
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCS-2007-29

2007-05-01

Unwoven Aspect Analysis Unwoven Aspect Analysis

Morgan G. Deters

Various languages and tools supporting advanced separation of concerns (such as aspect-

oriented programming) provide a software developer with the ability to separate functional and

non-functional programmatic intentions. Once these separate pieces of the software have been

specified, the tools automatically handle interaction points between separate modules, relieving

the developer of this chore and permitting more understandable, maintainable code. Many

approaches have left traditional compiler analysis and optimization until after the composition

has been performed; unfortunately, analyses performed after composition cannot make use of

the logical separation present in the original program. Further, for modular systems that can be

configured... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Deters, Morgan G., "Unwoven Aspect Analysis" Report Number: WUCS-2007-29 (2007). All Computer
Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/919

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233233822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F919&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F919&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/919?utm_source=openscholarship.wustl.edu%2Fcse_research%2F919&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/919

Unwoven Aspect Analysis Unwoven Aspect Analysis

Morgan G. Deters

Complete Abstract: Complete Abstract:

Various languages and tools supporting advanced separation of concerns (such as aspect-oriented
programming) provide a software developer with the ability to separate functional and non-functional
programmatic intentions. Once these separate pieces of the software have been specified, the tools
automatically handle interaction points between separate modules, relieving the developer of this chore
and permitting more understandable, maintainable code. Many approaches have left traditional compiler
analysis and optimization until after the composition has been performed; unfortunately, analyses
performed after composition cannot make use of the logical separation present in the original program.
Further, for modular systems that can be configured with different sets of features, testing under every
possible combination of features may be necessary and time-consuming to avoid bugs in production
software. To solve this testing problem, we investigate a feature-aware compiler analysis that runs during
composition and discovers features strongly independent of each other. When the their independence can
be judged, the number of feature combinations that must be separately tested can be reduced. We
develop this approach and discuss our implementation. We look forward to future programming
languages in two ways: we implement solutions to problems that are conceptually aspect-oriented but for
which current aspect languages and tools fail. We study these cases and consider what language designs
might provide even more information to a compiler. We describe some features that such a future
language might have, based on our observations of current language deficiencies and our experience
with compilers for these languages.

https://openscholarship.wustl.edu/cse_research/919?utm_source=openscholarship.wustl.edu%2Fcse_research%2F919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/919?utm_source=openscholarship.wustl.edu%2Fcse_research%2F919&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2007-29

Unwoven Aspect Analysis, Doctoral Dissertation, May 2007

Authors: Morgan G. Deters

Corresponding Author: mdeters@cse.wustl.edu

Abstract: Various languages and tools supporting advanced separation of concerns (such as aspect-oriented
programming) provide a software developer with the ability to separate functional and non-functional
programmatic intentions. Once these separate pieces of the software have been specified, the tools
automatically handle interaction points between separate modules, relieving the developer of this chore and
permitting more understandable, maintainable code.

Many approaches have left traditional compiler analysis and optimization until after the composition has been
performed; unfortunately, analyses performed after composition cannot make use of the logical separation
present in the original program. Further, for modular systems that can be configured with different sets of
features, testing under every possible combination of features may be necessary and time-consuming to avoid
bugs in production software.

To solve this testing problem, we investigate a feature-aware compiler analysis that runs during composition and
discovers features strongly independent of each other. When the their independence can be judged, the

Type of Report: PhD Dissertation

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

WASHINGTON UNIVERSITY

Sever Institute
School of Engineering and Applied Science

Department of Computer Science and Engineering

Dissertation Examination Committee:
Ron K. Cytron, Chair

Chris Gill
Ronald Indeck
Chenyang Lu
Aaron Stump

UNWOVEN ASPECT ANALYSIS

by

Morgan G. Deters

A dissertation presented to the

Graduate School of Arts and Sciences

of Washington University in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

May 2007

Saint Louis, Missouri

copyright by

Morgan G. Deters

2007

Acknowledgments

would first like to thank my advisor Dr. Ron Cytron for his guidance and continuedI patience on this research, this dissertation, and for my graduate education more
broadly; Drs. Aaron Stump and Chris Gill for collaborations and insightful discus-

sions over the years; and all five members of my doctoral committee, Drs. Ron Cytron,
Chris Gill, Aaron Stump, Chenyang Lu, and Ron Indeck, from whom I was very fortunate
to receive invaluable suggestions in performing this work. Without them, among other
things, I would not graduate. So the dean tells me.

Charles Comstock assisted in the editing of this dissertation; for his reading of drafts and
his interest I am grateful.

The reference counting work of Chapter 5 was joint work with Nick Leidenfrost, Matt Hamp-
ton, James Brodman, and Ron Cytron, originally published at Real-Time and Embedded
Technology and Applications Symposium (rtas) in 2004, and the rate-monotonic template
metaprogramming of Chapter 4 was joint work with Chris Gill and Ron Cytron, originally
published at the Model-Driven Embedded Systems (mdes) workshop at rtas in 2003. I
further wish to thank Dante Cannarozzi and Scott Friedman for their help in the concep-
tualization and implementation of the work in this chapter, and Martin Linenweber for
his tireless effort implementing and improving the Clazzer tool, a dataflow-aware bytecode-
manipulation and optimization framework I’ve used for the work of Chapter 5 and countless
other projects over the years. My friend and colleague Angelo Corsaro was the original de-
signer and implementer of jRate, a real-time Java compiler and runtime platform; in recent
years I’ve collaborated with him on maintaining and extending jRate as a SourceForge.net
project. It was this compiler and runtime platform I modified for Chapter 6, and the work
would not have been possible but for Angelo’s vision and determination in his work on
jRate.

Off-campus, I kept my sanity (but not always my sobriety) only through the Herculean and
coordinated efforts of Shanna Carpenter, Daron Dierkes, Justin Levine, Scott McGinnis,
Sam Moyerman, Anna Olsson, John Reskusich, Angela Woike, and Bob Zimmermann es-
pecially; I could not have made it without these supportive and wonderful friends. Many
friendships were critical and important to me, including those of Don Allgeier, Dawn Chil-
dress, Devin Childress, Lisa Clancy, Nicci Cobb, Charles Comstock, Matthew Cunningham,

ii

Ravi Das, Ben Floyd-Clapman, Ava Hegedus, Jake LaBombarbe, Brent Larson, Annie Mc-
Cutchen, Derrick Mosley, Ryan Ritter, William Smith, Ben West, Eddy Westbrook, and
innumerable others.

I should thank all past and present members, affiliates, and conspirators of the Distributed
Object Computing Group at Washington University for their friendship and stimulating
discussions and/or arguments. Aside from those already mentioned, several in particular
deserve special, alphabetically-ordered mention: Kitty Balasubramanian, Sharath Cholleti,
Delvin Defoe, Steve Donahue, Lucas Fox, Scott Friedman, Matt Hampton, Mike Henrichs,
Chris Hill, Richard Hough, Frank Hunleth, Victor Lai, Rob LeGrand, David Levine, Tobias
Mann, Balachandran Natarajan, Kirthika Parameswaran, Michael Plezbert, Ravi Pratap
Maddimsetty, Irfan Pyarali, Doug Schmidt, Venkita Subramonian, Justin Thiel, Stephen
Torri, and Nanbor Wang. I must also acknowledge Peggy Fuller, Jean Grothe, Myrna
Harbison, Sharon Matlock, Madeline Straatmann, and Stella Sung, without whom the de-
partment would not function, and the staff of Computing Technology and Services, without
whom the department would not compute.

I never expected to be in touch with so many friends from my undergraduate days; these
friendships have stood the test of time. For daily affirmations, laughs, rants, and more,
I thank Jeremy Axe, Brandt Fundak, Mike Groeniger, Brian Ingold, Dan Isaacs, Lou Lo-
masky, Colleen Myers, Keith Myers, Tom Printy, Justin Schlenker, Andy Staats, Kasia
Trapzso, and Jeremy Zawodny. Collectively, the Goon Squad.

I thank the faculty of Bowling Green State University’s Department of Computer Science
for their guidance; in particular, Drs. Ron Lancaster, Walter Maner, Sub Ramakrishnan,
and Guy Zimmerman provided me with much to think about during a critical point in my
academic life.

I thank Linda Stacy for teaching me years ago to cook under pressure and demanding that
I be a decent human being. It meant a lot to me.

And I would especially like to thank my parents, Dr. Donald and Lynn Deters, for their
lifetime of support and encouragement.

The research represented in this thesis was sponsored by the Defense Advanced Research
Projects Agency (darpa) under the pces program (contract F33615–00–C–1697); darpa

and Raytheon Integrated Defense Systems under arms ii; and the Air Force Research
Laboratory (afrl) and the Boeing Company under the artec program.

E323 23C4 BE50 29C2 9FBD 77F8 4E87 8464 2325 9CBD

Morgan G. Deters

Washington University in Saint Louis

May 2007

iii

For Ace and Zoë,
whose midnight meows

are even better than caffeine

iv

Contents

Acknowledgments ii

List of Figures xii

Abstract xvi

Preface xviii

1 Introduction 1

1.1 Preview of technical contributions . 2

1.2 General terms and conventions used in this text 3

I Aspect-Oriented Programs 4

2 Aspects and Aspect Weaving 5

2.1 Terms and definitions . 5

2.1.1 Aspect . 5

2.1.2 Join points . 6

2.1.3 Pointcuts . 7

2.1.4 Advice . 9

2.1.5 Intertype declarations . 9

2.1.6 Declare statements . 10

v

2.1.7 Summary . 10

2.2 Aspect weaving . 10

2.2.1 A nominal weaver . 12

2.2.2 AspectJ’s weaver . 12

2.3 Chapter summary . 13

3 System Aspects 14

3.1 Aspect-similar mechanisms . 15

3.1.1 Template metaprogramming . 15

3.1.2 Bytecode transformations . 16

3.1.3 Compiler modifications . 16

3.2 Chapter summary . 17

4 Rate-Monotonic Metaprogramming 18

4.1 Introduction . 19

4.2 Principles . 21

4.2.1 Templates . 21

4.2.2 Template metaprogramming . 22

4.2.3 Type traits . 23

4.2.4 Typelists . 24

4.2.5 Functors . 24

4.3 Approach . 24

4.3.1 Specification . 26

4.3.2 Operation . 27

4.3.3 A walkthrough example . 29

4.3.4 Tasks as types . 31

4.3.5 Feasibility and program correctness 31

4.4 Extensions to the base model . 32

vi

4.4.1 Enhanced tasks . 32

4.4.2 Searching a feasibility space . 33

4.5 Related work . 34

4.6 Chapter summary . 34

5 Reference-Counting Aspects 38

5.1 Introduction . 39

5.1.1 Related Work . 40

5.1.2 Treatment of dead storage . 40

5.2 Approach . 41

5.2.1 Heap-only reference counting . 43

5.2.2 Approximation of stack references 44

5.2.3 Multithreading and reference counting 48

5.2.4 A simple example . 49

5.2.5 Cycles and weak references . 50

5.2.6 Aspect implementation details . 51

5.3 Reference-countable objects . 52

5.4 Recycling objects . 53

5.4.1 Automatic Approaches . 55

5.5 Implementation . 57

5.6 Experimentation . 60

5.7 Chapter summary . 64

6 Dual Heap Aspects 67

6.1 Introduction . 68

6.2 Semispace copying garbage collection . 70

6.3 Dayton’s hardware garbage collector . 71

6.4 Requirements for software support . 73

vii

6.5 An aspectual description of the runtime system 76

6.6 Implementation of software support . 78

6.6.1 Java support . 78

6.6.2 C++ support . 81

6.6.3 Read and write barriers . 82

6.6.4 Implementation of compiler support 86

6.6.5 Overhead of barrier instrumentation 86

6.7 Limitations . 87

6.8 Alternatives . 90

6.9 Chapter summary . 91

7 Observations about System Aspects 92

7.1 Performance problems . 93

7.2 Lack of type-sensitive constructs . 93

7.3 Model mismatch for system-level concerns 93

7.4 Systemic aspect languages . 94

7.4.1 Reflective aspect code . 94

7.4.2 Systemic join point model . 95

7.4.3 Generalized join point model . 96

7.5 Chapter summary . 96

II Reducing the Testing Burden 97

8 The Testing Problem 98

8.1 Introduction . 98

8.2 Subsetting . 99

8.3 Finding valid configurations . 101

8.3.1 Feature set specifications . 101

viii

8.3.2 A configuration-enumerating algorithm 102

8.3.3 Discussion . 104

8.3.4 Correctness . 107

8.3.5 Computational complexity . 110

8.4 Feature dependence . 112

8.5 Chapter summary . 113

9 Aspect Independence 114

9.1 A taxonomy of dependence . 115

9.2 Explicit independence . 115

9.3 Weave independence . 116

9.4 Control/data independence . 117

9.4.1 An example . 118

9.4.2 Discussion . 120

9.5 Insensitivity . 123

9.5.1 Functional sensitivity . 123

9.5.2 Nonfunctional sensitivity . 123

9.5.3 Reification of nonfunctional concerns 124

9.6 Conceptual independence . 125

9.7 AspectJ independence . 125

9.8 Chapter summary . 126

10 Aspect Dependence Analysis 127

10.1 Graph conventions used in this chapter . 127

10.2 Case study . 128

10.3 FACET . 140

10.3.1 The feature registry . 142

10.3.2 Payload contention . 143

ix

10.4 Chapter summary . 144

11 Implementation 147

11.1 Modifications to the compiler . 148

11.1.1 Front-end modifications . 148

11.1.2 Middle-end modifications . 149

11.1.3 Consequences of implementation design 150

11.2 Chapter summary . 150

III Context of this Work 151

12 Related Work 152

12.1 Advanced separation of concerns . 152

12.1.1 Aspect-oriented programming . 152

12.1.2 Multi-dimensional separation of concerns 153

12.1.3 Feature-oriented programming . 153

12.1.4 Relationship to this work . 153

12.2 System aspects . 154

12.3 Program dependence analysis . 154

13 Conclusions 155

13.1 Key technical contributions . 155

13.1.1 System aspects . 156

13.1.2 Taxonomy of dependence relations 156

13.1.3 Determining valid configurations . 156

13.1.4 Feature independence analysis . 156

13.1.5 Future directions for aspect languages 157

13.2 This work in context . 157

x

13.3 Unwoven aspect analysis . 157

Appendix A Source Listings 159

Appendix B Garbage Collector Software Support ChangeLog 182

References 188

Index 199

Revision History 207

Curriculum Vitæ 208

xi

List of Figures

2.1 Compiler infrastructure for an aspect-oriented language 11

2.2 Two pieces of before advice implemented at a call join point, an illustration
of AspectJ’s weaving mechanism in Section 2.2.2 13

4.1 A C++ template metaprogram to sum an arbitrary-length number of in-
tegers at compile time . 25

4.2 A sample Task . 26

4.3 The Schedule template . 28

4.4 The main “loop” of the RMA Feasible template metaprogram 29

4.5 Supporting templates for the RMA Feasible template metaprogram of Fig-
ure 4.4 . 36

4.6 Instantiating and using the Schedule template 37

4.7 An example task set specification and its feasibility test 37

4.8 Specifying traits for task dependence . 37

4.9 Specifying traits for task alternation . 37

5.1 Heap reference-counting instrumentation 45

5.2 Heap reference-counting together with approximate stack reference-count-
ing instrumentation . 46

5.3 Linked list with carrier objects . 49

5.4 A tree with carrier objects . 49

5.5 Definitions for recycle() and a recycling-aware version of new 54

5.6 AspectJ advice to process object fields . 59

xii

5.7 Average execution times for the Singly-Linked List benchmark generating
lists of 106 carrier objects . 61

5.8 Results for jess . 62

5.9 Results for db . 62

5.10 Stack vs. heap reference counting . 65

5.11 Comparison of the average execution times (sec) of four spec jvm98
benchmarks (size 100) for unmodified benchmarks and benchmarks with
reference-counting, recycling-aware code injected 65

6.1 Semispace garbage collection in mid-cycle 70

6.2 The hardware garbage collector unit’s interface 72

6.3 Application startup . 74

6.4 Application using garbage collector hardware unit 75

6.5 Application using garbage collector hardware unit; here, some objects are
garbage . 75

6.6 Pseudocode for (non-static) object field read and write barriers 83

6.7 Pseudocode for array element read and write barriers 84

6.8 Pseudocode for global (static field) and local variable write barrier. No
read barrier is needed . 85

6.9 Pseudocode for calling a method (through the vtable) and getting the
length of an array . 85

6.10 Size (in bytes) of x86 prismj application binary and dependent libraries
with and without instrumentation (see Section 6.6.5) 88

6.11 Comparison of sizes of prismj application binary and dependent libraries
under different GCC optimization levels (see Section 6.6.5) 89

6.12 Comparison of sizes of prismj application binary and dependent libraries
with and without instrumentation for hardware garbage collection support
(see Section 6.6.5) . 89

8.1 Our algorithm to enumerate valid software configurations based on a fea-
ture set specification (see Section 8.3.2) 104

8.2 The find() helper subroutine to compute all valid configurations of
Subgraph(G, v) . 105

xiii

8.3 Definition of the cross operator × . 105

8.4 Recursive independent subgraphs . 106

9.1 Two weave-dependent aspects and their base program 116

9.2 Aspectual code (borrowing AspectJ syntax but using the nominal weaver
of Section 2.2.1) . 119

9.3 The program dependence graph of the code of Figure 9.2 120

9.4 The program dependence graph of the code of Figure 9.2; also the program
dependence graph of the code after application of A and (separately) B . 121

9.5 Same as Figure 9.4, but affected points (APA(P) and APB(P)) have been
shaded . 121

9.6 Figure 9.5 with application of the other aspect along each path 122

9.7 Figure 9.6 with a visual diagram of the dependence conditions. In this case
aspects A and B are control/data-flow dependent 122

10.1 Code for the simple call-tracing aspect of Section 10.2 129

10.2 A simple base program that converts cups to quarts 129

10.3 The control flow graph of the program in Figure 10.2 130

10.4 The program dependence graph of the program in Figure 10.2 131

10.5 The program dependence graph of the program in Figure 10.2 after apply-
ing call-tracing advice . 132

10.6 Code for a simple call-tracing aspect (Section 10.2) that has no exception
footprint . 133

10.7 The control flow graph of the program in Figure 10.2 after applying and
inlining call-tracing advice with no exception footprint 134

10.8 The program dependence graph of the program in Figure 10.2 after apply-
ing and inlining call-tracing advice with no exception footprint 135

10.9 The control flow graph of the tracing- and metric-advised program of Fig-
ure 10.2 (inlined advice code) . 136

10.10 The program dependence graph of the tracing- and metric-advised base
program in Figure 10.2 (inlined advice code) 137

xiv

10.11 The control flow graph of the metric- and input-gallon-advised base pro-
gram in Figure 10.2 (inlined advice code) 138

10.12 The program dependence graph of the metric- and input-gallon-advised
base program in Figure 10.2 (inlined advice code) 139

10.13 facet’s feature set specification . 141

10.14 facet’s AutoRegisterAspect, which registers the time-to-live filtering
feature . 143

10.15 facet’s TtlFeature interface, with a nested aspect that registers the time-
to-live filtering feature . 144

10.16 facet’s TtlAspect aspect, with advice to update the time-to-live field and
only proceed if the time has not expired 145

10.17 facet’s TimeStampAspect aspect, with advice to assign the timestamp
field when an event is pushed . 146

xv

ABSTRACT OF THE DISSERTATION

Unwoven Aspect Analysis

by

Morgan G. Deters

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2007

Ron K. Cytron, Chairperson

Various languages and tools supporting advanced separation of concerns (such as

aspect-oriented programming) provide a software developer with the ability to separate

functional and non-functional programmatic intentions. Once these separate pieces of the

software have been specified, the tools automatically handle interaction points between

separate modules, relieving the developer of this chore and permitting more understandable,

maintainable code.

Many approaches have left traditional compiler analysis and optimization until after

the composition has been performed; unfortunately, analyses performed after composition

cannot make use of the logical separation present in the original program. Further, for

modular systems that can be configured with different sets of features, testing under every

possible combination of features may be necessary and time-consuming to avoid bugs in

production software.

To solve this testing problem, we investigate a feature-aware compiler analysis that

runs during composition and discovers features strongly independent of each other. When

the their independence can be judged, the number of feature combinations that must be

separately tested can be reduced. We develop this approach and discuss our implementation.

We look forward to future programming languages in two ways: we implement so-

lutions to problems that are conceptually aspect-oriented but for which current aspect

languages and tools fail. We study these cases and consider what language designs might

provide even more information to a compiler. We describe some features that such a future

language might have, based on our observations of current language deficiencies and our

experience with compilers for these languages.

Preface

hen faced with increasingly complex software requirements, software de-W velopers are motivated to find more advanced development tools and

languages that allow them to reduce their labor. Ideally, such tools allow

them more clearly to express their algorithmic and compositional intents and to reduce the

repetitive and often redundant nature of many software development tasks. Proposed solu-

tions to fit this need constitute a considerable slice of computer science research spanning

several decades; the complete body of work is too considerable even to list. Among the

notable recent work that is most relevant to this text are the development of cross-platform

middleware, domain-specific languages, modelling tools, automatic programming, design

patterns, advanced type systems, and new approaches to programming coupled with new

languages to support these new approaches.

Such new devices drive upwards the level of abstraction afforded the programmer.

When properly designed, new abstractions—whether new features of a language, function-

ality provided by middleware, or something else—are highly useful to developers; this is

one large motivation behind the invention of new abstractions. Often this increased level

of abstraction comes at a price: automated language translation and analysis can be more

expensive or difficult, requiring additional compilation, execution, and testing time. This

stretches the development cycle, countering, in part, some of the programming efficiency

introduced by the abstraction.

This is not always the case, however. Sometimes, a new abstraction comes “for free”

or even with additional unintended benefits. The use of higher-level abstractions can be

highly useful to compilers when the intent of the developer becomes clearer as a result of

their proper application. This dissertation argues that a certain modern abstraction, the

aspect, has this property.

Aspect-Oriented Programming (AOP) boasts more modularity than typically capa-

ble of popular, non-AOP software systems. Through aspects, a programmer can modularly

xviii

express not only algorithms (procedures) and constituents (objects), but emergent behav-

ior (aspects) of his program. Reduced to a proper form, this has the potential to provide a

wealth of information to a translation engine seeking to implement efficiently the specified

software system. Further, information about how the system is supposed to act is partly

specified in a manner not available in popular non-AOP languages.

This is the information exploited for the analysis herein developed. This dissertation

is concerned primarily with investigating aspects and determining their effect on compiled

code: it develops analysis techniques that can be applied to a collection of aspects to inform

compilation, and it identifies deficiencies in current aspect technology.

⋆ ⋆ ⋆

This dissertation has been organized into three parts. After Chapter 1’s introduction,

Part I sets the stage by introducing aspect-oriented programming (Chapter 2) and providing

some illustrative “systemic” examples of aspects (Chapter 3 describes system aspects and

Chapters 4, 5, and 6 walk through nontrivial examples); it concludes with observations about

these aspects and about aspect-oriented languages in general (Chapter 7). Chapters 4,

5, and 6 also stand on their own as novel solutions to the problems discussed in each.

Part II lays out some problems of testing modern, feature-oriented software (Chapter 8),

describes our notion of aspect dependence and our analysis (Chapter 9), provides case

studies (Chapter 10), and outlines our implementation (Chapter 11). Part III surveys

related work not noted elsewhere (Chapter 12) and concludes (Chapter 13). An index with

topical and bibliographic entries is provided.

Following the introductory chapter, this dissertation can be read in alternate ways.

Parts I and II can be skipped in part, especially for the reader familiar with aspect-oriented

programming or dependence analysis; however, Chapters 2, 5, 7, 8, 9, and 10 are recom-

mended reading in any case. Part III notes conclusions relevant to the work as a whole.

With a nod to Dr. Knuth, the diagram on the next page is provided and makes explicit the

set of recommended paths through this text.

xix

Part I
Aspect−Oriented Programming

Preface

Part II
Reducing the Testing Burden

Introduction

Chapter 5

Chapter 7

Chapter 8

Chapter 2

Chapter 9

Chapter 10

Part III
Context of this Work

Alternate paths through this text.

xx

Chapter 1

Introduction

his dissertation intends to achieve two goals. The first is to argue for a specificT direction for future programming languages. Part I of this work primarily

concerns itself with the review of certain “system” aspects that can conceptually

be written in an aspect-oriented programming style, though current languages and tools for

that purpose are largely inadequate. This inadequacy is, at times, due to an inability to

express the solution in a “natural” and type-safe way; at others, it is due to a problem

with the performance of state-of-the-art tools and the executables they produce. In some

instances, well-studied language features could be added to the host language to fix the

problem; generic programming features would be very useful for some of these system aspect

implementations, for example. Other cases require more work to add sufficient flexibility

to the host language. Chapter 7 draws these conclusions from observations made of the

material in Part I.

The second goal of this work is to demonstrate that aspects are not only highly

useful to developers but to compilers and analysis tools as well. Programs written in

aspect languages provide certain hints to the compiler that are often lost in non-aspect

languages. Part II describes compiler mechanisms for discovering these hints and applies

aspect independence to reduce the amount of testing required.

1

CHAPTER 1. INTRODUCTION

1.1 Preview of technical contributions

This work makes the following eleven contributions.

1. It argues for a shift in view of aspects and the types of applications for which they

are useful.

2. It provides three examples of “system aspects” (Chapters 4, 5, and 6), each of which

stand on their own as novel work:

• a compile-time metaprogram is designed and implemented to statically configure

a rate-monotonic schedule (Chapter 4);

• an aspectual system for reusing heap storage in Java programs based on a

reference-counting scheme is developed (Chapter 5); and

• software support for a hardware garbage collector is motivated and its imple-

mentation described (Chapter 6).

3. It observes where these system aspects don’t have an aspectual formulation with

today’s languages and tools (Chapter 7).

4. It indicates possible future directions for aspect languages to bring these aspects, and

others like them, under the aspect purview (Chapters 7 and 13).

5. It introduces a taxonomy of dependence and independence relations for aspects; these

terms are used inconsistently in the literature (Chapter 9).

6. It proposes an algorithm for determining valid configurations based on a static feature

set specification (Chapter 8).

7. It investigates a method of analysis to determine strong independence of aspects

(Chapter 10).

8. It provides an implementation of that analysis in a production compiler (Chapter 11).

9. It determines what benefits can be gained by aspect independence in terms of pro-

grammer effort (Chapter 10).

10. It considers possible future directions for aspect languages that could maximize this

gain (Chapter 13).

2

CHAPTER 1. INTRODUCTION

11. It compares the future aspect language directions hinted at by contributions 4 and 10

above (Chapter 13).

For a concluding discussion of all of these contributions, see Chapter 13.

To our knowledge these contributions are not previously explored in the literature,

except where noted; in particular, Chapters 4 and 5 are based on previous work published by

the author and his colleagues, and Chapter 12 points to some related work not investigated

elsewhere.

1.2 General terms and conventions used in this text

The terms developer, software developer, programmer, application programmer, coder, and

sometimes author are used throughout and are synonymous. Except where explicitly stated

or clear from context, no semantic distinction between these terms is intended. This being

a text on compilers and languages, the term user is occasionally employed for the same

purpose where its meaning should be clear.

Code listings and references to specific code attributes in the text are typeset in a

monospace typeface. Conceptual programming entities, when not intended to refer to a

specific code artifact in a specific implementation, are represented in sans serif. Traditionally

uppercase acronyms of more than three letters are sometimes set in small capitals.

3

Part I

Aspect-Oriented Programs

New ideas go through stages of acceptance, both from within and without.

From within, the sequence moves from “barely seeing” a pattern several

times, then noting it but not perceiving its “cosmic” significance, then using

it operationally in several areas, then comes a “grand rotation” in which the

pattern becomes the center of a new way of thinking, and finally, it turns

into the same kind of inflexible religion that it originally broke away from.

From without, as Schopenhauer noted, the new idea is first denounced as

the work of the insane, in a few years it is considered obvious and mundane,

and finally the original denouncers will claim to have invented it.

– Alan Kay, The Early History of Smalltalk [63]

4

Chapter 2

Aspects and Aspect Weaving

spect-Oriented Programming (AOP) [67]—and, more generally, Advanced Sep-A aration of Concerns (ASoC) technology—is a broad and active area of research.

Here we only introduce the subject. For reviews of several approaches to ASoC,

see [44] and also Chapter 3 of [36].

2.1 Terms and definitions

We adopt the terminology of the programming language AspectJ [6]. AspectJ is a general-

purpose aspect-oriented extension to Java [5].

2.1.1 Aspect

Conceptually, an aspect is the implementation of a particular view of program state and

behavior related to a particular concern of the program. In aspect-oriented languages,

aspects are technically an extension to the class concept. The body of an aspect may, like

classes, contain method, field, constant, and type definitions. It may also contain advice

and pointcut definitions, and intertype declarations (historically called field and method

introductions). These terms are defined below.

From an implementation perspective, the main behavioral difference between a class

and an aspect is that an aspect is not instantiated explicitly by the user. Instances of aspects

are implicitly created by the runtime system in accordance with programmer specification.

5

CHAPTER 2. ASPECTS AND ASPECT WEAVING

Aspects may be singletons [49] or may be instantiated in certain join point contexts (below)

or type contexts. Aspects typically also include advice and intertype declarations, described

below, that have significant effects on program behavior.

2.1.2 Join points

Join points are points in the execution of a program. That definition is very general,

and typically the join point model of a particular aspect-oriented language makes severe

restrictions on what constitutes a valid join point.1 AspectJ defines several kinds of join

points:

• executions of methods and constructors

• calls to methods and constructors

• access to the values of fields

• assignments to the values of fields

• “pre”-initializations of object instances (before superclass constructor invocation)

• initializations of object instances (after superclass constructor invocation)

• the one-time initializations of classes (static initializations)

• the execution of exception handlers

• the execution of advice (see below)

Sets of join points can be flexibly constructed using pointcuts, and the composition of these

sets is allowed using a natural syntax. For instance, the specification

execution(void Foo.run()) || execution(void Foo.main(String[]))

selects executions of the Foo.run() method and also executions of the Foo.main() method

(for some class Foo). Pointcuts are further discussed below.

1Still, the general definition of join point is intentionally limiting; it is based on current widely-used
aspect-oriented languages. Join point models need not be restricted to points in the execution of a program,
but could represent points in the flow of data through the execution of a program, the connectedness of a
program’s data storage, or communication between two or more programs. These ideas are explored further
in Chapter 13.

6

CHAPTER 2. ASPECTS AND ASPECT WEAVING

2.1.3 Pointcuts

Pointcuts, simply, are sets of join points.

Some pointcut primitives are defined by the AspectJ language to select join points

matching certain criteria. First, each of the join point types of Section 2.1.2 has a corre-

sponding primitive:

• execution(pattern) – executions of methods or constructors matching pattern

• call(pattern) – calls to methods or constructors matching pattern

• get(pattern) – accesses of fields matching pattern

• set(pattern) – assignments to fields matching pattern

• preinitialization(pattern) – pre-initializations of instances of classes matching

pattern

• initialization(pattern) – initializations of instances of classes matching pattern

• staticinitialization(pattern) – the one-time initializations of classes matching

pattern

• handler(pattern) – the execution of exception handlers for exception types matching

pattern

• adviceexecution() – the execution of advice (see below)

Further, it is possible to select join points which are lexically within a type, constructor, or

method:

• within(pattern) – join points lexically within a type matching pattern

• withincode(pattern) – join points lexically within a constructor or method matching

pattern

The various application sites of these pointcut specifiers and of the join points described in

Section 2.1.2 can be discovered statically for a program at compile time. However, pointcuts

can select on dynamic data as well:

7

CHAPTER 2. ASPECTS AND ASPECT WEAVING

• cflow(pointcut) – selects join points in the control flow of join points in pointcut ; for

example, if pointcut includes a method call join point, cflow(pointcut) includes all

join points that occur (dynamically) during the call, including the call join point itself

• cflowbelow(pointcut) – selects join points in the control flow of join points in point-

cut , excluding the top-level join points themselves

• if(expr) – selects join points at which the Java boolean expression expr is true

Obviously the application sites of these dynamic pointcut primitives cannot be statically

determined in general. In practice, candidate application sites can be statically determined,

and runtime checks must be inserted into the program to determine whether the cflow()

or if() applies in a particular dynamic context.

Additional pointcut specifiers select based on the types of data associated with the

join point:

• this(pattern) – selects join points where the special this reference is of a type

matching pattern

• target(pattern) – selects join points where the target of the join point—the object

containing the field referenced or receiving a method call—is of a type matching

pattern

• args(pattern-list) – selects join points where the associated arguments match all

patterns in pattern-list

Finally, pointcuts can be negated (with !), and their union with other pointcuts

can be computed (with ||) as well as their intersection (with &&). They can be explicitly

named and these names used in other pointcuts. Such named pointcuts can have formal

parameters, and these formal parameters can be bound to the data associated with the join

point using an extended version of the this, target, and args constructs:

• this(identifier) – selects join points where the special this reference has the type of

formal parameter identifier ; identifier is bound to this reference

• target(identifier) – selects join points where the target of the join point—the object

containing the field referenced or receiving a method call—matches the type of formal

parameter identifier ; identifier is bound to this reference

8

CHAPTER 2. ASPECTS AND ASPECT WEAVING

• args(pattern-or-identifier-list) – selects join points where the associated arguments

match the types of formal parameters and type patterns in pattern-or-identifier-list ;

named formal parameters are bound to the actual parameters at the join point

For a full account of pointcuts and matching and binding semantics in AspectJ, see

the AspectJ programming guide [8] and the AspectJ 5 developer’s notebook [7].

2.1.4 Advice

Procedures are passive: they are invoked to perform a service for the caller. A piece of

advice is an inverted procedure: it pushes its behavior out to a particular set of join points

that is specified by a named or anonymous pointcut.

Advice behavior is specified as arbitrary Java code that can be run before, after, or

around (instead of) the join points in the pointcut. Advice running after join points can be

restricted to those that return successfully, or restricted to those that return exceptionally

(by throwing an exception), or can run unconditionally. Advice running around join points

can choose to invoke the underlying join point or not. If around advice does invoke the

underlying join point, it can do so with different parameters than the advice was itself

provided.

This is a very general feature that has far-reaching implications for program design,

as seen in the following chapters.

2.1.5 Intertype declarations

Intertype declarations are declarations inside of aspects that apply to another type.2 They

may introduce fields, constants, methods, and constructors to other types. These introduced

members can have any access mode: if declared public they change the public interface of

the type; if declared private, they are private to the aspect that introduced them (rather

than to the type into which they are introduced, which remains oblivious to their existence).

2Intertype declarations used to be referred to as introductions and sometimes are still. The term intertype

declarations now appears to be preferred by the AspectJ team and some members of the research community.

9

CHAPTER 2. ASPECTS AND ASPECT WEAVING

This facility is useful for many purposes. Public interfaces can be changed when

appropriate, and private intertype declarations can be used to associate additional state

with objects that would have to be kept in a separate dictionary data structure otherwise.

This allows aspects to maintain good performance and footprint in some cases where it

is difficult otherwise to do so without breaking modularity by implementing behavior in a

class that is conceptually external to it.

2.1.6 Declare statements

AspectJ has a facility to change a program structurally in other ways as well. The declare

facility can force a class to implement new interfaces or extend a different type, force a

checked Java exception to be unchecked, and other things. This facility is beyond the scope

of this chapter. The reader is referred to [8] and [7] for more details.

2.1.7 Summary

To summarize, join points are well-defined locations in a program corresponding to language

features, such as method calls and exception handling. Aspects are bundles of state and

behavior that push their behavior into matching sites of the program. They typically contain

specified sets of join points called pointcuts, pieces of advice that operate on program code

matching these pointcuts, and intertype declarations that structurally modify the program

(by adding fields or methods, for example).

The process of weaving implements the advice and intertype declarations of an

aspect-oriented program. The weaving process is described in the next section.

2.2 Aspect weaving

A compiler for an aspect-oriented programming language like AspectJ contains an additional

step not present in other compilers (see Figure 2.1). It parses the program in a similar

way, keeping track of advice, intertype declarations, and join points matching pointcuts of

interest. Then a weaving pass executes, implementing intertype declarations and pushing

advice behavior out to join points.

10

CHAPTER 2. ASPECTS AND ASPECT WEAVING

Binary

Intermediate representation

Intermediate representation

Aspect sources

ClassesAspects

Woven classes

parser

weaver

optimizer/code generator

Figure 2.1: Compiler infrastructure for an aspect-oriented language. Here, the entire body
of program code is fed into the parser, including all aspects and classes to be used in the
program.

Because aspect weavers push advice out to all parts of a program, they need to

operate on the entire program. This is unlike compilers for Java, C, or C++, which can

compile source files separately. Modular compilation is difficult for aspect-oriented tools,

but recent work has suggested an approach [43]. Modular compilation is supported in recent

AspectJ releases [8]; it is not supported by the AspectBench compiler [11, 90], an alternative

compiler for the AspectJ language. Further discussion of modular compilation mechanisms

is beyond the scope of this work.

There are many possible approaches to aspect weaving. We present two that differ in

how aspects affect other aspects in the system. Advice application (inside a weaver) can be

seen as code transformation; indeed, this is often done in theoretical work on aspects [111].

We specify these two weaving mechanisms using a code transformation model.

It is not the purpose of this chapter to give a full theoretical treatment of aspects

and aspect weaving, some of which exists in the aspect literature [111]. Rather, the for-

mal treatment here is intended as a descriptive aid, explaining some important differences

between aspect weaver designs and set the stage for discussions of later chapters.

11

CHAPTER 2. ASPECTS AND ASPECT WEAVING

2.2.1 A nominal weaver

Given n pieces of advice A1 . . . An and a base program P , each Ai is translated into a code

transformation ϕi that causes the advice to be implemented at applicable join points. The

composed program P ′ is given by:

P ′ = ϕn(ϕn−1(· · ·ϕ2(ϕ1(P))))

It is instructive to map these elements back to Figure 2.1. P is the set of classes and aspects

in intermediate representation in the figure. A1 . . . An are the intermediate representations

of the advice in the aspects, and P ′ is the woven intermediate representation.

Clearly, in this weaver, a piece of advice Ai+1 can affect advice Ai, since the code is

transformed with ϕi+1 before being transformed with ϕi. However, advice Ai cannot affect

advice Ai+1 since it transforms the program first. This behavior is an important quality

of this weaver, and is the primary difference between the nominal weaver and AspectJ’s

weaver, described next.

2.2.2 AspectJ’s weaver

Given n pieces of advice A1 . . . An, their owning aspects C1 . . . Cm and a base program P ,

each Ai is translated into a method Mi of its owning aspect class and a code transformation

ϕi that causes Mi to be called at applicable join points. The composed program P ′ is given

by:

P ′ = ϕn(ϕn−1(· · ·ϕ2(ϕ1(insert-methods-A1(· · · insert-methods-An(P))))))

This weaver design works by first inserting the advice-implementing methods Mi into the

aspect classes before matching join points and implementing any advice. This has the

consequence that advice can have self-referential and, together with other advice, circular

effects.

However, the order of application of code transformation is still significant; where

two pieces of advice Ai and Aj apply to the same join point, ϕi and ϕj will both rewrite

part of the program at that join point. If i < j and Ai and Aj are both before advice,

then the effect of Aj will be closer to the join point after both transformations are applied;

12

CHAPTER 2. ASPECTS AND ASPECT WEAVING

Figure 2.2 shows this for a call join point. After and around advice implementation order

is significant for similar reasons.

ϕ i ϕ j

foo();

M[j]();

M[i]();

foo();

M[i]();

foo();

Figure 2.2: Two pieces of before advice implemented at a call join point, an illustration of
AspectJ’s weaving mechanism in Section 2.2.2. Note that order is significant here. Since
i < j, ϕ(i) transforms the code snippet before ϕ(j) does; the advice implemented by ϕ(j)
is closer to the join point in the woven program.

2.3 Chapter summary

We have given a short technical introduction to aspect-oriented programming and provided

definitions for the terms aspect, advice, join point, pointcut and intertype declaration. We

have described the process of aspect weaving and demonstrated two different designs for

weavers with differing behavior.

13

Chapter 3

System Aspects

spect-Oriented Programming is a powerful mechanism that allows decouplingA different concerns in programs. It is especially useful for removing pervasive,

systemic concerns from the main program logic entirely and stating them sep-

arately in declarative form. Conceptually, many tasks can be expressed in terms of aspects;

however, popular aspect languages and tools are often not sufficient to perform these tasks.

This is especially true of aspects that attempt to modify the behavior of the base

language and runtime library—a highly pervasive and systemic concern—as opposed to

modifying application logic behavior. Modifying language behavior is a natural task to

perform with aspects—whether for performance reasons, to increase the usability of the

language, or for another reason. Throughout this text these are termed system aspects

because of their systemic and aspectual nature: they are properties of the system underlying

the software. They can be described (at least conceptually) as aspects, but they are primarily

intended to extend the functionality of the language and runtime system instead of that of

the application.

These system aspects would be most easily realized in a system where the language

and runtime system is implemented in the same language that it implements. One example

of such a system is Jikes RVM [58], which is a Java virtual machine itself implemented in

Java. If Jikes RVM were extended with aspect-oriented features and re-engineered to allow

a high level of dynamicity, aspects conceivably could directly apply to the just-in-time (JIT)

compiler and all runtime libraries.

