environment’ is designed for the creation of programs that take the
form of interactive technical literature. We introduce a novel approach to com-
bined textual and visual programming by allowing visual, interactive objects
to be embedded within textual source code, and segments of source code to be
further embedded within those objects. We retain the strengths of text-based
source code, while enabling visual programming where it is beneficial. Addi-
tionally, embedded objects and code provide a simple object-oriented approach
to extending the syntax of a language, in a similar fashion to LISP macros. We
provide a rapid prototyping and experimentation environment in the form of
an active document system which mixes rich text with executable source code.
Larch is supported by a simple type coercion based presentation protocol that
displays normal Java and Python objects in a visual, interactive form. The
ability to freely combine objects and source code within one another allows for
the construction of rich interactive documents and experimentation with novel
programming language extensions.



Chapter 1

Introduction

Plain text remains the dominant medium for source code despite the develop-
ment of visual programming languages that represent programs in a diagram-
matic form. There are two reasons for this. Firstly, diagrammatic representa-
tions of programming constructs have met with varying success; some hinder
comprehension [25], while others (such as SWYN [5]) have been beneficial. Sec-
ondly, visual programming languages have been found to suffer from the scaling
up problem [10]; diagrammatic representations of large and complex programs
tend to be unwieldy, and difficult to understand and navigate [53, 83].

Modern IDEs provide an efficient interface for editing and navigating through
source code. Unfortunately, the range of visual cues available is limited to the
use of colours, text style and indentation. As a consequence, professional pro-
grammers miss out on the opportunity to use visual forms to improve the read-
ability of their code. While visual programming languages are cumbersome to
work with, carefully designed visual notations can be helpful [83]. To better
serve the needs of programmers, a development environment should combine
both forms. To this end, we have developed an approach to partially visual
programming inspired by technical literature. Technical literature is primarily
a textual medium, in which diagrams, spatial arrangement (e.g. tables) and
other visual forms are used where prose is insufficient to convey the desired
information. Our approach to partially visual programming is based on embed-
ding normal objects within source code and rendering them visually, so that
programmers can use visual constructs within code where they are beneficial.
Our technique is a simpler alternative to those introduced by Racket [60] and
ETMOP [19].

The ability to freely mix textual and interactive visual source code represen-
tations supports the development of in-line interactive development tools (such
as the program visualisation tool in section 8.1.4) and customised forms of the
host programming language that are aimed towards supporting a specific do-
main (such as the MIPS CPU simulator in section 8.1.5). In section 8.1.7 we
demonstrate a way in which the work-flow of unit-testing can be improved. We
have developed table based unit tests that simplify the test development process
and juxtapose the test results with the test code.

For partially visual programming to be truly useful, a programmer must be
able to develop their own visual constructs. In aid of this, we have designed a
simple protocol to control the compile and run time behaviour of visual con-

1



structs.
The development of visual programming constructs is supported by an object

presentation system based on type coercion (the process of converting objects
to a specific type; explained further in section 4.2). It eliminates much of the
boilerplate code that is found in many Model-View-Controller [9] implemen-
tations. Besides the development of visual programming constructs, it is also
used to implement the GUIs for the various tools and components that make
up Larch.

We provide a simple approach to developing a visual representation for an
object, allowing developers to visualize the state of their objects for either user
interface or debugging purposes. The careful use of spatial arrangement (e.g.
tables), visual cues and diagrams can improve comprehension [83], when con-
trasted to plain-text based representations.

These components operate within the context of the active document based
Larch programming environment. Larch provides a REPL (read-eval-print-loop)
based console that displays objects in a visual form using the object presenta-
tion protocol discussed above. Like other REPL based consoles, it offers an
effective experimental programming environment, thanks to its rapid edit-run-
debug cycle. Unfortunately the simple command-line interaction model limits
its effectiveness when working with more than a few lines of code.

For complete modules, we provide a system based on active documents.
Active document systems augment rich text with procedurally generated inter-
active content. Notebook systems such as Vital workbooks [27], Mathematica
notebooks [88] and IPython notebooks [58] interleave rich text and executable
source code, whose output is displayed in-line. Our worksheet active documents
operate in a similar fashion. Two modes of operation allow them to function as
both a user facing application and a developer facing programming environment.
Drawing inspiration from Smalltalk [22], our system encourages programmers
to frequently execute and test their programs throughout the development pro-
cess.

The components of Larch are designed to work in harmony in order to pro-
vide a useable interactive environment. The visual object presentation system
acts as the core of Larch, allowing applications to be developed as objects, some
of which are displayed to form a user interface. The development environment
GUI, program source code and execution output all consist of objects that reside
within the same object space. This approach was pioneered by Smalltalk [22].

In summary, Larch combines the embedding of interactive objects within
source code with an active document based programming environment. It is
built upon a visual object presentation system that operates on similar princi-
ples to the live object based development environments introduced by Smalltalk.
Like Smalltalk, Larch is inherently dynamic; objects can be modified interac-
tively or programmatically, and code within Larch documents can be immedi-
ately executed.

We will cover our approach from two angles. It will be considered from the
perspective of a developer looking to implement our approach within a different
system, such as an existing Integrated Development Environment (IDE). We
will also briefly discuss our implementation within the active document based
programming environment within Larch.

Our novel contributions are the type coercion based approach to object pre-
sentation — which will be discussed in chapter 4 — and our embedded object

2



based approach to partially visual programming — which will be discussed in
chapter 7.

We present a survey of background work in chapter 2. Our presentation
system is discussed in chapter 3. A rich content editing tool kit is discussed in
chapter 5. The interactive programming environment is described in chapter 6.
We evaluate our system with proof of concept examples and performance mea-
surements in chapter 8. We present our conclusions in chapter 9. A conceptual
overview of the design of our system is shown in figure 1.1.

3



 

Rich content editing (ch 5) 

Source code 

(s 5.1) 

Rich text 

(s 5.2) 

Table (s 5.3) 

Java AWT and Swing libraries 

LSpace presentation system (ch3) 

Typesetting & layout Rendering 

Presentation combinators (s 3.2) 

Type coercion based object presentation (ch 4) 

Programming environment (ch 6) 

Python editor (s 6.1) 

Python console (s 6.2) 

Worksheet active 

documents (s 6.3) 

Embedded 

objects (ch 7) 

Proof of concept tools (ch 8) 

Visual 

regex 

Inline 

console 

MIPS 

sim 

Table 

unit tests 

Program 

visualisatio

n 

API 

docs 

Figure 1.1: Larch system conceptual overview

4



Chapter 2

Background

2.1 Presentation systems

2.1.1 Document mark-up systems

Document mark-up systems render plain text documents that are marked up
with tags or control structures that provide structural and styling information.

TEX[39] — the document and mathematical typesetting system — is often
considered to represent the ’Gold Standard’ in automated typesetting due to
it’s unsurpassed quality of output. The TEXmark-up language defines a Turing-
complete macro system that permits the development of user-defined mark-
up macros. Unfortunately, TEXmacros are difficult to understand and write,
making macro development a task that is undertaken by few. VorTeX [13]
was an incremental implementation of TEXthat incrementally updates a typeset
document in response to modifications to the underlying source document. It
was developed for the purpose of constructing a WYSIWYG TEXeditor. Its
success was limited as it could re-typeset a minimum of one page in response
to modifications. No smaller amount of content could be incrementally typeset,
due to the semantics of the TEXsystem. The full internal workings of TEX, are
described in [39]. A functional description of TEX’s box-based formula layout
algorithms is presented in [28]. TEXutilizes inherited attributes (first described
in the context of attribute grammars in [37]) to allow styling attributes applied
to an element to effect child elements as well.

The HyperText Mark-up Language (HTML) is the publishing language of
the World Wide Web [77]. Cascading Style Sheets (CSS) [75] is a style sheet
language that is used to specify style information the control the presentation
of structured documents, namely those that are written in HTML or XML [76].
A CSS style sheet consists of descriptions of styles, each of which consists of a
selector — to identify the elements to which the style applies — and a collection
of styling attributes, which control the appearance, style and layout of the
elements. CSS attributes may operate in an inherited or cascading fashion. An
inherited attribute applies not only to its target element, but also to the child
elements enclosed within it. A cascading attribute operates in a cumulative
fashion, inheriting the value from the parent and applying a modification, such
as a scale factor.

Modern web browsers provide facilities for implementing dynamic content,

5



enhancing the capacity of web applications for providing rich user interfaces.
This lies behind the recent trend in web development, known colloquially as
Web 2.0. Web browsers can execute code that is written in the Javascript
programming language [18], and allow Javascript programs to receive user input,
and modify the contents of the document through an API.

2.1.2 User interface tool kits

User interface tool kits — such as GTK+ [69] and Java Swing [56] — provide a
library of widgets that are instantiated and combined to form a tree structure.
Simple widgets such as text labels or images are placed at the leaves, while
container elements are placed at the branches.

Modern tool kits perform automatic layout, spatially arranging widgets ac-
cording to layout rules determined by the containers. Container elements can
arrange children horizontally, vertically or in a matrix layout. Modifications to
the content of widgets or to the structure of a widget tree will cause the tool kit
to incrementally update the layout to account for the changes. These systems
typically use a box-based layout system, similar to that found in TEX.

2.1.3 Combinatorial APIs

Direct element construction — as employed in GUI toolkits such as Swing [56] —
results in verbose and inflexible code, as it is necessary to configure each element
individually. This in part underlies the recent rise in popularity of presentation
and GUI description languages such as XAML [33] and QML [55]. The use of
a domain specific syntax or XML schema results in presentation descriptions
that are terser than the equivalent direct element construction code. They can
be further simplified through the use of a style sheet system such as CSS. A
further benefit of XML based systems is that their similarity to HTML opens
their use to a wider audience, as user interface designers are often familiar with
HTML. Unfortunately, by using a presentation language the developer loses the
power and flexibility of a general purpose programming language; functions,
loops and control structures which can assist in the presentation construction
process are not usually available. Within web development frameworks, tem-
plate languages [16] attempt to address this problem by mixing elements of the
host programming language with HTML.

Combinatorial APIs with style sheets bridge the gap between presentation
languages and general purpose languages, allowing source code to be used to
create terse, logical presentation descriptions, while retaining the full power of
the host programming language.

Hopscotch [12] is a document-centric application framework that is a compo-
nent of the Newspeak [7] environment. Its appearance bears resemblance to that
of a web browser, due to its browser-like navigation controls, and the frequent
use of hyperlinks. The reduction in code verbosity achieved through the use of
a combinatorial API underlies the use of combinator methods within Hopscotch
presenters (a presenter constructs a presentation of an underlying data model).
Their invocation results in the construction of the necessary elements. This in-
direct specification of the interface offers significant flexibility, as the layout and
appearance of a presentation can be altered by sub-classing the presenter and
overriding the necessary methods. The resulting system provides a style sheet

6



facility, which resembles the operation of the text typesetting system employed
by TEX.

Xprez [63] is the presentation system developed for the Proxima editor [62].
It is implemented in the Haskell programming language [59]. Xprez is able to
produce rich presentations and is sufficiently powerful to cover much of the
mathematical typesetting capabilities provided by TEX, as described in [28].
The functionality of Xprez is exposed to programmers though a combinatorial
API. Its design allows simple, understandable code to be used to construct rich
document-centric presentations.

Mathematica [86] provides a powerful combinatorial API that can be used
to compose presentations from plots, formulae, and user interface controls.

2.2 Object presentation

There are various approaches for object presentation, most of which are based
on the MVC architecture.

2.2.1 Model View Controller (MVC) architecture

The Model-View-Controller (MVC) architecture [9] has become the dominant
design pattern for the development of GUI driven applications. It describes three
components that work together in order to present editable data to the user.
The model component encapsulates the application state (the data that is to be
edited) and provides an API for accessing and modifying it. It also notifies the
view of state changes, so that it can automatically refresh in order to maintain
consistency with the model. The view component creates a user interface that
presents the data to the user, usually in the form of a GUI. It acquires values
from the model that guide the construction of the GUI components. The view
passes user actions to the controller. The controller component responds to user
actions by making the appropriate modifications to the model.

Many modern user interface tool kits utilise the MVC architecture. GTK+
[69] uses the model/view separation for complex controls such as list and tree
views, but not for simple controls such as check boxes and text entries. Swing
[56] uses this approach even for simple controls.

The MVC architecture is also used in many web application frameworks
(e.g. Django [17]). The data is typically stored in a relational database, with
model objects providing an object oriented interface for accessing it. A view that
accessible at a specific URL responds to a request from the client by accessing the
data model and generating an HTML document that will present the interface
to the user when rendered on the client. The client responds to user actions by
sending a request to a URL that maps to a controller, that converts the user’s
actions into modifications to be performed on the data model. The stateless
model of the World Wide Web provides a natural fit for MVC, with requests
for data being handled by a view and responses being handled by a controller.

2.2.2 Editing environments

Citrus is a language and toolkit designed to simplify the development of graph-
ical editors for structured data and code [40]. Models and views within citrus

7



are described using the declarative Citrus language. Citrus enforces a 1:1 corre-
spondence between model class and editor description. The tight static binding
between data and editor schemas allows Citrus to automatically construct views
of data and maintain consistency between them in response to changes. Further-
more, the data model schemas are statically typed and can specify constraints
for fields that limit their range of values. These constraints are automatically
applied by the editor.

The Ensemble project [24] was an editing environment that operated on
generic multimedia structured documents. It was aimed primarily at software
development, and was therefore intended to be used for editing source code, user
documentation, design notes and project management information. Document
models were represented using a tree structure. A variety of presentation sys-
tems were developed for Ensemble1, each using a different technique to present
a document. Proteus [51] uses tree elaboration; the document tree is projected
to form a presentation tree, with the presentation schema defining additional
elements which are inserted into the presentation tree, along with attributes
that affect the elements’ appearance. A tree transformation based Ensemble
presentation system — described in [48] — visits the nodes in a document tree,
using re-write rules to transform document tree nodes into presentation tree
nodes.

2.2.3 Programming environments

The interactive development environments within Smalltalk systems [22] allow a
developer to explore the object graph of a running application and interact with
their state. Objects are live, in that they can be inspected by a developer as they
form part of a running program. A Smalltalk object inspector normally displays
an object in the form of a collapsible tree. This interface is now employed by
the GUI-based debuggers that are packaged with most IDEs.

Hopscotch (mentioned previously in section 2.1.3) uses a subject to identify
the data that is to be presented in the browser window. A subject consists of a
location marker to identify the object that is to be presented and a viewpoint
that describes how the data should be presented. Hopscotch does not provide
support for automatic synchronisation of models and views. The developer must
specifically implemented code to update the contents of a view in response to
state changes in the model.

Vital [27] is a document-centred environment for the Haskell programming
language [59]. It presents values visually, by using type coercion to convert
a value into a visual representation. Visuals are composed through the use
of combinator functions that construct graphical primitives (shapes and text,
with options for colour), combine them by applying transformations (transla-
tion, scale, rotation, and flipping), and superimpose them, in order to construct
composite diagrams.

1The definition of the term presentation system in the context of the Ensemble project is
slightly different to the one used within Larch; the Larch presentation system encompasses only
the system used to construct visual content to display to the user. An Ensemble presentation
system must also create and maintain the model-view mapping

8



2.3 Structured source code editors

The development of structured source code editors has a rich history in the
research community Structured source code editors represent code in a struc-
tural form (an abstract syntax tree (AST) for example) rather than a textual
form. They can be divided into two classes: syntax-directed editors; and syntax-
recognising editors.

2.3.1 Syntax directed editors

Syntax directed editors expose the user to the structure of the underlying rep-
resentation. While they may present the document as text on the screen, they
typically use a direct manipulation interface. The user must first choose a node
within the document model to edit (nodes normally correspond to syntactic
constructs, such as variable access expressions or additions). The user is then
presented with a range of modification operations, accessible via GUI controls
such as menus, toolbars or keyboard shortcuts. In practice, the direct manipula-
tion interfaces offered by syntax directed editors have proven to be cumbersome
to use, and have not achieved widespread use among software developers as a
result [42, 80].

Redwood [82] is a syntax directed editing environment in which programs are
developed by combining code snippets. It uses a direct manipulation interface
in which snippets are dragged from a library into the code pane. Snippets are
combined to form a tree, whose structure is similar to that of an AST. A code
generator converts the program into Java or C++ source code.

Within the Anastasia editor [31], the user edits functional programs by in-
serting code segment templates. Anastasia validates functions that are written
within it using ’proofs-as-programs’. This work-flow is helpful for beginners
who are unfamiliar with the language syntax, but can act as a hindrance to
more experienced programmers, who will achieve greater productivity with a
text editor.

Syntax directed editors implemented using Citrus [40] (first discussed in
section 2.2.2) behave in a fashion that is a hybrid of syntax-directed editing and
syntax-recognizing editing. When editing textual elements such as identifiers,
literal values or tokens, Citrus behaves in nearly the same fashion as a text
editor. Structural modifications can be performed in response to keyboard short-
cuts. With carefully chosen short-cuts, the editor will behave in a similar fashion
to a text editor. For instance, pressing the ’+’ key could result in the currently
selected expression being placed within an addition expression.

2.3.2 Syntax recognising editors

Syntax recognizing editors provide a free-form text editing interface. The doc-
ument is represented internally in structural form, but presented to the user
in a textual form. Edit operations undertaken by the user alter a temporary
textual representation of the document. A parser is used to convert the mod-
ified text into a structural representation, which is inserted into the document
model. While the internal data model is structural, the editor behaves in much
the same way as a text editor.

9



The Synthesizer Generator [43] displays source code to the user in a textual
form. The user can then select a segment of code corresponding to an AST
node, at which point it is displayed in a separate pane in plain text form, which
the user can modify. The user may only commit the modified code back if it
conforms to the language grammar rule that is associated with the selected AST
node.

Pan [2] and Ensemble [24] were two editing environments developed at Berke-
ley in the 1980’s and 1990’s. Pan was a syntax recognizing source code editor,
which improved on prior structured source code editors by permitting unre-
stricted text editing. Novel incremental lexical and syntactic analysis techniques
were developed as part of Pan. Their error handling and recover techniques form
the basis of those used in Barista [41] and Larch. Where Pan displayed source
code in a textual form, Ensemble permitted the development of richer presen-
tations. It was described in more detail in section 2.2.2.

Harmonia [6] is an incremental source code analysis system, designed to
support the development of tools that enhance an existing source code editor.
The Harmonia project built on lessons learned during the Pan and Ensemble
projects. Harmonia’s structural representation retains all information from the
textual form so that it can be accurately recreated after structural modifica-
tions. It therefore preserves white-space and comments due to their importance
for layout and documentation. The structural model is self versioning, with
each node maintaining its own edit history. The versioning system allows dif-
ferent versions of a document to be available to different parts of an application
simultaneously.

UQ? [81] is a software document editor in which code is represented inter-
nally as an abstract syntax tree. It is presented to the user in textual form,
and utilizes a syntax-recognizing editing model. Source code can be viewed at
different levels of detail; for example, the user can zoom between the module
level, where only function declarations are visible and the function level where
only the implementation of the selected function is visible, with other functions
hidden. The diagrammatic capabilities of UQ? (discussed in [36]) allow the de-
velopment of interactive editable diagrams, composed of graphical and textual
elements. Edit operations performed on a diagrammatic representation cause
the underlying document to be modified. UQ? textual and graphical presenta-
tions, while synchronized, remain separate. While graphical presentations can
contain some textual elements, textual presentations do not contain graphical
elements; the two presentation types cannot be freely intermixed.

Proxima [62] is a generic editing environment written in the Haskell func-
tional language. Proxima uses a layered architecture. At each level, the doc-
ument is represented in a different form, with the document model at the top
level and the rendered visual representation at the bottom. Each level repre-
sents a different stage in the presentation process. Layers between each level
convert data from the level above to the level below and propagate the effects of
edit operations upwards. A Proxima editor description consists of a document
schema and a presentation schema. The document schema takes the form of
statically typed node structure descriptions, implemented in a dialect of Haskell.
A presentation schema is described using an attribute grammar. An editor must
be combined with the Proxima runtime and compiled with a Haskell compiler.

