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Abstract

Dynamic languages are becoming increasingly popular in today’s world. Javascript has be-
come the ubiquitous language for the web browser, and Python and Ruby have become
enormously popular on the server side. As a result efficient execution of these highly dynamic
languages becomes paramount. JIT-compilers have been written for each of these languages
but with mixed results. We present a simple approach to JIT compilation for dynamic lan-
guages (using a trivial dynamic language as working example) to illustrate where the largest
performance bottlenecks lie and which optimizations have the most significant benefit. The
thesis shows that even straightforward JIT compilation can lead to very efficient programs if
some basic properties of a program can be deduced.
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1 Introduction

1.1 Introduction

In the past decades a tremendous amount effort has been put into improvements of compiler
technology in terms of intelligence (creating more efficient code) and correctness (finding more
flaws at compile time, refusal to compile ambiguous code). However, since the appearance
of the programming languages Python and Lua in the early 90ies this started to change.
Dynamically typed and high level programming languages quickly gained traction in academia
and the commercial sector.

The defining characteristic of dynamic programming languages is that the program code
is evaluated bit by bit as the program is running. This offers incredible flexibility: classes and
functions can be created on the go, existing functions can be redefined depending on program
conditions and so on. This flexibility comes at a cost: the dynamic programs are generally an
order of magnitude slower than their statically typed and less expressive counterparts. This
is partially because the flexibility provided by dynamic languages have an innate cost and
partially because the dynamic languages are interpreted by simple virtual machines.

Interestingly, many programs written in dynamic languages are not highly dynamic in
nature, so a even a simple compiler ought be able outperform a mature virtual machine by
quite a margin. This is a task suited for just-in-time compilation. A just-in-time compiler
uses a combination of static optimization strategies and information taken from the program
as it is being evaluated to generate (equivalent) optimized code with as little overhead as
possible.

1.2 Research questions

Investigate the performance bottlenecks of dynamic languages and investigate how a JIT-
compiler can reduce or eliminate these bottlenecks.

1. Measure where the performance bottlenecks exist in straightforward virtual machines.

2. Inspect the effectiveness of straightforward JIT-compilation.

3. Investigate how the performance of a straightforward JIT-compiler can be improved.

4. Determine whether the performance gains of the JIT-compiler are worth the effort and
increased implementation complexity.
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1.3 Motivation

The design and implementation of virtual machines has been exhaustively investigated. A
virtual machine prototype for a language can be built in a matter of days, if not hours. These
virtual machines may be good candidates for a Just-In-Time compiler. With the aid of a
compiler such a programming language may become viable for domains formerly reserved for
efficient compiled languages.

The steps needed to make this transition are not self-evident. The JIT-compiler

• will need to generate assembly code which in turn will have to be transformed into
machine code,

• needs to sensibly compile the virtual machine bytecode into suitable assembly code, and

• the JIT-compiler has to make sensible optimizations such that it does not have the same
bottlenecks the virtual machine used to have.

These steps all come with numerous challenges. This aims to clarify some of the design
decisions that need to be made in order to construct a Just-In-Time compiler and it provides
numerous performance comparisons between a naive virtual machines and a straightforward
Just-In-Time compiler.

2



2 Preliminaries

2.1 Concepts

This section defines and describes the concepts that will play a role in later sections. This
document assumes a basic knowledge of virtual machines and compilers. No extensive prior
knowledge about JIT-compilation techniques is assumed.

2.2 Virtual Machine

If a software written in a programming language must run on different platforms or when
the programming language must make runtime guarantees an abstraction layer is needed in
between the programming language and the target platform. This abstraction layer is called
a virtual machine.

2.3 JIT-Compilation

Conventional compilers operate ahead-of-time. First a program is written by a programmer,
then the compiler transforms the program into an executable binary and this binary is then
executed. A Just-In-Time (JIT) compiler operates alongside the program it compiles. Con-
sequently a JIT compiler is very constrained in terms of the memory and time it may use.
The compilation overhead has to be earned back by the optimizations performed, which leads
to.

2.4 String Interning

A dynamic language deals predominantly with strings and string comparisons are ordinarily
slow operations. String interning is a technique that allows string equality checks in O(1) time.
The runtime environment has a global dictionary for storage of all interned strings. When
a new string is interned the runtime environment will check if it occurs in the dictionary
already, and if so return a pointer to that string. Otherwise an immutable copy of the string
is added to the dictionary. Because every interned string is unique in memory an equality
test between interned strings can now be accomplished via comparison of the pointers of the
interned strings. This technique is used by the Matz Ruby interpreter1 and by the ATerm
Library[7].

2.5 Bytecode-Compiler

A bytecode compiler takes an Abstract Syntax Tree (AST) as supplied by the parser and
compiles it into a stream of bytecode instructions. The bytecode is typically a cross platform
high level opcode. To illustrate: the expression "3 + 5 / 2" may be compiled into the
bytecode PUSH 3; PUSH 5; PUSH 2; DIV; ADD; suitable for evaluation by a stack machine.
A fat bytecode is a bytecode with a substantial amount of functionality. For instance an
instruction that does a method lookup or an instruction that allocates and initializes a data
structure are considered fat. An instruction is considered lean when it can be implemented
with a few machine code instructions, e.g. the bytecode PUSH2. Simple virtual machines

1Interned strings are known as Symbols in Ruby parlance
2If the PUSH instruction has to check for available stack space and relocate if no space is available the stack

it can no longer be considered lean.
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tend to use fat high level bytecodes for simplicity and efficiency. Fat bytecodes are more
efficient because of the reduced overhead in opcode dispatch and because the compiler of the
virtual machine itself can more easily optimize fat instructions. On the other hand, when
(JIT)-compiling into native code lean instructions can be optimized more efficiently.

2.6 Opcode Dispatch

A virtual machine executes a program by evaluating the bytecode emitted by the bytecode-
compiler one by one. A simple virtual machine may use a switch statement or cascading
if-else statements for evaluation of the bytecode instructions. A slightly more efficient virtual
machine may dispatch the instructions via a dispatch table. The method of mapping an
instruction to the virtual machine logic that evaluates the instruction is known as Opcode
Dispatch. There is no equivalent of Opcode Dispatch for a JIT-compiled function; there is no
need for it.

2.7 Virtual machine constraints

In a dynamic language the runtime environment must know at least the type of every variable
in the program at any point in time. This is not possible in a language like C where the type
information is lost during compilation time. There are always conflicting trade-offs between
memory and CPU usage, between complexity and efficiency. A C compiler is allowed to apply
drastic transformations to the source code to create faster executable, a JIT-compiler for a
dynamic language may not.

Most user defined objects primarily serve to make the program code more readable than
the purely procedural counterpart, to decrease coupling between components, to explicitly
define an interface and to encapsulate the implementation details. These are all high level
concerns and on this level of abstraction slight inefficiencies in the virtual machine are unim-
portant. However, modern dynamic languages follow the ”Everything is an object” model
from Smalltalk[14]. This means that programmers must be able to query any object, whether
it is a high level user defined object or something as primitive as an integer literal.

2.8 Class/Instance

In a dynamic language a class is a type and a class has an interface. The term Object usually
refers to an instance of a class. The class interface defines which methods are known to that
class. This interface may not be fixed: methods may be added to and removed from a class
at any time during execution of the program. A function-object is an object that contains a
function so that it may be assigned to a variable, stored in a container, and so forth.

2.9 Functions/Methods

A function is a procedure that belongs to a namespace but is not part of a specific class
hierarchy. A method is a procedure that belongs to a class. Class-methods are methods that
belong to the class itself, ordinary methods belong to an instance of a class. Methods are
polymorphic, functions are not.

4



2.10 Virtual Function

Statically compiled languages such as C++ implement polymorphism by means of virtual
functions. A virtual function is a function that has multiple implementations in different
classes in a class hierarchy. Which one of the implementations is invoked does not depend on
the arguments of the function (that would be overloading) but on the type of the instance on
which the function is invoked.

2.11 Messages

A method of an instance of a class is called by means of a message. A message, like a function,
has a name and a number of arguments. When a message is dispatched to an object a special
function is called. Typically, this function will check if a method exists with the same name
as the message and of so invoke that method and throw an exception otherwise.

2.12 Static Single Assignment (SSA)

Single Static Assignment is a form of a program fragment where every variable is assigned
exactly once. A program fragment can be transformed into SSA form by splitting variables
into multiple versions, one for each assignment. A program fragment in SSA form simplifies
optimization techniques such as constant propagation, register allocation and dead code elim-
ination. It also simplifies type analysis since the type of every variable is immutable in SSA
form.

5



3 Performance Observations in Dynamic Languages

3.1 Introduction

In this chapter the performance characteristics of four multiple virtual machines are discussed.
Established benchmarks are used to give an indication of the relative performance of these
virtual machines. The source code of the virtual machines is then inspected to determine
which elements of the design are shared by efficient and inefficient virtual machines. By
bringing the performance benchmarks and the differences in virtual machine design together
we can distinguish between meaningful and inconsequential attributes of virtual machine
design with regard to performance.

3.2 Languages

In order to get the most meaningful results two very similar virtual machines are picked
which are, according to their respective authors, not written with performance as a primary
goal. These are the virtual machines for Python and Ruby. Both languages are dynamic
in nature and have very similar semantics. The virtual machines are therefore expected to
be regular virtual machines with very similar designs, both on the abstract levels and down
to the implementation details. Yet, according to the Alioth Language benchmarks Python
outperforms Ruby on average by a factor of five. Note that these are mostly algorithmic and
numerical benchmarks (it includes a mandelbrot and n-body simulation) and are therefore
not particularly representative of the average Python or Ruby program. Nonetheless, Python
consistently outperforms Ruby by a very significant margin and given that CPU-bound pro-
grams are atypical in the first place the benchmarks do demonstrate there is a real difference
in the virtual machines themselves.

The third virtual machine covered is Lua. Lua is also a flexible dynamically typed lan-
guage, mostly used for embedded software and as a module embedded in a statically compiled
language such as C++. In contrast to the design of Python and Ruby Lua has been de-
signed from the ground up with performance characteristics and a small memory footprint in
mind[13]. According to the same benchmarks cited above Lua outperforms Ruby on average
by a factor of nine over 9 numeric and algorithmic benchmarks and Python by less than a
factor of two.

The fourth and final virtual machine is OCaml. Since OCaml is in the ML family of
languages much more information is available to the runtime environment. OCaml also has a
compiler, which generates efficient code that reaches at least 50% of the performance of the
equivalent C++ program3. OCaml is unusual in the sense that it has both a virtual machine
and a compiler even though it is statically typed.

3.3 Analysis

The analysis of Lua is relatively straightforward since it has an explicit document outlining
the design philosophy and the motivations thereof. For the other languages observations are
based on the implementation (source code) of the virtual machines themselves and where
applicable, the documentation.

Although Python, Lua and to a lesser extent Ruby all value simplicity and straightforward
implementation the difference in code size of the respective language environments is immense.

3According to Xavier Leroy, the primary developer of the OCaml compiler
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kLoc VM kLoc Std Libraries - C kLoc Std Libraries

Python 2.4 166 137 202
Ruby 1.8 65 68 98
Lua 5.1 7 3 0
OCaml 3.1 15 15 137

Table 1: Language complexity measured in lines of code

Table 1 shows the difference in language size as measured in lines of code, excluding empty
lines and comments4. We acknowledge that ”lines of code” is not an accurate metric of project
complexity, but it can be indicative of complexity.

In the table the first column refers to the lines of C code of the virtual machine. The second
column refers to the number of lines of C code of the core libraries (basic data structures and
algorithms). The third column refers to the library code written in the language itself. The
unit tests, where applicable, do not count toward any of the totals.

3.3.1 The Python Virtual Machine

Python is a classical stack based virtual machine. A simple compiler turns the AST represen-
tation of the source code into bytecode. Unreachable objects are automatically freed using
reference counting.

As shown in table 1 Python is the biggest language by far. Python’s slogan is ”Bat-
teries Included” and it shows. Additionally, most of the language is implemented in C for
performance reasons.

3.3.2 The Ruby Virtual Machine

Like Python, Ruby is a stack based virtual machine. It uses mark and sweep garbage collec-
tion. The virtual machine does not cleanly distinguish between the parser, abstract syntax
tree and the compiler. The abstract syntax tree undergoes a number of transformations and
is then directly evaluated. This was probably a mistake and a virtual machine for Ruby
is under development that uses a bytecode layer for performance and cleaner separation of
concerns.

3.3.3 The Lua Virtual Machine

Lua 5.0 is tiny compared to the previous two virtual machines. There is only one numeric type
(double-precision floating point) and only a 35 different instructions. The virtual machine is
also designed with embedability and portability in mind, and this is evident from its design.
Since two virtual machines have already been covered in detail only meaningful deviations
from the standard approach will be mentioned here.

Lua is noteworthy because of its minimalist approach. There is only a single numeric type
(a double-precision floating point), there are only 35 instructions and there is a single data
structure named a table (dictionary). Also unlike the other virtual machines Lua is a register
machine. Earlier versions of Lua were a stack machines, and the transition to a register based
approach was motivated primary by performance[13].

4Data was generated using David A. Wheeler’s ’SLOCCount’.
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3.3.4 The OCaml Virtual Machine

OCaml is a statically typed language with type inference that belongs to the ML family of
languages. It consists of an interpreter and an optimizing compiler which generates code that
is competitive with C in terms of performance and memory usage5. The virtual machine
consists is of only 15000 lines of C code: the bare minimum needed to evaluate the program
that produces the optimizing compiler (written in ML), which is then executed to create an
optimized version of itself. The OCaml compiler cleanly distinguishes between the different
modules: parser, compiler, interpreter, code generator.

3.4 Observations

Based on the source code and design documents of the programming languages the following
observations are made:

• Type Checking. The bytecode compilers of Python, Ruby and Lua can make very few
optimizations based on type because the type information is not explicitly stated in the
source code and the virtual machines make no attempt to guess or derive what the types
of expressions will be. Consequently, every operation on an object requires a number of
runtime checks. Especially for basic numerical algorithms verifying whether the objects
have the expected types is operationally much more difficult than the mathematical
operation itself.