14

CHAPTER 3. SYSTEM ASPECTS

This chapter provides some background for Chapters 4, 5, and 6, each of which

describes a systemic problem and an aspect-like solution to solve it. Importantly, these

solutions are not implemented as aspects directly: for differing reasons, they cannot be

without serious limitations, and this is made clear in each discussion. These chapters

represent novel research contributions on their own; they are self-contained within this

dissertation. Chapter 7 concludes this part by tying together these system aspects, and

it draws conclusions about aspect language design. Later chapters probe this topic more

deeply.

The remainder of this chapter previews existing language mechanisms that can be

used in lieu of aspects to perform tasks that cannot be adequately handled by current

aspect languages and tools. These mechanisms are employed in the following chapters.

3.1 Aspect-similar mechanisms

Chapters 4, 5, and 6 describe three projects where the aims are compatible with the aims

of aspect-oriented programming systems. However, current aspect languages and tools are

not sufficient for achieving the desired outcome. Each chapter provides background and

motivation, but this section provides a brief introduction to the chief mechanisms used

instead of aspects in these chapters.

3.1.1 Template metaprogramming

The term template metaprogramming [108] is typically limited to C++, though other

programming languages have analogous and similar features, among them compile-time

metaobject protocols [31, 103] and some advanced macro systems [23]. Template metapro-

gramming is described more fully in Chapter 4. Briefly, C++’s generic types mechanism is

a Turing-complete sublanguage of C++ evaluated at compile time, a fact realized after the

language was designed [108]. Almost as an accident, C++ supports dependent types and

(with typedef) arbitrary type mappings.1 This permits a natural approach to compile-time

flexibility directly within the C++ language itself: a few constants can be declared manu-

ally, and other constants can be configured by the compiler based on them. Further, the

1It must be mentioned, though, that as they weren’t initial design goals, for certain purposes these
features aren’t as well-suited as their analogues in other languages.

15

CHAPTER 3. SYSTEM ASPECTS

types, data structures, and algorithms used in the compiled program can be automatically

selected from a set of options without any runtime overhead. Alexandrescu [1] provides a

highly useful reference to practical applications of the technique.

Chapter 4 applies C++ template metaprogramming to implement an entirely

compile-time configuration of runtime artifacts. When compiled with an optimizing com-

piler there is zero runtime cost associated with the approach of Chapter 4, but also zero

runtime flexibility: the design flexibility is entirely at the source level.

3.1.2 Bytecode transformations

Bytecode transformations are simply post-compilation transformations of Java programs.

Once compiled into architecture-independent bytecode, Java programs are transformed fur-

ther to effect desired goals. Java analysis, optimization, and obfuscation engines typically

target bytecode rather than Java source. Because bytecode transformations operate only

on the structured bytecode format, they are portable across Java source compilers and also

across virtual machines and bytecode JIT compilers.

Chapter 5 attempts an aspect solution to a problem and compares its performance to

a targetted transformation of Java bytecode (which includes some aspects). The transfor-

mations are certainly within the reach of an aspect language, and features of such a language

are discussed. This can be seen almost as a partial evaluation approach, where part of the

code can be partially evaluated at compile time, resulting in a hybrid static/dynamic so-

lution: where possible, flexibility at the source level is optimized away. There is a runtime

performance hit in places where such optimization cannot be performed.

3.1.3 Compiler modifications

Given source availability, compiler modifications are also possible. These are generally

nonportable,2 but can perform certain program transformations impossible with today’s

aspects and bytecode transformations, due to limitations of aspect languages and the re-

strictive Java bytecode format. Their design can provide insight into what features are

lacking in source languages.

2The (non)portability of compiled programs depends on which compiler is modified—a Java source-to-
bytecode compiler, a Java “ahead-of-time” compiler (source-to-native), or a Java JIT compiler.

16

CHAPTER 3. SYSTEM ASPECTS

Chapter 6 describes a project in which a production compiler was modified to support

a hardware device. An aspect approach works conceptually but is impractical using current

languages and tools. This approach is almost entirely dynamic, with little work occurring

at compile time except the identification of join points. There is a large runtime penalty,

but it is required given the design requirements of the project.

3.2 Chapter summary

This chapter introduced the notion of a system aspect, an aspect that operates on the

language and runtime system itself and has pervasive, systemic reach. We also described

alternative, existing mechanisms that can be used to perform these systemic transforma-

tions. Chapters 4, 5, and 6 will describe problems for which a natural aspect solution exists.

However, for varying reasons, the aspectual formulation using current tools is problematic,

and one of the alternatives will be used instead.

Each of these chapters describes a self-contained contribution independent of their

aspect-oriented formulation. To tie them together and to forward the main thrust of this

dissertation, Chapter 7 concludes this part of the dissertation by making observations about

the solutions in this part and highlights some lessons for aspect language and tool design.

17

Chapter 4

Rate-Monotonic
Metaprogramming

e describe an implementation of Rate-Monotonic Analysis (RMA) withinW the C++ parametric type system that provides C++ real-time software

developers a good way to reason with types at the source level about

recurrent tasks and deadlines. Using our approach, a program can be considered incorrect,

raising type errors at compile time, if a given set of tasks is not statically schedulable.

Similarly, this compile-time metaprogram can adjust a task set so as to become feasible; we

perform this analysis inside the C++ type system, which allows a very natural integration

into C++ programs. We discuss our approaches and the applicability of our work to the

model-driven development of real-time embedded systems.

This compile-time metaprogram is similar to an aspect in an aspect-oriented lan-

guage. However, current aspect tools like AspectJ, as discussed further in Chapter 5, don’t

support user-directed, compile-time computation. This often leads to a runtime perfor-

mance overhead even when the computation can be performed statically.

This chapter studies an aspect-like but non-aspectual formulation of task scheduling.

It is a contribution apart from its aspectual nature; we make observations about its aspectual

nature in Chapter 7.

18

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

Acknowledgments

This chapter expands upon work performed jointly with Chris Gill and Ron Cytron. That

work was originally published in 2003 [39].

4.1 Introduction

Real-time embedded systems have specific timeliness requirements that result in the ne-

cessity of scheduling tasks’ access to scarce resources. Rate-Monotonic Scheduling (RMS)

is a well-known static scheduling technique in which periodic tasks are assigned priorities

in accordance with their period: more frequent tasks receive a higher priority. A runtime

schedule honoring RMS-assigned priorities is known to be an optimal schedule for the fixed-

priority scheduling problem [76]; that is, if any assignment of fixed priorities yields a feasible

schedule, the RMS assignment will.1 RMA refers to the computation performed on a set

of periodic tasks to determine whether they may be statically assigned fixed priorities with

RMS (or indeed with any such scheme, since RMS leads to an optimal schedule with respect

to feasibility) and meet all deadlines.

As originally stated by Liu and Layland [76], a set of m periodic tasks has utilization:

U =
m

∑

i=1

Ci

Ti

where Ci is the execution time budget, or cost, of task i on some machine and Ti is the

execution period of task i. A task set is feasibly schedulable with RMS if

U =
m

∑

i=1

Ci

Ti
≤ m

(

21/m − 1
)

. (4.1)

This is a computationally simple test, and can easily be performed (even manually) for a

given set of tasks. However, this test is pessimistic, disqualifying task sets that are, in fact,

feasible. Lehoczky, Sha, and Ding offer a stricter test [71, 95].2 A set of m periodic tasks is

feasibly schedulable if and only if

1In this chapter, we intend “feasible” to mean that all tasks are guaranteed to meet all deadlines, over
all possible task phasings. The deadline of a task in classical RMS is the start of its next execution period.

2The proof is found in [71]; a useful discussion appears in [95].

19

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

∀ i, 1 ≤ i ≤ m,

∃ t ∈

{

l · Tk

∣

∣

∣

∣

1 ≤ k ≤ i, 1 ≤ l ≤

⌊

Ti

Tk

⌋}

s.t.
i

∑

j=1

Cj

⌈

t

Tj

⌉

≤ t . (4.2)

When engineering a real-time system that makes use of static scheduling, such

tests are typically performed on a set of proposed tasks ahead of time, often long before

compilation—even in the design phase, e.g., through model-integrated computing tools—to

secure a guarantee that they will meet their deadlines. This may be acceptable if the task

set is known in advance and does not change through the software development process.

However, for purposes of debugging and design flexibility, a solution that integrates compi-

lation with RMA task set verification is desired so that the task set can easily be modified.

Further, for retargettable, reconfigurable real-time systems, software development teams

often wish to provide similar systems meeting slightly different design requirements and

manage all such configurations using a modeling tool. Clearly, this goal is unnecessarily

complicated if the software is designed in a rigid manner for a specific set of tasks.

One solution to this problem would be to compute feasibility of the task set at

runtime. Indeed, this approach is taken by some systems [21]. However, the main benefit of

static scheduling over dynamic scheduling is its simplicity and low overhead. At worst, the

only computation required at runtime for a fixed-priority periodic scheduling mechanism is

the comparison of eligible tasks’ priorities; at best, the processor is scheduled in a sequential

fashion and scheduling and context switches are free.3

Because runtime feasibility checks are not required for many real-time systems, we

do not seek to require them in a new system for real-time software development. At the

same time, we wish to ease the development process by allowing the task set to change with

each compilation, yet require that compiled programs are indeed feasible. In Section 4.3

we propose a system that uses the C++ compiler to perform feasibility testing as part of

program translation. We extend the basic idea in Section 4.4 to show that our technique

can be used to enforce that every correct program is feasible—that is, a semantic error is

flagged by a standard-compliant C++ compiler when infeasible task sets are specified by

the program—and to search a parameter space of different task rates for feasibility.

3Task sets are scheduled most easily when the task rates are harmonic; such task sets also have the benefit
of achieving 100% utilization.

20

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

This chapter is organized as follows. Section 4.2 gives a brief primer on the specific

technologies we employ, Section 4.3 explains our approach, Section 4.4 discusses some useful

extensions to our base technique, Section 4.5 points to some related work, and Section 4.6

offers some conclusions and our thoughts on future research directions in this area.

4.2 Principles

In our approach, described in Section 4.3, we use advanced C++ [99] features and freely-

available libraries, and we apply idioms from generic programming. We briefly document

these language constructs and design ideas here.

4.2.1 Templates

Templates provide the C++ generic types facility. Each template type4 does not, in itself,

define a data structure or executable code; it does, however, define a number of template pa-

rameters that may be filled in by concrete types or templates. When the compiler detects the

use of a template with all parameters fully specified, the template is said to be instantiated

with those parameters; there is only one instantiation for each distinct set of parameters,

and each template instantiation is an actual type—it can be directly constructed—although

it is incompatible with other instantiations of the same template. As an example, consider

a linked list template:5

template <class T>

struct list {

T value;

list<T> *next;

};

as well as the use of this template for integer types:

4For brevity, we ignore template functions in this section.

5Note: All C++ code examples in this chapter have been tested and compile properly on the GNU C++
compiler version 3.2.

21

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

list<int> *l = new list<int>;

l->value = 5; // l->value is an ‘int’

l->next = new list<int>;

l->next->value = 2;

l->next->next = 0; // etc...

This mechanism provides a simple mechanism for reconfigurable software modules; tem-

plates provide a convenient way to write code that works for both integral and floating-

point types, to implement the Strategy design pattern, and myriad other idioms. Because

templates are instantiated and resolved at compile-time and guaranteed well-formed by the

C++ typechecker, template instantiations like the above generally have minimal runtime

execution-time impact; templates can, however, lead to highly redundant code segments in

the produced binary—and, thus, much higher storage costs—which is critical for embedded

systems. For further information on C++ templates, see [99].

4.2.2 Template metaprogramming

By manipulating constant values and template instantiations, you can perform computa-

tion at runtime. This is termed template metaprogramming [1] and is an incredibly powerful

concept that allows a C++ programmer to write nicely modularized code without runtime

overhead—because all of the necessary computation is performed at runtime. The best

explanation here is an example, and the commonly-used example is the compile-time com-

putation of primes, originally proposed by Unruh while serving on the C++ standardization

committee in 1994 [107, 108]:6

6This listing shows only part of Unruh’s prime template metaprogram. The full metaprogram fools the
compiler into generating an error message for each prime, which has the effect of communicating the result
of the prime calculations to the user.

22

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

template <int p, int i> struct is_prime {

enum {

prim = ((p == 2) ||

((p % i) &&

is_prime< (i > 2 ? p : 0),

i-1 >::prim)) };

};

template <> struct is_prime<0,0>

{ enum { prim = 1 }; };

template <> struct is_prime<0,1>

{ enum { prim = 1 }; };

This demonstrates the power of the C++ template mechanism; not only does it provide

generic types, it offers computation. By combining types, runtime code, and such template

computation into a single framework, powerful reconfigurable software can be built.

4.2.3 Type traits

Traits [10] are a C++ template programming idiom in which information about a type

is stored not in the type itself, but in different template instantiations off to the side.

Definitions of traits make use of template specialization, in which a generic traits template

is specialized for each type for which it serves information. For example:

template <class T> struct MyTraits;

template <>

struct MyTraits<MyType> {

static const char* desc =

"This is my type.";

};

template <>

struct MyTraits<MyOtherType> {

static const char* desc =

"This is another type of mine.";

};

Essentially, then, traits provide compile-time mappings from a type (or compile-time integral

constant) to any collection of types and constants. These mappings are external to the type

itself, so can be “added on” at any point textually in the program that a struct definition

is permitted and in any C++ namespace.

23

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

4.2.4 Typelists

Alexandrescu [1] defines a Typelist:

template <class T, class U>

struct Typelist {

typedef T Head;

typedef U Tail;

};

The simplicity of this definition is quite deceiving. This construct can be used to allow

arbitrary parameterization of template code with zero runtime execution overhead.7

Because types can contain concrete values (given that they are compile-time con-

stants), we can perform compile-time computation with Typelists. For example, to sum

an arbitrarily long list of numbers, one can write the code in Figure 4.1. This code also

demonstrates the use of TYPELIST macros, which simply expand to a sequence of scoped

pairs of Typelist template instantiations, similar to list construction in Lisp with a chain of

cons forms. Although this is a simple example, this basic construct will be built upon in

Section 4.3 to perform flexible RMA on a reconfigurable task set using a template metapro-

gram.

4.2.5 Functors

Functors [10] are an abstraction for an operation. C++ function pointers are simple Functors,

but any type that supports parenthetical application—operator()—models a Functor. A

Functor concept is defined by its input argument types and its return type, although it may

also specify semantic requirements and guarantees.

4.3 Approach

We have implemented a template metaprogramming framework, coded in C++, that per-

forms rate-monotonic analysis at compile-time and enables code to reflect at compile-time

7As with all templates, each instantiated template type is a separate type and can lead to increased
runtime footprint. However, we primarily will use Typelists only for compile-time computation, where each
instantiated template contains no data members and is thus zero size at runtime.

24

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

template <int i, class Tail>

struct sum<Typelist<value<i>, Tail> > {

enum { result = Head::value + sum<Tail>::result };

};

template <>

struct sum<NullType> {

enum { result = 0 };

};

template <int i>

struct value<i> {};

const int mysum = sum<TYPELIST_3(value<4>,

value<5>,

value<7>)>::value; // = 16

Figure 4.1: A C++ template metaprogram to sum an arbitrary-length number of
integers at compile time. Note the use of the macro TYPELIST 3 to enhance
readability of the code. Writing TYPELIST 3(a, b, c) is equivalent to writing
Typelist<a, Typelist<b, Typelist<c, NullType> > > — in fact, it will be replaced
by the C preprocessor in exactly this way.

upon its task sets and reason about their feasibility. Generally, we believe compile-time

“reflection” of this sort—which does not require runtime support—to be valuable in C++

real-time software development. We use the technique to achieve the following specific

requirements:

• real-time tasks can be specified as optional;

• “cheap” task sets that have the critical features of standard task sets can be linked to

their more “expensive” versions;

• the “best-fit” versions of expensive services can be automatically selected and compiled

in with no user intervention or runtime penalty in time or space or the size of the

executable; and

• truly infeasible task sets can be automatically rejected; if there is no guarantee that

a task set can be scheduled, the compiler can be used signal an error.

We provide details on these particular aspects of our approach in the rest of Section 4.3

and in Section 4.4, but the above list is not an exhaustive one. First, we specify the base

of our approach, which allows us to construct task sets and perform basic queries of them.

25

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

struct my_task {

enum { cost = 100,

period = 600,

phasing = 50,

droppable = 0,

importance = 1000 };

static void do_task(const context& c) {

cout << "my_task::do_task()" << endl;

}

};

Figure 4.2: A sample Task.

4.3.1 Specification

We define a generic programming concept [10] Task, implemented in C++ as a struct,

which, along with zero or more associated TaskTraits providing additional, optional infor-

mation (discussed in Section 4.4.1), fully specifies a periodic real-time task. A Typelist [1, 2]

of Tasks then describes a task set. In addition to the standard parameters that we need to

perform RMA for each periodic task (i.e., task cost and period), we include other useful

information for scheduling the task. A sample Task definition is shown in Figure 4.2.8 Its

elements are:

cost specifies the logical cost of the Task. This may be a measurement on a particular

platform or a theoretical upper-bound, calibrated to agree with the other time-based

parameters below.

period specifies the logical period of the Task.

phasing specifies the logical phasing of the Task. This is the offset of the logical clock at

which its logical period begins.

deadline specifies the logical deadline of the Task, measured from its logical time of release.

For RMS, the deadline of a task equals the period.9

droppable is a boolean value indicating whether or not a task can be dropped if necessary

to make its task set feasible—this value, in effect, declares whether or not the task is

optional.

8Note: All C++ code examples in this chapter have been tested and compile properly on the GNU C++
compiler v3.2.2 [48].

9Deadline-monotonic scheduling has been proposed to relax this constraint [9]. Our task model could be
extended to relax it as well, though that is outside the scope of this work.

26

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

importance is an integer value specifying the relative willingness of the compile-time

scheduling analysis to drop the task. Tasks with lower importance are dropped before

higher-importance tasks.

do task is a Functor [10] that specifies the work to be performed by the Task.

Once the basic structures defining tasks have been built, task sets can be constructed using

typedef:

typedef TYPELIST_2(taskA, taskB) my_tasks;

In this case, a task set type (called my tasks) of two independent task types is constructed:

taskA and taskB.

4.3.2 Operation

We then wish to perform basic operations on this task set. These operations include:

• sorting the task set by period;

• determining the schedulability of such a task set;

• generating code to schedule the task set at runtime; and

• querying on the task set regarding its constituent tasks, its feasibility, and its utiliza-

tion.

Further, we wish to perform these operations at compile-time to the fullest extent possible.

Obviously, the tasks will actually execute only at runtime, but we wish to perform the queries

and other operations above at compile-time. We also wish to expand and inline a specialized

start() routine specifically for this task set so that starting the tasks has as little overhead

as possible. Finally, we want the associated structures and queries to be reasonably easy and

intuitive to use. By offering an interface to user code in the metaprogram, we introduce a

mechanism similar to compile-time structural reflection into a real-time program. Using this

facility, a real-time programmer can write code that is easy to read and reconfigure despite

being tailored for a particular task set. In effect, the task set introduces various constraints

onto the program, and the C++ compiler (by evaluating the template metaprogram) is able

27

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

to resolve these constraints and generate a specialized executable, even though the source

code remains modular and generic.

Fortunately, these operations can all be performed by manipulating the task set with

a template metaprogram. In this chapter, we focus on the last operation: determining the

feasibility and expected utilization of a task set and integrating this with the program. We

define a Schedule template, shown in Figure 4.3. This template calls an RMA Feasible

template metaprogram shown in Figure 4.4. This metaprogram solves inequality (4.2)

directly, for each i, by trying different values of t as necessary. It utilizes the support

templates of Figure 4.5, which compute the set of all l · Tk and the j-summation.

template <class TaskSet> struct Schedule;

template <class Head, class Tail>

struct Schedule<Typelist<Head, Tail> > {

typedef Typelist<Head, Tail> TL;

enum { feasible=RMA_Feasible<TL>::Result };

static const double utilization =

Schedule<Tail>::utilization +

double(Head::cost) / Head::period;

static void schedule(void) {

/* (not shown) */

}

};

template <>

struct Schedule<NullType> {

static const bool Result = true;

static const double utilization = 0.0;

static void schedule(void) {

// no action necessary

}

};

Figure 4.3: The Schedule template.

Given this metaprogramming mechanism, client code using our framework can then

be specified in a very straightforward manner (Figure 4.6). The schedule() method of

the Schedule template (implementation not shown in this chapter) is used to set up the

proper threading mechanism for a specified compilation target and invokes the do task

routines of the task set’s constituent task types as appropriate. Because this can be inlined,

no runtime overhead need exist for permitting this flexibility of task types as template

parameterization, as this is sorted out by the C++ compiler at compilation time. Providing

the task-invocation capability in a parameterized fashion (which could automate the choice

28

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

template <class TL, int m, int i>

struct check_i;

template <class Head, class Tail,

int m, int i>

struct check_i<Typelist<Head, Tail>, m, i> {

enum { task_result =

task_feasible<Typelist<Head,Tail>,

i>::Result,

Result = check_i<Typelist<Head,Tail>,

m, i+1>::Result

&& task_result };

};

template <class Head, class Tail, int m>

struct check_i<Typelist<Head, Tail>, m, m> {

enum { Result =

task_feasible<Typelist<Head,Tail>,

m>::Result };

};

template <class TaskSet>

struct RMA_Feasible {

enum { m = Length<TaskSet>::value,

Result = check_i<TaskSet,

m, 1>::Result };

};

Figure 4.4: The main “loop” of the RMA Feasible template metaprogram.

of threading model, for example) is the subject of ongoing work and is not described in

this chapter. In Section 4.3.5, we describe a way to cause a compiler error if an infeasible

schedule is encountered.

4.3.3 A walkthrough example

As an example of how this template expansion works,10 consider the task set of Figure 4.7.

In this case, tasks taskA and taskB have only costs and periods—for simplicity of the

example, other parameters have been omitted from the listing.

In evaluating the RMA Feasible<my tasks> template instantiation (at the bottom

of Figure 4.7), we must direct the C++ compiler to check that inequality (4.2) holds for

10The discussion of this section is by necessity abbreviated and imprecise. The reader is referred to [99]
for a more careful treatment of this material.

29

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

each task i in our example task set. We do this by first counting the number of tasks in

the set, then instantiating another template (check i) to perform these checks individually.

The check i instantiation is parameterized by the value of i it is to check; but check i

recursively makes another instantiation of check i with the next value of i, so RMA Feasible

only needs to instantiate a single check i. The result of these checks are composed together

with logical and (∧), since each sub-check must be satisfied for the task set to be feasible.

In this way, the final computed feasibility of the task set is dependent upon the feasibility

of each sub-check.

In our example, the size of the task set is calculated to be 2; check i<my tasks,2,1>

is instantiated. This instantiation does two things: it computes the check for i = 1 (by

instantiating task feasible<my tasks,1>), and, later, it will compose its result with that

of the next check i.

The task feasible template’s job is to find, given a fixed i and task set, a value of t

for which inequality (4.2) holds. To do this, it must try successive values of t, chosen from

the appropriate set, and compute the summation over 1 ≤ j ≤ i. It uses two other templates

to accomplish this—get t<my tasks,1,0>, which gets the “first” value of t (subject to an

arbitrary ordering we impose on the set, discussed below), and sum j<my tasks,1,t> to

compute the summation (once t has been computed).

Therefore, in our running example, we have at this point RMA Feasible<my tasks>

instantiating check i<my tasks,2,1> instantiating task feasible<my tasks,1> instanti-

ating get t<my tasks,1,0>.

get t’s purpose is to compute and return a value of t based on an index (the t ix

parameter). This indexing scheme is arbitrary—we choose it to start with (k = 1, l = 1)

and increase to the maximal (k,l) value pair in the set.11 The code of get t (which has an

implicit k = 0 parameter if unspecified) first gets the period of tasks i and k and computes

the maximum value permitted for l for the given k (see inequality (4.2)). The value of t

is then computed by instantiating get t to service the next-larger value of k, or, if this

instantiation has a sufficient k to service index t ix, then it returns the value directly

(which corresponds to l · Tk in inequality (4.2)).

11The implementation actually uses zero-based indexes.

30

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

In our running example, get t<my tasks,1,0> computes Ti = 10, Tk = 10, num l =

1, and Result = 10. Therefore, task feasible<my tasks,1> uses t = 10, and thus instan-

tiates sum j<my tasks,1,10>.

The sum j<my tasks,1,10> instantiation is straightforward. First, notice that such

an instantiation uses the default parameter j = 0—the summation will be recursively com-

puted by recursively instantiating sum j, and j = 0 serves as the entry to this recursion.

The jth task (A in our example) is given an alias J, and Cj and Tj get the values for its

cost and period, respectively. my result is computed (this is Cj · ⌈t/Tj⌉), and the result is

summed together with further instantiations of sum j.

Finally, task feasible<my tasks,1> performs its computation by checking to see if

this sum is less than or equal to t, as required in inequality (4.2); if this test fails, it creates

another task feasible for another value of t. The computation continues along similar

lines, and the task set is ultimately determined feasible by the compiler.

4.3.4 Tasks as types

Our system models tasks as C++ types. Type systems are typically used in high-level

languages to help ensure that the logical intent of the programmer matches the code as

written. Generally, developers have types in mind when designing and writing programs,

and making this explicit in a language can flag logical errors that are difficult to track down

otherwise. We provide something analogous for real-time developers; with our constructs,

various nonfunctional aspects of the program (in this case, task schedulability guarantees)

become part of the structure of the program. The next section demonstrates how to signal

type errors for infeasible task sets.

4.3.5 Feasibility and program correctness

Using techniques developed by Alexandrescu [1] and embodied in the Loki C++ library [2],

we can enforce the requirement that a particular task set declared in a program is always

feasible. We do this using the STATIC CHECK macro of Loki, which conditionally raises a

C++ type error:

31

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

typedef Schedule<TYPELIST_2(taskA, taskB)>

my_schedule;

STATIC_CHECK(my_schedule::feasible,

Schedule_Infeasible);

The Schedule Infeasible macro parameter is a description string—typically, compiler

output indicates this description in its error listing. The GNU C++ compiler v3.2.2 [48],

for example, gives the following useful output if my schedule is infeasible:

mysched.cc: In function ‘int main(void)’:

mysched.cc:20: aggregate

‘Loki::CompileTimeError<0>

ERROR_Schedule_Infeasible’ has

incomplete type and cannot be defined

Using this technique, a global policy can be enforced that requires every task set to be feasi-

ble. In this case, the use of the STATIC CHECKmacro is placed in the Schedule::schedule()

method.12 This will verify that every task set that could be scheduled at runtime is feasible.

4.4 Extensions to the base model

It is possible to add a number of useful extensions to our base model. We discuss here our

ideas regarding enhanced tasks and searching a feasibility space.

4.4.1 Enhanced tasks

We have found it useful to use template metaprograms to specify task dependence and

task alternation. By using traits (as briefly described in Section 4.2.3) we can make such

enhancements without changing our base code or the requirements of the Task generic-

programming concept as specified in Section 4.3.1.

Task dependence refers to interdependence of tasks within a task set. It is important

to note that RMA assumes independent tasks. We do not break that assumption here

because our notion of dependence is not a dependence on a particular computational result;

rather, a dependence of task A on task B is merely a requirement that any task set including

12An additional template parameter to the Schedule template can be used to achieve maximal flexibility
in specifying such a policy.

32

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

task A must also include task B. This can be flexibly used to group tasks into common

configurations, or to model execution dependence loosely.13 However, since synchronization

is not taken into account in classical RMA, any computational dependence should only

be a dependence upon the generated value guaranteed to complete before the start of the

task performing the computation. Dependence is easily represented as a trait (Figure 4.8).

For each type T modelling the Task concept that has one or more task dependencies, a

task dependencies template specialization is written for the type specifying as a Typelist

the tasks upon which T depends.

Task alternation allows one task to be readily “swapped out” for another, cheaper

task. This can be quite useful, especially for optional, debugging, or logging tasks that are

not critical but are nice to include when other tasks do not “starve them out” of feasibility.

Basically, the idea is to check the programmer-specified task set for feasibility; if the task set

is infeasible, the least important task in the task set is exchanged for a cheaper alternative

or dropped (if the task concept is specified as droppable). This process continues until either

the task set becomes feasible or an infeasible task set is reached in which no constituent

task can be exchanged or dropped. Alternation is traited simply (Figure 4.9).

4.4.2 Searching a feasibility space

It is also possible to search a feasibility space to discover potential rates for tasks in a given

task set. By performing a feasibility search over task sets with different task costs and peri-

ods, suitable task frequencies can be singled out and ones of interest can be metaprogram-

matically chosen and applied. When composed by a metaprogram with suitable models of

target platforms (expressed as generic programming concepts), this technique can be quite

powerful.

This idea can be extended to a dynamically scheduled system as well, in which the

actions of the dynamic scheduler are partially evaluated—for example, resource credits can

be partially handed out at compile-time to reduce the cost of scheduler start-up.

13There is a correspondence here to the valid configurations of Chapter 8.

33

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

4.5 Related work

Template metaprogramming has been used for fast Fourier transforms [109], prime number

computation [107, 108], and many other computations. Our work is similar but brings

metaprogramming techniques to the compilation of real-time programs.

Other analysis tools are commercially available for real-time applications using RMS.

TimeWiz [104] from TimeSys supports graphical modelling, analysis, and simulation of real-

time software, and RapidSched [116] performs its real-time task analysis in a front-end for

TriPacific Software’s PERTS [78]. Our approach is oriented toward analysis rather than

graphical modelling or simulation; however, it does the analysis inside the language itself

and requires no additional tools. Further, our approach automatically stays in-sync with

the program: it is part of the program. We do not dictate a way of arriving at an estimate

for the execution budget of a task; such an estimate could certainly be reached using the

analysis or simulation modes of such tools, or by other means.

4.6 Chapter summary

We have described and presented code for a compile-time Rate-Monotonic Analysis (RMA)

computation performed within the parametric type system of standard C++. We specify

tasks and task sets as types to gain flexibility, and we leverage template metaprogramming

mechanisms to compute feasibility of these task sets and to perform additional functions.

Because our approach is entirely within the C++ language itself, we achieve complete in-

tegration with the language without a requirement of preprocessing or translation from a

higher-level language. Thus, with minimal effort, real-time software developers implement-

ing periodic task sets in C++ can apply our techniques to gain flexibility and retargetabil-

ity, organize tasks into groups, easily specify task dependence and alternation, and reason

metaprogrammatically about processor utilization and schedule feasibility, all within the

language.

This implementation is in C++, not in an aspect-oriented programming language.

We could implement this in AspectJ, but in doing so we cannot get the benefits of the C++

RMS template metaprogram—namely, we’d pay a price at runtime despite the fact that

this computation can, in principle, be performed at compile time. Many aspect-oriented

tools, including AspectJ, are aimed primarily at runtime flexibility and don’t provide a way

34

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

to perform type computation of the sort exploited in this chapter. Chapter 7 continues the

discussion of aspectual limitations.

35

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

template <class TL, int i, int t, int j = 0>

struct sum_j {

typedef typename TypeAt<TL, j>::Result J;

enum { Cj = J::cost,

Tj = J::period,

my_result = Cj * ((t%Tj > 0 ? 1 : 0)

+ (t / Tj)),

Result = sum_j<TL,i,t,j+1>::Result

+ my_result };

};

template <class TL, int i, int t>

struct sum_j<TL, i, t, i> {

enum { Result = 0 };

};

template <class TL, int i, int t_ix, int k=0>

struct get_t {

enum { Ti = TypeAt<TL,i-1>::Result::period,

Tk = TypeAt<TL,k>::Result::period,

num_l = Ti/Tk,

Result = (t_ix >= num_l)

? get_t<TL, i,

t_ix - num_l, k+1>::Result

: (t_ix + 1) * Tk };

};

template <class TL, int i, int t_ix>

struct get_t<TL, i, t_ix, i> {

enum { Result = 0 };

};

template <class TL, int i, int t_ix = 0>

struct task_feasible {

typedef get_t<TL, i, t_ix> t_type;

enum { t = t_type::Result,

Result = (t > 0) &&

(sum_j<TL, i, t>::Result <= t

|| task_feasible<TL, i,

t_ix + 1>::Result) };

};

template <class TL, int i>

struct task_feasible<TL, i, i> {

enum { Result = 0 };

};

Figure 4.5: Supporting templates for the RMA Feasible template metaprogram of Fig-
ure 4.4.

36

CHAPTER 4. RATE-MONOTONIC METAPROGRAMMING

typedef Schedule<TYPELIST_3(

taskA, taskB, taskC)> my_schedule;

if(! my_schedule::feasible)

cerr << "WARNING: infeasible!" << endl;

my_schedule::schedule();

Figure 4.6: Instantiating and using the Schedule template.

struct taskA { enum { cost = 5,

period = 10 }; };

struct taskB { enum { cost = 5,

period = 15 }; };

typedef TYPELIST_2(taskA, taskB) my_tasks;

const int isFeasible =

RMA_Feasible<my_tasks>::Result;

Figure 4.7: An example task set specification and its feasibility test.

// default case, no dependencies

template <class Task>

struct task_dependencies {

typedef NullType dependencies;

};

// sample specialization for My_Task

template <>

struct task_dependencies<My_Task>

typedef TYPELIST_2(

My_Second_Task,

My_Third_Task) dependencies;

};

Figure 4.8: Specifying traits for task dependence.

// default case

template <class Task>

struct task_alternative {

// "NullType" means no alternative

typedef NullType alternative;

enum { importance = 0 };

};

// sample specialization for My_Task

template <>

struct task_alternative<My_Task> {

typedef My_Cheaper_Task alternative;

// importance relative to other tasks

enum { importance = 100 };

};

Figure 4.9: Specifying traits for task alternation.

37

Chapter 5

Reference-Counting Aspects

ost programming languages provide dynamic storage allocation, and manyM languages offer garbage collection. While the popularity of languages like

Java can be partially attributed to its automatic storage management,

there are applications and platforms for which traditional garbage collection is inconvenient,

inefficient, or unavailable.

We introduce an aspect-oriented reformulation of reference-counting that is partic-

ularly well-suited to Java applications and does not share the error-prone characteristic

of manual, user-driven reference counting. We present our method in the context of the

Real-Time Specification for Java [21] (rtsj) and demonstrate that it can recycle dead ob-

jects in bounded time. We apply automatically-generated, type-specific advice that has

the effect of partially evaluating aspect-generated code, which substantially reduces the

reference-counting overhead.

Acknowledgments

This chapter expands upon work performed jointly with Nick Leidenfrost, Matt Hampton,

James Brodman, and Ron Cytron. That work was originally published in 2004 [40].

38

CHAPTER 5. REFERENCE-COUNTING ASPECTS

5.1 Introduction

Along with its collections library and familiar syntax, Java’s [5] automatic memory manage-

ment has helped make it an attractive platform for application development. In particular,

Java’s garbage collector has arguably increased productivity by automating the detection

and deallocation of dead storage—a difficult and error-prone task. These factors, along with

its widespread portability, have catalyzed the language’s adoption to a variety of platforms,

ranging from server applications to embedded, real-time systems.

This popularity of Java, coupled with advances in real-time computing technology,

has motivated development of a standard that would help express the concerns of a real-time

system. The Java community responded with the rtsj [21], which attempts to match the

needs of real-time programming with Java through Java Virtual Machine (JVM) [74] and

library extensions. The rtsj makes no changes to the Java language itself, and standard

Java source-to-bytecode compilers can be used for programs intended for an rtsj platform.

For better or worse, the rtsj forbids threads with real-time guarantees from touching

the garbage-collected heap [21]. As a result, programmers must organize their objects in

scoped storage regions, each of which is deallocated as a block (with the constituent objects

collected en masse) when the associated execution scope completes. There is no system-

mandated garbage collection within a scoped storage area. Moreover, scoped allocation

and deallocation are unsuitable for a wide range of applications, and there exist nontrivial

programs with bounded live storage but with unbounded dead storage in scopes [106].

However, the standard cannot prevent an application from identifying dead objects

on its own and recycling such objects for the application’s use. While this is a tricky and

error-prone undertaking, we discuss in this chapter how AOP techniques can automate the

task. Our contributions are as follows:

1. We present an aspectual formulation [67] of object reference-counting [113], suitable

for inclusion with ordinary Java programs (Section 5.2). To enable reference counting

for a given class, that class need only implement the (empty) interface Reference-

Countable.

2. Our reference-counting approach is tailored for AspectJ [66] in the sense that local

variable modifications cannot be traced within AspectJ, and our approach does not

require such tracing. We offer a heap-only reference-counting scheme (Section 5.2.1)

39

CHAPTER 5. REFERENCE-COUNTING ASPECTS

that must be used carefully. We also introduce a safe, conservative approximation of

stack (local variable) reference activity that avoids tracing all local references (Sec-

tion 5.2.2).

3. We present an algorithm for automatically determining which Java classes can usefully

implement the ReferenceCountable interface (Section 5.3).

4. We present an aspectual formulation of object recycling [26], so that the storage

associated with a dead object is saved and can be recycled when a new object of the

dead object’s type is instantiated (Section 5.4).

5. We present a scheme for partially evaluating [61] the aspect-generated code to elim-

inate runtime reflection (Section 5.5). Without such optimization, AspectJ requires

each store to an object field to use relatively expensive (Section 5.6) reflection. The

overhead of this reflection is significant in our benchmarks

While our work was specifically motivated by the rtsj memory model, it can also be used in

conjunction with a garbage-collected heap to reuse instances of heavily-instantiated classes.

We demonstrate on some benchmarks that we can compete with a garbage collector (Sec-

tion 5.6).

5.1.1 Related Work

In considering the needs of real-time programs, the rtsj authors eschewed automatic

garbage collection of any form, because of the impact it might have on real-time systems.

Garbage collection schemes suitable for real-time systems have been proposed [30, 85, 88,

13]. Some require extra storage or processors. Moreover, these algorithms must be provided

with some statistics about the application, such as its allocation rate and the number of

non-null pointers on average, if real-time bounds on collection are to be maintained. Our

approach reduces application reliance on a garbage collector within a JVM.

5.1.2 Treatment of dead storage

When automatic garbage collection finds dead storage, such storage is typically returned to a

generic heap for subsequent reallocation. While this approach is the most general, programs

40

CHAPTER 5. REFERENCE-COUNTING ASPECTS

tend to allocate the same types of objects repeatedly. Due to current trends in object-

oriented programming, such as the encapsulation of software patterns in objects, short-lived

objects such as Iterators [49] often accomplish relatively simple tasks. Moreover, middleware

may create “helper” objects without the knowledge of the end user—such objects act as

carriers, strategies, and temporary-state storage. These objects, while useful in creating a

well-designed implementation, are often abandoned almost immediately after instantiation,

creating garbage each time the application executes their associated operation. While a

reference-counting scheme may be able to collect this memory quickly, it cannot prevent

the fragmentation to the heap caused by repeated allocation and deallocation.

One alternative to freeing the memory associated with such objects, and indeed,

all types of objects, is to recycle them [26, 96]. When a new object is instantiated, its

storage must be allocated and its header information must be initialized. If an object of

a given type can be recycled, so that it is reallocated as an object of the same type, then

the storage and header information need not be re-established. Thus, reference counting

and object recycling are attractive in certain contexts. Manual introduction of code into

an application to manage these cross-cutting concerns is tedious and error-prone. In this

chapter we present an AOP approach for accomplishing both of these features.

This work has been implemented and tested in the context of collections objects for

rtsj.

The rest of this chapter is organized as follows. Section 5.2 provides more details

about our approach, including its formulation, application, and limitations. Section 5.3

presents a simple algorithm for statically determining those objects that cannot be involved

in reference cycles; the liveness of such objects can accurately be determined using refer-

ence counting. Section 5.4 describes how objects can be recycled rather than collected.

Section 5.5 provides some implementation details, Section 5.6 provides an experimental in-

dication of the benefits and limitations associated with our approach to reference counting

and object recycling, and Section 5.7 offers a summary.

5.2 Approach

Recall that reference counting detects object liveness by tracking the sum of live references

to a given object. When an object’s reference count reaches zero, the application cannot

41

CHAPTER 5. REFERENCE-COUNTING ASPECTS

subsequently reference that object. The storage associated with such an object can be

deallocated, which may, in turn, cause other objects’ reference counts to decrease.

A reference-count tally is typically maintained incrementally: when a heap pointer-

cell is changed, the reference count of the previously-referenced object is decremented and

the count of the newly-referenced object is incremented. Conceptually, counting the ref-

erences from the Java stack is similar. When an object reference is pushed (for exam-

ple, through an aload instruction), the count is incremented; when an object reference is

popped, the count is decremented. Counts within Java’s registers (“local variables”) can

be similarly maintained; the distinction is largely unimportant for our purposes, and in our

presentation we will assume that Java’s registers are in fact part of the Java stack.

In our approach, we account for references inexactly. Our approximate object refer-

ence count is the sum of

• S—an approximation of references from the stack, and

• H—the exact number of references from the heap.