Barista [41] is a syntax recognizing source code editor for the Java program-
ming language, implemented using the Citrus framework. As with Citrus, mod-

10



els and editors have a close correspondence. Barista allows a structural model
to be edited in a textual fashion by ’fluidly changing code between structured
and unstructured text’. Barista editors also offer a direct manipulation interface
that allows code to be constructed by dragging and dropping templates, or via
auto-complete menus.

Barista takes advantage of its structural data model by offering features that
are not normally possible with a plain text editor. Comments can contain rich
text and images, eliminating the need for ASCII art. It offers an alternative
approach to code folding; instead of hiding a region of code, it can be scaled to
half size, thus providing a higher level view of the code without hiding any of
it.

2.4 Active documents

A number of active document systems employ a notebook interface, which are
common in computer algebra and mathematics systems such as Sage [61], Math-
ematica [86] and IPython [58]. A notebook consists of a vertically arranged
sequence of cells which can contain either text or code. Text cells may support
styling. Code is executed with its output displayed in an output cell immediately
below.

Sage and IPython support visual output to the extent that they can display
plots in output cells. Mathematica takes this much further, providing a combi-
natorial API for constructing and combining visual elements, which can include
plots, user interface controls, typeset mathematical formulae, and more. The
new CDF (Computable Document Format) system [85] from Wolfram Research
is a publishable document format based on Mathematica. It is worth noting
that Sage and IPython use a web browser to present the interface to the user.

Vital [27] — first discussed in section 2.2.3 — is based on ideas from spread-
sheet programming, and operates in a similar fashion to the notebook oriented
interfaces of programs such as Mathematica [88], and Maple [47]. A document
consists of a number of cells, each of which contains a Haskell declaration, and
can be accompanied by a comment. Vital declarations (cells) are freely posi-
tioned by the user, in contrast to the automatic vertical layout used in Sage,
Mathematica, IPython and Larch. This has the benefit of giving the user has
precise control over the layout of the document (e.g. allowing for a multiple
column layout). Unfortunately, difficulties arise when altering declaration code
such that the visual space requirements of its output changes. Vital’s presen-
tation system does not perform automatic layout, so it will not rearrange the
declarations to prevent them from overlapping or to fill any gaps that are cre-
ated.

Tilescript [79] is a web-based notebook system which uses Javascript as both
its implementation and user programming language. Code can take the form
of Javascript text, tile scripts (code composed by dragging and dropping tiles
representing Javascript programming constructs) or HTML expressions. The
elements created by HTML expressions are available through the DOM API
and are therefore accessible to code within code cells; this allows the creation
of complex interactive presentations.

Chalkboard [89] is the successor to the Tilescript system. It is designed for
the creation of active essays (an active essay — a term coined by Alan Kay

11



— is a written essay, mixed with a computer program. The program code is
executed within the document, providing dynamic content). Chalkboard divides
the workspace into three areas: an editor, into which documentation and code
can be entered; a transcript which displays any textual output that results
from evaluating and executing code within the editor; and a play area, which
is an HTML 5 canvas element which is used for displaying graphical output.
Chalkboard provides a number of controls, which are used for executing code,
and altering the style of rich text.

TreeCalc [68] is an editing environment designed for the construction of pro-
grammable structured documents. A TreeCalc document is an XML document,
with an associated presentation specification, which describes how the content
should be displayed. Documents can contain embedded CDuce [3] code, which
can acquire, manipulate and generate content. The nature of these alterations
is unrestricted; the authors describe a number of scenarios, including an auto-
mated exam system to be used in a teaching environment, in which the system
will check the answers entered by a student and assign a grade accordingly.

2.5 Live programming environments

Programmers need to evaluate their problem-solving process at frequent inter-
vals; this is known as progressive evaluation within the Cognitive Dimensions
framework [26]. There are a variety of ways in which a programming envi-
ronment can support this. At the most basic level, a REPL based console
allows small snippets of code to be immediately tested. More sophisticated
environments such as those found in modern Smalltalk systems [22] allow the
programmer to enter a partially complete method implementation. It invokes
the debugger in place of yet to be written statements. The programmer may
then complete the code within the debugger and test it in place, while having
it function as if it was in the context of the original incomplete method. The
code must then be copied and pasted back into the original method.

The Javascript environment presented in [35] takes live programming a step
further by converting edit operations into transformations that are propagated
though the intermediate compiler representations all the way to the interpreter
and its call stack, resulting in modifications to live stack frames.

Spreadsheets are of particular interest, as they are widely used by non-expert
users. Continuous evaluation provides instant feedback to the user in response
to changes, allowing them to rapidly assess their progress.

Forms/3 [11] is a research language based on the spreadsheet paradigm.
Like prior systems, Forms/3 supports data types other than numeric values
and provides visual presentation capabilities. Cells are not constrained to a
grid-based layout as with most spreadsheets; they can be freely positioned,
allowing the user to determine the form and layout of a document. Forms/3
can therefore be used to construct complete interactive applications. Forms/3
defines a custom spreadsheet language that supports the definition of new data
types and functions. A notion of time and sequences of events allow for the
development of animated and interactive content.

SuperGlue [49] is a development environment and language which mixes ob-
ject orientation and spreadsheet style incrementally maintained values (called
signals). Visual presentations of values can be defined, allowing for the develop-

12



ment of visual, interactive software. The language features are tightly integrated
with its development environment, which provides the user with a continuously
up-to-date view of the state of the program under development.

2.6 Visual source code extensions

Visual extensions to source code can take two forms: augmented rendering and
visual programming constructs.

Augmented rendering alters the appearance of existing constructs to im-
prove comprehension. Barista [41] allows comments to include rich text and
images, eliminating the need for ASCII art. Boolean AND expressions and frac-
tions are both vertically arranged for the purpose of improving comprehension.
ETMOP [19] allows the development of a pattern matcher that selects specific
constructs to be presented differently (e.g. displaying an invocation of a square
root method using mathematical notation). Unfortunately, developing a reliable
pattern matcher is often challenging since semantic analysis is usually necessary,
even for a simple task such as determining the target of a method call.

Visual programming constructs are visual elements that are embedded within
textual source code. ETMOP [19] allows such constructs to be embedded within
Java code. They are implemented by creating new ETMOP AST node types
along with a custom presentation and code generator. Similarly, the Racket
environment [60] allows racket boxes to be inserted into textual scheme source
code. Boxes evaluate to a value, which depends on their purpose; image boxes
evaluate to the image itself, while fraction boxes (displayed as vertical fractions)
evaluate to a numeric value.

Mathematica’s generalized input [87] allows visual output (results from a
computation) to be copied and pasted as visual input, as part of a Mathematica
expression. The way in which it is evaluated can be customised through the
use of the Interpretation function. It operates in a similar fashion to a LISP
macro, transforming the visual content into values.

Most of the aforementioned approaches are inspired or influenced by LISP
macros. Macros are invoked like ordinary LISP functions, except that their
arguments are not evaluated; they are passed to the macro in AST form, which
processes them and returns a result AST that is to be evaluated in its place.

2.7 Visual programming languages

Visual programming languages (VPLs) exchange the formal syntax of a tex-
tual language for visual constructs that are placed by the programmer, usually
with a direct manipulation interface. Scratch [46] — a popular educational
VPL — uses a drag and drop interface in which programs are constructed by
dragging blocks representing familiar programming constructs into a scripting
area. They snap together like LEGO bricks, with their shape suggesting how
they can be connected to one another, thus providing a convenient and natural
interface. Scratch blocks are combined in much the same way as the equivalent
textual constructs (statement blocks can be placed within conditional blocks,
expressions can be placed into slots within statements or other expressions, etc).
Execution and feedback is immediate; Scratch scripts are executed by clicking

13



on the relevant blocks, affecting sprites that are visible in the stage pane.
Diagrammatic languages — such as LabVIEW [54] — present programs in

a completely diagrammatic form. While they have achieved popularity among
non-programmers, they unfortunately suffer from usability problems [26], hence
their lack of adoption among professional programmers.

The recent popularity of touch enabled tablet computing devices has spurred
the development of touch based programming languages. TouchDevelop [71] em-
ploys a menu driven direct manipulation interface to create and edit programs
which appear as text in their final form. The language structure and syntax
is simple, as it is designed as an end-user scripting language for creating sim-
ple applications. YinYang [50] is designed to allow children to create simple
games. Its language and programming model is ’based on tile and behaviour
constructs’.

Direct manipulation programming environments (DMPEs) are often slow
and cumbersome in contrast to free-form text editors. JPie [4] introduces ap-
proaches to alleviate these issues by allowing the programmer to enter incom-
plete or incorrect programming constructs, which many structured editors dis-
allow. Statements and constructs can also be edited in textual form.

2.8 Domain specific languages

Domain specific languages are programming languages or specification languages
designed for expressing solutions to a specific problem domain. Their syntax
and semantics are designed so that solutions can be expressed in a terse and
efficient form. They may closely match the form of any existing notation that
is already used by domain experts.

Existing DSLs come in many forms, depending on their purpose. QML [55]
is a DSL for describing user interfaces to be built with the Qt user interface tool
kit. The Django template language [16] mixes Python code with HTML for web
page generation. ANTLRWorks [57] is an IDE for developing parsers that uses
DSLs for describing lexical and syntactic analysers (DSLs are commonly used
within parser generators).

The Intentional Domain Workbench [65] is a commercial system designed for
the creation of domain specific languages (DSLs) aimed at non-programmer do-
main experts. Intentional DSLs can mix textual and visual constructs as needed.
The Intentional Domain Workbench is not publically available, so little is known
of its internal workings, with the exception of a description of its internal stor-
age model [64]. In [66], Intentional Software demonstrate a pension language,
developed in collaboration with pension analysts. Prior to its development the
analysts used an informal spreadsheet and word-processor based notation to
communicate model designs to a programming team for implementation. The
pension language was a partially visual programming language which blended
spreadsheet style tables, formulae and executable source code in a fashion that
was close to the analysts’ notation. It allowed the analysts to implement their
models directly.

The Jetbrains Meta Programming System [34] is a programming tool aimed
at the development of DSLs. Like the Intentional Domain Workbench, MPS
eschews the use of parsers and purely textual languages, opting for a partially
visual editor. MPS languages can utilise textual-style source code and GUI

14



controls.

2.9 Canvas based development environments

Recent research efforts have resulted in a number of development environments
in which blocks or modules of code can be freely positioned on a zoom-able, pan-
able canvas. As a consequence, a programmer can use their spatial memory to
assist in locating a desired code segment. Larch does not currently make any
attempt to support such an interface. We discuss these systems here as we
consider it to be a valuable line of future inquiry.

Code Canvas [14] allows the user to conceptually group files, classes and
methods by freely positioning them on a zoom-able canvas. They can be further
contained within visual containers or attached to Photoshop-style layers, whose
visibility can be toggled, further supporting the use of spatial memory.

Code Bubbles [8] offers a new and innovative take on the browser interface
employed by many IDEs. Method or class implementations are displayed within
freely positioned bubbles. Navigating to the target of a method call displays
the target method implementation in a new adjacent bubble. As a result, the
browsing history is visible as a chain of bubbles in the workspace. Similarly, the
Code Bubbles debugger uses bubble chains to represent the call stack.

The Fluid source code editor [15] is not strictly a canvas based environment,
as it is an enhanced text editor. It does, however, re-arrange source code in
a novel way, providing an in-line exploration interface that arranges segments
of source code in context with related surrounding code. For example, method
call sites can be expanded to show the complete body of the target method
implementation. Task specific source code re-arrangement is a valuable avenue
for future work.

15



Chapter 3

Presentation system

In this chapter, we describe a presentation system called LSpace. It is used
for constructing interactive visual presentations, which can combine rich text,
images, GUIs and interactive documents. Presentations are displayed within a
web-browser style interface.

3.1 Presentation tree

Presentations are composed of elements which are arranged to form a tree, with
text, shape and image elements at the leaves, and container elements at the
branches. Container elements combine and spatially arrange their children in
rows, columns, paragraphs (flow layout), and tables. Mathematical contain-
ers arrange child elements to form fractions, superscript and subscript. The
elements are implemented as a Java class hierarchy.

LSpace uses an automatic spatial layout system that incrementally re-arranges
elements in response to modifications. Our layout process uses a four-phase
request-allocate algorithm. Many toolkits, such as GTK+ [69] use a two-phase
approach. In the request phase, the spatial requirements are accumulated from
the leaves of the presentation tree towards the root. The requirements of a leaf
element are determined by its content, e.g. the size of a small piece of text.
Branch elements combine the spatial requirements of their children according
to branch layout rules, e.g. row elements accumulate space horizontally, where
columns accumulate vertically. This process continues to the root of the tree.
The allocation phase divides the space available — normally determined by the
size of the window — among the elements in the presentation tree. A branch
element will divide its allocated space among its children and position them
according to its layout rules, e.g. row and column elements respectively arrange
their children horizontally and vertically. We use a four-phase layout approach
— request and allocate horizontally, then request and allocate vertically — in
order to support flow layouts. A flow layout splits its sequence of children into
multiple lines when there is insufficient horizontal space available to arrange
them into one line. Its vertical space requirements therefore depend on the
number of lines required, which in turn depends on the amount of horizontal
space available, which is only available after the horizontal allocation phase is
complete.

16



3.2 Presentation combinators and style sheets

Direct element construction and configuration is a cumbersome and low-level
process that requires long-winded and inflexible code [12]. As a consequence,
developers are encouraged to use the presentation combinator API to construct
LSpace presentations.

Presentation combinators act as a declarative description from which con-
crete presentation elements are built. The appearance of elements is controlled
by using an extensible style sheet system that offers inherited style attributes
(style attributes which propagate from parent to child, as in TEX[39, 28], HTML,
Xprez [63]).

LSpace provides a library of primitive combinators, which have a close cor-
respondence with the underlying presentation elements (the Text combinator
creates an LSText element1, the Row combinator creates an LSRow, etc). Pre-
sentation combinators are compose-able. They can be combined to form more
complex combinators. The rich text and GUI control combinators are all im-
plemented in this way. Programmers are encouraged to implement their own
in the same fashion. Presentation combinators are implemented as a Java class
hierarchy, with the abstract base class Pres at the root.

An example of the presentation combinator and style sheet API is shown
in figure 3.1. It presents a small Python program that constructs a visual ex-
planation of a Gaussian blur, along with the result of executing it. The source
and result images are pre-computed and saved as image files; the code presented
constructs the diagram, it does not perform a blur operation. The blur kernel
is converted from a 2D list of floating point numbers to the 2D (grid) represen-
tation in the centre. The images and the blur kernel are presented as figures
(combined with a caption below) and arranged with arrows. The following code
was elided for brevity: 6 lines of import statements; 3 mathematical function
definitions (3, 2 and 3 lines) and 1 function call to build kernel (a 2D list of
floats).

3.3 GUI controls

A range of common GUI controls is provided. They can be incorporated into
presentations alongside other content. All of the controls are constructed using
lower-level combinators. LSpace provides buttons, hyperlinks, check boxes, op-
tion menus, text entry boxes, numeric entry boxes, multi-line text areas, and
scroll bars.

3.4 Incremental modification

LSpace is designed for the construction of editable documents. Modifications to
a presentation frequently entail altering the structure of the presentation tree.
LSpace supports efficient incremental structural modification by allowing pre-
sentation fragments to be replaced, instead of entire sub-trees. A tree fragment
F is defined as the set of nodes (elements) that are within a sub-tree S, but

1Presentation element class names are prefixed with LS and derive from the LSElement base
class.

17



Figure 3.1: Presentation combinator and style sheet API example

not within sub-trees T0...TN , where T0...TN , are contained within S. Fragment
replacement is accomplished by (1) creating F ′, a small tree of new presentation
elements to replace those in F , (2) adding the roots of T0...TN as children to
the appropriate elements within F ′, and finally (3) replacing the element at the
root of S (that is also the root of F ), with the element at the root of F ′2.

3.5 Event handling

3.5.1 User input

The LSpace event handling system follows an established design pattern of sep-
arating input handling from the main UI tool kit, as in [52]. In this way,
support for new user actions, interaction techniques and input devices can be
implemented without needing to modify the presentation tree implementation.

Application code needs to be informed of user actions that affect specific
elements, so that it can respond appropriately. All presentation elements main-
tain a list of action handlers that receive user action events. A action handler is
a Java interface that defines methods that receive events relating to a gesture.
Each type of handler handles a different kind of action (e.g. button push/release,
pointer motion, drag, etc).

Each supported input device has a representation within LSpace. The pro-
cess of input handling starts with a device, e.g. a mouse pointer. The device
processes the input and detects actions (e.g. drag). At the beginning of the
action, the presentation tree is traversed to find the element to which it applies.
For a mouse pointer, the element under the pointer is found. For keyboard
input, the element containing the caret is used. Presentation elements along
the path from the target element towards the presentation tree root are tested,

2It is worth noting that if possible, layout information is retained when a fragment is
detached and later re-used

18



until an element is found that has a action handler of the appropriate type (e.g.
a drag handler). Subsequent action events are sent to the handler, until the
action ends.

3.5.2 Application events

LSpace allows arbitrary application generated events to be emitted at specific
presentation elements. Elements maintain a list of application event handlers.
When an application event is emitted, LSpace tests each element along the path
from the source element to the presentation tree root until one is found that
has a handler that successfully consumes the event.

3.6 Structured document support

LSpace is designed for presenting structured documents, in contrast to plain
or marked up text, e.g. HTML. Within Larch, structured documents are nor-
mally represented by normal Java and Python objects (this will be discussed
in chapter 4). In aid of this, structural values (objects) can be associated with
presentation elements, and later retrieved, allowing application code to request
the data represented by a specific part of a presentation.

3.7 Targets, selections and regions

LSpace uses targets and selections to represent the choice of content that will be
affected by user edit operations. The current target is the point in the document
at which edit operations are performed. The selection is the range of content
that is affected by copy and paste operations. LSpace’s target and selection
system is extensible; new types of target and selection can be implemented for
new forms of context and their associated styles of interaction.

When editing textual content, the current target is a caret; the point at
which text typed by the user is inserted. It is rendered visually as a blinking
vertical bar. The selection is a highlighted range of sequential text.

When editing content displayed within a spreadsheet style table (see sec-
tion 5.3) the target is the chosen cell, while the selection is a rectangular block
of cells.

LSpace is designed to allow a presentation to mix different types of content.
For example, a presentation may consist of a rich text document, into which is
embedded a block of source code (stored in a structural form; see section 5.1)
and a spreadsheet style table. In this example, the table uses block-style selec-
tions and targets, while the rich text and source code use text-style sequential
selections and targets. Additionally, the rich text and the source code use dif-
ferent document schemas and corresponding editors; a rich text editor and a
structured source code editor.

In aid of allowing different content types to reside within the same presen-
tation, LSpace allows a presentation to be divided into regions. A region is
denoted by placing a region element at the root of a presentation sub-tree that
is to reside within it. A region element is given a clipboard handler whose task
is to handle copy and paste operations that affect the content within it. When
the user invokes a copy or paste action, the clipboard handler is retrieved by

19



Figure 3.2: Fraction presentation example

acquiring the region that contains the target or selection that is to be affected.
The clipboard handler performs the necessary modifications to the underlying
data model.

3.8 Caret behaviour

Constructing useable, editable presentations that are richer than styled sequen-
tial text presents additional challenges concerning the behaviour of the caret.
The caret must move through the presentation in response to user actions
(mainly the use of the cursor keys) in a way that maximises usability.

To illustrate this problem, let us consider the shortcomings that become
apparent with the most basic approach to managing the caret; positioning it
with respect to characters that form the textual content of the presentation
tree. This would work for plain text, but would fail for more complex layouts,
e.g. mathematical fractions. Figure 3.2 shows a nested fraction presentation,
the textual representation of which is x = a + b/c/d (note that parentheses are
missing as they are not present in the visual form). The caret is shown just to the
right of c. Imagine that the user moves the caret one place to the right. Moving
it one character to the right will position it between the last / and the d in the
denominator. This would not allow the user to insert additional content into
the outer numerator after the nested fraction. The correct behaviour requires
that the caret stop just to the right of the nested fraction, while still in the
numerator. At this point, the position of the caret is visually distinct from
its original position, while its position relative to the textual content has not
changed.

The desired behaviour requires that the caret should be able to be positioned
at the start or end of any horizontal span of content within the presentation.
Often, a number of horizontal spans can start or end at the same boundary
between two characters from the textual representation.