• Opcode Dispatch. It turns out that the choice of opcodes and the granularity of opcodes
has a meaningful influence on the design of a virtual machine. The virtual machines have
few high-level (fat) opcodes to allow for simpler and more efficient dispatch mechanisms.
Additionally, a program will have a shorter bytecode listing so fewer dispatches are
necessary during evaluation of the program. The opposite approach of lean opcodes
(that contain less functionality) can be combined into less redundant and therefore more
efficient code. The virtual machines all favor a fat-opcode approach which indicates that
either the overhead of opcode dispatch itself is still very significant (the extra effort
required to dispatch many lean opcodes outweighs their benefit) or the complexity of
lean-opcode virtual machines is (deemed) to outweigh the benefits.

• Dictionary access. Dictionary lookups are frequent and lookup results are not cached.
Given that function and method addresses very rarely change there may be room for
improvement here. Python accesses local variables via an ordinary array instead of
via a dictionary. This optimization confirms that dictionary lookups can indeed be a
significant factor in performance. Method calls seem especially expensive, given that
the chain of parent classes has to be traversed in order to locate the method in question.

• Numeric operations. Ruby and Python globally use arbitrary precision integers. To
partially mitigate this problem both virtual machines repeatedly check whether an in-
teger is within a certain small integer bound, and if so, the integer is treated as such.
Otherwise, the integer is quietly promoted and the less efficient (but mathematically
sound) arbitrary integer implementation is used instead. Here too the observation holds
that edge case where an integer needs to be promoted occurs only very rarely yet (and

5According to the Alioth Language Shootout
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often can never occur) yet the assertions are made multiple times per statement. The
frequency with which numerical operations occur in any program imply even small
improvements may be worthwhile. Lua has only one numeric type: double precision
floating point. This makes the virtual machine significantly less complex and no case
analysis is needed within an opcode to distinguish between the numeric types of the
operands.

• VM complexity. The Python, Ruby and OCaml environments comprise over hundreds
of thousands of lines of code. Python and Ruby deliberately started out as simple
languages but they have grown over the years into the large projects they are today.
OCaml has grown in complexity also, but because most of the OCaml compiler and
standard library is written in OCaml (which is more expressive and less verbose than C)
the complexity is relatively low. The virtual machine has an excellent straightforward
implementation because it does not need to break any performance records. Lua of
course has the simplest implementation of all.

3.5 Conclusion

Given the observations described above we conclude that a number of characteristics in pop-
ular virtual machines are likely to have a significant adverse affect on performance. However,
much of the overhead is inherent to the virtual machine approach. Register and stack based
machines suffer from the dispatch overhead and excessive runtime assertions. OCaml is sig-
nificantly faster and eliminates both problems but it can only do so because of the strict type
inference. A just-in-time compiler can make all sorts of optimizations contextually, and can
also (trivially) eliminate opcode dispatch overhead and other virtual machine inefficiencies.

The next chapter covers just-in-time compilation techniques and which of those techniques
look most promising as a solution to the aforementioned problems.
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Figure 1:
Optimizing Compiler Design vs Incremental Optimizing JIT Compiler

4 Known Approaches to JIT Compiler Design

4.1 Overview

The purpose of a just-in-time compiler is to improve the performance or memory usage of a
program. Like a conventional ahead-of-time compiler a JIT compiler transforms the Abstract
Syntax Tree (AST) of the program into machine code. When this compilation phase happens
depends on the type of JIT compiler.

• incremental JIT compilation

• hotspot based JIT compilation

• inference based JIT compilation

• tracing JIT compilation

4.1.1 Incremental JIT compilation

The first compilation strategy is incremental JIT compilation. The first time a function
or method is called the JIT-compiler will interrupt the execution of the program and JIT-
compile the a function or method in question. Because the compilation happens Just-In-Time
some optimizations become possible. For instance, function can be JIT-compiled multiple
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times to specialize on the function parameters or a function can be compiled with other
assumptions in mind, such as ”all integers are small” or ”objects are non-null”. If one of
these assumptions is violated (this has to be verified at runtime by means of assertions) the
program will transparently fall back to a less efficient version of the same function that makes
no assumptions about variables and types.

This compilation strategy has a number of desirable characteristics. It is very efficient
and it can completely replace a bytecode interpreter. The implementation is also reasonably
straightforward. In later chapters we will show that the implementation of a simple incre-
mental JIT compiler is not substantially more difficult than the implementation of a bytecode
interpreter for the same language.

4.1.2 Hotspot JIT compilation

The second compilation strategy is Hotspot based JIT compilation, first used by the Java
Hotspot compiler. Initially all code is interpreted by a virtual machine (cold code). The
virtual machine keeps track of system resources used by the user program (memory/cpu).
The functions that turn out to be the most resource intensive are then targeted for JIT-
compilation. This approach is more complex than straightforward Incremental JIT Com-
pilation because in addition to a JIT compiler a semantically equivalent virtual machine is
needed. The JIT compiler can afford to spend more time on optimization of a function when
it is known that the function is a performance bottleneck. In practice it is difficult to discover
good heuristics that determine whether functions are worthwhile targets for optimization.
Since functions are individually targeted for optimization a HotSpot compiler has no more
context information than an Incremental JIT compiler.

How effective a JIT compiler can be when optimizing at the function level depends on
the information the programming language makes available to the compiler. For instance,
if the programming language is (mostly) statically typed and if classes and types cannot be
extended or manipulated at runtime meaningful performance gains can be made: method
calls can be resolved ahead of time, primitives can be unboxed and so on. Early versions of
the Java HotSpot compiler achieved significant performance improvements in this manner.
On the other hand, if a programming is highly dynamic the possibilities for optimization are
very limited. The JIT-compiler can make assumptions about the types of expressions and
make optimizations based on those assumptions.

4.1.3 Inference Based JIT compilation

The lack of exact type information is a significant problem for efficient JIT compilation. For
instance, mathematical operations cannot be optimized if the compiler is not aware which
expressions have numeric types.

A method is JIT compiled the first time it is invoked. At that time some exact type
information is available: the types of the function arguments, the types of all global variables,
types of all member variables of the class and the types of all literals in the body of the
method. An inference based JIT compiler uses the available type information to predict the
types of expressions in the body of the method. These type assumptions are then used as a
basis for further performance optimizations. Type assertions are inserted into the generated
code for each assumption made by the inference engine. When a type assertion fails during the
evaluation of the optimized code the JIT-compiler may attempt to compile the method again
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given this new type information. Alternatively, execution may continue with the original
unoptimized code. A heuristic is used to determine which of these two options is taken.

The underlying assumption is that as long as variables in a dynamic program are rel-
atively stable and that straightforward type inference therefore yields mostly correct type
assumptions. Practical issues, implementation and results are described in Chapter 10.

4.1.4 Trace Based JIT compilation

In a dynamic language every variable references an object and interactions with objects
happen via messages. So even the most simple and straightforward program statements touch
multiple methods. This makes optimizations on the function or method level ineffective. A
Trace Based JIT Compiler optimizes a code path that may span multiple functions and
methods. By carrying the knowledge about variables between statements on the code path a
tracing JIT-compiler can be much more effective[9].

A Trace Based compiler goes through multiple stages:

1. incremental bytecode or JIT compilation,

2. tracing a hot code path, and

3. JIT-compiling the trace using the collected information.

A suitable start point (also known as a trace anchor) for a program trace is the start of a
hot loop construct. This can be accomplished by adding a counter before every upward jump
in the generated code. If a jump counter exceeds a predetermined number the corresponding
loop is considered hot and the tracing process will commence. The end of a trace is simply
the end of the loop, i.e. the instruction following the upward jump.

The JIT compiler will now recompile the function such that trace information is collected
at every step. For every assignment the type of the variable is recorded. For every method
invocation the address of the method is recorded. Since only a single iteration of the loop is
needed to collect the trace information the JIT-compiler can greedily collect any information
it might need. Methods that are invoked during the tracing phase are also recompiled for
trace recording. This collection and recompilation process continues recursively until a single
iteration of the original loop has been completed. Branches that occur on the trace path are
replaced by guards in the optimized code. When a guard fails the trace ends and execution
continues on the original (less optimized) code.

A single-entry multiple-exit trace tree[12] can be constructed that connects multiple traces
at branch points in the code. This allows branches to occur within hot code paths without
leaving trace-optimized paths. When a program contains a nested loop the most näıve ap-
proach will not work well. The inner loop will be trace-optimized first. The outer loop will
then be considered for trace optimization but a single iteration of the outer loop may requires
evaluation of the inner loop. The inner loop may have a complex trace tree and for every path
through the trace tree a new trace has to be created in the trace tree of the outer loop. This is
a form of unintended tail duplication[12]. The TraceMonkey Javascript JIT Compiler solves
this problem by recording nested trace trees. When an inner loop is located the compiler will
search for an existing trace tree for that loop and call that trace tree instead.
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4.2 Related Work

This section covers related work and alternative approaches to improve the performance and
correctness of dynamic programming languages.

4.2.1 Localized Type Inference of Atomic Types in Python

B. Cannon[8] investigated to the implications of adding type inference to Python of atomic
(primitive) types. The idea is to add type-specific bytecodes to Python. These type-specific
bytecodes do not use any type checks during runtime. A type inference algorithm is used
to determine where these type-specific bytecodes can be used instead of the existing type-
agnostic ones.

Although the type inference algorithm is able to detect many places where type-safe
bytecodes can be used, no significant performance benefit has been achieved. The author
concludes that a 1% performance boost is not worth the additional complexity to the Python
compiler.

The meager performance boost may be explained by the significant amount of bookkeeping
involved with every Python bytecode. The runtime environment has to do a long jump to the
opcode functionality, check for null references, check for over and underflows for integer math,
and dictionary lookups are needed for every function call or member variable access. These
are expensive operations compared to a type assertion that consists of a pointer comparison.

4.2.2 Static Type Inference for Ruby

In the paper ”Static Type Inference for Ruby”[11] Furr et al investigate whether Ruby pro-
grams can be statically type-checked to provide early errors and to aid documentation (by
providing typed function signatures). A tool DRuby is created based on static type inference,
aided by type annotations where necessary to verify the type-safety of Ruby programs. These
type annotations are checked at run-time, so the combination of the static and run-time checks
deliver strict type guarantees. Because of the highly dynamic nature of Ruby, this system is
not flawless: both false positives and false negatives happen on occasion.

The paper concludes that many Ruby programs can be type-inferred and that by doing so
many of the advantages of statically typed languages can be brought to dynamic languages.

4.2.3 Psycho JIT Compiler

The Psycho just-in-time compiler for Python infers from the values your program manipulates
some restrictions about the variables. For example, variables always containing an integer
value, or a list of strings of length 1, or a tuple whose first item is zero. Using these constraints,
more efficient machine code can be emitted.

Psycho’s biggest advantage is that it can be used with existing Python code without any
modification. A single function call is sufficient to tell Psycho which functions to optimize.
If the just-in-time specialized code delivers a significant performance improvement the pro-
grammer’s goal has been reached. If, on the other hand, the performance improvement is
insufficient the performance-critical code can then be written as a C module. Psycho excels
at improving the performance of numerical algorithms (where 100x improvements are pos-
sible), but is mostly ineffective at optimizing more general purpose Python code. Because
Psycho generates multiple specializations at runtime, based on the types of the variables in
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the program fragment, the just-in-time compiler has to use a significant amount of memory.
A second (minor) downside is that because Psycho optimizes locally no optimization attempts
can be made across program fragments.

4.2.4 Starkiller

The Starkiller[19] project (”A static Type Inferencer and Compiler for Python”) converts
Python programs to semantically equivalent C++ programs, using type inference (Agesen’s
Cartesian Product Algorithm). The motivation for the Starkiller project is threefold: (1) to
bring the performance of Python closer to the level of C++ and (2) to statically verify type
correctness in Python programs, to aid debugging and reliability of Python software and (3)
to make Python more accessible for programmers who are not used to dynamic languages.

The author M. Salib observes that without comprehensive Type Inference no substantial
performance gains can be made (the other work covered in the previous sections confirms
this). In order for this approach to work Python programs must adhere to a number of
constraints. The use of eval is prohibited, as is the dynamic redefinition of class types.
The Starkiller compiler also deviates from Python’s language specification in some respects.
Register-sized integers in Python are silently promoted to arbitrary-precision integers on
overflow, but Starkiller asks the programmer to pick between the two types of integers.

Starkiller reports substantial performance improvements for micro-benchmark of Fibonacci
and factorial computations, but no benchmarks have been documented for more complex
programs. M. Salib mentions that benchmarks like this are ”as favorable to Starkiller as
possible”.

4.2.5 TraceMonkey

The TraceMonkey[12] JIT compiler for Javascript takes a trace-based approach to optimiza-
tion of highly dynamic code. Frequently executed loop traces are identified at runtime. These
hot traces are then specialized for the actual dynamic types recorded during the first evalu-
ation of the loop body. Trace trees of different specializations are constructed to maximize
the time spent in optimized machine code.

TraceMonkey improves the performance of some standard Javascript benchmarks by 10x
compared to the baseline interpreter SpiderMonkey[18]. Compared to the modern optimizing
Javascript compilers SquirrelFish Extreme[24] and Chrome V8[5] the TraceMonkey compiler
outperforms the others in 9 of 26 benchmarks compared to the baseline interpreter. Programs
that are amenable to tracing have reached speedups of 2x to 20x. The trace recording and
compilation phases currently take considerable processing time and the authors believe that
substantial improvements can be made in that area.

4.3 Conclusion

There are at least four different approaches to JIT-compilation for dynamic languages: in-
cremental JIT compilation, inference based JIT compilation, hotspot based JIT compilation
and trace based JIT compilation.

Trace based JIT compilation strategies, such as those used by TraceMonkey, can lead to
very good results. Unfortunately, it is the most complex of the compilation strategies. For
trace based compilation the runtime environment has to have an efficient interpreter, the
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capability to record traces and the ability to seamlessly jump between the trace-optimized
code and the virtual machine. This kind complexity is generally undesirable.