S may underestimate the number of stack cells that reference an object. However, with

respect to object liveness, our approximation guarantees that S is positive for an object if

the stack holds any references to that object. Thus, it is safe to base an object’s collection

on the reference-count value of S + H.

We chose an approximate accounting of stack references for several reasons. Most

importantly, it can be expensive to exactly calculate S, as reference counts need to be

modified to reflect the use of objects within a method. Further, in Java, the contents of

a method’s stack frame cannot be accessed or modified except by the method itself. As a

result, object references from the stack are easily summarized and approximation can work

well.

Section 5.2.1 describes heap-only reference counting and situations where it suffices.

Our approximation S of object reference counts from the stack is formally described in

Section 5.2.2, Section 5.2.3 discusses issues related to multithreaded target applications, and

Section 5.2.4 applies our approach to a simple linked-list example. Section 5.2.5 discusses

cyclic storage, and Section 5.2.6 gives details of our approach.

42

CHAPTER 5. REFERENCE-COUNTING ASPECTS

5.2.1 Heap-only reference counting

Because AspectJ and Java reflection cannot change the nature of Java’s runtime stack,1 we

must simulate a program’s stack frames in order to track the stack, essentially replicating

the structure already present in the runtime image of an executing Java program. This

simulation becomes even more expensive if multiple threads can have stack references to an

object.

As a result, it is worth considering the conditions under which reference counting

can be accomplished by ignoring stack activity completely and tracking only inter-heap

references.

• The object will be considered dead when its reference count S + H is decremented

from 1 to 0.

• H is the only active component of the object’s reference count: S remains 0 through-

out.

• Thus, when H decrements from 1 to 0, there should be no non-heap references to the

object.

With heap-only reference counting, failure to prevent non-heap references at the moment

the reference count becomes 0 goes unchecked and can cause program failure if the storage

associated with the object is reallocated or recycled. Conversely, an object will fail to be

collected (its associated storage effectively leaked) if it is instantiated but never referenced

from the heap. Given these considerations, it is clear that a heap-only approach to reference

counting is appropriate only in specialized circumstances. If an object is appropriately

protected, so that its reference cannot be exported out of a class or package, then the

author of that class or package can make certain that no stack references exist when the

last heap reference disappears.

Figure 5.1 shows the instrumentation we use to maintain a heap-only reference count

and detect dead objects, based only on references to that object from the heap. Collection

occurs when the H component of the reference count changes from 1 to 0. The advice of

Figure 5.1 is applied on Java’s heap-changing instructions, namely

1Future releases of Java may have introspective JVM features allowing this.

43

CHAPTER 5. REFERENCE-COUNTING ASPECTS

• those putfield and putstatic instructions which write an object reference into an

object or class field; and

• the aastore instruction, which writes an object reference into an element of an array.2

Figure 5.1 is not AspectJ source; it is aspect pseudocode, representing instrumentation

in an aspectual form. Three pieces of before advice are shown: the supplied code takes

action before the bytecode performs its standard function. (For simplicity, bytecodes are

shown with their full set of parameters here, instead of collecting some parameters from the

instruction stream and some from the stack.) The currentValue gesture retrieves the current

reference value from a field or array slot. The procedures increment() and decrement()

maintain reference counts from the heap. The function count() returns the H component

of the current reference count of an object. The recycle() procedure places an object onto

a per-type list of freed objects for subsequent reallocation; this functionality is discussed in

Section 5.4.

The full AspectJ source for heap-only reference counting is in Appendix A on

pages 174–177.

5.2.2 Approximation of stack references

A formal description of our instrumentation for conservative, approximated stack-aware

reference-counting appears in Figure 5.2.3 It builds upon the heap-counting approach,

adding instrumentation to the getfield, getstatic, areturn, and athrow bytecode in-

structions. Instrumentation on putfield, putstatic, and aastore instructions require an

additional check to ensure that an object associated to a stack frame is not collected.

The full AspectJ source for stack-approximating reference counting is in Appendix A

on pages 178–181.

S represents the number of stack references that point at an object. In our approach,

the S component is not explicitly maintained, but is effectively 0 or 1, as follows.

2The current AspectJ language does not have a mechanism for advising array assignments. We feel that
such a feature would fit with the other mechanisms supported by the language.

3This implementation is limited to single-threaded programs; it is easily generalized but incurs extra
expense.

44

CHAPTER 5. REFERENCE-COUNTING ASPECTS

before putfield object class-field reference-value:
if object = null

return
fi
increment(reference-value)
decrement(object.class-field.currentValue)
if count(object.class-field.currentValue) = 0

recycle(object.class-field.currentValue)
fi

before putstatic class-field reference-value:
increment(reference-value)
decrement(class-field.currentValue)
if count(class-field.currentValue) = 0

recycle(class-field.currentValue)
fi

before aastore array index reference-value:
if array = null or index out of range

return
fi
increment(reference-value)
decrement(array[index].currentValue)
if count(array[index].currentValue) = 0

recycle(array[index].currentValue)
fi

Figure 5.1: Heap reference-counting instrumentation. This approach leads to prematurely-
collected objects unless heap inter-referencing behavior guarantees safety.

45

CHAPTER 5. REFERENCE-COUNTING ASPECTS

after new class-type [using newly-created-object]:
associate(newly-created-object, thisFrame)

before getfield object class-field:
if object = null

return

else if unassociated(object.class-field.currentValue)
associate(object.class-field.currentValue, thisFrame)

fi

before getstatic class-field:
if unassociated(class-field.currentValue)

associate(class-field.currentValue, thisFrame)
fi

before aaload array index:
if array = null or index out of range

return

else if unassociated(array[index].currentValue)
associate(array[index].currentValue, thisFrame)

fi

before areturn reference-value:
foreach object x associated to thisFrame:

if x 6= reference-value
unassociate(x)
if count(x) = 0

recycle(x)
fi

fi

end foreach

associate(reference-value, prevFrame)
before athrow reference-value: same as for areturn
before propagate-exception reference-value:

same as for areturn

before putfield object class-field reference-value:
if object = null

return

fi

increment(reference-value)
decrement(object.class-field.currentValue)
if count(object.class-field.currentValue) = 0

if unassociated(object.class-field.currentValue)
recycle(object.class-field.currentValue)

fi

fi

before putstatic class-field reference-value:
increment(reference-value)
decrement(class-field.currentValue)
if count(class-field.currentValue) = 0

if unassociated(class-field.currentValue)
recycle(class-field.currentValue)

fi

fi

before aastore array index reference-value:
if array = null or index out of range

return

fi

increment(reference-value)
decrement(array[index].currentValue)
if count(array[index].currentValue) = 0

if unassociated(array[index].currentValue)
recycle(array[index].currentValue)

fi

fi

Figure 5.2: Heap reference-counting together with approximate stack reference-counting
instrumentation. This approach is safe with respect to Java referencing behavior: it never
determines that a live object is dead.

46

CHAPTER 5. REFERENCE-COUNTING ASPECTS

• If an object x is not currently associated to a stack frame, then unassociated(x) is true,

no cell on the stack references the object, and S is effectively 0.

• If an object x is currently associated to a stack frame, then unassociated(x) is false,

some stack cell may reference the object, and S is effectively 1; when the frame

associated to x pops, S will either effectively remain at 1 because x is returned to the

frame’s caller (either by an explicit areturn or exception propagation), or else S will

effectively become 0.

The count() function and the increment() and decrement() procedures only deal with the

H-component of the reference count.

Throughout, we maintain a stack association invariant :

Stack association invariant:

If and only if an object x is associated with a stack frame F , then F is the last-to-be-

popped frame with a stack cell holding a direct reference to x: the S component of

x’s reference count is 1, but there could be any number of stack cells in frame F and

above (those popped earlier than F) that could reference x.

This invariant provides our system with safety : our approach will never determine that a

live object is dead.

• When an object is instantiated (via new), it becomes associated to the stack frame

of the currently executing method (called thisFrame in Figure 5.2). The invariant is

thus satisfied for the object just after instantiation.

• When an object reference is retrieved from another object (a getfield or getstatic

instruction) or an array (an aaload instruction), a heap cell containing a reference

is copied onto the stack. Because the user program could subsequently extinguish all

heap references to the object (its H-component dropping to 0 accordingly), we must

ensure that the object’s reference count has a positive S component. We therefore

associate an object to the current stack frame if it is not currently associated to

a frame. Since we never reassociate an object to a shorter-lived stack frame, the

object is always associated to the last-to-be-popped stack frame that could reference

it, maintaining the invariant.

47

CHAPTER 5. REFERENCE-COUNTING ASPECTS

• If an object x is associated with frame F , its S component must be 1, and the following

happens when frame F pops.

– If x is returned (or thrown) to F ’s caller, then S stays at 1 and x becomes

associated with the caller’s frame (prevFrame in Figure 5.2).4 The invariant

holds.

– If x is not returned to F ’s caller, there are two subcases.

If the H component of x’s reference count is 0, x is dead and its storage can be

immediately reclaimed.

Otherwise, the S component of x’s reference count becomes 0 but its H compo-

nent is positive so x is still live.

In either case, the invariant holds because x is no longer associated to any frame.

• The H component of x’s reference count becomes 0 at the moment that nothing in

the heap references the object. At that point, if x is not associated with any frame, it

is immediately recycled; otherwise, it is considered live due to a (potential) reference

from the stack. The invariant holds in either case.

Our aspect formulation instruments application code to track stack behavior as in Figure 5.2.

5.2.3 Multithreading and reference counting

Since multiple stack references to an object may exist with multithreading, our single stack

frame approach cannot currently account for the effects of concurrent programming. Future

work in simulating stack frames for each running thread will allow us to collect all objects

in multithreaded programs. Multiple stack frames will add an additional S components to

an object’s reference count. Currently, our work only tracks one method stack. Objects

shared between execution stacks of threads are assumed to live forever.

4An exception may not be caught by the caller, and may propagate some distance before being caught;
we thus require propagate-exception instrumentation as well as athrow instrumentation (both listed in Fig-
ure 5.2) to associate the exception object with the correct frame.

48

CHAPTER 5. REFERENCE-COUNTING ASPECTS

5.2.4 A simple example

Consider three objects in a simple linked list as shown in Figure 5.3. Keeping with standard

practice, the links between the objects are not present in the objects themselves but are

instead held in container objects, depicted as large circles and given the names a, b, and c.

Completing the structure is a List object, inside of which a head field either points to the

first element of the linked list or is null to represent an empty list.

"a"

a

"simple"

b

"list"

c

null

head
next

Figure 5.3: Linked list with carrier objects.

root

Figure 5.4: A tree with carrier objects.

Modern software-construction methodology favors hiding internal representation as

much as possible, exposing functionality only through a published Application Programming

Interface (API). For example, if the containers shown in Figure 5.3 were exported outside

the list object, other classes could depend on their structure, making it more difficult to

49

CHAPTER 5. REFERENCE-COUNTING ASPECTS

modify the container class. Thus, list container-nodes are excellent examples of objects

amenable to reference counting, and, in particular, our heap-only approach.

More ambitious implementations of lists use backward links, in which case the con-

tainer objects become involved in cycles and cannot be collected using reference counting.

However, it is often possible to identify references that cause cycles and make such references

weak [50], if they do not need to contribute to the target object’s liveness.

We next provide details on removal from and subsequent insertion to a singly-linked

list, with and without reference-counted container objects.

• In Figure 5.3, each container object has a reference count of 1; the head of the list

is referenced by the list itself, and each ensuing container object is referenced by its

predecessor.

• When an element is removed from the list, the associated container object is no longer

live. Removing the first element involves changing the list’s head from a to b, which

decrements the heap-reference count of a to 0. Since heap-only reference counting can

safely collect these container objects, container object b becomes collectible at this

point.

• When a new element is inserted into the list, a new container object is created to

contain it. After creation, the new container object is spliced into the list by setting

its next field and the next field of the container object preceding it. Setting these fields

creates references from the heap, so the reference counts of the appropriate container

objects must be incremented.

5.2.5 Cycles and weak references

While the approach described thus far suffices to collect most objects, the death of objects

that reference each other in a cycle cannot be detected by reference counting. Other garbage-

collection techniques [28] can handle objects in cycles, but in this section we describe another

approach.

Java offers the notion of a weak reference, which is a reference from one object to

another that does not count toward the target object’s liveness. A typical use for a weak

reference is in a hash table, so that liveness from the hash table does not contribute to the

50

CHAPTER 5. REFERENCE-COUNTING ASPECTS

liveness of keys or values stored in the table. If a key is not otherwise live, then it cannot be

accessed in the hash table; thus, by making the reference from the table to the key weak, the

object can be collected even though it is technically still reachable from the application’s

live roots.

Weak references could be used carefully in certain data structures to avoid cycles.

For example, in a doubly-linked list, the backward links need not be counted toward objects’

liveness, since liveness is just as well implied by the forward links. Thus, by making the

backward links weak, reference counting could collect objects that otherwise appear to be

live due to reference cycles.

5.2.6 Aspect implementation details

Aspect-Oriented Programming (AOP) provides implicit invocation [45]: when particular

events (“join points”) occur in the program code, code from elsewhere (“advice”) is patched

in to perform an additional (or alternate) computation.5 Typically, AOP languages provide

some sort of reflective facility so that advice can reason about the computation it is advising;

advice triggered after (upon successful or exceptional completion of) a join point can make

use of its computational or exceptional result.

It is precisely these characteristics of AOP that we find so well-suited to reference

counting. When get and set join points occur (corresponding to getfield/getstatic and

putfield/putstatic bytecode instructions), we wish to update our reference counts. In

AspectJ (an extension to Java providing AOP facilities) we can specify in a principled

fashion exactly which events we wish to thusly advise. The pseudocode in this chapter is

easily translated into AspectJ advice.

Once the appropriate classes have been augmented to implement the Reference-

Countable interface, either in response to the automatic analysis described in Section 5.3 or

as determined by hand, our advice uses the presence of that interface to introduce reference

counting into the appropriate classes.

The heap-only reference-counting is much simpler than our full approach, which

requires simulation of the run-time stack. For the heap-only approach, two pieces of advice

5We adopt here the terminology of AspectJ; however, the description provided is sufficiently general to
encompass many aspect languages.

51

CHAPTER 5. REFERENCE-COUNTING ASPECTS

can instrument the code so that objects’ reference counts are adjusted in response to pointer

changes in the heap. On the other hand, accounting for stack activity requires knowledge

of Java’s method stack. Around advice is applied to the execution of all methods and

constructors to simulate Java’s frames with a Stack object. Advice is applied before method

calls to push a Stack object, and advice after calls is used to find objects that are dead.

At present, writing “generic” pieces of advice in AspectJ requires the use of Java re-

flection, greatly increasing overhead. Runtime reflection is not actually necessary, however,

and we augment the aspects with type analyses as discussed in Section 5.5 to remove all

reliance on runtime reflection.

5.3 Reference-countable objects

In this section we present a straightforward algorithm for determining those objects in

a complete Java program whose liveness can be determined solely by reference counting.

Such objects are statically determined never to participate in reference cycles. Results

reported in Section 5.6 were obtained by identification of reference-countable objects using

the approach described here.

The algorithm we describe below is conservative, in that it may omit classes that

could be reference countable but appear statically to be unsuitable. There is no harm in

viewing any class as reference countable, except for the unnecessary overhead in maintaining

reference-counting information for objects that cannot be collected using such information.

Our approach is to build a graph whose nodes represent instantiable classes and

whose edges indicate potential references between classes. An edge is placed between classes

x and y if an object of type x could reference an object of type y. Any type not involved

in a cycle in such a graph can be determined using reference counting.

• A graph is constructed with a vertex for every class type.6

• For a field variable of declared type x, let CouldBe(x) denote the set of actual runtime

types that could be referenced by the variable of type x. We describe the computation

of this set below.

6As noted in Section 5.1, we assume all classes that will ever be loaded into the JVM are available for
this analysis.

52

CHAPTER 5. REFERENCE-COUNTING ASPECTS

• For an actual class of type c, let HasA(c) represent the set of declared variable types

in

c, super(c), super(super(c)), . . . ,Object

This set represents the (declared) types of objects that could be referenced from an

instance of c.

We then perform the following computation:

foreach class c

foreach type t in HasA(c)

foreach type u ∈ CouldBe(t)

place an edge in the graph from node c to node u

Finally, the computation of CouldBe(t) is the fix point of the following:

• t ∈ CouldBe(t)

• If class c ∈ CouldBe(t) then so is every subclass of c.

• If interface i ∈ CouldBe(t) then so is every class that implements i.

• If interface i ∈ CouldBe(t) then so is every interface that extends i.

By repeating the above rules until nothing is added to CouldBe(t) we arrive at a fix-point

answer.

5.4 Recycling objects

Once an object’s death has been ascertained, systems vary as to what can be done with the

object post-mortem. Some platforms offer an explicit mechanism to return a given object

to the storage-management facility for subsequent reallocation; other platforms lack such

a facility. In particular, the rtsj standard has no such mechanism for reusing an object’s

storage. This is particularly unfortunate because rtsj offers scoped-storage areas, in which

objects can be allocated but never collected individually for arbitrary reuse.

In this work, we adopt the practice of recycling [26, 96] dead objects as follows.

53

CHAPTER 5. REFERENCE-COUNTING ASPECTS

recycle(object):
foreach object-field f in object

decrement(object.f .currentValue)
if count(object.f .currentValue) = 0

recycle(object.f .currentValue)
end foreach
recycleList [object.class].push(object)

around new class-type constructor-args:
if recycleList [class-type].isEmpty()

return proceed(class-type, constructor-args)
fi
return recycleList [class-type].pop()

Figure 5.5: Definitions for recycle() and a recycling-aware version of new.

• A dead object of type t is placed on a covert linked list of all dead objects of type t.7

• When an object of type t is subsequently allocated, (any) one of the dead objects on

the covert list can satisfy the allocation request.

Manual modification of the application code to manipulate the covert lists and to modify

constructor calls is a tedious and error-prone undertaking. We automate object recycling by

providing the appropriate advice using AspectJ. Objects are recycled as shown in Figure 5.1

and Figure 5.2, and a suitable definition of the recycle() procedure is shown in Figure 5.5.

Also shown in Figure 5.5 is a redefinition of Java’s new operation: this instrumentation

can be achieved in AspectJ by providing “around” advice on object construction, which

takes the place of the computation that triggers it (in this case, instantiating a new object).

The proceed facility in the figure computes the underlying join point (in this case, standard

Java’s standard new behavior). In our case the standard new behavior is invoked only when

the needed type’s recycle list is empty.

Note that the recursive call to recycle in Figure 5.5 can appear to take unbounded

time, and may thus appear unsuitable for real-time systems. The code in question processes

each field f of a dead object. If f references an object t, then t’s reference count is decre-

mented, possibly reaching zero and thereby deserving recycling. This activity can proceed

at leisure and can be paced so as to occupy a bounded percentage of the CPU.

While rtsj compelled us to recycle objects, recycling has other benefits:

7The covert list does not contribute to the liveness of objects on its list.

54

CHAPTER 5. REFERENCE-COUNTING ASPECTS

• All objects of a given type are the same size in Java, so the recycled object is just the

size needed for any instantiation of that object’s type.

• Objects typically include header information, most notably their type, which need not

be initialized in a recycled object.

Because recycled objects must appear just as though they had been newly instanti-

ated, recycled objects must be reinitialized properly. This can be problematic, because at

the source level, Java constructors actually perform two tasks: allocation and initialization.

While object recycling should circumvent the allocation of a new object, the initialization

of the object is still desired.

Ideally, we would like to run the proper constructor on the recycled object. While

we could achieve this directly in Java bytecode, the resulting program would not bytecode-

verify, and AspectJ does not allow this action either. We thus require recyclable objects

to implement reset() methods,8 which we invoke in place of a constructor to reinitialize a

recycled object.

5.4.1 Automatic Approaches

Our scheme uses a combination of aspect-weaving and bytecode manipulation to achieve

a set of classes that perform user-level, reference-counting object recycling without such

additional requirements on programming style.

Other options include dynamic aspects, which could transfer initialization code from

all constructors into matching reset methods, and issue the reset call for the programmer.

Alternative approaches through the Java Native Interface (JNI), Jasmin, and re-

flection may allow less intrusive introduction of recycling into code. Through JNI, a call

could be made to Java’s init method, allowing us to separate the concerns of allocation and

initialization from the constructor call. Similarly, with Jasmin, a recycled object could be

pushed onto the stack as the target of the init call, instead of a newly allocated one, though

this would not pass the bytecode verifier as pointed out earlier.

8This requirement can actually be relaxed due to code transformation, as discussed in Section 5.5.

55

CHAPTER 5. REFERENCE-COUNTING ASPECTS

With object recycling, creating a new object such as ListItem involves checking to see

if old ListItem objects are available for reallocation. So the simple allocation of a ListItem

object might now look like:

ListItem insert = psuedoAlloc().reset(contents);

public ListItem reset (Object contents) {

this.contents = contents;

return this;

}

/* Return previously collected ListItems if present, otherwise, return a new ListItem. */

public ListItem psuedoAlloc () {

ListItem ans = null;

if (recycleList == null)

ans = new ListItem();

else {

ans = recycleList;

recycleList = recycleList.recycleNext;

}

return ans;

}

As our reference counting aspect currently has no other method of collecting storage,

we will use the ReferenceCountable interface introduced above to apply our recycling aspect

to.

Although the reinitialization of objects does require some additional work, the recy-

cling aspect itself is relatively simple:

• To store the list of collected objects that have yet to be reallocated, we introduce a

static field to each type.

• To maintain the list of collected objects without the introduction of additional carrier

objects, we introduce a next field into each type.

56

CHAPTER 5. REFERENCE-COUNTING ASPECTS

• To check the list of collected objects introduced above, we supply “around” advice

applying to all calls to a constructor of any ReferenceCountable type with any signa-

ture (Figure 5.5). This advice identifies an existing object of the correct type (if any)

and reinitializes it by invoking its reset method. If no such object exists, the object

is allocated and its constructor called in the standard fashion.

As discussed in Section 5.5, we automatically introduce a reset() method corresponding to

each constructor, releasing the programmer from structuring their code according to any

particular convention.

5.5 Implementation

We initially formulated a “generic” aspect that used Java reflection to insert reference-

counting instructions and recycling. Reflection was necessary for the AspectJ advice to

apply to any class that implements ReferenceCountable, for the following reasons:

• When a pointer p points away from x and points to y, the reference count at x must

be decremented, and the reference count at y must be incremented. In AspectJ, the

pointer change is captured by a set join point. While advice can be applied prior to

the pointer change, AspectJ does not have a mechanism for retrieving the old value

of the pointer.9 Thus, reflection is required to open the JoinPoint and access the old

(current) value of the pointer prior to the pointer change.

• When an object x’s reference count reaches 0, x can be collected. Moreover, any Refer-

enceCountable object referenced by x needs to have its reference count decremented.

Because the advice is applied to any ReferenceCountable object, the fields of that

object must be elaborated within the advice. This is accomplished by reflection within

advice that is intended to be applied to an arbitrary class.

• When an object x is detected as dead, it is recycled by appending it to a free-list

of identically typed objects. Reflection allows access to the actual field value from

within the generic advice.

• When an object is recycled and then reused, its reset() method must be invoked to

reconstruct the object. Our AspectJ advice intercepts Java’s new gesture, retrieves

9Previous releases of AspectJ did have this facility.

57

CHAPTER 5. REFERENCE-COUNTING ASPECTS

an object from the type’s recycle list, and calls the reset() method with the same

arguments that the user invoked the constructor with; this last step is performed

reflectively.

This code is reproduced in Appendix A, on pages 174–181.

While the code resulting from application of the generic advice is correct, the perfor-

mance is unacceptable—a few hundred times slower than Java’s standard garbage collector

on micro-benchmarks, and many orders of magnitude slower on larger benchmarks. Careful

performance profiling revealed that almost all of the overhead was in the reflection code

described above.

To remedy this, we essentially precompile or partially evaluate the aspects in terms

of the types they affect. We still rely on AspectJ to handle the tedious and error-prone

activity of identifying when appropriate action should be taken. The action itself is written

directly into the class as follows:

• A setter method for field p can be written into a class so that when p is changed, the

reference counts of the old and new target can be adjusted appropriately. Although

such code is common across all classes, writing the code into the class simplifies calling

the code through AspectJ.

• For any given object, the fields of that object are known statically and elaboration

of those fields can be written into each class. Thus, in class c, there is no need to

elaborate c’s fields reflectively when c’s count reaches 0. Instead, a method is written

into the class to consider each field explicitly rather than reflectively; the reference

count of any such field is decremented if the field currently points to a Reference-

Countable object.

• A method can be written into each class to place dead objects on that class’s free-list.

Further, reset() methods can be introduced into the class, one matching the signature of each

constructor, and Java’s new can be replaced with a corresponding call to the appropriate

reset() method.

The process we currently use to generate functioning, reference-counting- and object-

recycling-enabled Java bytecode from Java source is as follows.

58

CHAPTER 5. REFERENCE-COUNTING ASPECTS

pointcut reference(Object obj,

ReferenceCountable newVal) :

target(obj) &&

args(newVal) &&

set((Object || (ReferenceCountable+)) *);

Object around(Object obj,

ReferenceCountable newVal) :

reference(obj, newVal) {

ReferenceCountable oldVal;

/* reflective code to get oldVal

* (if it is ReferenceCountable) */

Object retval = proceed(obj, newVal);

Class c = oldVal.getClass();

do {

Field fields[] = c.getDeclaredFields();

int length = fields.length;

for (int i = 0; i < length; ++i) {

/* reflective processing of value */

}

} while ((c = c.getSuperclass()) != null);

return retval;

}

Figure 5.6: AspectJ advice to process object fields.

59

CHAPTER 5. REFERENCE-COUNTING ASPECTS

1. We compile the classes normally. Classes implement the marker interface Reference-

Countable or, optionally, an aspect is used to make certain classes implement the

interface, resulting in no change the the original source code for such classes.

2. We scan the resulting bytecode and generate AspectJ source which partially implements

type-specific reference counting in each class. This aspect introduces various fields and

methods necessary for proper reference counting and object recycling.

3. Using the AspectJ compiler, we compile the original classes together with the Ref-

erenceCountable interface, the generated aspects from step 2, and a boilerplate ref-

erence counting implementation aspect. This generates Java bytecode that mostly

implements reference counting and object recycling, including all the necessary code

to update reference counts and check for dead objects when Java’s putfield and

putstatic instructions execute.

4. We inject the resulting bytecode with final reference counting and object recycling

tweaks. Using a program built on Clazzer [75], we clone and adjust each construc-

tor’s code to form a corresponding reset method, and we introduce a few type-specific

helper methods, most notably processDeadObject, which is specially generated per

type and handles inter-object references when an object is recycled.

The resulting classes use no reflection for their implementation of object recycling and

reference counting.

5.6 Experimentation

We implemented the partially-evaluated aspectual approach for both heap- and stack-

reference-counting schemes and we present the results of experiments conducted to measure

efficiency.

As one benchmark, we used an rtsj-suitable collections object LinkedList we devel-

oped, repeatedly creating lists of various sizes. This benchmark can be used with heap-only

reference counting, and we used the heap-only implementation in gathering these results.

In each case, reference-counting can detect the death of the list elements. We measured

60

CHAPTER 5. REFERENCE-COUNTING ASPECTS

0

100000

200000

300000

400000

500000

600000

700000

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

E
xe

cu
tio

n
tim

e
(µ

se
c)

Java heap size (MB)

standard JVM+collector
RC+recycling

Figure 5.7: Average execution times for the Singly-Linked List benchmark generating lists
of 106 carrier objects.

61

CHAPTER 5. REFERENCE-COUNTING ASPECTS

0.15

1.58

231.59

15.70

221.12

0.09

45599.25

0.62

52.89

0.01

0.1

1

10

100

1000

10000

100000

1 10 100

SPEC test size

M
ea

n
 e

xe
cu

ti
o

n
 t

im
e

in
 s

ec
o

n
d

s
(l

o
g

 s
ca

le
)

Partial Evaluation
Reflective
Java GC

Figure 5.8: Results for jess.

0.88

0.14

25.84

0.01

43.63

4042.10

83.55

0.01

0.50

0.001

0.01

0.1

1

10

100

1000

10000

1 10 100

SPEC test size

M
ea

n
 e

xe
cu

ti
o

n
 t

im
e

in
 s

ec
o

n
d

s
(l

o
g

 s
ca

le
) Partial Evaluation

Reflective
Java GC

Figure 5.9: Results for db.

62

CHAPTER 5. REFERENCE-COUNTING ASPECTS

the time taken to run our benchmark with the traditional Java JVM10 and its automatic

garbage collector, and we compare this to times measured for our approach, which include

the time to manage reference counts, to place dead objects on a linked list at deallocation

time, and to unlink them for reallocation in response to new instructions. Figure 5.7 makes

the comparison for different heap sizes for moderately large lists. In this case, the bench-

mark builds a list of 106 null references (so that there are 106 carrier objects), removes these

references from the list (so that the carrier objects become dead storage), and repeats this

whole process a total of ten times. The flat, consistent execution time over all heap sizes

is characteristic of our approach. Note that we must still allocate 106 objects to build the

first list, but for the nine subsequent lists, our approach need not allocate any additional

objects—we can just recycle and reinitialize those objects already allocated, leading to very

consistent timing for the remaining nine iterations, which do not make use of the standard

memory manager at all. (Shown in Figure 5.7 is the average over all ten iterations.)

For smaller heap sizes, our approach performs better on this benchmark than the

standard JVM approach with garbage collection, because smaller heaps force the standard

JVM into a costly mark/sweep garbage collection phase more frequently. Besides performing

consistently across different heap sizes, our timing is more consistent in recycling objects

than the JVM is in allocating objects. Our approach, then, may be desirable for a system

that requires high predictability in object allocation—as long as it properly provisions for

the initial creation of the number of objects maximally live (as determined by reference

counting). At the extreme end of its application range, then, our approach provides a

statically-allocated object pool while encouraging the use of usual Java new gestures. For

systems that do not permit standard garbage collection within special segments of the

heap (such as rtsj’s scoped memory regions), our approach provides a programmer-level

alternative that competes with, and performs more consistently than, a Java collector.

We next evaluate our approach on two of the SPECjvm98 [98] Java benchmarks.11

Figure 5.8 and Figure 5.9 show the results we obtained on the jess and db benchmarks,

respectively. Each benchmark was run on all three sizes (1, 10, 100), and the execution

times for these two are shown using Sun’s Java 1.4.1 in interpreted-only mode on a 2.4GHz

10Specifically, we used Sun’s JVM 1.4.1 on a 2.4GHz Xeon running Linux 2.4.18 under the FIFO scheduling
class and with paging disabled. We used the standard garbage collection strategy provided by the JVM (we
didn’t provide the -Xincgc option), and ran in mixed (JIT-capable) rather than interpreted-only mode.

11We required benchmark source code for the instrumentation, and thus could not apply our approach to
the entire SPECjvm98 benchmark suite. Moreover, the mpegaudio and compress benchmarks are computa-
tional and don’t reference many objects.

63

CHAPTER 5. REFERENCE-COUNTING ASPECTS

Pentium IV Linux box. The JVM was run in interpreter-only mode, and the heaps were

sized as specified for the benchmarks.

Without the partial evaluation, our results are some orders of magnitude slower.

The unacceptable performance is remediated by partial evaluation to obtain performance

within a factor of 2–4 of the garbage-collection times.

While our approach is slower on these two spec benchmarks than Sun’s garbage col-

lector, we are targetting rtsj scoped memory regions, where access to the garbage-collected

heap is not permitted by the class of threads with stringent real-time guarantees. To pro-

vide garbage collection of objects within these regions and maintain rtsj conformance, one

must provide a user-level object recycling scheme like that described and evaluated here.

These results reflect heap-only reference counting; it is useful also to know the over-

head of the stack approach. We implemented our stack-approximated reference-counting

approach and performed some similar partial evaluation as for the heap-only implementa-

tion. The resulting code uses no reflection (which was the chief motivation to our partial

evaluation), but neither is it as efficient as it could be; we are further refining and improving

this implementation in ongoing work. Figure 5.10 shows the overhead of stack reference

counting on a simple recursive micro-benchmark; this benchmark recursively calls a func-

tion N times that creates an object and establishes one pointer to it from the stack and

one from the heap. Approximately N objects are created in N stack frames before being

collected.

5.7 Chapter summary

In this chapter we have presented our aspectual approach for reference counting-based

garbage collection for Java. Our work enables collection of objects that otherwise result

in storage leaks for the Real-Time Specification for Java [21]. Without such an approach,

developers are faced with the error-prone, time-consuming task of doing this work on their

own.

Our approach makes a useful distinction and compromise between the error-prone

parts of this undertaking, which are relegated to AspectJ, and the customization of classes

to support reference counting without resorting to reflection within the aspects.

64

CHAPTER 5. REFERENCE-COUNTING ASPECTS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
xe

cu
tio

n
tim

e
(µ

se
c)

Benchmark size (N)

Stack reference counting
Heap-only reference counting

Figure 5.10: Stack vs. heap reference counting.

benchmark standard RC+recycling standard
RC+recycling

compress 9.01 9.02 1.00
jess 4.04 4.03 1.00
raytrace 2.42 2.77 .87
db 23.13 23.87 .97

Figure 5.11: Comparison of the average execution times (sec) of four spec jvm98 bench-
marks (size 100) for unmodified benchmarks and benchmarks with reference-counting,
recycling-aware code injected.

65

CHAPTER 5. REFERENCE-COUNTING ASPECTS

In concept, it is possible to use aspectual reference-counting. However, current

tools for performing this task (AspectJ) lead to unacceptable performance, so alternative

approaches are required.

An aspect language that provided for compile-time, structurally-reflective decision-

making (as, for example, advanced template metaprogramming in C++) could significantly

reduce the complexity of our code generating type-specific aspects and bytecode, enabling

programmers to more easily employ similar, cross-cutting memory management strategies

in very general and reusable, yet very efficient, ways.

Alternatively, an AspectJ compiler able to partially-evaluate certain uses of reflection

might be able to perform better in this task; however, the language would be less suited to

the task, requiring the use a runtime API to perform a compile-time, metaprogrammatic

task.

Aspect-oriented programming can provide benefits for expressing the separate con-

cerns of compilers and runtime systems, just as it is for expressing application concerns.

In this case, however, we were forced away from an aspect-oriented approach: either we

could opt to use reflection, destroying performance, or create per-type advice, eliminating

the leverage of aspect-oriented languages.

Our solution created per-type advice, but did so automatically, demonstrating that

a tool combining aspect-oriented features and also type operations at compile time could

provide the leverage of aspect tools without the runtime performance hit observed in this

chapter.

Chapter 7 will continue the discussion of our observations of aspect-oriented lan-

guages and tools.

66

Chapter 6

Dual Heap Aspects

arbage collection is a specialized process that causes significant memory busG traffic, pollutes memory caches, and can take an unpredictable amount of pro-

cessor time. Many solutions to these problems have been proposed and imple-

mented in recent work; one such solution is to off-load garbage collection work

onto a separate hardware unit. Free from memory housekeeping chores, the general-purpose

processor can devote itself to executing application logic.

This chapter examines a prototype that uses this approach, and it details the software

support necessary to realize such a design. The chapter is self-contained and makes a

contribution by studying the software support necessary for a particular hardware collector.

This software support is not written in an aspect-oriented programming language,

but it could benefit from a suitable (yet hypothetical) aspect language. Ideas for this

language are briefly discussed; they are further developed in Chapter 7.

Acknowledgments

The work of this chapter was sponsored by the Air Force Research Laboratory (afrl) and

the Boeing Company. The hardware work described was performed by Brett McNerney,

Matthew Dallmeyer, and John Weber of the University of Dayton, and Justin Thiel of

Washington University in St. Louis. In this chapter, this hardware design and implemen-

tation are referred to collectively as the University of Dayton hardware garbage collector,

or simply the “hardware unit.”

67

CHAPTER 6. DUAL HEAP ASPECTS

6.1 Introduction

Dynamic allocation of memory is a fact of life: most complex programs are not easily

implemented by using stack- and statically-allocated memory alone. But dynamic allocation

is a complicated mechanism. Memory being a limited resource, dynamic allocators must

determine which slice of memory to allocate for a given request and when that slice should

be reclaimed and reused.

In many popular imperative programming languages (algol [12], Pascal [59], for-

tran 90 [83], C [64], C++ [99], and others), software developers are provided a dynamic

allocation mechanism, but they are also required explicitly to notify the allocator of heap

storage they no longer require (commonly referred to as freeing storage). This is error-

prone, and the problems are manifold: prematurely freeing storage can lead to type-unsafe

data aliasing, double-freeing storage can confuse the allocator, and forgetting to free stor-

age causes storage leaks. The symptoms are severe: each of these problems can ultimately

cause program abortion, and in many instances they can be exploited by rogue code to gain

control over the program. Often these problems are highly difficult to detect and debug.1

For complex projects, many developers now prefer to allow the runtime system to

manage their heap.2 A garbage collector performs that task and simplifies the program-

ming model considerably; no longer is the developer required to understand the complex

relationships between his program’s data structures, and no longer is he required to write

code sensitive to these relationships. Even when he understands these relationships, it can

be a nontrivial and error-prone process to write code that covers every case where live stor-

age becomes dead. Indeed, garbage collection is widely considered to increase programmer

productivity significantly.

However, garbage collection comes at a price. Under memory pressure, the processor

may be required to perform garbage collection bookkeeping in place of application logic

1Interestingly, designers of early functional programming languages (notably, Lisp [82]) and object-
oriented languages (Simula [35] and Smalltalk [63]) showed an understanding of the need for automated
memory management in their languages [37]. Perhaps this is because these programming paradigms (that
of Lisp, especially) make it difficult for the programmer to judge precisely when to free storage.

2By “runtime system” we mean to be as general as possible: garbage collection can be implemented as
part of an interpreter or virtual machine (as typically done in Java platform implementations), as an add-on
library (as the Boehm collector [20]), or through compiler-injected code (as reference counting often is),
or through a combination (as in compiled versions of functional languages). The garbage collector should,
however, be distinguished from the language context in which it is being used—though the objects and
object relationships that are (in)expressible in the host language certainly affect collector design.

68

CHAPTER 6. DUAL HEAP ASPECTS

to satisfy the application’s storage needs. The processing time required can be highly

unpredictable, though recent work aims to address this problem for real-time systems [13,

81]; see Section 6.8 for a discussion. Further, garbage collection often scans infrequently-

accessed (or even dead) data structures, which pollutes memory caches.

These problems can be mitigated by using a separate hardware unit to perform

garbage collection (or, in our case, all storage functions). Freed from these memory concerns,

the general-purpose processor can continue executing application logic at full speed without

interruptions, so long as its memory allocation requests do not exceed the available memory

(or otherwise overwhelm the collector unit).

This chapter describes the software support we designed and implemented for one

such hardware garbage collector. This particular hardware was developed by colleagues at

the University of Dayton in 2006. It was not designed to act transparently to the runtime

system: the unit manages only a small heap, not large enough to perform many compu-

tations of interest (in this case, aviation navigation systems). Thus a second, larger heap

is used as backup storage. However, garbage collection is not supported in the secondary

heap; it is mainly intended for use by permanent objects. The small, primary heap is suffi-

cient to hold the temporary, short-lived storage for this application. The two parts of this

dual heap use very different interfaces, requiring software support.

The rest of this chapter is organized as follows. Section 6.2 introduces copying

garbage collection in general; Section 6.3 describes this particular hardware collector design;

Section 6.4 lists what is required of software support for this device; Section 6.5 gives

an aspectual description of this software support and indicates why it is not possible to

implement with AspectJ. Section 6.6 describes our real-time Java platform and documents

all of the modifications required to support the hardware collector unit; Section 6.7 discusses

limitations of the current design and implementation of the hardware collector and software

support; Section 6.8 discusses alternative approaches to solving this problem, including

some background on garbage collection approaches; and Section 6.9 summarizes. A full,

detailed changelog of the software support for this collector is provided in Appendix B.

69

CHAPTER 6. DUAL HEAP ASPECTS

6.2 Semispace copying garbage collection

Semispace copying garbage collection is discussed at length in textbooks and research sur-

veys [62, 113]. This section outlines a basic incremental method similar to Baker’s [15].

The discussion provided is quite brief, but it should be adequate for understanding later

sections of this chapter. It may be skipped by readers familiar with the technique.

hi
gh

 m
em

or
y

lo
w

 m
em

or
y

Stack and Globals

From−space To−space

copy pointer

allocation pointer

Figure 6.1: Semispace garbage collection in mid-cycle.

A semispace copying garbage collector maintains two semispaces, the from-space and

the to-space (see Figure 6.1). Collection proceeds in cycles. At the start of a cycle, the

from-space is populated and the to-space is empty. To initiate the cycle, a collector of this

type copies all objects pointed to by the roots—typically the stack and global variables—

into one end of the to-space. Each object’s storage in from-space, now vacated, is left with a

forwarding pointer to indicate the object’s new location and the root pointers are updated

with the new address.

70

CHAPTER 6. DUAL HEAP ASPECTS

The next phase is often performed concurrently with the mutator. The collector

scans the objects it has copied (now in to-space). For every pointer into from-space, the

referenced object is copied into to-space if it hasn’t been already, a forwarding pointer is

left, and the referring pointer is adjusted. This continues iteratively until all from-space

objects in the closure of the points-to relation have been copied. Thus ends the cycle; dead

objects are simply left uncopied in from-space and their storage is reused in the next cycle,

as described below.