The desired behaviour is achieved through the use of caret slot elements and
segment elements; presentation elements specifically designed to control caret
motion. Segments are simple containers that surround their content with a caret
slot on either side. Caret slots are empty elements which can stop and capture
the caret on its way to the next character. Caret slots will stop the caret if
it is moving from one segment into another. By wrapping the numerator and
denominator of a fraction in segment elements, the desired behaviour can be
achieved. Segments can also be employed to control caret behaviour in the
context of other visual constructs.

3.9 Editable text elements

LSpace text elements can be marked as editable using a style sheet attribute. An

20



editable text element that contains the caret will respond to keyboard input from
the user by inserting or deleting the appropriate characters from the text that
it contains. It will also emit an application event (section 3.5.2) that describes
the edit operation. These events are handled by the application, which responds
to the user action in the appropriate way. The structured source code editing
system (section 5.1) and the rich text editing system (section 5.2) both respond
to text edit events by initiating updates.

3.10 Implementation

3.10.1 Presentation combinators

Presentation combinators are implemented as factories. The presentation com-
binator class hierarchy is rooted at the abstract base class Pres. It defines a
method called present that builds the concrete presentation elements that are
described by the combinator.

Presentation combinators are constructed and combined so that they form
trees. In the final line of listing 3.1, the Text combinators are combined using a
Column and a Row. The resulting combinator will retain the tree structure built
within the code. When the present method of the Row combinator is invoked,
it will invoke the present methods of the child combinators and then place the
elements that they create within an LSRow presentation element.

1 t0 = Text ( ’ He l l o ’ )
2 t1 = Text ( ’ world . ’ )
3 t2 = Text ( ’The end ’ )
4 helloWorldTheEnd = Column ( [Row( [ t0 , t1 ] ) , t2 ] )

Listing 3.1: Presentation combinators forming a tree

When a presentation combinator constructs a concrete presentation element,
it will configure the element in order to control its appearance (font, size, colour,
etc.). The present method takes a presentation context (discussed in sec-
tion 4.12) and a style value table (discussed below) as parameters. It acquires
values for configuring the element from the style value table, by accessing the
values for the appropriate style attributes.

3.10.2 Style sheets

The design of LSpace style sheets is inspired by CSS [75] and the style system
within Xprez [63]. Our system uses two kinds of table; style sheets and style
values tables, both of which map style attributes to values.

Style sheets and style value tables are immutable. Attribute value im-
mutability ensures that a style sheet cannot be modified after construction,
thus ensuring that LSpace does not need to modify a presentation in response
to style modifications. Attribute values are altered in the same way that objects
are modified in a purely functional programming language; a base style sheet is
cloned, creating a derived style sheet which has the necessary attribute value
modifications applied.

21



An example can be seen in listing 3.2. StyleSheet.instance is the root,
empty style sheet. Primitive.foreground is the foreground colour attribute,
declared within the Primitive class.

1 r edSty l e =
Sty l eShee t . i n s t ance . withAttr ( Pr imi t ive . foreground ,
Color .RED)

Listing 3.2: Creating a derived style sheet

Style value tables are used by the presentation combinator system to prop-
agate and accumulate the effects of style changes through a presentation tree,
from parent to child (the style value table is passed by a combinator’s present
method to the present method of child combinators). They are the mechanism
through which styles are inherited.

A style sheet is applied using the ApplyStyleSheet combinator. Its present
method takes the style values table passed as a parameter and creates a derived
style values table, taking attribute values from the style sheet that it applies.
The derived style values table is passed to the child combinator, causing the style
sheet to be applied to the child presentation. For the purpose of convenience, the
style sheet class defines the applyTo method that creates the ApplyStyleSheet

combinator, as seen in listing 3.3. The style sheet applies red foreground to the
text ’Hello world’ but not to ’The end’.

1 t0 = Text ( ’ He l l o ’ )
2 t1 = Text ( ’ world . ’ )
3 t2 = Text ( ’The end ’ )
4 helloWorldTheEnd = Row( [ r edSty l e . applyTo (Row( [ t0 , t1 ] ) ) ,

t2 ] )

Listing 3.3: Applying a style sheet

3.11 Comparison to existing work

The design and operation of LSpace presentation elements is similar to that of
the systems discussed in section 2.1. Our spatial layout algorithm was originally
inspired by the simple two phase approach used in GTK+ [69]. We first extended
the approach to use four phases in order to support flow layouts (as stated in
section 3.1). Later, it was enhanced by allowing the horizontal request phase to
compute both minimum and preferred horizontal space requirements. This was
inspired by Java Swing [56] in which minimum, preferred and maximum sizes
are used. Our element alignment strategy is inspired by Xprez [63], in which
horizontal and vertical reference points are computed for alignment purposes,
although LSpace only uses vertical reference points.

The design of our combinatorial API was influenced by Hopscotch [12] and
Xprez. We started out using direct element construction. This was improved
upon using a combinatorial method approach inspired by Hopscotch, and later
improved again by the use of presentation combinators and style sheets, inspired
by Xprez. An example of a commercially successful system that employs a
combinatorial presentation API is the Mathematica computer algebra system
[86].

22



Unfortunately, the combinator based systems presented so far do not work
with mainstream programming languages (although Haskell comes close, given
its popularity within the functional programming community). This leaves
many software engineers out in the cold. Our system leverages this approach
and demonstrates its feasibility for popular object-oriented languages. The main
benefit of our approach however, is the integration with the object presentation
system, effectively giving the programmer MVC functionality, almost for free.

The upcoming HTML 5 standard [77] would appear to be a suitable presen-
tation system for an environment such as Larch. The new contenteditable

attribute directs a web browser to allow the user to edit the content of tags to
which it applies. Unfortunately, its behaviour (in terms of how a document is
modified and the behaviour of the caret) is not precisely defined; the application
would need to account for the variety of behaviours that exist among the various
browser implementations. This would significantly complicate the implementa-
tion of a syntax recognizing editor (see section 5.1); this was one of the most
challenging components of Larch. Additionally, the application would have to
be split into two parts: client side and server side, with careful consideration
given as to where the separation should lie.

23



Chapter 4

Type coercion based object
presentation

In this chapter, we describe a type coercion driven approach to presenting nor-
mal Java and Python objects. It is integrated with the presentation combinator
API presented in the previous chapter. This system enables the development of
interactive visual representations for objects that are required for partially vi-
sual programming (chapter 7) and for the active document based programming
environment which we have implemented within Larch.

4.1 Overview

Our object presentation system uses type coercion to drive the object presenta-
tion process. Views of objects are automatically created, destroyed and main-
tained in response to state changes. Perspectives are responsible for choosing
which kind of view to use for a given model, and can be said to represent the
intention of the view (e.g. view, edit, or debug). In effect, they perform a form
of dispatch; they may use an if-else block or invoke a method on the model
object, depending on their implementation (section 4.6).

4.2 Implicit type coercion

Type coercion is the process by which an entity is converted from one data type
into another. It is the basis for Java’s toString protocol, and its equivalent
in other programming languages (e.g. str in Python). Vital [27] used the
rich type system of the Haskell language [59] to provide a type coercion based
method of visually presenting Haskell values. Our system seamlessly integrates
this approach with the presentation combinator system described in section 3.2.

Support for implicit (automatic) type coercion augments our presentation
combinator API by allowing normal Java and Python objects to be directly
incorporated into presentations. For instance, the objects x, y, and z within the
expression Row([x, y, z]) will be automatically coerced into visual form1, and

1In our implementation, general objects are coerced into presentable form by wrapping
them in a special combinator, called InnerFragment (see section 4.12.1), whose present

24



Figure 4.1: Python list containing Java BufferedImage objects, displayed in a
Larch console

arranged horizontally by the Row combinator. It is not necessary to explicitly
create views of x, y, and z, as is required in many MVC based systems. As a
result, presentations can be composed of normal Java and Python objects, with
presentation combinators used for basic content and spatial arrangement. While
the code in figure 3.1 composes the diagram using only presentation combinator
types, one could replace the figures that are placed in the variables a, b and c

with normal objects; the object presentation system would automatically coerce
them to presentation combinator types for display.

The coercion process is applied recursively; an object may use other objects
to define its presentation, each of which in turn will undergo coercion. We use
the term presentation fragment (see section 3.4) to describe the set of elements
created to represent an object. Figure 4.1 shows five Java BufferedImage ob-
jects in a Python list. The list is presented with its items separated by commas,
and surrounded by brackets. Each item is presented individually; the image
objects are presented as thumbnails. A textual representation is shown at the
top of figure 4.1 for contrast.

It should be noted that the type coercion system does not affect presenta-
tion combinators; objects that are instances of classes that derive from Pres

(the presentation combinator base class) are not affected. As a result, a Text

combinator will always create text, and a Row combinator will always arrange
its children in a row.

4.3 Incremental consistency maintenance

During the type coercion process, an automatically maintained model-view re-
lationship is established between the object and its visual representation. Vi-
sual representations of objects are updated automatically in response to state
changes. An object notifies the system of state changes by creating an incre-
mental monitor and informing it when the object’s state is accessed (during
presentation) or modified. A dynamic incremental computation system (sec-
tion 4.4) — which drives automatic incremental consistency maintenance —
propagates state changes throughout the application, scheduling refreshes for
appropriate parts of a presentation.

method establishes a model-view relationship between the object and its visual representation.

25



Our use of automatic incremental consistency maintenance relieves the pro-
grammer of the need to update views (normally by mutating presentation ele-
ments) in response to model state changes, as is necessary in many MVC imple-
mentations. While not an especially difficult problem, it can be time consuming
to implement reliably. In contrast, objects presented by Larch need only report
that a state change has occurred to trigger a refresh, during which elements
within its corresponding presentation fragment will be removed and replaced.

Automatic consistency maintenance can be disabled for specific fragments
(views of objects) where it is desirable to maintain state across modifications
(state which would normally be lost when a fragment is re-created). This is
only necessary in particular circumstances, such as responding to a continuous
user gesture.

4.4 Dynamic incremental computation system

Incremental consistency maintenance is driven by a dynamic incremental com-
putation system, whose operation is similar to that of a spreadsheet. It is used
to propagate the effects of state changes throughout the application and sched-
ule updates. This simplifies the construction of interactive applications, since
modifying a value in the underlying document model will cause change events to
propagate through derived values (incrementally maintained values computed
using other incrementally maintained values), until they reach the user inter-
face, at which point a refresh will be requested. Conceptually, this model is very
similar to that of a spreadsheet; a spreadsheet cell can contain either a literal
value, or a formula in the form of a mathematical expression that computes
a derived cell value, using the values of other cells that are referenced by the
formula. Modifying a cell in the spreadsheet causes the values of all formula
cells that utilise its value to refresh their values, thus restoring consistency.

Our system dynamically maintains a dependency graph, through which
changes are propagated. Our implementation consists of two incremental mon-
itor classes; IncrementalValueMonitor, and IncrementalFunctionMonitor,
used to monitor values and functions respectively. Informing an incremental
monitor each time its associated value (evaluation result in the case of a func-
tion) is accessed allows the system to discover computational dependencies.
Informing an incremental monitor of a modification results in change events
being propagated though the dependency graph, and listeners being informed
that a refresh is necessary.

Conceptually, one can consider the visual representation of an object to
reside within a spreadsheet cell whose formula creates the presentation. This
cell will be refreshed when Larch is informed of modifications to cells on which
it depends (the objects whose states are accessed in order to construct the
presentation).

4.5 Live values and functions

Live values and functions build on the lower level incremental monitors pro-
vided by the dynamic incremental computation system. They are conceptually
equivalent to spreadsheet cells that contain either literal values or formulae,

26



respectively.
A live value is a mutable container that contains a value; the value may be

accessed and modified through the use of get and set methods. A live function
uses a function (either a Python function or a Java object that implements
a single method interface) to compute its value. Should that function access
the value of any other live value or live function, a computational dependency
will be discovered and established between them. As a consequence, modifying
live values and live functions will cause change events to propagate through
the dependency graph, scheduling updates; they operate in the same fashion as
spreadsheet cells.

Visually, they are represented as the value that they contain or evaluate to.
They do not affect the visual appearance of their contents at all. Modifications
will result in their visual representations being refreshed. As a consequence,
they operate much as spreadsheet cells, but without the constraint of being
placed within a grid (as with Forms/3 [11]).

The LiveValue and LiveFunction classes both derive from the presentation
combinator base class Pres. This was done to ensure that the type coercion
process does not affect them2.

Programmers are encouraged to use incremental monitors, live values and
live functions within their applications to simplify the process of developing
interactive interfaces. Larch uses them within GUI controls (section 3.3), the
programming environment (chapter 6) and proof of concept tools (section 8.1).

4.6 Perspectives

The MVC architecture allows multiple view types to be implemented for the
same type of model, with each view type representing a different intention (e.g.
view, edit and debug). We use different perspectives to achieve the same ends.
Perspectives are applied in a presentation description when the programmer
wishes to change intent; applying a perspective p to a presentation expression
x (with the code p.applyTo(x)) will cascade through all the recursive applica-
tions of the type coercion process that result from presenting x, causing them
to use p. Perspectives can therefore be said to operate as inherited style at-
tributes. This is in contrast to typical MVC architectures, which require the
programmer to explicitly create the right kind of view, in terms of both model
type and view intention. As an example, let us consider the process of viewing
a model that describes a person (PersonModel), which contains a model that
describes an address (AddressModel). When using a typical MVC architecture,
a PersonView must be created to view the person. The PersonView will in
turn explicitly create an AddressView to view the address. If we intend to edit
the person, a PersonEditView will be created, which will in turn create an
AddressEditView. In contrast, one would declare two perspectives — a view
perspective and an edit perspective — one for each intent. The view perspective
would create (the equivalent of) the PersonView or AddressView, depending on

2A prior implementation had them implement the Presentable interface, which would
allow their contents to be displayed when using the default perspective (see section 4.6).
Unfortunately, this meant that they would not work when other perspectives were used,
forcing the programmer to switch perspectives in order to display live values and functions.
Deriving from Pres eliminates this inconvenience.

27



which model is being presented. The edit perspective would create the corre-
sponding edit views. The implementations of the person views would not need
to explicitly create the view of the address. Incorporating a reference to it within
their presentation description invokes the type coercion process, that uses the
perspective currently in use to create the desired view.

In our implementation, a perspective provides a method that takes an object
as input and returns a presentation combinator as output. The method is
invoked during the type coercion process, to create the presentation combinators
that describe an objects visual representation.

Programmers familiar with object oriented (OO) programming are accus-
tomed to using methods and inheritance to define object behaviour. Object
presentation perspectives provide an OO approach for presentation by delegat-
ing the responsibility of presenting an object to a method defined by it. For
classes that cannot provide a presentation method (due to being defined within
standard or external libraries, and therefore not modifiable), an alternate ap-
proach is available. Object presentation perspectives will use the object’s class
as a key to lookup3 an object presenter (a function that defines a presenta-
tion method external to the class). If no object presenter is found, an object
presentation perspective will fall back on another perspective.

The default perspective is used within Larch to present an object by default,
unless a different perspective has been specified. It defines the Presentable

Java interface and present Python method for implementing presentation
methods. If no presentation method can be found, it falls back on the inspector
perspective (see section 6.5.3), which displays the contents of an object’s fields
in the style of a debugger.

4.7 Functional and compositional approach to
GUI development

The design of our object presentation system encourages an approach to user
interface development that is both functional and compositional. The func-
tional characteristics derive from our approach to incremental consistency main-
tenance, whereby changes to an object’s state causes its presentation fragment
(section 3.4) to be rebuilt from scratch by re-invoking the presentation process.

The compositional characteristics are due to the way in which the developer
is encouraged to implement a presentation for an object, which can be used
within the presentation of a containing object, and so forth; user interfaces can
be composed from smaller parts in a piecewise fashion.

4.8 Caret behaviour

Caret behaviour must be carefully handled when implementing editors for tex-
tual content within Larch. Both our source code editors (section 5.1) and our
rich text editors (section 5.2) use the object presentation system to present a
structured data model. As stated previously, our system encourages a functional
approach to presenting objects, in which fragments of the presentation tree are

3Inheritance rules are applied, so that if a presenter is not found for the object’s class, its
super classes will be tested.

28



removed and replaced in response to data model changes. In instances where
the caret resides within an element that is to be replaced, a new position must
be found within the replacement content.

Consider the fraction shown in figure 3.2. Imagine that the caret is in the
position shown, and that a modification to the data model representing the
outer fraction results in its presentation being removed and replaced; only the
left hand side of the assignment statement remains in place. Given that the
presentation element that contains the caret has been removed, a new position
for the caret must be found. In aid of usability, the caret should maintain its
position with respect to the content in which it is placed; if it should disappear
or move to an unexpected position, the user’s work-flow will be disrupted.

We maintain the caret’s position by creating textual representations of the
old and new content (created by concatenating the textual content of the el-
ements), and using the Levenshtein distance algorithm [45] to generate a set
of differences between them. Given the position of the caret within the old
content, we use the differences computed to offset the caret position so that
it is relative to the replacement content. We then place the caret at this new
position. In contrast, Proxima [62] places the caret at the point closest to its
original physical position.

Automatic caret maintenance allows the programmer to implement an in-
terface that frequently replaces content, without needing to be concerned with
disrupting the caret. The majority of GUI tools and web browsers would require
the programmer to manually intervene in order to maintain the position of the
caret during such modifications.

4.9 Browser navigation; subjects and locations

Larch mimics the appearance of a web browser, with a location bar, and forward,
back and reload buttons. Locations — entered into the location bar — are used
to identify the subject that is to be displayed. A subject contains a focus (the
data model object that is the target), the perspective used to present the focus,
and a title that is displayed by the browser window title bar. A location is a
text string, in the form of a dotted identifier. It is evaluated in much the same
way as the equivalent Python expression4 would be. In some cases, the location
expression evaluates to a value that is not a subject. If it is a browser page its
contents are displayed. Otherwise, the default perspective is used to construct
a presentation of the value.

4.10 Change history

The change history provides undo and redo functionality by recording a sequence
of changes. A change represents a reversible operation that alters the application
state.

An object that supports the change history protocol is said to be track-able.
A change history can be asked to track a track-able object. From then on, the

4Creating the appearance of nested content is a simple matter of adding attributes to the
subject objects. For example, given a subject X, accessible at location x, setting the attribute
y of X to the subject Y, will make Y accessible at x.y.

29



object will notify the change history of changes, which it will record. A tracked
object may also ask the change history to start or stop tracking child objects as
they are added or removed.

When the user invokes the undo or redo commands, the change history will
revert or perform the approach changes within its sequence, restoring tracked
objects to the appropriate state.

Having tracked (data model) objects assume the responsibility of notifying
the change history of state changes removes the need to implement this function-
ality within the GUI. This approach would require the developer to implement
a change type for every type of user action, and add them to the change history
as they are performed.

4.11 Clipboard behaviour

Our object presentation system allows normal Java and Python objects to be
used as the data model within document centric applications. We allow objects
to be embedded within rich text documents (section 5.2), source code (sec-
tion 5.1, chapter 7) and editable tables (section 5.3). As a consequence, the
user is able to duplicate and move them throughout the document using copy
and paste operations.

How an object should react to copy and paste depends on its purpose. Some
objects are designed to share an underlying piece of data that should be copied
by reference, while others should be deeply copied. In aid of this, we provide
a clipboard copier protocol that allows objects to control their behaviour in
response to copy and paste operations. The protocol consists of a single method
(in the form of an interface for Java objects or a named method for Python
objects) which is invoked in order to create a ’clipboard copy’ of the object.

4.12 Implementation

4.12.1 Presentation combinator integration

The object presentation system is tightly integrated into the presentation com-
binator system described in section 3.2.

Objects are presented through the use of the InnerFragment combinator.
InnerFragment keeps a reference to the data model object that it is to present.
When its present method is called, it invokes the presentation process. This
creates elements that display the object and returns them.

Finally, Pres — the presentation combinator base class — defines a static
method called coerce, which coerces an object into a presentation combina-
tor. If the given object is already a combinator (it is an instance of a class
that inherits from Pres), it is returned as is. Otherwise, it is wrapped in
an InnerFragment combinator. All presentation combinator class construc-
tors take object types (as opposed to presentation combinators) as parameters
and pass them through coerce in order to convert them into visual form; this
is the mechanism for our automatic type coercion.