A Hotspot based JIT compiler also requires a virtual machine for the ordinary evaluation
of code and it depends to a large extent on good heuristics that determine which methods
deserve optimization and which do not. This is more suited for a statically typed language
such as Java with long running processes (so that it may eventually become efficient) than
for a very dynamic language without readily available type information.

This leaves incremental- and inference-based approaches to JIT compilation.
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5 Conceptual Prototype JIT-Compiler

5.1 Introduction

In order to build a JIT-compiler that generates efficient code a performance baseline is useful.
In other words: what kind of performance can be expected from a trivial compiler that
naively translates bytecode into machine code? We should expect that a naive compiler
yields significantly faster code than the equivalent virtual machine counterpart. This is what
this chapter sets out to determine.

First a trivial CPU-bound algorithm is chosen as the guiding benchmark, in this case the
canonical recursive Fibonacci function. It goes without saying that a Fibonacci calculation
is not representative of programs written in dynamic languages. The program is very short,
highly recursive, mathematical in nature and deliberately inefficient. Typical programs are
none of these things. However, in order for a recursive Fibonacci function to execute efficiently
the language has to have efficient integer math, efficient method calls and no other substantial
overhead, which are necessary but not sufficient conditions for high performance.

First the algorithm is implemented in C. The C version will set the upper bound on
the expected performance. Subsequently the algorithm is executed on a number of virtual
machines (Ruby, Python, Lua), to determine the lower bound on the expected performance.
A lower bound is needed because a JIT-compiler must at least outperform bytecode based
virtual machines and naive interpreters.

Although these lower and upper bounds are reasonable, they do not truly represent the
difference in language efficiency since the dynamic languages do substantially more (useful)
work. In order to compensate for this effect a trivial virtual machine will be created that is
functionally equivalent to the compiler, but has the inefficiencies of opcode dispatch and a
bytecode layer. This should indicate to which parts of a virtual machine the execution time
can be attributed.

5.2 Algorithm in C

Listing 1: Algorithm in C

1 int f i b ( int n) {
i f (n < 2) return n ;

3 return f i b (n − 1) + f i b (n − 2 ) ;
}

5
int main ( int argc , char∗∗ argv ) {

7 int s = 0 ;
for ( int i = 0 ; i < 30 ; i++) {

9 s += f i b ( i ) ;
}

11 p r i n t f ( ”%d\n” , s ) ;
}

The C version of the Fibonacci sum program takes 18 milliseconds to execute. The 18ms
needed by C gives us an upper bound on the efficiency that can be (realistically) attained
with a JIT-compiler. For comparison, CPython takes over 1.5 seconds and Ruby needs over
6 seconds for the same algorithm. So Ruby is over two hundred times slower. See table 3 at
the end of the chapter for details.
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5.3 Algorithm in C with function lookup

Listing 2: Algorithm in C with function lookup

std : : map<std : : s t r i ng , void∗> g f u n c t i o n s ;
2 typedef int (∗ f np t r ) ( int ) ;

4 void∗ g e t f u n c t i o n ( const char∗ name) {
std : : map<std : : s t r i ng , void∗> : : c o n s t i t e r a t o r i t ;

6 i t = g f u n c t i o n s . f i n d ( std : : s t r i n g (name ) ) ;
i f ( i t != g f u n c t i o n s . end ( ) ) return i t−>second ;

8 else return NULL;
}

10
int f i b ( int n) {

12 i f (n < 2) return n ;
fnpt r p1 = ( fnpt r ) g e t f u n c t i o n ( ” f i b ” ) ;

14 fnpt r p2 = ( fnpt r ) g e t f u n c t i o n ( ” f i b ” ) ;
i f ( p1 && p2 ) return p1 (n − 1) + p2 (n − 2 ) ;

16 else throw std : : s t r i n g ( ”No such func t i on : f i b ” ) ;
}

18
int main ( int argc , char∗∗ argv ) {

20 g f u n c t i o n s . i n s e r t ( std : : make pair ( ” f i b ” , ( void ∗) f i b ) ) ;
int s = 0 ;

22 for ( int i = 0 ; i < 30 ; i++) {
f np t r p = ( fnpt r ) g e t f u n c t i o n ( ” f i b ” ) ;

24 i f (p) s += p( i ) ;
else throw std : : s t r i n g ( ”No such func t i on : f i b ” ) ;

26 }
p r i n t f ( ”%d\n” , s ) ;

28 }

Dynamic languages call functions by name via a dictionary lookup. Since functions and
methods can be redefined at runtime virtual machines generally have to retrieve the address
of the function every time it is called. This process can be simulated in C by storing the
function pointer in a dictionary. The std::map dictionary is part of the C++ Standard
Library and is implemented with a red-black tree. The dictionary is balanced and stable6,
and has O(lg(N)) lookup cost.

By dynamically retrieving the Fibonacci function in the inner loop the computation time
increases significantly: it now takes 950 milliseconds for the answer to return. The std::map

declared on line 1 is a dictionary that maps strings to function pointers. It is noteworthy
that these dictionary lookups represent at least 900ms out of the 1.5 seconds Python needs
to run the algorithm. The remaining 600ms are expected to be overhead in opcode dispatch,
arbitrary precision integer arithmetic, and other bookkeeping. In the next section a trivial
bytecode based virtual machine is used to test this hypothesis.

6Stable: dictionary items are not moved in memory when mutating the dictionary: a pointer to an item in
the dictionary remains valid until the item is removed from the dictionary.
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5.4 Algorithm via Bytecode Interpreter

A stack based virtual machine consists of: a set of instructions, a stack and a number of
registers. A virtual machine that is capable of executing the recursive Fibonacci algorithm
is given in this section. Emphasis lies on simplicity: the virtual machine is only 20 lines of
C++ code long.

5.4.1 Instruction Set

Instructions may have up to one argument. The ADD uses the accumulator and the top of the
stack, whereas ADD-C uses the accumulator and an embedded integer. Instructions with an
embedded argument end by convention with a letter that denotes the type of the argument.
The postfix S denotes a string constant and C an constant integer. The following instructions
are defined:

POP Takes an argument from the stack and places it into the accumulator.
PUSH Push the value of the accumulator onto the stack.
SWAP Swap the topmost and second topmost values on the stack.
LT-C x Unless the accumulator is smaller than the given constant

skip the next instruction.
INT-C x Assign x to the accumulator.
ADD Pop a value from the stack and add it to the accumulator.
ADD-C x Add the given constant to the accumulator.
CALL-S x Lookup the function by identified by the given constant. Run it.
RET Return from the function.

5.4.2 State space

The virtual machine has a single register: the accumulator. The accumulator is used as an
implicit argument to every instruction. See the sidebar for the importance of an accumulator
register. The following notation is used to represent the state of the stack (topmost element
on the left):

[ 1 | 2 | 3 | . . . ]

The stack, accumulator, instruction pointer and the call stack (implicit) comprise the
entire statespace of the virtual machine.
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5.4.3 The algorithm

The recursive Fibbonacci function can be implemented with 8 instructions described above
in the following manner:

LT-C 2; RET Return if the accumulator (the argument) is less than 2.
PUSH Push the accumulator onto the stack [ n | . . . ].
ADD-C -1 Subtract 1 from the accumulator.
CALL-S "fib"; PUSH Call fib(n− 1) and push the result onto the stack.
SWAP Stack [ fib(n− 1) | n | n | . . . ] becomes [ n | fib(n− 1) | n | . . . ].
POP; ADD-C -2 Pop n from the stack and assign n− 2 to the accumulator.
CALL-S "fib" Call fib(n− 2), the stack becomes [ fib(n− 1) | n | . . . ].
ADD Accumulator is now fib(n− 2), add fib(n− 1) from the stack.
RET The accumulator is now fib(n) and the stack is clean. Return.

The outer loop computes the sum of the first N Fibbonacci numbers.

LT-C 1; RET Return if the accumulator i is less than 1.
PUSH Push i onto the stack [ i | . . . ].
CALL-S "fib"; PUSH Call fib(i) and push result. Stack [ fib(i) | i | . . . ]
SWAP Stack [ fib(i) | i | . . . ] becomes [ i | fib(i) | . . . ]
POP; ADD-C -1 Assign i− 1 to accumulator, [ fib(i) | . . . ].
CALL-S "loop" Call loop(i− 1). Stack [ fib(i) | . . . ].
ADD; RET Return loop(i− 1) + loop(i). Stack is clean.

The implementation is now a straightforward exercise. The virtual machine iterates over
the instructions of algorithm and evaluates them according to the definitions of the instruc-
tions given earlier.

5.4.4 Performance

The complete program listing of the stack based virtual machine is shown on the next page:
Listing 3. It computes the Fibonacci sum consistently in a little under 1.5 seconds. Inter-
estingly, this almost identical to the time needed by the equivalent Python program. Recall
that the previous implementation in C with a dictionary for function lookups needed a little
under 1 second to complete.
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Listing 3: Stack based Virtual Machine

#include <s t d i o . h>
2 #include <s t r i ng>

#include <map>
4

enum i n s t r { OP LT C , OP RET, OP POP, OP ADD, OP ADD C,
6 OP PUSH, OP CALL S , OP SWAP} ;

struct bytecode { i n s t r i ; /∗ i n s t r u c t i o n ∗/ int op ; /∗ operand ∗/ } ;
8 int s tack [ 1 0 2 4 ] ; int acc = 0 ; int∗ sp ;

std : : map<std : : s t r i ng , bytecode∗> g f u n c t i o n s ;
10

void i n t e r p r e t ( bytecode ∗ fn ) {
12 for ( bytecode ∗ ip = fn ; ip ; ++ip ) {

switch ( ip−>i ) {
14 case OP LT C : i f ( acc >= ip−>op ) ++ip ; break ;

case OP RET: return ;
16 case OP PUSH: −−sp ; ∗ sp = acc ; break ;

case OP ADD: acc += ∗ sp ; ++sp ; break ;
18 case OP ADD C: acc += ip−>op ; break ;

case OP CALL S : i n t e r p r e t ( g f u n c t i o n s [ s td : s t r i n g ( ip−>op ) ] ) ; break ;
20 case OP SWAP: { int t = sp [ 0 ] ; sp [ 0 ] = sp [ 1 ] ; sp [ 1 ] = t ; } break ;

case OP POP: acc = ∗ sp ; ++sp ; break ;
22 default :

throw std : : s t r i n g ( ”Unknown bytecode ” ) ;
24 }

}
26 }

28 int main ( int argc , char∗∗ argv ) {
sp = &(stack [ 1 0 2 3 ] ) ;

30 bytecode f i b b c [ ] = { {OP LT C , 2} , {OP RET} , {OP PUSH} ,
{OP ADD C, −1} , {OP CALL S , ( int ) ” f i b ” } , {OP PUSH} , {OP SWAP} ,

32 {OP POP} , {OP ADD C, −2} , {OP CALL S , ( int ) ” f i b ” } ,
{OP ADD} , {OP RET}

34 } ;
bytecode loop bc [ ] = { {OP LT C , 1} , {OP RET} , {OP PUSH} ,

36 {OP CALL S , ( int ) ” f i b ” } , {OP PUSH} , {OP SWAP} , {OP POP} ,
{OP ADD C, −1} , {OP CALL S , ( int ) ” loop ” } , {OP ADD} , {OP RET}

38 } ;
g f u n c t i o n s [ ” f i b ” ] = ( bytecode ∗) f i b b c ;

40 g f u n c t i o n s [ ” loop ” ] = ( bytecode ∗) loop bc ;
acc = 29 ;

42 i n t e r p r e t ( l oop bc ) ;
p r i n t f ( ”%d\n” , acc ) ;

44 return 0 ;
}
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5.5 Naive Compiler

In order to improve on the results from the previous section the virtual machine is replaced
with a simple JIT-compiler. At runtime the bytecode is translated into native machine code
and after some bookkeeping that code will be executed.

5.6 Implementation

The compiler functions in three stages. First the bytecode is read, then the machine code is
generated and finally the code is executed. The bytecode stage has not undergone substantial
change compared to the virtual machine from the previous section. Executing the code after
it has been generated is possible under two conditions: (1) the code has to be marked as
executable in memory and (2) there must be a calling convention that defines how switch
between C code and the code that has just been compiled. The first condition is dealt with in
lines 53..55 of the program listing (see end of section). By allocating memory as PROT EXEC7

the operating system is aware that the code is meant to be executable and no access violation
will occur. The second condition is dealt with on line 12. It declares that the generated code
will adhere to the stdcall calling convention which means that the callee is responsible for
cleaning up the stack and that the value of all machine registers except for eax, ecx and edx

must be preserved by the function.

Back of the envelope

When generating assembly code it is easy to lose sight of which factors are important.
Considering once again the recursive Fibbonacci algorithm, we observe that the case return
n if n < 2 can be described in 5 instructions and the second case in 10 instructions. By
counting the number of times the function is invoked we determine that about 43 million
instructions are executed in total during for the execution of program. The C version of
the algorithm takes 18 milliseconds to complete on the same machine, which includes start
up time and overhead from loading the standard libraries. From this we conclude that the
time budget to evaluate a single high level instruction is 4.286× 10−10 seconds, or 0.4286ns

Processor speeds are often denoted in MIPS (millions of instructions per second) and the
processor in the benchmark machine, a stock Athlon 2800+, has 7400 MIPS according to
the Dhrystone benchmark. This is equivalent to 0.1351ns per instruction, so the back of
the envelope estimate of 0.4286ns per instruction is pretty accurate.

To put this into context, accessing a CPU register takes a single cycle. Retrieving a value
from the Level 1 cache takes a mere 2 or 3 cycles. If the Level 1 cache does not have the
value the Level 2 is checked at a cost of 7 to 10 cycles. Retrieving a value from the RAM
is an order of magnitude more costly: it can cost up to 200 cycles.

So the important thing to note from these numbers that it will not matter in the least if
sub-optimal machine code is generated by the assembler. A cost of a few redundant or
extraneous instructions is measured in nanoseconds, which is orders of magnitude below the
cost of a few extra cache misses caused by bad locality.