Concurrency with the mutator must be carefully managed. Naturally, the collector

should only copy objects with the heap in a consistent state. A read barrier is typically

employed to follow from-space forwarding pointers.3 New memory allocations can be per-

formed during this copying phase too; new allocations are made from the opposite end of

to-space. Separate allocation and copying pointers are kept (as shown in Figure 6.1). If the

two pointers meet before the copying process has completed, the collector typically gives

up and declares itself out of memory, though fallback solutions are possible.

Finally, the two semispaces are atomically switched, the from-space becoming the

new to-space and the to-space becoming the new from-space; this sets up the next cy-

cle, which can begin immediately or when the garbage collector detects memory pressure

exceeding a threshold.

6.3 Dayton’s hardware garbage collector

This section is provided as background for the interested reader; it may be skipped without

compromising his understanding of later sections. In particular, it does not describe any

contributions by the author.

In 2006 the University of Dayton developed a semispace copying garbage collector

in hardware, targetting a Xilinx ML403 board, a model intended for development. This

board contains a Virtex 4 Field-Programmable Gate Array (fpga) with a (mostly-standard)

PowerPC 405 at its core. The design utilized memory available in the fpga fabric rather

3Replicating garbage collection [85] is an alternative approach that requires only a write barrier: the
barrier catches changes made to already-copied from-space objects and “replicates” the changes in to-space.
This obviates the need for a double-indirection read-barrier. Another common approach is to install a
forwarding pointer on all objects and follow it unconditionally; for to-space objects and uncopied from-
space objects, the forwarding pointer points to the object itself.

71

CHAPTER 6. DUAL HEAP ASPECTS

Function Arguments Returns Description

New type object allocate an object
NewArray type, size array allocate an array
GetObjectData object, offset value read from a memory location
PutObjectData object, offset, value — store into a memory location
BumpRefCount object — note a new pointer to an object or array
DecRefCount object — note a deleted pointer to an object or array
CloneObject object object clone an object or array

Figure 6.2: The hardware garbage collector unit’s interface.

than the (much larger) SDRAM chip on the board. This design decision eliminates the

problem of data cache pollution, but limits also the utility of the collector, as it is in charge

of so little memory.

To access this memory, the hardware unit exports a simple interface; Figure 6.2

shows this interface. As a set of functions, the interface is quite different from the standard

way memory is read and written by PowerPC software. This means that when it references

an object, the software must know where that object is—in SDRAM, or in the hardware

collector unit in softcore—before it can perform the reference. We leave this challenge for

Section 6.6. The hardware implementation of the interface is not reentrant; only a single

call (in any one function) may safely be active at a time.

As a semispace garbage collector, this design has a from-space and a to-space; the

two spaces together make up the available storage heap that the unit provides. The SDRAM

heap is physically and conceptually separate from the hardware from- and to-spaces. Not

only are pointers on the program stack and in global storage considered garbage collection

roots, but also any pointers in the SDRAM heap; Section 6.6 describes the software support

necessary to communicate this information to the collector unit.

With garbage collection offloaded to separate hardware, the general-purpose CPU

can remain devoted to application logic. Conceptually, then, the collector can copy objects

between its semispaces in the background at all times, starting another cycle immediately

after one finishes. However, in the current hardware collector design, copying operations lock

the entire block RAM heap. Therefore, to avoid starving the application of this resource,

in practice it is better to trigger collection cycles when a certain threshold of used memory

is exceeded.

72

CHAPTER 6. DUAL HEAP ASPECTS

6.4 Requirements for software support

In Java, all objects (and also arrays, which are just a specialized type of Java object) are

allocated in the Java heap. The only storage that is stack- or globally-allocated are pointers

to those objects and other items of scalar type (integral and floating point types of varying

sizes). To a Java source program, the dual Java heap should appear as a unified heap—the

runtime system should provide a transparent interface, manipulating the appropriate of the

two memories when the program accesses an object. When the program allocates an object,

the runtime should decide in which heap that object should be allocated.

The runtime system further should provide a mechanism for enabling and disabling

allocation in the hardware memory management unit. If this mechanism is enabled and the

class of the allocation request is suitable for allocation in the hardware unit, (see Section 6.7

for a discussion of unsuitable objects).

It is intended that a Java program start by allocating everything in the larger

SDRAM heap (see Figure 6.3). After globals have been instantiated and initialized, the

program can enable the hardware garbage collection unit for allocations (see Figure 6.4).

At this point, objects are allocated in the unit, and the SDRAM heap typically becomes

populated with references into the unit’s memory. The unit’s memory can also contain

references into the SDRAM heap. At some point, garbage objects in the unit’s memory are

deallocated (by not being copied into to-space—see Figure 6.5).

The runtime system must inform the hardware unit when a reference into its heap

(from the stack, global data space, or standard SDRAM heap) is constructed or destroyed.

The hardware unit maintains an external reference count so that these externally-referenced

objects are not collected until all such external references are destroyed.

The compiler must introduce read and write barriers for data accesses that could

occur on a hardware unit-allocated object. In general, the compiler cannot statically deter-

mine which heap is indicated by a particular data access; this check must be performed at

runtime, and the compiler must set up a runtime mechanism for determining the relevant

heap and accessing it.

The hardware unit supports only 32-bit values in data slots; all data reads and writes

are 32-bits. Java long integer and double-precision floating point types are 64 bits; these

must be disassembled in software when written to the hardware unit’s heap and reassembled

73

CHAPTER 6. DUAL HEAP ASPECTS

when read. (We restrict ourselves here to 32-bit architectures; pointers are always 32 bits

and thus need not be disassembled or reassembled.)

Block RAM heapSDRAM heap

Stack and Globals

Figure 6.3: Application startup.

To summarize, software support must meet the following requirements:

1. The current allocation heap should be selectable via an application-visible interface.

2. Objects should be allocated in the current allocation heap. If the current heap is the

hardware collector’s heap and allocation fails or the type of object is not supported

by the collector’s allocator, then the allocation should occur in the standard heap.

3. Pointer bitmaps for classes must be generated for use by the hardware collector’s

allocator.

4. Read and write barriers must be implemented to perform runtime checks on object

pointers to determine the heap to which they belong and implement the proper inter-

face for accessing that heap.

5. For long and double types, data values must be disassembled when writing to the

hardware unit’s memory and reassembled when read.

74

CHAPTER 6. DUAL HEAP ASPECTS

Block RAM heapSDRAM heap

Stack and Globals

Figure 6.4: Application using garbage collector hardware unit.

Block RAM heapSDRAM heap

Stack and Globals

Figure 6.5: Application using garbage collector hardware unit; here, some objects are
garbage.

75

CHAPTER 6. DUAL HEAP ASPECTS

Our specific implementation of these requirements is described in Section 6.4. The next

section describes an aspectual description of this software support and indicates why we

chose not to perform our instrumentation this way.

6.5 An aspectual description of the runtime system

An aspectual description of this software support is possible, though an aspectual imple-

mentation, given current tools, is impossible.

As mentioned in the previous section, read and write access to fields should test the

object pointer, then access the field through the collector interface (using the function calls

of Figure 6.2) or through the usual memory interface (using an addressing mode of the chip)

as applicable.

This certainly has a high-level aspectual description.

1. On field or array accesses, determine the heap and access accordingly. For accesses

of long- or double-type fields and arrays in the hardware unit heap, reassemble the

value by accessing the two 32-bit slots for the field or array element.

2. On field or array assignments, determine the heap and assign accordingly. For assign-

ments of long or double type in the hardware unit heap, disassemble the value and

assign to two 32-bit slots.

3. When allocating an object of class or array type, allocate from the current allocation

heap (either the standard SDRAM heap or the hardware unit’s heap). For class types,

determine the pointer mask and communicate it to the hardware unit’s allocator.

For array types, communicate to the hardware unit’s allocator whether the array

constituents are of pointer or non-pointer type.

4. When assigning a pointer value to the global data space, stack, or the SDRAM heap,

and the pointer value is that of a hardware unit-allocated object, notify the hardware

unit that an external reference to that object has been manufactured. For such as-

signments where the overwritten pointer value is that of a hardware unit-allocated

object, notify the hardware unit that an external reference to that object has been

destroyed.

76

CHAPTER 6. DUAL HEAP ASPECTS

This is relatively straightforward, and would be a complete implementation if an application-

visible mechanism for selecting the current allocation heap were provided. However, em-

ploying AspectJ tools to perform the above tasks is currently impossible. Consider:

• Without relying on native code to perform the work, AspectJ programs cannot per-

form the necessary pointer manipulation.

• The instrumentation must affect all parts of the Java runtime environment, including

system libraries and mechanisms internal to the implementation itself.

• The advice performing these tasks may be self-applicable. Self-application leads to

interminable recursion and must be guarded against.

With native sections of code, a flexible runtime environment—Jikes RVM [58], for ex-

ample4—and carefully-coded advice, these concerns can be discarded. Then the AspectJ

language comes close to performing the task, except :

• Object and array layout, which differ across Java implementations, must be known

by the advice.

• Method offsets into dispatch tables (vtables) must be known by the advice.

This destroys any possible portability of such advice. Even more importantly:

• Array operations must also be trapped and array pointers checked to determine in

which heap they are allocated. Array accesses are not join points in AspectJ.

• The manufacture and destruction of local pointers (on the runtime stack) to FPGA-

allocated objects must be accounted for the collector to be safe. Local variable as-

signment is not a join point in AspectJ.

For these reasons, the AspectJ language is currently not suitable for this task.

4Jikes RVM is entirely written in Java, using instances of “magic” classes to represent pointers and
allowing standard operations on them from within Java. These magic objects have no runtime existence as
on object—operations on them are transformed by Jikes RVM’s just-in-time compiler into machine operations
effecting the pointer operations.

77

CHAPTER 6. DUAL HEAP ASPECTS

6.6 Implementation of software support

jRate [34, 33] is a real-time Java platform aiming for rtsj compliance, though it has proven

useful as a research platform as well. It is based on the GNU Compiler for Java (GCJ) and

the Java standard library that is part of the GNU Compiler Collection (GCC) [48].

As part of this work, jRate has been extended to support the Dayton hardware

collector described in Section 6.3.

Recall the interface for the hardware unit shown in Figure 6.2. Each interface func-

tion is a C stub that locks (in software) the interface against multithreaded access, then

communicates with the hardware unit. These “calls” into hardware are performed entirely

synchronously, as a software procedure call would be: the interface functions do not re-

turn until the hardware has completed its task, regardless of whether they return a value.

Together with the software lock, this ensures thread-safe access to the unit’s internal data

structures.

Because the interface to the hardware unit’s memory is different than to the usual

store, all the code emitted by the compiler must check—at runtime—which heap the deref-

erenced pointer resides in. This is a range check: addresses p satisfying 4096 ≤ p < 5120

are allocated in the hardware unit. But performing this check is suboptimal: performing

this range check ultimately generates two conditional jumps. This can be reduced to one

by performing an optimized, equivalent check on p. In C notation, the check we perform is:

p & 0xfffffc00 == 0x00001000

This generally performs better, and it reduces the size of the read barrier.

We treat Java and C++ separately in the implementation (as GCC provides two

separate front-ends for these languages). We’ll address them separately here also as the

challenges of each implementation are somewhat different.

6.6.1 Java support

In the Java front-end, we force compilation from bytecode (and don’t support compilation

from source when supporting the hardware collector). JVMs are stack machines; accord-

ingly, Java bytecode assumes an operand stack. There are also “local variables” (registers)

78

CHAPTER 6. DUAL HEAP ASPECTS

accessed, though they generally serve as secondary storage; aside from loads and stores, few

bytecode instructions operate on these registers.

Recall that Java globals (that is, static fields), the Java stack and registers, and

the standard SDRAM Java heap can all hold external references into the hardware unit’s

memory. All such references must be recorded by the hardware unit, and it is the job of the

software support to communicate the presence of these external references to the hardware

unit.

The following sections detail our support for catching all references to hardware unit

storage from the Java stack and registers, global data space, and SDRAM heap, and our

support for communicating the presence of these to the hardware unit.

Noting external references

The direct way to instrument stack-based external references would be to call BumpRefCount

on push and DecRefCount on pop. However, we don’t instrument stack accesses in this

manner. Rather, on pop, we leave the value there and call DecRefCount it when it’s

overwritten by a subsequent push.

GCC normally splits the Java stack on access mode (floating point values get a stack,

integral values get another) and allocates pseudoregisters lazily to (stack-index,access-mode)

pairs. We leave this access mode requirement in place, but we add also pointer and non-

pointer pseudoregister stacks. If a bytecode sequence pushes a pointer, pops it, then pushes

an integer, our compiler won’t emit a DecRefCount for the pointer since the values are in

different pseudoregisters (and thus the pointer wasn’t overwritten). This makes the front-

end support easier to implement, as it is a simple matter to determine what is and what

is not a pointer—a pseudoregister holding a pointer will never hold a non-pointer, and vice

versa. This simplification of the implementation does not harm hardware register allocation;

nonconflicting pseudoregisters can map to the same hardware register.

We emit a BumpRefCount at the following sites.

1. a pointer is passed as a method argument (at callee side); for non-static Java methods,

this includes the this pointer, which is passed as an implicit method argument

2. a value is assigned to a pointer array

79

CHAPTER 6. DUAL HEAP ASPECTS

3. a value is assigned to a pointer field

4. a value is assigned to a pointer static field

5. a pointer is pushed onto the Java stack

6. a pointer is generated on the Java stack during a Java bytecode instruction in the dup

family

7. a pointer is stored into a Java register

In all cases, the call to BumpRefCount is conditional; if the relevant pointer value is not to

a hardware unit-allocated object, the call is not made.

We emit a DecRefCount at the following sites:

1. a pointer is overwritten on the Java stack

2. a pointer is overwritten on the Java stack during a Java bytecode instruction in the

dup family

3. a pointer is overwritten in a Java local variable

4. a pointer is overwritten in an array

5. a pointer is overwritten in a field

6. a pointer is overwritten in a static field

7. a pointer is in a local variable (or function argument variable) at function exit, whether

normal or exceptional; this includes the implicit this pointer

8. a pointer is in a Java stack slot (above or below the current stack pointer) at function

exit

As for BumpRefCount, these calls are conditional; if the destroyed pointer is not to a hard-

ware unit-allocated object, the call is not made.

Dealing with returned and thrown pointer values

Given the above, the most straightforward way to handle method return values of pointer

type, as well as thrown values on exceptional exit (which are always of pointer type in

80

CHAPTER 6. DUAL HEAP ASPECTS

Java), would be to allow the pointer to be the subject of a DecRefCount on method exit,

and do a corresponding BumpRefCount in the caller’s context, as the pointer is now on the

caller’s operand stack. However, this leads to a race condition. The DecRefCount in the

callee context could drop the object’s external reference count to zero, making the object

eligible for collection by the hardware collector if no hardware unit-allocated object refers

to it. But a pointer to this object still exists, and it should not be collected.

Thus, returned and thrown pointers are handled as a special case. At the site of the

areturn or athrow bytecode instruction, which return and throw a pointer, respectively,

the top Java stack slot (which contains the pointer) is nullified. This keeps the object from

getting a DecRefCount that could drop its external reference count in the hardware unit

to drop to zero. On the caller side, function return values (of pointer type) and caught

exceptions are, as a special case, not subject to a BumpRefCount when pushed onto the

stack. Essentially, the reference count in use by the callee is transferred to the caller.

6.6.2 C++ support

On the C++ side, we only need to trap pointers to Java objects—C++ objects are never

eligible for allocation within the hardware unit memory. We feel this is acceptable because

the allocations in the Java programs we target are for Java objects, not C++ objects;

the only allocations for non-Java objects are in native parts of the standard Java library

implementation, mostly during one-time initialization of the runtime system or of loaded

classes. Further, C++ object pointers are often directly manipulated within C++ programs

via pointer arithmetic, and such pointer arithmetic is never valid on pointers into the

hardware unit.

However, we don’t make any attempt to close C++ typing loopholes that could be

used to hide Java pointers. For instance, if a pointer to a hardware unit-allocated Java

object is cast to an int and stored in an int-typed field, we won’t catch the assignment.

It is up to C++ code running as part of a Java application to manually increment and

decrement the external reference count to objects; as mentioned above, we can control this

body of code directly since it is part of the standard Java library.

We emit a BumpRefCount at the following sites in the C++ front end.

81

CHAPTER 6. DUAL HEAP ASPECTS

1. a Java-typed pointer is passed as a function argument (bump at callee side); for non-

static Java methods implemented “natively” in C++, this includes the this pointer5

2. a pointer is assigned to a Java-typed pointer field

3. a pointer is assigned to a Java-typed global or local variable

4. a pointer is assigned to a Java array

We emit a DecRefCount at the following sites in the C++ front end:

1. a Java-typed pointer is overwritten in a field

2. a Java-typed pointer is overwritten in a global or local variable

3. a pointer is overwritten in a Java array

4. a pointer is in a Java-typed pointer argument at function exit (whether normal or

exceptional)

5. a pointer is in a Java-typed local variable when that variable’s scope exits (whether

normal or exceptional)

A pragma is supported in the extended C++ compiler to turn on and off this C++

instrumentation. This is particularly useful for special cases where the external reference

count for hardware unit-allocated objects should be handled explicitly by the code—for

example, in the memory management runtime code itself, or in code that uses Java’s

System.arraycopy() library function to manipulate Java pointer arrays.

6.6.3 Read and write barriers

The emissions of GetObjectData and PutObjectData emissions are straightforward and are

used both for fields and array elements. We include pseudocode here to make the read and

write barriers of our compiler explicit. These are the Java versions, the C++ versions are

identical except for arrays (discussed further below).

5Under the Compiled Native Interface (CNI) [], which we used exclusively for this project, the this pointer
is passed as an implicit method argument to a C++ method implementing a Java class “native” method.
This is not the case under JNI [], which passes the this pointer as an explicitly-named function argument.

82

CHAPTER 6. DUAL HEAP ASPECTS

The read barrier is split into two cases, word and doubleword. The write barrier is

split into three cases—word primitive, doubleword primitive, and pointer. Pseudocode for

non-static field read and write barriers is in Figure 6.6.

to GET double/long fields:

if object handled by SMM unit

(SMM_getObjectData(object, field_hi) << 32 |

SMM_getObjectData(object, field_lo))

else regular_getfield(object.field)

to GET non-double/long fields:

if object handled by SMM unit

SMM_getObjectData(object, field)

else regular_getfield(object.field)

to PUT pointer fields:

if object handled by SMM unit

SMM_putObjectData(object, field, new_value)

else

// x refers to y from z

old_value = regular_getfield(object.field)

regular_assignment(object.field <-- new_value)

if new_value is handled by SMM unit

SMM_bumpRefCount(new_value)

if old_value is handled by SMM unit

SMM_decrRefCount(old_value)

to PUT double/long fields:

if object handled by SMM unit

// new_value_hi/lo are the hi/lo words of doubleword

SMM_putObjectData(object, field_hi, (new_value >> 32) & 0xffff)

SMM_putObjectData(object, field_lo, new_value & 0xffff)

else regular_assignment(object.field <-- new_value)

to PUT non-pointer, non-double/long fields:

if object handled by SMM unit

SMM_putObjectData(object, field, new_value)

else regular_assignment(object.field <-- new_value)

Figure 6.6: Pseudocode for (non-static) object field read and write barriers.

Arrays are similar; pseudocode is listed in Figure 6.7. Note there are four words of

overhead in an array: the vtable pointer, the sync info pointer (for use as Java monitor),

the rtsj memory area pointer, and the array length.

83

CHAPTER 6. DUAL HEAP ASPECTS

to GET double/long array elements:

if array handled by SMM unit

(SMM_getObjectData(array, (index * 2) + 4) << 32 |

SMM_getObjectData(array, (index * 2) + 5))

else regular_arrayload(array[index])

to GET non-double/long array elements:

if array object handled by SMM unit

SMM_getObjectData(array, index + 4)

else regular_arrayload(array[index])

to PUT array elements of pointer type:

if array handled by SMM unit

SMM_putObjectData(array, index + 4, new_value)

else

// x refers to y from z

old_value = regular_arrayload(array[index])

regular_assignment(array[index] <-- new_value)

if new_value is handled by SMM unit

SMM_bumpRefCount(new_value)

if old_value is handled by SMM unit

SMM_decrRefCount(old_value)

to PUT array elements of double/long type:

if array handled by SMM unit

SMM_putObjectData(array, (index * 2) + 4, (new_value >> 32) & 0xffff)

SMM_putObjectData(array, (index * 2) + 5, new_value & 0xffff)

else regular_assignment(array[index] <-- new_value)

to PUT array elements NOT of double/long or pointer type:

if array handled by SMM unit

SMM_putObjectData(array, index + 4, new_value)

else regular_assignment(array[index] <-- new_value)

Figure 6.7: Pseudocode for array element read and write barriers.

84

CHAPTER 6. DUAL HEAP ASPECTS

Static fields (globals) and local variables are much easier to handle since they never

live in the hardware unit themselves. In particular, there need be no local or global variable

read barrier. Figure 6.8 shows the pseudocode.

GET on statics/locals is normal and not instrumented.

to PUT a static/local of pointer type:

// x refers to y from z

old_value = regular_get(variable)

regular_assignment(variable <-- new_value)

if new_value is handled by SMM unit

SMM_bumpRefCount(new_value)

if old_value is handled by SMM unit

SMM_decrRefCount(old_value)

Figure 6.8: Pseudocode for global (static field) and local variable write barrier. No read
barrier is needed.

Two other mechanisms must be implemented as well—calling a method through a

vtable and getting the length of an array; see Figure 6.9 for pseudocode.

to CALL A METHOD on an object:

if object handled by SMM unit

vtable = SMM_getObjectData(object, 0)

else vtable = object.vtable

invoke_through_vtable(vtable, method)

to GET THE LENGTH of an array (including all those pesky bounds checks):

if array handled by SMM unit

SMM_getObjectData(array, 3)

else regular array.length access

Figure 6.9: Pseudocode for calling a method (through the vtable) and getting the length of
an array.

Note that this software support will exhibit a data race if the application being

instrumented has a data race: a thread could get a pointer to a hardware unit-allocated

Java object from an SDRAM-allocated pointer field, but before it has a chance to bump

the reference count, another thread could destroy the pointer and decrement the reference

count to zero. The object could be collected out from under the first thread.

C++ instrumentation is identical for fields and global and local variables, though

arrays are treated very differently. CNI requires access to Java array elements from C++ by

calling an elements() template function. We modified the standard library (instead of the

85

CHAPTER 6. DUAL HEAP ASPECTS

compiler) to implement hardware unit-allocated array external reference count adjustments

when arrays are accessed through this template function. Array syntax is largely unaffected

and only required a few manual changes (flagged by compile errors) in parts of the library

code written in an unorthodox manner.

6.6.4 Implementation of compiler support

As indicated in previous sections, to perform its tasks the runtime system depends on

compiler support. Beyond the usual support needed for an ahead-of-time-compiled Java

platform, two main pieces of compiler support are needed. We described the first above:

the replacement of normal memory reads and writes with more complicated read and write

barriers that discriminate between SDRAM- and hardware unit-allocated objects.

The second main piece of compiler support needed is the building and exporting of

pointer masks for each class of object. GCJ already performs a similar task for its support

of the Boehm garbage collector [20]; we used this implementation as a base and tailored it

for use with the Dayton hardware garbage collector.

6.6.5 Overhead of barrier instrumentation

There is considerable overhead in the read- and write-barrier implementations. The Uni-

versity of Dayton measured the speed and real-time suitability of their collector; here, we

are concerned with the on-disk footprint of the instrumented binaries. This is an important

concern, as they must fit on a compact flash card together with the fpga bitfile and Linux

kernel, and they must be loadable into the limited physical memory of the system; virtual

memory isn’t used in this system since there isn’t a suitable disk to which to swap pages.

Figure 6.10 lists sizes for instrumented and non-instrumented binaries, both stripped

of debugging symbols (with the strip utility) and unstripped, for three optimization levels.

Both jRate and application binaries are shown; the application is real-time Java flight

control software provided by the Boeing Company. jRate libraries are always built with the

-O2 optimization flag, so their sizes for the other optimization levels is omitted; however,

the size of the -O2 jRate binaries are included in the “Total upload” line, as these libraries

must be uploaded to the board and loaded into memory in any case. Note that the smallest

instrumented upload package in this table is the stripped -O2 configuration at 39.4 MB;

86

CHAPTER 6. DUAL HEAP ASPECTS

to maximize space efficiency, this is the binary package we would choose to upload to the

board and execute.

Figure 6.11 compares binary sizes at the three different optimization levels. Even

though GCC’s -Os flag is meant to optimize for size, it occasionally increases the size of

the resulting binary.

Figure 6.12 shows the inflation of instrumented binaries over their non-instrumented

counterparts. For the smallest instrumented upload package (the stripped -O2 configura-

tion), there is a factor of 3.55× inflation in the size of the package due to the instrumentation.

6.7 Limitations

Some object types are never allocable in the hardware collector unit:

• Only 1024 non-array object types (for the collector, types are just tuples (size, ptr-

mask)) can be registered with the unit; if the application uses more types, some will

not be allocable in the unit.

• Objects and arrays larger than the unit’s semispace size are unallocable.

• Object types larger than 64 words that have pointers beyond the 64th slot are unal-

locable in the unit, since pointer masks are limited to 64 bits.

• Object types that require special memory layout and access or byte-addressability

(e.g., java.lang.String) are unallocable in the hardware unit.

• Object types used internally by the JVM (in particular, mutex types, class loaders,

classes, etc.) are unallocable in the unit.

These objects and arrays are allocated in the SDRAM heap (or, failing that, an out

of memory exception is raised). Further, any other requests of the unit that fail (e.g., for

lack of space in the unit) are allocated from the SDRAM heap.

87

C
H

A
P

T
E

R
6
.

D
U

A
L

H
E

A
P

A
S
P

E
C

T
S

Size in bytes With instrumentation
Optimization level O0 O2 Os
Postprocessing – strip – strip – strip
libgcc s.so.1 – – 829972 32864 – –
libstdc++.so.5 – – 4275792 743696 – –
libjRateCore.so.0 – – 1010849 115800 – –
libgcj.so.4 – – 34570837 18086452 – –
libflightconcni.so 13690 9304 11760 8056 11235 7544
libmessage PAYLOAD x86.so 1113108 51720 1145138 44608 1107495 41760
libttimestampcni.so 19697 13584 18440 12468 17976 12000
prismj 54750043 33433432 43749378 22225624 58364820 27309976
Total upload 96583988 52486852 85612166 41269568 100188976 46350092

Size in bytes Without instrumentation
Optimization level O0 O2 Os
Postprocessing – strip – strip – strip
libgcc s.so.1 – – 830276 32864 – –
libstdc++.so.5 4257318 747632 4257318 747632 4257318 747632
libjRateCore.so.0 – – 997509 111256 – –
libgcj.so.4 – – 22951308 5762696 – –
libflightconcni.so 7871 4816 7408 4436 7251 4296
libmessage PAYLOAD x86.so 1103452 47912 1137617 43432 1100090 40484
libttimestampcni.so 18153 12420 17103 11456 16679 11028
prismj 29131975 7786524 26320058 4913820 28803920 5933308
Total upload 59297862 14506120 56518597 11627592 58964351 12643564

F
igu

re
6.10:

S
ize

(in
b
y
tes)

of
x
86

p
r
i
s
m
j

ap
p
lication

b
in

ary
an

d
d
ep

en
d
en

t
lib

raries
w

ith
an

d
w

ith
ou

t
in

stru
m

en
tation

(see
S
ection

6.6.5).
S
izes

for
th

ree
op

tim
ization

levels
are

listed
,
an

d
for

each
level

th
e

u
n
p
ro

cessed
size

is
given

as
w

ell
as

th
e

size
after

p
ostp

ro
cessin

g
w

ith
strip

to
rem

ove
d
eb

u
ggin

g
sy

m
b
ols.

jR
ate

lib
raries

are
alw

ay
s

com
p
iled

w
ith

-
O
2

an
d

aren
’t

sh
ow

n
in

th
e

oth
er

colu
m

n
s;

h
ow

ever,
th

eir
size

is
in

clu
d
ed

in
th

e
total

in
th

e
b
ottom

row
.

88

CHAPTER 6. DUAL HEAP ASPECTS

Optimization savings/loss With instrumentation
Os
O0

O2
O0

Os
O2

– strip – strip – strip
libflightconcni.so 0.82 0.81 0.86 0.87 0.96 0.94
libmessage PAYLOAD x86.so 0.99 0.81 1.03 0.86 0.97 0.94
libttimestampcni.so 0.91 0.88 0.94 0.92 0.97 0.96
prismj 1.07 0.82 0.8 0.66 1.33 1.23
Total upload 1.04 0.88 0.89 0.79 1.17 1.12

Optimization savings/loss Without instrumentation
Os
O0

O2
O0

Os
O2

– strip – strip – strip
libflightconcni.so 0.92 0.89 0.94 0.92 0.98 0.97
libmessage PAYLOAD x86.so 1 0.84 1.03 0.91 0.97 0.93
libttimestampcni.so 0.92 0.89 0.94 0.92 0.98 0.96
prismj 0.99 0.76 0.9 0.63 1.09 1.21
Total upload 0.99 0.87 0.95 0.8 1.04 1.09

Figure 6.11: Comparison of sizes of prismj application binary and dependent libraries
under different GCC optimization levels (see Section 6.6.5). Note that the -Os option to
GCC, which optimizes for size, sometimes increases the size of the binary. jRate libraries
aren’t shown, as they are always compiled with -O2. The totals are ratios of the totals in
Figure 6.10, and thus include the jRate libraries.

Instrumentation inflation O0 O2 Os

(ratio instrumented
uninstrumented

) – strip – strip – strip

libgcc s.so.1 1 1 1 1 1 1
libstdc++.so.5 1 0.99 1 0.99 1 0.99
libjRateCore.so.0 1.01 1.04 1.01 1.04 1.01 1.04
libgcj.so.4 1.51 3.14 1.51 3.14 1.51 3.14
libflightconcni.so 1.74 1.93 1.59 1.82 1.55 1.76
libmessage PAYLOAD x86.so 1.01 1.08 1.01 1.03 1.01 1.03
libttimestampcni.so 1.09 1.09 1.08 1.09 1.08 1.09
prismj 1.88 4.29 1.66 4.52 2.03 4.6
Total upload 1.63 3.62 1.51 3.55 1.7 3.67

Figure 6.12: Comparison of sizes of prismj application binary and dependent libraries with
and without instrumentation for hardware garbage collection support (see Section 6.6.5).
Each number is the ratio of instrumented file size versus uninstrumented file size.

89

CHAPTER 6. DUAL HEAP ASPECTS

6.8 Alternatives

There is much related work in this area, and several alternatives exist to using the hardware

collector developed by the University of Dayton.

The simplest alternative is to use an off-the-shelf, purely software collector, such as

those that come with a Java virtual machine [101], or the Boehm collector [20] that comes

as part of GCJ. However, this suffers from precisely the drawbacks that the hardware col-

lector is intended to avoid—that the general-purpose processor must spend time performing

collection work instead of executing application logic.

In real-time systems development circles, garbage collection has generally been ig-

nored. Many real-time systems are built relying on explicit rather than automated deal-

location; this approach has the liabilities discussed in Section 6.1. Other approaches in-

clude using memory regions [105] or the stricter rtsj version of regions, scoped mem-

ory [21, 19, 33, 38, 36]. Many region systems are semi-automatic, where the work of

deallocation is not fully automatic but shared between the user and the system. Others,

like rtsj’s, perform consistency checks at runtime to verify that no dangling references can

be manufactured; this leads to a different memory model where certain objects may not

reference other objects [21, 36].

Many garbage collectors that are “real-time” in some sense have been proposed over

the years [69, 15, 73, 25, 4, 86, 16, 60, 85, 30, 13, 97, 3, 37]. Recent work has demonstrated

real-time collectors operating in realistic, modern applications with real-time constraints,

and fall broadly into two categories. A paced collector, such as Metronome [13], attempts

to hold the application logic’s utilization of machine resources constant; the effect is as if

the application is running on a slower processor without the overhead of garbage collection.

Work-rate collectors, like the one in Aonix PERC [3], do a small amount of collection work

at each allocation site to spread the cost of garbage collection throughout the program’s

execution. In both cases the collectors are tunable for the application so they can keep up

with allocation requests. The as-yet-unreleased RTS 2.0 from Sun Microsystems is rumored

to include a real-time garbage collector.

Previous approaches to hardware-assisted collectors [94, 87] have employed special-

ized hardware to perform the task. The University of Dayton approach uses an fpga for

memory management; this allows faster prototyping and more complete application-specific

collector configuration.

90

CHAPTER 6. DUAL HEAP ASPECTS

6.9 Chapter summary

We have described a hardware garbage collector designed and implemented by the University

of Dayton in 2006 and the compiler and runtime support we implemented to support that

collector.

This software support is conceptually aspect-oriented (Section 6.5), but the AspectJ

language and compiler don’t support the features needed to implement the software support

in this way. We resorted to modifying jRate [34], our real-time Java platform built atop

the industrial-strength compiler GCC, to support this work (Section 6.6).

91

Chapter 7

Observations about System
Aspects

revious chapters have considered a number of system aspects. Each provides itsP own complete and separate contribution, including implementation and analysis.

In each case, we ultimately performed our implementations outside of today’s

aspect-oriented languages and tools, despite the fact that the designs are aspect-like.

We now tie these system aspects together by making observations about them and

performing an analysis about what this means for future aspect languages. To recap:

• Chapter 4 describes a C++ metaprogram to test the feasibility of a rate-monotonic

schedule, rejecting programs that are not feasible at compile time or (at user discre-

tion) dropping less-important tasks to ensure feasibility;

• Chapter 5 implements a reference-counting scheme that is able to reuse heap storage

in a Java virtual machine, effectively implementing a user-level garbage collector; and

• Chapter 6 details changes to a production compiler that were required to support a

hardware garbage collector.

The second of these three was initially a set of AspectJ aspects, reproduced in Appendix A;

the performance was poor, partly as a result of the AspectJ compiler at the time, partly as

a result of the language design itself. Ultimately the aspectual implementation had to be

augmented using a preprocessing tool we implemented to create specialized, type-specific

92

CHAPTER 7. OBSERVATIONS ABOUT SYSTEM ASPECTS

advice. The other two system aspects were recognized for their aspectual qualities at design

time, but were not implemented in AspectJ because of language limitations.

The following sections recap the failures encountered with aspect language imple-

mentations of the system aspects described in previous chapters.

7.1 Performance problems

Section 5.5 indicates the unacceptable performance of the aspect implementation of the

reference-counting memory manager described in Chapter 5. This was almost entirely due

to structural reflection (on classes) that could be performed at compile-time; however, there

is no way to specify such type manipulation in AspectJ.

7.2 Lack of type-sensitive constructs

Not only do the lack of type-sensitive constructs in AspectJ lead to performance problems,

they also don’t permit certain types of analysis and reconfiguration to be conducted by the

program during compilation. This was the chief problem of an aspectual formulation of the

scheduling metaprogram of Chapter 4. The metaprogram could have been written as an

aspect, but this wouldn’t have permitted the compile-time configuration we desired, and

it certainly wouldn’t have supported raising a compile-time error when the task set was

infeasible. In short, because compile-time computation wasn’t supported, the functionality

we desired was not available.

7.3 Model mismatch for system-level concerns

Chapter 6 demonstrates a rather different problem; AspectJ is simply unable to specify

some of the needed functionality, including array access and assignment and local variable

manipulation. This represents a join point model mismatch—AspectJ’s join point model is

simply at a different level than that required by the software support of Chapter 6.

93

CHAPTER 7. OBSERVATIONS ABOUT SYSTEM ASPECTS

7.4 Systemic aspect languages

We now consider what features we could add to an aspect language to solve the problems

outlined in the previous sections.

7.4.1 Reflective aspect code

Consider a piece of generic AspectJ advice designed to reflectively iterate over the fields

of an object and perform some processing. Such advice might look similar to the advice

we used for heap-reference-counting objects in Chapter 5, a simplified version of which is

shown in Figure 5.6. (The full code is in Appendix A starting on page 174.)

We use reflection heavily in the code.1 This reflection is necessary to make the advice

generic enough to work with all classes of objects. However, it is not necessary or preferable

in an implementation for performance reasons, as noted in Section 5.5.

Chapter 5 demonstrates the tremendous benefits of partially evaluating reflective

code like this to remove oft-used reflection. This scheme of automatically generating type-

specific advice may be useful in aspect compilers for boosting performance, but it only

addresses part of the problem.

Java’s programmatic reflection is a mechanism to which programmers resort when

necessary, but it certainly is not the language feature of choice in all circumstances—other

Java features, like class inheritance and virtual dispatch, are preferable in many cases, not

just for performance but also for their ability to better encapsulate and encode programmer

intent and aid future maintenance effort and code reusability—in short, the right tool for

the right job. Aspect languages like AspectJ provide additional, non-reflective features that

users often prefer to apply instead of Java reflection.

Not only, then, could aspect compilers support non-reflective implementation or

partial evaluation where possible, but aspect languages could provide also the ability to

1We use the term “reflection” in this circumstance somewhat reluctantly. Java boasts “reflection” as
a feature but in fact merely provides introspection. The behavior of a class cannot be changed after it is
defined, and, in particular, the behavior of one or more instances of a class cannot be changed (nor can
their class identity be changed) after instantiation. Virtual machine-level features cannot be reflected upon:
virtual method invocation, for example, does not have a reflective language-level interface. These are not
the feature’s only deficiencies. See [80] and [65] for a more complete vision of reflection.

94

CHAPTER 7. OBSERVATIONS ABOUT SYSTEM ASPECTS

perform some types of reflection with a syntactic effort similar to that of the AspectJ

pointcut. When an aspect compiler applies a particular piece of advice to a particular

join point, it can reify these gestures, as appropriate, to the weave being performed. With

a second gesture, similar in spirit to the Java generic type [24] or the C++ template, the

programmer could specify generic aspects parameterized by type rather than the primordial

Java object type Object. This removes the need for programmer-specified reflection and,

further, permits the programmer the flexibility to assert that certain members exist in the

classes to which the advice applies; full type checking is only performed when the advice is

woven.

The signature of the advice of Figure 5.6 (or that in Appendix A) then becomes

parameterized on types T and U, instead of specified statically for types Object and Refer-

enceCountable. Statically-instantiated parameterization only provides advice genericity to

a point, as the types T and U that are instantiated at a particular join point may themselves

have subclasses. The parameterization represents the static nature of the join point’s types,

and Java’s dynamic features, including reflection, can pick up at that point.

Such parameterized advice would permit an aspect programmer to write generic as-

pects in a more natural way and benefit from some compile-time type checking that reflec-

tion simply does not provide. A parameterized mechanism for AspectJ’s static crosscutting

feature, intertype declarations, has been proposed by Hanenberg and Unland [51].2

This mitigates the problems identified in Section 7.1 and Section 7.2.

7.4.2 Systemic join point model

A systemic join point model would alleviate the problems of Section 7.3. For instance,

adding read-barrier and write-barrier join point primitives, parameterized by the kind and

arguments of access and assignment, could solve the issue and make the compiler modifica-

tions of Chapter 6 expressible using the (extended) aspect language.

2Please note that the cited work calls intertype declarations by a different name, introductions. See
Section 2.1.5 for a discussion of the name discrepancy.

95

CHAPTER 7. OBSERVATIONS ABOUT SYSTEM ASPECTS

7.4.3 Generalized join point model

The proposal of Section 7.4.2 is not a fully satisfactory solution, as it would bias the (hy-

pothetical) aspect language toward a specific kind of system aspect. Another, more general

solution is to define an extensible join point model that would allow aspectual code to

cooperate in its own weaving.

This would look much like a compile-time metaobject protocol [65]. Language mech-

anisms could be represented in the host language using higher-order abstract syntax [91],

and the weaving process itself designed to be extensible.

The resulting language, though it knows nothing of read- and write-barriers directly,

would be capable of expressing concerns about them. This addresses the issue identified in

Section 7.3.

7.5 Chapter summary

We have identified places where AspectJ is unable to specify system aspects, and we have

identified possible solutions to these problems that future aspect languages could incorpo-

rate.

96

Part II

Reducing the Testing Burden

The language designer must not ask “what do you want?”, but rather “how

does your problem arise?” For, the answer to the first question will in-

evitably be “jumps, type-less operands, and addresses.”

– Niklaus Wirth, On the Design of Programming Languages [115]

97

Chapter 8

The Testing Problem

odern tools support a feature-oriented approach [17, 102] to writing soft-M ware: a minimal core is written, and features are independently added

atop this core. These features can be included in or excluded from a par-

ticular build, so the software naturally can form an entire product line, allowing users to

select only the features they want from the software.

This chapter identifies two outstanding problems in this area: that of enumerating

valid configurations of the software, and that of testing the (possibly quite large) number of

such configurations. The first problem is solved algorithmically: we provide an algorithm

that enumerates the set of valid configurations in time proportional to the size of this

(output) set. The second problem is discussed and addressed further in later chapters.