30



4.12.2 Presentation process

The present method takes a presentation context as a parameter (as stated
in section 3.10.1). Besides some internal state, it contains a reference to the
current perspective.

When the presentation process is invoked (from within the present method
of InnerFragment) it uses the supplied perspective to create a presentation
combinator that describes the visual presentation of the object (data model).
During this process, any computational dependencies between the data model
and the presentation are recorded, so that the appropriate parts of a presenta-
tion can be updated in response to state changes. The present method of the
new presentation combinator is called in order to create concrete presentation
elements. These elements are inserted into the presentation tree.

4.13 Comparison to related work

A core benefit of the MVC architecture is the separation between data model
and view logic. Our design sacrifices this due to (often) placing the presentation
method in the same class as the model. We made this compromise as our main
priority was to reduce the complexity of implementing visual presentations by
taking an approach inspired by toString methods.

Figure 4.2 shows our object presentation system in action. Two classes are
defined (14 lines of import statements were elided for brevity). AnnotatedImage
displays an image with an annotation. Five of these can be seen in the example
at the bottom. Note that its present method sets up a drop target allowing
the image to be changed by dropping a file from an external application. The
ImageCollection class displays a list of images in a flow grid arrangement,
below a ’Drop images here’ prompt. It sets up drop targets for files and for
objects from elsewhere within Larch. Files dropped onto the prompt will create
an AnnotatedImage for each file and add it to the list. Objects dropped will be
added to the list.

At the start only the prompt was visible. The user dropped five images;
Ireland1.JPG to Ireland5.JPG. The arrow.svg file was dropped into the first
image, changing it from Ireland1. After that, the user dropped a simple Python
object, followed by a cellular automata object, both from different demo appli-
cations. Note that after each action the user interface was refreshed to reflect
the changes made. The cellular automata object defines a present method
that displays an animated, evolving cellular automata; this animation continued
to run in the image list. The simple Python object did not define a present

method. The default perspective was therefore unable to display it, so it fell back
on the inspector perspective which created the debugger style object inspector.
ImageCollection does not need to implement any logic for displaying content
besides AnnotatedImage instances (or even logic to display AnnotatedImage

instances for that matter); when the items in the images list (which may not
even be images) is passed to FlowGrid, they are automatically coerced to visual
form. Deciding how to display them (invoke present or display an object
inspector) is handled by the perspective.

There are similarities between our object presentation process and tree trans-
formation process described in [48]. Instead of using re-write rules to transform

31



Figure 4.2: Image collection implementation and example.

32



an Ensemble tree node into a presentation tree node, Larch uses normal Java
or Python code to transform a normal object into a combinatorial presenta-
tion description. Ensemble presentation systems also defined custom languages
for defining presentation schemata. These languages typically disallowed gen-
eralised recursion and iteration, therefore allowing full static analysis of their
operation and semantics. This allowed computational dependencies (used for
determining which parts of a presentation are to be updated in response to a
modification to the document model) to be determined statically, therefore opti-
mising processor and memory usage. Larch permits the programmer to use the
full range of capabilities of Java and Python, making this kind of static analysis
almost impossible. As a consequence, we maintain computational dependencies
dynamically, at a cost to memory usage and performance.

In contrast to systems such as Citrus [40] our design sacrifices the benefits
of the tight coupling between model and view, but provides far more flexibility.
There is no enforced correspondence between model and view; deciding how to
present an object is handled by the perspective and can therefore be controlled
by the programmer. Perspectives provide a lot of flexibility in determining how
an object is displayed: they may delegate to a method implemented by the model
(such as present ); use the model’s class to look up a presentation function;
or use a simple if-else block if the situation requires it. As a consequence, the
programmer is largely free to determine the design of their system, without
constraints placed by the presentation system. In fact, one can even develop
visual representations for objects provided by the standard library.

The use of popular object oriented programming languages for presentation
description eases the learning curve faced by developers as they no longer need
to learn a new programming language. It also avoids the tricky problems that
face language designers, namely those of designing appropriate language syntax
and semantics, and developing a sufficient standard library.

The design of Hopscotch influenced the design of Larch in two important
ways. Hopscotch viewpoints are notionally equivalent to Larch perspectives;
different viewpoints present an object in different ways. Larch subjects have
the same purpose as Hopscotch subjects; to identify the data that is to be
presented within the browser window.

Systems (such Vital [27] and Proxima [62]) that are developed in purely
functional languages such as Haskell do not require consistency maintenance
on a per value/object level, since all values are immutable. It is worth noting
that presentation by type coercion fits the Haskell language naturally due to
its pattern matching constructs and powerful static type system. These are the
main reasons why Vital’s approach to presentation by type coercion is simpler
than our own.

The primary factors motivating the design of our system were code brevity,
and providing the programmer with the freedom and flexibility to design their
data models and views as they see fit. A combination of type coercion, automatic
incremental consistency maintenance and presentation combinators achieves
these goals. Our approach is also sufficiently flexible to be implemented for
other platforms; we have developed a proof of concept implementation of our
object presentation system that runs as a web application.

33



Chapter 5

Rich content editing

We provide three sub-systems to support the development of structured content
editors for source code, rich text and spreadsheet style tables.

Each of these sub-systems was designed to support the programmer during
the development of the relevant kind of structured editor, while placing as few
constraints as possible on the design of the underlying data model and the visual
representation.

In terms of design, all three sub-systems are data model agnostic; the pro-
grammer can design the data model to suit their needs. Source code editors and
rich text editors also require the programmer to implement the visual represen-
tation; in MVC parlance, only the controller is provided. Both of these systems
translate user actions into a sequence of modifications to be performed on the
data model.

5.1 Structured source code editing system

Larch provides a framework for implementing syntax recognizing structured
source code editors that mimic the appearance and behaviour of a text editor.

5.1.1 Approach

Overview

Our editors mimic the behaviour of a text editor by employing a syntax rec-
ognizing approach, that changes code between a structural tree model, and
unstructured text as needed, in a similar fashion to Barista [41]. A similar
approach was used in Proxima [62].

Parsing library

The Larch parsing library is a recursive descent parser, which permits grammars
to be described using the Parsing Expression Grammar (PEG) formalism [21].
The PEG technique has been extended to permit left-recursive grammars, and
uses Packrat style memoization [20].

In contrast to other systems we do not use an incremental parser to maintain
consistency between edited text and corresponding AST nodes. Our parser is

34



able to use any rule within the grammar as the start rule, allowing our editors
restore consistency by applying the grammar rule that corresponds to the AST
node type. Like Barista, Larch reattempts the process at the parent node when
the parse fails.

For the purpose of permitting language extensions we provide an object ori-
ented grammar system whose design is based on that of OMeta [78]. Grammars
are declared as classes and rules are declared as methods, allowing a language to
be extended by sub-classing a grammar and overriding the appropriate rules1.

Basic operation

The object presentation system (section 4) constructs an incrementally main-
tained presentation of the model, in which most of the presentation fragments
correspond to AST nodes.

The editing process is initiated when the user enters or deletes some text,
thus altering the content of the presentation tree. The editor must now modify
the document model in order to restore consistency with the altered presenta-
tion. This is done by attempting to parse the presentation content, converting
it to a structural form, which can be inserted into the model.

The presentation tree sends edit notification events (section 3.5.2) in re-
sponse to edits performed by the user. Editable fragments respond to these
events by invoking the consistency restoration process; they acquire the content
of the presentation sub-tree (in the form of a rich string; a string which mixes
text and objects) rooted at the fragment, and parse it using the appropriate
parser rule. The choice of rule is normally determined by the type of AST node
that is represented by the editable fragment.

Rich strings will contain structural items (objects) for parts of the presen-
tation sub-tree that are not affected by an edit operation and textual content
for parts that are. Structural items within a rich string can be processed by
the parser with far less work than would be required to process the equivalent
textual representation, thus reducing the computational cost involved in parsing
large sub-trees of a document. Barista uses a similar optimisation [41].

Syntactically invalid content

Prior research has demonstrated that programmer productivity is impeded by
editors which disallow syntactically invalid content [2]; while editing, program-
mers frequently take source code through a number of invalid states, before
arriving at the final valid state. Larch source code editors support syntactically
invalid content by defining a special node within the document model schema,
and including the appropriate parsing rules for creating such nodes when the
normal parsing rules cannot process the given input.

Incomplete constructs

Many languages use composite statements, such as if-statements, while-loops,
and function definitions. Such statements are composed of a header (e.g. the

1Grammar ambiguities are avoided through the use of the Parsing Expression Grammar
formalism, which uses an ordered choice operator.

35



if-keyword, followed by a condition), and a body, consisting of a sequence of
child statements.

Supporting free-form editing of source code requires that the programmer
should be able to construct incomplete compound statements (statements with
a header but no body). To this end, a Larch language schema should define
nodes for representing compound statement headers (a compound statement
with no body), and indented blocks (a sequence of statements, with no header).
The language parser should attempt to join compound statement headers with
indented blocks of code — to form complete compound statements — when it
encounters them together.

Operator precedence and parentheses

When handling expression operators, a source code editor must mimic the pro-
cess of un-parsing. It must take operator precedence into account by inserting
parentheses into a presentation, to ensure that it faithfully represents the un-
derlying document tree. Programmers may also wish to insert syntactically
unnecessary parentheses for aesthetic reasons. To account for this, an expres-
sion AST node stores the number of additional parenthesis pairs — beyond what
is syntactically necessary — that surround it.

Comments

Comments are an important part of a source code document and must be re-
tained by a Larch source code editor. To this end, a source code document
schema will explicitly define nodes for representing comments and blank lines.
This is in contrast with most programming language ASTs that do not retain
any comments or formatting information at all.

5.1.2 Framework

To simplify the process of developing a structured source code editor, we have
implemented a framework that employs the approach described above.

Edit filters

Edit filters respond to edit notification events by attempting to handle modified
presentation tree content and convert it into a structural form. The presenta-
tion tree content comes in the form of a rich string, which is parsed using an
appropriate rule from the language grammar. If the content parses successfully,
the resulting structural content is inserted into the document model. If it fails,
the edit event is passed on to the next edit filter in the sequence of filters used
by the edit rule (see below). Edit filters that handle parsed, incomplete or
unparsed content are created using method calls.

Edit rules

An edit rule defines how a fragment (see sections 3.4 and 4.2) responds to edits
performed by the user. Edit rules are associated with specific types of node in
the document model. For instance, our Python editor defines an edit rule for
expressions, one for statements, another for unparsed statements, etc. An edit

36



rule uses a sequence of edit filters that are applied in turn to modified content
in attempt to convert it to a structural form. When a filter successfully converts
modified content into a structural form and inserts it into the document model,
the process is complete, and the edit operation has been handled successfully.
Otherwise, it is passed to the next filter in the sequence. If no more filters are
available, the edit rule hands the operation to the parent fragment, where it
propagates up the presentation tree until an ancestor fragment (with associated
ancestor node from the document model) is encountered that has an edit rule
associated with it, at which point the process starts over, attempting to convert
a larger segment of modified content, possibly using a different edit rule. An edit
rule can also produce any parentheses necessary, according to the precedence
rules of the language. Like edit filters, edit rules are constructed using method
calls.

Document data model

A simple dynamically typed document data model is provided for the purpose
of representing structured documents, which take the form of a tree. It was de-
signed with structured source code editors in mind. A document schema declares
a number of node classes, each of which declares a list of named fields. A single-
inheritance model allows node class to inherit fields from a super-class. Docu-
ment data model nodes provide support for incremental computation, change
tracking for undo and redo, and serialisation.

5.1.3 Implementing a structured source code editor

In MVC parlance, our structured source code editor framework only provides
the controller; it translates user actions into modifications to be applied to the
data model.

The programmer must implement the data model that represents the under-
lying document. The data model will take the form of an AST-style structure
and can use the document data model described above.

The programmer must also implement the visual representation. The normal
approach is to define a perspective that uses the type of AST node to look-up
a presentation function. Each presentation function should construct the visual
representation of the underlying data and attach the appropriate edit rule.

Edit rules — and the edit filters which they use — must be defined in order to
allow the editor to translate user edit operations into structural modifications
to be applied to the document tree. The programmer must supply commit
functions to the edit filters. Commit functions are simple functions that modify
a data model; normally by replacing a node within a document with a new
replacement one.

5.1.4 Structured source code editors; evaluation

The syntax-recognizing structure editor approach enables our Python editor
to provide some support for mathematical typesetting as-you-type and visual
cues to indicate structure (boxes surrounding function and class definitions).
Additionally, our visual regular expression editor (see section 8.1.6) is able to

37



use visual cues to enhance the presentation of regular expressions, improving
their readability.

Given that developing a structured source code editor involves considerably
more effort than developing the equivalent text editor, we must now ask: ’was it
worth the effort?’. In order to achieve the functionality provided by the Python
editor, the answer is no. In terms of the effects on the overall project, the pic-
ture is more positive. It was the first part of Larch to be implemented. Doing so
forced us to tackle difficult challenges that arose during the development of the
presentation system and our object presentation techniques. Additionally, we
feel that a structured model offers some as of yet unrealised benefits; refactoring
tools can be more easily developed by programmers, as they can traverse and
modify an abstract syntax tree (AST), rather than plain text; the feasibility of
developing customised refactoring tools which can rapidly modify a large code
base is an attractive proposition. Furthermore, richer storage models can be
investigated, such as graphs which explicitly store name-based references and
other relationships or models that include richer commenting and documenta-
tion.

Python has a terse and easily understandable syntax. As a result there is
little room for improvement, in our opinion. This is not the case for all languages
and notations however. Our visual regular expression editor (see section 8.1.6)
is able to use visual cues to enhance the presentation of regular expressions,
improving their usability. The usability problems that affect regular expressions
were the motivation for the development of SWYN [5]

In summary, the primary benefits offered by our syntax recognizing editing
framework are in the areas of enhanced presentation of complex notation and
avenues for future research.

5.1.5 Comparison to related work

Our approach to maintaining consistency between the structured data model
and the on-screen presentation is very similar to the approach used by Barista
[41]. Barista in turn based its approach on the techniques developed over the
course of the Pan [2], Ensemble [24] and Harmonia [6] projects. Like UQ? [81],
Larch allows syntax-recognizing editors to be developed at run-time within an
interactive programming environment (see chapter 6).

The process of developing a structured source code editor within Larch is
somewhat ad-hoc in comparison to other systems. The programmer must im-
plement the data model, view, parser and edit rules. The parser must explicitly
provide patterns for matching pre-parsed structural items and constructing in-
complete compound statements. While Proxima [62] editors are also developed
in a similarly ad-hoc fashion, systems such as Pan [2], Ensemble [24], and Barista
[41] automate more of this development process. For instance, Barista is largely
able to automatically derive a parser from the model and editor schema defi-
nitions; this is possible due to the support for statically typed data and value
constraints within the Citrus [40] data model, along with its tight coupling with
the editor definition.

38



5.2 Rich text editors

Our rich text editor sub-system provides a generic framework that supports the
development of rich text editors that operate on paragraphs and spans of styled
text.

Our rich text editor system represents a rich text document as a sequence
of paragraphs, each of which contains a sequence of text items. A text item is
either a string or a text span. A text span contains a sequence of text items.
Spans can be arbitrarily nested. Attributes can be attached to either paragraphs
or spans. They are normally used as style attributes and affect the appearance
of the text contained within the entity to which they are attached. Normal
Java or Python objects — that are presented in an interactive, visual form —
can be embedded within rich text documents, either as paragraphs or as text
items. In this way, images or interactive content can be inserted into a rich text
document.

As with the structured source code editor framework, only the controller (in
MVC parlance) is provided. User actions are translated into modifications to
be applied to the data model. We chose this approach, as we wanted to give the
programmer the freedom to design their data model and the visual appearance
of their editor with as few constraints as possible. Our system takes care of
the tricky procedures involved in joining and splitting paragraphs, and applying
style attributes to segments of text, while ensuring that the optimal structure of
spans is created. Our system creates the event listeners that receive user input.
It responds to user input by directing the editor implementation (provided by
the programmer) to construct document nodes and modify existing ones.

The rich text editing system models attributes (attached to paragraphs and
spans) as a key-value table. It does not attempt to interpret their meaning
(e.g. by setting the style of the text to which they apply). Its only interaction
with attributes is to manage and maintain them during modifications. When
applying attributes to segments of text, it constructs the most optimal structure
of nested span entities to faithfully represent them, by joining adjacent spans
that share common attributes.

The task of interpreting their meaning falls to the programmer. Given that
the rich text editing system is data model agnostic, the programmer may choose
their own storage model for attributes. The only requirement is that they can
be translated to and from a key-value table. For instance, a text span model
with a boolean field that controls italics will create a key-value table mapping
the string ’italic’ to the state of the field. This table will be given to the editing
system to represent the state of the span’s attributes. In response to user edit
operations, the editing system will build an optimal nested span layout. It
will use it to direct the application to create the necessary span and paragraph
models, and then insert them into the relevant place in the document. When
the editing system directs the application to create a span model, it will supply
an attribute table, which the application should interpret by accessing the value
associated with ’italic’ and set the relevant field in the model appropriately.

Given that the programmer must design the data model — along with its
representation of style attributes — they must also implement the visual repre-
sentation, rendering the content as needed. The programmer must also imple-
ment the user interface that allows the user to initiate operations that modify
the style of paragraphs or selected text.

39



This design affords a significant amount of flexibility. The editing system’s
model of rich text documents is intentionally abstract, so that the developer
can interpret it according to the needs of their application. The contents of an
attribute table could for instance control semantic meaning instead of styling.

5.3 Table editors

Tables are frequently used in technical literature to spatially arrange informa-
tion in order to improve its comprehensibility. Spreadsheets offer a convenient
interface for viewing and manipulating data in tabular form that is familiar
users. Our table editor system provides a spreadsheet style interface for ma-
nipulating data contained within Java and Python objects. Individual cells can
be selected and edited, or rectangular blocks of cells can selected, after which
copy and paste operations can be used to duplicate and move data within the
table. An HTML filter allows data to be exchanged between Larch and external
applications, such as Microsoft Excel and Google Docs spreadsheets, or tables
within web browsers.

In contrast to the source code and rich text editing systems, the table edit-
ing system provides much of the view functionality, in addition to that of the
controller. The programmer must implement the data model and describe its
interface to the table editor so that it is able to access and store data within
it. The table editor constructs the view, presenting the data extracted from the
model in tabular form. It responds to user actions by modifying the model as
appropriate.

The table editing framework provides facilities for editing data in two forms.
A generic table editor operates on a two-dimensional array, or list-of-lists. The
rows (lists of cells), and list of rows will grow and shrink as necessary when data
is inserted or deleted. In cases where the lengths of the rows are inconsistent a
ragged table will be displayed with the length of each row reflecting that of its
underlying list. An object list table editor operates on a list of Java or Python
objects, where each object appears as a row in the table. The columns are
defined within a table definition. Each column definition consists of a name,
and functions for transferring data between table cells and the underlying row
objects. A python attribute column specialises this behaviour by providing
a name that is displayed in the column header and the name of the python
attribute whose value should be displayed in the column cells. As a consequence,
normal Python objects can be displayed and manipulated by a table editor
simply by specifying the columns and the attributes that they represent. Adding
or deleting rows from the table will result in new objects being added or removed
from the list.

Figure 5.1 shows a definition (left) and example (right) of an object list table
editor for a representation of a simple solar system. The definition declares
a the Body class, whose constructor sets three attributes: name; mass; and
orbitalRadius. The SolarSystem class derives from LiveList; a sequential
container that supports incremental computation. It also defines a present

method which uses the table editor to display its contents. Below, the table
columns are defined; one for each attribute. Each definition consists of the
column name, the name of the attribute within Body that contains the data, a
value constructor (for converting values from textual form) and a default value.

40



Figure 5.1: A simple solar system table definition and example

The example shows a solar system object presented in tabular form.

41



Chapter 6

Programming environment

The programming environment within Larch consists of: a Python editor; a vi-
sual console; the worksheet active document system (the most important compo-
nent); the project system and some introspection tools. They are implemented
as objects that reside within the same process and object space as the code and
documents on which they operate; an approach pioneered by Smalltalk [22].