7Assuming a POSIX system. Without a PROT EXEC flag the kernel would refuse to execute the code as a
security precaution.
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The assembly code generated by the compiler has to be translated into 32 bit x86 machine
code before it can be executed. The x86 architecture has a CISC8 design has hundreds of
instructions, many of which take different forms. Since only a tiny number of very specific x86
instructions need to be compiled there is no need for a fully capable assembly backend. The
different permutations of the needed instructions can be calculated manually using a reference
manual. The ”‘Intel64 and IA-32 Architectures Software Developer’s Manual”’ series9 covers
the instruction set in depth. The last part in the series ”‘Optimization Reference”’ describes
the relative cost of different instructions (including latency and throughput), interactions
between the processor and the different cache layers and general best practices.

The machine code is generated using the x86 architecture reference guides. The complete
program listing is included for completeness.

5.7 Performance

Program listing 4 contains the complete source code of the naive compiler discussed here.
The source code is very similar to the virtual machine discussed previously (Listing 3) and as
such is mostly self-explanatory.

The JIT-compiler prototype runs the same program in 26 milliseconds. Compared to the
stack machine from the previous section, that needed 1.4 seconds, this is a 50x performance
improvement. The implications of this result are discussed next.

8Complex Instruction Set Computing
9Available at http://www.intel.com/products/processor/manuals/
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Listing 4: Naive Compiler

1 #include <s t d i o . h>
#include <s t r i ng>

3 #include <vector>
#include <map>

5 #include <memory . h>
#include <sys /mman. h>

7
enum i n s t r { OP EOF, OP LT C , OP JMP, OP RET, OP INT C , OP PUSH, OP POP,

9 OP ADD, OP ADD C, OP CALL S , OP SWAP } ;
typedef int (∗ f np t r ) ( ) ; typedef unsigned char modrm, uchar ;

11 std : : map<std : : s t r i ng , fnptr> g f u n c t i o n s ;
int a t t r i b u t e ( ( s t d c a l l ) ) p r i n t ( int a ) { p r i n t f ( ”%d\n” , a ) ; return a ; }

13 struct bytecode { i n s t r i ; /∗ i n s t r u c t i o n ∗/ int op ; /∗ operand ∗/ } ;

15 namespace x86 {
enum reg32 { EAX, ECX, EDX, EBX, ESP, EBP, ESI , EDI } ;

17 enum preg32 { pEAX, pECX, pEDX, pEBX, pESP , pEBP, pESI , pEDI } ;
struct emit

19 {
struct jmp block {

21 jmp block ( emit& e , int n) { o f f s e t f r o m = e . ocp − e . oc ;
i d x t o = e . i n s t r o f f s e t s . s i z e ( ) + n ; d e l t a = (char∗) e . ocp − 1 ; }

23 int o f f s e t f r o m ; int i d x t o ; char∗ d e l t a ; } ;

25 std : : vector<int> i n s t r o f f s e t s ; s td : : vector< jmp block > jumps ;
uchar ∗oc , ∗ocp ; int i n s t c n t ;

27 void putw ( int i ) { memcpy( ocp , &i , s izeof ( int ) ) ; ocp += 4 ; }
void put ( char c ) { ∗ocp++ = c ; }

29 void next ( ) { i n s t r o f f s e t s . push back ( ocp − oc ) ; }

31 void f i x j u m p t a r g e t s ( ) {
for ( std : : vector<jmp block > : : i t e r a t o r i t = jumps . begin ( )

33 ; i t != jumps . end ( ) ; ++i t ) {
∗ i t−>d e l t a = i n s t r o f f s e t s [ i t−>i d x t o ] − i t−>o f f s e t f r o m ;

35 }
}

37
void RET( ) { put (0 xc3 ) ; } ;

39 void MOV( int i , reg32 r ) { put (0xB8 + r ) ; putw ( i ) ; }
void PUSH( reg32 r ) { put (0 x50 + r ) ; }

41 void POP( reg32 r ) { put (0 x58 + r ) ; }
void MOV( preg32 src , reg32 dest ) { put (0x8B ) ;

43 put (modRM(0 , dest , reg32 ( s r c ) ) ) ; }
void JMP GE( int n) { put (0x7D ) ; put (0 xcc ) ;

45 jumps . push back ( jmp block (∗ this , n ) ) ; }
void JMP( int n) { put (0xEB ) ; put (0 xcc ) ;

47 jumps . push back ( jmp block (∗ this , n ) ) ; }
void CMP( int i ) { put (0x3D ) ; putw ( i ) ; }

49 void ADD( int i , reg32 r ) { put (0 x81 ) ; put (modRM(3 , 0 , r ) ) ; putw ( i ) ; }
void ADD( reg32 r1 , reg32 r2 ) { put (0 x03 ) ; put (modRM( r1 , r2 ) ) ; }

51 void CALL( reg32 r ) { put (0xFF ) ; put (modRM(3 , 2 , r ) ) ; }

23



emit ( ) {
53 oc = ocp = ( uchar ∗) mmap(0 , 1024 , PROT EXEC |PROT READ|PROT WRITE,

MAP PRIVATE |MAPANONYMOUS, −1, 0 ) ;
55 }

57 modrm modRM(char mod, char reg , reg32 rm) {
return (mod<<6) + ( reg<<3) + rm ; }

59 modrm modRM( reg32 src , reg32 dst ) { return (3<<6) + ( src <<3) + dst ; }
} ; } ;

61
void compi le ( const char∗ funname , bytecode ∗ fn ) {

63 x86 : : emit e ;
for ( bytecode ∗ ip = fn ; ip−>i ; e . next ( ) , ++ip ) {

65 switch ( ip−>i ) {
case OP JMP: e .JMP( ip−>op ) ; break ;

67 case OP LT C : e .CMP( ip−>op ) ; e .JMP GE( 1 ) ; break ;
case OP PUSH: e .PUSH( x86 : :EAX) ; break ;

69 case OP ADD: e .POP( x86 : :EBX) ; e .ADD( x86 : :EAX, x86 : :EBX) ; break ;
case OP ADD C: e .ADD( ip−>op , x86 : :EAX) ; break ;

71 case OP CALL S : e .MOV( ( int ) &g f u n c t i o n s [ ( char∗) ip−>op ] , x86 : :EDX) ;
e .MOV( x86 : : pEDX, x86 : :EBX) ; e .CALL( x86 : :EBX) ; break ;

73 case OP INT C : e .MOV( ip−>op , x86 : :EAX) ; break ;
case OP SWAP: e .POP( x86 : :EBX) ; e .POP( x86 : : ESI ) ;

75 e .PUSH( x86 : :EBX) ; e .PUSH( x86 : : ESI ) ; break ;
case OP POP: e .POP( x86 : :EAX) ; break ;

77 case OP RET: e .RET( ) ; break ;
default : throw std : : s t r i n g ( ” compi le ( . . . ) : unknown i n s t r u c t i o n ” ) ;

79 }
}

81 e . f i x j u m p t a r g e t s ( ) ; g f u n c t i o n s [ funname ] = ( fnpt r ) e . oc ;
}

83
int main ( int argc , char∗∗ argv ) {

85 g f u n c t i o n s [ ” p r i n t ” ] = ( fnpt r ) p r i n t ;

87 bytecode f i b [ ] = { {OP LT C , 2} , {OP RET} , {OP PUSH} , {OP ADD C, −1} ,
{OP CALL S , ( int ) ” f i b ” } , {OP PUSH} , {OP SWAP} , {OP POP} ,

89 {OP ADD C, −2} , {OP CALL S , ( int ) ” f i b ” } , {OP ADD} , {OP RET} , {OP EOF}
} ; compi le ( ” f i b ” , f i b ) ;

91
bytecode loop [ ] = { {OP INT C , 0} , {OP PUSH} , {OP PUSH} ,

93 {OP CALL S , ( int ) ” f i b ” } , {OP SWAP} , {OP ADD} , {OP PUSH} , {OP SWAP} ,
{OP POP} , {OP ADD C, 1} , {OP PUSH} , {OP LT C , 30} , {OP JMP, −10} ,

95 {OP POP} , {OP CALL S , ( int ) ” p r i n t ” } , {OP RET} , {OP EOF}
} ; compi le ( ” loop ” , loop ) ;

97
( g f u n c t i o n s [ ” loop ” ] ) ( ) ;

99
return 0 ;

101 }
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5.8 Conclusion

Table 2 summarizes the results of the performance of the different prototypes. The results
are averaged over multiple trials and have insignificant variance. We reiterate that the per-
formance numbers are merely indicative, and serve only to further guide the language design.
However, the numbers support the assumptions made in the start of this chapter.

The almost identical performance of CPython and the virtual machine (of only 50 lines of
code) suggests that a trivial model of a bytecode machine can accurately reflect what happens
in a language environment as complex as Python. A simple model can be easily changed or
extended for testing purposes, which all advantages that entails.

Listing Time (ms) Performance Relative to GCC

GCC (Upper bound) 1 18ms 1
GCC with Dict 2 950ms 53
Bytecode VM Prototype 3 1420ms 87
Compiler Prototype 4 26ms 1
CPython 2.4 A.1 1570ms 87
Ruby 1.8 (Lower bound) A.2 6050ms 336

Table 2: Performance Results

The second conclusion we draw from the data above is that even naively generated native
code can lead to vast performance improvements: an intelligent optimizing compiler is not
necessary.

The third conclusion we draw is that a compiler that emits machine code does not need to
be significantly more complex than the equivalent bytecode machine. An extra compilation
step is needed and the JIT compiler has to have awareness of different machine architectures
for portability, and this inevitably leads to some extra complexity. However, given that
modern dynamic languages comprise hundreds of thousands of lines of C code this extra
complexity is negligible. It is encouraging that the compiler prototype, despite being only
100 lines of code long, outperforms Python by a factor of 60 and Ruby by a factor of 230,
and is only 50% slower than GCC.

The fourth observation is that the performance of the Bytecode VM prototype and Python
are almost identical. This means that other possible factors in VM performance, such as the
use by Python of Arbitrary Precision Arithmetic, exception handling and garbage collection
may not be that significant with regard to performance.

The fifth observation we make is that even a slight performance bottleneck has drastic
implications. Colloquially speaking, a program is only as fast as its slowest part. Therefore we
extend the JIT compiler from a starting point of being efficient (but lacking in functionality)
towards a more capable JIT compiler while sacrificing a minimum in terms of performance.
If an acceptable level of performance is maintained as new capabilities are introduced the end
result will be, necessarily, one that is very efficient.

In the next chapter we describe two extensions to the prototype compiler: arbitrary
precision integers and dynamic functions and methods.
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6 Extending the Prototype Compiler

6.1 Introduction

The last chapter established that even a simple JIT-compiler can generate sufficiently fast
machine code. In this chapter the prototype is extended in two parts.

The first extension replaces the simplistic integer model from the earlier prototype (that
does not even check for numeric over- and underflow) with a more mathematically sound
model.

The second extension addresses the issue of efficient function and method invocations. In
the previous chapter we demonstrated that repeatedly retrieving the address from a dictionary
or hash-table has a significant impact on performance. Here we introduce the requirements
and assumptions needed to maintain efficiency without sacrificing correctness.

Before we can proceed with these two extensions we quickly cover the basics of dynamic
language design.

6.2 Language Design Preliminaries

Dynamic languages typically attach a type tag to every object instance. When a message is
sent to an object the type tag of the object is inspected to determine which method to invoke.
Since every object has to have a type tag the straightforward implementation sets this type
tag whenever a new object is instantiated.

An object instance is represented in memory in the following manner:

0 23 24 31

Instance Size Flags

Type Tag

Instance Data (Optional)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Instance Size The size (in words) of the entire object. Used by the garbage collector.
Flags Various flags for internal bookkeeping.
Type Tag Points to the type of the object.
Instance Data Arbitrarily large area used for the object state.

Figure 2: Memory representation of object instance

A pointer to an object always points to the Type Tag. This substantially simplifies the
logic in the virtual machine and JIT-compiler. Since the Instance Size and Flags have a
fixed offset from the start of the Type Tag the values can be retrieved with simple pointer
arithmetic by the JIT-compiler.
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The Instance Data area is primarily used by native classes provided by the runtime en-
vironment. For instance, a String primitive stores the length of the string, its encoding, the
size of the allocated memory and a pointer to the string itself in the Instance Data area.

The methods and member variables of user defined classes are all stored in a dictionary,
a pointer to which is stored in the Instance Data area. User defined functions and methods
cannot access the Instance Data area directly (or any of the other fields).

All objects are stored on the heap10. Dynamic languages have pass-by-value semantics
and registers contain a reference to an object instance or a primitive value.

In order to improve the memory overhead and performance of primitive types and integer
arithmetic in dynamic languages a number of common optimizations are made:

• Booleans are defined by a pointer to their type. Booleans are not instantiated like other
values. The classes FalseClass and TrueClass define both the type of a boolean and
their unique value.

• Small integers are encoded into the type pointer.

• Strings are interned, see definition 2.4 on page 3.

Integer Encoding

Allocating an object on the heap is wasteful when the integer is small enough to fit into
a single register. By convention, a register in the runtime environment contains either
a pointer to an object on the heap or it represents a small value. The difficulty lies in
distinguishing between the two.

We observe that because heap objects are at least 4 bytes large every heap object is aligned
on a a 4 byte boundary. This implies that the last 2 bits of a pointer to any heap object
must both be zero. These bits can therefore be used to store additional information.

The solution is then to encode small (30 bit signed) integers as odd numbers. Encoding an
integer is straightforward: N ′ = (N � 1) + 1a. This ensures encoded integers are always
odd and the integer value can be retrieved with a single bitwise shift to the right. Every time
a pointer is encountered the least significant bit has to be checked to determine whether the
pointer refers to a heap object or whether it contains a small 31 bit integer.

aThe � symbol denotes a logical bitwise shift.