8.1 Introduction

A serious challenge of industrial middleware is that of its size; while a piece of middle-

ware may start out life as a single-purpose, simple, small package, it can grow large and

become unwieldy. Regular refactoring takes a large amount of developer time, and nonob-

vious dependences between different parts of the software makes the task difficult [53].

Large middleware with interdependent pieces can be too large for some tasks, especially for

embedded systems with small memories and little or no secondary storage.

98

CHAPTER 8. THE TESTING PROBLEM

One way to achieve a small footprint is to design software to be subsettable. Users

of the software can choose precisely those components they want and leave out the balance.

However, as the number of independently selectable features grows, so the number of valid

configurations of the software grows. This considerably increases the testing liability for the

software author, who may be required to test every such configuration to ensure software

quality. In practice, the number of configurations can lead to a heavy testing burden.

This chapter investigates this problem. Section 8.2 describes subsetting in more

depth. Section 8.3 provides a novel algorithm for enumerating the tests given a specification

of valid configurations. Section 8.4 introduces the notion of feature dependence and indicates

how it might inform a solution to the testing problem, and Section 8.5 summarizes.

8.2 Subsetting

Software subsetting is the practice of refactoring software code so that it may be built in

multiple configurations, each consisting of a subset of the functionality of the full software

package. To a user with specific requirements, a subsettable software package can provide

a targetted build that has just the needed functionality without spending processor time

and disk and memory storage on other, unwanted tasks.

In practice, subsetting software is a hard problem after the fact [53]. Many modern

software projects opt to make subsetting a design goal from the start [100, 42, 92, 55].

Subsetting can be achieved in a variety of ways. Linux kernel modules [22] and

web browser content plugins and interface extensions involve subsetting: users can select

precisely what parts they need. Often in such systems, software functionality is added only

through a well-defined, rigid interface based on the Interceptor design pattern [93]. This is

suitable for web browser content plugins, where the browser code itself should control when

and how the plugin is invoked; however, certain highly-pervasive software features cannot

be adequately specified through such a rigid interface.

Recent work uses aspect-oriented programming to implement different parts of soft-

ware functionality so that they needn’t be constrained to a particular interface [92, 55, 79,

53], and it is on this approach that we focus our attention in this work. Aspect-oriented

languages, defined in Chapter 2, provide language-level hooks; different software features

99

CHAPTER 8. THE TESTING PROBLEM

can use these hooks in different ways to implement their functionality. Structural mod-

ifications of code, such as with AspectJ’s intertype declarations, allow these features to

enlarge shared data structures in a modular way. Traditional compile-time configurability

of data structures, not using aspects, can waste memory at runtime or compromise code

maintainability.1

A rigid interface based on the interceptor pattern has its advantages, though. In

particular, program state can be protected from the plugin, essentially isolating its func-

tionality and protecting the core software. As the interface is relaxed to accommodate more

extensive and pervasive feature specifications, however, the core software code necessarily

becomes vulnerable to state changes imposed by the added functionality, and its memory

and processing requirements merge with those of the added feature. The core software code

and the feature specification may be separate at the source level, but at runtime they are

one, whole.

This means that adding a feature to an error-free core can cause an error in that

core; further, the composition of two (independently) error-free features to an error-free core

can exhibit an error at runtime. In general, this means that every possible configuration of

the software must be tested to ensure software quality. If every feature in the feature set F

is independently selectable, the possible configuration space is the power set of features, 2F.

This exponential explosion of valid software configurations quickly becomes unman-

ageable as the number of features grows. If not all 2|F| feature subsets are valid configura-

tions, the valid configurations among them must be found. Then they must all be tested.

The rest of this chapter looks at enumerating valid configurations and reducing the testing

burden placed on software authors.

1Consider a C program written to have a compile-time-configurable data structure. One approach is
to make heavy use of the C preprocessor’s ifdef feature. Code maintainability can be sacrificed when
there is considerable complexity in the ifdef conditions. A second approach is to install a pointer in a
data structure that can be used at runtime to point to fixed-size additional data. Essentially a non-inlined
version of the first approach, this wastes memory and execution time. It may provide a clearer definition
of the data structure, but sacrifices some code maintainability since the handling of the linked structures is
more complex than necessary.

100

CHAPTER 8. THE TESTING PROBLEM

8.3 Finding valid configurations

When not every software feature is independently selectable, one of the problems of test-

ing the software is merely determining which configurations are valid; valid configurations

satisfy all the feature composition requirements of the software under consideration. If a

feature A ∈ F requires the presence of a feature B ∈ F , then the configuration {A,B} may

be valid but the configuration {A} certainly is not. The mechanism for specifying these

feature requirements is a graph, as explained in Section 8.3.1.

While a simple algorithm can iterate over all 2|F| possible configurations, filter out

invalid ones, and list those remaining, this is an exponential-time algorithm even when

the number of valid configurations is small. This section proposes a novel graph-theoretic

algorithm to enumerate valid configurations with an asymptotic running time in the size

of the output set. The author is not aware of a previous algorithm that performs this

enumeration with this complexity bound.

The work of this section was inspired by Ravi Pratap Maddimsetty and his work

testing the thousands of legitimate configurations of Framework for Aspect Composition

for an EvenT channel (facet) [56, 79].2

8.3.1 Feature set specifications

To enumerate valid configurations, we take as input a feature set specification that describes

the relationship between features. In our case the feature set specification is provided by

the build system, which often includes some encoded knowledge about feature relationships,

or by the developer personally. It may be possible in many circumstances to determine

automatically these feature relationships rather than require them as input, but that is not

investigated in this work.

We augment the complete feature set F with a core feature that stands for the base

program with no optional features. The feature set specification is then a directed acyclic

graph G = (V,E) with V = F . A feature A ∈ F that requires the presence of another

feature B ∈ F represents that requirement with a directed edge (B,A) ∈ E. Note this

edge is in the reverse of the dependence direction. G will be rooted at the core feature,

2Ravi Pratap Maddimsetty, personal communication.

101

CHAPTER 8. THE TESTING PROBLEM

as all features depend upon the core, and the core depends on no feature. All vertices are

reachable in the graph from the core feature.

This perspective of feature dependence is based on facet [56]. The facet build

system can be made to output just such a graph of its features, though its feature set

specification is somewhat richer than we use in this chapter; it allows features to be added to

mutual exclusion sets. Figure 10.13 on page 141 shows facet’s full feature set specification.3

8.3.2 A configuration-enumerating algorithm

Our feature set specification now a graph G = (V,E) with a designated “core feature” root

vertex r, we address the problem as a purely graph-theoretic one.

Definition 8.1 Immediate dominator. We define the immediate dominator of a vertex v,

written idom(v), to be the node d such that:

• all paths from r to v in G include d, and

• there exists no single vertex y that lies strictly between d and v on all of these paths.

We also use the inverse idom mapping, written idom−1. idom(v) (where v 6= r) is the

single vertex that immediately dominates v. idom−1(v) is the possibly-empty set of vertices

immediately dominated by v.

Definition 8.2 Dominance and strict dominance. For vertices x, v ∈ V , we say x domi-

nates v, written x≫ v, if and only if x = v or x is in the transitive closure of idom(v). We

say x strictly dominates v and write x ≫ v if and only if x≫ v and x 6= v.

These dominance definitions are compatible with that of [84] and other texts.4

3Note that facet’s feature set specification is the inverse of the one we use here: the directed edges point
in the opposite direction.

4We note that [84] and other references typically introduce dominance on execution paths through a
program. Here we are defining it in the language of graph theory, independent of execution paths, and using
it on feature set specification graphs. The differences here are superficial; the ideas are complementary and
compatible.

102

CHAPTER 8. THE TESTING PROBLEM

Definition 8.3 Rooted subgraph. Given a directed acyclic graph G = (V,E) and a ver-

tex v ∈ V , we define a v-rooted subgraph of G, denoted Subgraph(G, v), to be the sub-

graph S = (V ′, E′) of G rooted at v with all vertices in S dominated by v:

V ′ = {u ∈ V | v≫u (in G)}

E′ =
{

(a, b) ∈ E
∣

∣ a, b ∈ V ′}

Definition 8.4 Valid configuration. Given a finite, rooted, directed acyclic graph G =

(V,E), call any nonempty set of vertices S ⊆ V a valid configuration of G if v ∈ S =⇒

pred(v) ⊂ S. We write VG to denote the set of all valid configurations of a graph G.

Definition 8.5 Owned vertex. A graph vertex u is said to own a vertex v if pred(v) = {u}.

Given these definitions, the graph-theoretic problem statement is then as follows:

Problem statement. For a finite directed acyclic graph G = (V,E) rooted at a single

vertex r ∈ V (all vertices reachable from, and therefore dominated by, r), find VG, the set

of all valid configurations of vertices of G.

We have discovered an algorithm that computes the set of all valid configurations of G

with asymptotic time complexity proportional to the size of the number of valid software

configurations. Further, this solution performs as well as any solution to the problem: any

algorithm solving this problem must enumerate the entire set VG, and therefore must have

computation complexity at least O(VG).

The algorithm proceeds as follows. Following the technical presentation, a discussion

tries to illuminate the algorithm, and correctness and complexity are proven.

Algorithm. Pseudocode for the top-level algorithm is listed in Figure 8.1. First, the imme-

diate dominators idom(v) for all v ∈ V are calculated. Now, each vertex v ∈ V is considered

in reverse topological order and find(G, v) is computed (pseudocode in Figure 8.2). Where

find appears to call itself recursively, it can in fact use a previously computed value for the

invocation.5

find(G, v) computes the set of all valid configurations of Subgraph(G, v). Reverse

topological order guarantees that r is the last vertex considered, so find(G, r) is the last

5Computing in reverse topological order ensures this property.

103

CHAPTER 8. THE TESTING PROBLEM

configurations(G = (V,E), r) :
begin

compute idom−1 mapping
consider vertices v ∈ V \ {r} in reverse topological order

compute find(G, v)
return find(G, r)

end.

Figure 8.1: Our algorithm to enumerate valid software configurations based on a feature
set specification (see Section 8.3.2).

find computation performed; find(G, r) is the set of all valid configurations of G as defined

in the problem.

The cross operator × is defined a little differently than it normally is to allow for

crossing multiple unordered sets together (Figure 8.3). Examples are useful here. If w, x, y,

and z are configurations (sets of features), A and B are sets of configurations (sets of sets

of features), and α, β ∈ F are features:

{w, x} × {y, z} = {w ∪ y,w ∪ z, x ∪ y, x ∪ z}

{{α, β}} × {x, y} = {{α, β} ∪ x, {α, β} ∪ y}

A × ∅ = ∅

A × {∅} = A

8.3.3 Discussion

The key to this algorithm is that it exploits a recursive, independent subgraph structure.

Diagrammed in Figure 8.4, these recursive are reminiscent of recursive structure in dynamic

programming [32]; in fact, that is quite similar to what is done here.

The configurations subroutine performs all of the main graph work; find computes

a set of valid configurations for one of these subgraphs based on what is already known;

104

CHAPTER 8. THE TESTING PROBLEM

find(G = (V,E) , v) :
begin

(1) G′ = (V ′, E′) := Subgraph(G, v)

(2) combos :=
{

{v}
}

(3) owned(v) :=
{

w ∈ V ′
∣

∣

∣ predG′(w) = {v}
}

(4) foreach s ∈ 2 owned(v) \ {∅}
(5) foreach t ∈ X

c∈s
find

(

G′, c
)

(6) combos := combos ∪
{

{v} ∪ t
}

combos ′ := ∅
(7) foreach i ∈ idom−1

G′(v) \ owned(v)

(8) foreach t ∈
{

x ∈ combos
∣

∣

∣ predG′(i) ⊆ x
}

(9) combos ′ := combos ′ ∪
(

{t} × find
(

G′, i
)

)

(10) return combos ∪ combos ′

end.

Figure 8.2: The find helper subroutine to compute all valid configurations of Subgraph(G, v).

A × B =
{

x ∪ y
∣

∣

∣ x ∈ A, y ∈ B
}

X
z∈{x}∪B

f(z) = f(x) × X
z∈B

f(z)

X
z∈∅

f(z) = {∅}

Figure 8.3: Definition of the cross operator ×, which operates on sets of configurations
(sets of sets of features). Intuitively, it computes the set of all paired unions of two sets of
configurations. As defined here, × is commutative and associative.

105

CHAPTER 8. THE TESTING PROBLEM

s

all vertices
dominated

by a

S1

Subgraph

all vertices
dominated

by b

S2

Subgraph

all vertices
dominated

by c

S3

Subgraph

Subgraph S0
all vertices dominated by v

r

v

u

a b c

Figure 8.4: Recursive independent subgraphs.

the “recursive” call to find has in fact been precomputed by configurations in a bottom-up

fashion, as in dynamic programming. This is shown in the next section.

The find(G, v) subroutine computes a “combos” set in three stages. Initially, it

only contains
{

{v}
}

—the single configuration of only the root vertex (“core feature”) of

Subgraph(G, v). Clearly this is a valid configuration for Subgraph(G, v), but it may not be

a complete set of valid configurations.

The second contribution to combos is at line (6). Line (4) iterates through all combi-

nations of “owned” successors of v (recall Definition 8.5, above); s is one such set of owned

successors. Line (5) computes the cross of all valid configurations of Subgraph(G, c); here,

c ranges over the owned successors of v. For each configuration t in the cross, combos is

amended at line (6) to include the configuration {v} ∪ t.

Consider Figure 8.4. In the computation of find(G, v), the second contribution to

combos corresponds to all valid combinations of valid configurations of subgraphs S1, S2, and

S3. Vertices a, b, and c are owned by v. Feature v is included in every valid configuration

of S0; it must be. Features r and s are not dominated by v, so aren’t considered by

find(G, v). Feature u is dominated by v, but is not considered by lines (4)–(6).

106

CHAPTER 8. THE TESTING PROBLEM

The third and final contribution to combos, at line (9), explains its name; this

contribution is a combination of those sets of configurations calculated in the previous

two contributions. Line (7) iterates over each vertex i that is immediately dominated by

but not owned by v. This corresponds to vertices like u in Figure 8.4, those for which the

immediate dominator is not the sole predecessor. Line (8) considers each configuration t in

the combos set that includes all predecessors of i. Each such configuration can be augmented

with i to form another valid configuration (by definition). Line (9) adds such configurations

to combos; it also includes all valid configurations of Subgraph(G, i), since i could dominate

its own recursive independent subgraph (even though vertex u in Figure 8.4 does not).

Note that line (9) may execute multiple times, each time using the current assign-

ment of combos; in this way, the augmentations to combos in the third contribution are

multiplicative.

With these three contributions, the combos set contains all valid configurations of

Subgraph(G, v).

8.3.4 Correctness

To show that this algorithm is correct, we compare VG to find(G, r), where r is the desig-

nated, unique root of G. We show soundness (find(G, r) ⊆ VG) and completeness (VG ⊆

find(G, r)), which together prove that we have found the right set of valid configurations,

that is, find(G, r) = VG.

Theorem 8.1 (find can use G) find computes G′, but in all cases it can use G instead.

Specifically, line (1) of find computes G′ = Subgraph(G, v); replacing line (1) with G′ := G

results in equivalent output.

Proof Lines (3), (5), (7), (8), and (9) use G′.

• Line (3). For all vertices w in Subgraph(G, v), by definition, v≫w. If any predecessor

of w fell outside the subgraph, w would not be dominated by v. A contradiction

results: therefore, predG′(w) = predG(w).

• Line (5). c is a vertex dominated by v. Every vertex c dominates is thus also dominated

by v; Subgraph(G′, c) is itself a subgraph of Subgraph(G, v). Further, all vertices

of G that c dominates are in G′ and thus also in Subgraph(G′, c). It follows that

Subgraph(G, c) = Subgraph(G′, c) and therefore find(G, c) = find(G′, c).

107

CHAPTER 8. THE TESTING PROBLEM

• Line (7). All nodes immediately dominated by v in G are also in Subgraph(G, v).

Further, all nodes immediately dominated by v in G′ are also in G. Thus idom−1
G′(c) =

idom−1
G (c).

• Line (8). Same as for line (3).

• Line (9). Same as for line (5).

Because every use can be replaced with a use of G, an explicit computation of G′ is not

needed.

Theorem 8.2 If s, t ∈ VG for a rooted, directed acyclic graph G, then s ∪ t ∈ VG.

Proof By definition, if s is a valid configuration of G, then the existence of a vertex u ∈ s

implies pred(u) ⊂ s. Similarly, v ∈ t implies pred(v) ⊂ t. Therefore, for each such u and v,

we know that u, v ∈ s ∪ t, that pred(u) ⊂ s ∪ t, and that pred(v) ⊂ s ∪ t.

Assume that s∪ t is not a valid configuration of G. Then there must exist a vertex w

and another vertex x ∈ pred(w) such that w ∈ s∪t and x /∈ s∪t. But this is a contradiction—

if w ∈ s, then pred(w) ∈ s, and we know that s ⊆ s∪t. Symmetrically, a similar contradiction

exists if w ∈ t. Thus, s ∪ t is a valid configuration of G.

Theorem 8.3 Given a rooted, directed acyclic graph G = (V,E), if a vertex u ∈ V owns

vertex v ∈ V , then u = idom(v).

Proof Assume u 6≫ v in G. Then there exists some path from the root of G to v that

doesn’t include u. But this is a contradiction: by definition, the only predecessor of v is u,

so u must be the penultimate vertex on any path in G from the root to v. So u ≫ v, and

because u is the immediate predecessor of v, u = idom(v).

Theorem 8.4 If s, t ∈ VG, then s ∪ t ∈ VG.

Proof By definition, x ∈ s =⇒ pred(x) ⊂ s, and similarly for t. Because VG is the set

of all valid configurations, it suffices to show that x ∈ s ∪ t =⇒ pred(x) ⊂ s ∪ t, which is

trivial.

Theorem 8.5 If A,B ⊆ VG, then A × B ⊆ VG.

Proof From the definition of × (Figure 8.3), if s ∈ A and t ∈ B, then s∪ t ∈ A×B. We

know s, t ∈ VG; an application of Theorem 8.4 completes the proof.

Theorem 8.6 (Correctness) For any directed acyclic graph G = (V,E) rooted at a ver-

tex r ∈ V with r≫ v (∀v ∈ V), find(G, r) = VG.

108

CHAPTER 8. THE TESTING PROBLEM

Proof As G is finite, directed, and acyclic, the length of the longest path through G

is finite. The proof is by induction on the length of the longest path in G. Let

MaxPathLength(G) be the length of the longest path.

Base. If succ(r) = ∅, then the longest path in G is of length 1, and find(G, r) returns
{

{r}
}

,

which is trivially correct.

Inductive step. With r the root of G, let:

k = max
c∈succ(r)

MaxPathLength(Subgraph(G, c))

The longest path through G is clearly larger than for any of these subgraphs (prepending r

to the longest path of any subgraph results in a longer path in G); therefore, by the induction

hypothesis we know that ∀c ∈ succ(r), find(G, c) = VSubgraph(G,c).

Assume that find(G, r) 6= VG; then it must either include an extra, invalid config-

uration that is not present in VG, or it must miss a valid configuration that is present

in VG.

Extra configuration. Assume there is an extra configuration s ∈ find(G, r) such that s /∈ VG.

Then ∃x ∈ s s.t. pred(x) 6⊂ s. Clearly x 6= r, since pred(r) = ∅. Consider find lines (2), (6),

and (9): these are the only contributions to its return value. Line (2) cannot produce s,

since we know x 6= r. Line (6) produces configurations of the shape {v} ∪ t, where t is a

cross-configuration of sets of configurations that are known valid by the induction hypoth-

esis; by Theorems 8.4 and 8.5, these configurations must too be valid. Line (9) produces

configurations of the shape {t}×find(G′, i); t is valid by the arguments above, and find(G′, i)

is valid by Theorem 8.1 and the induction hypothesis. Using Theorems 8.4, and 8.5, the

combination configurations constructed on line (9) must too be valid. Lines (2), (6), and (9)

cannot produce configurations of the right shape to be “extra,” invalid configurations. We

have arrived at a contradiction; find(G, r) cannot include a configuration s /∈ VG.

Missing configuration. Call the missing configuration s: s ∈ VG and s /∈ find(G, r). By

definition of valid configuration, x ∈ s =⇒ pred(x) ⊂ s. Consider the set t = s\
⋃

x∈s pred(x);

t is the set of independent features of configuration s; all other features are pulled in by

their dependence and by definition. Now consider each feature x ∈ t. x is either a successor

of r or it is not. If it is not a successor of r, it was considered in the computation find(G, c)

for some successor c of r, and we know find(G, c) to be correct by the induction hypothesis.

109

CHAPTER 8. THE TESTING PROBLEM

If it is a successor of r, it is immediately dominated by r and is considered at either line (6)

or (9) and included in the combos set. Since all subsets of such successors of r (and their find

sets) are considered and crossed, t must be considered, and s ∈ find(G, r), a contradiction.

There is a contradiction in each case: therefore find(G, r) doesn’t miss any set x ∈

VG, and doesn’t include an extra set x /∈ VG. Thus find(G, r) = VG.

We have established the correctness of find and (by extension, trivially) the

configurations subroutine.

8.3.5 Computational complexity

Next we investigate the computational complexity of the configurations subroutine. We

already know that references to G′ can be replaced by references to G (Theorem 8.1); this

considerably lowers the computational cost of an implementation.

Theorem 8.7 A program implementing the find algorithm can use array and/or list data

structures in all set computations without having to check for duplicate elements.

Proof For each assignment, duplicate elements cannot result.

Line (2). Trivial assignment.

Line (3). The owned mapping can be computed for all vertices as indicated in

configurations; see below.

Line (6). t does not include v; each set added to combos at this line includes v.

Line (9). Each configuration added to combos ′ is not already a member; for different

iterations of the outer loop, i is different and is not included in combos ′ for any other

iteration of the outer loop. For different iterations of the inner loop, values of t are distinct.

Line (10). Each element of combos ′ includes some feature i that is not present in

any configuration in combos; therefore the set union doesn’t risk a duplicate element.

Theorem 8.8 Let G = (V,E) be a finite, rooted, directed acyclic graph, and let owned =
⋃

u∈V {v ∈ V | u owns v}. Then the foreach loop on line (7) of the find algorithm executes

precisely |V | − |owned| − 1 times over all find invocations.

110

CHAPTER 8. THE TESTING PROBLEM

Proof For each vertex v ∈ V , precisely one vertex is the immediate dominator of v.

Therefore the inverse mappings idom−1(v) are disjoint for v ∈ V . Ownership sets are also

disjoint; if a vertex r owns a vertex v, no other vertex owns v.

Further, if a vertex r owns a vertex v, v = idom−1(r), so all vertices trimmed from

the idom−1 mapping on line (7) are in that mapping. Therefore, for a given invocation of

find(G, r), the foreach loop on line (7) executes exactly |idom−1(r) |−| {v ∈ V | r owns v} |

times.

In a rooted, directed acyclic graph, all nodes have an immediate dominator except

for the root. Therefore,
∑

v∈V |idom−1(v) | = |V | − 1. Since the ownership sets are disjoint,

|owned| =
∑

u∈V | {v ∈ V | u owns v}|.

Therefore, if calls to find are memoized and performed in reverse topological order

over G, line (7) executes precisely |V | − |owned| − 1 times for a call to configurations(G).

Theorem 8.9 The foreach loop on line (5) of the find algorithm always executes at least

once, for any value of s picked at line (4).

Proof In a call to find(G, v), line (4) picks an element s from the power set of owned(v),

but excludes the empty set. Therefore, s is always a set of at least one element. By the

definition of ×, the result is not empty. Therefore, there is always at least one t which can

be chosen at line (5), and that foreach loop must execute at least once.

Theorem 8.10 When the foreach loop on line (5) of the find algorithm executes, it in-

creases the cardinality of combos by precisely one.

Proof The sets yielded by find(G, c), over all c ∈ s, are disjoint, as find(G, c) operates on

the disjoint subgraph of G rooted at c. By definition, the × operator chooses an element

from each set, so the result sets yielded by the × operation at line (5) must also be disjoint.

Therefore, the sets t are disjoint over all iterations of the outer foreach loop. Then,

{r}∪t /∈ combos before the foreach loop at line (5) executes, and, therefore, the ∪ operation

increases the cardinality of combos by one.

Corollary 8.10.1 The running time of the foreach loop at line (4) is O(|combos|).

Proof Immediate from Theorem 8.9 and Theorem 8.10.

Theorem 8.11 The running time of configurations(G), which includes |V | calls to

find(G, v), is O(|find(G, v) |), that is, the size of the result set.

111

CHAPTER 8. THE TESTING PROBLEM

Proof Computing the required mappings (succ, pred, idom−1, and owned) requires O(|E|)

time.6 The runtime of the entire foreach loop of line (4) is O(|combos|) by Corollary 8.10.1,

and the foreach loop of line (7) executes less than |V | times over all calls to find by Theo-

rem 8.8. |V | − 1 ≤ |E| < |find(G, r) |, so the entire procedure requires O(|find(G, r) |) time.

Theorem 8.12 Given a directed acyclic graph G = (V,E), rooted at r, computing pred,

succ, owned, and idom−1 mappings over the vertices of G and computing find(G, r) can be

done in O(|VG|) time.

Proof Let n = |V | and m = |E|. The computation of succ and pred mappings takes

O(m) time. The idom−1 mapping can be computed in O(m α(m + n , n) + n) time.

Every iteration through either of the find loops adds elements to the result set.

Computing α × β can be performed in O(|α| · |β|) time, and yields an output set of size

|α| · |β|. Therefore each iteration of the first loop can be performed in time proportional to

the number of configurations added to the combos set. Each iteration of the second loop

adds at least one element to the combos set.

Therefore the find operation can be done in time proportional to the size of its

output set, that is, in O(|combos|) time. Since find(G, r) = VG (by Theorem 8.6), find can

be calculated in O(|VG|) time.

This concludes our discussion of our valid configuration-enumerating algorithm.

8.4 Feature dependence

In the preceding section, we used feature dependence, represented in the feature set speci-

fication, as a way to rule out illegitimate configurations. These dependences are typically

structural or behavioral in nature—one feature depends on a method introduced by another,

or depends on another’s behavior to make any sense in the system at all.

Another sort of dependence may be useful here as well, though. If two features

manipulate completely independent, non-interfering parts of the core application, then they

6Computation of dominators dominates. Dominators computation is linear [27]; the well-known, near-
linear dominators algorithm of Lengauer and Tarjan [72] can also be assumed, in which case the running
time is O(|E|α(|E|, |V |)).

112

CHAPTER 8. THE TESTING PROBLEM

might be testable in isolation. That is, if features A and B are independently tested, and

each passes a rigorous set of tests, perhaps their combination need not be tested also.

The next few chapters explore this idea.

8.5 Chapter summary

Modern software is complex; often, software becomes large in footprint and its features

difficult to maintain. To address excessive footprint, developers refactor their software or

design it initially to support sets of user-selectable features; each user can then choose just

the right feature set to fit the task at hand.

This chapter introduced the testing problem, which arises in precisely such circum-

stances. In an effort to ensure software quality, authors of such subsettable, featureful

software must test all valid configurations of software.

First, testers must have a list of all legitimate software configurations; this chapter

introduced a novel algorithm to enumerate such configurations and established a bound on

its computational complexity. This algorithm is asymptotically as fast as any algorithm to

solve the problem, since it runs in time proportional to the size of its output.

Second, the number of tests required can be staggering in practice; in general, it

is exponential in the number of features. Feature independence might be an successful

criterion for reducing the testing burden. Forthcoming chapters examine feature dependence

in depth.

113

Chapter 9

Aspect Independence

Recent work has studied aspect independence. However, much of this work has

defined independence in differing ways and in different contexts. Here, we briefly survey

the different notions of aspect independence from the literature and conclude in Section 9.6

by defining independence as it pertains to this work. We also discuss the relevance of

each view of independence to AspectJ [6], a widely-used, general-purpose, aspect-oriented

programming language.1

The notion of aspect independence is particularly important in automatic program

translation and analysis for a variety of reasons. First, information regarding the dependence

of aspects upon one another is of use to the development team in packaging particular

configurations of a software system as in Chapter 8.

Further, modular software can be tested in parts, and in particular, parts of soft-

ware that provably do not affect each other (as independent slices [112, 89], discussed in

Section 9.4) can be tested in isolation; this is particularly important for aspect-oriented

software constructed in a feature-oriented manner, like facet [55, 54, 53, 92, 79], with a

large number of different configurations that each need to be tested or proven equivalent to

other configurations (for the purposes of testing).

Finally, provable observations about aspect independence can be used by an opti-

mization engine, resulting in higher-quality compiled code. For instance, if two aspects

1All code in this section has been tested with abc 1.2.1 [90] and AspectJ 1.2.0 [6].

114

CHAPTER 9. ASPECT INDEPENDENCE

provably do not interfere, code transformations that execute before weaving may reorder

advice application, or perform optimizations over advice trigger points.

9.1 A taxonomy of dependence

There are several forms of aspect dependence; the term dependence is inconsistently used

in the literature. To be explicit about our use of the term, we define five different forms of

dependence:

• explicit dependence (Section 9.2)

• weave dependence (Section 9.3)

• control/data dependence (Section 9.4)

• sensitivity (Section 9.5)

• conceptual dependence (Section 9.6)

These are discussed in following sections of this chapter; we then discuss aspect dependence

in the context of AspectJ (Section 9.7) and summarize (Section 9.8).

9.2 Explicit independence

First, we define a valid program to be a program that is valid within it’s language: it is

well-formed and passes any semantic checking required by the language.

An aspect A has an explicit dependence on an aspect B over a base program P

if B(P) is not a valid program but B(A(P)) is a valid program. A base “program” P has

an explicit dependence on an aspect A if P is not a valid program but A(P) is a valid

program.

This captures the notion of packaging requirements: if an aspect A directly refers

to a package, field, method, or other language entity belonging to aspect B, A requires the

presence of B in any configuration of the software. If B is not presence, the compiler will

flag an error.

115

CHAPTER 9. ASPECT INDEPENDENCE

The feature set specifications described in Chapter 8 model explicit dependence

relations. Section 4.4.1 discussed this sort of dependence relation between real-time tasks

in a task set.

9.3 Weave independence

Weave independence seeks to determine if a uniquely-determined woven program results

from aspect weaving. Two aspects A and B are said to be weave independent if a uniquely-

determined woven program results from applying either the transformation A(B) or the

transformation B(A).

AspectJ does not require weave independence of AspectJ programs. The language

specification [8] defines a weave order between pieces of advice within an aspect, but without

specific instruction, the weave order between pieces of advice in different aspects is undefined

and may occur in any order.

aspect Cancel {
void around() : call(void Foo.m()) {
System.out.println("<CANCEL>");

}
}

aspect A {
declare precedence : A, Cancel;

void around() : call(void Foo.m()) {
System.out.println("<A>");

proceed();

}
}

class Foo {
public static void m() {
System.out.println("m()");

}

public static void main(String[] args) {
m();

}
}

Figure 9.1: Two weave-dependent aspects and their base program.

Figure 9.1 shows two aspects, A and Cancel, that are weave-dependent. In the figure,

the two aspects both apply to the same join point. Weaving A first, then Cancel, leads to

one outcome, while weaving Cancel then A leads to a another, distinct outcome. In this

case, we employ AspectJ’s declare statement to inform the compiler which weave order is

desired.

116

CHAPTER 9. ASPECT INDEPENDENCE

9.4 Control/data independence

Let P be a program, GP be its control flow graph (CFG) and DP be its program dependence

graph (PDG) [46]. We seek to find whether two aspects A and B interact in a control/data

flow sense over program P—informally, whether the aspects’ combined effects are greater

than their sum.2 We first define a few terms:

Definition 9.1 The slice of a program dependence graph DP with respect to vertex s ∈ DP ,

written DP /s, is a directed graph:

V (DP /s) = {w ∈ V (DP) | w →∗ s}

E(DP /s) = {(v,w) ∈ E(DP) | v,w ∈ V (DP /s)}

Definition 9.2 The affected points of P with respect to an aspect A, written APA(P), is a

subset of the vertices of DA(P):

APA(P) =
{

s ∈ V (DA(P))
∣

∣

∣ DP /s 6= DA(P)/s
}

(9.1)

Intuitively, APA(P) is the set of vertices of the woven program A(P) that are not

control/flow dependent on A—that is, they cannot detect the presence or absence of A.

Definition 9.3 Two aspects A and B are control/data independent over P if they satisfy

two conditions:

APA(P) ∩ APB(A(P)) = ∅ (9.2)

APB(P) ∩ APA(B(P)) = ∅ (9.3)

There are two conditions since the aspects A and B may be weave-dependent. If

one (but not both) of these conditions are satisfied, A and B are control/flow-independent

for one weaving order and control/flow-dependent for the other. (This is most common

where one aspect removes code that the other advises.) If both conditions are satisfied, the

aspects A and B are control/flow-independent over P regardless of weave order.

2This exposition is inspired by, and some definitions are nearly identical to, the notes in Appendix B
of [79].

117

CHAPTER 9. ASPECT INDEPENDENCE

There is no simple correspondence between weave independence and control/data

independence in general. Aspects may be weave independent and control/data dependent,

or weave dependent and control/data independent in this aspect model.

9.4.1 An example

Consider the aspectual code of Figure 9.2, defining aspects A and B and a base

program (class) P .

We first construct the program dependence graph of P (Figure 9.3). Here, we use

basic blocks [84] as the resolution of the graph (which we have indicated with comments in

the code of Figure 9.2). Next, we individually weave A and B with the base program to

produce programs A(P) and B(P). The program dependence graphs of these two woven

programs (DA(P) and DB(P), respectively) are then constructed (Figure 9.4). Note that

program A(P) has an additional node (d) in its program dependence graph and additional

edges (those incident to d) and that program B(P) has fewer dependence edges than P .

We compute the affected points APA(P) and APB(P) (these are shaded in Fig-

ure 9.5), then apply the other aspect along each path and shade the affected points (Fig-

ure 9.6).

Finally, we can compute whether A and B are independent in a control/data-flow

sense. Note that:

APA(P) ∩ APB(A(P)) = {c, d} ∩ {c}

= {c}

and:

APB(P) ∩ APA(B(P)) = {c} ∩ {c, d}

= {c}

So in this case, by Definition 9.3, A and B are dependent. Because of this dependence, they

can affect each other at runtime; if this program is a feature-oriented program (Chapter 8)

where {P}, {P,A}, {P,B}, and {P,A,B} are valid configurations, this analysis cannot

118

CHAPTER 9. ASPECT INDEPENDENCE

aspect A {

declare precedence : A, B; // or B, A

int w;

before() : set(int P.z) {

// introduce basic block d

w = P.x;

System.out.println("A.d mod to c == "+w);

}

void around(int rhs) : set(int P.z) && args(rhs) && !within(A) {

// mod to c

proceed(P.x + P.y + w);

System.out.println("A mod to z == "+(P.x+P.y+w));

}

}

aspect B {

void around(int rhs) : set(int P.z) && args(rhs) && !within(B) {

// mod to c

proceed(P.x + 4);

System.out.println("B mod to c == "+(P.x+4));

}

}

class P {

static int x, y, z;

public static void main(String[] args) {

// basic block a

y = 0;

x = args.length;

if(x > 3) {

// basic block b

y = 5;

}

// basic block c

z = x + y;

System.out.println(x);

System.out.println(y);

System.out.println(z);

}

}

/* no advice : java P foo bar baz ---> 3 0 3

with A only: java P foo bar baz ---> 3 0 6

with B only: java P foo bar baz ---> 3 0 7

with A, B : java P foo bar baz ---> 3 0 7

with B, A : java P foo bar baz ---> 3 0 6 */

Figure 9.2: Aspectual code (borrowing AspectJ syntax but using the nominal weaver of
Section 2.2.1).

119

CHAPTER 9. ASPECT INDEPENDENCE

cb

a

Figure 9.3: The program dependence graph of the code of Figure 9.2.

conclude that any tests are extraneous; we must test each of these feature subsets indepen-

dently.

9.4.2 Discussion

As described here, determining control/data dependence and independence of two aspects is

decidable but conservative, as it is based on a program dependence graph that is constructed

to represent conservative approximations of program statements’ dependence. Precise de-

termination of aspect control/data dependence and independence is undecidable in general:

aspects A and B could, for example, be constructed such that they are dependent if and

only if the base program halts. In such a case, the conservative approximation described

here would determine A and B to be dependent.

Application to testing. If two aspects A and B are determined to be independent in a

control/data-flow sense, tests of certain valid configurations may be elided. This is discussed

further in Chapter 10.

A note on termination. If it is known that a subcomputation contained within the base

program or applied aspects does not terminate, edges exiting the subcomputation can be

trimmed from all of the program dependence graphs associated with the program—both

original and woven program dependence graphs—during dependence analysis. Known non-

termination can either be determined by analysis or provided externally (if desired) where

the termination condition is undecidable. Once these edges have been removed from the

program dependence graphs, control/data flow dependence analysis can proceed as usual

on the modified program dependence graph; the dependence results then apply to the given

120

CHAPTER 9. ASPECT INDEPENDENCE

A

B

da

b c

c

a

b

a

cb

Figure 9.4: The program dependence graph of the code of Figure 9.2; also the program
dependence graph of the code after application of A and (separately) B.

A

B

a

b

a

b c

c

d

a

cb

Figure 9.5: Same as Figure 9.4, but affected points (APA(P) and APB(P)) have been
shaded.

121

CHAPTER 9. ASPECT INDEPENDENCE

A

B

A

Bcb

a

b c

da a

b c

d

da

b ccb

a

Figure 9.6: Figure 9.5 with application of the other aspect along each path. Here, all
affected points—APA(P), APB(P), APA(B(P)), and APB(A(P))—are shaded.

A

B

A

Bcb

a

b c

da a

b c

d

da

b ccb

a

Figure 9.7: Figure 9.6 with a visual diagram of the dependence conditions. In this case
aspects A and B are control/data-flow dependent.

122

CHAPTER 9. ASPECT INDEPENDENCE

aspects over the given base program under the assumption that the subcomputation does

not terminate.

9.5 Insensitivity

An aspect A is insensitive to an aspect B if the presence of B cannot affect A. Conversely,

A is sensitive to B if the presence of B can affect A. Such affects of B on A can be

functional (A is said to be functionally sensitive to B or, equivalently, to have a functional

sensitivity to B), nonfunctional (A is said to be nonfunctionally sensitive to B or to have

a nonfunctional sensitivity to B), or both.

9.5.1 Functional sensitivity

Functional sensitivity captures the functional behavior of the aspects working on the base

program—the specific instructions being executed and the data on which they perform.

Functional sensitivity (respectively functional insensitivity) is, then, equivalent to the con-

trol/data dependence (respectively control/data independence) of the previous section.

9.5.2 Nonfunctional sensitivity

Nonfunctional sensitivity captures the behavior of aspects outside of their affect on instruc-

tions and data. The safety of concurrent access to shared data, resource starvation, and

priority inversion [77] are nonfunctional behaviors that can have a dramatic effect on the

behavior of other aspects—though two aspects may be functionally insensitive, they may

be nonfunctionally sensitive if one starves the other of a needed resource.

Quite often, nonfunctional sensitivity can be observed among two nontrivial aspects.

Even if aspects are functionally insensitive, they typically are nonfunctionally sensitive due

to bus traffic, page swaps and other I/O, cache line eviction, and other interference.

There are important cases where two nontrivial aspects may be nonfunctionally

insensitive, however. Aspects that implement two separate real-time tasks with resource

guarantees may fall into this category.

123

CHAPTER 9. ASPECT INDEPENDENCE

Nonfunctional concerns are, by definition, implicit properties about the program

which no one code artifact represents. To undergo analysis, they must be reified in some

fashion—essentially rendering them a functional concern—and this reified version analyzed.

Some approaches to dealing with nonfunctional attributes of programs employ specification

and constraint languages to raise the nonfunctional to a functional, checkable level [47].

Therefore, the programmer annotations we require are somewhat different; we do

not need a formal specification, we just need some way of determining its dependence

relationships. This annotation can be provided in at least four ways, detailed in the next

section.

9.5.3 Reification of nonfunctional concerns

The notion of dependence described in Section 9.4 is precisely that described by functional

sensitivity; we wish to extend it to cover nonfunctional concern dependence. Effectively, we

wish to transform our automated control/data aspect dependence analysis into an aspect

sensitivity analysis.

We achieve such extension by translating nonfunctional concerns into functional

modifications of the program dependence graphs under analysis. Then the normal deter-

mination of dependence of Section 9.4 can proceed. Such modifications, performed by the

program’s author, can reasonably be realized at these four obvious levels of abstraction (and

perhaps others):

1. Modifications to the underlying source code can realize nonfunctional concerns, and

the control flow and program dependence graphs can be automatically generated as

usual.

2. Prior to weaving, modifications can be made to the intermediate representation used

by the aspect weaver. In some cases this may be simpler than modifying the source

while retaining the chief advantage of that approach—that the control flow and pro-

gram dependence graphs are still automatically generated.

3. Direct modifications to the control flow graphs can be made to represent nonfunctional

concerns as control flow entities. This must be done multiple times—once for the base

program, once for each woven artifact—but may be the preferred way of mapping some

nonfunctional concerns to functional concerns.