6.1 Python editor

Larch represents Python source code as an AST and presents it to the user
for editing with a syntax recognizing editor (see section 5.1). In contrast to a
plain text editor it features some visual enhancements: division expressions are
presented as vertical fractions and exponentiations are presented as superscripts
(our editor performs mathematical typesetting as you type). Class and function
definitions are surrounded by borders. Escape sequences within strings are
highlighted by surrounding them with a border. Multi-line strings are displayed
within an embedded text area, in contrast to textual Python which breaks the
flow of indentation of the source code to represent the multi-line string contents
faithfully. Figure 6.1 contrasts the appearance of Python source code in two
forms: (a) a textual form within the PyCharm IDE (33) and (b) a partially
visual form within Larch.

Larch allows Python source code to be embedded within other objects, in-
cluding those implemented by the user. Python expressions, suites (sequences
of statements) and modules can be easily instantiated and incorporated into
an object. Utilising them within an object’s presentation code causes editable
Python source code to be embedded within the object’s visual representation.
Examples of this can be seen in section 8.1.

6.2 Python console

The Larch Python console operates as a read-eval-print-loop (REPL). It pro-
vides a quick testing and exploration environment in which a programmer can
test small segments of code with minimal up-front effort. It also provides intro-
spection facilities that can be used to explore and debug Larch applications.

42



Figure 6.1: Python visual enhancements, contrasting the Larch Python editor
with plain text

A typical textual Python console executes each statement after it is entered.
An exception is made for compound statements (if, while, function definition,
etc); the programmer is allowed to enter additional lines of code to complete
the statement, until the indentation level decreases (Python uses indentation
rather than braces to delimit blocks of code) or a blank line is entered. It is not
possible to return to previously entered lines of code and edit them. In contrast,
the Larch Python console allows the programmer to enter a complete block of
code and execute it with a short-cut (Control-Enter). Prior to execution, the
programmer may freely move the caret throughout the block of code and edit
it. Previously executed blocks may not be modified.

It presents computation results visually, using the object presentation system
(chapter 4). It uses the Python editor to provide the multi-line code editor.
Text sent to the standard output or standard error streams is displayed in a
box, along with a visual representation of any exceptions that were raised.

The Larch console provides introspection capabilities through the data model
dragging facility (see section 6.5.1). The console responds to data model drops
by prompting the user to name a local variable in which to store the acquired
value. This allows the programmer to inspect and manipulate the data that
underlies any visual presentation within Larch.

6.3 Worksheet active document system

Worksheets form the core of the Larch programming environment. They are ac-
tive documents that interleave rich text and executable Python code. Execution
output is presented immediately below the code that created it, maintaining lo-
cality between the two. Execution results are presented visually and can include
interactive content. Larch worksheets are similar in nature to Vital workbooks
[27], Mathematica notebooks [88], and IPython notebooks [58]. Figure 6.2 shows
part of a worksheet that implements a simple virtual machine. At the top are
two lines of rich text; a heading and a line of normal text. The source code con-
structs an AST (’Mul( Add( ... ))’) and compiles it to assembly. A object
that represents a virtual machine is then instantiated, and given the assembly
code to interpret. The visual representation of the VM is interactive; the ’Step’

43



Figure 6.2: Interactive virtual machine in a worksheet

and ’Run’ buttons can be pressed to advance execution. The current instruction
is highlighted and the contents of the registers and stack are shown.

Worksheets are implemented using the rich text editing system (section 5.2),
with code blocks inserted between paragraphs.

Worksheets build on the fast edit-run-debug cycle offered by a Python con-
sole. Where a console can only operate on small snippets of code, one at a
time, a worksheet provides the same convenient work-flow, but for a complete
Python module. All of the code blocks within a worksheet can be re-executed
— updating all visual results — with a key-stroke (Ctrl-Enter).

Worksheets support an incremental programming work-flow. Prior work has
shown that the problem solving process is non-linear in nature; the programmer
experiments with a variety of solutions before settling on a final choice [44].
Programmers also benefit from the use of progressive evaluation, whereby par-
tially finished programs or small segments of code are tested [26]. In addition to
progressive evaluation, source code editing, execution and testing are combined
within the same interface.

Worksheets can operate as document-centric applications and are designed
for application users as well as programmers. In aid of this, worksheets can
operate in two modes: user mode and developer mode. The difference between
the two is simple; user mode elides content that the developer has marked
as hidden (usually code that is internal to the operation of an application).
Switching between modes is achieved by clicking a hyperlink that appears at
the top left of the worksheet. Similar ends can be achieved within Mathematica
Notebooks [88] by marking cells as hidden or non-editable.

6.3.1 Building and editing a worksheet

In developer mode, a worksheet behaves like a simple word processor that allows
the user to enter paragraphs of text. Further functionality is accessed through
the context menu, show in figure 6.3. The paragraph style hyperlinks set the

44



Figure 6.3: Worksheet developer mode context menu

style of the current paragraph (to one of: title, heading 1/2/3/4/5/6 or normal
text; these are rich text styles provided by the presentation system, named after
styles provided by HTML). The text style buttons apply styles to the currently
selected text. The Python code hyperlink inserts a block of Python code below
the current paragraph.

A style chooser in the header of a Python block provides options for con-
trolling its appearance in user mode. The style options allow for controlling the
visibility of the code, making the code editable (by default, code is not editable
in user mode) and controlling how the result is displayed (either not at all, with
a decorative border, or with no decoration). Alternatively, the code block can
be hidden entirely.

6.3.2 Viewing a worksheet

User mode displays the contents of a worksheet. Code blocks that are marked
as hidden (via the style option) are elided. Code blocks that show only a result
can be used for displaying a GUI; the GUI is visible, but the code that creates
it is not. Code marked as editable can be modified by the user; this can be used
to create interactive API documentation or programming tutorials which allow
the user to experiment with the code fragments.

6.4 Project system

A Larch project has a structure that mirrors the file system structure used
by a typical Python program. A Python program consists of a number of
Python modules (.py files) residing within packages (directories), which can
form a nested structure. A Larch project consists of a number of pages (either
worksheets or plain Python modules), that reside within packages. The project
editor displays the project contents in a hierarchical tree, as seen at the bottom
of figure 6.4. The context menu provides functions for creating, deleting and
renaming packages and pages. Drag and drop gestures can be used to re-arrange
them.

Larch projects function as complete Python programs, within which pages
can import functionality from other pages and packages, as if they are regular
Python modules. This is achieved through the use of Python import hooks

45



Figure 6.4: Project editor

[72], which allow a Python programmer to provide additional mechanisms for
importing modules. Our implementation allows subjects (section 4.9) to define
methods which allow Larch to search for and load named modules.

The root python package name (seen in figure 6.4) controls the name through
which project contents are imported. In the example shown, the Highlighter

page can be imported using the name RegexTest.Lib.Highlighter. The
Python interpreter caches modules as it imports them, so that it does not have
to load and execute a module more than once. The reset button removes all
modules from the module cache that were imported from the project; this is used
when the user modifies the contents of a page, so that an up to date version of
it’s contents can be imported.

6.4.1 Special pages

The Larch project system can utilise two special pages; the index page and the
start up page. If a page named index is present at the root of the project, it
will be displayed instead of the project by default. If a page named startup

is present, it will be executed at start time. The start-up page allows a project
to register extensions to the editing environment. For example, new commands
can be added to the command bar, to allow new types of embedded content
to be inserted into Python code and worksheets. As a consequence, a Larch
project can extend the editing environment used to create and interact with it.
The use of special page names was inspired by the way in which web servers
look for a file named index.html if no file name is supplied in the URL.

6.5 Introspection tools

Larch provides introspection tools to assist during development and debugging.

46



Figure 6.5: A fragment inspector

6.5.1 Data model dragging

The data model dragging facility (a feature provided by the object presentation
system) allows a drag gesture to be used to acquire the data model object that
underlies any part of a presentation within Larch. The acquired data model
can be dropped into any Larch application or tools that supports it, e.g. the
Python console. Models can be acquired from anywhere within Larch; AST
nodes representing Python source code within a Python editor can be dragged
to a console, where they can be inspected or manipulated. A common use
involves dragging objects that result from computations within a worksheet or
a console, and dropping them into source code or worksheet text in order to
embed them.

6.5.2 Fragment inspector

The fragment inspector is used to inspect the data model and presentation
elements that are associated with a presentation fragment and its ancestors
along the path to the root. The programmer activates it with a click gesture
(Alt-Shift-Right click) over the presentation content that they wish to inspect.
At this point, a pop-up appears, allowing the programmer to select the fragment
that they are interested in. Each fragment is described in terms of the name of
the class of its associated data model, as seen in figure 6.5. Upon selecting a
fragment, a new window is opened, that contains two tabs. The first tab contains
a Python console (section 6.2) in which the data model is bound to the local
variable m. The programmer may use the console to inspect and manipulate the
data model. The second tab contains an element tree explorer (section 6.5.4)
that displays the sub-tree of elements that form the presentation rooted at the
chosen fragment.

Figure 6.5 shows a fragment inspector displaying the fragment ancestry of
a load expression within a nested list comprehension, from the code shown in
figure 3.1.

6.5.3 Inspector perspective

The inspector perspective presents objects in the style used in visual debugging
environments; the objects attribute and field values are displayed allowing the
user to explore an object’s internal state. The inspector perspective can be

47



Figure 6.6: An object inspector

invoked by calling it, e.g. inspect(x). Figure 6.6 shows an object inspector
displaying a java.awt.BasicStroke object.

6.5.4 Element tree explorer

The element tree explorer is a debugging tool which allows the programmer to
explore the elements within a presentation sub-tree. It is similar to the HTML
element tree explorer provided by the Google Chrome [23] web browser. It can
be used to display the presentation tree for an entire page by activating a menu
item or a presentation sub-tree by using the fragment inspector.

6.6 Comparison to related work

The tools presented in this chapter are very similar to prior work in the area.
We don’t claim to have made significant novel contributions in this area; novel
contributions reside in other parts of Larch.

Our programming environment has some minor novel features that we will
now discuss. The Python editor adds some minor visual and usability enhance-
ments to Python source code. The console allows multiple lines of code to be
entered at a time and presents results in a visual, interactive form; one can dis-
play complete, interactive interfaces within a console. Our worksheets operate
as notebooks that can function as a user facing GUI, as well as a programmer
facing development environment. Our project system ties the other components
together, providing a simple way of creating interactive applications.

Larch provides some of the benefits of live programming environments —
primarily continuous evaluation — while utilising Python, an imperative object-
oriented language. This is in contrast to much prior work in the field, in which
custom languages have been used. The main benefit of using Python is that pro-
grammers do not need to learn a custom language and programming paradigm
in order to use our system. We also avoided the mammoth task of designing a
programming language that programmers would want to learn and use.

Like prior live programming environments, Larch encourages a rapid edit-
test cycle, while the integration of incremental computation with the object
presentation system eases the development of interactive, visual content.

48



Chapter 7

Partially visual
programming with
embedded objects

Our visual programming approach is based on embedding objects in-line within
source code. We use the object presentation system described in chapter 4 to
present them in an interactive visual fashion, thus permitting interactive or GUI-
driven visual content to be embedded within textual source code. By allowing
code to be contained within objects as well, our approach permits visuals and
code to be freely mixed with one another. Functionality similar to that of
LISP-style macros is achieved by using the embedded object protocol to control
the way in which embedded objects are compiled or executed. Consequently,
they can be used to develop new kinds of interactive programming tools and
partially visual languages. They are an editor-based construct that provides a
novel object-oriented approach to extending a language, without the necessity
of modifying the language compiler or interpreter.

Embedded objects are fully functional objects. They are mutable and can
contain references to one another, allowing them to co-operate. In addition, they
cross the boundary between edit/compile-time and run-time. An object that is
presented to the user at edit time can be accessed, used and modified by the
code in which it is embedded at run-time; often causing it’s visual representation
within the editor to update in response.

LISP and its derivatives (such as Scheme) support language extensions by
the use of simple S-expression based syntax and the use of macros, which tra-
verse and manipulate LISP code in abstract syntax tree (AST) form. Smalltalk
[22] takes the approach of incorporating it’s development tools (including the
compiler) into the programming environment, where they can be modified and
extended as needed.

Embedded objects also provide a novel approach for developing interactive
documents and technical literature by allowing an object to be embedded in both
source code and rich text paragraphs within a worksheet. As a consequence,
user actions performed on the object’s visual representation that lies within the
worksheet text will also affect its operation when it is executed as part of the
code in which it is placed.

49



(a) (b) (c) 

Figure 7.1: Code generation with embedded objects.

In contrast to prior work such as ETMOP [19] and Racket [60], embedded
objects are easier to use, as they do not have to conform to any specific design,
beyond implementing particular methods to control their behaviour. Mathe-
matica’s generalised input [87] allows visual output to be copied and pasted
into code. Its Interpretation function provides behaviour customisation.

7.1 Embedded object protocol

The embedded object protocol defines a set of methods which a Python object
can implement in order to control the way in which it is compiled or executed
when embedded within source code.

Process overview

As stated in section 6.1, Larch represents Python source code using an AST-
like structure. The Python data model schema defines special AST nodes that
contain a reference to an embedded object.

Executing Python source code defined within Larch requires two phases;
code generation and run-time execution. During the code generation phase
Larch AST nodes1 are converted to a form that the Python interpreter can
process2. Embedded objects are processed at code generation time by replacing
them with generated code that will have the intended effect. As a consequence
embedded objects provide a mechanism for extending the language syntax with-
out needing to modify the Python interpreter. The code generation process is
shown in figure 7.1. We start with (a) an AST composed of normal code and
an embedded object (the box). In (b) the embedded object protocol is used to
replace the embedded object with AST nodes that perform the desired func-
tionality. Finally, in (c) the resulting AST is converted to a form which can be
processed by the language compiler or interpreter.

Embed as a literal

The object acts as an expression, that evaluates to a reference to the embedded
object. This allows visual interactive values to be embedded within source
code, as seen in figure 7.2 where an interactive polygon is embedded within a

1We define our own AST nodes (using the document data model mentioned in section 5.1.2)
instead of using the standard Python AST nodes, as the standard AST nodes cannot represent
comments and do not emit change events; these features are required by our Python editor.

2We currently convert Larch AST nodes to textual source code, which is executed by the
interpreter. In the future we intend to convert Larch AST nodes to Python AST nodes directly
as this removes the un-parse (to text, within Larch) and parse (within the Python interpreter)
steps that are currently used.

50



Figure 7.2: An interactive polygon embedded within source code

call to a function called areaOfPoly (the result of evaluating the expression
is shown below). Internally, the code generator replaces the embedded object
with a Python expression that evaluates to a reference to the embedded object.
Objects embedded as literals do not need to implement any embedded object
protocol methods; any Python object can be embedded as a literal.

a.x = f( ) a.x = f(box )

Embed as an expression

The object acts as an expression and is able to determine how it is evaluated
(for an example, see the visual regular expression tool in section 8.1.6). Its
evaluation result is acquired by invoking its py eval method. The code
generator replaces the embedded object with an expression that invokes its
py eval method at run-time.

a.x = f( ) a.x = f(box. py eval ())

Embed as a statement

The object acts as a statement and is able to determine how it is executed.
It is executed by calling its py exec method. The code generator replaces
the embedded object with a statement that invokes its py exec method at
run-time.

box. py exec ()

Embed as a macro

The object functions as a LISP-style macro (for an example, see the table
based unit test tool in section 8.1.7). The py evalmodel (for expressions) or
py execmodel (for statements) methods create AST nodes which are used in

place of the embedded object. The code generator invokes the py evalmodel

or py execmodel method at code generation time and replaces the embed-
ded object with the AST nodes that they return, before converting the resulting
tree for use by the Python interpreter.

a.x = f( )

a.x = f(�AST from box. py evalmodel ()�)

51



It is worth noting that in the examples above, we have placed the embedded
object in a variable called box. This was done for clarity; in our implementation,
embedded objects are placed in a list — accessible via a global variable — which
is initialised when the module is instantiated.

7.2 Performance impact

Embed as literal

The overhead for embedding as a literal is minimal. In our implementation, an
object that is embedded as a literal is replaced by a global variable access and
an array access when the code is passed to the interpreter. Our implementation
keeps an array of embedded objects within each module. Other implementations
could generate a new global variable for each embedded object, eliminating the
array access.

Embed as expression or statement

In addition to the global variable access and the array access, embedding an
object as an expression or as a statement adds a method invocation and the
computational cost of executing the method. Given that the method may incur
a significant cost, a production-ready implementation of an embedded object
system should allow the embedded object developer to provide easily accessible
documentation describing the embedded object’s computational costs, so that
the programmer could assess its effects on their program.

Embed as a macro

Given that an object embedded as a macro is replaced by the code that it
generates (when it is handed to the interpreter or compiler), the effects on per-
formance depend on the nature of the code generated. Once again, a production-
ready implementation would need to provide facilities for documenting compu-
tational costs.

7.3 Implementation

7.3.1 Within Larch

As mentioned in section 7.1, the Larch Python data model schema defines special
AST nodes for representing embedded objects. Three embedded object node
types are defined: literals; expressions and statements. The literal node type
is required as the programmer can force an object to be embedded as a literal.
When an object is not embedded as a literal, the editor needs to be able to
determine which kind of syntactic construct it represents; an expression or a
statement. This is so that the parser within the syntax recognizing editor can
determine whether a given segment of code — that includes an embedded object
— is valid or not.

52



7.3.2 Within other environments

While our prototype editor is quite usable, our choice of a structural editor de-
viates significantly from typical code editors which represent code in a textual
form. Given that a textual form is most likely to be chosen by other imple-
menters, we will describe an approach to implementing embedded objects as an
extension for existing text-based programming environments, as opposed to our
own system.

We would suggest that the editor should represent source code using an
enriched string; a sequential container that stores interleaved characters and
object references (see ’Basic Operation’ in section 5.1.1). The text pane would
render the characters as normal text and the object references visually. While
type coercion based object presentation (chapter 4) is not necessary for the
implementation of embedded objects, we would consider it to be helpful, as it
provides a convenient API for developing the object’s user interface. Imple-
menters are however free to use other systems as they see fit. The only other
requirement is that the source code rendering system would display an embed-
ded object’s visual representation in-line with the source code, arranging the
source text around it.

The code generation process would replace embedded object references with
the appropriate textual source code, according to a protocol similar to the one
described above. The resulting text would be passed to the language compiler.

It is worth noting that supporting the embed-as-macro functionality neces-
sitates the availability of a parser to translate textual source code into AST
nodes for further processing. Python provides such a parser, accessible through
its standard library. Other languages may require the use of external tools or
libraries to enable this functionality.

7.4 Creation

There are two ways in which an object can be embedded within source code.

Drag and drop

An object can be dragged from a different part of the application and dropped
into source code. The data model dragging facility mention in section 6.5.1 is
often used to acquire an object from elsewhere within Larch (e.g. from an object
created within the Python console (section 6.2), or a worksheet (section 6.3)),
after which it is dropped into a Python source code editor. Dropping an object
displays a context menu that asks the user if they wish to insert the object as
a copy, a reference, a literal copy or a literal reference. Inserting an object as a
copy will create a fully deep copy of the object and embed the copy. Inserting
as a reference allows an object to be embedded in multiple locations throughout
a document. Inserting as a literal copy or literal reference in that the copy of
reference is embedded as a literal, allowing the surrounding code to access the
object itself, rather than the result of evaluating it.

Commands

Embedded objects can be inserted by invoking commands from the vi -style

53



command bar that is provided by the presentation system. Developers can
implement new tools that insert embedded objects to extend the functionality
of Larch editors (source code editor, worksheet text editor, etc.). An object may
be inserted at the position of the caret, or may be wrapped around a selected
expression, statement or range of statements. The wrapping procedure replaces
the selected code with a newly created object containing the contents of the
selection (recall that objects can contain source code within them; section 6.1).

7.5 Isolation Serialisation System

Our system permits embedded objects to be instances of classes, which are
defined within other parts of the same document/project. Consequently, special
care must be taken when serializing and deserializing Larch documents.

Larch documents are represented in memory using standard Python objects,
and Java objects that implement the Python serialization protocols. We use
the Python pickling system (the standard Python serializer) as the basis for our
serializer.