10The memory area controlled by the garbage collector.
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6.3 Extension: Efficient Integer Math

A typical virtual machine like those of Python and Ruby evaluate an integer addition in the
following way:

Listing 5: Case analysis in typical Virtual Machine

1 case OP ADD: // compute eax = eax + ∗ esp
ebx = ∗ esp ; esp++; // pop operand from s t a c k

3 i f type ( eax ) == INT && type ( ebx ) == INT {
i n t64 tmp = decode ( eax ) + decode ( ebx ) ;

5 i f (tmp > 2∗∗30 | | tmp < −2∗∗30) { // o v e r f l o w }
eax = encode (tmp ) ;

7 break ;
} else i f type ( eax ) == BIGNUM && type ( ebx ) == BIGNUM {

9 bignum add ( eax , ebx ) ;
break ;

11 } else i f ( . . . ) {
// d i c t i o n a r y lookup f o r opera tor ”+” and send message

13 }

The above logic can be classified into four distinct parts in the case where two integer
operands are given:

1. type checking of the operands

2. encoding and decoding the operands

3. the overflow check

4. the numeric operation

In the JIT-compiler prototype from the previous section only part 4 was represented and
the other 3 parts were neglected. In fact, the JIT-compiler prototype did not have any
concept of type. Every value was assumed to be a 32 bit integer. Recall that in the Stack
Based Virtual machine prototype the OP ADD instruction had a trivial implementation. We
observed that trivial virtual machine had comparable performance to CPython, which as
shown by the pseudocode above, has substantially more complex logic for each instruction.

Jump Tables

A jump table takes advantage of the fact that opcodes are generally small sequential inte-
gers. An array is created that maps an opcode to the addresses of the corresponding case
statement. With a jump table the jump addresses are calculated at runtime so they cannot
be predicted easily by the CPU but it is still preferable to a simple switch statement where
N/2 compares and jumps are needed on average to arrive at the correct case statement.

One problematic attribute of dynamic languages in the light of optimization is the absence
of compile time information of the type of expressions. In the purest form of a dynamic
language all objects are treated exactly in the same manner by the language environment and
messages are sent back and forth between objects with absolutely no case analysis based on
type. In practice virtual machines of dynamic languages pragmatically chose to treat some
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primitive objects (such as integers and booleans) differently than more complex objects (for
instance an object that represents a date and timezone). A virtual machine has specialized
implementations for common operations, such as addition of two integers, of two floating
point values and of arbitrary precision bignums. The virtual machine has to use several
type comparisons every time an instruction is evaluated to determine if optimized code is
available for the given operation. Each of these type comparisons is more expensive than the
computation itself, which may be as trivial as adding two integers.

Most virtual machine implementations do not allocate small integers on the heap for
performance reasons. Instead, small integers are encoded such that their type and the value
both fit within a single register value. Typically, this optimization is based on the observation
that memory is aligned by at 4 byte boundaries in memory. If all objects are known to start
at multiples of 4 or then the two least significant bits of a pointer to an object must always
be zero. These two bits can be used to encode meta-information about the pointer.

Boxing primitives

One of the downsides of the integer encoding scheme describe above is that the same tech-
nique cannot be applied to other primitive types such as floats or chars.
An alternative and more generic approach is to box and unbox variables. The idea is to
store primitive values in a container, the box, that consists of a type and a value. When
the primitive is boxed it can be treated like a high level object: it can be queried, it can
respond to messages and so on. When the variable is used locally the box is discarded and
the value is again a primitive, with all the performance advantages that come with it. In
languages with a static type system, such as C#, boxing is straightforward to implement
as the compiler can easily determine that a primitive value is only treated as such. This is
more difficult for a dynamic languages where no such guarantees exist.

The third class of overhead for simple integer additions is the overflow check. Ordinarily
no hardware exceptions are thrown on overflow, so after every integer operation the virtual
machine has to explicitly check for over- and underflow. When an overflow is detected an
exception can be thrown or the numeric object can be promoted to an object that has sufficient
bits to store the result. These assertions are wasteful because integer overflows happen only
very rarely but the check are made after every single operation even when both operands are
tiny and no overflow could possibly occur.

We now investigate under which conditions these three classes of checks can be eliminated
during JIT compilation.

6.4 Eliminating type checking

A single type assertion is not an expensive operation. However, when a virtual machine has
to do a dozen type comparisons to determine how to evaluate a single instruction this can
become a significant issue for the performance of the virtual machine. A JIT-compiler cannot
do any better in the complete absence of type information: the exact same case analysis from
the virtual machine is needed, so the computational overhead remains.

One of the benefits of JIT-compilation is the elimination of the overhead of opcode dis-
patch. The native code generated by the JIT-compiler can be executed linearly from top to
bottom. Every fat instructions can be split up into a sequence of lean instructions without
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Assembly Bloat

During the compilation process every bytecode instruction is substituted with the equiva-
lent assembly code. If a bytecodes is fat a lot of assembly code needs to be generated in its
place. A single bytecode may be compiled into a hundred bytes of assembly. This explosion
in program size is referred to as assembly bloat.It degrades performance and makes the
generated assembly code difficult to read. A bloated program contains many code paths
that will never be taken (because even dynamic programs are type-stable).

The bloating problem can be solved by replacing all occurrences of a fat instruction
with a function call to a single implementation of that instruction. This results at a
compiled program where the CPU has to make a function call for every instruction, just
as if it were a virtual machine. A function call is still preferable to a jump-table based
dispatch strategy because the address of each function call is fixed into the generated
assembly so branch target mispredictionsa cannot occur.

aModern processors look at branch targets ahead of time to improve the flow of the instruction pipeline.

loss of efficiency. Suppose there is a fat OP ADD instruction that internally distinguishes be-
tween addition of integers, floating point values and strings can be split up into a sequence
of lean instructions such as type comparisons and branches that invoke type-specific addi-
tion instructions. If the compiler knows the types of the arguments supplied to the OP ADD

instruction all of the lean instructions can be optimized away except for the lean instruction
that processes the actual addition.

The type check itself does not become expensive when integers are encoded. If a pointer
is odd it is an encoded integer (by convention) so the type has been determined. On the other
hand, if the pointer is even it must refer (by convention) to an object. Every object must
contain a pointer to the class it is an instance of, so the language environment can retrieve
that slot to determine the type.

6.4.1 Type assertion elimination via type inference

Previous attempts to optimize dynamic languages via type inference have been mostly inef-
fective, as mentioned in chapter 2. Type inference in a dynamic language is difficult when the
majority of expressions do not have a trivially determinable type. A type inference engine
may, naturally, classify every expression as having the type +Object11.

Type inference is also difficult for dynamic languages because type unions are needed (to
indicate an expression has either type A or type B). If an expression has two subexpressions
both of which are known to have one of two types then the type inference engine has to
enumerate all possibilities: the Cartesian product of the types of the subexpressions. The
type inference engine can always fall back on the generic +Object type classification, but this
will make all attempts of further type inference in that area fruitless: meaningful optimizations
can only take place when narrow types can be derived.

A third problem with type inference is that the types, even if they can be accurately
determined, are very complex in dynamic language. As shown by ”A core Calculus for Scala

11Where + denotes covariance, meaning that the expression either has exactly the type Object or a more
specific type thereof.
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Type Checking” a type inference engine has to distinguish between invariant, covariant and
contravariant types (which is impossible without manually inserted type hints) in order to
correctly guide the JIT-compiler.

For example, the simple expression [Person("Bob", 46), Person("Jane", 31)], can
have multiple types:

• Array<+Person>: An array of objects of type Person (or subclasses thereof). Adding a
Child("Zed", 4) to the array is allowed.

• Array<Person>: An array (but not a subclass of Array) of instances of Person. Adding
a Child object is now prohibited.

Essentially, a type inference engine cannot determine intent of the programmer. Type
hints can be used to clarify these ambiguities, but this partially defeats the purpose of us-
ing a dynamic language. We conclude that classical type inference is not very suited for
dynamic languages. In the Related Research section a few approaches to dynamic language
optimization based on type inference are covered.

6.4.2 Type assertion elimination via execution traces

A tracing JIT compiler can remove redundant type assertions by inspecting the types of the
variables while the program is running, either globally or for sections of code that take the
computation time. The assumption when recording a trace is that the next time the same
piece of code is executed the variables and expressions will be of the same type as before.
This means that for every expression there now is a type assumption. The function (or code
segment) in question is JIT-compiled again, and type assertions are inserted for the function
parameters, global variables that are referenced, after method calls, and so forth. If one of
those type assertion fails at runtime the less efficient JIT code is used from that point on.
As long as the type assertions hold the type conditionals for every numeric opcode can now
be safely removed. The program is assumed to be in SSA form: variables are only assigned
once. This implies that at most a single type assertion is needed per variable.

To illustrate which kind of type assertions can be eliminated with this approach we will
use this trivial example program that consists of a for-loop a few additions and a function
call:

1 n = 0
for i in 0 . .N do

3 f = f a c t o r i a l ( i )
n += i + f

5 end

The reader can intuit that the variables are all integers and that a type assertion is only
really needed to determine the return value of the factorial function. When the JIT-compiler
evaluates the first loop body for the firs time it determines that the variables are indeed all
integers. Type assertions are inserted after every assignment. Since there are three variables
and each is assigned once this means only three type assertions are placed into the code.
This is a substantial improvement over the eight type checks used before. Since a variable is
referenced at least once after assignment (otherwise the assignment can be eliminated entirely)
it is always more efficient to determine the type just once after assignment instead of checking
the type for every operation on the variable.
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This technique also has a number of downsides. First, it may be difficult to determine
which code fragments are suitable candidates for trace based optimization. Second, the
instrumentation and optimization process should happen in parallel to the execution of the
program to keep from interfering with the normal program execution. Third, it adds a
substantial amount of complexity to the compiler.

6.4.3 Type assertion elimination via static analysis

When a software engineer looks at a code fragment written in a dynamic language he can gen-
erally make an educated guess about the types of most of the variables and (sub)expressions.
This observation is the basis of the static analysis approach to type assertion elimination.
During the JIT-compilation process every function is compiled twice. Once completely pes-
simistically (with all type checks in place) and once with optimizations in place based on the
assumed types of the variables.

Note that correctness is not a must for the static analysis: if an assumption turns out to
be wrong the execution will continue with the less efficiently (but assuredly correct) version.

Consider these simple rules for static analysis:

1. after assignment the rhs and lhs have the same type

2. the type of a variable doesn’t change after it has been assigned

3. both arguments of numeric (infix) operations have the same type

4. functions always return objects of the same type

These rules are sufficient to sensibly determine the types of the variables of the program
from the previous section.

1 n = 0 # type (n) = int , r u l e (1)
for i in 0 . .N do # type ( i ) = int , r u l e (1)

3 f = f a c t o r i a l ( i ) # type ( f ) = ?
n += i + f # type ( f ) = int , r u l e (1 , 2 , 3 , 4)

5 end

Because the function is JIT-compiled when it is called for the first time a lot of information
about the environment is readily available. The types of the function’s arguments can be
inspected, the types of global variables can also be retrieved. The static analysis engine can
even peek inside objects used in the body of the function to make an educated guess about
types.

This approach has a number of advantages over the trace based approach. First, it’s
deterministic and the programmer can predict which assumptions the static analysis engine
will make. Second, the programmer can insert type assertions at tactical places to guide the
static analysis engine. Third, if a type assumption proves to be wrong the analysis engine can
take that into account and try again at a later time. Fourth, a naive version is straightforward
to implement. Fifth, this technique can be applied for every operation where type checks are
used. For instance: when invoking a message on an object (e.g. a.calculate(b)) ordinarily
a dictionary lookup is needed to discover the address of the calculate method, every time
the statement is evaluated. If the type of variable a can be guessed by the JIT-compiler it
can then lookup the address of the calculate method and insert it into the code together
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with a type assertion. On evaluation, if the type matches what the compiler guessed then
the method can be invoked directly (without a dictionary lookup) and otherwise the runtime
environment can still do a dictionary lookup to discover the correct method to call.

6.5 Eliminating integer encoding and decoding

By adding the the integer encoding logic as described on Page 31 to the bytecode virtual
machine the impact of integer encoding on performance can be measured. The results are in
the following table:

Time (ms)

Bytecode VM Prototype 1420ms
Bytecode VM Prototype with integer encoding 1 1460ms
Bytecode VM Prototype with integer encoding 2 1220ms

Table 3: Performance Results

The first row repeats the results from the original bytecode virtual machine. The second
row represents the same virtual machine but with integer encoding logic added for every
integer instruction. An addition now consists of decoding the two integer arguments, per-
forming the addition and re-encoding the result. It turns out that this additional logic has
no meaningful impact on the performance of the virtual machine as a whole. Interestingly,
when taking the integer encoding logic one step further, by performing operations on encoded
integers without first decoding them (see sidebar) the whole process becomes faster than the
original benchmark, even though the virtual machines are virtually identical.

From these results we conclude that integer encoding and decoding steps have no mean-
ingful impact on performance. The JIT-compiler can therefore adopt the same encoding and
decoding strategies as the prototype virtual machine did and as most virtual machines for
established dynamic languages do.

6.6 Eliminating overflow checks

Eliminating overflow checks is difficult, because the overflow assertion can only be eliminated
when the JIT-compiler can prove the check is redundant. Since it depends on the value
of variables which are produced by arbitrary expressions the problem of removing overflow
checks with perfect accuracy is undecidable.

Instead of removing the overflow assertions altogether the JIT-compiler can place a single
overflow after all end points of a loop. If an overflow occurs the program state will be rolled
back to the point of last successful overflow check. The overflow assertions are placed back
in the machine code of the loop and the program resumes execution. This time when the
overflow happens the integer is promoted (or an exception is thrown). Although this may
work in theory, there are a number of practical concerns. First, rolling back the state can be
(very) difficult. Second, if a lengthy operation is rolled back the performance may degrade
instead of improve. Third, IO operations and system calls cannot be rolled back. For these
reasons this approach has not been investigated further.