124

CHAPTER 9. ASPECT INDEPENDENCE

4. Direct modifications to the program dependence graphs can be made to represent

dependencies of nonfunctional concerns. While dependence is explicitly manipulated

here, the dependences are between nodes of program dependence graphs, not between

aspects. Therefore this method is not begging the question as it might seem to be:

aspect dependences are still discovered automatically by the process of Section 9.5

with the added nonfunctional dependences represented in the (modified) program

dependence graphs.

Naturally, the graph modifications of the latter two methods can be represented either with

the full generality of a source code artifact, or by simple graph rewriting rules. The largest

advantage of the last option, setting it singularly apart from the other three, is that no

artificial source code (or source code equivalent) need be generated to “trick” the depen-

dence analysis into constructing an adequate program dependence graph. If modifications

are performed directly on the program dependence graph, dependences can be explicitly

manipulated; if modifications are performed at any of the other three levels of abstrac-

tion, code (which is otherwise extraneous) may need to be introduced to effect the right

interdependence pattern.

9.6 Conceptual independence

Conceptual independence, new in this work, is defined on the logical behavior of aspects.

Each aspect is viewed as a collection of invariants that are enforced in the base program.

Aspects are said to be independent if they are logically consistent with others—that is, if

the base program can be made to satisfy all of them. This sort of independence can be

judged conservatively over all base programs, or over a particular choice of base program.

9.7 AspectJ independence

For AspectJ’s aspect model, we typically prefer to add additional constraints on the struc-

tural modification of classes:

125

CHAPTER 9. ASPECT INDEPENDENCE

Definition 9.4 In AspectJ, two aspects A and B are control/data independent over base

code P if they satisfy four conditions:

APA(P) ∩ APB(A(P)) = ∅ (9.4)

APB(P) ∩ APA(B(P)) = ∅ (9.5)

A does not (structurally) introduce any of B’s requirements. (9.6)

B does not (structurally) introduce any of A’s requirements. (9.7)

It should be noted, however, that these extra constraints can be seen as something

of an intuitive convenience; the data “dependence” of the (structural) introduction of re-

quired code will be enforced by an AspectJ compiler in the same way explicit (code-based)

dependences are.

In AspectJ, a correspondence can be made: control/data independence implies weave

independence.

Theorem 9.1 In AspectJ, if two aspects A and B are control/data independent over a

base program P , then they are weave independent over P .

Proof To be weave-dependent, two aspects must apply to the same join point. However, if

two AspectJ aspects apply to the same join point, they will be control/data-flow dependent.

Therefore A and B must be weave independent.

This theorem does not necessarily hold for the nominal weaver of Chapter 2, since

advice doesn’t apply to all code; rather, it applies to all base program code, and advice

code applied sooner than it.

9.8 Chapter summary

This chapter introduced a taxonomy of dependence, with definitions for explicit dependence,

weave dependence, control/data-flow dependence, sensitivity, and conceptual dependence. It

concluded with a look at AspectJ dependence.

126

Chapter 10

Aspect Dependence Analysis

n this chapter, we perform the program dependence graph-based aspect dependenceI analysis of Section 9.4 on a variety of aspects both to illustrate the analysis clearly

and to determine its potential. For the expository purposes of this chapter, this

analysis is performed by hand. We of course do not expect software developers to perform

this analysis manually on their own programs; Chapter 11 describes our implementation of

the analysis in a modern, widely-used compiler.

10.1 Graph conventions used in this chapter

Control flow graphs use dashed lines to indicate exceptional edges. Program dependence

graphs are similar but additionally tag each edge with a “c” to indicate a control depen-

dence, a “d” to indicate a data dependence, and “c,d” to indicate both control and data

dependences. As an example, consider Figure 10.4 (on page 131), the program dependence

graph of a simple Java program.

In this graph, the control flow is easily seen as a chain of “c” relations; many Java

statements can throw exceptions, so some statements are control-dependent on the state-

ment that immediately precedes them in the program text. Data dependences are repre-

sented by arrows decorated with a “d”, and conditional branches are indicated by a “T” or

“F” (for true and false), or in the case of an exceptional path, a dashed line.

127

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

10.2 Case study

One of the simplest aspects to understand is a tracing aspect. A tracing aspect advises

method and constructor call join points and reports them to the user. It can be used in

debugging or in understanding program structure. One possible implementation of this

aspect is offered in Figure 10.1.1 Due to its “conceptual” independence from expected

application-level logic, this aspect may appear to be completely independent of any base

program code it affects and from other aspects implementing different concerns. However,

concluding such independence is problematic from a technical point of view.

Consider the simple base program of Figure 10.2. The method main() has the

control flow graph of Figure 10.3 and the program dependence graph of Figure 10.4. When

the tracing aspect is composed with it, however, and the program dependence graph is

recomputed, the dependence picture becomes quite different (Figure 10.5): every call has

been replaced with a call to an advice method, and therefore most basic blocks are considered

to have changed (they are affected points as in Chapter 9).

We can tell the compiler that our advice shouldn’t throw any exceptions (by writing

the call-tracing aspect as shown in Figure 10.6), and we can inline the advice code rather

than calling out to methods. This results in the control flow graph shown in Figure 10.7

and the program dependence graph shown in Figure 10.8. From now on we will perform

such inlining and use an exception-less approach like this.

Now we can see how multiple pieces of advice could be weaved into the base program

and not interfere.

Consider “metric” advice that changes the program to output liters instead of quarts.

The control flow graph of the tracing- and metric-advised CupsToQuarts program is shown

in Figure 10.9 and its program dependence graph in Figure 10.10. The program dependence

graph shows that the tracing advice and the metric advice are control/data-flow independent

over CupsToQuarts since there is not a control/data-flow path between them.

Next consider “input-gallon” advice that changes the program so that input is ac-

cepted in gallons instead of cups. The control flow graph of the metric- and input-gallon-

advised CupsToQuarts program is shown in Figure 10.11 and its program dependence graph

1This implementation is limited in scope and function, but is intended as a simple example. In particular,
this implementation doesn’t provide exceptional method exit notification and is not configurable.

128

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

in Figure 10.12. This program dependence graph clearly exhibits interference between the

two pieces of advice: there are data-flow dependences between the assignment to quarts

by the input-gallon advice and the use of quarts by the metric advice. The metric advice

and the input-gallon advice are not control/data-independent.

aspect Trace {

/* all calls to methods and constructors */

pointcut allCalls() : call(* *..*.*(..)) || call(*..*.*(..));

Object around() : allCalls() && !within(Trace) {

Logger.log("entering " + thisStaticJoinPoint);

Object ret = proceed();

Logger.log("exiting " + thisStaticJoinPoint);

return ret;

}

}

Figure 10.1: Code for the simple call-tracing aspect of Section 10.2.

import java.io.*;

class CupsToQuarts {

public static void main(String[] args) throws IOException {

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

System.out.println("Enter number of cups:");

int cups = Integer.parseInt(in.readLine());

if(cups >= 0) {

float quarts = cups / 4.0f;

System.out.println("There are " + quarts + " quarts in " + cups + " cups.");

} else System.out.println(cups + " is an invalid number of cups.");

}

}

Figure 10.2: A simple base program that converts cups to quarts.

129

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

A
bo

rt
iv

e
ex

ce
pt

io
ns

cups = Integer.parseInt(line)

line = in.readLine()

println("Enter # of cups")

println("invalid")cups >= 0 ?

in = new BufferedReader(isr)

ENTRY

quarts = cups / 4.0f

println(quarts) EXIT

isr = new InputStreamReader(...)

F

T

Figure 10.3: The control flow graph of the program in Figure 10.2.

130

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

A
bo

rt
iv

e
ex

ce
pt

io
ns

c,d

d
c

c

d

c,d

c

c

dd

d

c

c

d

in = new BufferedReader(isr)

new InputStreamReader(...)

println("Enter # of cups")

cups = Integer.parseInt(line)

println("invalid")cups >= 0 ?

quarts = cups / 4.0f

println(quarts)

line = in.readLine()

ROOT

F

T

Figure 10.4: The program dependence graph of the program in Figure 10.2. A “c” indicates
a control dependence, and a “d” indicates a data dependence.

131

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

A
bo

rt
iv

e
ex

ce
pt

io
ns

c

c,d

c,d

c,d

d

c

c

c

c

c,d

c

c,d

c

c

d

d

c

c

cups >= 0 ?

cups = advice_parseInt()

advice_println("invalid")

advice_readLine(in)

advice_println()

advice_BufferedReader

advice_InputStreamReader

quarts = cups / 4.0f

advice_println(quarts)

ROOT

F

T

Figure 10.5: The program dependence graph of the program in Figure 10.2 after applying
call-tracing advice.

132

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

aspect Trace { /* tracing aspect with no exception footprint */

/* all calls to methods and constructors */

pointcut allCalls() : call(* *..*.*(..)) || call(*..*.*(..));

Object around() : allCalls() && !within(Trace) {

try {

Logger.log("entering " + thisStaticJoinPoint);

} catch(Throwable t) { /* ignore exceptions caused by advice code */ }

Object ret = proceed();

try {

Logger.log("exiting " + thisStaticJoinPoint);

} catch(Throwable t) { /* ignore exceptions caused by advice code */ }

return ret;

}

}

Figure 10.6: Code for a simple call-tracing aspect (Section 10.2) that has no exception
footprint.

133

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

A
bo

rt
iv

e
ex

ce
pt

io
ns

EXIT

ENTRY

log("entering")

log("exiting")

log("entering")

log("exiting")

log("entering")

log("exiting")

log("entering")

log("exiting")

log("entering")

log("exiting")

log("entering")

log("exiting")

log("entering")

log("exiting")

quarts = cups / 4.0f

println(quarts)

cups >= 0 ? println("invalid")

cups = Integer.parseInt(line)

line = in.readLine()

println("Enter # of cups")

in = new BufferedReader(isr)

isr = new InputStreamReader(...)

F

T

Figure 10.7: The control flow graph of the program in Figure 10.2 after applying and inlining
call-tracing advice with no exception footprint. Program points affected by the advice are
shaded.

134

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

A
bo

rt
iv

e
ex

ce
pt

io
ns

c,d

d
c

c

d

c,d

c

c

d

c

c

dd

c

c

d

c

d

in = new BufferedReader(isr)

new InputStreamReader(...)

println("Enter # of cups")

cups = Integer.parseInt(line)

println("invalid")cups >= 0 ?

quarts = cups / 4.0f

println(quarts)

line = in.readLine()

ROOT

log("entering")

log("exiting")

F

T

Figure 10.8: The program dependence graph of the program in Figure 10.2 after applying
and inlining call-tracing advice with no exception footprint.

135

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

A
bo

rt
iv

e
ex

ce
pt

io
ns

EXIT

ENTRY

quarts = cups / 4.0f

cups >= 0 ? println("invalid")

cups = Integer.parseInt(line)

line = in.readLine()

println("Enter # of cups")

in = new BufferedReader(isr)

isr = new InputStreamReader(...)

println(liters)

liters = quarts / 1.057f

log("exiting")

log("entering")

log("exiting")

log("entering")

log("exiting")

log("entering")

log("exiting")

log("entering")

log("exiting")

log("entering")

log("exiting")

log("entering")

log("exiting")

log("entering")

F

T

Figure 10.9: The control flow graph of the tracing- and metric-advised program of Fig-
ure 10.2 (inlined advice code). The tracing-advised program points are the same as in
Figure 10.7; the shaded program points are those affected by the metric advice.

136

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

A
bo

rt
iv

e
ex

ce
pt

io
ns

c,d

d
c

c

d

c,d

c

c

c

c

dd

c

c

d

c

d

d

d

in = new BufferedReader(isr)println("Enter # of cups")

cups = Integer.parseInt(line)

println("invalid")cups >= 0 ?

quarts = cups / 4.0f

line = in.readLine()

ROOT new InputStreamReader(...)

log("entering")

log("exiting")

println(liters)

liters = quarts / 1.057f

F

T

Figure 10.10: The program dependence graph of the tracing- and metric-advised base pro-
gram in Figure 10.2 (inlined advice code). The shaded “log” boxes at the top left are from
the tracing advice; the shaded “liters” boxes at the bottom right are from the metric advice.
There is no control/data-flow path from one piece of advice to the other: these pieces of
advice are independent.

137

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

A
bo

rt
iv

e
ex

ce
pt

io
ns

line = in.readLine()

println("invalid")

in = new BufferedReader(isr)

new InputStreamReader(...)

EXITprintln(liters)liters = quarts / 1.057f

ENTRY

quarts = gallons * 4.0f

gallons >= 0 ?

gallons = Integer.parseInt(line)

println("Enter # of gallons")

F

T

Figure 10.11: The control flow graph of the metric- and input-gallon-advised base program
in Figure 10.2 (inlined advice code). Here, the shaded boxes represent those affected by the
input-gallon advice.

138

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

A
bo

rt
iv

e
ex

ce
pt

io
ns

c,d

d
c

c

d

c,d

c

c

d

c

c

dd

d

d

d

in = new BufferedReader(isr)

new InputStreamReader(...)

println("invalid")

line = in.readLine()

ROOT

quarts = gallons * 4.0f

gallons >= 0 ?

println("Enter # of gallons")

gallons = Integer.parseInt(line)

println(liters)

liters = quarts / 1.057f

F

T

Figure 10.12: The program dependence graph of the metric- and input-gallon-advised base
program in Figure 10.2 (inlined advice code). The two rightmost shaded boxes are from the
metric advice; the others are from the input-gallon advice. Clearly there is a control/data-
flow path from one piece of advice to another: these two pieces of advice are not independent.

139

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

10.3 FACET

facet is a Java event channel developed at Washington University [55, 54, 53, 92, 79, 56].

facet targets real-time, embedded systems and offers an array of features which may be

independently omitted to lower the library’s footprint; this type of software development is

discussed in Chapter 8. These features are enabled at compile time rather than runtime: this

approach reduces the on-disk footprint of the code itself and avoids the runtime detection

and configuration requirements of other approaches (such as plugins for operating systems

or web browsers). AspectJ is used to perform the instrumentation for the desired set of

features.

With facet’s twenty-three selectable features, there are a considerable number of

variations in a configured facet library installation. Not all 223 feature combinations are

permitted, however—some have explicit dependencies on other features, and others are

mutually-exclusive. This leads to significant work on the part of facet maintainers to

ensure the proper operation of facet under all valid configurations. Indeed, this inspired

the work of Section 8.3 to determine efficiently the legal combinations of features. facet’s

feature set specification, encoding these relationships between features, is shown in Fig-

ure 10.13.2

facet is designed as a collection of structural base code (a minimally-functional

event channel) with the selectable features on the periphery. facet features use aspects in

three ways:

• to implement the feature’s advertised functionality;

• to register the feature with the feature registry (which handles the explicit dependence

and mutually-exclusive relations given in the feature set specification); and

• to add unit tests to the testing framework for the feature.

The use of aspects to implement the feature’s advertised functionality can be further

subdivided. These uses fall into three categories:

• Features include advice to implement the needed facet behavior for the feature.

2The latest facet release, version 2.2, is used for this work. Statistics, descriptions, and diagrams of
facet relate to this release version.

140

C
H

A
P

T
E

R
1
0
.

A
S
P

E
C

T
D

E
P

E
N

D
E

N
C

E
A

N
A

L
Y

S
IS

ConsumerDispatchFeature

RealtimeDispatcherFeature

EventTypeFilterFeature

CorrelationFilterFeatureRtecCorrelationFilterFeatureSupplierDispatchFeature

ConsumerQosFeature

DependencyFeature

FilterTypeMutexFeatureEventVectorFeatureEventSourceFeature

SourceFilterFeature

EventHeaderFeature

EventTypeFeature TimestampFeature TtlFeature

DisableCorbaFeature

EventObjectFeature EventBodyObjectFeature

TransportTypeMutexFeature

EnableCorbaFeature

EventAnyFeatureEventBodyAnyFeature

EventTypeMutexFeature

EventStructFeature

EventPullFeature EventBodyOctetSeqFeatureEventBodyStringFeature

PayloadTypeMutexFeature

DispatcherTypeMutexFeature

ThroughputTestFeature EventChannelTraceFeature

FACET

F
igu

re
10.13:

f
a
c
e
t
’s

fea
tu

re
set

specifi
ca

tio
n
.

N
orm

al
featu

res
are

rep
resen

ted
as

ovals;
a
bstra

ct
featu

res
are

d
iam

on
d
s;

an
d

m
u
tu

a
lly-exclu

sive
featu

re
relation

sh
ip

s
are

rectan
gu

lar.
S
olid

lin
es

in
d
icate

a
n
orm

al
d
ep

en
d
en

cy.
D

otted
lin

es
in

d
icate

a
u
ses

relation
sh

ip
,
w

h
ich

d
o
esn

’t
req

u
ire

th
at

an
ab

stract
featu

re
b
e

realized
as

an
ob

ject
(in

con
crete

form
)

at
ru

n
tim

e.

141

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

• Some features must introduce needed fields into other classes with intertype declara-

tions (Section 2.1.5), especially the routing and payload structures (the EventHeader

and EventCarrier classes, respectively).

• Where multiple features apply to the same join point and a specific weaving order is

necessary, aspect precedence is declared.

Features do not generally use each other’s introduced fields:3 introductions are either

private to the introducing aspect or otherwise invisible to the features in other feature

groups. So the main sites of aspect control/data interaction are:

• in the feature registry itself, and

• in the implementation behavior.

We consider each of these in turn.

10.3.1 The feature registry

All features explicitly depend upon the feature registrar, and the registrar itself depends

upon the base class of all features. The registration mechanism for a feature consists of:

• the registrar’s AutoRegisterAspect, which automatically registers all subaspects seen

by the aspect weaver (see Figure 10.14);

• An interface that declares dependencies of the feature in its extends clause (see Fig-

ure 10.15);

• an aspect nested inside the interface that extends the registrar’s AutoRegisterAspect

and registers the feature (see Figure 10.15); and

• the registrar’s FeatureRegistry class, which ultimately handles the feature regis-

tration and ensures that there are no feature combination violations (such as two

mutually-exclusive features both being enabled).

It is important to emphasize that facet’s feature registry is decoupled from the

implementation of its features. That is, a feature can still be active even though it fails

3Features often do, however, use fields introduced by their abstract super-features. See Section 2.1.5 for
a discussion of introductions via intertype declarations.

142

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

to register. Registration ensures that proper initialization occurs and that explicit depen-

dencies are satisfied; by that time the aspect weaver has already ensured that the feature’s

behavior is realized in the facet library.

Analysis. When FeatureRegistry.buildGraph() is called during facet startup, all

the subaspects of AutoRegisterAspect are registered. This leads to several aspect

control/data-dependences. First, any feature registration aspect (or the attempt to call

into one) could potentially throw an exception and cause program abortion, though the

other registrations would continue. Second (and even if exception behavior is ignored),

there is still a control/data-dependence between two registration aspects as they ultimately

access the same data structure in the feature registry. So there are control/data dependences

between them.

package edu.wustl.doc.facet.feature;

/**

* This aspect is intended to be inherited by any aspect that

* needs to be registered in the FeatureRegistry.

*/

public abstract aspect AutoRegisterAspect {

abstract protected void register (FeatureRegistry fr);

private pointcut registry (FeatureRegistry fr) :

execution (void FeatureRegistry.buildGraph ())

&& target (fr);

after (FeatureRegistry fr) : registry (fr)

{

register (fr);

}

}

Figure 10.14: facet’s AutoRegisterAspect, which registers the time-to-live filtering fea-
ture.

10.3.2 Payload contention

The time-to-live feature’s main behavioral aspect is listed in Figure 10.16. This aspect

provides public accessors getTtl() and setTtl() on EventHeaders and implements time-

to-live functionality as a piece of around() advice.

143

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

package edu.wustl.doc.facet.feature_ttl;

import edu.wustl.doc.facet.feature.AutoRegisterAspect;

import edu.wustl.doc.facet.feature.FeatureRegistry;

import edu.wustl.doc.facet.feature_eventheader.EventHeaderFeature;

public interface TtlFeature extends EventHeaderFeature {

static aspect Register extends AutoRegisterAspect {

protected void register(FeatureRegistry fr) {

fr.registerFeature(TtlFeature.class);

}

}

}

Figure 10.15: facet’s TtlFeature interface, with a nested aspect that registers the time-
to-live filtering feature.

Analysis. Other “event header features” have advice on very similar pointcuts (compare

to TimeStampAspect in Figure 10.17), deal with the same event channel structures, and

therefore exhibit contention on these payload objects. The time-to-live feature is especially

problematic for control/data dependence, since it proceeds conditionally.

10.4 Chapter summary

We have investigated control/data dependence in several aspects. As a general rule, features

that inspect but don’t modify state are easily control/data-independent of each other, while

aspectual filters and aspects that involve modifications of state (like in facet) often exhibit

control/data-dependence on other aspects.

Control/data-independent, state-inspecting aspects are not necessarily as rare as

they may seem at first; many important aspects are of this type. Many debugging aspects,

including the tracing aspect of this chapter, are often control/data-independent of other

aspects. Aspects that update a user interface based on current program state are also, and

even aspects that manage sets of executing tasks or manage thread synchronization can fit

into this category.

144

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

package edu.wustl.doc.facet.feature_ttl;

import edu.wustl.doc.facet.*;

import edu.wustl.doc.facet.EventChannelAdmin.*;

import edu.wustl.doc.facet.EventComm.*;

aspect TtlAspect {

//

// Update the time to live for the event.

// If the TTL is still ok, return true.

//

boolean update_ttl (Event event)

{

event.getHeader().setTtl (event.getHeader ().getTtl () - 1);

return event.getHeader().getTtl () >= 0;

}

//

// Update the TTL, and possibly drop the event if it gets too low

//

void around (EventCarrier ec) :

call (void EventChannelImpl.pushEvent (EventCarrier))

&& args (ec)

{

if (update_ttl (ec.getEvent ()))

proceed (ec);

}

//

// Add appropriate accessors

//

public long EventHeader.getTtl ()

{

return this.ttl;

}

public void EventHeader.setTtl (long l)

{

this.ttl = l;

}

}

Figure 10.16: facet’s TtlAspect aspect, with advice to update the time-to-live field and
only proceed if the time has not expired.

145

CHAPTER 10. ASPECT DEPENDENCE ANALYSIS

package edu.wustl.doc.facet.feature_timestamp;

import edu.wustl.doc.facet.*;

import edu.wustl.doc.facet.EventComm.*;

aspect TimestampAspect {

//

// Mark a timestamp on the event as soon as it arrives

//

before (EventCarrier ec) :

execution (void EventChannelImpl.pushEvent(EventCarrier))

&& args(ec)

{

Event event = ec.getEvent();

event.getHeader ().setTimestamp (System.currentTimeMillis ());

}

//

// Add appropriate accessors

//

public long EventHeader.getTimestamp ()

{

return this.timestamp;

}

public void EventHeader.setTimestamp (long tstamp)

{

this.timestamp = tstamp;

}

}

Figure 10.17: facet’s TimeStampAspect aspect, with advice to assign the timestamp field
when an event is pushed.

146

Chapter 11

Implementation

e implemented the dependence analysis of Section 9.4 by modifying theW GNU Compiler Collection (GCC) version 4.1.1. GCC is a compiler suite

widely for the compilation of C [64], C++ [99], Java [50], and other

languages. GCC targets a wide array of processor families.

Precisely because it is so practical a compiler, we chose GCC as a research platform

for implementing our work. Our changes can in principle be used to support our dependence

analysis in different feature specification languages, and regardless of the architecture for

which the code is being compiled. Optimizations enabled by our can similarly be applied to

different languages and when compiling for a range of processor families. With full standard

language support, a large development and larger user community, regular bug-fixes and

feature enhancements, and debugging and profiling support, we feel GCC’s benefits for

research outweigh it’s drawbacks.

The following sections detail our implementation in GCC of our dependence analysis.

Section 11.1 logs the modifications we made to the compiler; specifically, Section 11.1.1

details the front-end modifications, Section 11.1.2 details the middle-end modifications,

and Section 11.1.3 discusses consequences of our design decisions. Section 11.2 concludes

and summarizes these implementation details.

147

CHAPTER 11. IMPLEMENTATION

11.1 Modifications to the compiler

GCC is designed to be highly modular to facilitate extension. New language front-ends can

be incorporated to support additional programming languages, new middle-end analysis

and transformation passes can be written in a language-independent and target-independent

manner, and support for new language-independent processor and processor family back-

ends can be provided. The modular design keeps these three “ends” from having undue

dependencies on each other.

When a GCC front-end initially parses a program, it generates a tree representa-

tion of the program called generic. Initially this representation includes language-specific

constructs and is therefore not language-independent, but prior to passing the tree repre-

sentation off to the middle-end, the representation is lowered to a simpler and language-

independent tree representation called gimple. Gimple trees are transformed in a variety

of ways and are ultimately themselves lowered to an even simpler (and somewhat target-

specific) intermediate representation used to produce the final assembly code output.

The modifications to the compiler in support of our dependence analysis work include

modifications to its Java front-end and the addition of a middle-end compiler pass that

operates on gimple trees. Details of these modifications are described in the following

sections.

11.1.1 Front-end modifications

GCC’s stock implementation of Java aims for Java language compliance and does not sup-

port aspect-oriented constructs. We extended GCC’s Java front-end to support a subset of

AspectJ features for this work.

Language extensions

AspectJ-style aspect declarations are supported. However, aspects are all singletons:

“per...” declarations are unsupported.

148

CHAPTER 11. IMPLEMENTATION

AspectJ-style pointcuts are supported with static and dynamic join point specifiers.

The join point specifiers cflow(), cflowbelow(), and handlers() are not currently sup-

ported.

AspectJ-style advice is supported in before, after, and around varieties.

Aspect weaver

Once all the aspect definitions are read, they must be woven into the base program. We

implemented an aspect weaver in GCC’s Java front-end to perform this function. The

weaver is flexible and can operate with the behavior of the nominal weaver of Section 2.2.1

or the AspectJ weaver as discussed in Section 2.2.2.

A note on implementation omissions

Not all AspectJ language constructs are supported. In particular, highly dynamic features

of AspectJ (such as the family of cflow constructs) are unsupported. We judged that

these features could be safely omitted for implementation simplicity, as it is our intent to

determine the utility of aspect dependence analysis in a setting more broad than AspectJ.

Many AspectJ programs do not use these features, and our set of AspectJ programs for

experimentation use only our implemented subset of AspectJ features. Certainly a full

AspectJ implementation in GCC would need to include these useful constructs.

Further, our implementation is in its infancy and should not at present be considered

a well-tested aspect language implementation for serious use.

11.1.2 Middle-end modifications

To perform the aspect dependence analysis of Section 9.4, we implemented a middle-end

GCC pass.

GCC detects data dependences for a variety of reasons in the middle-end, and it

detects control dependences for a sophisticated dead code elimination pass. These analyses

149

CHAPTER 11. IMPLEMENTATION

are performed on SSA-transformed gimple trees. The program dependence graph needed

for aspect dependence analysis is merely the unification of these two dependence relations.

11.1.3 Consequences of implementation design

Because we implemented the weaver in the front-end, it cannot currently be used to support

aspect-like facilities in languages other than our modified Java front-end. It would be

possible to move our weaver from operating on Java-specific generic trees to operating on

language-independent, middle-end gimple trees, but such is beyond the scope of this work.

At the least it would require extending gimple with notions of pointcuts, aspects, and

intertype declarations. With such middle-end constructs, supporting aspect languages in

additional GCC front-ends becomes fully a language matter—defining syntax for the aspect

language forms and parsing them into this extended gimple representation.

11.2 Chapter summary

We have implemented the dependence analysis introduced in Section 9.4 and studied in

Chapter 10 inside GCC. This required adding aspect support to GCC. Weaving is performed

early in compilation, so currently functions only for the Java language front-end of GCC;

this limitation could be fixed in future.

150

Part III

Context of this Work

Someday we’ll look back on this moment and plow into a parked car.

– Evan Davis

151

Chapter 12

Related Work

elated work falls into several categories corresponding to the different facets ofR this dissertation work. A related work discussion is present in many chapters;

in particular, Chapters 4, 5, and 6 discuss work related to their specific topic

areas. This chapter discusses related work in the areas of advanced separation

of concerns, system aspects, and program dependence analysis.

12.1 Advanced separation of concerns

The general field of Advanced Separation of Concerns contains a variety of different tech-

nologies; most directly relevant to this dissertation are aspect-oriented programming and

multi-dimensional separation of concerns.

12.1.1 Aspect-oriented programming

Aspect-oriented programming (discussed at length in Chapter 2) has received a lot of atten-

tion in the research community over the past ten years or more. It evolved from work on a

metaobject protocol for Common Lisp [65], and an early formulation appears in [67].

152

CHAPTER 12. RELATED WORK

12.1.2 Multi-dimensional separation of concerns

Multi-dimensional separation of concerns (MDSoC) approaches [102] focus more heavily on

the composition of software features more than aspect-oriented approaches do. The same

kinds of techniques are available in the two approaches, but the philosophy is somewhat

different: software written as a subsettable collection of features (as described in Chapter 8)

is a natural match for MDSoC design.

MDSoC tools, including HyperJ [57], allow you to write multiple views of the same

class. These views are then composed, resulting in a final class with all of the functionality

of each of the views. Where views conflict, resolution behavior can be specified, composing

the contributions of the views or allowing one to dominate another.

12.1.3 Feature-oriented programming

Feature-Oriented Programming [17] is a somewhat less specific term that generally describes

the style of programming that is the focus in this dissertation: an application is designed

with a central core and a collection of modular features that are composed onto that core.

This can be achieved in a modelling tool [70], in an aspect-oriented language [67], in

a language supporting multi-dimensional separation of concerns [102], and in other ways.

Certain tools, like those of the AHEAD tool suite [18], are expressly intended for this

purpose.

12.1.4 Relationship to this work

This dissertation identifies several problems and aspect-oriented solutions to them (Chap-

ters 3–7). However, these solutions cannot be satisfactorily realized using AspectJ. This

failure is analyzed and solutions to the problem suggested in Chapter 7.

This dissertation also introduces an aspect dependence analysis, described in aspect-

oriented terms, but specifically motivated by and intended for feature-oriented software.

153

CHAPTER 12. RELATED WORK

12.2 System aspects

Most uses of aspects are for application-level, rather than system-level, concerns. System-

level aspects are application-agnostic and perform system functions—for example, garbage

collection, task scheduling, or hardware support—in a manner transparent to the applica-

tion.

Recent work has looked at implementing aspect-oriented design patterns [52]. Design

patterns are not entirely system-level, but are similar in that they are often application-

agnostic and reusable. However, they are also tied to the design of the application.

Aspects have been suggested for system security [110, 114], including for error check-

ing, buffer overflow protection, and secure socket wrapping. Aspect socket wrapping is a

common theme, on which we have prior work as well [29]. These concerns are on the level

of the system.

System-level aspects often aim to change the semantics of the language or the run-

time system; they thus represent a form of language extensibility. OpenJava [103] and

OpenC++ [31] are examples of extensible languages. They use metaobject protocols [65]

(precursors to aspect-oriented programming) to provide that extensibility.

12.3 Program dependence analysis

Program dependence analysis and the program dependence graph [46, 89] have been used

widely in compiler analysis and optimization. They are used for code motion [68, 41], loop

optimizations [14], and other optimizations [84].

This work applies program dependence to a new area: finding independence of

modularly-specified features to be automatically composed with (“weaved into”) a soft-

ware core. With this dependence information, tests can be elided that otherwise may need

to be executed.

154

Chapter 13

Conclusions

e start by restating the key technical contributions of this work, indicatingW from which chapters the various contributions come. We reiterate why

these contributions are key. We then draw various conclusions about the

direction of aspect-oriented language design from this work as a whole.

13.1 Key technical contributions

This dissertation makes several contributions. Roughly, they fall into five categories:

• system aspects;

• taxonomy of dependence relations;

• determining valid configurations;

• feature independence analysis; and

• future directions for aspect languages.

These contribution categories are each described below.

155

CHAPTER 13. CONCLUSIONS

13.1.1 System aspects

This dissertation provides three examples of “system aspects”—aspectual mechanisms at

the system-level and effect language and runtime concerns rather than application concerns.

These system aspects are individual pieces of work that stand on their own. They are

not simply pedagogical examples: Chapter 4 describes a metaprogramming mechanism to

schedule task sets at compile time; Chapter 5 develops an automated memory management

system for Java based on reference counting; and Chapter 6 describes software support for

a hardware garbage collector.

These three chapters, together with Chapter 7, observe where these system aspects

don’t have an acceptable aspectual formulation today, and indicate what features a future

aspect language could include to solve this problem.

13.1.2 Taxonomy of dependence relations

Chapter 9 introduces a taxonomy of dependence and independence relations for aspects,

separating out different notions of dependence. The term “dependence” is used inconsis-

tently in the literature.

13.1.3 Determining valid configurations

Chapter 8 proposes an algorithm for determining valid configurations based on a static fea-

ture set specification. This algorithm is proven correct and is proven to have an asymptotic

computational complexity at least as good as any other algorithm for the purpose.

13.1.4 Feature independence analysis

Chapters 9 and 10 investigate a method of static analysis to determine a strong form of

independence of aspects. Chapter 10 discusses benefits gained by programmers for aspects

determined to be independent in this fashion.

Our implementation of this static analysis in a production compiler is described in

Chapter 11.

156

CHAPTER 13. CONCLUSIONS

13.1.5 Future directions for aspect languages

Chapter 7 indicates possible future directions for aspect languages to bring system as-

pects under the aspect purview. In particular, a generalized, extensible join point

model!generalized and compile-time computation facilities are motivated.

13.2 This work in context

The preceding are key contributions.

System aspects, while studied before [110, 114], haven’t been a focus for the aspect-

oriented language community. This has had the tendency to drive aspect language develop-

ment away from support for system-level concerns and away from fully extensible, flexible

languages and runtime systems. This dissertation focuses on system aspects and the prob-

lem with implementing them with current tools. It makes observations that may be useful

for future aspect language designers.

“Dependence” is used inconsistently in the aspect literature; this dissertation at-

tempts to separate different notions associated to the term, discuss them directly, and

provide them different names.

Subsettable software can have a significant testing burden. Insights made in this

work can (1) reduce that burden for programmers of large software product lines, and

(2) allow developers to enumerate their valid configurations efficiently.

13.3 Unwoven aspect analysis

Users of aspect-oriented languages enjoy the benefits of a higher level of abstraction for the

software they write. They may be better able to separate the concerns of their software,

and without liability: often aspect-oriented features are supported as an extension to a

host language, as AspectJ is to Java, so programmers aren’t trapped by the paradigm;

instead they can choose not to apply aspect-oriented features when they deem those features

unsuitable.

157

CHAPTER 13. CONCLUSIONS

Aspect developers can benefit from the observations made in Chapter 7, which indi-

cates improvements that future aspect languages could make to handle efficiently the kinds

of systemic concerns of Part I of this dissertation.

Broadly speaking, Part I contributes an aspect usability study and Part II studies of

aspect analysis; but usability and analyzability aren’t separate, competing goals. Rather,

the observations in Chapter 7 could improve aspect analysis as well. When programs are

specified at a higher level, aspect compilers can do more to understand programmer intent,

perform more accurate analyses, and offer better optimizations.

158

Appendix A

Source Listings

his appendix provides various source code listings for programs, functions,T classes, and other artifacts referred to in the dissertation text. The listings are

as follows:

1 Probe.java: the abstract measuring aspect as described in Chapter 10 . . 160–162

2 LivenessProbe.java: the abstract object lifetime-measuring aspect as described in

Chapter 10 . 163–164

3 DeathProbe.java: the (concrete) object lifetime-measuring aspect of

Chapter 10 . 165–166

4 ReferenceProbe.java: the simple object interreference-detector aspect of

Chapter 10 . 167–169

5 SimpleReferenceCounter.aj: the simple, heap-only reference-counting aspect of

Chapter 10 . 170–173

6 HeapReferenceCounter.aj: the sophisticated, heap-only reference-counting aspect

of Section 5.2.1 . 174–177

7 StackReferenceCounter.aj: the sophisticated, stack-aware reference-counting

aspect of Section 5.2.2 . 178–181

159

APPENDIX A. SOURCE LISTINGS

Probe.javapackage autoscope.probe;

import java.io.*;

import java.util.*;

/**

* Contains some important pointcuts for aspect probes in this

* package.

*/

abstract aspect Probe {

/** A pointcut to exclude Probe aspects from analyzing

* themselves */

pointcut withinUs():

within(autoscope.probe..*+) ||

within(autoscope.runtime..*+);

/** Convenience pointcut for method join points that interest us */

pointcut methodExecution():

!withinUs() && execution(* *.*(..));

/** Convenience pointcut for constructor join points that interest

* us */

pointcut constructorCall():

!withinUs() && call(*.new(..));

/** A pointcut to select the execution of the <code>main()</code>

* routine. */

pointcut mainCut(String[] cmdline) :

execution(public static void main(String[])) &&

args(cmdline);

/** The PrintWriter to which to send output. */

protected PrintWriter out;

/** Must be overridden by subaspects to specify the output file

* extension.

* @return the filename extension to use for the out

* file. The base part of the name is determined by the class

* that executes the <code>main()</code> routine. */

abstract protected String outExtension();

/** A member aspect designed to cut around <code>main()</code>

* before any Probe subaspect does. Only thing is, the subaspects

* of Probe have to have member aspects that dominate

* Probe.MainCutter and force them (the subaspects of Probe) to be

* loaded, adding to theProbes a reference to themself. Really

* ugly. */

160

APPENDIX A. SOURCE LISTINGS

static aspect MainCutter {

declare precedence: MainCutter, Probe+;

/** A Vector of Probe aspects. This is added to with after(Probe)

* advice on Probe initialization. */

protected Vector theProbes = new Vector();

/** Advice to grab onto <code>MakeMyPresenceKnown</code>

* aspects in Probe subaspects. It adds Probe

* instances to the Vector theProbes as they are initialized. */

after(Probe p): this(p) && initialization(Probe.new(..)) {

theProbes.add(p);

}

/** Advice to set up the log file output PrintWriter (Probe.out). The

* filename extension is retrieved from Probe.outExtension(). */

void around(String[] cmdline): mainCut(cmdline) {

String packagedir = "";

try {

packagedir =

thisJoinPointStaticPart.getSignature()

.getDeclaringType().getPackage().getName()

.replace(’.’,’/’) + ’/’;

} catch(RuntimeException _) {}

String filename =

thisJoinPointStaticPart.getSourceLocation().getFileName();

String reffilename = packagedir +

filename.substring(0, filename.length() - 4);

String extension = null;

try {

synchronized(theProbes) {

for(Enumeration en = theProbes.elements();

en.hasMoreElements();) {

Probe p = (Probe)en.nextElement();

extension = p.outExtension();

if(extension == null)

throw new NullPointerException

("The String returned by "

+ p.getClass().getName() +

".outExtension() cannot be null");

p.out = new PrintWriter

(new FileWriter(reffilename + extension));

}

}

try {

proceed(cmdline);

} catch(Throwable e) {

System.out.println("main() threw a "

+ e.getClass().getName());

e.printStackTrace();

}

161

APPENDIX A. SOURCE LISTINGS

Thread[] thds = new Thread[32];

Thread me = Thread.currentThread();

ThreadGroup myGroup = me.getThreadGroup();

int t;

do {

t = myGroup.enumerate(thds, true);

try {

for(int i = 0; i < t; ++i)

if(thds[t] != null && thds[t] != me)

thds[t].join();

} catch(InterruptedException _) {}

} while(t > 1);

synchronized(theProbes) {

for(Enumeration en = theProbes.elements();

en.hasMoreElements();)

((Probe)en.nextElement()).out.close();

}

} catch(IOException e) {

System.err.println("while trying to work with "

+ reffilename + extension + ": " + e);

e.printStackTrace();

}

}

}

}

162

APPENDIX A. SOURCE LISTINGS

LivenessProbe.javapackage autoscope.probe;

import java.util.*;

import org.aspectj.lang.*;

import org.aspectj.lang.reflect.SourceLocation;

/**

* An abstract aspect to serve as the parent for aspect probes that

* detect when objects become collectible. This aspect contains no

* liveness-probing implementation, but does handle some

* implementation-independent stuff.

*/

abstract aspect LivenessProbe extends Probe {

/** Returns our preferred filename extension "liv". Returns the

* String "liv", signalling that we want an output file with a

* ".liv" extension. */

protected String outExtension() { return "liv"; }

// Ideally, we’d do this...