Problems arise during deserialization, when objects must be recreated. The
first step in deserializing an object, is to acquire a reference to its class. The
class is used to create a blank instance, whose field/attribute values are loaded
from the serial stream. The class is normally identified by a name, which is used
by the pickler to locate it. Our requirements pose an additional challenge; the
class identified can be defined within another part of the same project, which is
not yet completely available due to deserialization still being in progress!

Figure 7.3 shows the kind of document structure that inspired the develop-
ment of our isolation serialisation system. It shows three modules, each of which
contains an embedded object that is an instance of a class defined in a different
module. The structure results in the dependency chain:

C → Z → B → Y → A→ X (7.1)

Modules that contain embedded objects need them to be fully deserialized in
order to operate, and deserialization of embedded objects needs a class defined
in another module to proceed. The standard unpickler (Python deserializer)
would attempt to deserialize all the objects that make up the document in one
go; both the objects representing the code in the modules (in AST form), and
all the embedded objects. Y and Z cannot be deserialized immediately, since
the code in modules A and B (respectively) has not been executed, since the
deserializer has not yet fully re-created the object graph within which the code
is contained.

Our solution is to divide the object graph into distinct partitions, which can
be deserialized as needed. When a document is loaded from a file, many parti-
tions will remain in serialized form, in memory. Referring back to Figure 7.3,
assume that X, Y , and Z are in different partitions, and that we need module
C. Referring to the dependency chain in Equation 7.1, we can now deserial-
ize (objects) and execute (modules) in reverse order. Partitioning allows us to
deserialize objects when all the necessary information is available.

We built our system upon the standard Python serialisation system (the
pickler), in order to maintain compatibility with the Python serialisation pro-
tocols.

54



Module 
A 

X 

Module 
B 

Y 

Module 
C 

Z 

Contains Contains Contains 

Uses class 
defined in 

Uses class 
defined in 

Embedded 
Objects 

Modules 

Figure 7.3: Motivation for isolation serialisation system

Definitions

An object graph can be represented as a digraph G, consisting of set of nodes
N , where each node represents an object, and a set of edges E, where each edge
indicates the presence of a reference from one object to another. We define Tx

to be the set of nodes that are reachable from node x (transitive closure).

Approach

Our approach involves placing embedded objects behind isolation barriers. An
isolation barrier is an object that contains a reference to an isolated object that
lies ’behind it’. Upon serialisation, the reference is converted to an integer
that indexes into an isolated object table. Upon de-serialisation, the isolation
barrier keeps the index, until the object reference is requested, at which point,
the isolation serialisation system re-creates the isolated object, and the index
is replaced with a reference. Please note that we do not consider G to contain
edges from isolation barriers to the isolated objects that are behind them.

The diagram in Figure 7.4 shows an object graph divided into partitions.
The circles represent objects in the object graph, and the thin boxes represent
isolation barriers. Objects that are reachable from the same set of isolated
objects are in the same partition. Consequently, deserialising an isolated object
requires that only the partitions that are reachable from it are deserialised; other
partitions may remain in serialised form.

Formal description

Given a root object r, we discover Tr, the set of all objects reachable from r.
During this process, when we encounter an isolation barrier, we add the isolated
object that lies behind it to I, the set of all isolated objects. Note that more
than one isolation barrier can refer to the same isolated object, in which case
they will be given the same index into the isolated object table.

We can now divide N into two disjoint sub-sets Tr and TI where:

TI =
⋃
i∈I

Ti

55



 

Root 

Partitions 

Isolation barriers  

Objects reachable 
from root 

Figure 7.4: Isolation serialization system - partitioning.

where Ti is the set of all objects reachable from i.
We now divide TI into a number of disjoint sub-sets, each of which forms a

partition of G. We first define the source set Sx to be the set of isolated objects
from which x is reachable:

Sx = {i∈I : x∈Ti}

We now define a partition Pa as the set of all objects for which Sx is the
same for each element x of Pa, along with its associated source set Qa:

Pa = {x∈TI : Sx = Qa}

We have now partitioned TI into partitions P0, P1, . . .PM , where M is the
number of partitions, by the set of isolated objects from which each partition
is reachable. We now serialise each partition into a string. Note, that when
serialising objects within a partition Pa, we can encounter references to objects
not within Pa. We must serialise these references specially; we record an external
reference, consisting of the identity (an index) of the partition Pb within which
such an object y resides, along with the index of y in Pb. We may also encounter
references to objects within Tr; we record an identify for these too.

In order to de-serialise an isolated object i, we will first need to de-serialise
each partition for which i is a member of its source set:

{Pa : i∈Qa}

We may now de-serialise i itself, handling all external references as we go.

56



Alternative approach

Using the pickler guarantees compatibility with existing code, but necessitates
the use of a more complex approach than would be required, if we developed
our own serialization system from scratch. The main requirement of our system
is the ability to defer the deserialization of specific objects, until all the nec-
essary resources (classes, functions, etc) have been instantiated. This could be
achieved by storing the serialized objects in a simple table, that maps indices to
objects. Inter-object references would be represented by indices. When loading
a document, objects behind isolation barriers would remain in serialized form
within the object table, only being deserialized on request. Consequently, this
simpler approach would achieve the same results as our partitioning system.

Limitations

It is possible to use construct a Larch document which has circular module
dependencies. If a user embeds within a module M , an object whose class is
defined in a module N , which in turn imports (and is therefore dependent on)
module M , the resulting document will not load properly, as module M will fail
to load, due to the deserializer not being able to re-create the embedded object.
We propose to address this issue in the future, by detecting dependency cycles
at save time, and warning the user.

7.6 Limitations

Embedding objects from one document into another can result in unexpected
behaviour or invalid documents. Within the same Larch session the documents
will remain linked, as they will share the same embedded object within memory.
Upon reloading, this relationship will not be preserved as each document will
receive its own copy of the embedded object at load time. If the embedded
object’s class is defined within the source document, the destination document
will become invalid, as the required source code will be unavailable, unless the
source document is loaded first.

From the perspective of the programmer, objects embedded as literals must
be treated as if they are global variables. This is particularly relevant for objects
embedded within functions or class methods, as their appearance within the
code may incorrectly suggest that a new instance of the object will be created
for each function invocation or class instance.

7.7 Comparison to related work

7.7.1 Visual languages and DMPEs

The usability problems that hamper the widespread acceptance of visual lan-
guages and DMPEs among professional programmers are the motivation for our
choice to develop a partially visual programming system. Developing visual lan-
guages that scale up beyond toy examples has proven to be very challenging.
The cumbersome work-flow of DMPEs further discouraged us from taking a
either a purely visual approach or from developing a DMPE based editor.

57



7.7.2 Visual source code extensions

As stated in section 2.6, augmenting rendering of standard source code requires
the development of robust pattern matchers that select the programming con-
structs that are to have their presentations enhanced. The difficulties involved
in developing reliable pattern matchers underlie our decision not to explore this
approach.

We chose to base our approach on visual programming constructs. Our
object presentation system provides a simple way of displaying objects in visual
form in-line within textual source code. Continuing our philosophy of giving
freedom and flexibility to the programmer by placing few constraints on the
design of their code, we designed the simple protocol described in section 7.1. It
places less of a burden on the developer when contrasted against the approaches
employed by ETMOP [19] and Racket [60], since developing new ETMOP AST
node types or new kinds of Racket boxes requires the developer to work within
the constraints of their respective designs.

When objects are embedded as macros, our approach offers some of the ca-
pabilities to LISP macros, except that embedded objects are presented visually,
rather than appearing as normal function calls. Objects that are embedded as
(non-macro) literals, expressions or statements offer powerful visual source code
extensions without the need to manipulate AST nodes.

7.7.3 Domain specific languages

The two DSL development environments discussed in section 2.8 (the Inten-
tional Domain Workbench [65] and Jetbrains MPS [34]) are geared towards
language development. In comparison, Larch’s language development facilities
are quite primitive. Defining a syntax recognizing editor within Larch is cer-
tainly more complex than defining an editor within MPS. The behaviour of a
Larch editor will be closer to that of a text editor and therefore more familiar to
most programmers. MPS provides a library of generic language constructs (e.g.
arithmetic operations, function calls), eliminating the need to develop common
constructs from scratch. Both MPS and Intentional software provide version
control and support for developing type systems.

Rather than providing a framework for developing new languages and no-
tations, Larch focuses on allowing a developer to customise an existing one
through the use of embedded objects. By doing so, one avoids the tricky issues
faced by language designers. Choosing syntax and semantics that stand the test
of time is a very challenging task, not to mention the effort required to develop
a sufficient standard library.

58



Chapter 8

Evaluation

8.1 Proof of concept

We have used the embedded objects system in concert with the other compo-
nents of Larch to develop examples of potential applications. These tools are
only intended as a proof of concept.

8.1.1 Interactive explorable documents; embedded editable
values

Embedded editable values are inspired by Tangle [73], a Javascript library de-
signed for the creation of reactive HTML documents. Reactive documents allow
a reader to experiment with the scenario presented by the document; modify-
ing interactive values causes textual and visual elements to change in response.
For instance, Ten Brighter Ideas [74] — based on Tangle — allows a reader to
explore the effects of a variety of energy saving measures.

Embedded editable values (EEVs) allow interactive, user-editable values to
be embedded within Python code. Visually, they appear as GUI controls (fig-
ure 8.1). A frequent use case involves using an EEV to control value of a
parameter that affects the operation of the surrounding code, by embedding
it in place of in place of a literal value (e.g. an integer or string). Drag and
drop is then used to embed a reference to it within a text paragraph within a
worksheet. The control that appears within the worksheet text can now be used
to alter the parameter. EEVs provide a simple approach to rapidly connecting
parameters within code to GUI controls.

EEVs inform the incremental computation system (section 4.4) of value
changes. Incrementally maintained functions — such as live functions (sec-
tion 4.5) — that access the values off EEVs will therefore be automatically
updated (along with their visual representations) in response to user modifica-
tions. This allows EEVs to be used in the creation of live interactive documents.
The same functionality can be achieved in Mathematica through the use of its
dynamic and Interpretation functions [87].

Figure 8.1 shows a very simple demonstration of the use and underlying
principles of EEVs. The top line, ’Define x=...’ is worksheet text. The outer
blue box denotes the boundary around a code block, the lower part of which

59



Figure 8.1: Square function with embedded editable value

Figure 8.2: Separable Gaussian blur using embedded editable values

displays the result of the expression xSquared. The two spin boxes (numeric
value with arrows) are presentations of the same embedded object; changing
the value in one affects the other. The @LiveFunction decorator applied to the
xSquared function converts it into a live (incrementally maintained) function.
As a consequence, altering the value of either spin box causes Larch to auto-
matically re-invoke xSquared and update the value shown at the bottom1. If
the code block was marked as hidden, the result would still be visible, as would
the spin box at the end of the line of text ’Define x=...’. The user could change
the value in the spin box and see the result update in response.

Figure 8.2 shows a more complex example; a visual demonstration of a sep-
arable Gaussian blur. Altering the parameters controlling the blur kernel size
and sigma causes the visuals below to automatically update; the size and shape
of the blur kernels are altered, and the blurred images change to demonstrate
the effect. Figure 8.3 shows the separable Gaussian blur worksheet in developer
mode, revealing the implementation. 11 lines of import statements were elided,
including statements that imported functions for computing the blur kernel and
rendering a Gaussian blur.

EEVs take the place of values that are typically represented as literals or
constants within textual source code. EEVs have a number of advantages.
Firstly, they can use controls specific to a certain domain. An embedded file path
displays a text entry field alongside a button that opens a file dialog window.
In contrast, one would use a string to represent a path within textual source
code. No domain specific behaviour would be provided by the interface.

EEVs are implemented as objects that present themselves as GUI controls.

1Recall that live values and live functions are presentation combinators that display a live
presentation of their values.

60



Figure 8.3: Separable Gaussian blur implementation

61



Internally, their values are stored within a live value (section 4.5), hence they
can participate in incrementally maintained computations.

8.1.2 Simplified interactive literate programming

Literate programming [38] is an approach to programming in which source code
is organised in an order suited to human understanding, as opposed to the
order demanded by the programming language. Source code within literate
programs is divided into small named segments which are placed in context
with documentation that describes their operation. Code segments reference one
another by name; it is this web of references that defines the structure and order
of the compilable source code. A tool called Tangle generates the compilable
source code by resolving these references in a similar fashion to the C-language
macro system; the complete source of a referenced segment is inserted in place
of the reference in the referring segment. The Weave tool generates printable
documentation via TEX. Tangle and Weave operate as batch-oriented command
line tools.

The Larch literate programming tools operate interactively. Code segments
are contained within embedded objects which can be referenced in multiple
places throughout a project. All visible representations of a code segment are
editable and synchronised; any modifications made to one will affect the others.
Code segments are executed in place when embedded within source code. They
are not executable when embedded within worksheet text. Literate code seg-
ments come in two types: expressions and suites. Suites have an editable name
and are visually collapsible. Literate code segments are created by selecting a
segment of code and invoking a command from the command bar, which will
cause the selected code to be wrapped within a literate expression or suite (de-
pending on the command invoked). Drag and drop gestures can now be used
to embed new instances of the segments within source code or worksheet text.

The interactivity of the Larch literate programming tools facilitate applica-
tions beyond the production of programs as literature; the original inspiration
for Literate Programming. Small segments of code (e.g. expressions) can be
taken from a large body of code, and displayed in editable form within a work-
sheet, allowing a reader to edit small segments that are relevant to the work-
sheet’s topic, without the distractions of the rest of the supporting code. An
example is seen in Figure 8.5 where the uncompressed input is contained within
a literate expression, seen embedded within the worksheet text. Additionally,
the implementation of the LZW algorithm and the program trace visualisation
(explained in the next sub-section) is also shown within a literate suite. The
worksheet contains only the information that is salient to the operation of the
LWZ algorithm, the supporting code has been elided (it can still be seen and
explored by the user by switching the worksheet to developer mode).

Our approach has a number of advantages when compared to the standard
textual literate programming tools. The Tangle and Weave tools can be used to
generate either form of output (either compilable source code or human readable
documentation). Both of these forms are read-only. It is not possible to modify
the source document by editing the typeset documentation. A detangle tool
was later developed that could transfer modifications to the compilable source
code to the original source document. Within Larch, both source code and doc-
umentation forms are simultaneously available and editable, with modifications

62



to one form immediately affecting the other.

8.1.3 In-line console

The in-line console tool is an experimental programming and debugging aid
that takes the form of a simple console that can be embedded within source
code. It contains an editable block of Python code, which is executed in the
context of the surrounding code into which the console is placed. The code
within the console has access to variables that were available to the surrounding
code at the time of execution. Results created by executing the code block
are displayed below it. The programmer may then modify the code within the
console and refresh the result with a key-stroke. As a consequence, the in-line
console tool allows a programmer to explore the values of variables and objects
that were available to the surrounding code. The programmer may also wish
to incrementally develop and test a segment of code within the in-line console.
Once finished, the in-line console can be dissolved with a key-stroke, replacing
it with the code that was contained within it.

The worksheet system (section 6.3) allows the values of variables to be dis-
played, provided that they are variables available to the global (module level)
scope. Displaying values available within the body of a function or within an
event handler is not directly supported2. The in-line console tool fills this gap;
placing one within the body of a function or event handler allows the program-
mer to inspect or interact with the state of local variables.

The in-line console works by taking a copy of the local and global scopes
when the surrounding code is executed. These copies are stored as dictionaries
that map variable names to values. The code within the console is executed in
the context of these scopes. Its results are retrieved and displayed.

Figure 8.4 shows an in-line console within the step method of the virtual
machine that was shown in figure 6.2. The step method is invoked in response
to pressing the ’Step’ button. The program is in the same state as seen in
figure 6.2. The in-line console is being used to inspect the instruction pointer,
the name of the instruction and the contents of the registers.

The closest analogue to the in-line console in a text based environment would
be a procedure that can be used within a Smalltalk environment, first discussed
in section 2.5. Within Pharo Smalltalk [1], inserting the code self halt into
a method will halt execution and summon the Smalltalk debugger. Within the
debugger, the programmer can execute segments of code within the context
of the method. After implementing the desired functionality, the code can be
copied and pasted into place.

Visually, our in-line console displays the code segments under development
in-line within the surrounding code. The dissolve function is quicker than the
copy and paste actions needed within Smalltalk.

Our in-line console does not interrupt execution. This can be a disadvantage,
as subsequent statements may modify the state of objects accessible from within
the in-line console, so it may not be a true representation of the state of the
application at the time the in-line console was encountered within the flow of

2This can however be achieved through the use of a workaround; a container must be
created and bound to a global variable and displayed within the worksheet. Within the
function body, the value that is to be inspected should be placed within the container. While
not difficult to achieve, the work-flow is cumbersome.

63



Figure 8.4: An in-line console

execution. This problem could be addressed in the future by executing the
program under development in a separate thread that could be halted.

8.1.4 Simple static software visualisation; program trace
visualisation tool

The program trace visualisation (PTV) tool is a simple program visualisation
system. Given that it is intended as a proof of concept, it is quite primitive
in comparison to past state of the art techniques [67] and even more so when
compared to current work. Jype [30] is a recent system that displays function
activation records and data structures in a visual form within the context of
an educational programming environment for the Python/Jython platform. It
would serve as a good starting point for readers interested in pursuing this area
further.

The PTV tool generates a static program visualisation by tracking the ex-
ecution of a sequence of executable statements. The user chooses a number of
expressions whose values are to be logged by tagging them as monitored expres-
sions. As the statements contained within the PTV are executed, the values
of monitored expressions are recorded. The PTV can display them in a table
(as in figure 8.5), or in an activation tree (as in figure 8.6). The PTV tracks
the invocation of the code contained within it, and is able to detect iterative
and recursive invocation. A limitation of the PTV tool must be noted; the
logged values are stored as references. As a consequence, mutable objects may
be modified by code that is executed subsequence to logging, resulting in the
visual representations depicting their current, modified state rather than their
state at logging time. This is an issue that we would need to address in the
future.

Figure 8.5 shows a PTV within an implementation of the LZW compression
algorithm. The variables r, g and b are used in the input data and are bound
to objects which display as the coloured boxes seen in the table. At the end
of each iteration of the LZW loop, the PTV (the table, which is embedded
as a statement) is executed, which in turn executes the code contained within
it. In this case, the code is the tuple expression ’x, P, Q, y’. The tuple
is admittedly difficult to see, since each element is wrapped in a ’Monitored

64



Figure 8.5: A program trace visualisation of the LZW compression algorithm

expression’ embedded object, which gathers the value of the expression (x, P,
Q, or y) within it at evaluation time. The PTV displays each log entry as a
row in the table. As a result, the progress of the algorithm is visualized in the
table. The PTV was very easy to apply; the line ’x, P, Q, y’ was entered and
selected, after which the PTV command was invoked. Each of the x, P, Q, and y

variables were selected, and the monitored expression command was invoked.
The worksheet shown in figure 8.5 uses both the PTV tool and the literate

programming tools. The literate programming tools are used to display the in-
put expression ([r,g,b,r,g,r,b,r]) within the worksheet text at the top. The
input expression — originally within the source code — was wrapped in a lit-
erate expression (a Python expression contained within an object). A reference
to it was embedded within the worksheet text resulting in what is seen. The
implementation of the LZW algorithm — containing the PTV — was wrapped
in a literate suite (a Python suite contained within an object), that can be seen
with the title ’LZW Implementation’. Again, a reference to it was embedded
within the worksheet, this time below ’Execution trace and code:’. The en-
coded result and the prefix table built during execution is shown further down,
although these have been placed to the right of the main body in the figure to
save space.

Figure 8.6 shows (the bottom half of) a PTV used to monitor the construc-
tion of a KD-tree (a binary spatial partitioning structure used in graphics) as it
partitions a cloud of points. The construction algorithm is recursive; the two re-
cursive invocations can be seen at the top of figure 8.6 (a) (the code ’self.lower
= ...’ and ’self.upper = ...’). The PTV has tracked the recursive invoca-

65



Figure 8.6: A program trace visualisation of a recursive algorithm

tion and generated the activation tree, seen just below the ’Tree’ tab. Each box
in the tree represents an activation record; a record of a recursive invocation.
Selecting a box takes the values recorded during the associated invocation and
displays them below the activation tree. In this case only one value is recorded;
the KD-tree node itself. The KD-tree node is presented as a diagram that shows
the points within the selected node along with partitioning lines used by the
node and its children. Figure 8.6 (b) shows the activation tree with a different
record selected.