A better approach to reduce the number of redundant overflow checks is by means of range
analysis. When a function is JIT compiled the ranges are computed of the variables for which
no overflow check is necessary. The range analysis can happen locally, on the function level.
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Manipulating encoded integers

Since the integer encoding is such a simple mathematical transformation (N ′ = 2N + 1) it
allows for manipulation of the encoded integers without decoding them beforehand. Suppose
we wish to add a regular integer m to an encoded integer N :

N ′ = encode(decode(N) + m) (1)

= encode((N � 1) + m) (2)

= (((N � 1) + m)� 1) + 1 (3)

= ((N � 1)� 1) + 1 + (m� 1) (4)

{N% 2 = 1} (5)

= (m� 1) + N (6)

If m is a constant known at JIT-time the bitshift can be precomputed and the addition
instruction reduces to a single add %eax m’ operation. If the integer m happens to be
encoded the bitshift is no longer necessary: N ′ = (M − 1) + N . For integer multiplication
of an encoded integer N and an ordinary integer m the solution follows similarly: N ′ =
encode(decode(N) ∗m) = (N − 1) ∗m+ 1a. Although only a few x86 instructions are saved
with this technique it is roughly twice as fast as explicit encoding and decoding. Given how
prevalent integer operations are in any program this optimization is probably worth doing.

aThe alternative N ′ = encode(decode(N) ∗m)
?
= N ∗m− (m− 1) does not hold, since the intermediate

value N ∗m may yield an overflow that would otherwise not occur.

The functions can be JIT-compiled multiple times so the JIT compiler can take advantage of
the most specific runtime information. Sol et all[20] successfully eliminate a large number of
overflow tests by static means and via trace analysis, but the increased JIT-compilation time
leads to a net negative performance result. The authors note that their algorithm, being a
form of range analysis, may be categorically too slow to be suitable for a JIT compiler.

Purely static approaches for elimination of overflow elimination may be more suitable. Su
and Wagner[21] have presented an optimal and polynomial time algorithm that finds optimal
range constraints on variables based on a Static approaches like these depend to a large extent
on static type information on variables and expressions, which is mostly unavailable.

The conclusion is clear: elimination of overflow tests is computationally expensive and
there are only little performance gains to be made when successful. Consequently, overflow
tests need be inserted after every integer operation. One small optimization can be made,
however. By defining the integer encoding, integer decoding and the overflow test as separate
instructions the JIT compiler can eliminate redundant instructions in specific situations that
are known to be safe, such as with operations on the iterator variable in an ordinary for loop.

6.7 Conclusion Integer Math

The goal was to implement numeric operations with a minimum of overhead, without in-
creasing the complexity of the compiler significantly and without sacrificing much in terms
of language dynamicity. We observed that in a dynamic language few12 statically typable

12Literal expressions are statically typed even in a dynamic language.
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expressions the compiler is unable to make observations based upon which it may optimize
numerical operations into efficient native code. Arbitrary precision numerics added a second
layer of difficulty.

The internals of several virtual machines were inspected and the functionality was com-
pared to the functionality of the trivial virtual machine from Chapter 5. Several potential
sources of overhead were identified, such as repeatedly encoding and decoding integer, check-
ing for integer overflow and type checking.

We have shown that encoding and decoding integers bears virtually no cost. The benefit
is that encoded integers do not have to be allocated as objects on the heap. It may seem
that decoding two integers, doing a mathematical operation and finally encoding the result is
substantially slower than doing only the mathematical operation itself but our measurements
show that this is not the case. This result has been attributed to the ability of modern
processors to evaluate multiple micro-operations in parallel.

Overflow tests turn out to be relatively inexpensive and the elimination of these tests
via range detection is effective, but computationally too expensive[20]. A JIT compiler may
only allocate few resources for the elimination of overflow tests even though the algorithms
to detect unnecessary overflow tests are complex and computationally expensive.
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7 Extension: Efficient functions and methods

In this section we cover the different implementation strategies for efficient function calls and
method invocations. The difference between a function call and method invocation is that
a function is identified uniquely by its name (and perhaps a namespace), whereas a method
is identified by a name and the type of the object on which the method is called. During
this section it is assumed that both methods and functions may be defined and re-defined at
runtime. Given that more elaborate function calling strategies such as multiple dispatch can
be implemented with ordinary functions or methods, so they will receive no further attention.

The runtime environment of a dynamic language typically handles a function call via a
lookup in a global hash-map or dictionary every time the function is called. A method is
dispatched in a similar way, every object has a dictionary that maps a message (a string) to a
function object. When a message is sent to an object the method dictionary of the object is
inspected. If a function is found it can be called, otherwise the language environment checks
if the parent classes of the object respond to the message. If no handler can be found an
exception is thrown or a ”no-method” handler is called instead (see box), so the object can
resolve the situation locally.

Aspect Oriented Programming

A no-method handler method is useful for techniques such as aspect oriented programming.
Suppose a message benchmark docalc is sent to an object, but no corresponding method
exists. The no-method handler can then check if the message starts with benchmark and
if so, start a timer, invoke the docalc method, stop the timer and output the time spent in
the docalc method.

The optimizations described in this section exist in addition to the method dictionary.
This is because in a dynamic language any object can query which messages it responds to,
which slots it has, and so forth; the dictionary cannot be optimized away. To further illustrate
this consider the example program below. A clever compiler can theoretically determine ahead
of time where the now, methods, select and each methods reside and optimize these function
calls. No such optimizations are viable on line 6, where a message m is sent to the time object,
but no assumption can be made with regards to the value of m.

Typical usage of introspection in a dynamic language

Listing 6: Introspection in Dynamic Languages

1 t = Time . now # g e t curren t time
# s e l e c t the methods t h a t s t a r t wi th ’ h ’

3 t . methods . s e l e c t { |m| m[ 0 . . 0 ] == ’h ’ } . each do |m|
# invoke the method (0 args ) and p r i n t

5 puts ”method %s ( ) => %s ” % [m, t . send (m) ]
end

7 # output :
# method hour () => 16

9 # method hash ( ) => −857433557

We cover the optimization of function calls and method invocations separately and com-
pare the different optimization strategies at the end of this chapter.
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Figure 3: Types of function calls

7.1 Optimizing Function Calls

Three different approaches are covered here. Two approaches that take advantage of the fact
that functions are redefined only occasionally and that therefore the function address can be
assumed to be stable. The third approach focuses on optimizing the dictionary lookup itself.

7.1.1 Solution 1: direct function call

The idea is conceptually simple. When a function call is being compiled the name of the
function is known because it shows up in the AST. Consequently, the compiler can discover
the address of the function based on the name and insert it directly into the assembly code.

Although this works in the majority of cases, two problematic areas remain. First, the
function may not yet exist at the time of compilation, which means there is no address to
insert into the code. The simples solution is for the JIT-compiler to leave out the optimization
in this case.

The second problem is that when a global function is recompiled it will invariably be
relocated in memory as well. This means all code fragments that refer to the function by
address will have to be updated. To update these addresses efficiently a ”called by” list
is maintained for every global function. This called-by list will contain all the locations in
memory from where the function in question is called. When the function is redefined and its
address changes the called-by list can be used to update all addresses to the new location.

Advantages and downsides

Doing the dictionary lookup ahead-of-time has a number of advantages and downsides. The
first and foremost advantage is that the generated code is optimal with regard to performance:
a direct jump is optimal. It’s also a conceptually simple optimization that can be implemented
in a straightforward fashion. The only overhead resides in the called-by list, and the overhead
is a fraction of all the other data structures that are in use during compilation. In the worst
case scenario a few hundred jump addresses have to be fixed when a function is redefined.
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The major downside to this approach is that the called-by list may never contain obsolete
references. This implies that before a function is redefined all entires in the called-by lists
must be removed. This requires the introduction of yet another data structure per function:
a callee list. So per function the compiler must keep track of which functions it calls and
by which functions it is called. In other words: more bookkeeping and more complexity.
Arguably the compiler ought to keep track of this information regardless: caller and callee
lists make for valuable debugging aids.

7.1.2 Solution 2: indirect function call

The complications of the first solution arise from embedding the address of the function into
the object code. Here we explore the logical next step: introduce a level of indirection so a
function can be safely recompiled or moved in memory. The JIT-compiler will place a pointer
to a pointer to a function in the object code so the location of the function itself is no longer
important.

Advantages and downsides

The trade-off is clear. The runtime environment no longer has to patch code when a function
is moved or redefined and in exchange a pointer has to be dereferenced before every function
call.

A beneficial side effect of the indirection simplifies the compilation of mutually recursive
functions. If a function has to be compiled before the function’s address is known a depth-
first compilation strategy is necessary. For mutually recursive functions this cannot work, for
neither function can be compiled before the other. Consequently, the JIT-compiler will have to
use placeholder addresses and patch those addresses after a necessary functions are compiled
and just before execution of the program continues. When using a level of indirection for
function call this problem disappears; functions can now be compiled in any order the JIT-
compiler finds suitable.

A downside of this approach is that if every occurrence of a function call calls the same
indirect function no optimizations or specializations (based on e.g. argument types) are
possible. So the essential problem remains: the generated object code has to be patched
when the JIT-compiler decides a different specialization of a function is more suitable.

7.1.3 Solution 3: vtable based virtual function calls

Some programming languages, such as C++, implement dynamic dispatch by means of a
vtable. A vtable is an array of pointers to member functions in the class hierarchy. The
combination of a vtable (known at compile-time and derivable from the type of the object)
and a fixed offset are sufficient to dispatch the virtual function at runtime. Classes that
belong to the same class hierarchy have the same vtable layout, i.e. a polymorphic method
has the same offset in every vtable in the class hierarchy.

Since the vtable approach is efficient and straightforward to implement, we investigate if
this same approach can also be used by a dynamic language. For virtual dispatch in C++ to
work the classes need to have a shared base class and the type of either the child or base class
has to be known at compile-time. In a dynamic language every object usually has a shared
base class (usually called Object). The solution then is to have a single vtable for all objects
and all methods and to use that to dispatch the polymorphic functions calls.
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Advantages and downsides

Unfortunately this approach is not viable. A vtable has to be contiguous in memory and
the vtable layout has to be shared by every class. This means that whenever a new function
is defined every parent and child class has to be updated to reflect that the class does not
override the newly defined function. Whenever space runs out in a vtable for a new entry
the consequences are even worse, this time every vtable has to be reconstructed and every
function call has to be patched with the location of the new vtable.

From this we conclude that a vtable based technique is simply not viable.

7.1.4 Solution 4: self-patching direct function call

A combination of the approaches outlined above is also possible: a self-patching direct function
call. Functions are called directly; the JIT-compiler inserts the address of the function directly
into generated code. When the function is redefined a small fragment of code is stored at the
old memory location. This fragment of code, when executed, will patch the code the function
that called it so that it refers to the new definition of the function. As a result, all references
to the old version of the code will be patched lazily.

Advantages and downsides

The main advantage is that it combines optimal performance in the most common scenario
(regular function call) with the flexibility of redefining functions at will at runtime. The
implementation is straightforward: logic for walking the call stack is already needed to collect
stack traces, so this does not lead to any additional complexity. The logic for replacing the
address of the old function with the new one is also straightforward.

Conclusion

The fourth and last solution offered is significantly superior to the others for our purposes.
Function calls are optimal in performance and functions may be redefined freely. The alter-
native approaches are either inefficient, too complex, or both.
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7.2 Optimizing Method Invocations

The techniques described above for global functions do not work for method invocations.
Method invocations can be polymorphic, which means that the method that is invoked de-
pends on both the type of the object and the message itself. If the type of the object is not
known during JIT-compilation a dictionary lookup to retrieve the method by name is neces-
sary. Here too we observe that in the vast majority of the time a method literal on a specific
line of code will refer to the same method every time the code is executed[10]. Functionality
is implemented in terms of class hierarchies and methods, even when no polymorphism is
needed or even desired. Classes and class hierarchies are often used as namespaces and to
group functionality into cohesive units, not because methods need to be dispatched based on
the type of the instance.

Although the process of determining which method to call is referred to as a dictionary
lookup, the real algorithm is slightly more involved:

Recursive algorithm for finding a method

Listing 7: Recursive Method Search Algorithm

1 fnpt r ∗ f ind method ( Obj∗ obj , s t r i n g msg) {
i f ( ! obj ) return r a i s e e x c e p t i o n ( ”bad operand obj ” ) ;

3 i f ( obj−>method dict . has key (msg ) ) {
return obj−>method dict [ msg ] ;

5 } else i f ( obj−>p a r e n t c l a s s != obj−>class ) {
return f ind method ( obj−>p a r e n t c l a s s , msg ) ;

7 } else {
return r a i s e e x c e p t i o n ( ”method not found” ) ;

9 }
}

In the worst case scenario all parent classes of an object have to be traversed before the
correct method is located. It is possible to expand the method dictionary of a class with
all the methods defined by its ancestors, such that a single dictionary lookup is sufficient
to ascertain which name corresponds to which method. The obvious downside to expanding
method dictionaries is that adding or redefining a method of a class high in the class hierarchy
(e.g. the ubiquitous Object class) requires that the method dictionary of child classes are
updated to reflect the change. There may be easily be thousands of classes in a program, so
updating mutating a class can become a very expensive operation.

We describe several approaches for improving on the naive algorithm above the rest of
this section.
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7.2.1 Caching

The observation made earlier was that if a statement is evaluated multiple times in all likeli-
hood the same methods will be invoked every time. This suggests that caching which method
was invoked may speed up future method calls, provided that the runtime environment can
efficiently check whether a given method is the correct one.

Inline Cache of the Method Address

Listing 8: Inline caching of method address

i f ( type ( a ) == f i r s t t y p e && ∗ cached fn ) {
2 (∗ cached fn ) ( args ) ;

} else {
4 fnpt r fn = find method ( a , ” foo ” ) ;

fn ( args ) ;
6 i f ( cached fn != fn ) {

f i r s t t y p e = type ( a ) ; # patching the code
8 cached fn = fn ; # patching the code

}
10 }

The JIT-compiler will output assembly code with similar logic as shown in the pseudo
code above for every method call. Whereas an ordinary function is identified only by its
address, a method is identified by its address and by a type. So if a message is sent to two
instances of the same class then then the same method has to be invoked. The message is
generally known at compile time, as it appears as a literal in the code. The unknown is the
type of the instance, which will simply be cached, along with the address of the method.

The difficulty of caching method addresses lies with cache invalidation. The simplest
solution would be to to simply invalidate the entire cache every time a new method is defined.
According to Zakirov et al[25] this can become very detrimental to performance: the cache can
be very large for complex programs. More granular cache invalidation is therefore desirable.