// private long Thread.frame = 0;

// but for now, we have to do this... :(

/** The ThreadMap for the probed program. */

protected final ThreadMap threads = new ThreadMap();

/** This static field enforces the rule that you may not have more

* than one LivenessProbe probe at once. */

private static boolean alreadyConstructed;

{

if(alreadyConstructed)

throw new ProbeError("Only one LivenessProbe probe "

+ "may be used at once.");

alreadyConstructed = true;

}

protected pointcut frameAction(): constructorCall() || methodExecution();

protected Hashtable newLocHash = new Hashtable();

protected Hashtable newSiteThreadHash = new Hashtable();

protected String getSrcLoc(Object o) throws NoSuchNewSiteException {

SourceLocation loc = (SourceLocation)newLocHash.get(o);

if(loc == null)

throw new NoSuchNewSiteException();

return o.getClass().getName() + "(" + loc.getFileName()

163

APPENDIX A. SOURCE LISTINGS

+ "<" + loc.getLine() + ":" + loc.getColumn() + ">)";

}

static protected class NoSuchNewSiteException extends Exception {}

before(Object o): this(o) && execution(*.new(..)) && !withinUs() {

if(newLocHash.get(o) == null) {

/* this can be executed without a constructorCall() if this object

is constructed reflectively, and x will be null */

Object x = newSiteThreadHash.get(Thread.currentThread());

if(x != null)

newLocHash.put(o, x);

}

}

Object around(): constructorCall() {

newSiteThreadHash.put(Thread.currentThread(),

thisJoinPointStaticPart.getSourceLocation());

Object o = proceed();

if(newLocHash.get(o) == null)

newLocHash.put(o, thisJoinPointStaticPart.getSourceLocation());

Thread thr = Thread.currentThread();

try {

out.println("::new/" + (threads.getFrame(thr) - 1) + " " +

oid(o) + " " + getSrcLoc(o));

} catch(NoSuchNewSiteException e) {

e.printStackTrace();

}

return o;

}

Object around(): frameAction() {

enterScope(thisJoinPointStaticPart);

Object retval = proceed();

exitScope(thisJoinPointStaticPart);

return retval;

}

protected void enterScope(JoinPoint.StaticPart jp) {

out.println(">>enter/" + threads.getFrame(Thread.currentThread()) +

" " + jp);

}

protected void exitScope(JoinPoint.StaticPart jp) {

out.println("<<exit/" + threads.getFrame(Thread.currentThread()) +

" " + jp);

}

}

164

APPENDIX A. SOURCE LISTINGS

DeathProbe.javapackage autoscope.probe;

import java.lang.ref.*;

import java.util.*;

import org.aspectj.lang.reflect.SourceLocation;

/**

* An aspect to detect when objects become collectible. This aspect

* uses a ReferenceQueue implementation.

*/

aspect DeathProbe extends LivenessProbe {

/** A ReferenceQueue to use for object WeakReferences becoming

* dead */

protected final ReferenceQueue Q = new ReferenceQueue();

/** A Vector to keep track of currently live object WeakReferences

* in the system. If we didn’t keep a strong reference to these

* WeakReferences, they would be collected and not show up on our

* queue. */

protected final Vector refs = new Vector();

// Threads to Vectors of dead references

protected final Hashtable deadRefHash = new Hashtable();

/** Advice to capture a frame push or pop; frame counts are

* maintained and collected objects are tracked. */

Object around(): frameAction() {

Thread thr = Thread.currentThread();

Object retval = null;

try {

retval = proceed();

} finally {

DeathProbeReference r;

// debug.println("::GC/" + threads.getFrame(thr)

// + " after " + thisJoinPointStaticPart);

System.gc();

System.runFinalization();

// If using PhantomReferences, we must do it twice...

// System.gc();

// System.runFinalization();

Vector deadRefs = (Vector)deadRefHash.get(thr);

165

APPENDIX A. SOURCE LISTINGS

if(deadRefs == null)

deadRefHash.put(thr, deadRefs = new Vector());

int thisFrame = threads.getFrame(thr);

while((r = (DeathProbeReference)Q.poll()) != null) {

deadRefs.add(r);

refs.remove(r);

}

for(Iterator it = deadRefs.iterator(); it.hasNext();) {

r = (DeathProbeReference)it.next();

int birthFrame = r.getBirthFrame();

if(birthFrame >= thisFrame) {

out.println("D " + r + " "

/* + birthFrame + " " */

+ (thisFrame - birthFrame)

+ " after " + thisJoinPointStaticPart);

it.remove();

}

}

}

return retval;

}

after() returning(Object o): constructorCall() {

Thread thr = Thread.currentThread();

refs.add(new DeathProbeReference(o, Q,

thr, threads.getFrame(thr) - 1));

}

/** Aspect containing simple advice that forces the DeathProbe

* aspect to be class-loaded before Probe.MainCutter’s advice

* runs. */

static aspect MakeMyPresenceKnown {

declare precedence : MakeMyPresenceKnown, Probe.MainCutter;

/** Simple advice to force the DeathProbe aspect to be

* class-loaded before Probe.MainCutter’s advice runs. */

before(): mainCut(String[]) {

DeathProbe.hasAspect();

}

}

}

166

APPENDIX A. SOURCE LISTINGS

ReferenceProbe.javapackage autoscope.probe;

import java.util.*;

import org.aspectj.lang.reflect.*;

/**

* An aspect to detect and store to a file which objects in a system

* refer to which others.

*/

aspect ReferenceProbe extends Probe {

/** Whether or not to print stuff verbosely. */

protected boolean verbose = false;

/** A hash of encountered new sites. */

protected Hashtable newLocHash = new Hashtable();

/** A Hashtable of Threads to the SourceLocation of new sites */

protected Hashtable newSiteThreadHash = new Hashtable();

/** Returns our preferred filename extension "ref". Returns the

* String "ref", signalling that we want an output file with a

* ".ref" extension. */

protected String outExtension() { return "ref"; }

/** Sets a "currently executing" new site SourceLocation for the

* current Thread. */

before(): constructorCall() {

newSiteThreadHash.put(Thread.currentThread(),

thisJoinPointStaticPart.getSourceLocation());

}

/** Links the SourceLocation of a new site to the object currently

* under construction. The SourceLocation is retrieved from

* newSiteThreadHash, which contains a mapping of Threads to the

* new sites they are currently executing. */

before(Object o): this(o) && execution(*.new(..)) && !withinUs() {

/* In super() constructor invocations, we’ll run multiple

times. This explicit null check keeps us from unnecessary

work (and garbage). */

if(newLocHash.get(o) == null) {

/* this can be executed without a constructorCall() if this object

is constructed reflectively, and x will be null */

Object x = newSiteThreadHash.get(Thread.currentThread());

if(x != null)

newLocHash.put(o, x);

}

167

APPENDIX A. SOURCE LISTINGS

}

/** Links the SourceLocation of a new site to a constructed

* object. The* SourceLocation is retrieved from this

* (constructor call) join point. This advice is necessary for

* objects instantiated by our system but whose constructor code

* is outside our system (for example, instantiating a String or

* some other standard class in the Java class library. */

after() returning(Object o): constructorCall() {

if(newLocHash.get(o) == null)

newLocHash.put(o, thisJoinPointStaticPart.getSourceLocation());

}

/** This advice, on assignments, tracks which objects refer to

* which others and calls reference() appropriately to generate

* reference output. */

before(Object a, Object x):

target(a) && args(x) && set(* *.*) && !withinUs() {

if(x == null) {

if(verbose)

out.println("=== PROBE: x is null in nonstatic probe at " +

thisJoinPoint);

return;

}

if(a == null)

reference(new StaticClass(thisJoinPointStaticPart.getSignature()

.getDeclaringType()), x);

else reference(a, x);

}

/** This routine registers (and prints to the PrintWriter

* specified in out) that an object refers to another object. The

* String printed for each item is the String returned by

* getSrcLoc(Object), unless parameter "a" is an instance of

* StaticClass, in which case the name of the encapsulated class

* is output.

* @param a the object that refers to object x

* @param x the object that object a refers to

protected void reference(Object a, Object x) {

try {

out.println(((a instanceof StaticClass) ?

((StaticClass)a).getReferent().getName() :

getSrcLoc(a))

+ ": " + getSrcLoc(x));

} catch(NoSuchNewSiteException _) {}

}

/** Get a String representing the new site for the given object.

* @param o the object to get the new site for

* @return a String of the form "Foo(Foo.java<1:3>)"

168

APPENDIX A. SOURCE LISTINGS

* @exception a ReferenceProbe.NoSuchNewSiteException is thrown if

* the object’s new site hasn’t been detected (ie., it corresponds

* to a library object, which AspectJ cannot track, or a primitive

* type that was promoted to a class-based equivalent (like int ->

* Integer) by AspectJ. */

protected String getSrcLoc(Object o) throws NoSuchNewSiteException {

org.aspectj.lang.reflect.SourceLocation loc =

(org.aspectj.lang.reflect.SourceLocation)newLocHash.get(o);

if(loc == null)

throw new NoSuchNewSiteException();

return o.getClass().getName() + "(" + loc.getFileName()

+ "<" + loc.getLine() + ":" + loc.getColumn() + ">)";

}

/** A class to handle cases where no new site exists for an object

* (for example, a primitive int that AspectJ promotes to an

* Integer. */

static protected class NoSuchNewSiteException extends Exception {}

/** Class used to track static reference information by

* encapsulating a java.lang.Class */

static final protected class StaticClass {

private Class c;

public StaticClass(Class c) { this.c = c; }

public Class getReferent() { return c; }

}

/** Aspect containing simple advice that forces the ReferenceProbe

* aspect to be class-loaded before Probe.MainCutter’s advice

* runs. */

static aspect MakeMyPresenceKnown {

declare precedence : MakeMyPresenceKnown, Probe.MainCutter;

/** Simple advice to force the ReferenceProbe aspect to be

* class-loaded before Probe.MainCutter’s advice runs. */

before(): mainCut(String[]) {

ReferenceProbe.hasAspect();

}

}

}

169

APPENDIX A. SOURCE LISTINGS

SimpleReferenceCounter.ajpublic interface ReferenceCountable { }

aspect SimpleReferenceCounter {

public int ReferenceCountable.refCount = 0;

private void free(ReferenceCountable rc) {

processDeadObject(rc);

/* return space occupied by rc to the general-purpose allocator:

this simple reference-counter assumes there’s a way to do

interface to the VM to do this... */

}

protected void resetField(Field field, Object onInstance) {

/* This prevents static fields from being reset. Resetting

* static fields royally screws AspectJ over. (it’s not

* pretty) */

if ((field.getModifiers() & Modifier.STATIC) == 0)

return;

try {

Class type = field.getType();

if(!type.isPrimitive())

field.set(onInstance, null); // object/array

else if(type == Boolean.TYPE)

field.setBoolean(onInstance, false); // boolean

else if(type == Character.TYPE)

field.setChar(onInstance, (char)0); // char

else field.setByte(onInstance, (byte)0);

// the last one works for int short long float double byte

} catch (Exception e) {

System.err.println("Could not reset field");

e.printStackTrace();

}

}

private void processDeadObject(ReferenceCountable rc) {

if (rc instanceof brutil.NoncyclicReference)

return;

Class c = rc.getClass();

do {

Field fields[] = c.getDeclaredFields();

int length = fields.length;

for (int i = 0; i < length; ++i) {

try {

Field theField = fields[i];

170

APPENDIX A. SOURCE LISTINGS

// We can get away with != because field names are interned --

// I can’t find a guarantee in the spec but in Sun’s J2SDK

// 1.4.1 it works...

if (theField.getName() != "rc_next" &&

(theField.getModifiers() & Modifier.STATIC) == 0) {

theField.setAccessible(true);

Object value = theField.get(rc);

if (value instanceof ReferenceCountable && value != rc) {

ReferenceCountable rcValue = (ReferenceCountable)value;

//debug(" - Death of " + rc + " decrementing " +

// rcField + ": " + (rcField.refCount-1));

rcValue.refCount--;

if (isCollectable(rcValue))

free(rcValue);

// theField.set(rc, null); // The bare minimum reset

} else {

// Overzealous? If so, should remove theField.set() above, too

// resetField(fields[i], rc);

}

}

} catch(Exception e) {

System.err.println("Error decrementing fields of dead object");

e.printStackTrace();

}

}

} while ((c = c.getSuperclass()) != null);

}

private boolean isCollectable(ReferenceCountable rc) {

if (rc.refCount < 0)

throw new Error("Sub-zero refCount");

return rc.refCount == 0;

}

/* Capture all putfields, so we can see how objects interact. */

pointcut reference(Object obj, ReferenceCountable newVal) :

target(obj) &&

!within(SimpleReferenceCounter+) &&

args(newVal) &&

set((Object || (ReferenceCountable+)) *);

/* Gives the old and new referent of a ReferenceCountable to

* subclasses of this aspect so that they may take appropriate

* action. */

Object around(Object obj, ReferenceCountable newVal) : reference(obj, newVal) {

ReferenceCountable oldVal = null;

if (!(obj instanceof brutil.NoncyclicReference)) {

org.aspectj.lang.Signature sig = thisJoinPointStaticPart.getSignature();

Field field = null;

Class c = sig.getDeclaringType();

171

APPENDIX A. SOURCE LISTINGS

do {

try {

field = c.getDeclaredField(sig.getName());

field.setAccessible(true);

oldVal = (ReferenceCountable)field.get(obj);

} catch(NoSuchFieldException e) {

if((c = c.getSuperclass()) == null)

throw new InternalError();

} catch (Exception e) {

System.err.println("Could not retrieve old value of field: " + field);

e.printStackTrace();

break;

}

} while(field == null);

}

Object ans = proceed(obj, newVal);

/* This seems a little hokey, I know, but the new value must

* know it is being referenced first, or it might think it’s

* garbage. In instances such as ListItems, the oldVal could

* have a reference to the newVal, and it would then try to

* decrement it on death. */

if (!(obj instanceof brutil.NoncyclicReference)) {

if (newVal != null && newVal != obj) {

//debug("Object " + obj + " pointing at " + newVal + ": " +

// (((ReferenceCountable)newVal).refCount+1));

// takeactionafterreference

++newVal.refCount;

}

if (oldVal != null && oldVal != obj) {

//debug("Object " + obj + " pointing away from " + oldVal +

// ": " + (oldVal.refCount-1));

// takeactionbeforereference

--oldVal.refCount;

if (isCollectable(oldVal))

free(oldVal);

}

}

return ans;

}

/* Allow us to allocate from ’undead’ list if we have objects to offer. */

ReferenceCountable around () : allocation() {

Class c = thisJoinPointStaticPart.getSignature().getDeclaringType();

ReferenceCountable ret = popList(c);

if (ret == null) {

ret = proceed();

return ret;

}

ret.rc_next = null; // sane, yes...but necessary?

172

APPENDIX A. SOURCE LISTINGS

ret.refCount = 0; // should be 0 anyway, but just in case. ;)

return ret;

}

}

173

APPENDIX A. SOURCE LISTINGS

HeapReferenceCounter.ajpublic interface ReferenceCountable { }

aspect HeapReferenceCounter {

public ReferenceCountable ReferenceCountable.rc_next;

public static ReferenceCountable ReferenceCountable+.rc_freeList;

public ReferenceCountable ReferenceCountable+.rc_getList() {

return rc_freeList;

}

public void ReferenceCountable+.rc_setList(ReferenceCountable rc) {

rc_freeList = rc;

}

public int ReferenceCountable.refCount = 0;

private void free(ReferenceCountable rc) {

processDeadObject(rc);

rc.rc_next = rc.rc_getList();

rc.rc_setList(rc);

}

/* popList() gets and returns the first element of the

* recycled-object list for the given type, and "pops" it off the

* "top" of the list */

private ReferenceCountable popList(Class type) {

try {

Field listField = type.getField("rc_freeList");

// If I don’t do setAccessible(true), I get the following:

// java.lang.IllegalAccessException:

// Class brutil.aspects.HeapCounting can not access a

// member of class brutil.SinglyLinkedListItem with

// modifiers "public static"

listField.setAccessible(true);

ReferenceCountable item = (ReferenceCountable)listField.get(null);

if (item == null)

return null;

item.rc_setList(item.rc_next); // which is faster - invokeinterface?...

// listField.set(null, item.rc_next); // ...or reflective invoke(final)?

return item;

} catch (Exception e) {

System.err.println("popList: Could not pop rc_freeList");

e.printStackTrace();

return null;

}

}

174

APPENDIX A. SOURCE LISTINGS

protected void resetField(Field field, Object onInstance) {

/* This prevents static fields from being reset. Resetting

* static fields royally screws AspectJ over. (it’s not

* pretty) */

if ((field.getModifiers() & Modifier.STATIC) == 0)

return;

try {

Class type = field.getType();

if(!type.isPrimitive())

field.set(onInstance, null); // object/array

else if(type == Boolean.TYPE)

field.setBoolean(onInstance, false); // boolean

else if(type == Character.TYPE)

field.setChar(onInstance, (char)0); // char

else field.setByte(onInstance, (byte)0);

// the last one works for int short long float double byte

} catch (Exception e) {

System.err.println("Could not reset field");

e.printStackTrace();

}

}

private void processDeadObject(ReferenceCountable rc) {

if (rc instanceof brutil.NoncyclicReference)

return;

Class c = rc.getClass();

// Climb class hierarchy..

do {

Field fields[] = c.getDeclaredFields();

int length = fields.length;

for (int i = 0; i < length; ++i) {

try {

Field theField = fields[i];

// We can get away with != because field names are interned --

// I can’t find a guarantee in the spec but in Sun’s J2SDK

// 1.4.1 it works...

if (theField.getName() != "rc_next" &&

(theField.getModifiers() & Modifier.STATIC) == 0) {

theField.setAccessible(true);

Object value = theField.get(rc);

if (value instanceof ReferenceCountable && value != rc) {

ReferenceCountable rcValue = (ReferenceCountable)value;

//debug(" - Death of " + rc + " decrementing " +

// rcField + ": " + (rcField.refCount-1));

rcValue.refCount--;

if (isCollectable(rcValue))

free(rcValue);

175

APPENDIX A. SOURCE LISTINGS

theField.set(rc, null); // The bare minimum reset

} else {

// Overzealous? If so, should remove theField.set() above, too

// resetField(fields[i], rc);

}

}

} catch(Exception e) {

System.err.println("Error decrementing fields of dead object");

e.printStackTrace();

}

}

} while ((c = c.getSuperclass()) != null);

}

private boolean isCollectable(ReferenceCountable rc) {

if (rc.refCount < 0)

throw new Error("Sub-zero refCount");

return rc.refCount == 0;

}

/* Capture all putfields, so we can see how objects interact. */

pointcut reference(Object obj, ReferenceCountable newVal) :

target(obj) &&

!within(HeapReferenceCounter+) &&

args(newVal) &&

set((Object || (ReferenceCountable+)) *);

/* Gives the old and new referent of a ReferenceCountable to

* subclasses of this aspect so that they may take appropriate

* action. */

Object around(Object obj, ReferenceCountable newVal) : reference(obj, newVal) {

ReferenceCountable oldVal = null;

if (!(obj instanceof brutil.NoncyclicReference)) {

org.aspectj.lang.Signature sig = thisJoinPointStaticPart.getSignature();

Field field = null;

Class c = sig.getDeclaringType();

do {

try {

field = c.getDeclaredField(sig.getName());

field.setAccessible(true);

oldVal = (ReferenceCountable)field.get(obj);

} catch(NoSuchFieldException e) {

if((c = c.getSuperclass()) == null)

throw new InternalError();

} catch (Exception e) {

System.err.println("Could not retrieve old value of field: " + field);

e.printStackTrace();

break;

}

} while(field == null);

176

APPENDIX A. SOURCE LISTINGS

}

Object ans = proceed(obj, newVal);

/* This seems a little hokey, I know, but the new value must

* know it is being referenced first, or it might think it’s

* garbage. In instances such as ListItems, the oldVal could

* have a reference to the newVal, and it would then try to

* decrement it on death. */

if (!(obj instanceof brutil.NoncyclicReference)) {

if (newVal != null && newVal != obj) {

//debug("Object " + obj + " pointing at " + newVal + ": " +

// (((ReferenceCountable)newVal).refCount+1));

// takeactionafterreference

++newVal.refCount;

}

if (oldVal != null && oldVal != obj) {

//debug("Object " + obj + " pointing away from " + oldVal +

// ": " + (oldVal.refCount-1));

// takeactionbeforereference

--oldVal.refCount;

if (isCollectable(oldVal))

free(oldVal);

}

}

return ans;

}

/* Allow us to allocate from ’undead’ list if we have objects to offer. */

ReferenceCountable around () : allocation() {

Class c = thisJoinPointStaticPart.getSignature().getDeclaringType();

ReferenceCountable ret = popList(c);

if (ret == null) {

ret = proceed();

return ret;

}

ret.rc_next = null; // sane, yes...but necessary?

ret.refCount = 0; // should be 0 anyway, but just in case. ;)

return ret;

}

}

177

APPENDIX A. SOURCE LISTINGS

StackReferenceCounter.ajpublic interface ReferenceCountable { }

aspect StackReferenceCounter extends HeapReferenceCounter {

/* A stack that recycles its ’cells’ for frame simulation. This

* could not be done with our brutil.LinkedStack because of

* circularity concerns. We could not use ArrayStack because we need

* an unbounded Stack. Dirty, but necessary, since usually stack

* frames try to add themselves to their own frame list right before

* they are created. */

public static class RCStack {

private StackFrame free;

private StackFrame top;

private StackFrame manufactureStackFrame() {

if (free == null)

return new StackFrame();

else return freePop();

}

private void freePush(StackFrame li) {

li.next = free;

free = li;

}

private StackFrame freePop() {

StackFrame ans = free;

free = free.next;

ans.refList = null;

return ans;

}

public boolean isEmpty() {

return top == null;

}

// if we never encounter EmptyStackExceptions during runs, let’s

// remove the checks...

public StackFrame getTop() {

if (isEmpty())

throw new EmptyStackException();

return top;

}

public ReferenceCountable peek() {

if (isEmpty())

throw new EmptyStackException();

return top.refList;

178

APPENDIX A. SOURCE LISTINGS

}

public void push() {

StackFrame temp = top;

top = manufactureStackFrame();

top.next = temp;

}

public ReferenceCountable pop() {

if (isEmpty())

throw new EmptyStackException();

ReferenceCountable ret = top.refList;

StackFrame temp = top.next;

freePush(top);

top = temp;

return ret;

}

public void setTopList(ReferenceCountable rc) {

top.refList = rc;

}

}

static class StackFrame {

StackFrame next;

ReferenceCountable refList;

}

///////////////////

/* Introductions */

///////////////////

/* To recipients of this aspect’s advice: */

public StackFrame ReferenceCountable.frame;

//////////////////

/* Aspect State */

//////////////////

private RCStack frameSim = new RCStack();

private StackFrame staticFrame = new StackFrame();

private int stack = 0;

////////////////////

/* Helper Methods */

////////////////////

public void threadSlam(ReferenceCountable rc) {

/* Associate this object to the static set. */

ReferenceCountable ref = ((ReferenceCountable)rc);

179

APPENDIX A. SOURCE LISTINGS

if (ref.frame == null) ref.incr();

ref.frame = staticFrame;

}

public void takeActionBeforeReference(Object obj, ReferenceCountable oldVal) {

if (oldVal != null && oldVal.frame != null && !frameSim.isEmpty())

addToCurrentFrame(oldVal);

super.takeActionBeforeReference(obj, oldVal);

}

public void addToCurrentFrame(ReferenceCountable rc) {

if (rc.frame != null) return;

rc.rc_next = frameSim.peek();

frameSim.setTopList(rc);

++rc.refCount;

//debug(" (" + stack + ")- Adding to current frame: " + rc + ": " +

// ((ReferenceCountable)rc).refCount);

rc.frame = frameSim.getTop();

//debug("<< From addToCurrent: Stack List: >>");

//printList(rc);

}

public void objectLeavingScope(ReferenceCountable rc) {

//debug (" Stack Decrementing " + rc + ": " +

// (((ReferenceCountable)rc).refCount-1));

--rc.refCount;

}

///////////////

/* Pointcuts */

///////////////

pointcut functionScope() :

!within(HeapTracking+) && call(* (* && !(RCStack || StackFrame)).*(..))

|| execution((* && !(RCStack || StackFrame)).new(..));

////////////

/* Advice */

////////////

after() returning(ReferenceCountable rc) : allocation() {

if (!frameSim.isEmpty())

addToCurrentFrame(rc);

return rc;

}

/* This piece of advice handles the pushing and poping of stack

* frames, and all ReferenceCountable concerns involved. */

Object around() : functionScope() {

frameSim.push();

180

APPENDIX A. SOURCE LISTINGS

stack++;

Object ret = proceed();

StackFrame popped = frameSim.getTop();

ReferenceCountable rc = frameSim.pop();

stack--;

while (rc != null) {

ReferenceCountable temp = rc.rc_next;

rc.rc_next = null;

rc.frame = null;

if (rc == ret) {

if (rc.frame == popped) {

/* If we found the returned object on this list, and this is

not the initial frame (or a static frame), add the returned

object to the next frame’s list. */

//debug(" Returning " + rc);

if (!frameSim.isEmpty()) {

addToCurrentFrame(rc);

/* Messy, but addToCurrentFrame will incr, and we need this to

* maintain correct refCount. */

--rc.refCount;

}

}

} else {

/* If something other than this frame references the

object, dissociate it from its frame. (it is now

’orphaned’) */

objectLeavingScope(rc);

}

rc = temp;

}

return ret;

}

}

181

Appendix B

Garbage Collector Software

Support ChangeLog

his appendix provides the detailed jRate [34] log of changes for the softwareT support described in Chapter 6. This is a complete log, giving the jRate and

the GNU Compiler Collection (GCC) source files modified for each task.

• add “soft” nodes in Java front-end for Jv SMM getObjectData(),

Jv SMM putObjectData(), and various flavors of Jv SMM bumpRefCount() and

Jv SMM decRefCount() (gcc/java/decl.c) and also JTI SOFT * constants and

#defines for them (gcc/java/java-tree.h)

• add “soft” nodes for gnu::gcj::RawData type and needed SMM functions in C++

front-end (gcc/cp/typeck.c, gcc/cp/cp-tree.h)

• add build object in smm cond() function to Java front-end: constructs a tree for a

runtime conditional for a given tree of ptr type to determine if it’s in SMM unit or

not; optimized for ARTEC case (gcc/java/java-tree.h, gcc/java/expr.c)

• add build object in smm cond() function to C++ front-end; optimized for

ARTEC case (gcc/cp/cp-tree.h, gcc/cp/expr.c)

• initialize C++ local variables of Java pointer type to null (gcc/cp/decl.c)

• in expand java arraystore(): support for arrays on bytecode-to-object

compilation path (gcc/java/expr.c)

182

APPENDIX B. GARBAGE COLLECTOR SOFTWARE SUPPORT CHANGELOG

• in expand java arrayload(): support for arrays on bytecode-to-object compilation

path (gcc/java/expr.c)

• in expand java array length(): support for arrays on bytecode-to-object

compilation path (gcc/java/expr.c)

• initialize Java non-parameter local variables/stack slots containing object references

to null (gcc/java/decl.c)

• emit cleanup functions for Java local variables/stack slots to decrement their

reference counts on function exit (gcc/java/decl.c)

• emit proper bumpRefCount/decRefCount calls when local variables/stack slots

assigned to (gcc/java/decl.c, gcc/java/expr.c)

• emit cleanup functions for C++ local variables (gcc/java/decl.c)

• emit reference count bumps for C++ function parameters on function entry

(gcc/cp/decl.c)

• emit cleanups to decrement reference counts for C++ function parameters on

function exit (gcc/cp/decl.c)

• split RTL variable assignment for local variables/stack slots depending not only on

TYPE MODE but also on SMM-allocability (gcc/java/decl.c)

• increment SMM reference counts for C++ local variables of type

pointer-to-Java-object when first initialized (gcc/cp/decl.c, gcc/cp/typeck.c,

gcc/cp/cp-tree.h)

• increment and decrement SMM reference counts when C++ local variables of type

pointer-to-Java-object are assigned (gcc/cp/typeck.c, gcc/cp/cp-tree.h)

• decrement SMM reference counts when C++ local variables of type

pointer-to-Java-object go out of scope (gcc/cp/decl.c, gcc/cp/typeck.c,

gcc/cp/cp-tree.h)

• in expand java field op(): support for getstatic, putstatic, getfield,

putfield SMM instrumentation on bytecode-to-object compilation path

(gcc/java/expr.c)

• in invoke build dtable(): support for (virtual) method calls from Java on

SMM-allocated objects (gcc/java/expr.c)

183

APPENDIX B. GARBAGE COLLECTOR SOFTWARE SUPPORT CHANGELOG

• added -fsmm/-fno-smm Java compiler options and flag smm compiler global

(gcc/java/java-tree.h) – also pass -fsmm to jc1 (gcc/java/jvspec.c), document it

(gcc/java/lang-options.h), and disallow it’s use with -femit-class-file[s]

(gcc/java/lang-specs.h). Define flag smm global and hook it up to command-line

processing (gcc/java/lang.c).

• added -fsmm C++ compiler option and flag smm compiler global (gcc/c-opts.c,

gcc/cp/lang-options.h, gcc/c-common.c, gcc/c-common.h)

• emit error when specifying -fsmm and compiling from Java source, for which SMM

instrumentation isn’t supported (gcc/java/parse.y)

• backport a 4.0.x-series fix for a gcj bug that breaks the source-to-bytecode

compilation path for subsequent static calls (e.g.

“Runtime.getRuntime().runFinalizersOnExit(finalizeOnExit)” from

libjava/java/lang/System.java) (gcc/java/parse.y)

• alter libjava’s build process to generate .o files from .class rather than .java (so

that -fsmm is effective for class library) and alter rules to make this possible

(libjava/Makefile.am, libjava/Makefile.in)

• no longer build jRate demos on install—to work with SMM, the build process would

need alteration to build .class files first (in jRate source: Makefile.am)

• include SMM function prototypes in standard library (libjava/include/jvm.h)

• new header file “smm.h” in standard library to declare SMM functions

(libjava/include/smm.h)

• new source file “smm.cc” in standard library to implement SMM functions

(libjava/smm.cc)

• make certain allocation routines friends of java::lang::Class

(libjava/java/lang/Class.h)

• emit proper pointer mask for SMM-allocable classes (gcc/java/boehm.c)

• arrange for Jv SMM sendStructDef() to be called at class loading time, using size

(in words) of class and pointer mask, for classes that are SMM-allocable

(libjava/java/lang/natClass.cc)

184

APPENDIX B. GARBAGE COLLECTOR SOFTWARE SUPPORT CHANGELOG

• add smm structID and gc descr64 integer fields to java.lang.Class

(gcc/java/class.c, gcc/java/decl.c, libjava/java/lang/Class.h)

• arrange for Jv SMM init() to be called at JVM initialization (libjava/prims.cc)

• add new artec fpga allocation global to runtime (zero if SMM unit disabled,

nonzero if SMM unit enabled)

• alter allocation routines to use SMM unit, when enabled, for objects that can be

SMM-allocated and when SMM isn’t already full (libjava/prims.cc)

• jRate’s initial memory area is heap, instead of method area as in stock jRate

(libjava/prims.cc; in jRate source: src/native/gcj-patches/jRate-gc.cc)

• fixed libtool to properly quote shell meta characters when compiling .class files

(ltmain.sh in top-level GCC sources)

• fixed inner class usage error that gcj accepts but compiles erroneously (in jRate

source: src/javax/realtime/PriorityQueue.java)

• added built-in defines JRATE SMM ADDR TOP and JRATE SMM ADDR BOTTOM for

additional ease in making sure compiler and runtime use same values

(gcc/c-common.c)

• added support for using the SMM cloneObject() routine if the object to be cloned

is in SMM and the SMM unit is currently enabled for allocation

(libjava/java/lang/natObject.cc)

• remove problematic piece of code (address-expression on member access) dealing

with collection of references (libjava/java/lang/ref/natReference.cc)

• provide minimally-functional SMM function stubs for testing purposes

(libjava/smm.cc)

• integrate with Boeing MemoryManager layer HARDWARE and SOFTWARE

configurations, selectable via environment variable (libjava/smm.cc,

libjava/configure, libjava/Makefile.am, libjava/Makefile.in, import of

MemoryManager tree into libjava/MemoryManager; in jRate source: Makefile.am)

• fix libgcj build process to support MemoryManager without itself being

SMM-instrumented (libjava/Makefile.am, libjava/Makefile.in)

185

APPENDIX B. GARBAGE COLLECTOR SOFTWARE SUPPORT CHANGELOG

• solve chicken-&-egg bootstrap problem in which the SMM Driver class from the

MemoryManager layer cannot be told to initialize until after it processes own

sendStructDef! (libjava/smm.cc)

• C++ front-end changes for native code SMM field read/write (gcc/cp/typeck.c,

gcc/cp/expr.c, gcc/cp/error.c, gcc/cp/cp-tree.h)

• C++ front-end changes for native code SMM static/global write (gcc/cp/typeck.c,

gcc/cp/expr.c, gcc/cp/error.c, gcc/cp/cp-tree.h)

• C++ front-end changes for native code SMM vtable access to support C++-side

calls of Java methods on SMM objects (gcc/cp/typeck.c, gcc/cp/call.c,

gcc/cp/init.c, gcc/cp/expr.c, gcc/cp/class.c, gcc/cp/cp-tree.h)

• C++ front-end changes for native code bump/dec ref count (gcc/cp/typeck.c,

gcc/cp/expr.c,gcc/cp/error.c, gcc/cp/cp-tree.h)

• new IS SMM ACCESS flag for COND EXPRs in C++ front end to track if an SMM access

is occurring in intermediate representation (gcc/cp/cp-tree.h)

• new SMM FIELD OFFSET macro in C++ front end to get the offset for a field for use

in getObjectData/putObjectData calls (gcc/cp/cp-tree.h)

• new JAVA TYPE IS WIDE macro in C++ front end to determine if a field has Java

type double or long (gcc/cp/cp-tree.h)

• C++ native array read/write (libjava/gcj/array.h, numerous libgcj and

libjRateCore library modifications across many files)

• minor modifications to 3.3.3 versions of libiberty and the C++ front end so that

they can be compiled with (the stricter) gcc 4.0.x (include/obstack.h, gcc/cp/decl.c)

• fix error introduced by SMM instrumentation when building gcjh

(gcc/java/gjavah.c).

• remove per-object monitor policy from jRate (libjava/java/lang/Object.h,

libjava/java/lang/natObject.cc; in jRate source:

src/native/src/jrate/binding/java/ObjectInitializer.h,

src/native/src/javax/realtime/MonitorControl.cc)

• make native getClass() method in java.lang.Object aware of SMM

(libjava/java/lang/natObject.cc)

186

APPENDIX B. GARBAGE COLLECTOR SOFTWARE SUPPORT CHANGELOG

• fix bug in gcc 3.3.3 that issues an incorrect “value computed is not used” warning

for SAVE EXPR nodes (gcc/stmt.c)

• fix a bug in gcj 3.3.3 that doesn’t look up methods properly in interface/abstract

contexts when compiling from bytecode; import some method lookup code from

gcj 3.4.4 (gcc/java/typeck.c)

• don’t include jRate’s get ticks() function when building for PowerPC, else we get

a multiply-defined conflict between it and the (identical) version in MemoryManager

when linking libgcj (in jRate source:

src/native/src/javax/realtime/HighResolutionClock.cc)

• add support for C++ template expansion of SMM local variable cleanup code

(gcc/cp/pt.c)

• add support for #pragma GCC SMM for fine-grained control of SMM instrumentation

in C++ source, also associated global and garbage collection root information

(gcc/cp/lex.c, gcc/cp/Make-lang.in gcc/cp/config-lang.in)

• add jRate/SMM identification to the compiler (gcc/gcc.c, gcc/toplev.c,

gcc/diagnostic.c)

• fix native System.arraycopy() to work with new C++-side array types and to

support copying into and out of SMM (libjava/java/lang/natSystem.cc)

187

References

[1] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Pat-

terns Applied. Addison-Wesley, Boston, Massachusetts, USA, 2001.

[2] Andrei Alexandrescu. Loki C++ library. sourceforge.net/projects/loki-lib/,

2006.

[3] Aonix, Inc. Aonix - PERC Products. www.aonix.com/perc.html, 2007.

[4] Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent collection on

stock multiprocessors. ACM SIGPLAN Notices, 23(7):11–20, July 1988.

[5] Ken Arnold, James Gosling, and David Holmes. The Java Programming Language.

Addison-Wesley, Boston, Massachusetts, USA, 2000.

[6] The AspectJ Organization. Aspect-Oriented Programming for Java, 2007. www.

aspectj.org.

[7] The AspectJ Organization. The AspectJ 5 Development Kit Developer’s Notebook,

2007. www.eclipse.org/aspectj/doc/released/adk15notebook/.

[8] The AspectJ Organization. The AspectJ Programming Guide, 2007. www.eclipse.

org/aspectj/doc/released/progguide/.

[9] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard real-time

scheduling: The deadline monotonic approach. In Proceedings of the Eighth IEEE

Workshop on Real-Time Operating Systems and Software (RTOSS 1991), Atlanta,

Georgia, USA, May 1991.

[10] Matthew H. Austern. Generic Programming and the STL. Addison-Wesley, Reading,

Massachusetts, USA, 1999.

[11] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer

Lhoták, Ondr̆ej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and

188

Julian Tibble. Optimising AspectJ. ACM SIGPLAN Notices, 40(6):117–128, 2005.

[12] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,

H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden,

and M. Woodger. Revised report on the algorithmic language ALGOL 60. Commu-

nications of the ACM (CACM), 6(1):1–17, January 1963.

[13] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage collector with

low overhead and consistent utilization. In Proceedings of the 30th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL 2003), pages

285–298. ACM Press, 2003.

[14] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations

for high-performance computing. ACM Computing Surveys, 26(4):345–420, 1994.

[15] Henry G. Baker. List processing in real-time on a serial computer. Communications

of the ACM (CACM), 21(4):280–294, April 1978.

[16] Henry G. Baker. The Treadmill: real-time garbage collection without motion sickness.

ACM SIGPLAN Notices, 27(3):66–70, March 1992.

[17] Don Batory, Roberto E. Lopez-Herrejon, and Jean-Philippe Martin. Generating

product-lines of product-families. In Proceedings of the 17th IEEE international con-

ference on Automated software engineering (ASE 2002), pages 81–92, Washington,

DC, USA, 2002. IEEE Computer Society Press.

[18] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise refinement.

IEEE Transactions on Software Engineering, 30(6):355–371, 2004.

[19] William S. Beebee, Jr. and Martin Rinard. An implementation of scoped memory for

real-time Java. Lecture Notes in Computer Science, 2211:289–305, October 2001.

[20] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative en-

vironment. Software Practice and Experience, 18(9), September 1988. www.hpl.hp.

com/personal/Hans_Boehm/spe_gc_paper/.

[21] Greg Bollella, Ben Brosgol, Peter Dibble, Steve Furr, James Gosling, David Hardin,

and Mark Turnbull. The Real-Time Specification for Java. Addison-Wesley, Boston,

Massachusetts, USA, 2000.

[22] Daniel Bovet and Marco Cesati. Understanding the Linux Kernel. O’Reilly & Asso-

ciates, Inc., Sebastopol, CA, USA, second edition, 2002.

189

[23] Claus Brabrand and Michael I. Schwartzbach. Growing languages with metamorphic

syntax macros. In Proceedings of the 2002 ACM SIGPLAN Workshop on Partial

Evaluation and Semantics-Based Program Manipulation (PEPM 2002), pages 31–40.

ACM Press, 2002.

[24] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the

future safe for the past: Adding genericity to the Java programming language. In Pro-

ceedings of the thirteenth annual conference on Object-oriented programming, systems,

languages, and applications (OOPSLA 1998), pages 183–200, Vancouver, British

Columbia, Canada, 1998. ACM Press.

[25] Rodney A. Brooks. Trading data space for reduced time and code space in real-

time collection on stock hardware. In ACM Symposium on LISP and Functional

Programming (LFP 1984), pages 256–262, Austin, Texas, USA, 1984. ACM Press.

[26] R. Brown and L. Hendren. Automatic recycling of Java objects. Technical report,

McGill University, 2000.

[27] Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R. Westbrook. A

new, simpler linear-time dominators algorithm. ACM Transactions on Programming

Languages and Systems (TOPLAS), 20(6):1265–1296, 1998.

[28] Dante J. Cannarozzi, Michael P. Plezbert, and Ron K. Cytron. Contaminated garbage

collection. In Proceedings of the ACM SIGPLAN conference on Programming lan-

guage design and implementation (PLDI 2000), pages 264–273, Vancouver, British

Columbia, Canada, June 2000. ACM Press.

[29] Dante Cannarozzi and Morgan Deters. Secure, distributed whiteboard. www.cs.

wustl.edu/~mdeters/whiteboard/, 2002.

[30] Perry Cheng and Guy Belloch. A parallel, real-time garbage collector. In Proceedings

of the ACM SIGPLAN conference on Programming language design and implemen-

tation (PLDI 2001), pages 125–136, Snowbird, Utah, USA, June 2001. ACM Press.

[31] Shigeru Chiba. A metaobject protocol for C++. In Proceedings of the tenth an-

nual conference on Object-oriented programming systems, languages, and applications

(OOPSLA 1995), pages 285–299, Austin, Texas, USA, October 1995. ACM Press.

[32] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-

troduction to Algorithms. McGraw-Hill Higher Education, second edition, 2001.

[33] Angelo Corsaro. Techniques and patterns for safe and efficient real-time middleware.

Technical Report WUCSE–2004–54, Washington University in St. Louis, Department

190

of Computer Science and Engineering, September 2004. Doctoral dissertation.

[34] Angelo Corsaro and Morgan Deters. jRate: A Real-Time Java ahead-of-time compiler.

jrate.sourceforge.net/, 2006.