In contrast, textual source code would wrap the expressions tagged as moni-
tored expressions in logging method calls. The execution results would presented
in a different pane within the IDE, as textual code editors do not allow execu-
tion output to be interleaved with the source code (although some sophisticated
IDEs — such as Visual Studio [32] — can display the values of variables in tool-
tips while debugging). They would also be presented in textual form, relying
on careful use of spaces and tabs with a fixed width font to align the content.

8.1.5 Language extensions and domain specific program-
ming tools

The combination of the language extension capabilities and the ability to embed
code within objects allows for the development of domain specific programming
tools and customised languages. We hesitate to use the term domain specific
language as it would suggest the creation of a new programming language. In-
stead, we propose enhancing the host language (Python in this case) by allowing
segments of code to be combined and augmented by interactive visual forms in
order to customise the language to better support the target domain.

This is achieved by implementing an object that is to be embedded within

66



code (such as the table shown in figure 8.7). Segments of code are further
contained within the object. The object displays itself and the code segments
within it in an editable, interactive form. At code generation time, the code
segments are manipulated at the AST level, such that they are utilised and
executed as needed.

Figure 8.7 shows one such example; a specification of an instruction set for
a MIPS CPU simulator. It is presented as a spreadsheet style table. Each row
represents an instruction supported by the simulator. The columns represent
the prefix bits, suffix bits, mnemonic, operands (r - register, imm - immediate
value) and simulation code. The simulation code is a suite of Python statements
that simulate the effect of the instruction. New instructions can be added to the
simulator by using spreadsheet style block copy operations to duplicate existing
rows, after which the appropriate fields and simulation code are modified.

The instruction set table is used to drive an assembler, which parses instruc-
tions in textual form and produces binary machine code output. It is also used
to drive the simulator. The simulator’s instruction decoder uses the binary
prefixes and suffixes along with the operand descriptions to determine which
instruction is represented by a particular word from memory, and extract the
operands. It then invokes the corresponding simulation code to simulate the
instruction’s effect.

In contrast, a typical textual implementation of a CPU simulator would rely
on an if-else block to select the instruction to execute. The body of each if-
clause would extract the operands and simulate the effects of the instruction.
The table seen in figure 8.7 represents the intentions and concepts that underlie
the simulator far more faithfully as implementation specific details are elided,
leaving only salient information; its visual form is similar to that which would
be used in a textbook. It is also more obvious to the user how to extend the
simulator to support new instructions.

Our visual instruction table shares similarities with domain specific lan-
guages (DSLs) developed using the Intentional Domain Workbench [66, 65], in
which tables can be used to augment code in a similar fashion.

8.1.6 Visual regular expression editor.

Our visual regular expression editor is a syntax recognizing editor that uses
visual cues and spatial arrangement to enhance the readability of regular ex-
pressions. Its development was inspired by the use of a visual representation in
SWYN [5]. Unlike SWYN however, it does not incorporate a PBE (program-
ming by example) based system that infers regular expressions from examples,
or provide incremental evaluation and testing. It is focused solely on enhancing
comprehension while maintaining compatibility with Python’s textual regular
expression syntax. The use of a syntax recognizing editor allows it to recognise
and display structure as you type. Figure 8.8 shows a regular expression for
matching a date in both textual and visual form.

Visual regular expressions embed as expressions within Python source code.
They evaluate to their string representation, allowing them to inter-operate with
the regular expression tools within the Python standard library.

The visual regular expression editor can be a useful tool for a programmer
in its own right, even if they are using an external editor as their primary
development environment. The visual cues provided by our editor can simplify

67



Figure 8.7: MIPS simulator instruction set, shown as an editable table

Figure 8.8: Visual regular expression editor, with textual form above for com-
parison

68



Figure 8.9: Regular expression tester

the process of building a regular expression, after which copy and paste can
be used to transfer the regular expression in textual form to and from external
applications.

We have used our regular expression editor, in concert with embedded ed-
itable values and worksheets to develop a regular expression testing application,
shown in figure 8.9. Both the regular expression and the sample text area vis-
ible at the top were originally embedded within source code, as seen in the
implementation in figure 8.10. References to both were embedded within the
worksheet text, resulting in the interface that is seen. The source code declares
the regexTest function, that matches the sample text against the regular ex-
pression, and returns a visual representation of the sample text with highlights
around the matched segments. The regexTest function is converted into a
live function by decorating it with LiveFunction (section 4.5, another example
can be seen in figure 8.1). As a result, the highlighted text shown at the bot-
tom updates in response to modifications to either the sample text or regular
expression.

8.1.7 Table based unit tests

Unit tests are not usually located near the code they test; they are often in
a different module or in a distant part of the same module. Developing the
code alongside the tests requires the programmer to switch between the two.
Additionally, testing code that generates complex data structures can be cum-
bersome, as the test must explicitly create the data structure in the expected
form in order to compare it with the execution result. The results of running
the tests are usually displayed in a separate window (such as a command shell)
or within a different pane of an IDE.

69



Figure 8.10: Regular expression tester implementation

70



Figure 8.11: Parser unit test in textual and tabular form

71



Figure 8.11 (a) shows the textual form of a method defining a rule (add sub)
from a calculator grammar, and the corresponding unit test method (the dashes
separating them indicate that the test method is located in a different part
of the module). Notice that the unit test explicitly constructs the expected
result structure (Add(Sub(Load(’a’), .....))) in order to check the output
generated by parsing the input text. In figure 8.11 (b), we see a table based
form of the test, placed immediately below the method that it tests. The code
that generates the parser and the code that generates the input are displayed
in the Parser code and Input code columns. The expected result is displayed
visually in the Expected column, with the structure highlighted with concentric
boxes. The Result column tells the user whether the test passed or failed. The
small Trace hyperlink (in each Result cell) is a debugging tool that displays a
trace of the parsing process in the form of a graph. This assists the programmer
in determining how the parser reached its result.

The table based test is easier to comprehend; the spatial layout guides the
readers eye, while implementation details are elided, leaving only the salient
information. The unit testing tool objects are embedded as macros (see sec-
tion 7.1); the contents of the tables are converted into code which is appended
to the module.

In row 2, we see a test that is not complete; no expected result has been
supplied. In order to save the programmer from having to type out the structure
by hand (manually entering the expressions in (a) can be cumbersome, especially
for deeply nested structures more complex than those shown), the test can be
executed without an expected result. The programmer is notified of this with
the message shown in the Result column along with the received output; the
programmer is invited to visually validate the output, and can choose to use
it as the expected result in future test runs by clicking the Set expected result
button. Doing so transfers the received output to the Expected column. This is
how the unit tests in the table were created.

8.1.8 Live API Documentation

As they stand, worksheets can be used to create live API documentation. Rich
text is used to explain the material under discussion. Examples take the form
of code blocks. Within a worksheet, the examples are executed, with the results
being displayed below. This simplifies the creation of API documentation, as
there is no need to develop and execute examples in a separate environment, and
insert results via cut and paste or as screenshots. Furthermore, a code block can
be marked as editable, permitting the reader to modify and experiment with it,
testing the effects of changes.

We have expanded on this approach by developing table based API examples,
as seen in figure 8.12. In this case, we are documenting the API of LSpace, the
Larch presentation system. In our example, the first column contains code that
creates a style sheet that is applied to the presentation created in the second
column. The result is displayed in the third. The user may edit the code and
refresh to see the effect with a key-stroke. The API tables are implemented
as objects that are embedded within a worksheet. The cells in the first two
columns contain objects that represent Python code (section 6.1).

HTML based web pages are currently a popular format for API documen-

72



Figure 8.12: Live API documentation for LSpace

73



     

0 
100 
200 
300 
400 
500 
600 
700 

1 3 5 7 9 11 13 15 17 19 

Pr
es

en
ta

tio
n 

tim
e 

(m
s)

 

# of copies of ImageCollection 

0 

10 

20 

30 

40 

50 

60 

1 3 5 7 9 11 13 15 17 19 

Ty
pe

se
t t

im
e 

(m
s)

 

# of copies of ImageCollection 

Figure 8.13: Performance measurements

tation3, as it is convenient to access and navigate. The API is explained with
prose, while source code and example output are presented as static text. The
static nature of standard rich text documents imposes a number of limitations
on their capabilities. The reader must accept on faith that documentation is ac-
curate (this is not necessarily the case with some projects). Experimenting with
the source code requires the user to copy and paste it into an external develop-
ment environment in order to execute it. Results or output that are interactive
can only be explained using a combination of screenshots and prose.

Live documents address these limitations. The output will always be con-
sistent with the API implementation, as it is created by running the example
code shown in the document; any inconsistencies between the API and the ex-
amples will be visible as either incorrect output or exceptions displayed in the
output area. The user can experiment with the code shown by making small
changes and refreshing the output to see their effect. Example output may in-
clude interactive content, allowing the user to experiment with code that creates
interactive, GUI driven content within the API documentation.

8.2 Programming environment performance

To assess the performance of Larch we measured the amount of time required
to present the contents of a worksheet while varying its size. We varied the
size by appending copies of the ImageCollection code presented in figure 4.2,
which consists of 2 lines of text and two code blocks containing 73 lines of code
between them (including the import statements that were elided for brevity,
13 lines of comments, 5 blank lines). Each additional copy resulted in the
creation of 1775 presentation elements to display it4. Each test was performed
43 times. The first three results were discarded; they typically took longer due
to JVM JIT compiler warm-up. The median time of the remaining 40 results
was selected and used. The test setup consists of an Intel Core 2 Quad 2.4Ghz

3Documentation for the standard libraries for the Java, C# and Python programming
languages are all available in this form.

4Recall that Larch represents source code in an AST-style structured form (see section 6.1).
Presenting source code involves walking the AST in order to present each node. The resulting
presentation tree contains an element for each source code token, along with elements for
spatial arrangement, hence the large number of elements.

74



Doc Lines Code Lines of # of Presentation Typeset
size of code SLOC ws text elements time (ms) time (ms)
1 73 44 2 1813 30.9 2.1
2 146 88 4 3588 58.0 3.7
3 219 132 6 5363 83.5 5.8
4 292 176 8 7138 112.9 8.1
5 365 220 10 8913 148.7 10.6
6 438 264 12 10688 181.3 13.1
7 511 308 14 12463 211.5 15.4
8 584 352 16 14238 240.3 18.3
9 657 396 18 16013 268.9 21.4
10 730 440 20 17788 289.7 24.6
11 803 484 22 19563 319.4 27.6
12 876 528 24 21338 362.3 29.8
13 949 572 26 23113 385.3 32.6
14 1022 616 28 24888 405.3 35.7
15 1095 660 30 26663 437.7 38.5
16 1168 704 32 28438 465.1 41.2
17 1241 748 34 30213 504.6 43.9
18 1314 792 36 31988 539.3 47.5
19 1387 836 38 33763 564.1 49.3
20 1460 880 40 35538 586.2 52.2

Table 8.1: Performance measurements in numeric form

CPU, 8GB RAM, Windows Vista OS, 32-bit Java Hotspot 1.6.0-31 JVM and
Jython 2.7-alpha1.

The graphs in figure 8.13 show the presentation and typesetting time with
respect to the worksheet size. The presentation time is the time required to
walk the document model and construct the complete presentation, while the
typesetting time is the time required by the presentation system to spatially
arrange the elements for display. Analysis of the results indicates that the
presentation time is linear with respect to input size while the typesetting time is
quadratic. The linear appearance of the typesetting graph is due to fact that the
quadratic portion of our typesetting system is not sufficient to significantly affect
the run-time at the document sizes tested. The performance measurements are
also shown in table 8.1.

To assess the performance of Larch when handling larger worksheets, we im-
ported the Larch Python language parser module, which consists of 2,524 lines of
Python code. Using the same approach as above, we found the median presenta-
tion time to be 1,636ms, requiring the creation of 103,880 presentation elements.
The performance of edit operations is variable, with presentation refresh times
varying between 50ms and 200ms (when working on the aforementioned 2.5k
lines of code). The variability in performance is due to the variability in the
scope of the effects of an edit operation; many edits will affect only a single
line of code, resulting in a quick refresh as only a small section of the structural
source code model will be modified. Other operations will require rebuilding the
structure of substantial parts of a block of code, requiring larger parts of the
visual representation to be refreshed. A delay of 1.6s between choosing to open

75



a worksheet and seeing it, along with edit response times between 50ms and
200ms makes Larch feel sluggish when working with worksheets of this size.

We would suggest that the performance of Larch could be improved with the
following techniques. Content could be presented incrementally. Rather than
generating presentation elements for a complete page in one go, the page could
be presented incrementally. Pages would appear — in an incomplete form —
almost instantaneously, after which the remaining content would be gradually
presented until the page is complete. This is done by most web browsers so that
a page can be displayed in an incomplete form before it has finished download-
ing. The remainder of our proposed performance improvements focus on syntax
recognizing editors. Our parsing library is quite slow, as it is based on recursive
descent parsing and backtracking. We would propose implementing a tokenizer
(the current approach consumes content directly) and using a finite state ma-
chine based parsing algorithm. We would also propose extending the parser so
that it supports a form of incremental parsing, by allowing entries recorded into
the parser memo table during a previous parse to be re-used when parsing a
larger segment of a document that includes the content parsed previously.

8.3 A discussion of Cognitive Dimensions

When considered within the context of the Cognitive Dimensions Framework
[26], the use of visual constructs within source code yields benefits in three
dimensions. Closeness of mapping is improved as a visual representation can
map more closely to the programmer’s mental model of the problem domain.
Hard mental operations are reduced by using visual cues to communicate the
structure and relationships inherent in the textual code that they enhance or
replace. Understanding complex textual code requires a reader to remember the
relative sequential positions of elements and structures within the text. A good
example of this can be seen in our visual regular expression editor (section 8.1.6)
or SWYN [5]. Improvements in the terseness dimension are achieved by eliding
implementation specific details, leaving only salient information visible to the
user, as seen in the MIPS simulator (section 8.1.5) and the table based unit
tests (section 8.1.7).

The Larch programming environment provides benefits in the progressive
evaluation cognitive dimension, as programmers are encouraged to develop the
programs incrementally. Worksheets — supplemented with the in-line console
tool — provide an environment for testing incomplete programs and experiment-
ing with segments of code; a block of code can be executed with a key-stroke,
with the results generated being displayed immediately below. Given that ob-
jects (results) are displayed in a visual form, visual cues can be used to enhance
the comprehensibility of results that are displayed. Our worksheets are only
helpful for segments of code that execute in a linear fashion. This shortcoming
prevents them from being used to understand the inner workings of functions
or event handlers. This is addressed through the use of the in-line console tool
(section 8.1.3) that allows these areas to be explored.

In the future, we would like to evaluate our system with respect to the Cog-
nitive Dimensions Framework with an empirical study, with a view to guiding
future development.

76



Chapter 9

Conclusions

The Larch Environment is a visual interactive programming environment that
introduces a novel form of partially visual programming based around embed-
ding visual objects within source code. The presence of our worksheet active
document system allows Larch to be used to create programs that operate as
interactive technical literature.

9.1 Discussion

9.1.1 Visual object presentation

Our use of type coercion and incremental consistency maintenance for visual
object presentation eliminates much of the boilerplate code that is required in
a typical MVC implementation. An object can be displayed simply by incor-
porating it into a presentation description. Views of objects are automatically
created, maintained and destroyed by the presentation system as required. In
contrast to systems such as Citrus [40] which require that the model and view
must conform to a specific design, Larch requires very few design constraints.
Any Java or Python object can be used as a data model and anything that can
act as a function (e.g. a method) can create the view. As a consequence, presen-
tations can be implemented for objects that are not designed with presentation
in mind, such as those provided by the standard library. This is how the image
objects in figure 4.1 are displayed. We have also implemented a presentation
for Java ResultSet objects, displaying the results of SQL database queries in
tabular form.

Implementing a presentation method is sufficient for specifying a basic visual
representation for an object. Implementing a simple non-interactive visual rep-
resentation that uses spatial layout is therefore not significantly more complex
than defining a toString method.

Presentation by type coercion also provides a consistent and compose-able
approach to presentation construction. In addition to enabling embedded ob-
jects, it allows programmers to easily develop visual representations for their
own objects. An example of this can be seen in section 8.1.7, where a nor-
mal Python object defines a visual representation that is incorporated into the
interface of a unit testing tool.

77



Our approach is sufficiently flexible to allow presentations to mix a variety
of different content types. For example, Larch worksheets can contain a com-
bination of source code displayed using a syntax recognizing structure editor,
editable rich text, spreadsheet style tables and GUI based content, all freely
mixed within one another.

9.1.2 Programming environment

Active document systems such as Mathematica notebooks and our worksheet
system improve on the experimental programming environment provided by a
REPL console. They retain the rapid edit-run-debug cycle while allowing the
programmer to develop a complete module. The mix of rich text and executable
source code provides an environment that naturally lends itself to the develop-
ment of programs that take the form of interactive live documents.

Our worksheets can simultaneously serve as both development environment
and user facing GUI. In developer mode, the code that underlies the function-
ality of a program is visible, while in user mode it is hidden, with only the rich
text and the GUI (created by the code) shown to the user.

A standard GUI based Python program will display its user interface within
a separate window that is created during the program’s execution. As a conse-
quence there is an apparent disconnect between the visible GUI and the code
that creates it. Our worksheets reduce this disconnect, by juxtaposing them
with one another.

Worksheets encourage an incremental approach to GUI development, in
which small components of a GUI can be developed and tested individually.
A programmer can create test worksheets whose purpose is to instantiate a part
of a GUI and display it, in order to test the functionality of the component,
separate from the rest of the application.

9.1.3 Partially visual programming

Partially visual programming by embedded objects allows source code to take on
the appearance of interactive technical literature; programs remain to be mostly
textual, with interactive visual content employed only where it is beneficial. Our
approach is simpler to use than those of prior work in the field [19], as doing so
does not require significant knowledge of interpreter and compiler internals or
semantic analysis (although knowledge of AST manipulation is necessary for the
use of the LISP-macro style facilities). A programmer with a good understand-
ing of object-oriented programming and GUI development can implement their
own visual constructs to be embedded within their programs. Our examples in
section 8.1 demonstrate the flexibility of our approach. Embedded objects can
improve the comprehensibility of complex textual code (section 8.1.6, also see
figure 7.2). They can also customise the form of a program to suit a specific
domain. This opens avenues for the development of domain specific, partially
visual programming tools (section 8.7) and customised languages.

Our visual object presentation system, in concert with worksheets provide
an environment suitable for the development of programs as visual, interactive
literature. One piece of the puzzle remains missing however; while the output
created by source code can be visual, interactive and dynamic, source code
itself remains to be mostly static and textual in nature. This shortcoming is

78



addressed by our approach to partially visual programming. As a consequence,
programs within Larch take the form of living, breathing, interactive documents.
By blurring the boundaries between code and the interactive content that it
creates, we support the development of new kinds of programming tools and
environments.

9.2 Limitations

We have not yet determined how a version control system could manage source
code that uses embedded objects, as it no longer takes the form of plain text. A
textual source file with embedded object references — which refer to objects in
an external file — could be handled by extending the comparison and merging
tools to handle the modified format. Alternatively, the references could be stored
in a plain text form, and specially handled and displayed by an embedded object
aware editor. Comparing and merging the contents of the embedded objects
themselves however is a different problem that has yet to be addressed.

It would also be difficult for a programmer using plain text based tools to
work on a code base that contains embedded objects. Using the references as
plain text approach described above is only a partial solution since the program-
mer would be unable to view or interact with the embedded objects, rendering
the code base unreadable.

Our object presentation system is not designed for presenting large amounts
of data; attempting to construct a presentation of millions of objects would
take a considerable amount of time and most likely exhaust the available RAM.
Dedicated data visualisation tool kits such as prefuse [29] are better suited for
such tasks. Indeed, we are considering integrating prefuse with Larch in the
future.

The program visualisation tool (section 8.1.4) and the unit testing tool (sec-
tion 8.1.7) both rely on the editor and the program under development execut-
ing within the same process space (an approach pioneered by Smalltalk [22]),
so that values generated at execution time can be displayed within the editor’s
code pane. In the future, we would like to extend our system so that the editor
and the user’s program can reside in separate processes, so that the program
under development cannot modify the editor’s internal data structures.