The different situations that have to be covered are:

1. a new method m is defined for class C,

2. a method m is redefined,

3. a method m is defined that is already defined for a base class P ,

4. a method m is removed.

The method cache can be defined as dict<string, dict<class, cell>>. A method
name maps to a dictionary of classes to cells. The cell can be a method or a class variable or
any other property that belongs to the class. Defining a new method and redefining a method
is semantically the same because absent methods can be considered methods that are mapped
to the no-method handler. When a method is redefined the cache for m can be updated (or
invalidated) for class C and descendants(C). When a method is already defined for a base
class the cache for m also has to be invalidated for ancestors(C)− ancestors(P ). Removing
a method is equivalent to assigning it the no-method handler, so this case is covered by (2).
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The class hierarchy is flat in practice (there may be tens of thousands of classes, but a
single class will not have more than a dozen ancestors), so invalidating the ancestors cells
is inexpensive. Calculating the set of descendants is easy (provided every class has a list of
its direct descendants), but the set may be large. In fact, every class is expected to be a
descendant of the root class Object. So iterating over every descendant class and invalidating
the corresponding cell (if it exists) is not a viable approach. An alternative is to iterate
through the dictionary that corresponds to the method name, and to check whether the class
is in the set of descendant classes. This is not always viable either, because constructing the
set of descendant classes is an abundant amount of work.

There is a reasonable compromise, using a simple heuristic. If there are few items in the
dictionary that maps classes to cells, just invalidate it entirely. Otherwise, if a class has too
many13 descendants then stop computing the set of descendants and invalidate the entire
dictionary for that message name. If a class has few descendants, then do the ”optimal”
algorithm where only the correct cells from the dictionary are invalidated.

Driesen[10] covers in ”‘Software and Hardware Techniques for Efficient Polymorphic Calls”’
a number of general algorithms to improve the performance of polymorphic method calls in
both static and dynamic languages. He notes that the hit ratio of an inline cache as described
above has a hit-ratio between 90-99% for a typical Smalltalk program. An inline cache is
vulnerable to worst case behavior with a 0% hit ratio. This can be remedied by replacing
the Inline Cache with a Polymorphic Inline Cache. A polymorphic inline cache has mulitple
slots in which to store the combination of class and corresponding method. When a cache
miss occurs a complete lookup is performed and the result is appended to the inline cache.
According to [10] resolving cache misses in a inline cache can take up to 25% of a program’s
processing time and a polymorphic cache eliminates the cache miss problem in practice.

7.3 Conclusion Functions and Methods

The runtime cost of determining which method is called under which circumstances cannot
be eliminated entirely, but caching the results reduces the complexity in the most common
scenario to a simple type check. The most appropriate cache consists of a (Polymorphic)
inline cache per method invocation and a global method cache in the event an inline cache
miss occurs. The importance of granular cache invalidation has been raised by[25] but the
impact of specific invalidation strategies cannot be measured with a small prototype language,
as the negative effects are meant show up in large complex and highly dynamic projects.

13Depends on implementation details; but 10 is may a reasonable number.
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8 Design Final Prototype Language and Compiler

In the previous chapter two major subjects have been addressed: the consequences on compiler
design with regard to efficient integer math and the consequences on compiler design with
regard to efficient functions and methods. After establishing the basic framework and context
in which the two subjects were addressed and after observing the extent in which these two
subjects affect the compiler design of a dynamic language, a number of conclusions were
drawn.

For the problem of implementing efficient integer math for the JIT compiler we concluded
that encoding small integers has the big performance benefit compared to the alternative
approaches. We concluded that overflow tests are a small but necessary cost for correctness
and that overflow tests cannot be profitably removed.

We emphasized that the level in which the JIT compiler can make performance optimiza-
tions is greatly constrained by computation time (the cost of the optimization must not exceed
the proceeds) and by the lack of reliable type information. Several approaches to determine
types or to eliminate type checks have been touched upon: type test elimination via type
inference, via execution traces and via static analysis.

An optimal solution in terms of runtime performance for dispatching functions was pre-
sented, based on an inline cache of the function address and by replacing a function with an
adaptive code fragment that lazily fixes bad cache values upon redefinition of a function.

For efficiently dispatching polymorphic methods a number of techniques have been con-
sidered. An Polymorphic Inline Cache (PIC) in combination with a global lookup cache gives
a straightforward and reasonably efficient solution for the lookup of polymorphic methods.
This is the strategy used by Smalltalk and Self compilers [23].

This chapter will focus on the remaining design decisions for the development of the JIT-
compiler. A suitable garbage collection algorithm will be picked, a better system for code
generation will be described and the language semantics will be defined.

8.1 Design Decisions

There are many factors that affect the direction of language design. The garbage collection
algorithm affects how much memory overhead allocation has and whether objects may move
in memory. This in turn affects whether distinguishing between stack and heap allocation is
worthwhile. If stack-allocated variables are introduced this may affect the language grammar
or it may determine whether objects are assigned by-name or by-value. Essentially, nearly
every aspect of a programming language has major influence on every other attribute of the
language. So when discussing the various attributes and decision decisions in the rest of this
chapter the dependency between the parts of the programming language are not exhaustively
enumerated. All different combinations have been carefully considered, however.

The following design decisions are covered in depth in the rest of this chapter:

1. Garbage Collection

2. Code Generation

3. Variable Lifetime
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8.2 Garbage collection

The prototype language does not make any specific demands on the method of garbage collec-
tion. The garbage collector may move objects in memory if it so desires (moving collection).
Complete runtime information is available, so the garbage collector may use an exact algo-
rithm, where objects are deallocated if and only if they are unused.

The information in this section is primarily based on Garbage Collection: Algorithms
for Automatic Dynamic Memory Management by R. Jones and R. Lins[16] a comprehensive
collection of garbage collection algorithms.

The following algorithms are deemed most suitable for use in a simple just-in-time com-
piled dynamic language:

• Mark-Sweep Garbage Collection,

• Mark-Compact Garbage Collection,

• Copying Garbage Collection,

• and Generational Copying Garbage Collection,

In addition we will shortly consider Reference Counting. Although reference counting is
strictly speaking not classified as a garbage collection algorithm it can be used instead of
garbage collection and as such is worth consideration.

8.2.1 Reference Counting

A reference counting strategy uses a counter that tracks via how many locations an object can
be reached. If this counter reaches zero the object is considered unreachable and can therefore
be deallocated immediately and the memory can be returned to the memory allocator.

The advantages of reference counting are that the process is deterministic, that an object
is deallocated the moment it becomes unreachable and the cost of garbage collection is dis-
tributed evenly over the runtime of the program: there are no expensive garbage collection
phases. The disadvantages are that extra memory has to be allocated for every object for the
reference counter itself, circular data structures cannot be deallocated easily, and significant
memory fragmentation may occur.

The CPython interpreter uses a reference counting as its primary means of garbage col-
lection.

8.2.2 Mark-Sweep Garbage Collection

When allocation fails because of an out-of-memory condition the garbage collection algorithm
is invoked. The Mark-Sweep Garbage Collection approach works in two stages. First the
entire memory area is scanned and all accessible objects are marked as such.

The mark stage works in the following manner: the language environment assumes that
all global variables, all variables referred to by registers and all local variables are accessible.
The objects referred to by these variables are known as the root set and are marked. All
objects accessible from this root set are traversed and also marked as in-use, by traversing
the forest of objects in a depth-first or breadth-first manner.
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During the sweep stage all objects that are not marked are deallocated and the memory
allocator may now reuse the memory. The mark is removed from all objects that are marked
in preparation of the next mark-sweep cycle.

The advantages of mark-sweep garbage collection are that the implementation is trivial,
there is no per-object memory cost and that garbage marking time is linear in the number of
accessible objects. The disadvantages are memory fragmentation, and poor locality.

8.2.3 Mark-Compact Garbage Collection

A mark-compact garbage collector has the same mark phase as a mark-sweep collector. In
the second phase all accessible (reachable) objects are moved so that they are consecutive in
memory. For this to work all pointers to moved objects have to be updated. This can be
accomplished by using a table to keep track of the old and new locations of every object and
updating pointers where necessary. Because this compacting phase is more computationally
expensive than a regular sweep phase compaction only happens occasionally, for instance
when the process is running out of memory or when fragmentation has exceeded some limit.

This garbage collection algorithm is substantially more complex than the regular Mark-
Sweep algorithm but the downside of fragmentation is solved at substantial run-time cost.
Locality may still be poor, however.

8.2.4 Copying Garbage Collection

A copying garbage collector divides the working memory into two equally large areas. The
memory allocator will allocate memory sequentially from the first area. When the memory
of the first area has been exhausted the copying phase starts. Like with the marking phase
in the previous algorithms, the root set of objects and objects reachable from the root set
are traversed and immediately copied sequentially onto the second area. This automatically
compacts the objects. As with the Mark-Compact algorithm, all existing pointers have to be
updated to refer to the objects’ new locations. After copying phase has finished new objects
are allocated from the second memory area and the first memory area is now considered
empty.

This is a substantial improvement over the naive mark-compact algorithm but at a signifi-
cant cost: memory usage is doubled. Additionally, this algorithm will copy all memory in use
by the program whenever an out-of-memory condition occurs. A copying garbage collector
does not suffer from the fragmentation and memory locality issues.

8.2.5 Generational Copying Garbage Collection

As a performance optimization additional memory pools may be introduced. These memory
pools are called generations. When new object is allocated it is allocated from the first memory
pool (youngest generation). When this first memory pool reaches an out-of-memory condition
all objects are promoted and copied to the second generation memory pool. When this second
memory pool has insufficient space to store the reachable objects of the first memory pool a
second copying phase is initiated where the contents of the second memory pool are copied
onto the third. This process continues until all reachable objects from the first memory
pool have been relocated. A data structure is needed to keep track of intergenerational
boundaries. After all relocation has taken place pointers from objects in older generations to
younger relocated objects are updated to restore memory integrity.
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Note that this algorithm automatically groups objects by lifespan. The average lifespan
of an object is very short (local variables, literals) and most activity will take place in the
youngest generation. Once objects are promoted to later generations the garbage collector
only rarely has to reconsider them for deallocation. This is advantageous, since objects that
have already survived several stages of garbage collection are likely to survive the next stage
of garbage collection as well14.

A generational copying garbage collection strategy has implementation complexity and
substantial memory overhead as its major downsides. Run-time efficiency, good locality and
memory fragmentation avoidance are the positive attributes.

8.2.6 Conclusion Garbage Collection

A straightforward implementation of a mark-sweep garbage collection strategy is sufficient.
The need for a better garbage collector will only arise for longer running programs that
collect many objects. Since mark-compact and copying garbage collectors are substantially
more complex to implement and still have substantial downsides. A generational copying
garbage collector is in many ways preferable to a simplistic mark-sweep collector but for a
prototype compiler the extra complexity cannot be justified.

8.3 Code Generation

In the prototype compiler of Chapter 5 and 6 the assembly code was generated with simple
case analysis. Based on the x86 instruction reference a minimal amount of logic was used to
emit machine code. For example: according to the x86 instruction specification a 32 bit value
can be pushed onto the stack by with the by 0x50 followed by the four bytes that contain
the literal. This works reasonably well for trivial instructions such as PUSH, but for more
complex operations simple case analysis is not going to be sufficient. The MOV statement has
28 distinct encodings.

A solution is needed that allows the assembly-generating backend of the compiler to be
written in as high-level a language as possible. Naturally, runtime performance is important:
code is compiler and recompiled on demand.

A number of candidate backends have been considered: TCC, LLVM, NASM, GAS,
libyasm, libjit, and LuaJIT. These assembly backends are evaluated in the following sections.

8.3.1 TCC

TCC[6] is the Tiny C compiler. It is completely ISOC99 compliant and capable of compiling
a functioning Linux kernel. An attempt has been made to decouple the assembly-generating
part from the rest of the compiler. This proved to be very challenging, as the compiler is
approximately eighty thousand lines long and it uses an abstract intermediate layer for code
generation, but there is no intermediate layer for the opcode generation itself! The assembly
generating code is littered with constants that partially identify x86 instructions. For this
reason TCC will is not a suitable candidate for assembly generation.

14The expected lifetime of an object is twice its age.
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8.3.2 LLVM

The LLVM project[4] was started in 2000 as an intermediate language for compiler designers
that can generate native code for a multiple different hardware architectures. It has optimiza-
tion and transformation layers which allows the language designer to use a relatively high level
intermediate language for communication with LLVM. The LLVM system is intended for and
primarily used by statically compiled languages[17].

The Unladen Swallow project[3] is an attempt at a faster Python runtime. It is a branch
of CPython and uses a JIT-compiler with LLVM as the backend. After several years of devel-
opment of Unladen Swallow stopped; the project is now abandoned. One of the reasons given,
by one of the developers was that LLVM in its current state generates efficient code, but does
it slowly. Optimizations were also difficult in general because LLVM assumes languages with
C-like attributes as input but for optimizations of a dynamic language high level knowledge
of the language itself is needed.

The absence of successful JIT-compilers based on the LLVM system strongly indicates
that LLVM is also unsuitable as a code-generating backend.

8.3.3 NASM, GAS

Two open source x86 assemblers have been considered for use as backend: NASM[22] and
GAS[1]. Conceptually the use of an existing x86 assembler is simple: compile the code that
is to be just-in-time compiled into a sequence of x86 assembly statements and feed this into
one of the assembler packages. Load the result into memory, and continue from there.

There are some downsides to this approach, however. Connecting an assembler to the
compiler via a pipe is fragile. There is no good way to read error messages from the assembler,
since they are in a human-readable format. Additionally, assemblers assume the input is well
formed: input files are either complete programs or libraries. For JIT purposes often only a
few specific instructions need to be compiled, and the command line interface of open source
assemblers do not afford this functionality.

So to create a reliable interface between the assembler and the rest of the JIT-compiler
the command-line interface has to be replaced with a compiler-to-compiler interface. Due to
the complexity and archaic designs of these assemblers this will be seen as a last resort.