[35] Ole-Johan Dahl and Kristen Nygaard. SIMULA: an ALGOL-based simulation lan-

guage. Communications of the ACM (CACM), 9(9):671–678, 1966.

[36] Morgan Deters. Dynamic assignment of scoped memory regions in the translation of

Java to Real-Time Java. Technical Report WUCSE–03–27, Washington University in

St. Louis, Department of Computer Science and Engineering, May 2003. M.S. Thesis.

[37] Morgan Deters. The tortured history of real-time garbage collection. www.cs.wustl.

edu/~mdeters/doc/slides/rtgc-history.pdf, October 2003. Presented in the Fall

2003 Seminar on Programming Languages, Department of Computer Science, Wash-

ington University.

[38] Morgan Deters and Ron K. Cytron. Automated discovery of scoped memory regions

for real-time Java. In Proceedings of the third international symposium on Memory

management (ISMM), pages 25–35, Berlin, Germany, June 2002. ACM Press.

[39] Morgan Deters, Christopher Gill, and Ron Cytron. Rate-monotonic analysis in the

C++ typesystem. In Proceedings of the RTAS 2003 Workshop on Model-Driven Em-

bedded Systems (MDES), Washington, DC, USA, May 2003.

[40] Morgan Deters, Nicholas A. Leidenfrost, Matthew P. Hampton, James C. Brodman,

and Ron K. Cytron. Automated reference-counted object recycling for Real-Time

Java. In Proceedings of the Tenth IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS 2004), pages 424–433, Toronto, Canada, May 2004.

[41] D. M. Dhamdhere. A fast algorithm for code movement optimisation. ACM SIGPLAN

Notices, 23(10):172–180, 1988.

[42] Distributed Object Computing Group. nORB - special purpose middleware for net-

worked embedded systems. deuce.doc.wustl.edu/nORB/, 2007.

[43] Robert Dyer and Hridesh Rajan. Modular compilation strategies for aspect-oriented

constructs. Technical Report 06–30, Iowa State University, Department of Com-

puter Science, 2006. archives.cs.iastate.edu/documents/disk0/00/00/04/90/

00000490-00/main.pd%f.

[44] Tzilla Elrad, Robert E. Filman, and Atef Bader, editors. Communications of the

ACM (CACM), 44(10): Special Issue on Aspect-Oriented Programming. ACM Press,

October 2001.

191

[45] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented programming: In-

troduction. Communications of the ACM (CACM), 44(10):29–32, 2001.

[46] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence

graph and its use in optimization. ACM Transactions on Programming Languages

and Systems (TOPLAS), 9(3):319–349, 1987.

[47] Xavier Franch. Systematic formulation of non-functional characteristics of software.

In Proceedings of the International Conference on Requirements Engineering (ICRE

1998), pages 174–181, Colorado Springs, Colorado, USA, 1998.

[48] Free Software Foundation. GCC Home Page. gcc.gnu.org, 2006.

[49] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,

Massachusetts, USA, 1995.

[50] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifi-

cation Second Edition. Addison-Wesley, Boston, Massachusetts, USA, 2000.

[51] Stefan Hanenberg and Rainer Unland. Parametric introductions. In Proceedings of the

2nd International Conference On Aspect-Oriented Software Development (AOSD ’03),

pages 80–89, 2003.

[52] Jan Hannemann and Gregor Kiczales. Design pattern implementation in Java and

AspectJ. In Proceedings of the seventeenth annual conference on Object-oriented pro-

gramming, systems, languages, and applications (OOPSLA 2002), pages 161–173,

Seattle, Washington, USA, November 2002. ACM Press.

[53] Frank Hunleth. Building customizable middleware using aspect-oriented program-

ming. Technical Report WUCS–02–07, Washington University in St. Louis, Depart-

ment of Computer Science, May 2002. M.S. Thesis.

[54] Frank Hunleth and Ron K. Cytron. Footprint and feature management using aspect-

oriented programming techniques. In Proceedings of the joint conference on Lan-

guages, compilers and tools for embedded systems, pages 38–45. ACM Press, 2002.

[55] Frank Hunleth, Ron Cytron, and Christopher Gill. Building customizable middleware

using aspect oriented programming. In The OOPSLA 2001 Workshop on Advanced

Separation of Concerns in Object-Oriented Systems, Tampa Bay, Florida, USA, Oc-

tober 2001. ACM Press. www.cs.ubc.ca/~kdvolder/Workshops/OOPSLA2001/ASoC.

html.

192

[56] Frank Hunleth, Ravi Pratap Maddimsetty, Ron K. Cytron, and Christopher D. Gill.

FACET—Framework for Aspect Composition for an EvenT channel. www.cs.wustl.

edu/~doc/RandD/PCES/facet/, 2007.

[57] IBM Research. HyperJ(TM): Multi-Dimensional Separation of Concerns for

Java(TM), 2007. www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm.

[58] IBM Research. Jikestm RVM home page. jikesrvm.sourceforge.net/, 2007.

[59] Kathleen Jensen and Niklaus Wirth. Pascal: User Manual and Report. Springer-

Verlag, Secaucus, New Jersey, USA, 1975.

[60] Ralph E. Johnson. Reducing the latency of a real-time garbage collector. ACM Letters

on Programming Languages and Systems (LOPLAS), 1(1):46–58, March 1992.

[61] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program

Generation. Prentice-Hall, 1993.

[62] Richard Jones and Rafael Lins. Garbage collection: algorithms for automatic dynamic

memory management. John Wiley & Sons, Inc., New York, New York, USA, 1996.

[63] Alan C. Kay. The early history of Smalltalk. In HOPL-II: The second ACM SIGPLAN

conference on History of programming languages, pages 69–95, New York, New York,

USA, 1993. ACM Press.

[64] Brian Kernighan and Dennis Ritchie. The C Programming Language. Prentice-Hall,

Englewood Cliffs, New Jersey, USA, 1978.

[65] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject

Protocol. MIT Press, Cambridge, Massachusetts, USA, 1991.

[66] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William

Griswold. Getting started with AspectJ. Communications of the ACM (CACM),

44(10):59–65, 2001.

[67] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In

Proceedings of the European Conference on Object-Oriented Programming (ECOOP),

volume 1241 of Lecture Notes in Computer Science, pages 220–242, Jyväskylä, Fin-

land, June 1997. Springer-Verlag.

[68] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Lazy code motion. In Proceedings

of the ACM SIGPLAN conference on Programming language design and implemen-

tation (PLDI 1992), pages 224–234, San Francisco, California, USA, June 1992.

193

[69] Donald E. Knuth. The Art of Computer Programming, volume I: Fundamental Algo-

rithms. Addison-Wesley, second edition, 1973. Chapter 2.

[70] Ákos Lédeczi, Mikloś Maróti, and Péter Völgyesi. The generic modeling environment.

Technical report, Institute for Software Integrated Systems, Vanderbilt University,

2001. www.isis.vanderbilt.edu/projects/gme/GMEReport.pdf.

[71] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm—exact

characterization and average-case behaviour. IEEE Real-Time Systems Symposium,

pages 166–171, December 1989.

[72] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding domina-

tors in a flowgraph. ACM Transactions on Programming Languages and Systems

(TOPLAS), 1(1):121–141, 1979.

[73] Henry Lieberman and Carl E. Hewitt. A real-time garbage collector based on the

lifetimes of objects. Communications of the ACM (CACM), 26(6):419–429, June

1983.

[74] Tom Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-

Wesley, Reading, Massachusetts, USA, 1997.

[75] Martin Linenweber. A study in Java bytecode engineering with PCESjava. Technical

Report WUCSE–03–17, Washington University in St. Louis, Department of Computer

Science and Engineering, May 2003. M.S. Thesis.

[76] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in

a hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61, January

1973.

[77] Jane W. S. Liu. Real-Time Systems. Prentice-Hall, Upper Saddle River, NJ, USA,

2000.

[78] Jane W. S. Liu, Juan-Luis Redondo, Zhong Deng, Too-Seng Tia, Riccardo Bettati,

Ami Silberman, Matthew Storch, Rhan Ha, and Wei-Kuan Shih. PERTS: A proto-

typing environment for real-time systems. Technical Report UIUCDCS-R-93-1802,

University of Illinois at Urbana-Champaign, May 1993.

[79] Ravi Pratap Maddimsetty. Efficient customizable middleware. Technical Report

WUCSE–2003–78, Washington University in St. Louis, Department of Computer Sci-

ence, December 2003. M.S. Thesis.

[80] Pattie Maes. Concepts and experiments in computational reflection. In Confer-

ence proceedings on Object-oriented programming systems, languages, and applications

194

(OOPSLA), pages 147–155, Orlando, Florida, USA, October 1987. ACM Press.

[81] Tobias Mann, Morgan Deters, Rob LeGrand, and Ron K. Cytron. Static determina-

tion of allocation rates to support real-time garbage collection. In Proceedings of the

2005 ACM Conference on Languages, Compilers, and Tools for Embedded Systems

(LCTES 2005), pages 193–202, Chicago, Illinois, USA, June 2005. ACM Press.

[82] John McCarthy. Recursive functions of symbolic expressions and their computation

by machine, part i. Communications of the ACM (CACM), 3(4):184–195, 1960.

[83] Michael Metcalf and John Reid. FORTRAN 90/95 Explained, second edition. Oxford

University Press, Oxford, United Kingdom, 1999.

[84] Steven S. Muchnick. Advanced compiler design and implementation. Morgan Kauf-

mann Publishers Inc., 1997.

[85] Scott Nettles and James O’Toole. Real-time replication garbage collection. In Pro-

ceedings of the ACM SIGPLAN conference on Programming language design and im-

plementation (PLDI 1993), pages 217–226, Albuquerque, New Mexico, USA, June

1993. ACM Press.

[86] Kelvin D. Nilsen. Garbage collection of strings and linked data-structures in real-time.

Software Practice and Experience, 18(7):613–640, July 1988.

[87] Kelvin D. Nilsen and William J. Schmidt. Hardware support for garbage collection

of linked objects and arrays in real-time. In Proceedings of the OOPSLA/ECOOP

1990 Workshop on Garbage Collection in Object-Oriented Systems, Ottawa, Canada,

October 1990.

[88] Kelvin Nilsen. Issues in the design and implementation of real-time Java. Java

Developer’s Journal, 1(1):44, 1996.

[89] Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph

in a software development environment. In Proceedings of the first ACM SIG-

SOFT/SIGPLAN software engineering symposium on practical software development

environments (SDE 1984), pages 177–184, New York, New York, USA, 1984. ACM

Press.

[90] Oxford University Programming Tools Group and the McGill University Sable Re-

search Group. abc: The AspectBench Compiler for AspectJ. www.aspectjbench.

org/, 2007.

[91] Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proceedings of the

ACM SIGPLAN conference on Programming language design and implementation

195

(PLDI 1988), pages 199–208, Atlanta, Georgia, USA, 1988.

[92] R. M. Pratap, F. Hunleth, and R. K. Cytron. Building fully customisable middleware

using an aspect-oriented approach. Software, 151(4):199–218, 2004.

[93] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-

Oriented Software Architecture, volume 2: Patterns for Concurrent and Networked

Objects. John Wiley & Sons, Inc., New York, New York, USA, 2000.

[94] William J. Schmidt and Kelvin D. Nilsen. Performance of a hardware-assisted real-

time garbage collector. In ASPLOS-VI: Proceedings of the sixth international con-

ference on Architectural support for programming languages and operating systems,

pages 76–85, New York, New York, USA, 1994. ACM Press.

[95] Lui Sha and John B. Goodenough. Real-time scheduling theory and Ada. IEEE

Computer, 23(4):53–62, 1990.

[96] Yefim Shuf, Manish Gupta, Rajesh Bordawekar, and Jaswinder Pal Singh. Exploiting

prolific types for memory management and optimizations. In Proceedings of the 29th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages

295–306. ACM Press, 2002.

[97] Fridtjof Siebert. Hard real-time garbage-collection in the Jamaica Virtual Machine.

In Proceedings of the Sixth International Conference on Real-Time Computing Sys-

tems and Applications (RTCSA 1999), Hong Kong, December 1999. IEEE Computer

Society Press.

[98] SPEC Corporation. Java SPEC benchmarks. Technical report, SPEC, 1999. Available

by purchase from SPEC.

[99] Bjarne Stroustrup. The C++ Programming Language, Special Edition. Addison-

Wesley, Boston, Massachusetts, USA, 2000.

[100] Venkita Subramonian, Christopher Gill, and Doug Stuart. Design and implemen-

tation of nORB. Technical report, Washington University in St. Louis, Depart-

ment of Computer Science and Engineering. www.cs.wustl.edu/~venkita/nORB/

norbtechreport.pdf.

[101] Sun Microsystems, Inc. Tuning garbage collection with the 1.4.2 java(tm) virtual

machine. java.sun.com/docs/hotspot/gc1.4.2/, 2003.

[102] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N degrees of

separation: multi-dimensional separation of concerns. In Proceedings of the 21st inter-

national conference on Software engineering, pages 107–119, Los Angeles, California,

196

USA, May 1999. IEEE Computer Society Press.

[103] Michiaki Tatsubori, Shigeru Chiba, Kozo Itano, and Marc-Olivier Killijian. Open-

Java: A class-based macro system for Java. In Walter Cazzola, Robert J. Stroud,

and Francesco Tisato, editors, Reflection and Software Engineering, volume 1826

of Lecture Notes in Computer Science, pages 117–133, Heidelberg, Germany, 2000.

Springer-Verlag.

[104] TimeSys Corporation. TimeSys TimeWiz. www.timesys.com/index.cfm?hdr=

tools_header.cfm&bdy=tools_bdy_model.cfm, 2003.

[105] Mads Tofte. A brief introduction to regions. In Proceedings of the first international

symposium on Memory management (ISMM), pages 186–195, Vancouver, British

Columbia, Canada, October 1998. ACM Press.

[106] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information

and Computation, 132(2):109–176, February 1997.

[107] Erwin Unruh. Primzahlen. www.erwin-unruh.de/primorig.html, 2007.

[108] Todd Veldhuizen. Using C++ template metaprograms. C++ Report, 7(4):36–43, May

1995. Reprinted in C++ Gems, ed. Stanley Lippman.

[109] Todd Veldhuizen. Techniques for scientific C++. Technical Report TR542, Indiana

University, Department of Computer Science, August 2000.

[110] John Viega, J. T. Bloch, and Pravir Chandra. Applying aspect-oriented programming

to security. Cutter IT Journal, 14(2):31–39, February 1994.

[111] David Walker, Steve Zdancewic, and Jay Ligatti. A theory of aspects. In Proceedings

of the eighth ACM SIGPLAN International Conference on Functional Programming

(ICFP 2003), pages 127–139, Uppsala, Sweden, August 2003.

[112] Mark Weiser. Program slicing. In Proceedings of the fifth international conference on

software engineering (ICSE 1981), pages 439–449, San Diego, California, USA, 1981.

IEEE Computer Society Press.

[113] Paul R. Wilson. Uniprocessor garbage collection techniques (long version). Submitted

to ACM Computing Surveys. ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps, 1994.

[114] Bart De Win, Frank Piessens, Wouter Joosen, and Tine Verhanneman. On the im-

portance of the separation-of-concerns principle in secure software engineering. In

Proceedings of the workshop on the Application of Engineering Principles to Sys-

tem Security Design, Boston, Massachusetts, USA, November 2002. Available at

197

http://www.acsac.org/waepssd/papers/02-piessens.pdf.

[115] Niklaus Wirth. On the design of programming languages. In IFIP Congress, pages

386–393, 1974.

[116] Victor Fay Wolfe, Russell Johnston, Peter Kortmann, Ben Watson, Steven Wohlever,

Lisa C. DiPippo, Rama Bethmagalkar, and Gregory Cooper. RapidSched: Static

scheduling and analysis for Real-Time CORBA. In Proceedings of the 5th International

Workshop on Real-Time Object-Oriented Dependable Systems. IEEE, January 1999.

198

Index

A
Ace, iv
Advanced Separation of Concerns (ASoC),

5, 152
advice, 6, 7, 9, 12, 51, 66, 95

after, 9, 13, 51, 149
around, 9, 13, 52, 149
before, 9, 12, 44, 149

affected points, 117, 118, 121, 122, 128,
134, 136, 138

afrl, see Air Force Research Laboratory,
the

Air Force Research Laboratory, the (afrl),
iii, 67

Alexandrescu, Andrei, 16, 24, 31, 188
algol, 68
Allgeier, Don, ii
Aonix PERC, 90
Aonix, Inc., 188
AOP, see Aspect-Oriented Programming
Appel, Andrew W., 188
Arnold, Ken, 188
ASoC, see Advanced Separation of

Concerns
aspect, 5–6
aspect dependence, xix
aspect dependence analysis, 153
aspect languages

future directions, 157
aspect weaving, 116, see weaving
Aspect-Oriented Programming (AOP),

xviii, xix, 1–3, 5–13, 13–17, 34, 38,
39, 41, 51–52, 66, 67, 93, 95, 99,
116, 125, 144, 148, 152–155, 157,
158

AspectBench, 11
AspectJ, 5–7, 9–13, 18, 34, 39, 40, 43, 44,

51, 52, 54, 55, 57–60, 64, 66, 69, 77,

91–94, 96, 100, 114–116, 119,
125–126, 148, 149, 153, 157

binding semantics, 9
AspectJ Organization, The, 188
Audsley, N. C., 188
Austern, Matthew H., 188
automatic memory management,

see garbage collectors
automatic programming, xviii
Avgustinov, Pavel, 188
Axe, Jeremy, iii

B
Backus, J. W., 189
Bacon, David F., 189
Bader, Atef, 191, 192
Baker, Henry G., 189
Balasubramanian, Kitty, iii
basic blocks, 118
Batory, Don, 189
Bauer, F. L., 189
Beebee, Jr., William S., 189
Belloch, Guy, 190
Bethmagalkar, Rama, 198
Bettati, Riccardo, 194
Bloch, J. T., 197
Bobrow, Daniel G., 193
Boehm, Hans-J., 189
Boeing Company, the, iii, 67, 86
Bollella, Greg, 189
Bordawekar, Rajesh, 196
Bovet, Daniel, 189
Bowling Green State University, iii, 208
Brabrand, Claus, 190
Bracha, Gilad, 190, 192
Brodman, James, ii, 38, 191, 208
Brooks, Rodney A., 190
Brosgol, Ben, 189

199

Brown, R., 190
Buchsbaum, Adam L., 190
Burns, A., 188
Buschmann, Frank, 196
bytecode, 16, 78–81
bytecode transformations, 16

C
C, 11, 68, 78, 100, 147
C++, 11, 15, 16, 18, 20–29, 31, 32, 34, 66,

68, 78, 81, 82, 85, 92, 95, 147
Cannarozzi, Dante, ii, 190
Carpenter, Shanna, ii
Cazzola, Walter, 197
Center for the Application of Information

Technology (CAIT), 209
Cesati, Marco, 189
CFG, see control flow graph
Chandra, Pravir, 197
Cheng, Perry, 189, 190
Chiba, Shigeru, 190, 197
Childress, Dawn, ii
Childress, Devin, ii
Cholleti, Sharath, iii
Christensen, Aske Simon, 188
Clancy, Lisa, ii
Clazzer, ii, 60
CNI, see Compiled Native Interface, the
Cobb, Nicci, ii
code motion, 154
code transformation, 11, 12
Compiled Native Interface, the (CNI), 82,

85
Comstock, Charles, ii
control dependence, 127, 144, 149
control flow graph (CFG), 117, 124, 127,

128
Cooper, Gregory, 198
Cormen, Thomas H., 190
Corsaro, Angelo, ii, 190, 191
cross operator ×, 105
Cunningham, Matthew, ii
Cygnus Native Interface,

see Compiled Native Interface, the
Cytron, Ron, ii, 19, 38, 190–193, 195, 196,

208, 209

D
Dahl, Ole-Johan, 191
Dallmeyer, Matthew, 67
darpa, iii
Das, Ravi, iii
data dependence, 127, 144, 149
Davis, Evan, 151
de Moor, Oege, 188
dead code elimination, 149
declare statement, 116
declare statements, 10
Defense Advanced Research Projects

Agency, the, see darpa

Defoe, Delvin, iii, 209
Deng, Zhong, 194
dependence

analysis, 147, 150
AspectJ, 115, 125–126, 126
conceptual, 115, 125, 126
control/data-flow, 115, 117–123, 126
explicit, 115, 115–116, 126
graph, see program dependence graph
sensitivity, 115, 123–125, 126

functional, 123
nonfunctional, 123–124

weave, 115, 116, 126
dependence analysis, xix, 152, 154
dependent types, 15
design patterns, xviii, 41, 154

Interceptor, 99, 100
Iterator, 41
Strategy, 22

Deters, Donald, iii
Deters, Lynn, iii
Deters, Morgan, 190, 191, 195, 208, 209
Dhamdhere, D. M., 191
Dibble, Peter, 189
Dierkes, Daron, ii
Ding, Y., 19, 194
DiPippo, Lisa C., 198
directed acyclic graph, 101–112
dispatch tables

for method dispatch, see vtables
Distributed Object Computing Group, 191
domain-specific languages, xviii
dominator, 102

200

Donahue, Steve, iii, 208
Dyer, Robert, 191
dynamic memory allocation, 38–41

E
Early History of Smalltalk, The, 4
Elliot, Conal, 195
Ellis, John R., 188
Elrad, Tzilla, 191, 192
embedded systems, 18, 19, 22, 39, 98
event channel, 140, 144
exception footprint, 133–135

F
facet, 101, 102, 114, 140–144, 145, 146
fast Fourier transforms, 34
feature dependence, 98, 99, 112–113, 156
feature registry, 140, 142, 142–143
feature set specification, 2, 101–102, 104,

116, 140, 156
facet, 141

feature-oriented programming, xix, 98, 114,
153

Ferrante, Jeanne, 192
Field-Programmable Gate Array (fpga),

71, 86, 90
Filman, Robert E., 191, 192
Floyd-Clapman, Ben, iii
footprint, 24, 86, 99, 113, 140
fortran, 68
Fox, Lucas, iii
fpga, see Field-Programmable Gate Array
Framework for Aspect Composition for an

EvenT channel, see facet

Franch, Xavier, 192
Free Software Foundation, 192
Friedman, Scott, ii, iii
Fuller, Peggy, iii
functors, 24
Fundak, Brandt, iii
Furr, Steve, 189

G
Gamma, Erich, 192
garbage collectors, 68

Boehm collector, 68, 86, 90
copying, 67–87, 182–187
hardware-assisted, 2, 67–87, 90,

182–187
software support for, 73–87, 92, 156,

182–187
Metronome, 90
real-time, 90
reference counting, 2, 38–66, 73–87, 92,

156, 182–187
University of Dayton, 86, 90

GCC, see GNU Compiler Collection, the,
209

GCJ, see GNU Compiler for Java, the
Generic tree representation, 148, 150
generic programming, 21, 26
generic types, 15, 21
Gill, Chris, ii, 19, 191–193, 196, 208
Gimple tree representation, 148, 150
GNU, 21, 26, 32
GNU Compiler Collection, the (GCC), 78,

79, 87, 89, 91, 147–152, 182, 209
GNU Compiler for Java, the (GCJ), 78, 86,

90
Gomard, C. K., 193
Goodenough, John B., 196
Goon Squad, the, iii
Gosling, James, 188, 189, 192
Graham, Susan L., 189
Green, J., 189
Griswold, William, 193
Groeniger, Mike, iii
Grothe, Jean, iii
Gupta, Manish, 196

H
Ha, Rhan, 194
Hampton, Matt, ii, iii, 38, 191, 208
Hanenberg, Stefan, 95, 192
Hannemann, Jan, 192
Harbison, Myrna, iii
Hardin, David, 189
Harrison, William, 196

201

Hegedus, Ava, iii
Helm, Richard, 192
Hendren, Laurie, 188, 190
Henrichs, Mike, iii
Hewitt, Carl E., 194
higher-order abstract syntax, 96
Hill, Chris, iii
Hilsdale, Erik, 193
Holmes, David, 188
Hough, Richard, iii
Hugunin, Jim, 193
Hunleth, Frank, iii, 192, 193, 196
HyperJ, 153

I
IBM Research, 193
ifdef, 100
immediate dominator, 102
Indeck, Ron, ii
independence, see dependence
index, self-referential, 199–206
Ingold, Brian, iii
Interceptor design pattern, 99, 100
intertype declarations, 6, 9–10, 95, 100, 142
introductions, see intertype declarations
Irwin, John, 193
Isaacs, Dan, iii
Itano, Kozo, 197
Iterator design pattern, 41

J
Java, ii, 2, 5, 8–11, 14, 16, 38–40, 42, 43, 46,

50–52, 54, 55, 57, 58, 60, 63, 64, 68,
69, 73, 77–83, 85, 86, 90–92, 94, 95,
127, 140, 147–150, 156, 157, 209

Java bytecode instruction
aaload, 47
aastore, 44, 45
aload, 42
areturn, 44, 81
athrow, 44, 81
dup, 80
getfield, 44, 47, 51
getstatic, 44, 47, 51
putfield, 44, 45, 51, 60
putstatic, 44, 45, 51, 60

Java generics, 95
Java Native Interface, the (JNI), 55, 82
Java Virtual Machine (JVM), 39, 40, 43, 52,

63, 64, 78, 87
Jensen, Kathleen, 193
Jikes Research Virtual Machine,

see Jikes RVM
Jikes RVM, 14, 77
JIT, see just-in-time compilation
JNI, see Java Native Interface, the
Johnson, Ralph, 192, 193
Johnston, Russell, 198
join point, 6, 51
join point model, 93

generalized, 96, 157
systemic, 95

join points, 6, 7, 9, 12, 17, 51
execution join points, 6

Jones, N. D., 193
Jones, Richard, 193
Joosen, Wouter, 197
Joy, Bill, 192
jRate, ii, 78–89, 91, 182–187
just-in-time compilation (JIT), 14, 16
JVM, see Java Virtual Machine

K
Kaplan, Haim, 190
Katz, C., 189
Kavi, Krishna M., 208
Kay, Alan, 4, 193
kernel modules, 99
Kernighan, Brian, 193
Kersten, Mik, 193
Kiczales, Gregor, 192, 193
Killijian, Marc-Olivier, 197
Knoop, Jens, 193
Knuth, Donald E., xix, 194
Kortmann, Peter, 198
Kuzins, Sascha, 188

202

L
LaBombarbe, Jake, iii
Lai, Victor, iii
Lamping, John, 193
Lancaster, Ron, iii
Larson, Brent, iii
Layland, James W., 19, 194
Lédeczi, Ákos, 194
LeGrand, Rob, iii, 195, 208, 209
Lehoczky, J. P., 19, 194
Leidenfrost, Nick, ii, 38, 191, 208, 209
Leiserson, Charles E., 190
Lengauer, Thomas, 112, 194
Levine, David, iii
Levine, Justin, ii
Lhoták, Jennifer, 188
Lhoták, Ondr̆ej, 188
Li, Kai, 188
Lieberman, Henry, 194
Ligatti, Jay, 197
Lindholm, Tom, 194
Linenweber, Martin, ii, 194
Lins, Rafael, 193
Linux, 99
Lisp, 24, 68, 152
Liu, C. L., 19, 194
Liu, Jane W. S., 194
Loingtier, Jean-Marc, 193
Loki C++ library, 31
Lomasky, Lou, iii
loop optimizations, 154
Lopes, Cristina Videira, 193
Lopez-Herrejon, Roberto E., 189
Lu, Chenyang, ii

M
macro systems, 15
Maddimsetty, Ravi Pratap, iii, 101, 193,

194, 196
Maeda, Chris, 193
Maes, Pattie, 194
Maner, Walter, iii
Mann, Tobias, iii, 195, 208, 209
Maróti, Mikloś, 194
Martin, Jean-Philippe, 189
Matlock, Sharon, iii

McCarthy, John, 189, 195
McCutchen, Annie, iii
McGill University Sable Research Group,

the, 195
McGinnis, Scott, ii
McNerney, Brett, 67
mdes, see Model-Driven Embedded

Systems workshop
memory regions, 90
Mendhekar, Anurag, 193
metaobject protocols, 15, 96, 152, 154
metaprogramming, 18–37, 66, 92, 93, 156
Metcalf, Michael, 195
middleware, xviii, 98
model-driven development, 18
Model-Driven Embedded Systems

workshop (mdes), ii
modelling tools, xviii
monospace typeface, 3
Mosley, Derrick, iii
Moyerman, Sam, ii
Muchnick, Steven S., 195
Multi-Dimensional Separation of

Concerns (MDSoC), 152–153
Myers, Colleen, iii
Myers, Keith, iii

N
Natarajan, Balachandran, iii
Nettles, Scott, 195
Nilsen, Kelvin, 195, 196
Nye, Jonathan M., 208
Nygaard, Kristen, 191

O
O’Toole, James, 195
object recycling, 38–41, 43–46, 48, 53–57
Odersky, Martin, 190
Olsson, Anna, ii
On the Design of Programming Languages,

97
OpenC++, 154
OpenJava, 154
Ossher, Harold, 196
Ottenstein, Karl J., 192, 195
Ottenstein, Linda M., 195

203

owned vertex, 103
Oxford University Programming Tools

Group, 195

P
Palm, Jeffrey, 193
Parameswaran, Kirthika, iii
partial evaluation, 16, 38, 40, 58, 60, 64, 66
Pascal, 68
PDG, see program dependence graph
Perlis, A. J., 189
PERTS, 34
Pfenning, Frank, 195
PGP key fingerprint, iii
Piessens, Frank, 197
Plezbert, Michael, iii, 190
plugins, 99
pointcuts, 6, 7–9, 9

anonymous, 9
formal parameters, 8
intersection, 8
named, 8, 9
negation, 8
pointcut primitives, 7
adviceexecution, 7
args, 8
call, 7
cflow, 7, 149
cflowbelow, 8, 149
execution, 7
get, 7
handler, 7
handlers, 149
if, 8
initialization, 7
preinitialization, 7
set, 7
staticinitialization, 7
target, 8
this, 8
within, 7
withincode, 7

union, 8
pragma, 82
Pratap, Ravi,

see Maddimsetty, Ravi Pratap

prime number computation, 34
Printy, Tom, iii
product lines, 98, 157
program dependence graph (PDG), 117,

118, 120, 124, 125, 127–129, 154
program slice, 114, 117
Pyarali, Irfan, iii

R
Rüthing, Oliver, 193
Rajan, Hridesh, 191
Rajan, V. T., 189
Ramakrishnan, Sub, iii
RapidSched, 34
Rate-Monotonic Analysis (RMA), 18–35
Rate-Monotonic Scheduling (RMS), 2,

18–35, 92
Rauschmayer, Axel, 189
Raytheon Integrated Defense Systems, iii
Real-Time and Embedded Technology and

Applications Symposium (rtas), ii
real-time Java, 69, 78
Real-Time Specification for Java,

the (rtsj), 38–41, 53, 54, 60, 63,
64, 78, 83, 90

real-time systems, 18–20, 25–27, 31, 34, 39,
40, 54, 64, 69, 78, 116

Redondo, Juan-Luis, 194
refactoring, 98, 113
reflection, 27, 40, 43, 52, 55, 57, 58, 60, 64,

66, 94, 95
Reid, John, 195
Reskusich, John, ii
Richardson, M. F., 188
Rinard, Martin, 189
Ritchie, Dennis, 193
Ritter, Ryan, iii
Rivest, Ronald L., 190
Rivieres, Jim des, 193
RMA, see Rate-Monotonic Analysis
RMS, see Rate-Monotonic Scheduling
Rogers, Anne, 190
Rohnert, Hans, 196
rooted subgraph, 103

204

rtas, see Real-Time and Embedded
Technology and Applications
Symposium

rtsj, see Real-Time Specification for Java,
the

Rutishauser, H., 189

S
Samelson, K., 189
sans serif, 3
Sarvela, Jacob Neal, 189
Schlenker, Justin, iii
Schmidt, Doug, iii, 196
Schmidt, William J., 195, 196
Schopenhauer, Arthur, 4
Schwartzbach, Michael I., 190
scoped memory, 90
Sereni, Damien, 188
Sestoft, P., 193
Sha, Lui, 19, 194, 196
Sharp, Oliver J., 189
Shih, Wei-Kuan, 194
Shuf, Yefim, 196
Siebert, Fridtjof, 196
Silberman, Ami, 194
Simula, 68
Singh, Jaswinder Pal, 196
Sittampalam, Ganesh, 188
slice, see program slice
small capitals, 3
Smalltalk, 4, 68
Smith, William, iii
SourceForge.net, ii
SPEC Corporation, 196
SSA form, see static single-assignment form
Staats, Andy, iii
Stacy, Linda, iii
Stal, Michael, 196
static analysis, 156
static single-assignment form (SSA form),

150
Steele, Guy, 192
Steffen, Bernhard, 193
Stein, Clifford, 190
Storch, Matthew, 194
Stoutamire, David, 190

Straatmann, Madeline, iii
Strategy design pattern, 22
strict dominator, 102
Stroud, Robert J., 197
Stroustrup, Bjarne, 196
Stuart, Doug, 196
Stump, Aaron, ii
Subramonian, Venkita, iii, 196
subsettable software, 99, 99–100, 157
Sun Microsystems, Inc., 90, 196
Sung, Stella, iii
Sutton, Jr., Stanley M., 196
system aspects, xix, 1, 2, 14–17, 92–98,

152, 154, 156–157

T
Talpin, Jean-Pierre, 197
Tarjan, Robert Endre, 112, 194
Tarr, Peri, 196
task alternation, 33, 37
task dependence, 32, 37
Tatsubori, Michiaki, 197
taxonomy

dependence, 115–126, 156
template functions, 21
template instantiation, 21
template metaprogramming, 15–16
template parameters, 21
template specialization, 23
templates

C++, 21–24, 24–32, 95
Thiel, Justin, iii, 67
Tia, Too-Seng, 194
Tibble, Julian, 189
TimeSys Corporation, 34, 197
TimeWiz, 34
Tisato, Francesco, 197
Tofte, Mads, 197
Torri, Stephen, iii
traits, 23, 37
Trapzso, Kasia, iii
TriPacific Software, 34
Turnbull, Mark, 189
type systems, xviii
typelists, 24

205

U
United States Air Force Research

Laboratory, the, see Air Force
Research Laboratory, the

University of Dayton, 67, 69, 71, 86, 90, 91
hardware garbage collector, see garbage

collectors, University of Dayton
Unland, Rainer, 95, 192
Unruh, Erwin, 22, 197
utilization, 19

V
valid configurations, 2, 33, 98, 99, 103,

101–113, 118, 120, 140, 156–157
valid program, 115
Vauquois, B., 189
Veldhuizen, Todd, 197
Verhanneman, Tine, 197
Viega, John, 197
Vlissides, John, 192
Völgyesi, Péter, 194
vtable, 77, 83, 85

W
Wadler, Philip, 190
Walker, David, 197
Wang, Nanbor, iii
Warren, Joe D., 192
Washington University in St. Louis, 67
Watson, Ben, 198
weak references, 50
weave independence, 116
weaving, 10–13, 149

AspectJ weaver, 12–13, 125, 149
nominal weaver, 12, 126, 149

Weber, John, 67
Wegstein, J. H., 189
Weiser, Mark, 189, 197
well-formed program, 115
Wellings, A. J., 188
West, Ben, iii
Westbrook, Eddy, iii
Westbrook, Jeffery R., 190
Wijngaarden, A. van, 189
Wilson, Paul R., 197
Win, Bart De, 197

Wirth, Niklaus, 97, 193, 198
Wohlever, Steven, 198
Woike, Angela, ii
Wolfe, Victor Fay, 198
Woodger, M., 189

Y
Yellin, Frank, 194

Z
Zawodny, Jeremy, iii
Zdancewic, Steve, 197
Zimmerman, Guy, iii
Zimmermann, Bob, ii
Zoë, iv

206

Revision History

rief revision notes for this printing and previous ones are listed below, along withB doctoral program milestones and dates. The most recent revision and a full list
of thesis errata, corresponding to all versions ever in print, will be made available

online as they become available:

http://www.morgandeters.com/dissertation/

Washington University’s Department of Computer Science and Engineering publishes tech-
nical reports online dating back to 1996:

http://cse.seas.wustl.edu/research-techreports.asp

30 Apr 2007 The copy you are now reading was typeset (TEX job main at 12:33pm).

30 Apr 2007 Committee suggestions incorporated. Submitted to the Graduate School
of Arts & Sciences and published as technical report WUCSE–2007–29.

24 Apr 2007 Public dissertation defense.

06 Apr 2007 Dissertation submitted to the Sever Institute for format review.

07 Nov 2005 Public proposal defense.

27 Jun 2003 Accepted as candidate in doctoral program.

207

Curriculum Vitæ
Morgan G. Deters

Degrees Held Doctor of Philosophy, Computer Science

Washington University in St. Louis, May 2007

Master of Science, Computer Science

Washington University in St. Louis, May 2003

Bachelor of Science, Cum Laude, Computer Science

Bowling Green State University, May 2000

Refereed

Publications

Tobias Mann, Morgan Deters, Rob LeGrand, and Ron K. Cytron.

Static determination of allocation rates to support real-time

garbage collection. In Proceedings of the 2005 ACM Conference on

Languages, Compilers, and Tools for Embedded Systems (LCTES

2005), pp. 193–202, Chicago, Illinois, June 2005. ACM Press.

Morgan Deters, Nicholas A. Leidenfrost, Matthew P. Hampton,

James C. Brodman, and Ron K. Cytron. Automated reference-

counted object recycling for Real-Time Java. In Proceedings of the

Tenth IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS 2004), pp. 424–433, Toronto, Canada, May

2004. IEEE Computer Society.

Morgan Deters, Christopher Gill, and Ron Cytron. Rate-monotonic

analysis in the C++ type system. In Proceedings of the RTAS

2003 Workshop on Model-Driven Embedded Systems (MDES),

Washington, DC, May 2003.

Morgan Deters and Ron K. Cytron. Automated discovery of scoped

memory regions for Real-Time Java. In Proceedings of the 2002

International Symposium on Memory Management (ISMM 2002),

pp. 25–35, Berlin, Germany, June 2002. ACM Press.

Steven M. Donahue, Matthew P. Hampton, Morgan Deters,

Jonathan M. Nye, Ron K. Cytron, and Krishna M. Kavi. Storage

allocation for real-time, embedded systems. In Embedded Software:

Proceedings of the First International Workshop, volume 2211 of

Lecture Notes in Computer Science, pp. 131–147, Tahoe City,

California, USA, October 2001. Springer-Verlag.

Morgan Deters and Ron K. Cytron. Introduction of program instru-

mentation using aspects. In Proceedings of the ACM OOPSLA 2001

Workshop on Advanced Separation of Concerns in Object-Oriented

Systems, Tampa Bay, Florida, USA, October 2001. http://www.

cs.ubc.ca/~kdvolder/Workshops/OOPSLA2001/ASoC.html.

208

Morgan Deters, Nicholas Leidenfrost, and Ron K. Cytron. Trans-

lation of Java to Real-Time Java using aspects. In Proceedings

of the International Workshop on Aspect-Oriented Programming

and Separation of Concerns, pp. 25–30, Lancaster, United King-

dom, August 2001. Proceedings published as technical report

CSEG/03/01 by the Computing Department, Lancaster Univer-

sity, United Kingdom.

Publications

in Preparation

Tobias Mann, Morgan Deters, Robert LeGrand, and Ron K. Cytron.

Static Determination of Allocation Rates to Support Real-Time

Garbage Collection. Extended version of LCTES 2005 paper.

Delvin Defoe, Morgan Deters, and Ron K. Cytron. An Efficient

On-the-fly Reference-Counting Garbage Collector (working title).

Teaching

Experience

Organizer and lecturer, Demystifying GCC: Under the Hood of the

GNU Compiler Collection

Half-day tutorial offered at the ACM SIGPLAN International Con-

ference on Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA), Portland, Oregon, 2006.

Organizer and moderator, Doctoral Programming Language Seminar:

Internals of the GNU Compiler Collection (CSE7201)

Washington University in St. Louis, Fall 2005.

Guest lecturer, Embedded Computing Systems (CSE467)

Washington University in St. Louis, April 2005. Delivered one

lecture.

Guest lecturer, Advanced Multi-Paradigm Software Development

(CSE562)

Washington University in St. Louis, January 2003. Delivered one

lecture.

Lecturer, Real-Time Java

Center for the Application of Information Technology (CAIT),

St. Louis, September 2002–July 2004. Taught three classes with

Ron Cytron.

Lecturer, Aspect-Oriented Programming with AspectJ (CSE6783)

Washington University in St. Louis, Fall 2002. Delivered 12

lectures.

Organizer and moderator, Doctoral Programming Language Seminar:

Features of Programming Languages (CS 6782)

Washington University in St. Louis, Spring 2002.

209

Professional

Societies

Association for Computing Machinery (ACM), ACM Special In-

terest Group on Programming Languages (SIGPLAN), Institute

of Electrical and Electronics Engineers (IEEE), IEEE Computer

Society

May 2007

210

Short Title: Unwoven Aspect Analysis Deters, Ph.D. 2007

	Unwoven Aspect Analysis
	Recommended Citation
	Unwoven Aspect Analysis

	tmp.1468963809.pdf.QVtN4