A number of design choices made during the development of Larch limit
the scale of projects for which it can be used. The Python language, and
therefore Larch is inherently dynamic; the interactive programming experience
comes at the cost of static tools and analysis, and compile-time error detection.
This precludes the development of large scale static program visualisations and
automated refactoring tools, the likes of which are present in commercial IDEs.

Our system omits some important features, namely search and replace. This
hampers a programmer’s ability to modify and refactor their code. Such features
are not infeasible; their omission is due to our choice of development priorities
during the creation of this prototype.

9.3 Future work

Recent research into canvas based programming environments has yielded sys-

79



tems that allow the user to arrange source code on a canvas, utilising their spa-
tial memory to assist in locating code segments during the development process.
Code Canvas [14] allows a user to spatially arrange files, classes and methods
on a zoom-able canvas, and use visual containers and Photoshop-style layers to
conceptually group them together. Code Bubbles [8] offers a new and innovative
take on the browser interface employed by many IDEs; code segments — namely
classes and methods — are displayed within bubbles. Navigating to other code
segments opens the target segment in a new adjacent bubble, causing the brows-
ing history to take the form of a chain of bubbles in the workspace. The Fluid
source code editor [15] takes an alternative approach; call sites can be expanded
to show the source code of the target method in-line. In the future, we would
like to extend Larch so that it can support free-form canvas based program-
ming environments. Such environments offer a number of exciting possibilities,
especially when considered for use on multi-touch devices.

80



Bibliography

[1] Pharo Open Source Smalltalk. http://www.pharo-project.org/home.

[2] Robert A. Ballance, Susan L. Graham, and Michael L. Van De Vanter. The
pan language-based editing system. ACM Trans. Softw. Eng. Methodol.,
1:95–127, January 1992.

[3] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. Cduce: an
xml-centric general-purpose language. In Proceedings of the eighth ACM
SIGPLAN international conference on Functional programming, ICFP ’03,
pages 51–63. ACM, 2003.

[4] Benjamin E. Birnbaum and Kenneth J. Goldman. Achieving flexibility in
direct-manipulation programming environments by relaxing the edit-time
grammar. In Proceedings of the 2005 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, pages 259–266. IEEE Computer
Society, 2005.

[5] Alan F. Blackwell. SWYN: a visual representation for regular expressions,
pages 245–270. Morgan Kaufmann Publishers Inc., 2001.

[6] Marat Boshernitsan. Harmonia: A flexible framework for constructing
interactive language-based programming tools. Technical report, Berkeley,
CA, USA, 2001.

[7] Gilad Bracha. Newspeak — The Newspeak Programming Language. http:
//newspeaklanguage.org/.

[8] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola, Jr. Code bubbles: a working set-based interface for
code understanding and maintenance. In Proceedings of the 28th interna-
tional conference on Human factors in computing systems, CHI ’10, pages
2503–2512. ACM, 2010.

[9] Steve Burbeck. Applications programming in Smalltalk-80TM: How to use
model-view-controller (MVC). http://st-www.cs.illinois.edu/users/
smarch/st-docs/mvc.html, 1992.

[10] M. M. Burnett, M. J. Baker, C. Bohus, P. Carlson, S. Yang, and P. van
Zee. Scaling up visual programming languages. IEEE Computer, pages
45–54, March 1995.

81

http://www.pharo-project.org/home
http://newspeaklanguage.org/
http://newspeaklanguage.org/
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html


[11] Margaret Burnett, John Atwood, Rebecca Walpole Djang, James Reich-
wein, Herkimer Gottfried, and Sherry Yang. Forms/3: A first-order visual
language to explore the boundaries of the spreadsheet paradigm. Journal
of Functional Programming, 11(02):155–206, 2001.

[12] Vassili Bykov. Hopscotch: Towards user interface composition. Technical
report, Cadence Design Systems. San Jose, CA 95143, 2008.

[13] John Coker. Internals of vortex: The source editor. Technical report,
Berkeley, CA, USA, 1988.

[14] Robert DeLine and Kael Rowan. Code canvas: zooming towards better
development environments. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering - Volume 2, ICSE ’10, pages
207–210. ACM, 2010.

[15] Michael Desmond and Chris Exton. An evaluation of the inline source code
exploration technique. In Psychology of Programming Interest Group 2009,
PPIG’09, 2009.

[16] Django Software Foundation. The Django template language. https://

docs.djangoproject.com/en/1.4/topics/templates/.

[17] Django Software Foundation. The web framework for perfectionists with
deadlines — django. https://www.djangoproject.com/.

[18] ECMA International. ECMA-262: ECMAScript Language Specification.
Third edition.

[19] Andrew D. Eisenberg. Presentation Techniques for More Expressive Pro-
grams. Phd thesis, University of British Columbia, Vancouver, Canada,
2008.

[20] Bryan Ford. Packrat parsing: Simple, powerful, lazy, linear time (func-
tional pearl). In ICFP’02: Proceedings of the seventh ACM SIGPLAN
International Conference on Functional Programming, pages 36–47, 2002.

[21] Bryan Ford. Parsing expression grammars: a recognition-based syntac-
tic foundation. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 111–
122. ACM, 2004.

[22] Adele Goldberg and David Robson. Smalltalk-80 - The Language and its
Implementation. Addison-Wesley, 1983.

[23] Google. Google chrome - get a fast new browser. for pc, mac, and linux.
http://www.google.com/chrome/.

[24] Susan L Graham. Language and document support in software development
environments. Technical report, Darpa Software Technology Meeting, 1992.

[25] T. R. G. Green and M. Petre. When Visual Programs are Harder to Read
than Textual Programs. In Human-Computer Interaction: Tasks and Or-
ganisation, Proceedings ECCE-6 (6th European Conference Cognitive Er-
gonomics), 1992.

82

https://docs.djangoproject.com/en/1.4/topics/templates/
https://docs.djangoproject.com/en/1.4/topics/templates/
https://www.djangoproject.com/
http://www.google.com/chrome/


[26] T. R. G. Green and M. Petre. Usability analysis of visual programming
environments: a ’cognitive dimensions’ framework. Journal of Visual Lan-
guages and Computing, 7:131–174, 1996.

[27] Keith Hanna. A document-centered environment for haskell. In Implemen-
tation and Application of Functional Languages, volume 4015 of Lecture
Notes in Computer Science, pages 196–211. Springer Berlin / Heidelberg,
2006.

[28] R. Heckmann and R Wilhelm. A functional description of tex’s formula
layout. Journal of Functional Programming, 7:451–485, September.

[29] Jeffrey Heer, Stuart K. Card, and James A. Landay. prefuse: a toolkit
for interactive information visualization. In Proceedings of the SIGCHI
conference on Human factors in computing systems, CHI ’05, pages 421–
430. ACM, 2005.

[30] Juha Helminen and Lauri Malmi. Jype - a program visualization and pro-
gramming exercise tool for python. In Proceedings of the 5th international
symposium on Software visualization, SOFTVIS ’10, pages 153–162. ACM,
2010.

[31] Ianthe S. A. Hind. Extending the capabilities of anastasia. Technical report,
Edinburgh, Scotland, UK, 2006.

[32] Microsoft Inc. The Official Site of Visual Studio 2010. http://www.

microsoft.com/visualstudio/en-gb.

[33] Microsoft Inc. XAML Overview (WPF). http://msdn.microsoft.com/

en-us/library/ms752059.aspx.

[34] Jetbrains. Jetbrains :: Meta programming system - language oriented pro-
gramming environment and dsl creation tool. http://www.jetbrains.

com/mps/.

[35] Olov Johansson. Describing live programming using program transforma-
tions and a callstack explicit interpreter. Master’s thesis, Linköping Uni-
versity, 2006.

[36] Tim S Jones. Seamless Interaction Facilities in Structure-Oriented Software
Development Environments. Phd thesis, The University Of Queensland,
Queensland, Australia, 2000.

[37] Donald E. Knuth. Semantics of context-free languages. Mathematical Sys-
tems Theory, 2(2):127–145, 1968.

[38] Donald E. Knuth. Literate programming. Computing Journal, 27:97–111,
May 1984.

[39] Donald E. Knuth. The TeXbook. Addisson Wesley, 1984.

[40] Andrew J. Ko and Brad A. Myers. Citrus: a language and toolkit for
simplifying the creation of structured editors for code and data. In Pro-
ceedings of the 18th annual ACM symposium on User interface software
and technology, UIST ’05, pages 3–12. ACM, 2005.

83

http://www.microsoft.com/visualstudio/en-gb
http://www.microsoft.com/visualstudio/en-gb
http://msdn.microsoft.com/en-us/library/ms752059.aspx
http://msdn.microsoft.com/en-us/library/ms752059.aspx
http://www.jetbrains.com/mps/
http://www.jetbrains.com/mps/


[41] Andrew J. Ko and Brad A. Myers. Barista: An implementation framework
for enabling new tools, interaction techniques and views in code editors.
In Proceedings of the SIGCHI conference on Human Factors in computing
systems, CHI ’06, pages 387–396. ACM, 2006.

[42] Andrew Jensen Ko. Designing a flexible and supportive direct-manipulation
programming environment. In Proceedings of the 2004 IEEE Symposium
on Visual Languages - Human Centric Computing, VLHCC ’04, pages 277–
278. IEEE Computer Society, 2004.

[43] Barbara S Lerner. Contrasting approaches of two environment generator:
The synthesizer generator and pan. Technical report, Amherst, MA, USA,
1993.

[44] Catherine Letondal, Stphane Chatty, W. Greg Philips, Fabien Andr, and
Stphane Conversy. Usability requirements for interaction-oriented develop-
ment tools. In Psychology of Programming Interest Group 2010, PPIG’10,
2010.

[45] V I Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. Soviet Physics-Doklady, 10:707–710, February 1966.
Wikipedia: http://en.wikipedia.org/wiki/Levenshtein_distance.

[46] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn
Eastmond. The scratch programming language and environment. Trans.
Comput. Educ., 10:16:1–16:15, November 2010.

[47] Maplesoft. Math software for engineers, educators, and students. http:

//www.maplesoft.com/.

[48] Vance Maverick. Presentation by Tree Transformation. Phd thesis, Com-
puter Science Division, University of California. Berkeley, CA, 1997.

[49] Sean McDirmid. Living it up with a live programming language. In Pro-
ceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented
programming systems and applications, OOPSLA ’07, pages 623–638. ACM,
2007.

[50] Sean McDirmid. Coding at the speed of touch. In Proceedings of the 10th
SIGPLAN symposium on New ideas, new paradigms, and reflections on
programming and software, ONWARD ’11, pages 61–76. ACM, 2011.

[51] Ethan Vincent Munson. Proteus: An Adaptable Presentation System for a
Software Development and Multimedia Document Environment. Phd thesis,
Computer Science Division, University of California, Berkeley. Berkeley,
CA, 1994.

[52] B. A. Myers. Encapsulating interactive behaviors. In Proceedings of the
SIGCHI conference on Human factors in computing systems: Wings for
the mind, CHI ’89, pages 319–324, New York, NY, USA, 1989. ACM.

[53] Brad A. Myers. Taxonomies of visual programming and program visual-
ization. J. Vis. Lang. Comput., 1:97–123, March 1990.

84

http://en.wikipedia.org/wiki/Levenshtein_distance
http://www.maplesoft.com/
http://www.maplesoft.com/


[54] National Instruments. NI LabVIEW - Improving the productivity of engi-
neers and scientists. http://www.ni.com/labview/.

[55] Nokia. Qt 4.7: Introduction to the QML language. http://doc.qt.nokia.
com/4.7-snapshot/qdeclarativeintroduction.html.

[56] Oracle. Swing (java foundation classes). http://docs.oracle.com/

javase/6/docs/technotes/guides/swing/.

[57] Terence Parr. ANTLRWorks: The ANTLR GUI Development Environ-
ment. http://www.antlr.org/works/.

[58] Fernando Pérez and Brian E. Granger. IPython: a System for Interactive
Scientific Computing. Comput. Sci. Eng., 9(3):21–29, May 2007.

[59] Simon Peyton-Jones and J. Hughes. Haskell 98: A non-struct, purely func-
tional language. http://www.haskell.org/onlinereport/.

[60] Racket. Racket. http://racket-lang.org/.

[61] Sage. Sage: Open Source Mathematics Software. http://www.sagemath.

org/.

[62] Martijn Michiel Schrage. Proxima: A presentation-oriented editor for struc-
tured documents. Phd thesis, University of Utrecht. Utrecht, Netherlands,
2004.

[63] Martijn Michiel Schrage and Johan Jeuring. Xprez: A declarative presen-
tation language for XML. Technical report, Institute of Information and
Computing Sciences, University of Utrecht, The Netherlands, 2003.

[64] Charles Simonyi, Magnus Christerson, and Shane Clifford. Intentional soft-
ware. In Proceedings of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications, OOP-
SLA ’06, pages 451–464. ACM, 2006.

[65] Intentional Software. Intentional software. http://intentsoft.com/.

[66] Intentional Software and Microsoft Corporation. Intentional software at dsl
devcon 2009. http://msdn.microsoft.com/en-us/data/dd727740.aspx,
2009.

[67] J. Stasko, J. Domingue, M. H. Brown, and B. A. Price. Software Visual-
ization. The MIT Press, 1998.

[68] Masato Takeichi, Zhenjiang Hu, Kazuhiko Kakehi, Yasushi Hayashi, Shin
cheng Mu, and Keisuke Nakano. Treecalc: towards programmable struc-
tured documents. In In Japan Society for Software Science and Technology,
2003.

[69] The GTK+ Team. The GTK+ Project. http://www.gtk.org.

[70] The Python Software Foundation. The jython project. http://www.

jython.org.

85

http://www.ni.com/labview/
http://doc.qt.nokia.com/4.7-snapshot/qdeclarativeintroduction.html
http://doc.qt.nokia.com/4.7-snapshot/qdeclarativeintroduction.html
http://docs.oracle.com/javase/6/docs/technotes/guides/swing/
http://docs.oracle.com/javase/6/docs/technotes/guides/swing/
http://www.antlr.org/works/
http://www.haskell.org/onlinereport/
http://racket-lang.org/
http://www.sagemath.org/
http://www.sagemath.org/
http://intentsoft.com/
http://msdn.microsoft.com/en-us/data/dd727740.aspx
http://www.gtk.org
http://www.jython.org
http://www.jython.org


[71] Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, and Manuel Fah-
ndrich. Touchdevelop: programming cloud-connected mobile devices via
touchscreen. In Proceedings of the 10th SIGPLAN symposium on New
ideas, new paradigms, and reflections on programming and software, ON-
WARD ’11, pages 49–60. ACM, 2011.

[72] Just van Rossum and Paul Moore. Pep 302 – new import hooks. http:

//www.python.org/dev/peps/pep-0302/.

[73] Bret Victor. tangle. http://worrydream.com/#!/Tangle.

[74] Bret Victor. Ten brighter ideas. http://worrydream.com/#!

/TenBrighterIdeas.

[75] W3C. Cascading style sheets level 2 revision 1 (css 2.1) specification. http:
//www.w3.org/TR/2009/CR-CSS2-20090908.

[76] W3C. Extensible markup language (xml) 1.1. http://www.w3.org/TR/

2006/REC-xml11-20060816/.

[77] W3C. HTML 5 - W3C Editor’s Draft. http://dev.w3.org/html5/spec.

[78] Alessandro Warth and Ian Piumarta. Ometa: an object-oriented language
for pattern matching. In Proceedings of the 2007 symposium on Dynamic
languages, DLS ’07, pages 11–19. ACM, 2007.

[79] Alessandro Warth, Takashi Yamamiya, Yoshiki Ohshima, and Scott Wal-
lace. Toward a more scalable end-user scripting language. In Proceedings
of the Sixth International Conference on Creating, Connecting and Col-
laborating through Computing (c5 2008), pages 172–178. IEEE Computer
Society, 2008.

[80] Richard C. Waters. Program editors should not abandon text oriented
commands. SIGPLAN Not., 17:39–46, July 1982.

[81] Jim Welsh and Jun Han. Software documents: Concepts and tools. SOFT-
WARE — CONCEPTS AND TOOLS, 15:12–25, 1995.

[82] Brian T. Westphal. The redwood programming environment. Master’s
thesis, University of Nevada. Reno, 2004.

[83] K. N. Whitley. Visual programming languages and the empirical evidence
for and against. Journal of Visual Languages and Computing, 8:109–142,
1996.

[84] Gregory V. Wilson. Extensible programming for the 21st century. ACM
Queue, 2:48–57, 2004.

[85] Wolfram Research Inc. Computable document format. http://www.

wolfram.com/cdf/.

[86] Wolfram Research Inc. Mathematica, technical and scientific software.
http://www.wolfram.com/.

[87] Wolfram Research Inc. Dynamic Interactivity - Wolfram Mathematica Tu-
torial Collection. Wolfram Research Inc., 2008.

86

http://www.python.org/dev/peps/pep-0302/
http://www.python.org/dev/peps/pep-0302/
http://worrydream.com/#!/Tangle
http://worrydream.com/#!/TenBrighterIdeas
http://worrydream.com/#!/TenBrighterIdeas
http://www.w3.org/TR/2009/CR-CSS2-20090908
http://www.w3.org/TR/2009/CR-CSS2-20090908
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://dev.w3.org/html5/spec
http://www.wolfram.com/cdf/
http://www.wolfram.com/cdf/
http://www.wolfram.com/


[88] Wolfram Research Inc. Notebooks and Documents - Wolfram Mathematica
Tutorial Collection. Wolfram Research Inc., 2008.

[89] Takashi Yamamiya, Alessandro Warth, and Ted Kaehler. Active essays
on the web. In C5 ’09: Proceedings of the 2009 Seventh International
Conference on Creating, Connecting and Collaborating through Computing,
pages 3–10. IEEE Computer Society, 2009.

87


	Introduction
	Background
	Presentation systems
	Document mark-up systems
	User interface tool kits
	Combinatorial APIs

	Object presentation
	Model View Controller (MVC) architecture
	Editing environments
	Programming environments

	Structured source code editors
	Syntax directed editors
	Syntax recognising editors

	Active documents
	Live programming environments
	Visual source code extensions
	Visual programming languages
	Domain specific languages
	Canvas based development environments

	Presentation system
	Presentation tree
	Presentation combinators and style sheets
	GUI controls
	Incremental modification
	Event handling
	User input
	Application events

	Structured document support
	Targets, selections and regions
	Caret behaviour
	Editable text elements
	Implementation
	Presentation combinators
	Style sheets

	Comparison to existing work

	Type coercion based object presentation
	Overview
	Implicit type coercion
	Incremental consistency maintenance
	Dynamic incremental computation system
	Live values and functions
	Perspectives
	Functional and compositional approach to GUI development
	Caret behaviour
	Browser navigation; subjects and locations
	Change history
	Clipboard behaviour
	Implementation
	Presentation combinator integration
	Presentation process

	Comparison to related work

	Rich content editing
	Structured source code editing system
	Approach
	Framework
	Implementing a structured source code editor
	Structured source code editors; evaluation
	Comparison to related work

	Rich text editors
	Table editors

	Programming environment
	Python editor
	Python console
	Worksheet active document system
	Building and editing a worksheet
	Viewing a worksheet

	Project system
	Special pages

	Introspection tools
	Data model dragging
	Fragment inspector
	Inspector perspective
	Element tree explorer

	Comparison to related work

	Partially visual programming with embedded objects
	Embedded object protocol
	Performance impact
	Implementation
	Within Larch
	Within other environments

	Creation
	Isolation Serialisation System
	Limitations
	Comparison to related work
	Visual languages and DMPEs
	Visual source code extensions
	Domain specific languages


	Evaluation
	Proof of concept
	Interactive explorable documents; embedded editable values
	Simplified interactive literate programming
	In-line console
	Simple static software visualisation; program trace visualisation tool
	Language extensions and domain specific programming tools
	Visual regular expression editor.
	Table based unit tests
	Live API Documentation

	Programming environment performance
	A discussion of Cognitive Dimensions

	Conclusions
	Discussion
	Visual object presentation
	Programming environment
	Partially visual programming

	Limitations
	Future work