8.3.4 Libyasm

The libyasm library is part of YASM[15] a portable and modular rewrite of the NASM
assembler. Libyasm is the main interface to NASM and is meant to be integrated with
compilers and debuggers. Unfortunately, no JIT compilers (or any compilers, for that matter)
could be found that used libyasm as backend. The documentation seems to be incomplete
and not a single research paper that refers to libyasm could be found. Even though it initially
looked promising it turns out that libyasm is not (yet) suitable as a backend for the JIT
compiler.

8.3.5 libjit

The libjit[2] system is a GNU library for run-time compilation. It consists of a jit-compiler
backend and a virtual machine that implement a low level instruction set. Unfortunately,
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libjit defines how the CPU registers are used and how variables and objects are stored in
memory. This means libjit cannot be used as a simple x86 JIT-assembler.

8.3.6 LuaJIT

LuaJIT is a Just-In-Time compiler for Lua, written by Micheal Pall. The LuaJIT compiler
comprises only 15 thousand lines of C code15 making this the smallest JIT-compiler by a
significant margin.

The LuaJIT compiler has a separate assembly code generator called DynASM written in
Lua. DynASM extends the C language with notation for runtime generated assembly code.
When compiling the JIT-compiler the DynASM preprocessor will take the assembly fragments
from the C code, assembles it and places the precompiled assembly fragment as a constant
byte array into the C file. This is a perfect fit for general JIT-compiler construction. In the
next section the DynASM system will be covered in detail.

8.4 DynASM

DynASM translates assembly snippets into precompiled x86 code. When the JIT-compiler
runs the x86 opcode is constructed by locating and concatenating the right precompiled
snippits and inserting the correct memory addresses and values, which depend on runtime
information.

For instance, the short shorthand assembly statement:

mov [ebp - 4], eax

is equivalent to the GNU assembler statement:

mov eax, dword ptr [ebp-4]

and is interpreted as: subtract 4 from the ebp register, dereference the value and assign
the dereferenced value to the eax register. It is a 32bit mov instruction with a register and
offset as source and a register as destination. There are over twenty different variations of
mov: mov instructions for direct and indirect memory access, for different register sizes (byte,
short, long) and for different kinds of offsets. In this case the appropriate version is:

MOV r/m32,reg32 ; o32 89 /r [386] ; [ece390 illinois.edu]

A move instruction in 32 bits mode (o32) that is supported on at least 386-class processors.
It uses a modr/m (mod register/memory) byte to encode the form of the arguments. The /r

part indicates that the register field in the modr/m field is used to encode the destination.
This version of mov starts with the byte 0x89.

The modr/m byte consists of three parts. The first 2 bits indicate whether displacement
bytes are used (0, 1, or 4 bytes displacement in 32 bit mode). Since we want to subtract 4
we only need a single byte displacement. Bits 3 to 5 indicate the register of the destination.
Since the target register is eax (the 0th register: 000) these three bits can stay zero. The final
3 bits are used for the source register which is ebp (the 5th register: 101). So the modr/m
byte becomes 10 000 101 = 0x45.

15LuaJIT-1.1.5, as measured by SLOCCOUNT
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The modr/m byte indicated a 1 byte displacement is needed. The integer -4 is 0xfc in
two’s complement 8 bit representation. So the final representation of the mov instruction is
0x89 0x45 0xfc. This should illustrate that the case-based approach as used in Chapter 5
is insufficient for generating more complex assembly code and that an intermediate assembly
layer as provided by DynASM is really necessary.

The DynASM system can best be illustrated using a another example. The switch state-
ment below partially implements some instructions:

Listing 9: Compiler with inline assembly

switch ( i n s t r u c t i o n . op ) {
2 case PUSH:

| push eax
4 break ;

case POP:
6 | pop eax

break ;
8 case ADD C:

| add eax , i n s t r u c t i o n . va lue
10 break ;

. . .
12 }

The lines that start with a pipe character (|) are interpreted by the preprocessor. The
DynASM proprocessor will then output the following C code:

Listing 10: Compiler with compiled assembly

switch ( i n s t r u c t i o n . op ) {
2 case PUSH:

// | push eax
4 dasm put ( Dst , 5 4 0 ) ;

break ;
6 case POP:

// | pop eax
8 dasm put ( Dst , 7 5 1 ) ;

break ;
10 case ADD C:

// | add eax , i n s t r u c t i o n . v a l u e
12 dasm put ( Dst , 212 , i n s t r u c t i o n . va lue ) ;

break ;
14 . . .

}

And the raw assembly is added to the C source file. With all source files in place the
JIT-compiler can now be compiled. When code in the dynamic language is evaluated the
dynamic language compiler is invoked and the dynamic language statements are compiled into
bytecode. This bytecode is then passed on to the JIT-compiler that performs the following
tasks:

1. Concatenate the pre-compiled assembly fragments in the sequence of the program byte-
code.
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2. Replace the variable parts of the assembly fragments with the correct addresses and
values.

3. Calculate and fix all the relative jump addresses.

The generated code can now be executed. As execution continues the dynamic program
will run into a function or method that has not yet been compiled and the JIT-compiler will
interrupt execution and compile the necessary functions and methods.

8.5 Register Usage

The x86 machine architecture has eight full-size registers: EAX Accumulator, EBX Base Register
ECX Source Register, EDX Data Register, ESI Source Index, EDI Destination Pointer, EBP Base
Pointer, and ESP Stack Pointer.

For the JIT compiler one register is needed as accumulator, as described in section 5.4.
For this EAX register is the natural choice. The EBX will be a general purpose register that can
be used during for the calculation of intermediate values. The EBP register is used as the base
pointer. Local variables and function arguments have fixed offsets from the base pointer, and
as such can be accessed efficiently. The stack pointer ESP is used in the conventional manner.
The EDI register is the free pointer and is used for memory allocation. The ECX and EDX

registers are used as intermediate registers and may be freely overwritten by any instruction.
The remaining registers have no fixed function and can be freely used by the JIT-compiler.

By assigning a fixed function to a number of the registers the assembly code generated
by the JIT-backend becomes substantially less complex. To illustrate, consider the DUP in-
struction that duplicates the top of the stack. Given that the EDX register cannot contain any
important data the trivial implementation in two instructions is guaranteed to be correct:

mov edx, [esp]

push edx

Without the convention that the EDX register may be used freely the burden is now on the
DUP instruction (a) prove that the EDX register happens to be unused in the current context
(difficult) or (b) that the value in EDX is not altered by the instruction (inefficient). The
assembly code for the DUP instruction would then have to take the following inefficient form:

mov [buf_addr], edx

mov edx, [esp]

push edx

mov edx, [buf_addr]

Where buf addr denotes a memory slot that has been allocated ahead of time that can
be used for temporary storage.

Between functions calls the values of all registers except for EAX, ECX and EDX are preserved,
conform the cdecl calling convention. By honoring this convention the language environment
can seamlessly jump between C library functions and JIT-compiled functions.

8.6 Pass by value

As usual for dynamic languages, assignment is by value, meaning that a value is copied on
assignment. Objects are created on the heap and variables contain references to objects; not
the objects themselves. On assignment the reference is copied, conform by value semantics.
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8.7 Local Variables

In a dynamic language objects are usually allocated from heap memory that is governed
by the garbage collector. This is necessary since the lifetime of an object is defined by its
reachability: once an object can no longer be reached it is considered garbage and it will
eventually get deleted by the garbage collector.

If the JIT-compiler can recognize a variable is used strictly locally then a number of
optimizations can be made:

• the object does not need to be boxed or encoded,

• the object can live on the stack; the garbage collector is not needed, and

• when the object goes out of scope the memory can be re-used immediately.

In section 5 we showed that these optimizations are significant using the prototype com-
piler and virtual machine. After all, a straightforward interpreter or bytecode VM has to
implement even an operation as simple as the addition between two floating point values by
allocating a new floating point object to store the result. In general: every mutable operation
(except assignment) on an object requires the allocation of a new object.

A JIT-compiler cannot determine when a variable is local (except for a few select cases).
If an innocuous operation, such as passing a variable to a function, may affect the lifetime of
the variable: a reference to the variable may be kept in memory.

The problem of unnecessary allocations is partially circumvented by storing small integer
as encoded pointers (section 6.3). The problem remains for composite types and the other
primitive types (floating point values, strings, booleans). Notably, the primitive objects all
fit into a single register. So by unboxing16 the primitive objects the unnecessary allocations
are prevented. This introduces a new problem, when the primitives leave the local scope they
require their type tag again, which is no longer known. To solve this problem the concept of
a Type Stack is introduced.

0x000002A INTEGER

0x0000001 BOOLEAN

0xAD4EFED STRING

Frame Pointer NONE

Return Address NONE

Function Object OBJECT

Fun Argument 1 Type Arg 1
...

...

Fun Argument N Type Arg N

Figure 4: Stack and Type Stack side-by-side

16Stripping the type tag from the object
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A Type Stack is a stack parallel to the the ordinary stack that contains the type tags that
have been stripped from the primitive objects. A set of type registers are introduced that are
parallel to the ordinary registers. As an invariant, a type register always contains the type of
the object of the corresponding register. When an object is pushed onto the stack the type of
the object is pushed onto the type stack. When a literal is assigned to a register the type of
the literal is assigned to the corresponding type register. Figure 3 shows the type stack side
by side the conventional stack. The stack has the conventional layout: function arguments
followed by the stack frame followed by the local variables and temporary storage.

When a primitive variable leaves the local scope the type stack is used to allocate a new
object of the correct type. Primitive objects can remain unboxed in during function calls and
method invocations. The Type Stack approach greatly reduces the frequency at which new
objects are allocated at small price: the cost of unboxing and boxing the primitive values and
the cost of maintaining integrity of the type stack.

8.8 Conclusion

In this chapter the different design considerations have been covered. A garbage collection
algorithm has been chosen. A comparison of JIT-libraries and assemblers lead us to conclude
that LuaJIT was the most suitable for general-purpose JIT-compiler construction.

The conventions for register usage and function calls have been covered. A technique that
reduces the number of unnecessary memory allocations has been covered.

The remaining design decisions, such as language syntax, library functions, and the object
system are completely standard for a generic dynamic language and are not described in
detail.
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9 Conclusion

9.1 Results

The research in Dynamic Language Performance with JIT-compilation yielded the following
results (in order of appearance):

1. We have shown that a very primitive virtual machine has virtually identical performance
characteristics as CPython for some CPU-bound algorithms (chapter 5).

2. A primitive JIT-compiler has been constructed in less than 100 lines of code. Perfor-
mance results demonstrate that the replacing a virtual machine with the simplest of
JIT-compiler can immediately give significant benefits. We have shown that for some
CPU-bound algorithms the primitive JIT-compiler comes with 50% of the performance
of the equivalent C program (chapter 5).

3. We demonstrated that a type-inference based approach is not feasible for dynamic lan-
guages because no type inference algorithm can correctly identify co-variant and contra-
variant types (chapter 6). We emphasize that because type tests are so inexpensive only
very few resources can be spent on detecting unnecessary tests.

4. We have determined that the cost of encoding integers (chapter 6) is free. The intuitive
assumption is that repeatedly decoding and encoding integers is going to lead to a
measurable decrease in performance, but this turns out to be not the case. Based on our
measurements and the on related research we conclude that elimination of overflow tests
in a purely dynamic environment are unlikely to ever produce substantial performance
gains.

5. We evaluated a dozen different assembler backends (chapter 8) and concluded that all
were unsuitable for embedding in a JIT-compiler, except for LuaJIT which turned out
to be perfect for JIT-compilation and general purpose generation of assembly code.
The LuaJIT assembler was moderately easy to separate from the rest of the LuaJIT
compiler.

6. A Type Stack was introduced as an technique for unboxing primitive local variables
(chapter 8). By keeping track of type information in a secondary stack unnecessary
allocations are prevented (and therefore fewer garbage collection cycles are needed). No
similar technique has been found in the literature.

From the research as a whole we conclude that the creation of prototype virtual machines
and prototype JIT-compilers is an effective way to measure the performance characteristics
of dynamic programming languages. We also conclude that the performance gains offered by
JIT-compilation are significant, even if only basic JIT-compilation strategies are employed.

9.2 Future Work

In this research project the JIT-compiler and the interpreters have deliberately kept simple
and as such some optimizations have not been made. One possible direction for future work
is to investigate the performance gains that can be made with more advanced classical com-
piler optimizations. For instance, graph based register allocation algorithms can be used, or
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common subexpression elimination. Another venue for optimization is function inlining or by
rewriting tail-recursive functions into the procedural equivalent.

More performance gains may be achieved by adding a second bytecode layer to the com-
piler. A high level bytecode layer allows for high level structural optimizations, whereas a
low level bytecode layer allows for many peephole optimizations. We estimate that by adding
second bytecode layer and some simple peephole optimizations the length of the generated
assembly can be reduced by a third.

Finally, trace-based JIT optimization techniques can be applied. Heuristics and measure-
ments are used to determine which parts of the program are executed frequently. Program
traces of these sections can then be recorded. These trances contain types information and
other useful assumptions for further optimization. Based on these the trace information spe-
cialized (and more efficient) code can then be created. Because there are only few hot code
paths in a program more aggressive optimization techniques can be applied.

9.3 Reflection

During the course of this project many different areas of research were touched upon. With
hindsight one detour probably could have been avoided: a problem with type inference lead
into a detour into type theory and ultimately let us to conclude that one of the underlying
assumptions of our approach was flawed. A better study of the literature beforehand would
ultimately have been better.

Aside from this issue the research has yielded multiple interesting results. Often we had
the satisfaction of finding our intuitions confirmed by the prototypes or by related research
projects. In some cases the findings did not line up with our intuitions and we changed course
accordingly.

Based on the results enumerated above we are pleased to conclude that the research has
yielded multiple interesting results. During the research we came across numerous research
projects that unsuccessfully attempted to improve the performance characteristics of estab-
lished dynamic languages. Some of those research projects made assumptions about perfor-
mance characteristics that turned out to be incorrect (section 4.2). This paper may perhaps,
amongst other things, persuade researchers that small-scale prototypes can accurately model
the performance characteristics of real-world language environments.
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